xref: /linux/kernel/context_tracking.c (revision 37a93dd5c49b5fda807fd204edf2547c3493319c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Context tracking: Probe on high level context boundaries such as kernel,
4  * userspace, guest or idle.
5  *
6  * This is used by RCU to remove its dependency on the timer tick while a CPU
7  * runs in idle, userspace or guest mode.
8  *
9  * User/guest tracking started by Frederic Weisbecker:
10  *
11  * Copyright (C) 2012 Red Hat, Inc., Frederic Weisbecker
12  *
13  * Many thanks to Gilad Ben-Yossef, Paul McKenney, Ingo Molnar, Andrew Morton,
14  * Steven Rostedt, Peter Zijlstra for suggestions and improvements.
15  *
16  * RCU extended quiescent state bits imported from kernel/rcu/tree.c
17  * where the relevant authorship may be found.
18  */
19 
20 #include <linux/context_tracking.h>
21 #include <linux/rcupdate.h>
22 #include <linux/sched.h>
23 #include <linux/hardirq.h>
24 #include <linux/export.h>
25 #include <linux/kprobes.h>
26 #include <trace/events/rcu.h>
27 
28 
29 DEFINE_PER_CPU(struct context_tracking, context_tracking) = {
30 #ifdef CONFIG_CONTEXT_TRACKING_IDLE
31 	.nesting = 1,
32 	.nmi_nesting = CT_NESTING_IRQ_NONIDLE,
33 #endif
34 	.state = ATOMIC_INIT(CT_RCU_WATCHING),
35 };
36 EXPORT_SYMBOL_GPL(context_tracking);
37 
38 #ifdef CONFIG_CONTEXT_TRACKING_IDLE
39 #define TPS(x)  tracepoint_string(x)
40 
41 /* Record the current task on exiting RCU-tasks (dyntick-idle entry). */
42 static __always_inline void rcu_task_exit(void)
43 {
44 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
45 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
46 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
47 }
48 
49 /* Record no current task on entering RCU-tasks (dyntick-idle exit). */
50 static __always_inline void rcu_task_enter(void)
51 {
52 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
53 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
54 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
55 }
56 
57 /*
58  * Record entry into an extended quiescent state.  This is only to be
59  * called when not already in an extended quiescent state, that is,
60  * RCU is watching prior to the call to this function and is no longer
61  * watching upon return.
62  */
63 static noinstr void ct_kernel_exit_state(int offset)
64 {
65 	/*
66 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
67 	 * critical sections, and we also must force ordering with the
68 	 * next idle sojourn.
69 	 */
70 	// RCU is still watching.  Better not be in extended quiescent state!
71 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !rcu_is_watching_curr_cpu());
72 	(void)ct_state_inc(offset);
73 	// RCU is no longer watching.
74 }
75 
76 /*
77  * Record exit from an extended quiescent state.  This is only to be
78  * called from an extended quiescent state, that is, RCU is not watching
79  * prior to the call to this function and is watching upon return.
80  */
81 static noinstr void ct_kernel_enter_state(int offset)
82 {
83 	int seq;
84 
85 	/*
86 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
87 	 * and we also must force ordering with the next RCU read-side
88 	 * critical section.
89 	 */
90 	seq = ct_state_inc(offset);
91 	// RCU is now watching.  Better not be in an extended quiescent state!
92 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & CT_RCU_WATCHING));
93 }
94 
95 /*
96  * Enter an RCU extended quiescent state, which can be either the
97  * idle loop or adaptive-tickless usermode execution.
98  *
99  * We crowbar the ->nmi_nesting field to zero to allow for
100  * the possibility of usermode upcalls having messed up our count
101  * of interrupt nesting level during the prior busy period.
102  */
103 static void noinstr ct_kernel_exit(bool user, int offset)
104 {
105 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
106 
107 	WARN_ON_ONCE(ct_nmi_nesting() != CT_NESTING_IRQ_NONIDLE);
108 	WRITE_ONCE(ct->nmi_nesting, 0);
109 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
110 		     ct_nesting() == 0);
111 	if (ct_nesting() != 1) {
112 		// RCU will still be watching, so just do accounting and leave.
