1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Context tracking: Probe on high level context boundaries such as kernel, 4 * userspace, guest or idle. 5 * 6 * This is used by RCU to remove its dependency on the timer tick while a CPU 7 * runs in idle, userspace or guest mode. 8 * 9 * User/guest tracking started by Frederic Weisbecker: 10 * 11 * Copyright (C) 2012 Red Hat, Inc., Frederic Weisbecker 12 * 13 * Many thanks to Gilad Ben-Yossef, Paul McKenney, Ingo Molnar, Andrew Morton, 14 * Steven Rostedt, Peter Zijlstra for suggestions and improvements. 15 * 16 * RCU extended quiescent state bits imported from kernel/rcu/tree.c 17 * where the relevant authorship may be found. 18 */ 19 20 #include <linux/context_tracking.h> 21 #include <linux/rcupdate.h> 22 #include <linux/sched.h> 23 #include <linux/hardirq.h> 24 #include <linux/export.h> 25 #include <linux/kprobes.h> 26 #include <trace/events/rcu.h> 27 28 29 DEFINE_PER_CPU(struct context_tracking, context_tracking) = { 30 #ifdef CONFIG_CONTEXT_TRACKING_IDLE 31 .nesting = 1, 32 .nmi_nesting = CT_NESTING_IRQ_NONIDLE, 33 #endif 34 .state = ATOMIC_INIT(CT_RCU_WATCHING), 35 }; 36 EXPORT_SYMBOL_GPL(context_tracking); 37 38 #ifdef CONFIG_CONTEXT_TRACKING_IDLE 39 #define TPS(x) tracepoint_string(x) 40 41 /* Record the current task on exiting RCU-tasks (dyntick-idle entry). */ 42 static __always_inline void rcu_task_exit(void) 43 { 44 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 45 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id()); 46 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 47 } 48 49 /* Record no current task on entering RCU-tasks (dyntick-idle exit). */ 50 static __always_inline void rcu_task_enter(void) 51 { 52 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) 53 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1); 54 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */ 55 } 56 57 /* Turn on heavyweight RCU tasks trace readers on kernel exit. */ 58 static __always_inline void rcu_task_trace_heavyweight_enter(void) 59 { 60 #ifdef CONFIG_TASKS_TRACE_RCU 61 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 62 current->trc_reader_special.b.need_mb = true; 63 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 64 } 65 66 /* Turn off heavyweight RCU tasks trace readers on kernel entry. */ 67 static __always_inline void rcu_task_trace_heavyweight_exit(void) 68 { 69 #ifdef CONFIG_TASKS_TRACE_RCU 70 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 71 current->trc_reader_special.b.need_mb = false; 72 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 73 } 74 75 /* 76 * Record entry into an extended quiescent state. This is only to be 77 * called when not already in an extended quiescent state, that is, 78 * RCU is watching prior to the call to this function and is no longer 79 * watching upon return. 80 */ 81 static noinstr void ct_kernel_exit_state(int offset) 82 { 83 /* 84 * CPUs seeing atomic_add_return() must see prior RCU read-side 85 * critical sections, and we also must force ordering with the 86 * next idle sojourn. 87 */ 88 rcu_task_trace_heavyweight_enter(); // Before CT state update! 89 // RCU is still watching. Better not be in extended quiescent state! 90 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !rcu_is_watching_curr_cpu()); 91 (void)ct_state_inc(offset); 92 // RCU is no longer watching. 93 } 94 95 /* 96 * Record exit from an extended quiescent state. This is only to be 97 * called from an extended quiescent state, that is, RCU is not watching 98 * prior to the call to this function and is watching upon return. 