1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Context tracking: Probe on high level context boundaries such as kernel, 4 * userspace, guest or idle. 5 * 6 * This is used by RCU to remove its dependency on the timer tick while a CPU 7 * runs in idle, userspace or guest mode. 8 * 9 * User/guest tracking started by Frederic Weisbecker: 10 * 11 * Copyright (C) 2012 Red Hat, Inc., Frederic Weisbecker 12 * 13 * Many thanks to Gilad Ben-Yossef, Paul McKenney, Ingo Molnar, Andrew Morton, 14 * Steven Rostedt, Peter Zijlstra for suggestions and improvements. 15 * 16 * RCU extended quiescent state bits imported from kernel/rcu/tree.c 17 * where the relevant authorship may be found. 18 */ 19 20 #include <linux/context_tracking.h> 21 #include <linux/rcupdate.h> 22 #include <linux/sched.h> 23 #include <linux/hardirq.h> 24 #include <linux/export.h> 25 #include <linux/kprobes.h> 26 #include <trace/events/rcu.h> 27 28 29 DEFINE_PER_CPU(struct context_tracking, context_tracking) = { 30 #ifdef CONFIG_CONTEXT_TRACKING_IDLE 31 .nesting = 1, 32 .nmi_nesting = CT_NESTING_IRQ_NONIDLE, 33 #endif 34 .state = ATOMIC_INIT(CT_RCU_WATCHING), 35 }; 36 EXPORT_SYMBOL_GPL(context_tracking); 37 38 #ifdef CONFIG_CONTEXT_TRACKING_IDLE 39 #define TPS(x) tracepoint_string(x) 40 41 /* Record the current task on exiting RCU-tasks (dyntick-idle entry). */ 42 static __always_inline void rcu_task_exit(void) 43 { 44 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 45 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 46 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 47 } 48 49 /* Record no current task on entering RCU-tasks (dyntick-idle exit). */ 50 static __always_inline void rcu_task_enter(void) 51 { 52 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 53 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 54 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 55 } 56 57 /* Turn on heavyweight RCU tasks trace readers on kernel exit. */ 58 static __always_inline void rcu_task_trace_heavyweight_enter(void) 59 { 60 #ifdef CONFIG_TASKS_TRACE_RCU 61 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 62 current->trc_reader_special.b.need_mb = true; 63 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 64 } 65 66 /* Turn off heavyweight RCU tasks trace readers on kernel entry. */ 67 static __always_inline void rcu_task_trace_heavyweight_exit(void) 68 { 69 #ifdef CONFIG_TASKS_TRACE_RCU 70 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 71 current->trc_reader_special.b.need_mb = false; 72 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 73 } 74 75 /* 76 * Record entry into an extended quiescent state. This is only to be 77 * called when not already in an extended quiescent state, that is, 78 * RCU is watching prior to the call to this function and is no longer 79 * watching upon return. 80 */ 81 static noinstr void ct_kernel_exit_state(int offset) 82 { 83 int seq; 84 85 /* 86 * CPUs seeing atomic_add_return() must see prior RCU read-side 87 * critical sections, and we also must force ordering with the 88 * next idle sojourn. 89 */ 90 rcu_task_trace_heavyweight_enter(); // Before CT state update! 91 seq = ct_state_inc(offset); 92 // RCU is no longer watching. Better be in extended quiescent state! 93 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & CT_RCU_WATCHING)); 94 } 95 96 /* 97 * Record exit from an extended quiescent state. This is only to be 98 * called from an extended quiescent state, that is, RCU is not watching 99 * prior to the call to this function and is watching upon return. 