1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/sched/cputime.h> 5 6 static DEFINE_SPINLOCK(cgroup_rstat_lock); 7 static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock); 8 9 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); 10 11 static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu) 12 { 13 return per_cpu_ptr(cgrp->rstat_cpu, cpu); 14 } 15 16 /** 17 * cgroup_rstat_updated - keep track of updated rstat_cpu 18 * @cgrp: target cgroup 19 * @cpu: cpu on which rstat_cpu was updated 20 * 21 * @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching 22 * rstat_cpu->updated_children list. See the comment on top of 23 * cgroup_rstat_cpu definition for details. 24 */ 25 void cgroup_rstat_updated(struct cgroup *cgrp, int cpu) 26 { 27 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); 28 unsigned long flags; 29 30 /* 31 * Speculative already-on-list test. This may race leading to 32 * temporary inaccuracies, which is fine. 33 * 34 * Because @parent's updated_children is terminated with @parent 35 * instead of NULL, we can tell whether @cgrp is on the list by 36 * testing the next pointer for NULL. 37 */ 38 if (data_race(cgroup_rstat_cpu(cgrp, cpu)->updated_next)) 39 return; 40 41 raw_spin_lock_irqsave(cpu_lock, flags); 42 43 /* put @cgrp and all ancestors on the corresponding updated lists */ 44 while (true) { 45 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 46 struct cgroup *parent = cgroup_parent(cgrp); 47 struct cgroup_rstat_cpu *prstatc; 48 49 /* 50 * Both additions and removals are bottom-up. If a cgroup 51 * is already in the tree, all ancestors are. 52 */ 53 if (rstatc->updated_next) 54 break; 55 56 /* Root has no parent to link it to, but mark it busy */ 57 if (!parent) { 58 rstatc->updated_next = cgrp; 59 break; 60 } 61 62 prstatc = cgroup_rstat_cpu(parent, cpu); 63 rstatc->updated_next = prstatc->updated_children; 64 prstatc->updated_children = cgrp; 65 66 cgrp = parent; 67 } 68 69 raw_spin_unlock_irqrestore(cpu_lock, flags); 70 } 71 72 /** 73 * cgroup_rstat_cpu_pop_updated - iterate and dismantle rstat_cpu updated tree 74 * @pos: current position 75 * @root: root of the tree to traversal 76 * @cpu: target cpu 77 * 78 * Walks the updated rstat_cpu tree on @cpu from @root. %NULL @pos starts 79 * the traversal and %NULL return indicates the end. During traversal, 80 * each returned cgroup is unlinked from the tree. Must be called with the 81 * matching cgroup_rstat_cpu_lock held. 82 * 83 * The only ordering guarantee is that, for a parent and a child pair 84 * covered by a given traversal, if a child is visited, its parent is 85 * guaranteed to be visited afterwards. 86 */ 87 static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos, 88 struct cgroup *root, int cpu) 89 { 90 struct cgroup_rstat_cpu *rstatc; 91 struct cgroup *parent; 92 93 if (pos == root) 94 return NULL; 95 96 /* 97 * We're gonna walk down to the first leaf and visit/remove it. We 98 * can pick whatever unvisited node as the starting point. 99 */ 100 if (!pos) { 101 pos = root; 102 /* return NULL if this subtree is not on-list */ 103 if (!cgroup_rstat_cpu(pos, cpu)->updated_next) 104 return NULL; 105 } else { 106 pos = cgroup_parent(pos); 107 } 108 109 /* walk down to the first leaf */ 110 while (true) { 111 rstatc = cgroup_rstat_cpu(pos, cpu); 112 if (rstatc->updated_children == pos) 113 break; 114 pos = rstatc->updated_children; 115 } 116 117 /* 118 * Unlink @pos from the tree. As the updated_children list is 119 * singly linked, we have to walk it to find the removal point. 