113 		ct->nesting--;
114 		return;
115 	}
116 
117 	instrumentation_begin();
118 	lockdep_assert_irqs_disabled();
119 	trace_rcu_watching(TPS("End"), ct_nesting(), 0, ct_rcu_watching());
120 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
121 	rcu_preempt_deferred_qs(current);
122 
123 	// instrumentation for the noinstr ct_kernel_exit_state()
124 	instrument_atomic_write(&ct->state, sizeof(ct->state));
125 
126 	instrumentation_end();
127 	WRITE_ONCE(ct->nesting, 0); /* Avoid irq-access tearing. */
128 	// RCU is watching here ...
129 	ct_kernel_exit_state(offset);
130 	// ... but is no longer watching here.
131 	rcu_task_exit();
132 }
133 
134 /*
135  * Exit an RCU extended quiescent state, which can be either the
136  * idle loop or adaptive-tickless usermode execution.
137  *
138  * We crowbar the ->nmi_nesting field to CT_NESTING_IRQ_NONIDLE to
139  * allow for the possibility of usermode upcalls messing up our count of
140  * interrupt nesting level during the busy period that is just now starting.
141  */
142 static void noinstr ct_kernel_enter(bool user, int offset)
143 {
144 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
145 	long oldval;
146 
147 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled());
148 	oldval = ct_nesting();
149 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
150 	if (oldval) {
151 		// RCU was already watching, so just do accounting and leave.
152 		ct->nesting++;
153 		return;
154 	}
155 	rcu_task_enter();
156 	// RCU is not watching here ...
157 	ct_kernel_enter_state(offset);
158 	// ... but is watching here.
159 	instrumentation_begin();
160 
161 	// instrumentation for the noinstr ct_kernel_enter_state()
162 	instrument_atomic_write(&ct->state, sizeof(ct->state));
163 
164 	trace_rcu_watching(TPS("Start"), ct_nesting(), 1, ct_rcu_watching());
165 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
166 	WRITE_ONCE(ct->nesting, 1);
167 	WARN_ON_ONCE(ct_nmi_nesting());
168 	WRITE_ONCE(ct->nmi_nesting, CT_NESTING_IRQ_NONIDLE);
169 	instrumentation_end();
170 }
171 
172 /**
173  * ct_nmi_exit - inform RCU of exit from NMI context
174  *
175  * If we are returning from the outermost NMI handler that interrupted an
176  * RCU-idle period, update ct->state and ct->nmi_nesting
177  * to let the RCU grace-period handling know that the CPU is back to
178  * being RCU-idle.
179  *
180  * If you add or remove a call to ct_nmi_exit(), be sure to test
181  * with CONFIG_RCU_EQS_DEBUG=y.
182  */
183 void noinstr ct_nmi_exit(void)
184 {
185 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
186 
187 	instrumentation_begin();
188 	/*
189 	 * Check for ->nmi_nesting underflow and bad CT state.
190 	 * (We are exiting an NMI handler, so RCU better be paying attention
191 	 * to us!)
192 	 */
193 	WARN_ON_ONCE(ct_nmi_nesting() <= 0);
194 	WARN_ON_ONCE(!rcu_is_watching_curr_cpu());
195 
196 	/*
197 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
198 	 * leave it in non-RCU-idle state.
199 	 */
200 	if (ct_nmi_nesting() != 1) {
201 		trace_rcu_watching(TPS("--="), ct_nmi_nesting(), ct_nmi_nesting() - 2,
202 				  ct_rcu_watching());
203 		WRITE_ONCE(ct->nmi_nesting, /* No store tearing. */
204 			   ct_nmi_nesting() - 2);
205 		instrumentation_end();
206 		return;
207 	}
208 
209 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
210 	trace_rcu_watching(TPS("Endirq"), ct_nmi_nesting(), 0, ct_rcu_watching());
211 	WRITE_ONCE(ct->nmi_nesting, 0); /* Avoid store tearing. */
212 
213 	// instrumentation for the noinstr ct_kernel_exit_state()
214 	instrument_atomic_write(&ct->state, sizeof(ct->state));
215 	instrumentation_end();
216 
217 	// RCU is watching here ...