100 */ 101 static noinstr void ct_kernel_enter_state(int offset) 102 { 103 int seq; 104 105 /* 106 * CPUs seeing atomic_add_return() must see prior idle sojourns, 107 * and we also must force ordering with the next RCU read-side 108 * critical section. 109 */ 110 seq = ct_state_inc(offset); 111 // RCU is now watching. Better not be in an extended quiescent state! 112 rcu_task_trace_heavyweight_exit(); // After CT state update! 113 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & CT_RCU_WATCHING)); 114 } 115 116 /* 117 * Enter an RCU extended quiescent state, which can be either the 118 * idle loop or adaptive-tickless usermode execution. 119 * 120 * We crowbar the ->nmi_nesting field to zero to allow for 121 * the possibility of usermode upcalls having messed up our count 122 * of interrupt nesting level during the prior busy period. 123 */ 124 static void noinstr ct_kernel_exit(bool user, int offset) 125 { 126 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 127 128 WARN_ON_ONCE(ct_nmi_nesting() != CT_NESTING_IRQ_NONIDLE); 129 WRITE_ONCE(ct->nmi_nesting, 0); 130 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 131 ct_nesting() == 0); 132 if (ct_nesting() != 1) { 133 // RCU will still be watching, so just do accounting and leave. 134 ct->nesting--; 135 return; 136 } 137 138 instrumentation_begin(); 139 lockdep_assert_irqs_disabled(); 140 trace_rcu_watching(TPS("End"), ct_nesting(), 0, ct_rcu_watching()); 141 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 142 rcu_preempt_deferred_qs(current); 143 144 // instrumentation for the noinstr ct_kernel_exit_state() 145 instrument_atomic_write(&ct->state, sizeof(ct->state)); 146 147 instrumentation_end(); 148 WRITE_ONCE(ct->nesting, 0); /* Avoid irq-access tearing. */ 149 // RCU is watching here ... 150 ct_kernel_exit_state(offset); 151 // ... but is no longer watching here. 152 rcu_task_exit(); 153 } 154 155 /* 156 * Exit an RCU extended quiescent state, which can be either the 157 * idle loop or adaptive-tickless usermode execution. 158 * 159 * We crowbar the ->nmi_nesting field to CT_NESTING_IRQ_NONIDLE to 160 * allow for the possibility of usermode upcalls messing up our count of 161 * interrupt nesting level during the busy period that is just now starting. 162 */ 163 static void noinstr ct_kernel_enter(bool user, int offset) 164 { 165 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 166 long oldval; 167 168 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled()); 169 oldval = ct_nesting(); 170 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 171 if (oldval) { 172 // RCU was already watching, so just do accounting and leave. 173 ct->nesting++; 174 return; 175 } 176 rcu_task_enter(); 177 // RCU is not watching here ... 178 ct_kernel_enter_state(offset); 179 // ... but is watching here. 180 instrumentation_begin(); 181 182 // instrumentation for the noinstr ct_kernel_enter_state() 183 instrument_atomic_write(&ct->state, sizeof(ct->state)); 184 185 trace_rcu_watching(TPS("Start"), ct_nesting(), 1, ct_rcu_watching()); 186 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 187 WRITE_ONCE(ct->nesting, 1); 188 WARN_ON_ONCE(ct_nmi_nesting()); 189 WRITE_ONCE(ct->nmi_nesting, CT_NESTING_IRQ_NONIDLE); 190 instrumentation_end(); 191 } 192 193 /** 194 * ct_nmi_exit - inform RCU of exit from NMI context 195 * 196 * If we are returning from the outermost NMI handler that interrupted an 197 * RCU-idle period, update ct->state and ct->nmi_nesting 198 * to let the RCU grace-period handling know that the CPU is back to 199 * being RCU-idle. 200 * 201 * If you add or remove a call to ct_nmi_exit(), be sure to test 202 * with CONFIG_RCU_EQS_DEBUG=y. 203 */ 204 void noinstr ct_nmi_exit(void) 205 { 206 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 207 208 instrumentation_begin(); 209 /* 210 * Check for ->nmi_nesting underflow and bad CT state. 