1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/sched/cputime.h> 5 6 #include <linux/bpf.h> 7 #include <linux/btf.h> 8 #include <linux/btf_ids.h> 9 10 #include <trace/events/cgroup.h> 11 12 static DEFINE_SPINLOCK(rstat_base_lock); 13 static DEFINE_PER_CPU(struct llist_head, rstat_backlog_list); 14 15 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); 16 17 /* 18 * Determines whether a given css can participate in rstat. 19 * css's that are cgroup::self use rstat for base stats. 20 * Other css's associated with a subsystem use rstat only when 21 * they define the ss->css_rstat_flush callback. 22 */ 23 static inline bool css_uses_rstat(struct cgroup_subsys_state *css) 24 { 25 return css_is_self(css) || css->ss->css_rstat_flush != NULL; 26 } 27 28 static struct css_rstat_cpu *css_rstat_cpu( 29 struct cgroup_subsys_state *css, int cpu) 30 { 31 return per_cpu_ptr(css->rstat_cpu, cpu); 32 } 33 34 static struct cgroup_rstat_base_cpu *cgroup_rstat_base_cpu( 35 struct cgroup *cgrp, int cpu) 36 { 37 return per_cpu_ptr(cgrp->rstat_base_cpu, cpu); 38 } 39 40 static spinlock_t *ss_rstat_lock(struct cgroup_subsys *ss) 41 { 42 if (ss) 43 return &ss->rstat_ss_lock; 44 45 return &rstat_base_lock; 46 } 47 48 static inline struct llist_head *ss_lhead_cpu(struct cgroup_subsys *ss, int cpu) 49 { 50 if (ss) 51 return per_cpu_ptr(ss->lhead, cpu); 52 return per_cpu_ptr(&rstat_backlog_list, cpu); 53 } 54 55 /** 56 * css_rstat_updated - keep track of updated rstat_cpu 57 * @css: target cgroup subsystem state 58 * @cpu: cpu on which rstat_cpu was updated 59 * 60 * Atomically inserts the css in the ss's llist for the given cpu. This is 61 * reentrant safe i.e. safe against softirq, hardirq and nmi. The ss's llist 62 * will be processed at the flush time to create the update tree. 63 * 64 * NOTE: if the user needs the guarantee that the updater either add itself in 65 * the lockless list or the concurrent flusher flushes its updated stats, a 66 * memory barrier is needed before the call to css_rstat_updated() i.e. a 67 * barrier after updating the per-cpu stats and before calling 68 * css_rstat_updated(). 69 */ 70 __bpf_kfunc void css_rstat_updated(struct cgroup_subsys_state *css, int cpu) 71 { 72 struct llist_head *lhead; 73 struct css_rstat_cpu *rstatc; 74 struct llist_node *self; 75 76 /* 77 * Since bpf programs can call this function, prevent access to 78 * uninitialized rstat pointers. 79 */ 80 if (!css_uses_rstat(css)) 81 return; 82 83 lockdep_assert_preemption_disabled(); 84 85 /* 86 * For archs withnot nmi safe cmpxchg or percpu ops support, ignore 87 * the requests from nmi context. 88 */ 89 if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) || 90 !IS_ENABLED(CONFIG_ARCH_HAS_NMI_SAFE_THIS_CPU_OPS)) && in_nmi()) 91 return; 92 93 rstatc = css_rstat_cpu(css, cpu); 94 /* 95 * If already on list return. This check is racy and smp_mb() is needed 96 * to pair it with the smp_mb() in css_process_update_tree() if the 97 * guarantee that the updated stats are visible to concurrent flusher is 98 * needed. 