218 	ct_kernel_exit_state(CT_RCU_WATCHING);
219 	// ... but is no longer watching here.
220 
221 	if (!in_nmi())
222 		rcu_task_exit();
223 }
224 
225 /**
226  * ct_nmi_enter - inform RCU of entry to NMI context
227  *
228  * If the CPU was idle from RCU's viewpoint, update ct->state and
229  * ct->nmi_nesting to let the RCU grace-period handling know
230  * that the CPU is active.  This implementation permits nested NMIs, as
231  * long as the nesting level does not overflow an int.  (You will probably
232  * run out of stack space first.)
233  *
234  * If you add or remove a call to ct_nmi_enter(), be sure to test
235  * with CONFIG_RCU_EQS_DEBUG=y.
236  */
237 void noinstr ct_nmi_enter(void)
238 {
239 	long incby = 2;
240 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
241 
242 	/* Complain about underflow. */
243 	WARN_ON_ONCE(ct_nmi_nesting() < 0);
244 
245 	/*
246 	 * If idle from RCU viewpoint, atomically increment CT state
247 	 * to mark non-idle and increment ->nmi_nesting by one.
248 	 * Otherwise, increment ->nmi_nesting by two.  This means
249 	 * if ->nmi_nesting is equal to one, we are guaranteed
250 	 * to be in the outermost NMI handler that interrupted an RCU-idle
251 	 * period (observation due to Andy Lutomirski).
252 	 */
253 	if (!rcu_is_watching_curr_cpu()) {
254 
255 		if (!in_nmi())
256 			rcu_task_enter();
257 
258 		// RCU is not watching here ...
259 		ct_kernel_enter_state(CT_RCU_WATCHING);
260 		// ... but is watching here.
261 
262 		instrumentation_begin();
263 		// instrumentation for the noinstr rcu_is_watching_curr_cpu()
264 		instrument_atomic_read(&ct->state, sizeof(ct->state));
265 		// instrumentation for the noinstr ct_kernel_enter_state()
266 		instrument_atomic_write(&ct->state, sizeof(ct->state));
267 
268 		incby = 1;
269 	} else if (!in_nmi()) {
270 		instrumentation_begin();
271 		rcu_irq_enter_check_tick();
272 	} else  {
273 		instrumentation_begin();
274 	}
275 
276 	trace_rcu_watching(incby == 1 ? TPS("Startirq") : TPS("++="),
277 			  ct_nmi_nesting(),
278 			  ct_nmi_nesting() + incby, ct_rcu_watching());
279 	instrumentation_end();
280 	WRITE_ONCE(ct->nmi_nesting, /* Prevent store tearing. */
281 		   ct_nmi_nesting() + incby);
282 	barrier();
283 }
284 
285 /**
286  * ct_idle_enter - inform RCU that current CPU is entering idle
287  *
288  * Enter idle mode, in other words, -leave- the mode in which RCU
289  * read-side critical sections can occur.  (Though RCU read-side
290  * critical sections can occur in irq handlers in idle, a possibility
291  * handled by irq_enter() and irq_exit().)
292  *
293  * If you add or remove a call to ct_idle_enter(), be sure to test with
294  * CONFIG_RCU_EQS_DEBUG=y.
295  */
296 void noinstr ct_idle_enter(void)
297 {
298 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled());
299 	ct_kernel_exit(false, CT_RCU_WATCHING + CT_STATE_IDLE);
300 }
301 EXPORT_SYMBOL_GPL(ct_idle_enter);
302 
303 /**
304  * ct_idle_exit - inform RCU that current CPU is leaving idle
305  *
306  * Exit idle mode, in other words, -enter- the mode in which RCU
307  * read-side critical sections can occur.