211 * (We are exiting an NMI handler, so RCU better be paying attention 212 * to us!) 213 */ 214 WARN_ON_ONCE(ct_nmi_nesting() <= 0); 215 WARN_ON_ONCE(!rcu_is_watching_curr_cpu()); 216 217 /* 218 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 219 * leave it in non-RCU-idle state. 220 */ 221 if (ct_nmi_nesting() != 1) { 222 trace_rcu_watching(TPS("--="), ct_nmi_nesting(), ct_nmi_nesting() - 2, 223 ct_rcu_watching()); 224 WRITE_ONCE(ct->nmi_nesting, /* No store tearing. */ 225 ct_nmi_nesting() - 2); 226 instrumentation_end(); 227 return; 228 } 229 230 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 231 trace_rcu_watching(TPS("Endirq"), ct_nmi_nesting(), 0, ct_rcu_watching()); 232 WRITE_ONCE(ct->nmi_nesting, 0); /* Avoid store tearing. */ 233 234 // instrumentation for the noinstr ct_kernel_exit_state() 235 instrument_atomic_write(&ct->state, sizeof(ct->state)); 236 instrumentation_end(); 237 238 // RCU is watching here ... 239 ct_kernel_exit_state(CT_RCU_WATCHING); 240 // ... but is no longer watching here. 241 242 if (!in_nmi()) 243 rcu_task_exit(); 244 } 245 246 /** 247 * ct_nmi_enter - inform RCU of entry to NMI context 248 * 249 * If the CPU was idle from RCU's viewpoint, update ct->state and 250 * ct->nmi_nesting to let the RCU grace-period handling know 251 * that the CPU is active. This implementation permits nested NMIs, as 252 * long as the nesting level does not overflow an int. (You will probably 253 * run out of stack space first.) 254 * 255 * If you add or remove a call to ct_nmi_enter(), be sure to test 256 * with CONFIG_RCU_EQS_DEBUG=y. 257 */ 258 void noinstr ct_nmi_enter(void) 259 { 260 long incby = 2; 261 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 262 263 /* Complain about underflow. */ 264 WARN_ON_ONCE(ct_nmi_nesting() < 0); 265 266 /* 267 * If idle from RCU viewpoint, atomically increment CT state 268 * to mark non-idle and increment ->nmi_nesting by one. 269 * Otherwise, increment ->nmi_nesting by two. This means 270 * if ->nmi_nesting is equal to one, we are guaranteed 271 * to be in the outermost NMI handler that interrupted an RCU-idle 272 * period (observation due to Andy Lutomirski). 273 */ 274 if (!rcu_is_watching_curr_cpu()) { 275 276 if (!in_nmi()) 277 rcu_task_enter(); 278 279 // RCU is not watching here ... 280 ct_kernel_enter_state(CT_RCU_WATCHING); 281 // ... but is watching here. 282 283 instrumentation_begin(); 284 // instrumentation for the noinstr rcu_is_watching_curr_cpu() 285 instrument_atomic_read(&ct->state, sizeof(ct->state)); 286 // instrumentation for the noinstr ct_kernel_enter_state() 287 instrument_atomic_write(&ct->state, sizeof(ct->state)); 288 289 incby = 1; 290 } else if (!in_nmi()) { 291 instrumentation_begin(); 292 rcu_irq_enter_check_tick(); 293 } else { 294 instrumentation_begin(); 295 } 296 297 trace_rcu_watching(incby == 1 ? TPS("Startirq") : TPS("++="), 298 ct_nmi_nesting(), 299 ct_nmi_nesting() + incby, ct_rcu_watching()); 300 instrumentation_end(); 301 WRITE_ONCE(ct->nmi_nesting, /* Prevent store tearing. */ 302 ct_nmi_nesting() + incby); 303 barrier(); 304 } 305 306 /** 307 * ct_idle_enter - inform RCU that current CPU is entering idle 308 * 309 * Enter idle mode, in other words, -leave- the mode in which RCU 310 * read-side critical sections can occur. (Though RCU read-side 311 * critical sections can occur in irq handlers in idle, a possibility 312 * handled by irq_enter() and irq_exit().) 