xref: /linux/kernel/cpu.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40 
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44 
45 #include "smpboot.h"
46 
47 /**
48  * struct cpuhp_cpu_state - Per cpu hotplug state storage
49  * @state:	The current cpu state
50  * @target:	The target state
51  * @fail:	Current CPU hotplug callback state
52  * @thread:	Pointer to the hotplug thread
53  * @should_run:	Thread should execute
54  * @rollback:	Perform a rollback
55  * @single:	Single callback invocation
56  * @bringup:	Single callback bringup or teardown selector
57  * @node:	Remote CPU node; for multi-instance, do a
58  *		single entry callback for install/remove
59  * @last:	For multi-instance rollback, remember how far we got
60  * @cb_state:	The state for a single callback (install/uninstall)
61  * @result:	Result of the operation
62  * @ap_sync_state:	State for AP synchronization
63  * @done_up:	Signal completion to the issuer of the task for cpu-up
64  * @done_down:	Signal completion to the issuer of the task for cpu-down
65  */
66 struct cpuhp_cpu_state {
67 	enum cpuhp_state	state;
68 	enum cpuhp_state	target;
69 	enum cpuhp_state	fail;
70 #ifdef CONFIG_SMP
71 	struct task_struct	*thread;
72 	bool			should_run;
73 	bool			rollback;
74 	bool			single;
75 	bool			bringup;
76 	struct hlist_node	*node;
77 	struct hlist_node	*last;
78 	enum cpuhp_state	cb_state;
79 	int			result;
80 	atomic_t		ap_sync_state;
81 	struct completion	done_up;
82 	struct completion	done_down;
83 #endif
84 };
85 
86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
87 	.fail = CPUHP_INVALID,
88 };
89 
90 #ifdef CONFIG_SMP
91 cpumask_t cpus_booted_once_mask;
92 #endif
93 
94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
95 static struct lockdep_map cpuhp_state_up_map =
96 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
97 static struct lockdep_map cpuhp_state_down_map =
98 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
99 
100 
101 static inline void cpuhp_lock_acquire(bool bringup)
102 {
103 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
104 }
105 
106 static inline void cpuhp_lock_release(bool bringup)
107 {
108 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
109 }
110 #else
111 
112 static inline void cpuhp_lock_acquire(bool bringup) { }
113 static inline void cpuhp_lock_release(bool bringup) { }
114 
115 #endif
116 
117 /**
118  * struct cpuhp_step - Hotplug state machine step
119  * @name:	Name of the step
120  * @startup:	Startup function of the step
121  * @teardown:	Teardown function of the step
122  * @cant_stop:	Bringup/teardown can't be stopped at this step
123  * @multi_instance:	State has multiple instances which get added afterwards
124  */
125 struct cpuhp_step {
126 	const char		*name;
127 	union {
128 		int		(*single)(unsigned int cpu);
129 		int		(*multi)(unsigned int cpu,
130 					 struct hlist_node *node);
131 	} startup;
132 	union {
133 		int		(*single)(unsigned int cpu);
134 		int		(*multi)(unsigned int cpu,
135 					 struct hlist_node *node);
136 	} teardown;
137 	/* private: */
138 	struct hlist_head	list;
139 	/* public: */
140 	bool			cant_stop;
141 	bool			multi_instance;
142 };
143 
144 static DEFINE_MUTEX(cpuhp_state_mutex);
145 static struct cpuhp_step cpuhp_hp_states[];
146 
147 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
148 {
149 	return cpuhp_hp_states + state;
150 }
151 
152 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
153 {
154 	return bringup ? !step->startup.single : !step->teardown.single;
155 }
156 
157 /**
158  * cpuhp_invoke_callback - Invoke the callbacks for a given state
159  * @cpu:	The cpu for which the callback should be invoked
160  * @state:	The state to do callbacks for
161  * @bringup:	True if the bringup callback should be invoked
162  * @node:	For multi-instance, do a single entry callback for install/remove
163  * @lastp:	For multi-instance rollback, remember how far we got
164  *
165  * Called from cpu hotplug and from the state register machinery.
166  *
167  * Return: %0 on success or a negative errno code
168  */
169 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
170 				 bool bringup, struct hlist_node *node,
171 				 struct hlist_node **lastp)
172 {
173 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
174 	struct cpuhp_step *step = cpuhp_get_step(state);
175 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
176 	int (*cb)(unsigned int cpu);
177 	int ret, cnt;
178 
179 	if (st->fail == state) {
180 		st->fail = CPUHP_INVALID;
181 		return -EAGAIN;
182 	}
183 
184 	if (cpuhp_step_empty(bringup, step)) {
185 		WARN_ON_ONCE(1);
186 		return 0;
187 	}
188 
189 	if (!step->multi_instance) {
190 		WARN_ON_ONCE(lastp && *lastp);
191 		cb = bringup ? step->startup.single : step->teardown.single;
192 
193 		trace_cpuhp_enter(cpu, st->target, state, cb);
194 		ret = cb(cpu);
195 		trace_cpuhp_exit(cpu, st->state, state, ret);
196 		return ret;
197 	}
198 	cbm = bringup ? step->startup.multi : step->teardown.multi;
199 
200 	/* Single invocation for instance add/remove */
201 	if (node) {
202 		WARN_ON_ONCE(lastp && *lastp);
203 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
204 		ret = cbm(cpu, node);
205 		trace_cpuhp_exit(cpu, st->state, state, ret);
206 		return ret;
207 	}
208 
209 	/* State transition. Invoke on all instances */
210 	cnt = 0;
211 	hlist_for_each(node, &step->list) {
212 		if (lastp && node == *lastp)
213 			break;
214 
215 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216 		ret = cbm(cpu, node);
217 		trace_cpuhp_exit(cpu, st->state, state, ret);
218 		if (ret) {
219 			if (!lastp)
220 				goto err;
221 
222 			*lastp = node;
223 			return ret;
224 		}
225 		cnt++;
226 	}
227 	if (lastp)
228 		*lastp = NULL;
229 	return 0;
230 err:
231 	/* Rollback the instances if one failed */
232 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
233 	if (!cbm)
234 		return ret;
235 
236 	hlist_for_each(node, &step->list) {
237 		if (!cnt--)
238 			break;
239 
240 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
241 		ret = cbm(cpu, node);
242 		trace_cpuhp_exit(cpu, st->state, state, ret);
243 		/*
244 		 * Rollback must not fail,
245 		 */
246 		WARN_ON_ONCE(ret);
247 	}
248 	return ret;
249 }
250 
251 #ifdef CONFIG_SMP
252 static bool cpuhp_is_ap_state(enum cpuhp_state state)
253 {
254 	/*
255 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
256 	 * purposes as that state is handled explicitly in cpu_down.
257 	 */
258 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
259 }
260 
261 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
262 {
263 	struct completion *done = bringup ? &st->done_up : &st->done_down;
264 	wait_for_completion(done);
265 }
266 
267 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
268 {
269 	struct completion *done = bringup ? &st->done_up : &st->done_down;
270 	complete(done);
271 }
272 
273 /*
274  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
275  */
276 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
277 {
278 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
279 }
280 
281 /* Synchronization state management */
282 enum cpuhp_sync_state {
283 	SYNC_STATE_DEAD,
284 	SYNC_STATE_KICKED,
285 	SYNC_STATE_SHOULD_DIE,
286 	SYNC_STATE_ALIVE,
287 	SYNC_STATE_SHOULD_ONLINE,
288 	SYNC_STATE_ONLINE,
289 };
290 
291 #ifdef CONFIG_HOTPLUG_CORE_SYNC
292 /**
293  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
294  * @state:	The synchronization state to set
295  *
296  * No synchronization point. Just update of the synchronization state, but implies
297  * a full barrier so that the AP changes are visible before the control CPU proceeds.
298  */
299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
300 {
301 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
302 
303 	(void)atomic_xchg(st, state);
304 }
305 
306 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
307 
308 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
309 				      enum cpuhp_sync_state next_state)
310 {
311 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
312 	ktime_t now, end, start = ktime_get();
313 	int sync;
314 
315 	end = start + 10ULL * NSEC_PER_SEC;
316 
317 	sync = atomic_read(st);
318 	while (1) {
319 		if (sync == state) {
320 			if (!atomic_try_cmpxchg(st, &sync, next_state))
321 				continue;
322 			return true;
323 		}
324 
325 		now = ktime_get();
326 		if (now > end) {
327 			/* Timeout. Leave the state unchanged */
328 			return false;
329 		} else if (now - start < NSEC_PER_MSEC) {
330 			/* Poll for one millisecond */
331 			arch_cpuhp_sync_state_poll();
332 		} else {
333 			usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
334 		}
335 		sync = atomic_read(st);
336 	}
337 	return true;
338 }
339 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
342 
343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
344 /**
345  * cpuhp_ap_report_dead - Update synchronization state to DEAD
346  *
347  * No synchronization point. Just update of the synchronization state.
348  */
349 void cpuhp_ap_report_dead(void)
350 {
351 	cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
352 }
353 
354 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
355 
356 /*
357  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
358  * because the AP cannot issue complete() at this stage.
359  */
360 static void cpuhp_bp_sync_dead(unsigned int cpu)
361 {
362 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
363 	int sync = atomic_read(st);
364 
365 	do {
366 		/* CPU can have reported dead already. Don't overwrite that! */
367 		if (sync == SYNC_STATE_DEAD)
368 			break;
369 	} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
370 
371 	if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
372 		/* CPU reached dead state. Invoke the cleanup function */
373 		arch_cpuhp_cleanup_dead_cpu(cpu);
374 		return;
375 	}
376 
377 	/* No further action possible. Emit message and give up. */
378 	pr_err("CPU%u failed to report dead state\n", cpu);
379 }
380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
381 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
383 
384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
385 /**
386  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
387  *
388  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
389  * for the BP to release it.
390  */
391 void cpuhp_ap_sync_alive(void)
392 {
393 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
394 
395 	cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
396 
397 	/* Wait for the control CPU to release it. */
398 	while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
399 		cpu_relax();
400 }
401 
402 static bool cpuhp_can_boot_ap(unsigned int cpu)
403 {
404 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
405 	int sync = atomic_read(st);
406 
407 again:
408 	switch (sync) {
409 	case SYNC_STATE_DEAD:
410 		/* CPU is properly dead */
411 		break;
412 	case SYNC_STATE_KICKED:
413 		/* CPU did not come up in previous attempt */
414 		break;
415 	case SYNC_STATE_ALIVE:
416 		/* CPU is stuck cpuhp_ap_sync_alive(). */
417 		break;
418 	default:
419 		/* CPU failed to report online or dead and is in limbo state. */
420 		return false;
421 	}
422 
423 	/* Prepare for booting */
424 	if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
425 		goto again;
426 
427 	return true;
428 }
429 
430 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
431 
432 /*
433  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
434  * because the AP cannot issue complete() so early in the bringup.