99 */ 100 if (llist_on_list(&rstatc->lnode)) 101 return; 102 103 /* 104 * This function can be renentered by irqs and nmis for the same cgroup 105 * and may try to insert the same per-cpu lnode into the llist. Note 106 * that llist_add() does not protect against such scenarios. In addition 107 * this same per-cpu lnode can be modified through init_llist_node() 108 * from css_rstat_flush() running on a different CPU. 109 * 110 * To protect against such stacked contexts of irqs/nmis, we use the 111 * fact that lnode points to itself when not on a list and then use 112 * try_cmpxchg() to atomically set to NULL to select the winner 113 * which will call llist_add(). The losers can assume the insertion is 114 * successful and the winner will eventually add the per-cpu lnode to 115 * the llist. 116 * 117 * Please note that we can not use this_cpu_cmpxchg() here as on some 118 * archs it is not safe against modifications from multiple CPUs. 119 */ 120 self = &rstatc->lnode; 121 if (!try_cmpxchg(&rstatc->lnode.next, &self, NULL)) 122 return; 123 124 lhead = ss_lhead_cpu(css->ss, cpu); 125 llist_add(&rstatc->lnode, lhead); 126 } 127 128 static void __css_process_update_tree(struct cgroup_subsys_state *css, int cpu) 129 { 130 /* put @css and all ancestors on the corresponding updated lists */ 131 while (true) { 132 struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu); 133 struct cgroup_subsys_state *parent = css->parent; 134 struct css_rstat_cpu *prstatc; 135 136 /* 137 * Both additions and removals are bottom-up. If a cgroup 138 * is already in the tree, all ancestors are. 139 */ 140 if (rstatc->updated_next) 141 break; 142 143 /* Root has no parent to link it to, but mark it busy */ 144 if (!parent) { 145 rstatc->updated_next = css; 146 break; 147 } 148 149 prstatc = css_rstat_cpu(parent, cpu); 150 rstatc->updated_next = prstatc->updated_children; 151 prstatc->updated_children = css; 152 153 css = parent; 154 } 155 } 156 157 static void css_process_update_tree(struct cgroup_subsys *ss, int cpu) 158 { 159 struct llist_head *lhead = ss_lhead_cpu(ss, cpu); 160 struct llist_node *lnode; 161 162 while ((lnode = llist_del_first_init(lhead))) { 163 struct css_rstat_cpu *rstatc; 164 165 /* 166 * smp_mb() is needed here (more specifically in between 167 * init_llist_node() and per-cpu stats flushing) if the 168 * guarantee is required by a rstat user where etiher the 169 * updater should add itself on the lockless list or the 170 * flusher flush the stats updated by the updater who have 171 * observed that they are already on the list. The 172 * corresponding barrier pair for this one should be before 173 * css_rstat_updated() by the user. 174 * 175 * For now, there aren't any such user, so not adding the 176 * barrier here but if such a use-case arise, please add 177 * smp_mb() here. 178 */ 179 180 rstatc = container_of(lnode, struct css_rstat_cpu, lnode); 181 __css_process_update_tree(rstatc->owner, cpu); 182 } 183 } 184 185 /** 186 * css_rstat_push_children - push children css's into the given list 187 * @head: current head of the list (= subtree root) 188 * @child: first child of the root 189 * @cpu: target cpu 190 * Return: A new singly linked list of css's to be flushed 191 * 192 * Iteratively traverse down the css_rstat_cpu updated tree level by 193 * level and push all the parents first before their next level children 194 * into a singly linked list via the rstat_flush_next pointer built from the 195 * tail backward like "pushing" css's into a stack. The root is pushed by 196 * the caller. 