313 * 314 * If you add or remove a call to ct_idle_enter(), be sure to test with 315 * CONFIG_RCU_EQS_DEBUG=y. 316 */ 317 void noinstr ct_idle_enter(void) 318 { 319 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled()); 320 ct_kernel_exit(false, CT_RCU_WATCHING + CT_STATE_IDLE); 321 } 322 EXPORT_SYMBOL_GPL(ct_idle_enter); 323 324 /** 325 * ct_idle_exit - inform RCU that current CPU is leaving idle 326 * 327 * Exit idle mode, in other words, -enter- the mode in which RCU 328 * read-side critical sections can occur. 329 * 330 * If you add or remove a call to ct_idle_exit(), be sure to test with 331 * CONFIG_RCU_EQS_DEBUG=y. 332 */ 333 void noinstr ct_idle_exit(void) 334 { 335 unsigned long flags; 336 337 raw_local_irq_save(flags); 338 ct_kernel_enter(false, CT_RCU_WATCHING - CT_STATE_IDLE); 339 raw_local_irq_restore(flags); 340 } 341 EXPORT_SYMBOL_GPL(ct_idle_exit); 342 343 /** 344 * ct_irq_enter - inform RCU that current CPU is entering irq away from idle 345 * 346 * Enter an interrupt handler, which might possibly result in exiting 347 * idle mode, in other words, entering the mode in which read-side critical 348 * sections can occur. The caller must have disabled interrupts. 349 * 350 * Note that the Linux kernel is fully capable of entering an interrupt 351 * handler that it never exits, for example when doing upcalls to user mode! 352 * This code assumes that the idle loop never does upcalls to user mode. 353 * If your architecture's idle loop does do upcalls to user mode (or does 354 * anything else that results in unbalanced calls to the irq_enter() and 355 * irq_exit() functions), RCU will give you what you deserve, good and hard. 356 * But very infrequently and irreproducibly. 357 * 358 * Use things like work queues to work around this limitation. 359 * 360 * You have been warned. 361 * 362 * If you add or remove a call to ct_irq_enter(), be sure to test with 363 * CONFIG_RCU_EQS_DEBUG=y. 364 */ 365 noinstr void ct_irq_enter(void) 366 { 367 lockdep_assert_irqs_disabled(); 368 ct_nmi_enter(); 369 } 370 371 /** 372 * ct_irq_exit - inform RCU that current CPU is exiting irq towards idle 373 * 374 * Exit from an interrupt handler, which might possibly result in entering 375 * idle mode, in other words, leaving the mode in which read-side critical 376 * sections can occur. The caller must have disabled interrupts. 377 * 378 * This code assumes that the idle loop never does anything that might 379 * result in unbalanced calls to irq_enter() and irq_exit(). If your 380 * architecture's idle loop violates this assumption, RCU will give you what 381 * you deserve, good and hard. But very infrequently and irreproducibly. 382 * 383 * Use things like work queues to work around this limitation. 384 * 385 * You have been warned. 386 * 387 * If you add or remove a call to ct_irq_exit(), be sure to test with 388 * CONFIG_RCU_EQS_DEBUG=y. 389 */ 390 noinstr void ct_irq_exit(void) 391 { 392 lockdep_assert_irqs_disabled(); 393 ct_nmi_exit(); 394 } 395 396 /* 397 * Wrapper for ct_irq_enter() where interrupts are enabled. 398 * 399 * If you add or remove a call to ct_irq_enter_irqson(), be sure to test 400 * with CONFIG_RCU_EQS_DEBUG=y. 401 */ 402 void ct_irq_enter_irqson(void) 403 { 404 unsigned long flags; 405 406 local_irq_save(flags); 407 ct_irq_enter(); 408 local_irq_restore(flags); 409 } 410 411 /* 412 * Wrapper for ct_irq_exit() where interrupts are enabled. 