435  */
436 static int cpuhp_bp_sync_alive(unsigned int cpu)
437 {
438 	int ret = 0;
439 
440 	if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
441 		return 0;
442 
443 	if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
444 		pr_err("CPU%u failed to report alive state\n", cpu);
445 		ret = -EIO;
446 	}
447 
448 	/* Let the architecture cleanup the kick alive mechanics. */
449 	arch_cpuhp_cleanup_kick_cpu(cpu);
450 	return ret;
451 }
452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
453 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
454 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
456 
457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
458 static DEFINE_MUTEX(cpu_add_remove_lock);
459 bool cpuhp_tasks_frozen;
460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
461 
462 /*
463  * The following two APIs (cpu_maps_update_begin/done) must be used when
464  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
465  */
466 void cpu_maps_update_begin(void)
467 {
468 	mutex_lock(&cpu_add_remove_lock);
469 }
470 
471 void cpu_maps_update_done(void)
472 {
473 	mutex_unlock(&cpu_add_remove_lock);
474 }
475 
476 /*
477  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
478  * Should always be manipulated under cpu_add_remove_lock
479  */
480 static int cpu_hotplug_disabled;
481 
482 #ifdef CONFIG_HOTPLUG_CPU
483 
484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
485 
486 void cpus_read_lock(void)
487 {
488 	percpu_down_read(&cpu_hotplug_lock);
489 }
490 EXPORT_SYMBOL_GPL(cpus_read_lock);
491 
492 int cpus_read_trylock(void)
493 {
494 	return percpu_down_read_trylock(&cpu_hotplug_lock);
495 }
496 EXPORT_SYMBOL_GPL(cpus_read_trylock);
497 
498 void cpus_read_unlock(void)
499 {
500 	percpu_up_read(&cpu_hotplug_lock);
501 }
502 EXPORT_SYMBOL_GPL(cpus_read_unlock);
503 
504 void cpus_write_lock(void)
505 {
506 	percpu_down_write(&cpu_hotplug_lock);
507 }
508 
509 void cpus_write_unlock(void)
510 {
511 	percpu_up_write(&cpu_hotplug_lock);
512 }
513 
514 void lockdep_assert_cpus_held(void)
515 {
516 	/*
517 	 * We can't have hotplug operations before userspace starts running,
518 	 * and some init codepaths will knowingly not take the hotplug lock.
519 	 * This is all valid, so mute lockdep until it makes sense to report
520 	 * unheld locks.
521 	 */
522 	if (system_state < SYSTEM_RUNNING)
523 		return;
524 
525 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
526 }
527 
528 #ifdef CONFIG_LOCKDEP
529 int lockdep_is_cpus_held(void)
530 {
531 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
532 }
533 #endif
534 
535 static void lockdep_acquire_cpus_lock(void)
536 {
537 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
538 }
539 
540 static void lockdep_release_cpus_lock(void)
541 {
542 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
543 }
544 
545 /*
546  * Wait for currently running CPU hotplug operations to complete (if any) and
547  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
548  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
549  * hotplug path before performing hotplug operations. So acquiring that lock
550  * guarantees mutual exclusion from any currently running hotplug operations.
551  */
552 void cpu_hotplug_disable(void)
553 {
554 	cpu_maps_update_begin();
555 	cpu_hotplug_disabled++;
556 	cpu_maps_update_done();
557 }
558 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
559 
560 static void __cpu_hotplug_enable(void)
561 {
562 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
563 		return;
564 	cpu_hotplug_disabled--;
565 }
566 
567 void cpu_hotplug_enable(void)
568 {
569 	cpu_maps_update_begin();
570 	__cpu_hotplug_enable();
571 	cpu_maps_update_done();
572 }
573 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
574 
575 #else
576 
577 static void lockdep_acquire_cpus_lock(void)
578 {
579 }
580 
581 static void lockdep_release_cpus_lock(void)
582 {
583 }
584 
585 #endif	/* CONFIG_HOTPLUG_CPU */
586 
587 /*
588  * Architectures that need SMT-specific errata handling during SMT hotplug
589  * should override this.
590  */
591 void __weak arch_smt_update(void) { }
592 
593 #ifdef CONFIG_HOTPLUG_SMT
594 
595 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
596 static unsigned int cpu_smt_max_threads __ro_after_init;
597 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
598 
599 void __init cpu_smt_disable(bool force)
600 {
601 	if (!cpu_smt_possible())
602 		return;
603 
604 	if (force) {
605 		pr_info("SMT: Force disabled\n");
606 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
607 	} else {
608 		pr_info("SMT: disabled\n");
609 		cpu_smt_control = CPU_SMT_DISABLED;
610 	}
611 	cpu_smt_num_threads = 1;
612 }
613 
614 /*
615  * The decision whether SMT is supported can only be done after the full
616  * CPU identification. Called from architecture code.
617  */
618 void __init cpu_smt_set_num_threads(unsigned int num_threads,
619 				    unsigned int max_threads)
620 {
621 	WARN_ON(!num_threads || (num_threads > max_threads));
622 
623 	if (max_threads == 1)
624 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
625 
626 	cpu_smt_max_threads = max_threads;
627 
628 	/*
629 	 * If SMT has been disabled via the kernel command line or SMT is
630 	 * not supported, set cpu_smt_num_threads to 1 for consistency.
631 	 * If enabled, take the architecture requested number of threads
632 	 * to bring up into account.
633 	 */
634 	if (cpu_smt_control != CPU_SMT_ENABLED)
635 		cpu_smt_num_threads = 1;
636 	else if (num_threads < cpu_smt_num_threads)
637 		cpu_smt_num_threads = num_threads;
638 }
639 
640 static int __init smt_cmdline_disable(char *str)
641 {
642 	cpu_smt_disable(str && !strcmp(str, "force"));
643 	return 0;
644 }
645 early_param("nosmt", smt_cmdline_disable);
646 
647 /*
648  * For Archicture supporting partial SMT states check if the thread is allowed.
649  * Otherwise this has already been checked through cpu_smt_max_threads when
650  * setting the SMT level.
651  */
652 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
653 {
654 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
655 	return topology_smt_thread_allowed(cpu);
656 #else
657 	return true;
658 #endif
659 }
660 
661 static inline bool cpu_bootable(unsigned int cpu)
662 {
663 	if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
664 		return true;
665 
666 	/* All CPUs are bootable if controls are not configured */
667 	if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
668 		return true;
669 
670 	/* All CPUs are bootable if CPU is not SMT capable */
671 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
672 		return true;
673 
674 	if (topology_is_primary_thread(cpu))
675 		return true;
676 
677 	/*
678 	 * On x86 it's required to boot all logical CPUs at least once so
679 	 * that the init code can get a chance to set CR4.MCE on each
680 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
681 	 * core will shutdown the machine.
682 	 */
683 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
684 }
685 
686 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
687 bool cpu_smt_possible(void)
688 {
689 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
690 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
691 }
692 EXPORT_SYMBOL_GPL(cpu_smt_possible);
693 
694 #else
695 static inline bool cpu_bootable(unsigned int cpu) { return true; }
696 #endif
697 
698 static inline enum cpuhp_state
699 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
700 {
701 	enum cpuhp_state prev_state = st->state;
702 	bool bringup = st->state < target;
703 
704 	st->rollback = false;
705 	st->last = NULL;
706 
707 	st->target = target;
708 	st->single = false;
709 	st->bringup = bringup;
710 	if (cpu_dying(cpu) != !bringup)
711 		set_cpu_dying(cpu, !bringup);
712 
713 	return prev_state;
714 }
715 
716 static inline void
717 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
718 		  enum cpuhp_state prev_state)
719 {
720 	bool bringup = !st->bringup;
721 
722 	st->target = prev_state;
723 
724 	/*
725 	 * Already rolling back. No need invert the bringup value or to change
726 	 * the current state.
727 	 */
728 	if (st->rollback)
729 		return;
730 
731 	st->rollback = true;
732 
733 	/*
734 	 * If we have st->last we need to undo partial multi_instance of this
735 	 * state first. Otherwise start undo at the previous state.
736 	 */
737 	if (!st->last) {
738 		if (st->bringup)
739 			st->state--;
740 		else
741 			st->state++;
742 	}
743 
744 	st->bringup = bringup;
745 	if (cpu_dying(cpu) != !bringup)
746 		set_cpu_dying(cpu, !bringup);
747 }
748 
749 /* Regular hotplug invocation of the AP hotplug thread */
750 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
751 {
752 	if (!st->single && st->state == st->target)
753 		return;
754 
755 	st->result = 0;
756 	/*
757 	 * Make sure the above stores are visible before should_run becomes
758 	 * true. Paired with the mb() above in cpuhp_thread_fun()
759 	 */
760 	smp_mb();
761 	st->should_run = true;
762 	wake_up_process(st->thread);
763 	wait_for_ap_thread(st, st->bringup);
764 }
765 
766 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
767 			 enum cpuhp_state target)
768 {
769 	enum cpuhp_state prev_state;
770 	int ret;
771 
772 	prev_state = cpuhp_set_state(cpu, st, target);
773 	__cpuhp_kick_ap(st);
774 	if ((ret = st->result)) {
775 		cpuhp_reset_state(cpu, st, prev_state);
776 		__cpuhp_kick_ap(st);
777 	}
778 
779 	return ret;
780 }
781 
782 static int bringup_wait_for_ap_online(unsigned int cpu)
783 {
784 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
785 
786 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
787 	wait_for_ap_thread(st, true);
788 	if (WARN_ON_ONCE((!cpu_online(cpu))))
789 		return -ECANCELED;
790 
791 	/* Unpark the hotplug thread of the target cpu */
792 	kthread_unpark(st->thread);
793 
794 	/*
795 	 * SMT soft disabling on X86 requires to bring the CPU out of the
796 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
797 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
798 	 * cpu_bootable() check will now return false if this is not the
799 	 * primary sibling.
800 	 */
801 	if (!cpu_bootable(cpu))
802 		return -ECANCELED;
803 	return 0;
804 }
805 
806 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
807 static int cpuhp_kick_ap_alive(unsigned int cpu)
808 {
809 	if (!cpuhp_can_boot_ap(cpu))
810 		return -EAGAIN;
811 
812 	return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
813 }
814 
815 static int cpuhp_bringup_ap(unsigned int cpu)
816 {
817 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
818 	int ret;
819 
820 	/*
821 	 * Some architectures have to walk the irq descriptors to
822 	 * setup the vector space for the cpu which comes online.
823 	 * Prevent irq alloc/free across the bringup.
824 	 */
825 	irq_lock_sparse();
826 
827 	ret = cpuhp_bp_sync_alive(cpu);
828 	if (ret)
829 		goto out_unlock;
830 
831 	ret = bringup_wait_for_ap_online(cpu);
832 	if (ret)
833 		goto out_unlock;
834 
835 	irq_unlock_sparse();
836 
837 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
838 		return 0;
839 
840 	return cpuhp_kick_ap(cpu, st, st->target);
841 
842 out_unlock:
843 	irq_unlock_sparse();
844 	return ret;
845 }
846 #else
847 static int bringup_cpu(unsigned int cpu)
848 {
849 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
850 	struct task_struct *idle = idle_thread_get(cpu);
851 	int ret;
852 
853 	if (!cpuhp_can_boot_ap(cpu))
854 		return -EAGAIN;
855 
856 	/*
857 	 * Some architectures have to walk the irq descriptors to
858 	 * setup the vector space for the cpu which comes online.
859 	 *
860 	 * Prevent irq alloc/free across the bringup by acquiring the
861 	 * sparse irq lock. Hold it until the upcoming CPU completes the
862 	 * startup in cpuhp_online_idle() which allows to avoid
863 	 * intermediate synchronization points in the architecture code.
864 	 */
865 	irq_lock_sparse();
866 
867 	ret = __cpu_up(cpu, idle);
868 	if (ret)
869 		goto out_unlock;
870 
871 	ret = cpuhp_bp_sync_alive(cpu);
872 	if (ret)
873 		goto out_unlock;
874 
875 	ret = bringup_wait_for_ap_online(cpu);
876 	if (ret)
877 		goto out_unlock;
878 
879 	irq_unlock_sparse();
880 
881 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
882 		return 0;
883 
884 	return cpuhp_kick_ap(cpu, st, st->target);
885 
886 out_unlock:
887 	irq_unlock_sparse();
888 	return ret;
889 }
890 #endif
891 
892 static int finish_cpu(unsigned int cpu)
893 {
894 	struct task_struct *idle = idle_thread_get(cpu);
895 	struct mm_struct *mm = idle->active_mm;
896 
897 	/*
898 	 * idle_task_exit() will have switched to &init_mm, now
899 	 * clean up any remaining active_mm state.