99 */ 100 static noinstr void ct_kernel_enter_state(int offset) 101 { 102 int seq; 103 104 /* 105 * CPUs seeing atomic_add_return() must see prior idle sojourns, 106 * and we also must force ordering with the next RCU read-side 107 * critical section. 108 */ 109 seq = ct_state_inc(offset); 110 // RCU is now watching. Better not be in an extended quiescent state! 111 rcu_task_trace_heavyweight_exit(); // After CT state update! 112 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & CT_RCU_WATCHING)); 113 } 114 115 /* 116 * Enter an RCU extended quiescent state, which can be either the 117 * idle loop or adaptive-tickless usermode execution. 118 * 119 * We crowbar the ->nmi_nesting field to zero to allow for 120 * the possibility of usermode upcalls having messed up our count 121 * of interrupt nesting level during the prior busy period. 122 */ 123 static void noinstr ct_kernel_exit(bool user, int offset) 124 { 125 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 126 127 WARN_ON_ONCE(ct_nmi_nesting() != CT_NESTING_IRQ_NONIDLE); 128 WRITE_ONCE(ct->nmi_nesting, 0); 129 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 130 ct_nesting() == 0); 131 if (ct_nesting() != 1) { 132 // RCU will still be watching, so just do accounting and leave. 133 ct->nesting--; 134 return; 135 } 136 137 instrumentation_begin(); 138 lockdep_assert_irqs_disabled(); 139 trace_rcu_watching(TPS("End"), ct_nesting(), 0, ct_rcu_watching()); 140 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 141 rcu_preempt_deferred_qs(current); 142 143 // instrumentation for the noinstr ct_kernel_exit_state() 144 instrument_atomic_write(&ct->state, sizeof(ct->state)); 145 146 instrumentation_end(); 147 WRITE_ONCE(ct->nesting, 0); /* Avoid irq-access tearing. */ 148 // RCU is watching here ... 149 ct_kernel_exit_state(offset); 150 // ... but is no longer watching here. 151 rcu_task_exit(); 152 } 153 154 /* 155 * Exit an RCU extended quiescent state, which can be either the 156 * idle loop or adaptive-tickless usermode execution. 157 * 158 * We crowbar the ->nmi_nesting field to CT_NESTING_IRQ_NONIDLE to 159 * allow for the possibility of usermode upcalls messing up our count of 160 * interrupt nesting level during the busy period that is just now starting. 161 */ 162 static void noinstr ct_kernel_enter(bool user, int offset) 163 { 164 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 165 long oldval; 166 167 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled()); 168 oldval = ct_nesting(); 169 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 170 if (oldval) { 171 // RCU was already watching, so just do accounting and leave. 172 ct->nesting++; 173 return; 174 } 175 rcu_task_enter(); 176 // RCU is not watching here ... 177 ct_kernel_enter_state(offset); 178 // ... but is watching here. 179 instrumentation_begin(); 180 181 // instrumentation for the noinstr ct_kernel_enter_state() 182 instrument_atomic_write(&ct->state, sizeof(ct->state)); 183 184 trace_rcu_watching(TPS("Start"), ct_nesting(), 1, ct_rcu_watching()); 185 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 186 WRITE_ONCE(ct->nesting, 1); 187 WARN_ON_ONCE(ct_nmi_nesting()); 188 WRITE_ONCE(ct->nmi_nesting, CT_NESTING_IRQ_NONIDLE); 189 instrumentation_end(); 190 } 191 192 /** 193 * ct_nmi_exit - inform RCU of exit from NMI context 194 * 195 * If we are returning from the outermost NMI handler that interrupted an 196 * RCU-idle period, update ct->state and ct->nmi_nesting 197 * to let the RCU grace-period handling know that the CPU is back to 198 * being RCU-idle. 199 * 200 * If you add or remove a call to ct_nmi_exit(), be sure to test 201 * with CONFIG_RCU_EQS_DEBUG=y. 202 */ 203 void noinstr ct_nmi_exit(void) 204 { 205 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 206 207 instrumentation_begin(); 208 /* 209 * Check for ->nmi_nesting underflow and bad CT state. 