308  *
309  * If you add or remove a call to ct_idle_exit(), be sure to test with
310  * CONFIG_RCU_EQS_DEBUG=y.
311  */
312 void noinstr ct_idle_exit(void)
313 {
314 	unsigned long flags;
315 
316 	raw_local_irq_save(flags);
317 	ct_kernel_enter(false, CT_RCU_WATCHING - CT_STATE_IDLE);
318 	raw_local_irq_restore(flags);
319 }
320 EXPORT_SYMBOL_GPL(ct_idle_exit);
321 
322 /**
323  * ct_irq_enter - inform RCU that current CPU is entering irq away from idle
324  *
325  * Enter an interrupt handler, which might possibly result in exiting
326  * idle mode, in other words, entering the mode in which read-side critical
327  * sections can occur.  The caller must have disabled interrupts.
328  *
329  * Note that the Linux kernel is fully capable of entering an interrupt
330  * handler that it never exits, for example when doing upcalls to user mode!
331  * This code assumes that the idle loop never does upcalls to user mode.
332  * If your architecture's idle loop does do upcalls to user mode (or does
333  * anything else that results in unbalanced calls to the irq_enter() and
334  * irq_exit() functions), RCU will give you what you deserve, good and hard.
335  * But very infrequently and irreproducibly.
336  *
337  * Use things like work queues to work around this limitation.
338  *
339  * You have been warned.
340  *
341  * If you add or remove a call to ct_irq_enter(), be sure to test with
342  * CONFIG_RCU_EQS_DEBUG=y.
343  */
344 noinstr void ct_irq_enter(void)
345 {
346 	lockdep_assert_irqs_disabled();
347 	ct_nmi_enter();
348 }
349 
350 /**
351  * ct_irq_exit - inform RCU that current CPU is exiting irq towards idle
352  *
353  * Exit from an interrupt handler, which might possibly result in entering
354  * idle mode, in other words, leaving the mode in which read-side critical
355  * sections can occur.  The caller must have disabled interrupts.
356  *
357  * This code assumes that the idle loop never does anything that might
358  * result in unbalanced calls to irq_enter() and irq_exit().  If your
359  * architecture's idle loop violates this assumption, RCU will give you what
360  * you deserve, good and hard.  But very infrequently and irreproducibly.
361  *
362  * Use things like work queues to work around this limitation.
363  *
364  * You have been warned.
365  *
366  * If you add or remove a call to ct_irq_exit(), be sure to test with
367  * CONFIG_RCU_EQS_DEBUG=y.
368  */
369 noinstr void ct_irq_exit(void)
370 {
371 	lockdep_assert_irqs_disabled();
372 	ct_nmi_exit();
373 }
374 
375 /*
376  * Wrapper for ct_irq_enter() where interrupts are enabled.
377  *
378  * If you add or remove a call to ct_irq_enter_irqson(), be sure to test
379  * with CONFIG_RCU_EQS_DEBUG=y.
380  */
381 void ct_irq_enter_irqson(void)
382 {
383 	unsigned long flags;
384 
385 	local_irq_save(flags);
386 	ct_irq_enter();
387 	local_irq_restore(flags);
388 }
389 
390 /*
391  * Wrapper for ct_irq_exit() where interrupts are enabled.
392  *
393  * If you add or remove a call to ct_irq_exit_irqson(), be sure to test
394  * with CONFIG_RCU_EQS_DEBUG=y.