900 	 */
901 	if (mm != &init_mm)
902 		idle->active_mm = &init_mm;
903 	mmdrop_lazy_tlb(mm);
904 	return 0;
905 }
906 
907 /*
908  * Hotplug state machine related functions
909  */
910 
911 /*
912  * Get the next state to run. Empty ones will be skipped. Returns true if a
913  * state must be run.
914  *
915  * st->state will be modified ahead of time, to match state_to_run, as if it
916  * has already ran.
917  */
918 static bool cpuhp_next_state(bool bringup,
919 			     enum cpuhp_state *state_to_run,
920 			     struct cpuhp_cpu_state *st,
921 			     enum cpuhp_state target)
922 {
923 	do {
924 		if (bringup) {
925 			if (st->state >= target)
926 				return false;
927 
928 			*state_to_run = ++st->state;
929 		} else {
930 			if (st->state <= target)
931 				return false;
932 
933 			*state_to_run = st->state--;
934 		}
935 
936 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
937 			break;
938 	} while (true);
939 
940 	return true;
941 }
942 
943 static int __cpuhp_invoke_callback_range(bool bringup,
944 					 unsigned int cpu,
945 					 struct cpuhp_cpu_state *st,
946 					 enum cpuhp_state target,
947 					 bool nofail)
948 {
949 	enum cpuhp_state state;
950 	int ret = 0;
951 
952 	while (cpuhp_next_state(bringup, &state, st, target)) {
953 		int err;
954 
955 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
956 		if (!err)
957 			continue;
958 
959 		if (nofail) {
960 			pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
961 				cpu, bringup ? "UP" : "DOWN",
962 				cpuhp_get_step(st->state)->name,
963 				st->state, err);
964 			ret = -1;
965 		} else {
966 			ret = err;
967 			break;
968 		}
969 	}
970 
971 	return ret;
972 }
973 
974 static inline int cpuhp_invoke_callback_range(bool bringup,
975 					      unsigned int cpu,
976 					      struct cpuhp_cpu_state *st,
977 					      enum cpuhp_state target)
978 {
979 	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
980 }
981 
982 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
983 						      unsigned int cpu,
984 						      struct cpuhp_cpu_state *st,
985 						      enum cpuhp_state target)
986 {
987 	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
988 }
989 
990 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
991 {
992 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
993 		return true;
994 	/*
995 	 * When CPU hotplug is disabled, then taking the CPU down is not
996 	 * possible because takedown_cpu() and the architecture and
997 	 * subsystem specific mechanisms are not available. So the CPU
998 	 * which would be completely unplugged again needs to stay around
999 	 * in the current state.
1000 	 */
1001 	return st->state <= CPUHP_BRINGUP_CPU;
1002 }
1003 
1004 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1005 			      enum cpuhp_state target)
1006 {
1007 	enum cpuhp_state prev_state = st->state;
1008 	int ret = 0;
1009 
1010 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1011 	if (ret) {
1012 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1013 			 ret, cpu, cpuhp_get_step(st->state)->name,
1014 			 st->state);
1015 
1016 		cpuhp_reset_state(cpu, st, prev_state);
1017 		if (can_rollback_cpu(st))
1018 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1019 							    prev_state));
1020 	}
1021 	return ret;
1022 }
1023 
1024 /*
1025  * The cpu hotplug threads manage the bringup and teardown of the cpus
1026  */
1027 static int cpuhp_should_run(unsigned int cpu)
1028 {
1029 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1030 
1031 	return st->should_run;
1032 }
1033 
1034 /*
1035  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1036  * callbacks when a state gets [un]installed at runtime.
1037  *
1038  * Each invocation of this function by the smpboot thread does a single AP
1039  * state callback.
1040  *
1041  * It has 3 modes of operation:
1042  *  - single: runs st->cb_state
1043  *  - up:     runs ++st->state, while st->state < st->target
1044  *  - down:   runs st->state--, while st->state > st->target
1045  *
1046  * When complete or on error, should_run is cleared and the completion is fired.
1047  */
1048 static void cpuhp_thread_fun(unsigned int cpu)
1049 {
1050 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1051 	bool bringup = st->bringup;
1052 	enum cpuhp_state state;
1053 
1054 	if (WARN_ON_ONCE(!st->should_run))
1055 		return;
1056 
1057 	/*
1058 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1059 	 * that if we see ->should_run we also see the rest of the state.
1060 	 */
1061 	smp_mb();
1062 
1063 	/*
1064 	 * The BP holds the hotplug lock, but we're now running on the AP,
1065 	 * ensure that anybody asserting the lock is held, will actually find
1066 	 * it so.
1067 	 */
1068 	lockdep_acquire_cpus_lock();
1069 	cpuhp_lock_acquire(bringup);
1070 
1071 	if (st->single) {
1072 		state = st->cb_state;
1073 		st->should_run = false;
1074 	} else {
1075 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1076 		if (!st->should_run)
1077 			goto end;
1078 	}
1079 
1080 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1081 
1082 	if (cpuhp_is_atomic_state(state)) {
1083 		local_irq_disable();
1084 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1085 		local_irq_enable();
1086 
1087 		/*
1088 		 * STARTING/DYING must not fail!
1089 		 */
1090 		WARN_ON_ONCE(st->result);
1091 	} else {
1092 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1093 	}
1094 
1095 	if (st->result) {
1096 		/*
1097 		 * If we fail on a rollback, we're up a creek without no
1098 		 * paddle, no way forward, no way back. We loose, thanks for
1099 		 * playing.
1100 		 */
1101 		WARN_ON_ONCE(st->rollback);
1102 		st->should_run = false;
1103 	}
1104 
1105 end:
1106 	cpuhp_lock_release(bringup);
1107 	lockdep_release_cpus_lock();
1108 
1109 	if (!st->should_run)
1110 		complete_ap_thread(st, bringup);
1111 }
1112 
1113 /* Invoke a single callback on a remote cpu */
1114 static int
1115 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1116 			 struct hlist_node *node)
1117 {
1118 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1119 	int ret;
1120 
1121 	if (!cpu_online(cpu))
1122 		return 0;
1123 
1124 	cpuhp_lock_acquire(false);
1125 	cpuhp_lock_release(false);
1126 
1127 	cpuhp_lock_acquire(true);
1128 	cpuhp_lock_release(true);
1129 
1130 	/*
1131 	 * If we are up and running, use the hotplug thread. For early calls
1132 	 * we invoke the thread function directly.
1133 	 */
1134 	if (!st->thread)
1135 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1136 
1137 	st->rollback = false;
1138 	st->last = NULL;
1139 
1140 	st->node = node;
1141 	st->bringup = bringup;
1142 	st->cb_state = state;
1143 	st->single = true;
1144 
1145 	__cpuhp_kick_ap(st);
1146 
1147 	/*
1148 	 * If we failed and did a partial, do a rollback.
1149 	 */
1150 	if ((ret = st->result) && st->last) {
1151 		st->rollback = true;
1152 		st->bringup = !bringup;
1153 
1154 		__cpuhp_kick_ap(st);
1155 	}
1156 
1157 	/*
1158 	 * Clean up the leftovers so the next hotplug operation wont use stale
1159 	 * data.
1160 	 */
1161 	st->node = st->last = NULL;
1162 	return ret;
1163 }
1164 
1165 static int cpuhp_kick_ap_work(unsigned int cpu)
1166 {
1167 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1168 	enum cpuhp_state prev_state = st->state;
1169 	int ret;
1170 
1171 	cpuhp_lock_acquire(false);
1172 	cpuhp_lock_release(false);
1173 
1174 	cpuhp_lock_acquire(true);
1175 	cpuhp_lock_release(true);
1176 
1177 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1178 	ret = cpuhp_kick_ap(cpu, st, st->target);
1179 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1180 
1181 	return ret;
1182 }
1183 
1184 static struct smp_hotplug_thread cpuhp_threads = {
1185 	.store			= &cpuhp_state.thread,
1186 	.thread_should_run	= cpuhp_should_run,
1187 	.thread_fn		= cpuhp_thread_fun,
1188 	.thread_comm		= "cpuhp/%u",
1189 	.selfparking		= true,
1190 };
1191 
1192 static __init void cpuhp_init_state(void)
1193 {
1194 	struct cpuhp_cpu_state *st;
1195 	int cpu;
1196 
1197 	for_each_possible_cpu(cpu) {
1198 		st = per_cpu_ptr(&cpuhp_state, cpu);
1199 		init_completion(&st->done_up);
1200 		init_completion(&st->done_down);
1201 	}
1202 }
1203 
1204 void __init cpuhp_threads_init(void)
1205 {
1206 	cpuhp_init_state();
1207 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1208 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
1209 }
1210 
1211 #ifdef CONFIG_HOTPLUG_CPU
1212 #ifndef arch_clear_mm_cpumask_cpu
1213 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1214 #endif
1215 
1216 /**
1217  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1218  * @cpu: a CPU id
1219  *
1220  * This function walks all processes, finds a valid mm struct for each one and
1221  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1222  * trivial, there are various non-obvious corner cases, which this function
1223  * tries to solve in a safe manner.
1224  *
1225  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1226  * be called only for an already offlined CPU.
1227  */
1228 void clear_tasks_mm_cpumask(int cpu)
1229 {
1230 	struct task_struct *p;
1231 
1232 	/*
1233 	 * This function is called after the cpu is taken down and marked
1234 	 * offline, so its not like new tasks will ever get this cpu set in
1235 	 * their mm mask. -- Peter Zijlstra
1236 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
1237 	 * full-fledged tasklist_lock.
1238 	 */
1239 	WARN_ON(cpu_online(cpu));
1240 	rcu_read_lock();
1241 	for_each_process(p) {
1242 		struct task_struct *t;
1243 
1244 		/*
1245 		 * Main thread might exit, but other threads may still have
1246 		 * a valid mm. Find one.
1247 		 */
1248 		t = find_lock_task_mm(p);
1249 		if (!t)
1250 			continue;
1251 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
1252 		task_unlock(t);
1253 	}
1254 	rcu_read_unlock();
1255 }
1256 
1257 /* Take this CPU down. */
1258 static int take_cpu_down(void *_param)
1259 {
1260 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1261 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1262 	int err, cpu = smp_processor_id();
1263 
1264 	/* Ensure this CPU doesn't handle any more interrupts. */
1265 	err = __cpu_disable();
1266 	if (err < 0)
1267 		return err;
1268 
1269 	/*
1270 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1271 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1272 	 */
1273 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1274 
1275 	/*
1276 	 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1277 	 */
1278 	cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1279 
1280 	/* Park the stopper thread */
1281 	stop_machine_park(cpu);
1282 	return 0;
1283 }
1284 
1285 static int takedown_cpu(unsigned int cpu)
1286 {
1287 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1288 	int err;
1289 
1290 	/* Park the smpboot threads */
1291 	kthread_park(st->thread);
1292 
1293 	/*
1294 	 * Prevent irq alloc/free while the dying cpu reorganizes the
1295 	 * interrupt affinities.
1296 	 */
1297 	irq_lock_sparse();
1298 
1299 	/*
1300 	 * So now all preempt/rcu users must observe !cpu_active().
1301 	 */
1302 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1303 	if (err) {
1304 		/* CPU refused to die */
1305 		irq_unlock_sparse();
1306 		/* Unpark the hotplug thread so we can rollback there */
1307 		kthread_unpark(st->thread);
1308 		return err;
1309 	}
1310 	BUG_ON(cpu_online(cpu));
1311 
1312 	/*
1313 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1314 	 * all runnable tasks from the CPU, there's only the idle task left now
1315 	 * that the migration thread is done doing the stop_machine thing.
1316 	 *
1317 	 * Wait for the stop thread to go away.