120 * However, due to the way we traverse, @pos will be the first 121 * child in most cases. The only exception is @root. 122 */ 123 parent = cgroup_parent(pos); 124 if (parent) { 125 struct cgroup_rstat_cpu *prstatc; 126 struct cgroup **nextp; 127 128 prstatc = cgroup_rstat_cpu(parent, cpu); 129 nextp = &prstatc->updated_children; 130 while (*nextp != pos) { 131 struct cgroup_rstat_cpu *nrstatc; 132 133 nrstatc = cgroup_rstat_cpu(*nextp, cpu); 134 WARN_ON_ONCE(*nextp == parent); 135 nextp = &nrstatc->updated_next; 136 } 137 *nextp = rstatc->updated_next; 138 } 139 140 rstatc->updated_next = NULL; 141 return pos; 142 } 143 144 /* see cgroup_rstat_flush() */ 145 static void cgroup_rstat_flush_locked(struct cgroup *cgrp, bool may_sleep) 146 __releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock) 147 { 148 int cpu; 149 150 lockdep_assert_held(&cgroup_rstat_lock); 151 152 for_each_possible_cpu(cpu) { 153 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, 154 cpu); 155 struct cgroup *pos = NULL; 156 unsigned long flags; 157 158 /* 159 * The _irqsave() is needed because cgroup_rstat_lock is 160 * spinlock_t which is a sleeping lock on PREEMPT_RT. Acquiring 161 * this lock with the _irq() suffix only disables interrupts on 162 * a non-PREEMPT_RT kernel. The raw_spinlock_t below disables 163 * interrupts on both configurations. The _irqsave() ensures 164 * that interrupts are always disabled and later restored. 165 */ 166 raw_spin_lock_irqsave(cpu_lock, flags); 167 while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) { 168 struct cgroup_subsys_state *css; 169 170 cgroup_base_stat_flush(pos, cpu); 171 172 rcu_read_lock(); 173 list_for_each_entry_rcu(css, &pos->rstat_css_list, 174 rstat_css_node) 175 css->ss->css_rstat_flush(css, cpu); 176 rcu_read_unlock(); 177 } 178 raw_spin_unlock_irqrestore(cpu_lock, flags); 179 180 /* if @may_sleep, play nice and yield if necessary */ 181 if (may_sleep && (need_resched() || 182 spin_needbreak(&cgroup_rstat_lock))) { 183 spin_unlock_irq(&cgroup_rstat_lock); 184 if (!cond_resched()) 185 cpu_relax(); 186 spin_lock_irq(&cgroup_rstat_lock); 187 } 188 } 189 } 190 191 /** 192 * cgroup_rstat_flush - flush stats in @cgrp's subtree 193 * @cgrp: target cgroup 194 * 195 * Collect all per-cpu stats in @cgrp's subtree into the global counters 196 * and propagate them upwards. After this function returns, all cgroups in 197 * the subtree have up-to-date ->stat. 198 * 199 * This also gets all cgroups in the subtree including @cgrp off the 200 * ->updated_children lists. 201 * 202 * This function may block. 203 */ 204 void cgroup_rstat_flush(struct cgroup *cgrp) 205 { 206 might_sleep(); 207 208 spin_lock_irq(&cgroup_rstat_lock); 209 cgroup_rstat_flush_locked(cgrp, true); 210 spin_unlock_irq(&cgroup_rstat_lock); 211 } 212 213 /** 214 * cgroup_rstat_flush_irqsafe - irqsafe version of cgroup_rstat_flush() 215 * @cgrp: target cgroup 216 * 217 * This function can be called from any context. 218 */ 219 void cgroup_rstat_flush_irqsafe(struct cgroup *cgrp) 220 { 221 unsigned long flags; 222 223 spin_lock_irqsave(&cgroup_rstat_lock, flags); 224 cgroup_rstat_flush_locked(cgrp, false); 225 spin_unlock_irqrestore(&cgroup_rstat_lock, flags); 226 } 227 228 /** 229 * cgroup_rstat_flush_hold - flush stats in @cgrp's subtree and hold 230 * @cgrp: target cgroup 231 * 232 * Flush stats in @cgrp's subtree and prevent further flushes. Must be 233 * paired with cgroup_rstat_flush_release(). 234 * 235 * This function may block. 