395  */
396 void ct_irq_exit_irqson(void)
397 {
398 	unsigned long flags;
399 
400 	local_irq_save(flags);
401 	ct_irq_exit();
402 	local_irq_restore(flags);
403 }
404 #else
405 static __always_inline void ct_kernel_exit(bool user, int offset) { }
406 static __always_inline void ct_kernel_enter(bool user, int offset) { }
407 #endif /* #ifdef CONFIG_CONTEXT_TRACKING_IDLE */
408 
409 #ifdef CONFIG_CONTEXT_TRACKING_USER
410 
411 #define CREATE_TRACE_POINTS
412 #include <trace/events/context_tracking.h>
413 
414 DEFINE_STATIC_KEY_FALSE_RO(context_tracking_key);
415 EXPORT_SYMBOL_GPL(context_tracking_key);
416 
417 static noinstr bool context_tracking_recursion_enter(void)
418 {
419 	int recursion;
420 
421 	recursion = __this_cpu_inc_return(context_tracking.recursion);
422 	if (recursion == 1)
423 		return true;
424 
425 	WARN_ONCE((recursion < 1), "Invalid context tracking recursion value %d\n", recursion);
426 	__this_cpu_dec(context_tracking.recursion);
427 
428 	return false;
429 }
430 
431 static __always_inline void context_tracking_recursion_exit(void)
432 {
433 	__this_cpu_dec(context_tracking.recursion);
434 }
435 
436 /**
437  * __ct_user_enter - Inform the context tracking that the CPU is going
438  *		     to enter user or guest space mode.
439  *
440  * @state: userspace context-tracking state to enter.
441  *
442  * This function must be called right before we switch from the kernel
443  * to user or guest space, when it's guaranteed the remaining kernel
444  * instructions to execute won't use any RCU read side critical section
445  * because this function sets RCU in extended quiescent state.
446  */
447 void noinstr __ct_user_enter(enum ctx_state state)
448 {
449 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
450 	lockdep_assert_irqs_disabled();
451 
452 	/* Kernel threads aren't supposed to go to userspace */
453 	WARN_ON_ONCE(!current->mm);
454 
455 	if (!context_tracking_recursion_enter())
456 		return;
457 
458 	if (__ct_state() != state) {
459 		if (ct->active) {
460 			/*
461 			 * At this stage, only low level arch entry code remains and
462 			 * then we'll run in userspace. We can assume there won't be
463 			 * any RCU read-side critical section until the next call to
464 			 * user_exit() or ct_irq_enter(). Let's remove RCU's dependency
465 			 * on the tick.
466 			 */
467 			if (state == CT_STATE_USER) {
468 				instrumentation_begin();
469 				trace_user_enter(0);
470 				vtime_user_enter(current);
471 				instrumentation_end();
472 			}
473 			/*
474 			 * Other than generic entry implementation, we may be past the last
475 			 * rescheduling opportunity in the entry code. Trigger a self IPI
476 			 * that will fire and reschedule once we resume in user/guest mode.
477 			 */
478 			rcu_irq_work_resched();
479 
480 			/*
481 			 * Enter RCU idle mode right before resuming userspace.  No use of RCU
482 			 * is permitted between this call and rcu_eqs_exit(). This way the
483 			 * CPU doesn't need to maintain the tick for RCU maintenance purposes
484 			 * when the CPU runs in userspace.
485 			 */
486 			ct_kernel_exit(true, CT_RCU_WATCHING + state);
487 
488 			/*
489 			 * Special case if we only track user <-> kernel transitions for tickless
490 			 * cputime accounting but we don't support RCU extended quiescent state.
491 			 * In this we case we don't care about any concurrency/ordering.
492 			 */
493 			if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE))
494 				raw_atomic_set(&ct->state, state);
495 		} else {
496 			/*
497 			 * Even if context tracking is disabled on this CPU, because it's outside
498 			 * the full dynticks mask for example, we still have to keep track of the
499 			 * context transitions and states to prevent inconsistency on those of
500 			 * other CPUs.
501 			 * If a task triggers an exception in userspace, sleep on the exception
502 			 * handler and then migrate to another CPU, that new CPU must know where
503 			 * the exception returns by the time we call exception_exit().
504 			 * This information can only be provided by the previous CPU when it called
505 			 * exception_enter().