1318 	 */
1319 	wait_for_ap_thread(st, false);
1320 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1321 
1322 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1323 	irq_unlock_sparse();
1324 
1325 	hotplug_cpu__broadcast_tick_pull(cpu);
1326 	/* This actually kills the CPU. */
1327 	__cpu_die(cpu);
1328 
1329 	cpuhp_bp_sync_dead(cpu);
1330 
1331 	tick_cleanup_dead_cpu(cpu);
1332 
1333 	/*
1334 	 * Callbacks must be re-integrated right away to the RCU state machine.
1335 	 * Otherwise an RCU callback could block a further teardown function
1336 	 * waiting for its completion.
1337 	 */
1338 	rcutree_migrate_callbacks(cpu);
1339 
1340 	return 0;
1341 }
1342 
1343 static void cpuhp_complete_idle_dead(void *arg)
1344 {
1345 	struct cpuhp_cpu_state *st = arg;
1346 
1347 	complete_ap_thread(st, false);
1348 }
1349 
1350 void cpuhp_report_idle_dead(void)
1351 {
1352 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1353 
1354 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1355 	tick_assert_timekeeping_handover();
1356 	rcutree_report_cpu_dead();
1357 	st->state = CPUHP_AP_IDLE_DEAD;
1358 	/*
1359 	 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1360 	 * to an online cpu.
1361 	 */
1362 	smp_call_function_single(cpumask_first(cpu_online_mask),
1363 				 cpuhp_complete_idle_dead, st, 0);
1364 }
1365 
1366 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1367 				enum cpuhp_state target)
1368 {
1369 	enum cpuhp_state prev_state = st->state;
1370 	int ret = 0;
1371 
1372 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1373 	if (ret) {
1374 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1375 			 ret, cpu, cpuhp_get_step(st->state)->name,
1376 			 st->state);
1377 
1378 		cpuhp_reset_state(cpu, st, prev_state);
1379 
1380 		if (st->state < prev_state)
1381 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1382 							    prev_state));
1383 	}
1384 
1385 	return ret;
1386 }
1387 
1388 /* Requires cpu_add_remove_lock to be held */
1389 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1390 			   enum cpuhp_state target)
1391 {
1392 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1393 	int prev_state, ret = 0;
1394 
1395 	if (num_online_cpus() == 1)
1396 		return -EBUSY;
1397 
1398 	if (!cpu_present(cpu))
1399 		return -EINVAL;
1400 
1401 	cpus_write_lock();
1402 
1403 	cpuhp_tasks_frozen = tasks_frozen;
1404 
1405 	prev_state = cpuhp_set_state(cpu, st, target);
1406 	/*
1407 	 * If the current CPU state is in the range of the AP hotplug thread,
1408 	 * then we need to kick the thread.
1409 	 */
1410 	if (st->state > CPUHP_TEARDOWN_CPU) {
1411 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1412 		ret = cpuhp_kick_ap_work(cpu);
1413 		/*
1414 		 * The AP side has done the error rollback already. Just
1415 		 * return the error code..
1416 		 */
1417 		if (ret)
1418 			goto out;
1419 
1420 		/*
1421 		 * We might have stopped still in the range of the AP hotplug
1422 		 * thread. Nothing to do anymore.
1423 		 */
1424 		if (st->state > CPUHP_TEARDOWN_CPU)
1425 			goto out;
1426 
1427 		st->target = target;
1428 	}
1429 	/*
1430 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1431 	 * to do the further cleanups.
1432 	 */
1433 	ret = cpuhp_down_callbacks(cpu, st, target);
1434 	if (ret && st->state < prev_state) {
1435 		if (st->state == CPUHP_TEARDOWN_CPU) {
1436 			cpuhp_reset_state(cpu, st, prev_state);
1437 			__cpuhp_kick_ap(st);
1438 		} else {
1439 			WARN(1, "DEAD callback error for CPU%d", cpu);
1440 		}
1441 	}
1442 
1443 out:
1444 	cpus_write_unlock();
1445 	/*
1446 	 * Do post unplug cleanup. This is still protected against
1447 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1448 	 */
1449 	lockup_detector_cleanup();
1450 	arch_smt_update();
1451 	return ret;
1452 }
1453 
1454 struct cpu_down_work {
1455 	unsigned int		cpu;
1456 	enum cpuhp_state	target;
1457 };
1458 
1459 static long __cpu_down_maps_locked(void *arg)
1460 {
1461 	struct cpu_down_work *work = arg;
1462 
1463 	return _cpu_down(work->cpu, 0, work->target);
1464 }
1465 
1466 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1467 {
1468 	struct cpu_down_work work = { .cpu = cpu, .target = target, };
1469 
1470 	/*
1471 	 * If the platform does not support hotplug, report it explicitly to
1472 	 * differentiate it from a transient offlining failure.
1473 	 */
1474 	if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1475 		return -EOPNOTSUPP;
1476 	if (cpu_hotplug_disabled)
1477 		return -EBUSY;
1478 
1479 	/*
1480 	 * Ensure that the control task does not run on the to be offlined
1481 	 * CPU to prevent a deadlock against cfs_b->period_timer.
1482 	 * Also keep at least one housekeeping cpu onlined to avoid generating
1483 	 * an empty sched_domain span.
1484 	 */
1485 	for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1486 		if (cpu != work.cpu)
1487 			return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1488 	}
1489 	return -EBUSY;
1490 }
1491 
1492 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1493 {
1494 	int err;
1495 
1496 	cpu_maps_update_begin();
1497 	err = cpu_down_maps_locked(cpu, target);
1498 	cpu_maps_update_done();
1499 	return err;
1500 }
1501 
1502 /**
1503  * cpu_device_down - Bring down a cpu device
1504  * @dev: Pointer to the cpu device to offline
1505  *
1506  * This function is meant to be used by device core cpu subsystem only.
1507  *
1508  * Other subsystems should use remove_cpu() instead.
1509  *
1510  * Return: %0 on success or a negative errno code
1511  */
1512 int cpu_device_down(struct device *dev)
1513 {
1514 	return cpu_down(dev->id, CPUHP_OFFLINE);
1515 }
1516 
1517 int remove_cpu(unsigned int cpu)
1518 {
1519 	int ret;
1520 
1521 	lock_device_hotplug();
1522 	ret = device_offline(get_cpu_device(cpu));
1523 	unlock_device_hotplug();
1524 
1525 	return ret;
1526 }
1527 EXPORT_SYMBOL_GPL(remove_cpu);
1528 
1529 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1530 {
1531 	unsigned int cpu;
1532 	int error;
1533 
1534 	cpu_maps_update_begin();
1535 
1536 	/*
1537 	 * Make certain the cpu I'm about to reboot on is online.
1538 	 *
1539 	 * This is inline to what migrate_to_reboot_cpu() already do.
1540 	 */
1541 	if (!cpu_online(primary_cpu))
1542 		primary_cpu = cpumask_first(cpu_online_mask);
1543 
1544 	for_each_online_cpu(cpu) {
1545 		if (cpu == primary_cpu)
1546 			continue;
1547 
1548 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1549 		if (error) {
1550 			pr_err("Failed to offline CPU%d - error=%d",
1551 				cpu, error);
1552 			break;
1553 		}
1554 	}
1555 
1556 	/*
1557 	 * Ensure all but the reboot CPU are offline.
1558 	 */
1559 	BUG_ON(num_online_cpus() > 1);
1560 
1561 	/*
1562 	 * Make sure the CPUs won't be enabled by someone else after this
1563 	 * point. Kexec will reboot to a new kernel shortly resetting
1564 	 * everything along the way.
1565 	 */
1566 	cpu_hotplug_disabled++;
1567 
1568 	cpu_maps_update_done();
1569 }
1570 
1571 #else
1572 #define takedown_cpu		NULL
1573 #endif /*CONFIG_HOTPLUG_CPU*/
1574 
1575 /**
1576  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1577  * @cpu: cpu that just started
1578  *
1579  * It must be called by the arch code on the new cpu, before the new cpu
1580  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1581  */
1582 void notify_cpu_starting(unsigned int cpu)
1583 {
1584 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1585 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1586 
1587 	rcutree_report_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1588 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1589 
1590 	/*
1591 	 * STARTING must not fail!
1592 	 */
1593 	cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1594 }
1595 
1596 /*
1597  * Called from the idle task. Wake up the controlling task which brings the
1598  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1599  * online bringup to the hotplug thread.
1600  */
1601 void cpuhp_online_idle(enum cpuhp_state state)
1602 {
1603 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1604 
1605 	/* Happens for the boot cpu */
1606 	if (state != CPUHP_AP_ONLINE_IDLE)
1607 		return;
1608 
1609 	cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1610 
1611 	/*
1612 	 * Unpark the stopper thread before we start the idle loop (and start
1613 	 * scheduling); this ensures the stopper task is always available.
1614 	 */
1615 	stop_machine_unpark(smp_processor_id());
1616 
1617 	st->state = CPUHP_AP_ONLINE_IDLE;
1618 	complete_ap_thread(st, true);
1619 }
1620 
1621 /* Requires cpu_add_remove_lock to be held */
1622 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1623 {
1624 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1625 	struct task_struct *idle;
1626 	int ret = 0;
1627 
1628 	cpus_write_lock();
1629 
1630 	if (!cpu_present(cpu)) {
1631 		ret = -EINVAL;
1632 		goto out;
1633 	}
1634 
1635 	/*
1636 	 * The caller of cpu_up() might have raced with another
1637 	 * caller. Nothing to do.
1638 	 */
1639 	if (st->state >= target)
1640 		goto out;
1641 
1642 	if (st->state == CPUHP_OFFLINE) {
1643 		/* Let it fail before we try to bring the cpu up */
1644 		idle = idle_thread_get(cpu);
1645 		if (IS_ERR(idle)) {
1646 			ret = PTR_ERR(idle);
1647 			goto out;
1648 		}
1649 
1650 		/*
1651 		 * Reset stale stack state from the last time this CPU was online.
1652 		 */
1653 		scs_task_reset(idle);
1654 		kasan_unpoison_task_stack(idle);
1655 	}
1656 
1657 	cpuhp_tasks_frozen = tasks_frozen;
1658 
1659 	cpuhp_set_state(cpu, st, target);
1660 	/*
1661 	 * If the current CPU state is in the range of the AP hotplug thread,
1662 	 * then we need to kick the thread once more.
1663 	 */
1664 	if (st->state > CPUHP_BRINGUP_CPU) {
1665 		ret = cpuhp_kick_ap_work(cpu);
1666 		/*
1667 		 * The AP side has done the error rollback already. Just
1668 		 * return the error code..
1669 		 */
1670 		if (ret)
1671 			goto out;
1672 	}
1673 
1674 	/*
1675 	 * Try to reach the target state. We max out on the BP at
1676 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1677 	 * responsible for bringing it up to the target state.
1678 	 */
1679 	target = min((int)target, CPUHP_BRINGUP_CPU);
1680 	ret = cpuhp_up_callbacks(cpu, st, target);
1681 out:
1682 	cpus_write_unlock();
1683 	arch_smt_update();
1684 	return ret;
1685 }
1686 
1687 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1688 {
1689 	int err = 0;
1690 
1691 	if (!cpu_possible(cpu)) {
1692 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1693 		       cpu);
1694 		return -EINVAL;
1695 	}
1696 
1697 	err = try_online_node(cpu_to_node(cpu));
1698 	if (err)
1699 		return err;
1700 
1701 	cpu_maps_update_begin();
1702 
1703 	if (cpu_hotplug_disabled) {
1704 		err = -EBUSY;
1705 		goto out;
1706 	}
1707 	if (!cpu_bootable(cpu)) {
1708 		err = -EPERM;
1709 		goto out;
1710 	}
1711 
1712 	err = _cpu_up(cpu, 0, target);
1713 out:
1714 	cpu_maps_update_done();
1715 	return err;
1716 }
1717 
1718 /**
1719  * cpu_device_up - Bring up a cpu device
1720  * @dev: Pointer to the cpu device to online
1721  *
1722  * This function is meant to be used by device core cpu subsystem only.