236 */ 237 void cgroup_rstat_flush_hold(struct cgroup *cgrp) 238 __acquires(&cgroup_rstat_lock) 239 { 240 might_sleep(); 241 spin_lock_irq(&cgroup_rstat_lock); 242 cgroup_rstat_flush_locked(cgrp, true); 243 } 244 245 /** 246 * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold() 247 */ 248 void cgroup_rstat_flush_release(void) 249 __releases(&cgroup_rstat_lock) 250 { 251 spin_unlock_irq(&cgroup_rstat_lock); 252 } 253 254 int cgroup_rstat_init(struct cgroup *cgrp) 255 { 256 int cpu; 257 258 /* the root cgrp has rstat_cpu preallocated */ 259 if (!cgrp->rstat_cpu) { 260 cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu); 261 if (!cgrp->rstat_cpu) 262 return -ENOMEM; 263 } 264 265 /* ->updated_children list is self terminated */ 266 for_each_possible_cpu(cpu) { 267 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 268 269 rstatc->updated_children = cgrp; 270 u64_stats_init(&rstatc->bsync); 271 } 272 273 return 0; 274 } 275 276 void cgroup_rstat_exit(struct cgroup *cgrp) 277 { 278 int cpu; 279 280 cgroup_rstat_flush(cgrp); 281 282 /* sanity check */ 283 for_each_possible_cpu(cpu) { 284 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 285 286 if (WARN_ON_ONCE(rstatc->updated_children != cgrp) || 287 WARN_ON_ONCE(rstatc->updated_next)) 288 return; 289 } 290 291 free_percpu(cgrp->rstat_cpu); 292 cgrp->rstat_cpu = NULL; 293 } 294 295 void __init cgroup_rstat_boot(void) 296 { 297 int cpu; 298 299 for_each_possible_cpu(cpu) 300 raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu)); 301 } 302 303 /* 304 * Functions for cgroup basic resource statistics implemented on top of 305 * rstat. 306 */ 307 static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, 308 struct cgroup_base_stat *src_bstat) 309 { 310 dst_bstat->cputime.utime += src_bstat->cputime.utime; 311 dst_bstat->cputime.stime += src_bstat->cputime.stime; 312 dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; 313 #ifdef CONFIG_SCHED_CORE 314 dst_bstat->forceidle_sum += src_bstat->forceidle_sum; 315 #endif 316 } 317 318 static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, 319 struct cgroup_base_stat *src_bstat) 320 { 321 dst_bstat->cputime.utime -= src_bstat->cputime.utime; 322 dst_bstat->cputime.stime -= src_bstat->cputime.stime; 323 dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; 324 #ifdef CONFIG_SCHED_CORE 325 dst_bstat->forceidle_sum -= src_bstat->forceidle_sum; 326 #endif 327 } 328 329 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) 330 { 331 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 332 struct cgroup *parent = cgroup_parent(cgrp); 333 struct cgroup_base_stat delta; 334 unsigned seq; 335 336 /* Root-level stats are sourced from system-wide CPU stats */ 337 if (!parent) 338 return; 339 340 /* fetch the current per-cpu values */ 341 do { 342 seq = __u64_stats_fetch_begin(&rstatc->bsync); 343 delta = rstatc->bstat; 344 } while (__u64_stats_fetch_retry(&rstatc->bsync, seq)); 345 346 /* propagate percpu delta to global */ 347 cgroup_base_stat_sub(&delta, &rstatc->last_bstat); 348 cgroup_base_stat_add(&cgrp->bstat, &delta); 349 cgroup_base_stat_add(&rstatc->last_bstat, &delta); 350 351 /* propagate global delta to parent (unless that's root) */ 352 if (cgroup_parent(parent)) { 353 delta = cgrp->bstat; 354 cgroup_base_stat_sub(&delta, &cgrp->last_bstat); 355 cgroup_base_stat_add(&parent->bstat, &delta); 356 cgroup_base_stat_add(&cgrp->last_bstat, &delta); 357 } 358 } 359 360 static struct cgroup_rstat_cpu * 361 cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags) 362 { 363 struct cgroup_rstat_cpu *rstatc; 364 365 rstatc = get_cpu_ptr(cgrp->rstat_cpu); 366 *flags = u64_stats_update_begin_irqsave(&rstatc->bsync); 367 return rstatc; 368 } 369 370 static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, 371 struct cgroup_rstat_cpu *rstatc, 372 unsigned long flags) 