506 			 * OTOH we can spare the calls to vtime and RCU when context_tracking.active
507 			 * is false because we know that CPU is not tickless.
508 			 */
509 			if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) {
510 				/* Tracking for vtime only, no concurrent RCU EQS accounting */
511 				raw_atomic_set(&ct->state, state);
512 			} else {
513 				/*
514 				 * Tracking for vtime and RCU EQS. Make sure we don't race
515 				 * with NMIs. OTOH we don't care about ordering here since
516 				 * RCU only requires CT_RCU_WATCHING increments to be fully
517 				 * ordered.
518 				 */
519 				raw_atomic_add(state, &ct->state);
520 			}
521 		}
522 	}
523 	context_tracking_recursion_exit();
524 }
525 EXPORT_SYMBOL_GPL(__ct_user_enter);
526 
527 /*
528  * OBSOLETE:
529  * This function should be noinstr but the below local_irq_restore() is
530  * unsafe because it involves illegal RCU uses through tracing and lockdep.
531  * This is unlikely to be fixed as this function is obsolete. The preferred
532  * way is to call __context_tracking_enter() through user_enter_irqoff()
533  * or context_tracking_guest_enter(). It should be the arch entry code
534  * responsibility to call into context tracking with IRQs disabled.
535  */
536 void ct_user_enter(enum ctx_state state)
537 {
538 	unsigned long flags;
539 
540 	/*
541 	 * Some contexts may involve an exception occuring in an irq,
542 	 * leading to that nesting:
543 	 * ct_irq_enter() rcu_eqs_exit(true) rcu_eqs_enter(true) ct_irq_exit()
544 	 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
545 	 * helpers are enough to protect RCU uses inside the exception. So
546 	 * just return immediately if we detect we are in an IRQ.
547 	 */
548 	if (in_interrupt())
549 		return;
550 
551 	local_irq_save(flags);
552 	__ct_user_enter(state);
553 	local_irq_restore(flags);
554 }
555 NOKPROBE_SYMBOL(ct_user_enter);
556 EXPORT_SYMBOL_GPL(ct_user_enter);
557 
558 /**
559  * user_enter_callable() - Unfortunate ASM callable version of user_enter() for
560  *			   archs that didn't manage to check the context tracking
561  *			   static key from low level code.
562  *
563  * This OBSOLETE function should be noinstr but it unsafely calls
564  * local_irq_restore(), involving illegal RCU uses through tracing and lockdep.
565  * This is unlikely to be fixed as this function is obsolete. The preferred
566  * way is to call user_enter_irqoff(). It should be the arch entry code
567  * responsibility to call into context tracking with IRQs disabled.
568  */
569 void user_enter_callable(void)
570 {
571 	user_enter();
572 }
573 NOKPROBE_SYMBOL(user_enter_callable);
574 
575 /**
576  * __ct_user_exit - Inform the context tracking that the CPU is
577  *		    exiting user or guest mode and entering the kernel.
578  *
579  * @state: userspace context-tracking state being exited from.
580  *
581  * This function must be called after we entered the kernel from user or
582  * guest space before any use of RCU read side critical section. This
583  * potentially include any high level kernel code like syscalls, exceptions,
584  * signal handling, etc...
585  *
586  * This call supports re-entrancy. This way it can be called from any exception
587  * handler without needing to know if we came from userspace or not.
588  */
589 void noinstr __ct_user_exit(enum ctx_state state)
590 {
591 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
592 
593 	if (!context_tracking_recursion_enter())
594 		return;
595 
596 	if (__ct_state() == state) {
597 		if (ct->active) {
598 			/*
599 			 * Exit RCU idle mode while entering the kernel because it can
600 			 * run a RCU read side critical section anytime.