1723  *
1724  * Other subsystems should use add_cpu() instead.
1725  *
1726  * Return: %0 on success or a negative errno code
1727  */
1728 int cpu_device_up(struct device *dev)
1729 {
1730 	return cpu_up(dev->id, CPUHP_ONLINE);
1731 }
1732 
1733 int add_cpu(unsigned int cpu)
1734 {
1735 	int ret;
1736 
1737 	lock_device_hotplug();
1738 	ret = device_online(get_cpu_device(cpu));
1739 	unlock_device_hotplug();
1740 
1741 	return ret;
1742 }
1743 EXPORT_SYMBOL_GPL(add_cpu);
1744 
1745 /**
1746  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1747  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1748  *
1749  * On some architectures like arm64, we can hibernate on any CPU, but on
1750  * wake up the CPU we hibernated on might be offline as a side effect of
1751  * using maxcpus= for example.
1752  *
1753  * Return: %0 on success or a negative errno code
1754  */
1755 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1756 {
1757 	int ret;
1758 
1759 	if (!cpu_online(sleep_cpu)) {
1760 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1761 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1762 		if (ret) {
1763 			pr_err("Failed to bring hibernate-CPU up!\n");
1764 			return ret;
1765 		}
1766 	}
1767 	return 0;
1768 }
1769 
1770 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1771 				      enum cpuhp_state target)
1772 {
1773 	unsigned int cpu;
1774 
1775 	for_each_cpu(cpu, mask) {
1776 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1777 
1778 		if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1779 			/*
1780 			 * If this failed then cpu_up() might have only
1781 			 * rolled back to CPUHP_BP_KICK_AP for the final
1782 			 * online. Clean it up. NOOP if already rolled back.
1783 			 */
1784 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1785 		}
1786 
1787 		if (!--ncpus)
1788 			break;
1789 	}
1790 }
1791 
1792 #ifdef CONFIG_HOTPLUG_PARALLEL
1793 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1794 
1795 static int __init parallel_bringup_parse_param(char *arg)
1796 {
1797 	return kstrtobool(arg, &__cpuhp_parallel_bringup);
1798 }
1799 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1800 
1801 static inline bool cpuhp_smt_aware(void)
1802 {
1803 	return cpu_smt_max_threads > 1;
1804 }
1805 
1806 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1807 {
1808 	return cpu_primary_thread_mask;
1809 }
1810 
1811 /*
1812  * On architectures which have enabled parallel bringup this invokes all BP
1813  * prepare states for each of the to be onlined APs first. The last state
1814  * sends the startup IPI to the APs. The APs proceed through the low level
1815  * bringup code in parallel and then wait for the control CPU to release
1816  * them one by one for the final onlining procedure.
1817  *
1818  * This avoids waiting for each AP to respond to the startup IPI in
1819  * CPUHP_BRINGUP_CPU.
1820  */
1821 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1822 {
1823 	const struct cpumask *mask = cpu_present_mask;
1824 
1825 	if (__cpuhp_parallel_bringup)
1826 		__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1827 	if (!__cpuhp_parallel_bringup)
1828 		return false;
1829 
1830 	if (cpuhp_smt_aware()) {
1831 		const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1832 		static struct cpumask tmp_mask __initdata;
1833 
1834 		/*
1835 		 * X86 requires to prevent that SMT siblings stopped while
1836 		 * the primary thread does a microcode update for various
1837 		 * reasons. Bring the primary threads up first.
1838 		 */
1839 		cpumask_and(&tmp_mask, mask, pmask);
1840 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1841 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1842 		/* Account for the online CPUs */
1843 		ncpus -= num_online_cpus();
1844 		if (!ncpus)
1845 			return true;
1846 		/* Create the mask for secondary CPUs */
1847 		cpumask_andnot(&tmp_mask, mask, pmask);
1848 		mask = &tmp_mask;
1849 	}
1850 
1851 	/* Bring the not-yet started CPUs up */
1852 	cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1853 	cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1854 	return true;
1855 }
1856 #else
1857 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1858 #endif /* CONFIG_HOTPLUG_PARALLEL */
1859 
1860 void __init bringup_nonboot_cpus(unsigned int max_cpus)
1861 {
1862 	/* Try parallel bringup optimization if enabled */
1863 	if (cpuhp_bringup_cpus_parallel(max_cpus))
1864 		return;
1865 
1866 	/* Full per CPU serialized bringup */
1867 	cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
1868 }
1869 
1870 #ifdef CONFIG_PM_SLEEP_SMP
1871 static cpumask_var_t frozen_cpus;
1872 
1873 int freeze_secondary_cpus(int primary)
1874 {
1875 	int cpu, error = 0;
1876 
1877 	cpu_maps_update_begin();
1878 	if (primary == -1) {
1879 		primary = cpumask_first(cpu_online_mask);
1880 		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1881 			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1882 	} else {
1883 		if (!cpu_online(primary))
1884 			primary = cpumask_first(cpu_online_mask);
1885 	}
1886 
1887 	/*
1888 	 * We take down all of the non-boot CPUs in one shot to avoid races
1889 	 * with the userspace trying to use the CPU hotplug at the same time
1890 	 */
1891 	cpumask_clear(frozen_cpus);
1892 
1893 	pr_info("Disabling non-boot CPUs ...\n");
1894 	for_each_online_cpu(cpu) {
1895 		if (cpu == primary)
1896 			continue;
1897 
1898 		if (pm_wakeup_pending()) {
1899 			pr_info("Wakeup pending. Abort CPU freeze\n");
1900 			error = -EBUSY;
1901 			break;
1902 		}
1903 
1904 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1905 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1906 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1907 		if (!error)
1908 			cpumask_set_cpu(cpu, frozen_cpus);
1909 		else {
1910 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1911 			break;
1912 		}
1913 	}
1914 
1915 	if (!error)
1916 		BUG_ON(num_online_cpus() > 1);
1917 	else
1918 		pr_err("Non-boot CPUs are not disabled\n");
1919 
1920 	/*
1921 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1922 	 * this even in case of failure as all freeze_secondary_cpus() users are
1923 	 * supposed to do thaw_secondary_cpus() on the failure path.
1924 	 */
1925 	cpu_hotplug_disabled++;
1926 
1927 	cpu_maps_update_done();
1928 	return error;
1929 }
1930 
1931 void __weak arch_thaw_secondary_cpus_begin(void)
1932 {
1933 }
1934 
1935 void __weak arch_thaw_secondary_cpus_end(void)
1936 {
1937 }
1938 
1939 void thaw_secondary_cpus(void)
1940 {
1941 	int cpu, error;
1942 
1943 	/* Allow everyone to use the CPU hotplug again */
1944 	cpu_maps_update_begin();
1945 	__cpu_hotplug_enable();
1946 	if (cpumask_empty(frozen_cpus))
1947 		goto out;
1948 
1949 	pr_info("Enabling non-boot CPUs ...\n");
1950 
1951 	arch_thaw_secondary_cpus_begin();
1952 
1953 	for_each_cpu(cpu, frozen_cpus) {
1954 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1955 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1956 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1957 		if (!error) {
1958 			pr_info("CPU%d is up\n", cpu);
1959 			continue;
1960 		}
1961 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1962 	}
1963 
1964 	arch_thaw_secondary_cpus_end();
1965 
1966 	cpumask_clear(frozen_cpus);
1967 out:
1968 	cpu_maps_update_done();
1969 }
1970 
1971 static int __init alloc_frozen_cpus(void)
1972 {
1973 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1974 		return -ENOMEM;
1975 	return 0;
1976 }
1977 core_initcall(alloc_frozen_cpus);
1978 
1979 /*
1980  * When callbacks for CPU hotplug notifications are being executed, we must
1981  * ensure that the state of the system with respect to the tasks being frozen
1982  * or not, as reported by the notification, remains unchanged *throughout the
1983  * duration* of the execution of the callbacks.
1984  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1985  *
1986  * This synchronization is implemented by mutually excluding regular CPU
1987  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1988  * Hibernate notifications.
1989  */
1990 static int
1991 cpu_hotplug_pm_callback(struct notifier_block *nb,
1992 			unsigned long action, void *ptr)
1993 {
1994 	switch (action) {
1995 
1996 	case PM_SUSPEND_PREPARE:
1997 	case PM_HIBERNATION_PREPARE:
1998 		cpu_hotplug_disable();
1999 		break;
2000 
2001 	case PM_POST_SUSPEND:
2002 	case PM_POST_HIBERNATION:
2003 		cpu_hotplug_enable();
2004 		break;
2005 
2006 	default:
2007 		return NOTIFY_DONE;
2008 	}
2009 
2010 	return NOTIFY_OK;
2011 }
2012 
2013 
2014 static int __init cpu_hotplug_pm_sync_init(void)
2015 {
2016 	/*
2017 	 * cpu_hotplug_pm_callback has higher priority than x86
2018 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2019 	 * to disable cpu hotplug to avoid cpu hotplug race.
2020 	 */
2021 	pm_notifier(cpu_hotplug_pm_callback, 0);
2022 	return 0;
2023 }
2024 core_initcall(cpu_hotplug_pm_sync_init);
2025 
2026 #endif /* CONFIG_PM_SLEEP_SMP */
2027 
2028 int __boot_cpu_id;
2029 
2030 #endif /* CONFIG_SMP */
2031 
2032 /* Boot processor state steps */
2033 static struct cpuhp_step cpuhp_hp_states[] = {
2034 	[CPUHP_OFFLINE] = {
2035 		.name			= "offline",
2036 		.startup.single		= NULL,
2037 		.teardown.single	= NULL,
2038 	},
2039 #ifdef CONFIG_SMP
2040 	[CPUHP_CREATE_THREADS]= {
2041 		.name			= "threads:prepare",
2042 		.startup.single		= smpboot_create_threads,
2043 		.teardown.single	= NULL,
2044 		.cant_stop		= true,
2045 	},
2046 	[CPUHP_PERF_PREPARE] = {
2047 		.name			= "perf:prepare",
2048 		.startup.single		= perf_event_init_cpu,
2049 		.teardown.single	= perf_event_exit_cpu,
2050 	},
2051 	[CPUHP_RANDOM_PREPARE] = {
2052 		.name			= "random:prepare",
2053 		.startup.single		= random_prepare_cpu,
2054 		.teardown.single	= NULL,
2055 	},
2056 	[CPUHP_WORKQUEUE_PREP] = {
2057 		.name			= "workqueue:prepare",
2058 		.startup.single		= workqueue_prepare_cpu,
2059 		.teardown.single	= NULL,
2060 	},
2061 	[CPUHP_HRTIMERS_PREPARE] = {
2062 		.name			= "hrtimers:prepare",
2063 		.startup.single		= hrtimers_prepare_cpu,
2064 		.teardown.single	= NULL,
2065 	},
2066 	[CPUHP_SMPCFD_PREPARE] = {
2067 		.name			= "smpcfd:prepare",
2068 		.startup.single		= smpcfd_prepare_cpu,
2069 		.teardown.single	= smpcfd_dead_cpu,
2070 	},
2071 	[CPUHP_RELAY_PREPARE] = {
2072 		.name			= "relay:prepare",
2073 		.startup.single		= relay_prepare_cpu,
2074 		.teardown.single	= NULL,
2075 	},
2076 	[CPUHP_RCUTREE_PREP] = {
2077 		.name			= "RCU/tree:prepare",
2078 		.startup.single		= rcutree_prepare_cpu,
2079 		.teardown.single	= rcutree_dead_cpu,
2080 	},
2081 	/*
2082 	 * On the tear-down path, timers_dead_cpu() must be invoked
2083 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
2084 	 * otherwise a RCU stall occurs.