413 * 414 * If you add or remove a call to ct_irq_exit_irqson(), be sure to test 415 * with CONFIG_RCU_EQS_DEBUG=y. 416 */ 417 void ct_irq_exit_irqson(void) 418 { 419 unsigned long flags; 420 421 local_irq_save(flags); 422 ct_irq_exit(); 423 local_irq_restore(flags); 424 } 425 #else 426 static __always_inline void ct_kernel_exit(bool user, int offset) { } 427 static __always_inline void ct_kernel_enter(bool user, int offset) { } 428 #endif /* #ifdef CONFIG_CONTEXT_TRACKING_IDLE */ 429 430 #ifdef CONFIG_CONTEXT_TRACKING_USER 431 432 #define CREATE_TRACE_POINTS 433 #include <trace/events/context_tracking.h> 434 435 DEFINE_STATIC_KEY_FALSE_RO(context_tracking_key); 436 EXPORT_SYMBOL_GPL(context_tracking_key); 437 438 static noinstr bool context_tracking_recursion_enter(void) 439 { 440 int recursion; 441 442 recursion = __this_cpu_inc_return(context_tracking.recursion); 443 if (recursion == 1) 444 return true; 445 446 WARN_ONCE((recursion < 1), "Invalid context tracking recursion value %d\n", recursion); 447 __this_cpu_dec(context_tracking.recursion); 448 449 return false; 450 } 451 452 static __always_inline void context_tracking_recursion_exit(void) 453 { 454 __this_cpu_dec(context_tracking.recursion); 455 } 456 457 /** 458 * __ct_user_enter - Inform the context tracking that the CPU is going 459 * to enter user or guest space mode. 460 * 461 * @state: userspace context-tracking state to enter. 462 * 463 * This function must be called right before we switch from the kernel 464 * to user or guest space, when it's guaranteed the remaining kernel 465 * instructions to execute won't use any RCU read side critical section 466 * because this function sets RCU in extended quiescent state. 467 */ 468 void noinstr __ct_user_enter(enum ctx_state state) 469 { 470 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 471 lockdep_assert_irqs_disabled(); 472 473 /* Kernel threads aren't supposed to go to userspace */ 474 WARN_ON_ONCE(!current->mm); 475 476 if (!context_tracking_recursion_enter()) 477 return; 478 479 if (__ct_state() != state) { 480 if (ct->active) { 481 /* 482 * At this stage, only low level arch entry code remains and 483 * then we'll run in userspace. We can assume there won't be 484 * any RCU read-side critical section until the next call to 485 * user_exit() or ct_irq_enter(). Let's remove RCU's dependency 486 * on the tick. 487 */ 488 if (state == CT_STATE_USER) { 489 instrumentation_begin(); 490 trace_user_enter(0); 491 vtime_user_enter(current); 492 instrumentation_end(); 493 } 494 /* 495 * Other than generic entry implementation, we may be past the last 496 * rescheduling opportunity in the entry code. Trigger a self IPI 497 * that will fire and reschedule once we resume in user/guest mode. 498 */ 499 rcu_irq_work_resched(); 500 501 /* 502 * Enter RCU idle mode right before resuming userspace. No use of RCU 503 * is permitted between this call and rcu_eqs_exit(). This way the 504 * CPU doesn't need to maintain the tick for RCU maintenance purposes 505 * when the CPU runs in userspace. 506 */ 507 ct_kernel_exit(true, CT_RCU_WATCHING + state); 508 509 /* 510 * Special case if we only track user <-> kernel transitions for tickless 511 * cputime accounting but we don't support RCU extended quiescent state. 512 * In this we case we don't care about any concurrency/ordering. 513 */ 514 if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) 515 raw_atomic_set(&ct->state, state); 516 } else { 517 /* 518 * Even if context tracking is disabled on this CPU, because it's outside 519 * the full dynticks mask for example, we still have to keep track of the 520 * context transitions and states to prevent inconsistency on those of 521 * other CPUs. 522 * If a task triggers an exception in userspace, sleep on the exception 523 * handler and then migrate to another CPU, that new CPU must know where 524 * the exception returns by the time we call exception_exit(). 