210 * (We are exiting an NMI handler, so RCU better be paying attention 211 * to us!) 212 */ 213 WARN_ON_ONCE(ct_nmi_nesting() <= 0); 214 WARN_ON_ONCE(!rcu_is_watching_curr_cpu()); 215 216 /* 217 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 218 * leave it in non-RCU-idle state. 219 */ 220 if (ct_nmi_nesting() != 1) { 221 trace_rcu_watching(TPS("--="), ct_nmi_nesting(), ct_nmi_nesting() - 2, 222 ct_rcu_watching()); 223 WRITE_ONCE(ct->nmi_nesting, /* No store tearing. */ 224 ct_nmi_nesting() - 2); 225 instrumentation_end(); 226 return; 227 } 228 229 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 230 trace_rcu_watching(TPS("Endirq"), ct_nmi_nesting(), 0, ct_rcu_watching()); 231 WRITE_ONCE(ct->nmi_nesting, 0); /* Avoid store tearing. */ 232 233 // instrumentation for the noinstr ct_kernel_exit_state() 234 instrument_atomic_write(&ct->state, sizeof(ct->state)); 235 instrumentation_end(); 236 237 // RCU is watching here ... 238 ct_kernel_exit_state(CT_RCU_WATCHING); 239 // ... but is no longer watching here. 240 241 if (!in_nmi()) 242 rcu_task_exit(); 243 } 244 245 /** 246 * ct_nmi_enter - inform RCU of entry to NMI context 247 * 248 * If the CPU was idle from RCU's viewpoint, update ct->state and 249 * ct->nmi_nesting to let the RCU grace-period handling know 250 * that the CPU is active. This implementation permits nested NMIs, as 251 * long as the nesting level does not overflow an int. (You will probably 252 * run out of stack space first.) 253 * 254 * If you add or remove a call to ct_nmi_enter(), be sure to test 255 * with CONFIG_RCU_EQS_DEBUG=y. 256 */ 257 void noinstr ct_nmi_enter(void) 258 { 259 long incby = 2; 260 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 261 262 /* Complain about underflow. */ 263 WARN_ON_ONCE(ct_nmi_nesting() < 0); 264 265 /* 266 * If idle from RCU viewpoint, atomically increment CT state 267 * to mark non-idle and increment ->nmi_nesting by one. 268 * Otherwise, increment ->nmi_nesting by two. This means 269 * if ->nmi_nesting is equal to one, we are guaranteed 270 * to be in the outermost NMI handler that interrupted an RCU-idle 271 * period (observation due to Andy Lutomirski). 272 */ 273 if (!rcu_is_watching_curr_cpu()) { 274 275 if (!in_nmi()) 276 rcu_task_enter(); 277 278 // RCU is not watching here ... 279 ct_kernel_enter_state(CT_RCU_WATCHING); 280 // ... but is watching here. 281 282 instrumentation_begin(); 283 // instrumentation for the noinstr rcu_is_watching_curr_cpu() 284 instrument_atomic_read(&ct->state, sizeof(ct->state)); 285 // instrumentation for the noinstr ct_kernel_enter_state() 286 instrument_atomic_write(&ct->state, sizeof(ct->state)); 287 288 incby = 1; 289 } else if (!in_nmi()) { 290 instrumentation_begin(); 291 rcu_irq_enter_check_tick(); 292 } else { 293 instrumentation_begin(); 294 } 295 296 trace_rcu_watching(incby == 1 ? TPS("Startirq") : TPS("++="), 297 ct_nmi_nesting(), 298 ct_nmi_nesting() + incby, ct_rcu_watching()); 299 instrumentation_end(); 300 WRITE_ONCE(ct->nmi_nesting, /* Prevent store tearing. */ 301 ct_nmi_nesting() + incby); 302 barrier(); 303 } 304 305 /** 306 * ct_idle_enter - inform RCU that current CPU is entering idle 307 * 308 * Enter idle mode, in other words, -leave- the mode in which RCU 309 * read-side critical sections can occur. (Though RCU read-side 310 * critical sections can occur in irq handlers in idle, a possibility 311 * handled by irq_enter() and irq_exit().) 