2085 	 */
2086 	[CPUHP_TIMERS_PREPARE] = {
2087 		.name			= "timers:prepare",
2088 		.startup.single		= timers_prepare_cpu,
2089 		.teardown.single	= timers_dead_cpu,
2090 	},
2091 
2092 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2093 	/*
2094 	 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2095 	 * the next step will release it.
2096 	 */
2097 	[CPUHP_BP_KICK_AP] = {
2098 		.name			= "cpu:kick_ap",
2099 		.startup.single		= cpuhp_kick_ap_alive,
2100 	},
2101 
2102 	/*
2103 	 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2104 	 * releases it for the complete bringup.
2105 	 */
2106 	[CPUHP_BRINGUP_CPU] = {
2107 		.name			= "cpu:bringup",
2108 		.startup.single		= cpuhp_bringup_ap,
2109 		.teardown.single	= finish_cpu,
2110 		.cant_stop		= true,
2111 	},
2112 #else
2113 	/*
2114 	 * All-in-one CPU bringup state which includes the kick alive.
2115 	 */
2116 	[CPUHP_BRINGUP_CPU] = {
2117 		.name			= "cpu:bringup",
2118 		.startup.single		= bringup_cpu,
2119 		.teardown.single	= finish_cpu,
2120 		.cant_stop		= true,
2121 	},
2122 #endif
2123 	/* Final state before CPU kills itself */
2124 	[CPUHP_AP_IDLE_DEAD] = {
2125 		.name			= "idle:dead",
2126 	},
2127 	/*
2128 	 * Last state before CPU enters the idle loop to die. Transient state
2129 	 * for synchronization.
2130 	 */
2131 	[CPUHP_AP_OFFLINE] = {
2132 		.name			= "ap:offline",
2133 		.cant_stop		= true,
2134 	},
2135 	/* First state is scheduler control. Interrupts are disabled */
2136 	[CPUHP_AP_SCHED_STARTING] = {
2137 		.name			= "sched:starting",
2138 		.startup.single		= sched_cpu_starting,
2139 		.teardown.single	= sched_cpu_dying,
2140 	},
2141 	[CPUHP_AP_RCUTREE_DYING] = {
2142 		.name			= "RCU/tree:dying",
2143 		.startup.single		= NULL,
2144 		.teardown.single	= rcutree_dying_cpu,
2145 	},
2146 	[CPUHP_AP_SMPCFD_DYING] = {
2147 		.name			= "smpcfd:dying",
2148 		.startup.single		= NULL,
2149 		.teardown.single	= smpcfd_dying_cpu,
2150 	},
2151 	[CPUHP_AP_HRTIMERS_DYING] = {
2152 		.name			= "hrtimers:dying",
2153 		.startup.single		= NULL,
2154 		.teardown.single	= hrtimers_cpu_dying,
2155 	},
2156 	[CPUHP_AP_TICK_DYING] = {
2157 		.name			= "tick:dying",
2158 		.startup.single		= NULL,
2159 		.teardown.single	= tick_cpu_dying,
2160 	},
2161 	/* Entry state on starting. Interrupts enabled from here on. Transient
2162 	 * state for synchronsization */
2163 	[CPUHP_AP_ONLINE] = {
2164 		.name			= "ap:online",
2165 	},
2166 	/*
2167 	 * Handled on control processor until the plugged processor manages
2168 	 * this itself.
2169 	 */
2170 	[CPUHP_TEARDOWN_CPU] = {
2171 		.name			= "cpu:teardown",
2172 		.startup.single		= NULL,
2173 		.teardown.single	= takedown_cpu,
2174 		.cant_stop		= true,
2175 	},
2176 
2177 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
2178 		.name			= "sched:waitempty",
2179 		.startup.single		= NULL,
2180 		.teardown.single	= sched_cpu_wait_empty,
2181 	},
2182 
2183 	/* Handle smpboot threads park/unpark */
2184 	[CPUHP_AP_SMPBOOT_THREADS] = {
2185 		.name			= "smpboot/threads:online",
2186 		.startup.single		= smpboot_unpark_threads,
2187 		.teardown.single	= smpboot_park_threads,
2188 	},
2189 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2190 		.name			= "irq/affinity:online",
2191 		.startup.single		= irq_affinity_online_cpu,
2192 		.teardown.single	= NULL,
2193 	},
2194 	[CPUHP_AP_PERF_ONLINE] = {
2195 		.name			= "perf:online",
2196 		.startup.single		= perf_event_init_cpu,
2197 		.teardown.single	= perf_event_exit_cpu,
2198 	},
2199 	[CPUHP_AP_WATCHDOG_ONLINE] = {
2200 		.name			= "lockup_detector:online",
2201 		.startup.single		= lockup_detector_online_cpu,
2202 		.teardown.single	= lockup_detector_offline_cpu,
2203 	},
2204 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
2205 		.name			= "workqueue:online",
2206 		.startup.single		= workqueue_online_cpu,
2207 		.teardown.single	= workqueue_offline_cpu,
2208 	},
2209 	[CPUHP_AP_RANDOM_ONLINE] = {
2210 		.name			= "random:online",
2211 		.startup.single		= random_online_cpu,
2212 		.teardown.single	= NULL,
2213 	},
2214 	[CPUHP_AP_RCUTREE_ONLINE] = {
2215 		.name			= "RCU/tree:online",
2216 		.startup.single		= rcutree_online_cpu,
2217 		.teardown.single	= rcutree_offline_cpu,
2218 	},
2219 #endif
2220 	/*
2221 	 * The dynamically registered state space is here
2222 	 */
2223 
2224 #ifdef CONFIG_SMP
2225 	/* Last state is scheduler control setting the cpu active */
2226 	[CPUHP_AP_ACTIVE] = {
2227 		.name			= "sched:active",
2228 		.startup.single		= sched_cpu_activate,
2229 		.teardown.single	= sched_cpu_deactivate,
2230 	},
2231 #endif
2232 
2233 	/* CPU is fully up and running. */
2234 	[CPUHP_ONLINE] = {
2235 		.name			= "online",
2236 		.startup.single		= NULL,
2237 		.teardown.single	= NULL,
2238 	},
2239 };
2240 
2241 /* Sanity check for callbacks */
2242 static int cpuhp_cb_check(enum cpuhp_state state)
2243 {
2244 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2245 		return -EINVAL;
2246 	return 0;
2247 }
2248 
2249 /*
2250  * Returns a free for dynamic slot assignment of the Online state. The states
2251  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2252  * by having no name assigned.
2253  */
2254 static int cpuhp_reserve_state(enum cpuhp_state state)
2255 {
2256 	enum cpuhp_state i, end;
2257 	struct cpuhp_step *step;
2258 
2259 	switch (state) {
2260 	case CPUHP_AP_ONLINE_DYN:
2261 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2262 		end = CPUHP_AP_ONLINE_DYN_END;
2263 		break;
2264 	case CPUHP_BP_PREPARE_DYN:
2265 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2266 		end = CPUHP_BP_PREPARE_DYN_END;
2267 		break;
2268 	default:
2269 		return -EINVAL;
2270 	}
2271 
2272 	for (i = state; i <= end; i++, step++) {
2273 		if (!step->name)
2274 			return i;
2275 	}
2276 	WARN(1, "No more dynamic states available for CPU hotplug\n");
2277 	return -ENOSPC;
2278 }
2279 
2280 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2281 				 int (*startup)(unsigned int cpu),
2282 				 int (*teardown)(unsigned int cpu),
2283 				 bool multi_instance)
2284 {
2285 	/* (Un)Install the callbacks for further cpu hotplug operations */
2286 	struct cpuhp_step *sp;
2287 	int ret = 0;
2288 
2289 	/*
2290 	 * If name is NULL, then the state gets removed.
2291 	 *
2292 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2293 	 * the first allocation from these dynamic ranges, so the removal
2294 	 * would trigger a new allocation and clear the wrong (already
2295 	 * empty) state, leaving the callbacks of the to be cleared state
2296 	 * dangling, which causes wreckage on the next hotplug operation.
2297 	 */
2298 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
2299 		     state == CPUHP_BP_PREPARE_DYN)) {
2300 		ret = cpuhp_reserve_state(state);
2301 		if (ret < 0)
2302 			return ret;
2303 		state = ret;
2304 	}
2305 	sp = cpuhp_get_step(state);
2306 	if (name && sp->name)
2307 		return -EBUSY;
2308 
2309 	sp->startup.single = startup;
2310 	sp->teardown.single = teardown;
2311 	sp->name = name;
2312 	sp->multi_instance = multi_instance;
2313 	INIT_HLIST_HEAD(&sp->list);
2314 	return ret;
2315 }
2316 
2317 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2318 {
2319 	return cpuhp_get_step(state)->teardown.single;
2320 }
2321 
2322 /*
2323  * Call the startup/teardown function for a step either on the AP or
2324  * on the current CPU.
2325  */
2326 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2327 			    struct hlist_node *node)
2328 {
2329 	struct cpuhp_step *sp = cpuhp_get_step(state);
2330 	int ret;
2331 
2332 	/*
2333 	 * If there's nothing to do, we done.
2334 	 * Relies on the union for multi_instance.
2335 	 */
2336 	if (cpuhp_step_empty(bringup, sp))
2337 		return 0;
2338 	/*
2339 	 * The non AP bound callbacks can fail on bringup. On teardown
2340 	 * e.g. module removal we crash for now.
2341 	 */
2342 #ifdef CONFIG_SMP
2343 	if (cpuhp_is_ap_state(state))
2344 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2345 	else
2346 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2347 #else
2348 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2349 #endif
2350 	BUG_ON(ret && !bringup);
2351 	return ret;
2352 }
2353 
2354 /*
2355  * Called from __cpuhp_setup_state on a recoverable failure.
2356  *
2357  * Note: The teardown callbacks for rollback are not allowed to fail!
2358  */
2359 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2360 				   struct hlist_node *node)
2361 {
2362 	int cpu;
2363 
2364 	/* Roll back the already executed steps on the other cpus */
2365 	for_each_present_cpu(cpu) {
2366 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2367 		int cpustate = st->state;
2368 
2369 		if (cpu >= failedcpu)
2370 			break;
2371 
2372 		/* Did we invoke the startup call on that cpu ? */
2373 		if (cpustate >= state)
2374 			cpuhp_issue_call(cpu, state, false, node);
2375 	}
2376 }
2377 
2378 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2379 					  struct hlist_node *node,
2380 					  bool invoke)
2381 {
2382 	struct cpuhp_step *sp;
2383 	int cpu;
2384 	int ret;
2385 
2386 	lockdep_assert_cpus_held();
2387 
2388 	sp = cpuhp_get_step(state);
2389 	if (sp->multi_instance == false)
2390 		return -EINVAL;
2391 
2392 	mutex_lock(&cpuhp_state_mutex);
2393 
2394 	if (!invoke || !sp->startup.multi)
2395 		goto add_node;
2396 
2397 	/*
2398 	 * Try to call the startup callback for each present cpu
2399 	 * depending on the hotplug state of the cpu.
2400 	 */
2401 	for_each_present_cpu(cpu) {
2402 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2403 		int cpustate = st->state;
2404 
2405 		if (cpustate < state)
2406 			continue;
2407 
2408 		ret = cpuhp_issue_call(cpu, state, true, node);
2409 		if (ret) {
2410 			if (sp->teardown.multi)
2411 				cpuhp_rollback_install(cpu, state, node);
2412 			goto unlock;
2413 		}
2414 	}
2415 add_node:
2416 	ret = 0;
2417 	hlist_add_head(node, &sp->list);
2418 unlock:
2419 	mutex_unlock(&cpuhp_state_mutex);
2420 	return ret;
2421 }
2422 
2423 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2424 			       bool invoke)
2425 {
2426 	int ret;
2427 
2428 	cpus_read_lock();
2429 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2430 	cpus_read_unlock();
2431 	return ret;
2432 }
2433 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2434 
2435 /**
2436  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2437  * @state:		The state to setup
2438  * @name:		Name of the step
2439  * @invoke:		If true, the startup function is invoked for cpus where
2440  *			cpu state >= @state
2441  * @startup:		startup callback function
2442  * @teardown:		teardown callback function
2443  * @multi_instance:	State is set up for multiple instances which get
2444  *			added afterwards.