525 * This information can only be provided by the previous CPU when it called 526 * exception_enter(). 527 * OTOH we can spare the calls to vtime and RCU when context_tracking.active 528 * is false because we know that CPU is not tickless. 529 */ 530 if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) { 531 /* Tracking for vtime only, no concurrent RCU EQS accounting */ 532 raw_atomic_set(&ct->state, state); 533 } else { 534 /* 535 * Tracking for vtime and RCU EQS. Make sure we don't race 536 * with NMIs. OTOH we don't care about ordering here since 537 * RCU only requires CT_RCU_WATCHING increments to be fully 538 * ordered. 539 */ 540 raw_atomic_add(state, &ct->state); 541 } 542 } 543 } 544 context_tracking_recursion_exit(); 545 } 546 EXPORT_SYMBOL_GPL(__ct_user_enter); 547 548 /* 549 * OBSOLETE: 550 * This function should be noinstr but the below local_irq_restore() is 551 * unsafe because it involves illegal RCU uses through tracing and lockdep. 552 * This is unlikely to be fixed as this function is obsolete. The preferred 553 * way is to call __context_tracking_enter() through user_enter_irqoff() 554 * or context_tracking_guest_enter(). It should be the arch entry code 555 * responsibility to call into context tracking with IRQs disabled. 556 */ 557 void ct_user_enter(enum ctx_state state) 558 { 559 unsigned long flags; 560 561 /* 562 * Some contexts may involve an exception occuring in an irq, 563 * leading to that nesting: 564 * ct_irq_enter() rcu_eqs_exit(true) rcu_eqs_enter(true) ct_irq_exit() 565 * This would mess up the dyntick_nesting count though. And rcu_irq_*() 566 * helpers are enough to protect RCU uses inside the exception. So 567 * just return immediately if we detect we are in an IRQ. 568 */ 569 if (in_interrupt()) 570 return; 571 572 local_irq_save(flags); 573 __ct_user_enter(state); 574 local_irq_restore(flags); 575 } 576 NOKPROBE_SYMBOL(ct_user_enter); 577 EXPORT_SYMBOL_GPL(ct_user_enter); 578 579 /** 580 * user_enter_callable() - Unfortunate ASM callable version of user_enter() for 581 * archs that didn't manage to check the context tracking 582 * static key from low level code. 583 * 584 * This OBSOLETE function should be noinstr but it unsafely calls 585 * local_irq_restore(), involving illegal RCU uses through tracing and lockdep. 586 * This is unlikely to be fixed as this function is obsolete. The preferred 587 * way is to call user_enter_irqoff(). It should be the arch entry code 588 * responsibility to call into context tracking with IRQs disabled. 589 */ 590 void user_enter_callable(void) 591 { 592 user_enter(); 593 } 594 NOKPROBE_SYMBOL(user_enter_callable); 595 596 /** 597 * __ct_user_exit - Inform the context tracking that the CPU is 598 * exiting user or guest mode and entering the kernel. 599 * 600 * @state: userspace context-tracking state being exited from. 601 * 602 * This function must be called after we entered the kernel from user or 603 * guest space before any use of RCU read side critical section. This 604 * potentially include any high level kernel code like syscalls, exceptions, 605 * signal handling, etc... 606 * 607 * This call supports re-entrancy. This way it can be called from any exception 608 * handler without needing to know if we came from userspace or not. 609 */ 610 void noinstr __ct_user_exit(enum ctx_state state) 611 { 612 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 613 614 if (!context_tracking_recursion_enter()) 615 return; 616 617 if (__ct_state() == state) { 618 if (ct->active) { 619 /* 620 * Exit RCU idle mode while entering the kernel because it can 621 * run a RCU read side critical section anytime. 