197 */ 198 static struct cgroup_subsys_state *css_rstat_push_children( 199 struct cgroup_subsys_state *head, 200 struct cgroup_subsys_state *child, int cpu) 201 { 202 struct cgroup_subsys_state *cnext = child; /* Next head of child css level */ 203 struct cgroup_subsys_state *ghead = NULL; /* Head of grandchild css level */ 204 struct cgroup_subsys_state *parent, *grandchild; 205 struct css_rstat_cpu *crstatc; 206 207 child->rstat_flush_next = NULL; 208 209 /* 210 * The subsystem rstat lock must be held for the whole duration from 211 * here as the rstat_flush_next list is being constructed to when 212 * it is consumed later in css_rstat_flush(). 213 */ 214 lockdep_assert_held(ss_rstat_lock(head->ss)); 215 216 /* 217 * Notation: -> updated_next pointer 218 * => rstat_flush_next pointer 219 * 220 * Assuming the following sample updated_children lists: 221 * P: C1 -> C2 -> P 222 * C1: G11 -> G12 -> C1 223 * C2: G21 -> G22 -> C2 224 * 225 * After 1st iteration: 226 * head => C2 => C1 => NULL 227 * ghead => G21 => G11 => NULL 228 * 229 * After 2nd iteration: 230 * head => G12 => G11 => G22 => G21 => C2 => C1 => NULL 231 */ 232 next_level: 233 while (cnext) { 234 child = cnext; 235 cnext = child->rstat_flush_next; 236 parent = child->parent; 237 238 /* updated_next is parent cgroup terminated if !NULL */ 239 while (child != parent) { 240 child->rstat_flush_next = head; 241 head = child; 242 crstatc = css_rstat_cpu(child, cpu); 243 grandchild = crstatc->updated_children; 244 if (grandchild != child) { 245 /* Push the grand child to the next level */ 246 crstatc->updated_children = child; 247 grandchild->rstat_flush_next = ghead; 248 ghead = grandchild; 249 } 250 child = crstatc->updated_next; 251 crstatc->updated_next = NULL; 252 } 253 } 254 255 if (ghead) { 256 cnext = ghead; 257 ghead = NULL; 258 goto next_level; 259 } 260 return head; 261 } 262 263 /** 264 * css_rstat_updated_list - build a list of updated css's to be flushed 265 * @root: root of the css subtree to traverse 266 * @cpu: target cpu 267 * Return: A singly linked list of css's to be flushed 268 * 269 * Walks the updated rstat_cpu tree on @cpu from @root. During traversal, 270 * each returned css is unlinked from the updated tree. 271 * 272 * The only ordering guarantee is that, for a parent and a child pair 273 * covered by a given traversal, the child is before its parent in 274 * the list. 275 * 276 * Note that updated_children is self terminated and points to a list of 277 * child css's if not empty. Whereas updated_next is like a sibling link 278 * within the children list and terminated by the parent css. An exception 279 * here is the css root whose updated_next can be self terminated. 280 */ 281 static struct cgroup_subsys_state *css_rstat_updated_list( 282 struct cgroup_subsys_state *root, int cpu) 283 { 284 struct css_rstat_cpu *rstatc = css_rstat_cpu(root, cpu); 285 struct cgroup_subsys_state *head = NULL, *parent, *child; 286 287 css_process_update_tree(root->ss, cpu); 288 289 /* Return NULL if this subtree is not on-list */ 290 if (!rstatc->updated_next) 291 return NULL; 292 293 /* 294 * Unlink @root from its parent. As the updated_children list is 295 * singly linked, we have to walk it to find the removal point. 