312 * 313 * If you add or remove a call to ct_idle_enter(), be sure to test with 314 * CONFIG_RCU_EQS_DEBUG=y. 315 */ 316 void noinstr ct_idle_enter(void) 317 { 318 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled()); 319 ct_kernel_exit(false, CT_RCU_WATCHING + CT_STATE_IDLE); 320 } 321 EXPORT_SYMBOL_GPL(ct_idle_enter); 322 323 /** 324 * ct_idle_exit - inform RCU that current CPU is leaving idle 325 * 326 * Exit idle mode, in other words, -enter- the mode in which RCU 327 * read-side critical sections can occur. 328 * 329 * If you add or remove a call to ct_idle_exit(), be sure to test with 330 * CONFIG_RCU_EQS_DEBUG=y. 331 */ 332 void noinstr ct_idle_exit(void) 333 { 334 unsigned long flags; 335 336 raw_local_irq_save(flags); 337 ct_kernel_enter(false, CT_RCU_WATCHING - CT_STATE_IDLE); 338 raw_local_irq_restore(flags); 339 } 340 EXPORT_SYMBOL_GPL(ct_idle_exit); 341 342 /** 343 * ct_irq_enter - inform RCU that current CPU is entering irq away from idle 344 * 345 * Enter an interrupt handler, which might possibly result in exiting 346 * idle mode, in other words, entering the mode in which read-side critical 347 * sections can occur. The caller must have disabled interrupts. 348 * 349 * Note that the Linux kernel is fully capable of entering an interrupt 350 * handler that it never exits, for example when doing upcalls to user mode! 351 * This code assumes that the idle loop never does upcalls to user mode. 352 * If your architecture's idle loop does do upcalls to user mode (or does 353 * anything else that results in unbalanced calls to the irq_enter() and 354 * irq_exit() functions), RCU will give you what you deserve, good and hard. 355 * But very infrequently and irreproducibly. 356 * 357 * Use things like work queues to work around this limitation. 358 * 359 * You have been warned. 360 * 361 * If you add or remove a call to ct_irq_enter(), be sure to test with 362 * CONFIG_RCU_EQS_DEBUG=y. 363 */ 364 noinstr void ct_irq_enter(void) 365 { 366 lockdep_assert_irqs_disabled(); 367 ct_nmi_enter(); 368 } 369 370 /** 371 * ct_irq_exit - inform RCU that current CPU is exiting irq towards idle 372 * 373 * Exit from an interrupt handler, which might possibly result in entering 374 * idle mode, in other words, leaving the mode in which read-side critical 375 * sections can occur. The caller must have disabled interrupts. 376 * 377 * This code assumes that the idle loop never does anything that might 378 * result in unbalanced calls to irq_enter() and irq_exit(). If your 379 * architecture's idle loop violates this assumption, RCU will give you what 380 * you deserve, good and hard. But very infrequently and irreproducibly. 381 * 382 * Use things like work queues to work around this limitation. 383 * 384 * You have been warned. 385 * 386 * If you add or remove a call to ct_irq_exit(), be sure to test with 387 * CONFIG_RCU_EQS_DEBUG=y. 388 */ 389 noinstr void ct_irq_exit(void) 390 { 391 lockdep_assert_irqs_disabled(); 392 ct_nmi_exit(); 393 } 394 395 /* 396 * Wrapper for ct_irq_enter() where interrupts are enabled. 397 * 398 * If you add or remove a call to ct_irq_enter_irqson(), be sure to test 399 * with CONFIG_RCU_EQS_DEBUG=y. 400 */ 401 void ct_irq_enter_irqson(void) 402 { 403 unsigned long flags; 404 405 local_irq_save(flags); 406 ct_irq_enter(); 407 local_irq_restore(flags); 408 } 409 410 /* 411 * Wrapper for ct_irq_exit() where interrupts are enabled. 