622 */ 623 ct_kernel_enter(true, CT_RCU_WATCHING - state); 624 if (state == CT_STATE_USER) { 625 instrumentation_begin(); 626 vtime_user_exit(current); 627 trace_user_exit(0); 628 instrumentation_end(); 629 } 630 631 /* 632 * Special case if we only track user <-> kernel transitions for tickless 633 * cputime accounting but we don't support RCU extended quiescent state. 634 * In this we case we don't care about any concurrency/ordering. 635 */ 636 if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) 637 raw_atomic_set(&ct->state, CT_STATE_KERNEL); 638 639 } else { 640 if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) { 641 /* Tracking for vtime only, no concurrent RCU EQS accounting */ 642 raw_atomic_set(&ct->state, CT_STATE_KERNEL); 643 } else { 644 /* 645 * Tracking for vtime and RCU EQS. Make sure we don't race 646 * with NMIs. OTOH we don't care about ordering here since 647 * RCU only requires CT_RCU_WATCHING increments to be fully 648 * ordered. 649 */ 650 raw_atomic_sub(state, &ct->state); 651 } 652 } 653 } 654 context_tracking_recursion_exit(); 655 } 656 EXPORT_SYMBOL_GPL(__ct_user_exit); 657 658 /* 659 * OBSOLETE: 660 * This function should be noinstr but the below local_irq_save() is 661 * unsafe because it involves illegal RCU uses through tracing and lockdep. 662 * This is unlikely to be fixed as this function is obsolete. The preferred 663 * way is to call __context_tracking_exit() through user_exit_irqoff() 664 * or context_tracking_guest_exit(). It should be the arch entry code 665 * responsibility to call into context tracking with IRQs disabled. 666 */ 667 void ct_user_exit(enum ctx_state state) 668 { 669 unsigned long flags; 670 671 if (in_interrupt()) 672 return; 673 674 local_irq_save(flags); 675 __ct_user_exit(state); 676 local_irq_restore(flags); 677 } 678 NOKPROBE_SYMBOL(ct_user_exit); 679 EXPORT_SYMBOL_GPL(ct_user_exit); 680 681 /** 682 * user_exit_callable() - Unfortunate ASM callable version of user_exit() for 683 * archs that didn't manage to check the context tracking 684 * static key from low level code. 685 * 686 * This OBSOLETE function should be noinstr but it unsafely calls local_irq_save(), 687 * involving illegal RCU uses through tracing and lockdep. This is unlikely 688 * to be fixed as this function is obsolete. The preferred way is to call 689 * user_exit_irqoff(). It should be the arch entry code responsibility to 690 * call into context tracking with IRQs disabled. 691 */ 692 void user_exit_callable(void) 693 { 694 user_exit(); 695 } 696 NOKPROBE_SYMBOL(user_exit_callable); 697 698 void __init ct_cpu_track_user(int cpu) 699 { 700 static __initdata bool initialized = false; 701 702 if (!per_cpu(context_tracking.active, cpu)) { 703 per_cpu(context_tracking.active, cpu) = true; 704 static_branch_inc(&context_tracking_key); 705 } 706 707 if (initialized) 708 return; 709 710 #ifdef CONFIG_HAVE_TIF_NOHZ 711 /* 712 * Set TIF_NOHZ to init/0 and let it propagate to all tasks through fork 713 * This assumes that init is the only task at this early boot stage. 714 */ 715 set_tsk_thread_flag(&init_task, TIF_NOHZ); 716 #endif 717 WARN_ON_ONCE(!tasklist_empty()); 718 719 initialized = true; 720 } 721 722 #ifdef CONFIG_CONTEXT_TRACKING_USER_FORCE 723 void __init context_tracking_init(void) 724 { 725 int cpu; 726 727 for_each_possible_cpu(cpu) 728 ct_cpu_track_user(cpu); 729 } 730 #endif 731 732 #endif /* #ifdef CONFIG_CONTEXT_TRACKING_USER */ 733