296 */ 297 parent = root->parent; 298 if (parent) { 299 struct css_rstat_cpu *prstatc; 300 struct cgroup_subsys_state **nextp; 301 302 prstatc = css_rstat_cpu(parent, cpu); 303 nextp = &prstatc->updated_children; 304 while (*nextp != root) { 305 struct css_rstat_cpu *nrstatc; 306 307 nrstatc = css_rstat_cpu(*nextp, cpu); 308 WARN_ON_ONCE(*nextp == parent); 309 nextp = &nrstatc->updated_next; 310 } 311 *nextp = rstatc->updated_next; 312 } 313 314 rstatc->updated_next = NULL; 315 316 /* Push @root to the list first before pushing the children */ 317 head = root; 318 root->rstat_flush_next = NULL; 319 child = rstatc->updated_children; 320 rstatc->updated_children = root; 321 if (child != root) 322 head = css_rstat_push_children(head, child, cpu); 323 324 return head; 325 } 326 327 /* 328 * A hook for bpf stat collectors to attach to and flush their stats. 329 * Together with providing bpf kfuncs for css_rstat_updated() and 330 * css_rstat_flush(), this enables a complete workflow where bpf progs that 331 * collect cgroup stats can integrate with rstat for efficient flushing. 332 * 333 * A static noinline declaration here could cause the compiler to optimize away 334 * the function. A global noinline declaration will keep the definition, but may 335 * optimize away the callsite. Therefore, __weak is needed to ensure that the 336 * call is still emitted, by telling the compiler that we don't know what the 337 * function might eventually be. 338 */ 339 340 __bpf_hook_start(); 341 342 __weak noinline void bpf_rstat_flush(struct cgroup *cgrp, 343 struct cgroup *parent, int cpu) 344 { 345 } 346 347 __bpf_hook_end(); 348 349 /* 350 * Helper functions for locking. 351 * 352 * This makes it easier to diagnose locking issues and contention in 353 * production environments. The parameter @cpu_in_loop indicate lock 354 * was released and re-taken when collection data from the CPUs. The 355 * value -1 is used when obtaining the main lock else this is the CPU 356 * number processed last. 357 */ 358 static inline void __css_rstat_lock(struct cgroup_subsys_state *css, 359 int cpu_in_loop) 360 __acquires(ss_rstat_lock(css->ss)) 361 { 362 struct cgroup *cgrp = css->cgroup; 363 spinlock_t *lock; 364 bool contended; 365 366 lock = ss_rstat_lock(css->ss); 367 contended = !spin_trylock_irq(lock); 368 if (contended) { 369 trace_cgroup_rstat_lock_contended(cgrp, cpu_in_loop, contended); 370 spin_lock_irq(lock); 371 } 372 trace_cgroup_rstat_locked(cgrp, cpu_in_loop, contended); 373 } 374 375 static inline void __css_rstat_unlock(struct cgroup_subsys_state *css, 376 int cpu_in_loop) 377 __releases(ss_rstat_lock(css->ss)) 378 { 379 struct cgroup *cgrp = css->cgroup; 380 spinlock_t *lock; 381 382 lock = ss_rstat_lock(css->ss); 383 trace_cgroup_rstat_unlock(cgrp, cpu_in_loop, false); 384 spin_unlock_irq(lock); 385 } 386 387 /** 388 * css_rstat_flush - flush stats in @css's rstat subtree 389 * @css: target cgroup subsystem state 390 * 391 * Collect all per-cpu stats in @css's subtree into the global counters 392 * and propagate them upwards. After this function returns, all rstat 393 * nodes in the subtree have up-to-date ->stat. 394 * 395 * This also gets all rstat nodes in the subtree including @css off the 396 * ->updated_children lists. 397 * 398 * This function may block. 399 */ 400 __bpf_kfunc void css_rstat_flush(struct cgroup_subsys_state *css) 401 { 402 int cpu; 403 bool is_self = css_is_self(css); 404 405 /* 406 * Since bpf programs can call this function, prevent access to 407 * uninitialized rstat pointers. 