2445  *
2446  * The caller needs to hold cpus read locked while calling this function.
2447  * Return:
2448  *   On success:
2449  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2450  *      0 for all other states
2451  *   On failure: proper (negative) error code
2452  */
2453 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2454 				   const char *name, bool invoke,
2455 				   int (*startup)(unsigned int cpu),
2456 				   int (*teardown)(unsigned int cpu),
2457 				   bool multi_instance)
2458 {
2459 	int cpu, ret = 0;
2460 	bool dynstate;
2461 
2462 	lockdep_assert_cpus_held();
2463 
2464 	if (cpuhp_cb_check(state) || !name)
2465 		return -EINVAL;
2466 
2467 	mutex_lock(&cpuhp_state_mutex);
2468 
2469 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2470 				    multi_instance);
2471 
2472 	dynstate = state == CPUHP_AP_ONLINE_DYN;
2473 	if (ret > 0 && dynstate) {
2474 		state = ret;
2475 		ret = 0;
2476 	}
2477 
2478 	if (ret || !invoke || !startup)
2479 		goto out;
2480 
2481 	/*
2482 	 * Try to call the startup callback for each present cpu
2483 	 * depending on the hotplug state of the cpu.
2484 	 */
2485 	for_each_present_cpu(cpu) {
2486 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2487 		int cpustate = st->state;
2488 
2489 		if (cpustate < state)
2490 			continue;
2491 
2492 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2493 		if (ret) {
2494 			if (teardown)
2495 				cpuhp_rollback_install(cpu, state, NULL);
2496 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2497 			goto out;
2498 		}
2499 	}
2500 out:
2501 	mutex_unlock(&cpuhp_state_mutex);
2502 	/*
2503 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2504 	 * dynamically allocated state in case of success.
2505 	 */
2506 	if (!ret && dynstate)
2507 		return state;
2508 	return ret;
2509 }
2510 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2511 
2512 int __cpuhp_setup_state(enum cpuhp_state state,
2513 			const char *name, bool invoke,
2514 			int (*startup)(unsigned int cpu),
2515 			int (*teardown)(unsigned int cpu),
2516 			bool multi_instance)
2517 {
2518 	int ret;
2519 
2520 	cpus_read_lock();
2521 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2522 					     teardown, multi_instance);
2523 	cpus_read_unlock();
2524 	return ret;
2525 }
2526 EXPORT_SYMBOL(__cpuhp_setup_state);
2527 
2528 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2529 				  struct hlist_node *node, bool invoke)
2530 {
2531 	struct cpuhp_step *sp = cpuhp_get_step(state);
2532 	int cpu;
2533 
2534 	BUG_ON(cpuhp_cb_check(state));
2535 
2536 	if (!sp->multi_instance)
2537 		return -EINVAL;
2538 
2539 	cpus_read_lock();
2540 	mutex_lock(&cpuhp_state_mutex);
2541 
2542 	if (!invoke || !cpuhp_get_teardown_cb(state))
2543 		goto remove;
2544 	/*
2545 	 * Call the teardown callback for each present cpu depending
2546 	 * on the hotplug state of the cpu. This function is not
2547 	 * allowed to fail currently!
2548 	 */
2549 	for_each_present_cpu(cpu) {
2550 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2551 		int cpustate = st->state;
2552 
2553 		if (cpustate >= state)
2554 			cpuhp_issue_call(cpu, state, false, node);
2555 	}
2556 
2557 remove:
2558 	hlist_del(node);
2559 	mutex_unlock(&cpuhp_state_mutex);
2560 	cpus_read_unlock();
2561 
2562 	return 0;
2563 }
2564 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2565 
2566 /**
2567  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2568  * @state:	The state to remove
2569  * @invoke:	If true, the teardown function is invoked for cpus where
2570  *		cpu state >= @state
2571  *
2572  * The caller needs to hold cpus read locked while calling this function.
2573  * The teardown callback is currently not allowed to fail. Think
2574  * about module removal!
2575  */
2576 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2577 {
2578 	struct cpuhp_step *sp = cpuhp_get_step(state);
2579 	int cpu;
2580 
2581 	BUG_ON(cpuhp_cb_check(state));
2582 
2583 	lockdep_assert_cpus_held();
2584 
2585 	mutex_lock(&cpuhp_state_mutex);
2586 	if (sp->multi_instance) {
2587 		WARN(!hlist_empty(&sp->list),
2588 		     "Error: Removing state %d which has instances left.\n",
2589 		     state);
2590 		goto remove;
2591 	}
2592 
2593 	if (!invoke || !cpuhp_get_teardown_cb(state))
2594 		goto remove;
2595 
2596 	/*
2597 	 * Call the teardown callback for each present cpu depending
2598 	 * on the hotplug state of the cpu. This function is not
2599 	 * allowed to fail currently!
2600 	 */
2601 	for_each_present_cpu(cpu) {
2602 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2603 		int cpustate = st->state;
2604 
2605 		if (cpustate >= state)
2606 			cpuhp_issue_call(cpu, state, false, NULL);
2607 	}
2608 remove:
2609 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2610 	mutex_unlock(&cpuhp_state_mutex);
2611 }
2612 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2613 
2614 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2615 {
2616 	cpus_read_lock();
2617 	__cpuhp_remove_state_cpuslocked(state, invoke);
2618 	cpus_read_unlock();
2619 }
2620 EXPORT_SYMBOL(__cpuhp_remove_state);
2621 
2622 #ifdef CONFIG_HOTPLUG_SMT
2623 static void cpuhp_offline_cpu_device(unsigned int cpu)
2624 {
2625 	struct device *dev = get_cpu_device(cpu);
2626 
2627 	dev->offline = true;
2628 	/* Tell user space about the state change */
2629 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2630 }
2631 
2632 static void cpuhp_online_cpu_device(unsigned int cpu)
2633 {
2634 	struct device *dev = get_cpu_device(cpu);
2635 
2636 	dev->offline = false;
2637 	/* Tell user space about the state change */
2638 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2639 }
2640 
2641 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2642 {
2643 	int cpu, ret = 0;
2644 
2645 	cpu_maps_update_begin();
2646 	for_each_online_cpu(cpu) {
2647 		if (topology_is_primary_thread(cpu))
2648 			continue;
2649 		/*
2650 		 * Disable can be called with CPU_SMT_ENABLED when changing
2651 		 * from a higher to lower number of SMT threads per core.
2652 		 */
2653 		if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2654 			continue;
2655 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2656 		if (ret)
2657 			break;
2658 		/*
2659 		 * As this needs to hold the cpu maps lock it's impossible
2660 		 * to call device_offline() because that ends up calling
2661 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2662 		 * needs to be held as this might race against in kernel
2663 		 * abusers of the hotplug machinery (thermal management).
2664 		 *
2665 		 * So nothing would update device:offline state. That would
2666 		 * leave the sysfs entry stale and prevent onlining after
2667 		 * smt control has been changed to 'off' again. This is
2668 		 * called under the sysfs hotplug lock, so it is properly
2669 		 * serialized against the regular offline usage.
2670 		 */
2671 		cpuhp_offline_cpu_device(cpu);
2672 	}
2673 	if (!ret)
2674 		cpu_smt_control = ctrlval;
2675 	cpu_maps_update_done();
2676 	return ret;
2677 }
2678 
2679 int cpuhp_smt_enable(void)
2680 {
2681 	int cpu, ret = 0;
2682 
2683 	cpu_maps_update_begin();
2684 	cpu_smt_control = CPU_SMT_ENABLED;
2685 	for_each_present_cpu(cpu) {
2686 		/* Skip online CPUs and CPUs on offline nodes */
2687 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2688 			continue;
2689 		if (!cpu_smt_thread_allowed(cpu))
2690 			continue;
2691 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2692 		if (ret)
2693 			break;
2694 		/* See comment in cpuhp_smt_disable() */
2695 		cpuhp_online_cpu_device(cpu);
2696 	}
2697 	cpu_maps_update_done();
2698 	return ret;
2699 }
2700 #endif
2701 
2702 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2703 static ssize_t state_show(struct device *dev,
2704 			  struct device_attribute *attr, char *buf)
2705 {
2706 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2707 
2708 	return sprintf(buf, "%d\n", st->state);
2709 }
2710 static DEVICE_ATTR_RO(state);
2711 
2712 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2713 			    const char *buf, size_t count)
2714 {
2715 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2716 	struct cpuhp_step *sp;
2717 	int target, ret;
2718 
2719 	ret = kstrtoint(buf, 10, &target);
2720 	if (ret)
2721 		return ret;
2722 
2723 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2724 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2725 		return -EINVAL;
2726 #else
2727 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2728 		return -EINVAL;
2729 #endif
2730 
2731 	ret = lock_device_hotplug_sysfs();
2732 	if (ret)
2733 		return ret;
2734 
2735 	mutex_lock(&cpuhp_state_mutex);
2736 	sp = cpuhp_get_step(target);
2737 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2738 	mutex_unlock(&cpuhp_state_mutex);
2739 	if (ret)
2740 		goto out;
2741 
2742 	if (st->state < target)
2743 		ret = cpu_up(dev->id, target);
2744 	else if (st->state > target)
2745 		ret = cpu_down(dev->id, target);
2746 	else if (WARN_ON(st->target != target))
2747 		st->target = target;
2748 out:
2749 	unlock_device_hotplug();
2750 	return ret ? ret : count;
2751 }
2752 
2753 static ssize_t target_show(struct device *dev,
2754 			   struct device_attribute *attr, char *buf)
2755 {
2756 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2757 
2758 	return sprintf(buf, "%d\n", st->target);
2759 }
2760 static DEVICE_ATTR_RW(target);
2761 
2762 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2763 			  const char *buf, size_t count)
2764 {
2765 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2766 	struct cpuhp_step *sp;
2767 	int fail, ret;
2768 
2769 	ret = kstrtoint(buf, 10, &fail);
2770 	if (ret)
2771 		return ret;
2772 
2773 	if (fail == CPUHP_INVALID) {
2774 		st->fail = fail;
2775 		return count;
2776 	}
2777 
2778 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2779 		return -EINVAL;
2780 
2781 	/*
2782 	 * Cannot fail STARTING/DYING callbacks.
2783 	 */
2784 	if (cpuhp_is_atomic_state(fail))
2785 		return -EINVAL;
2786 
2787 	/*
2788 	 * DEAD callbacks cannot fail...
2789 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2790 	 * triggering STARTING callbacks, a failure in this state would
2791 	 * hinder rollback.
2792 	 */
2793 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2794 		return -EINVAL;
2795 
2796 	/*
2797 	 * Cannot fail anything that doesn't have callbacks.