412 * 413 * If you add or remove a call to ct_irq_exit_irqson(), be sure to test 414 * with CONFIG_RCU_EQS_DEBUG=y. 415 */ 416 void ct_irq_exit_irqson(void) 417 { 418 unsigned long flags; 419 420 local_irq_save(flags); 421 ct_irq_exit(); 422 local_irq_restore(flags); 423 } 424 #else 425 static __always_inline void ct_kernel_exit(bool user, int offset) { } 426 static __always_inline void ct_kernel_enter(bool user, int offset) { } 427 #endif /* #ifdef CONFIG_CONTEXT_TRACKING_IDLE */ 428 429 #ifdef CONFIG_CONTEXT_TRACKING_USER 430 431 #define CREATE_TRACE_POINTS 432 #include <trace/events/context_tracking.h> 433 434 DEFINE_STATIC_KEY_FALSE_RO(context_tracking_key); 435 EXPORT_SYMBOL_GPL(context_tracking_key); 436 437 static noinstr bool context_tracking_recursion_enter(void) 438 { 439 int recursion; 440 441 recursion = __this_cpu_inc_return(context_tracking.recursion); 442 if (recursion == 1) 443 return true; 444 445 WARN_ONCE((recursion < 1), "Invalid context tracking recursion value %d\n", recursion); 446 __this_cpu_dec(context_tracking.recursion); 447 448 return false; 449 } 450 451 static __always_inline void context_tracking_recursion_exit(void) 452 { 453 __this_cpu_dec(context_tracking.recursion); 454 } 455 456 /** 457 * __ct_user_enter - Inform the context tracking that the CPU is going 458 * to enter user or guest space mode. 459 * 460 * @state: userspace context-tracking state to enter. 461 * 462 * This function must be called right before we switch from the kernel 463 * to user or guest space, when it's guaranteed the remaining kernel 464 * instructions to execute won't use any RCU read side critical section 465 * because this function sets RCU in extended quiescent state. 466 */ 467 void noinstr __ct_user_enter(enum ctx_state state) 468 { 469 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 470 lockdep_assert_irqs_disabled(); 471 472 /* Kernel threads aren't supposed to go to userspace */ 473 WARN_ON_ONCE(!current->mm); 474 475 if (!context_tracking_recursion_enter()) 476 return; 477 478 if (__ct_state() != state) { 479 if (ct->active) { 480 /* 481 * At this stage, only low level arch entry code remains and 482 * then we'll run in userspace. We can assume there won't be 483 * any RCU read-side critical section until the next call to 484 * user_exit() or ct_irq_enter(). Let's remove RCU's dependency 485 * on the tick. 486 */ 487 if (state == CT_STATE_USER) { 488 instrumentation_begin(); 489 trace_user_enter(0); 490 vtime_user_enter(current); 491 instrumentation_end(); 492 } 493 /* 494 * Other than generic entry implementation, we may be past the last 495 * rescheduling opportunity in the entry code. Trigger a self IPI 496 * that will fire and reschedule once we resume in user/guest mode. 497 */ 498 rcu_irq_work_resched(); 499 500 /* 501 * Enter RCU idle mode right before resuming userspace. No use of RCU 502 * is permitted between this call and rcu_eqs_exit(). This way the 503 * CPU doesn't need to maintain the tick for RCU maintenance purposes 504 * when the CPU runs in userspace. 505 */ 506 ct_kernel_exit(true, CT_RCU_WATCHING + state); 507 508 /* 509 * Special case if we only track user <-> kernel transitions for tickless 510 * cputime accounting but we don't support RCU extended quiescent state. 511 * In this we case we don't care about any concurrency/ordering. 512 */ 513 if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) 514 raw_atomic_set(&ct->state, state); 515 } else { 516 /* 517 * Even if context tracking is disabled on this CPU, because it's outside 518 * the full dynticks mask for example, we still have to keep track of the 519 * context transitions and states to prevent inconsistency on those of 520 * other CPUs. 521 * If a task triggers an exception in userspace, sleep on the exception 522 * handler and then migrate to another CPU, that new CPU must know where 523 * the exception returns by the time we call exception_exit(). 