408 */ 409 if (!css_uses_rstat(css)) 410 return; 411 412 might_sleep(); 413 for_each_possible_cpu(cpu) { 414 struct cgroup_subsys_state *pos; 415 416 /* Reacquire for each CPU to avoid disabling IRQs too long */ 417 __css_rstat_lock(css, cpu); 418 pos = css_rstat_updated_list(css, cpu); 419 for (; pos; pos = pos->rstat_flush_next) { 420 if (is_self) { 421 cgroup_base_stat_flush(pos->cgroup, cpu); 422 bpf_rstat_flush(pos->cgroup, 423 cgroup_parent(pos->cgroup), cpu); 424 } else 425 pos->ss->css_rstat_flush(pos, cpu); 426 } 427 __css_rstat_unlock(css, cpu); 428 if (!cond_resched()) 429 cpu_relax(); 430 } 431 } 432 433 int css_rstat_init(struct cgroup_subsys_state *css) 434 { 435 struct cgroup *cgrp = css->cgroup; 436 int cpu; 437 bool is_self = css_is_self(css); 438 439 if (is_self) { 440 /* the root cgrp has rstat_base_cpu preallocated */ 441 if (!cgrp->rstat_base_cpu) { 442 cgrp->rstat_base_cpu = alloc_percpu(struct cgroup_rstat_base_cpu); 443 if (!cgrp->rstat_base_cpu) 444 return -ENOMEM; 445 } 446 } else if (css->ss->css_rstat_flush == NULL) 447 return 0; 448 449 /* the root cgrp's self css has rstat_cpu preallocated */ 450 if (!css->rstat_cpu) { 451 css->rstat_cpu = alloc_percpu(struct css_rstat_cpu); 452 if (!css->rstat_cpu) { 453 if (is_self) 454 free_percpu(cgrp->rstat_base_cpu); 455 456 return -ENOMEM; 457 } 458 } 459 460 /* ->updated_children list is self terminated */ 461 for_each_possible_cpu(cpu) { 462 struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu); 463 464 rstatc->owner = rstatc->updated_children = css; 465 init_llist_node(&rstatc->lnode); 466 467 if (is_self) { 468 struct cgroup_rstat_base_cpu *rstatbc; 469 470 rstatbc = cgroup_rstat_base_cpu(cgrp, cpu); 471 u64_stats_init(&rstatbc->bsync); 472 } 473 } 474 475 return 0; 476 } 477 478 void css_rstat_exit(struct cgroup_subsys_state *css) 479 { 480 int cpu; 481 482 if (!css_uses_rstat(css)) 483 return; 484 485 if (!css->rstat_cpu) 486 return; 487 488 css_rstat_flush(css); 489 490 /* sanity check */ 491 for_each_possible_cpu(cpu) { 492 struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu); 493 494 if (WARN_ON_ONCE(rstatc->updated_children != css) || 495 WARN_ON_ONCE(rstatc->updated_next)) 496 return; 497 } 498 499 if (css_is_self(css)) { 500 struct cgroup *cgrp = css->cgroup; 501 502 free_percpu(cgrp->rstat_base_cpu); 503 cgrp->rstat_base_cpu = NULL; 504 } 505 506 free_percpu(css->rstat_cpu); 507 css->rstat_cpu = NULL; 508 } 509 510 /** 511 * ss_rstat_init - subsystem-specific rstat initialization 512 * @ss: target subsystem 513 * 514 * If @ss is NULL, the static locks associated with the base stats 515 * are initialized. If @ss is non-NULL, the subsystem-specific locks 516 * are initialized. 517 */ 518 int __init ss_rstat_init(struct cgroup_subsys *ss) 519 { 520 int cpu; 521 522 if (ss) { 523 ss->lhead = alloc_percpu(struct llist_head); 524 if (!ss->lhead) 525 return -ENOMEM; 526 } 527 528 spin_lock_init(ss_rstat_lock(ss)); 529 for_each_possible_cpu(cpu) 530 init_llist_head(ss_lhead_cpu(ss, cpu)); 531 532 return 0; 533 } 534 535 /* 536 * Functions for cgroup basic resource statistics implemented on top of 537 * rstat. 