2798 	 */
2799 	mutex_lock(&cpuhp_state_mutex);
2800 	sp = cpuhp_get_step(fail);
2801 	if (!sp->startup.single && !sp->teardown.single)
2802 		ret = -EINVAL;
2803 	mutex_unlock(&cpuhp_state_mutex);
2804 	if (ret)
2805 		return ret;
2806 
2807 	st->fail = fail;
2808 
2809 	return count;
2810 }
2811 
2812 static ssize_t fail_show(struct device *dev,
2813 			 struct device_attribute *attr, char *buf)
2814 {
2815 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2816 
2817 	return sprintf(buf, "%d\n", st->fail);
2818 }
2819 
2820 static DEVICE_ATTR_RW(fail);
2821 
2822 static struct attribute *cpuhp_cpu_attrs[] = {
2823 	&dev_attr_state.attr,
2824 	&dev_attr_target.attr,
2825 	&dev_attr_fail.attr,
2826 	NULL
2827 };
2828 
2829 static const struct attribute_group cpuhp_cpu_attr_group = {
2830 	.attrs = cpuhp_cpu_attrs,
2831 	.name = "hotplug",
2832 	NULL
2833 };
2834 
2835 static ssize_t states_show(struct device *dev,
2836 				 struct device_attribute *attr, char *buf)
2837 {
2838 	ssize_t cur, res = 0;
2839 	int i;
2840 
2841 	mutex_lock(&cpuhp_state_mutex);
2842 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2843 		struct cpuhp_step *sp = cpuhp_get_step(i);
2844 
2845 		if (sp->name) {
2846 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2847 			buf += cur;
2848 			res += cur;
2849 		}
2850 	}
2851 	mutex_unlock(&cpuhp_state_mutex);
2852 	return res;
2853 }
2854 static DEVICE_ATTR_RO(states);
2855 
2856 static struct attribute *cpuhp_cpu_root_attrs[] = {
2857 	&dev_attr_states.attr,
2858 	NULL
2859 };
2860 
2861 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2862 	.attrs = cpuhp_cpu_root_attrs,
2863 	.name = "hotplug",
2864 	NULL
2865 };
2866 
2867 #ifdef CONFIG_HOTPLUG_SMT
2868 
2869 static bool cpu_smt_num_threads_valid(unsigned int threads)
2870 {
2871 	if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2872 		return threads >= 1 && threads <= cpu_smt_max_threads;
2873 	return threads == 1 || threads == cpu_smt_max_threads;
2874 }
2875 
2876 static ssize_t
2877 __store_smt_control(struct device *dev, struct device_attribute *attr,
2878 		    const char *buf, size_t count)
2879 {
2880 	int ctrlval, ret, num_threads, orig_threads;
2881 	bool force_off;
2882 
2883 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2884 		return -EPERM;
2885 
2886 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2887 		return -ENODEV;
2888 
2889 	if (sysfs_streq(buf, "on")) {
2890 		ctrlval = CPU_SMT_ENABLED;
2891 		num_threads = cpu_smt_max_threads;
2892 	} else if (sysfs_streq(buf, "off")) {
2893 		ctrlval = CPU_SMT_DISABLED;
2894 		num_threads = 1;
2895 	} else if (sysfs_streq(buf, "forceoff")) {
2896 		ctrlval = CPU_SMT_FORCE_DISABLED;
2897 		num_threads = 1;
2898 	} else if (kstrtoint(buf, 10, &num_threads) == 0) {
2899 		if (num_threads == 1)
2900 			ctrlval = CPU_SMT_DISABLED;
2901 		else if (cpu_smt_num_threads_valid(num_threads))
2902 			ctrlval = CPU_SMT_ENABLED;
2903 		else
2904 			return -EINVAL;
2905 	} else {
2906 		return -EINVAL;
2907 	}
2908 
2909 	ret = lock_device_hotplug_sysfs();
2910 	if (ret)
2911 		return ret;
2912 
2913 	orig_threads = cpu_smt_num_threads;
2914 	cpu_smt_num_threads = num_threads;
2915 
2916 	force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2917 
2918 	if (num_threads > orig_threads)
2919 		ret = cpuhp_smt_enable();
2920 	else if (num_threads < orig_threads || force_off)
2921 		ret = cpuhp_smt_disable(ctrlval);
2922 
2923 	unlock_device_hotplug();
2924 	return ret ? ret : count;
2925 }
2926 
2927 #else /* !CONFIG_HOTPLUG_SMT */
2928 static ssize_t
2929 __store_smt_control(struct device *dev, struct device_attribute *attr,
2930 		    const char *buf, size_t count)
2931 {
2932 	return -ENODEV;
2933 }
2934 #endif /* CONFIG_HOTPLUG_SMT */
2935 
2936 static const char *smt_states[] = {
2937 	[CPU_SMT_ENABLED]		= "on",
2938 	[CPU_SMT_DISABLED]		= "off",
2939 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2940 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2941 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2942 };
2943 
2944 static ssize_t control_show(struct device *dev,
2945 			    struct device_attribute *attr, char *buf)
2946 {
2947 	const char *state = smt_states[cpu_smt_control];
2948 
2949 #ifdef CONFIG_HOTPLUG_SMT
2950 	/*
2951 	 * If SMT is enabled but not all threads are enabled then show the
2952 	 * number of threads. If all threads are enabled show "on". Otherwise
2953 	 * show the state name.
2954 	 */
2955 	if (cpu_smt_control == CPU_SMT_ENABLED &&
2956 	    cpu_smt_num_threads != cpu_smt_max_threads)
2957 		return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2958 #endif
2959 
2960 	return sysfs_emit(buf, "%s\n", state);
2961 }
2962 
2963 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2964 			     const char *buf, size_t count)
2965 {
2966 	return __store_smt_control(dev, attr, buf, count);
2967 }
2968 static DEVICE_ATTR_RW(control);
2969 
2970 static ssize_t active_show(struct device *dev,
2971 			   struct device_attribute *attr, char *buf)
2972 {
2973 	return sysfs_emit(buf, "%d\n", sched_smt_active());
2974 }
2975 static DEVICE_ATTR_RO(active);
2976 
2977 static struct attribute *cpuhp_smt_attrs[] = {
2978 	&dev_attr_control.attr,
2979 	&dev_attr_active.attr,
2980 	NULL
2981 };
2982 
2983 static const struct attribute_group cpuhp_smt_attr_group = {
2984 	.attrs = cpuhp_smt_attrs,
2985 	.name = "smt",
2986 	NULL
2987 };
2988 
2989 static int __init cpu_smt_sysfs_init(void)
2990 {
2991 	struct device *dev_root;
2992 	int ret = -ENODEV;
2993 
2994 	dev_root = bus_get_dev_root(&cpu_subsys);
2995 	if (dev_root) {
2996 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
2997 		put_device(dev_root);
2998 	}
2999 	return ret;
3000 }
3001 
3002 static int __init cpuhp_sysfs_init(void)
3003 {
3004 	struct device *dev_root;
3005 	int cpu, ret;
3006 
3007 	ret = cpu_smt_sysfs_init();
3008 	if (ret)
3009 		return ret;
3010 
3011 	dev_root = bus_get_dev_root(&cpu_subsys);
3012 	if (dev_root) {
3013 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3014 		put_device(dev_root);
3015 		if (ret)
3016 			return ret;
3017 	}
3018 
3019 	for_each_possible_cpu(cpu) {
3020 		struct device *dev = get_cpu_device(cpu);
3021 
3022 		if (!dev)
3023 			continue;
3024 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3025 		if (ret)
3026 			return ret;
3027 	}
3028 	return 0;
3029 }
3030 device_initcall(cpuhp_sysfs_init);
3031 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3032 
3033 /*
3034  * cpu_bit_bitmap[] is a special, "compressed" data structure that
3035  * represents all NR_CPUS bits binary values of 1<<nr.
3036  *
3037  * It is used by cpumask_of() to get a constant address to a CPU
3038  * mask value that has a single bit set only.
3039  */
3040 
3041 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3042 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
3043 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3044 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3045 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3046 
3047 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3048 
3049 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
3050 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
3051 #if BITS_PER_LONG > 32
3052 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
3053 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
3054 #endif
3055 };
3056 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3057 
3058 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3059 EXPORT_SYMBOL(cpu_all_bits);
3060 
3061 #ifdef CONFIG_INIT_ALL_POSSIBLE
3062 struct cpumask __cpu_possible_mask __ro_after_init
3063 	= {CPU_BITS_ALL};
3064 #else
3065 struct cpumask __cpu_possible_mask __ro_after_init;
3066 #endif
3067 EXPORT_SYMBOL(__cpu_possible_mask);
3068 
3069 struct cpumask __cpu_online_mask __read_mostly;
3070 EXPORT_SYMBOL(__cpu_online_mask);
3071 
3072 struct cpumask __cpu_present_mask __read_mostly;
3073 EXPORT_SYMBOL(__cpu_present_mask);
3074 
3075 struct cpumask __cpu_active_mask __read_mostly;
3076 EXPORT_SYMBOL(__cpu_active_mask);
3077 
3078 struct cpumask __cpu_dying_mask __read_mostly;
3079 EXPORT_SYMBOL(__cpu_dying_mask);
3080 
3081 atomic_t __num_online_cpus __read_mostly;
3082 EXPORT_SYMBOL(__num_online_cpus);
3083 
3084 void init_cpu_present(const struct cpumask *src)
3085 {
3086 	cpumask_copy(&__cpu_present_mask, src);
3087 }
3088 
3089 void init_cpu_possible(const struct cpumask *src)
3090 {
3091 	cpumask_copy(&__cpu_possible_mask, src);
3092 }
3093 
3094 void init_cpu_online(const struct cpumask *src)
3095 {
3096 	cpumask_copy(&__cpu_online_mask, src);
3097 }
3098 
3099 void set_cpu_online(unsigned int cpu, bool online)
3100 {
3101 	/*
3102 	 * atomic_inc/dec() is required to handle the horrid abuse of this
3103 	 * function by the reboot and kexec code which invoke it from
3104 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3105 	 * regular CPU hotplug is properly serialized.
3106 	 *
3107 	 * Note, that the fact that __num_online_cpus is of type atomic_t
3108 	 * does not protect readers which are not serialized against
3109 	 * concurrent hotplug operations.
3110 	 */
3111 	if (online) {
3112 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3113 			atomic_inc(&__num_online_cpus);
3114 	} else {
3115 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3116 			atomic_dec(&__num_online_cpus);
3117 	}
3118 }
3119 
3120 /*
3121  * Activate the first processor.
3122  */
3123 void __init boot_cpu_init(void)
3124 {
3125 	int cpu = smp_processor_id();
3126 
3127 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
3128 	set_cpu_online(cpu, true);
3129 	set_cpu_active(cpu, true);
3130 	set_cpu_present(cpu, true);
3131 	set_cpu_possible(cpu, true);
3132 
3133 #ifdef CONFIG_SMP
3134 	__boot_cpu_id = cpu;
3135 #endif
3136 }
3137 
3138 /*
3139  * Must be called _AFTER_ setting up the per_cpu areas
3140  */
3141 void __init boot_cpu_hotplug_init(void)
3142 {
3143 #ifdef CONFIG_SMP
3144 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3145 	atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3146 #endif
3147 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3148 	this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3149 }
3150 
3151 #ifdef CONFIG_CPU_MITIGATIONS
3152 /*
3153  * These are used for a global "mitigations=" cmdline option for toggling
3154  * optional CPU mitigations.
3155  */
3156 enum cpu_mitigations {
3157 	CPU_MITIGATIONS_OFF,
3158 	CPU_MITIGATIONS_AUTO,
3159 	CPU_MITIGATIONS_AUTO_NOSMT,
3160 };
3161 
3162 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
3163 
3164 static int __init mitigations_parse_cmdline(char *arg)
3165 {
3166 	if (!strcmp(arg, "off"))
3167 		cpu_mitigations = CPU_MITIGATIONS_OFF;
3168 	else if (!strcmp(arg, "auto"))
3169 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
3170 	else if (!strcmp(arg, "auto,nosmt"))
3171 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3172 	else
3173 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3174 			arg);
3175 
3176 	return 0;
3177 }
3178 
3179 /* mitigations=off */
3180 bool cpu_mitigations_off(void)
3181 {
3182 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
3183 }
3184 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3185 
3186 /* mitigations=auto,nosmt */
3187 bool cpu_mitigations_auto_nosmt(void)
3188 {
3189 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3190 }
3191 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3192 #else
3193 static int __init mitigations_parse_cmdline(char *arg)
3194 {
3195 	pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n");
3196 	return 0;
3197 }
3198 #endif
3199 early_param("mitigations", mitigations_parse_cmdline);
3200