524 * This information can only be provided by the previous CPU when it called 525 * exception_enter(). 526 * OTOH we can spare the calls to vtime and RCU when context_tracking.active 527 * is false because we know that CPU is not tickless. 528 */ 529 if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) { 530 /* Tracking for vtime only, no concurrent RCU EQS accounting */ 531 raw_atomic_set(&ct->state, state); 532 } else { 533 /* 534 * Tracking for vtime and RCU EQS. Make sure we don't race 535 * with NMIs. OTOH we don't care about ordering here since 536 * RCU only requires CT_RCU_WATCHING increments to be fully 537 * ordered. 538 */ 539 raw_atomic_add(state, &ct->state); 540 } 541 } 542 } 543 context_tracking_recursion_exit(); 544 } 545 EXPORT_SYMBOL_GPL(__ct_user_enter); 546 547 /* 548 * OBSOLETE: 549 * This function should be noinstr but the below local_irq_restore() is 550 * unsafe because it involves illegal RCU uses through tracing and lockdep. 551 * This is unlikely to be fixed as this function is obsolete. The preferred 552 * way is to call __context_tracking_enter() through user_enter_irqoff() 553 * or context_tracking_guest_enter(). It should be the arch entry code 554 * responsibility to call into context tracking with IRQs disabled. 555 */ 556 void ct_user_enter(enum ctx_state state) 557 { 558 unsigned long flags; 559 560 /* 561 * Some contexts may involve an exception occuring in an irq, 562 * leading to that nesting: 563 * ct_irq_enter() rcu_eqs_exit(true) rcu_eqs_enter(true) ct_irq_exit() 564 * This would mess up the dyntick_nesting count though. And rcu_irq_*() 565 * helpers are enough to protect RCU uses inside the exception. So 566 * just return immediately if we detect we are in an IRQ. 567 */ 568 if (in_interrupt()) 569 return; 570 571 local_irq_save(flags); 572 __ct_user_enter(state); 573 local_irq_restore(flags); 574 } 575 NOKPROBE_SYMBOL(ct_user_enter); 576 EXPORT_SYMBOL_GPL(ct_user_enter); 577 578 /** 579 * user_enter_callable() - Unfortunate ASM callable version of user_enter() for 580 * archs that didn't manage to check the context tracking 581 * static key from low level code. 582 * 583 * This OBSOLETE function should be noinstr but it unsafely calls 584 * local_irq_restore(), involving illegal RCU uses through tracing and lockdep. 585 * This is unlikely to be fixed as this function is obsolete. The preferred 586 * way is to call user_enter_irqoff(). It should be the arch entry code 587 * responsibility to call into context tracking with IRQs disabled. 588 */ 589 void user_enter_callable(void) 590 { 591 user_enter(); 592 } 593 NOKPROBE_SYMBOL(user_enter_callable); 594 595 /** 596 * __ct_user_exit - Inform the context tracking that the CPU is 597 * exiting user or guest mode and entering the kernel. 598 * 599 * @state: userspace context-tracking state being exited from. 600 * 601 * This function must be called after we entered the kernel from user or 602 * guest space before any use of RCU read side critical section. This 603 * potentially include any high level kernel code like syscalls, exceptions, 604 * signal handling, etc... 605 * 606 * This call supports re-entrancy. This way it can be called from any exception 607 * handler without needing to know if we came from userspace or not. 608 */ 609 void noinstr __ct_user_exit(enum ctx_state state) 610 { 611 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 612 613 if (!context_tracking_recursion_enter()) 614 return; 615 616 if (__ct_state() == state) { 617 if (ct->active) { 618 /* 619 * Exit RCU idle mode while entering the kernel because it can 620 * run a RCU read side critical section anytime. 