538 */ 539 static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, 540 struct cgroup_base_stat *src_bstat) 541 { 542 dst_bstat->cputime.utime += src_bstat->cputime.utime; 543 dst_bstat->cputime.stime += src_bstat->cputime.stime; 544 dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; 545 #ifdef CONFIG_SCHED_CORE 546 dst_bstat->forceidle_sum += src_bstat->forceidle_sum; 547 #endif 548 dst_bstat->ntime += src_bstat->ntime; 549 } 550 551 static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, 552 struct cgroup_base_stat *src_bstat) 553 { 554 dst_bstat->cputime.utime -= src_bstat->cputime.utime; 555 dst_bstat->cputime.stime -= src_bstat->cputime.stime; 556 dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; 557 #ifdef CONFIG_SCHED_CORE 558 dst_bstat->forceidle_sum -= src_bstat->forceidle_sum; 559 #endif 560 dst_bstat->ntime -= src_bstat->ntime; 561 } 562 563 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) 564 { 565 struct cgroup_rstat_base_cpu *rstatbc = cgroup_rstat_base_cpu(cgrp, cpu); 566 struct cgroup *parent = cgroup_parent(cgrp); 567 struct cgroup_rstat_base_cpu *prstatbc; 568 struct cgroup_base_stat delta; 569 unsigned seq; 570 571 /* Root-level stats are sourced from system-wide CPU stats */ 572 if (!parent) 573 return; 574 575 /* fetch the current per-cpu values */ 576 do { 577 seq = __u64_stats_fetch_begin(&rstatbc->bsync); 578 delta = rstatbc->bstat; 579 } while (__u64_stats_fetch_retry(&rstatbc->bsync, seq)); 580 581 /* propagate per-cpu delta to cgroup and per-cpu global statistics */ 582 cgroup_base_stat_sub(&delta, &rstatbc->last_bstat); 583 cgroup_base_stat_add(&cgrp->bstat, &delta); 584 cgroup_base_stat_add(&rstatbc->last_bstat, &delta); 585 cgroup_base_stat_add(&rstatbc->subtree_bstat, &delta); 586 587 /* propagate cgroup and per-cpu global delta to parent (unless that's root) */ 588 if (cgroup_parent(parent)) { 589 delta = cgrp->bstat; 590 cgroup_base_stat_sub(&delta, &cgrp->last_bstat); 591 cgroup_base_stat_add(&parent->bstat, &delta); 592 cgroup_base_stat_add(&cgrp->last_bstat, &delta); 593 594 delta = rstatbc->subtree_bstat; 595 prstatbc = cgroup_rstat_base_cpu(parent, cpu); 596 cgroup_base_stat_sub(&delta, &rstatbc->last_subtree_bstat); 597 cgroup_base_stat_add(&prstatbc->subtree_bstat, &delta); 598 cgroup_base_stat_add(&rstatbc->last_subtree_bstat, &delta); 599 } 600 } 601 602 static struct cgroup_rstat_base_cpu * 603 cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags) 604 { 605 struct cgroup_rstat_base_cpu *rstatbc; 606 607 rstatbc = get_cpu_ptr(cgrp->rstat_base_cpu); 608 *flags = u64_stats_update_begin_irqsave(&rstatbc->bsync); 609 return rstatbc; 610 } 611 612 static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, 613 struct cgroup_rstat_base_cpu *rstatbc, 614 unsigned long flags) 615 { 616 u64_stats_update_end_irqrestore(&rstatbc->bsync, flags); 617 css_rstat_updated(&cgrp->self, smp_processor_id()); 618 put_cpu_ptr(rstatbc); 619 } 620 621 void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) 622 { 623 struct cgroup_rstat_base_cpu *rstatbc; 624 unsigned long flags; 625 626 rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 627 rstatbc->bstat.cputime.sum_exec_runtime += delta_exec; 628 cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags); 629 } 630 631 void __cgroup_account_cputime_field(struct cgroup *cgrp, 632 enum cpu_usage_stat index, u64 delta_exec) 633 { 634 struct cgroup_rstat_base_cpu *rstatbc; 635 unsigned long flags; 636 637 rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 638 639 switch (index) { 640 case CPUTIME_NICE: 641 rstatbc->bstat.ntime += delta_exec; 642 fallthrough; 643 case CPUTIME_USER: 644 rstatbc->bstat.cputime.utime += delta_exec; 645 break; 646 case CPUTIME_SYSTEM: 647 case CPUTIME_IRQ: 648 case CPUTIME_SOFTIRQ: 649 rstatbc->bstat.cputime.stime += delta_exec; 650 break; 651 #ifdef CONFIG_SCHED_CORE 652 case CPUTIME_FORCEIDLE: 653 rstatbc->bstat.forceidle_sum += delta_exec; 654 break; 655 #endif 656 default: 657 break; 658 } 659 660 cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags); 661 } 662 663 /* 664 * compute the cputime for the root cgroup by getting the per cpu data 665 * at a global level, then categorizing the fields in a manner consistent 666 * with how it is done by __cgroup_account_cputime_field for each bit of 667 * cpu time attributed to a cgroup. 668 */ 669 static void root_cgroup_cputime(struct cgroup_base_stat *bstat) 670 { 671 struct task_cputime *cputime = &bstat->cputime; 672 int i; 673 674 memset(bstat, 0, sizeof(*bstat)); 675 for_each_possible_cpu(i) { 676 struct kernel_cpustat kcpustat; 677 u64 *cpustat = kcpustat.cpustat; 678 u64 user = 0; 679 u64 sys = 0; 680 681 kcpustat_cpu_fetch(&kcpustat, i); 682 683 user += cpustat[CPUTIME_USER]; 684 user += cpustat[CPUTIME_NICE]; 685 cputime->utime += user; 686 687 sys += cpustat[CPUTIME_SYSTEM]; 688 sys += cpustat[CPUTIME_IRQ]; 689 sys += cpustat[CPUTIME_SOFTIRQ]; 690 cputime->stime += sys; 691 692 cputime->sum_exec_runtime += user; 693 cputime->sum_exec_runtime += sys; 694 695 #ifdef CONFIG_SCHED_CORE 696 bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE]; 697 #endif 698 bstat->ntime += cpustat[CPUTIME_NICE]; 699 } 700 } 701 702 703 static void cgroup_force_idle_show(struct seq_file *seq, struct cgroup_base_stat *bstat) 704 { 705 #ifdef CONFIG_SCHED_CORE 706 u64 forceidle_time = bstat->forceidle_sum; 707 708 do_div(forceidle_time, NSEC_PER_USEC); 709 seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time); 710 #endif 711 } 712 713 void cgroup_base_stat_cputime_show(struct seq_file *seq) 714 { 715 struct cgroup *cgrp = seq_css(seq)->cgroup; 716 struct cgroup_base_stat bstat; 717 718 if (cgroup_parent(cgrp)) { 719 css_rstat_flush(&cgrp->self); 720 __css_rstat_lock(&cgrp->self, -1); 721 bstat = cgrp->bstat; 722 cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, 723 &bstat.cputime.utime, &bstat.cputime.stime); 724 __css_rstat_unlock(&cgrp->self, -1); 725 } else { 726 root_cgroup_cputime(&bstat); 727 } 728 729 do_div(bstat.cputime.sum_exec_runtime, NSEC_PER_USEC); 730 do_div(bstat.cputime.utime, NSEC_PER_USEC); 731 do_div(bstat.cputime.stime, NSEC_PER_USEC); 732 do_div(bstat.ntime, NSEC_PER_USEC); 733 734 seq_printf(seq, "usage_usec %llu\n" 735 "user_usec %llu\n" 736 "system_usec %llu\n" 737 "nice_usec %llu\n", 738 bstat.cputime.sum_exec_runtime, 739 bstat.cputime.utime, 740 bstat.cputime.stime, 741 bstat.ntime); 742 743 cgroup_force_idle_show(seq, &bstat); 744 } 745 746 /* Add bpf kfuncs for css_rstat_updated() and css_rstat_flush() */ 747 BTF_KFUNCS_START(bpf_rstat_kfunc_ids) 748 BTF_ID_FLAGS(func, css_rstat_updated) 749 BTF_ID_FLAGS(func, css_rstat_flush, KF_SLEEPABLE) 750 BTF_KFUNCS_END(bpf_rstat_kfunc_ids) 751 752 static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = { 753 .owner = THIS_MODULE, 754 .set = &bpf_rstat_kfunc_ids, 755 }; 756 757 static int __init bpf_rstat_kfunc_init(void) 758 { 759 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 760 &bpf_rstat_kfunc_set); 761 } 762 late_initcall(bpf_rstat_kfunc_init); 763