373 { 374 u64_stats_update_end_irqrestore(&rstatc->bsync, flags); 375 cgroup_rstat_updated(cgrp, smp_processor_id()); 376 put_cpu_ptr(rstatc); 377 } 378 379 void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) 380 { 381 struct cgroup_rstat_cpu *rstatc; 382 unsigned long flags; 383 384 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 385 rstatc->bstat.cputime.sum_exec_runtime += delta_exec; 386 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags); 387 } 388 389 void __cgroup_account_cputime_field(struct cgroup *cgrp, 390 enum cpu_usage_stat index, u64 delta_exec) 391 { 392 struct cgroup_rstat_cpu *rstatc; 393 unsigned long flags; 394 395 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 396 397 switch (index) { 398 case CPUTIME_USER: 399 case CPUTIME_NICE: 400 rstatc->bstat.cputime.utime += delta_exec; 401 break; 402 case CPUTIME_SYSTEM: 403 case CPUTIME_IRQ: 404 case CPUTIME_SOFTIRQ: 405 rstatc->bstat.cputime.stime += delta_exec; 406 break; 407 #ifdef CONFIG_SCHED_CORE 408 case CPUTIME_FORCEIDLE: 409 rstatc->bstat.forceidle_sum += delta_exec; 410 break; 411 #endif 412 default: 413 break; 414 } 415 416 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags); 417 } 418 419 /* 420 * compute the cputime for the root cgroup by getting the per cpu data 421 * at a global level, then categorizing the fields in a manner consistent 422 * with how it is done by __cgroup_account_cputime_field for each bit of 423 * cpu time attributed to a cgroup. 424 */ 425 static void root_cgroup_cputime(struct cgroup_base_stat *bstat) 426 { 427 struct task_cputime *cputime = &bstat->cputime; 428 int i; 429 430 cputime->stime = 0; 431 cputime->utime = 0; 432 cputime->sum_exec_runtime = 0; 433 for_each_possible_cpu(i) { 434 struct kernel_cpustat kcpustat; 435 u64 *cpustat = kcpustat.cpustat; 436 u64 user = 0; 437 u64 sys = 0; 438 439 kcpustat_cpu_fetch(&kcpustat, i); 440 441 user += cpustat[CPUTIME_USER]; 442 user += cpustat[CPUTIME_NICE]; 443 cputime->utime += user; 444 445 sys += cpustat[CPUTIME_SYSTEM]; 446 sys += cpustat[CPUTIME_IRQ]; 447 sys += cpustat[CPUTIME_SOFTIRQ]; 448 cputime->stime += sys; 449 450 cputime->sum_exec_runtime += user; 451 cputime->sum_exec_runtime += sys; 452 cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL]; 453 454 #ifdef CONFIG_SCHED_CORE 455 bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE]; 456 #endif 457 } 458 } 459 460 void cgroup_base_stat_cputime_show(struct seq_file *seq) 461 { 462 struct cgroup *cgrp = seq_css(seq)->cgroup; 463 u64 usage, utime, stime; 464 struct cgroup_base_stat bstat; 465 #ifdef CONFIG_SCHED_CORE 466 u64 forceidle_time; 467 #endif 468 469 if (cgroup_parent(cgrp)) { 470 cgroup_rstat_flush_hold(cgrp); 471 usage = cgrp->bstat.cputime.sum_exec_runtime; 472 cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, 473 &utime, &stime); 474 #ifdef CONFIG_SCHED_CORE 475 forceidle_time = cgrp->bstat.forceidle_sum; 476 #endif 477 cgroup_rstat_flush_release(); 478 } else { 479 root_cgroup_cputime(&bstat); 480 usage = bstat.cputime.sum_exec_runtime; 481 utime = bstat.cputime.utime; 482 stime = bstat.cputime.stime; 483 #ifdef CONFIG_SCHED_CORE 484 forceidle_time = bstat.forceidle_sum; 485 #endif 486 } 487 488 do_div(usage, NSEC_PER_USEC); 489 do_div(utime, NSEC_PER_USEC); 490 do_div(stime, NSEC_PER_USEC); 491 #ifdef CONFIG_SCHED_CORE 492 do_div(forceidle_time, NSEC_PER_USEC); 493 #endif 494 495 seq_printf(seq, "usage_usec %llu\n" 496 "user_usec %llu\n" 497 "system_usec %llu\n", 498 usage, utime, stime); 499 500 #ifdef CONFIG_SCHED_CORE 501 seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time); 502 #endif 503 } 504