621 */ 622 ct_kernel_enter(true, CT_RCU_WATCHING - state); 623 if (state == CT_STATE_USER) { 624 instrumentation_begin(); 625 vtime_user_exit(current); 626 trace_user_exit(0); 627 instrumentation_end(); 628 } 629 630 /* 631 * Special case if we only track user <-> kernel transitions for tickless 632 * cputime accounting but we don't support RCU extended quiescent state. 633 * In this we case we don't care about any concurrency/ordering. 634 */ 635 if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) 636 raw_atomic_set(&ct->state, CT_STATE_KERNEL); 637 638 } else { 639 if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) { 640 /* Tracking for vtime only, no concurrent RCU EQS accounting */ 641 raw_atomic_set(&ct->state, CT_STATE_KERNEL); 642 } else { 643 /* 644 * Tracking for vtime and RCU EQS. Make sure we don't race 645 * with NMIs. OTOH we don't care about ordering here since 646 * RCU only requires CT_RCU_WATCHING increments to be fully 647 * ordered. 648 */ 649 raw_atomic_sub(state, &ct->state); 650 } 651 } 652 } 653 context_tracking_recursion_exit(); 654 } 655 EXPORT_SYMBOL_GPL(__ct_user_exit); 656 657 /* 658 * OBSOLETE: 659 * This function should be noinstr but the below local_irq_save() is 660 * unsafe because it involves illegal RCU uses through tracing and lockdep. 661 * This is unlikely to be fixed as this function is obsolete. The preferred 662 * way is to call __context_tracking_exit() through user_exit_irqoff() 663 * or context_tracking_guest_exit(). It should be the arch entry code 664 * responsibility to call into context tracking with IRQs disabled. 665 */ 666 void ct_user_exit(enum ctx_state state) 667 { 668 unsigned long flags; 669 670 if (in_interrupt()) 671 return; 672 673 local_irq_save(flags); 674 __ct_user_exit(state); 675 local_irq_restore(flags); 676 } 677 NOKPROBE_SYMBOL(ct_user_exit); 678 EXPORT_SYMBOL_GPL(ct_user_exit); 679 680 /** 681 * user_exit_callable() - Unfortunate ASM callable version of user_exit() for 682 * archs that didn't manage to check the context tracking 683 * static key from low level code. 684 * 685 * This OBSOLETE function should be noinstr but it unsafely calls local_irq_save(), 686 * involving illegal RCU uses through tracing and lockdep. This is unlikely 687 * to be fixed as this function is obsolete. The preferred way is to call 688 * user_exit_irqoff(). It should be the arch entry code responsibility to 689 * call into context tracking with IRQs disabled. 690 */ 691 void user_exit_callable(void) 692 { 693 user_exit(); 694 } 695 NOKPROBE_SYMBOL(user_exit_callable); 696 697 void __init ct_cpu_track_user(int cpu) 698 { 699 static __initdata bool initialized = false; 700 701 if (!per_cpu(context_tracking.active, cpu)) { 702 per_cpu(context_tracking.active, cpu) = true; 703 static_branch_inc(&context_tracking_key); 704 } 705 706 if (initialized) 707 return; 708 709 #ifdef CONFIG_HAVE_TIF_NOHZ 710 /* 711 * Set TIF_NOHZ to init/0 and let it propagate to all tasks through fork 712 * This assumes that init is the only task at this early boot stage. 713 */ 714 set_tsk_thread_flag(&init_task, TIF_NOHZ); 715 #endif 716 WARN_ON_ONCE(!tasklist_empty()); 717 718 initialized = true; 719 } 720 721 #ifdef CONFIG_CONTEXT_TRACKING_USER_FORCE 722 void __init context_tracking_init(void) 723 { 724 int cpu; 725 726 for_each_possible_cpu(cpu) 727 ct_cpu_track_user(cpu); 728 } 729 #endif 730 731 #endif /* #ifdef CONFIG_CONTEXT_TRACKING_USER */ 732