601 			 */
602 			ct_kernel_enter(true, CT_RCU_WATCHING - state);
603 			if (state == CT_STATE_USER) {
604 				instrumentation_begin();
605 				vtime_user_exit(current);
606 				trace_user_exit(0);
607 				instrumentation_end();
608 			}
609 
610 			/*
611 			 * Special case if we only track user <-> kernel transitions for tickless
612 			 * cputime accounting but we don't support RCU extended quiescent state.
613 			 * In this we case we don't care about any concurrency/ordering.
614 			 */
615 			if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE))
616 				raw_atomic_set(&ct->state, CT_STATE_KERNEL);
617 
618 		} else {
619 			if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) {
620 				/* Tracking for vtime only, no concurrent RCU EQS accounting */
621 				raw_atomic_set(&ct->state, CT_STATE_KERNEL);
622 			} else {
623 				/*
624 				 * Tracking for vtime and RCU EQS. Make sure we don't race
625 				 * with NMIs. OTOH we don't care about ordering here since
626 				 * RCU only requires CT_RCU_WATCHING increments to be fully
627 				 * ordered.
628 				 */
629 				raw_atomic_sub(state, &ct->state);
630 			}
631 		}
632 	}
633 	context_tracking_recursion_exit();
634 }
635 EXPORT_SYMBOL_GPL(__ct_user_exit);
636 
637 /*
638  * OBSOLETE:
639  * This function should be noinstr but the below local_irq_save() is
640  * unsafe because it involves illegal RCU uses through tracing and lockdep.
641  * This is unlikely to be fixed as this function is obsolete. The preferred
642  * way is to call __context_tracking_exit() through user_exit_irqoff()
643  * or context_tracking_guest_exit(). It should be the arch entry code
644  * responsibility to call into context tracking with IRQs disabled.
645  */
646 void ct_user_exit(enum ctx_state state)
647 {
648 	unsigned long flags;
649 
650 	if (in_interrupt())
651 		return;
652 
653 	local_irq_save(flags);
654 	__ct_user_exit(state);
655 	local_irq_restore(flags);
656 }
657 NOKPROBE_SYMBOL(ct_user_exit);
658 EXPORT_SYMBOL_GPL(ct_user_exit);
659 
660 /**
661  * user_exit_callable() - Unfortunate ASM callable version of user_exit() for
662  *			  archs that didn't manage to check the context tracking
663  *			  static key from low level code.
664  *
665  * This OBSOLETE function should be noinstr but it unsafely calls local_irq_save(),
666  * involving illegal RCU uses through tracing and lockdep. This is unlikely
667  * to be fixed as this function is obsolete. The preferred way is to call
668  * user_exit_irqoff(). It should be the arch entry code responsibility to
669  * call into context tracking with IRQs disabled.
670  */
671 void user_exit_callable(void)
672 {
673 	user_exit();
674 }
675 NOKPROBE_SYMBOL(user_exit_callable);
676 
677 void __init ct_cpu_track_user(int cpu)
678 {
679 	static __initdata bool initialized = false;
680 
681 	if (!per_cpu(context_tracking.active, cpu)) {
682 		per_cpu(context_tracking.active, cpu) = true;
683 		static_branch_inc(&context_tracking_key);
684 	}
685 
686 	if (initialized)
687 		return;
688 
689 #ifdef CONFIG_HAVE_TIF_NOHZ
690 	/*
691 	 * Set TIF_NOHZ to init/0 and let it propagate to all tasks through fork
692 	 * This assumes that init is the only task at this early boot stage.
693 	 */
694 	set_tsk_thread_flag(&init_task, TIF_NOHZ);
695 #endif
696 	WARN_ON_ONCE(!tasklist_empty());
697 
698 	initialized = true;
699 }
700 
701 #ifdef CONFIG_CONTEXT_TRACKING_USER_FORCE
702 void __init context_tracking_init(void)
703 {
704 	int cpu;
705 
706 	for_each_possible_cpu(cpu)
707 		ct_cpu_track_user(cpu);
708 }
709 #endif
710 
711 #endif /* #ifdef CONFIG_CONTEXT_TRACKING_USER */
712