1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/sched/cputime.h> 5 6 #include <linux/bpf.h> 7 #include <linux/btf.h> 8 #include <linux/btf_ids.h> 9 10 #include <trace/events/cgroup.h> 11 12 static DEFINE_SPINLOCK(rstat_base_lock); 13 static DEFINE_PER_CPU(raw_spinlock_t, rstat_base_cpu_lock); 14 15 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); 16 17 /* 18 * Determines whether a given css can participate in rstat. 19 * css's that are cgroup::self use rstat for base stats. 20 * Other css's associated with a subsystem use rstat only when 21 * they define the ss->css_rstat_flush callback. 22 */ 23 static inline bool css_uses_rstat(struct cgroup_subsys_state *css) 24 { 25 return css_is_self(css) || css->ss->css_rstat_flush != NULL; 26 } 27 28 static struct css_rstat_cpu *css_rstat_cpu( 29 struct cgroup_subsys_state *css, int cpu) 30 { 31 return per_cpu_ptr(css->rstat_cpu, cpu); 32 } 33 34 static struct cgroup_rstat_base_cpu *cgroup_rstat_base_cpu( 35 struct cgroup *cgrp, int cpu) 36 { 37 return per_cpu_ptr(cgrp->rstat_base_cpu, cpu); 38 } 39 40 static spinlock_t *ss_rstat_lock(struct cgroup_subsys *ss) 41 { 42 if (ss) 43 return &ss->rstat_ss_lock; 44 45 return &rstat_base_lock; 46 } 47 48 static raw_spinlock_t *ss_rstat_cpu_lock(struct cgroup_subsys *ss, int cpu) 49 { 50 if (ss) 51 return per_cpu_ptr(ss->rstat_ss_cpu_lock, cpu); 52 53 return per_cpu_ptr(&rstat_base_cpu_lock, cpu); 54 } 55 56 /* 57 * Helper functions for rstat per CPU locks. 58 * 59 * This makes it easier to diagnose locking issues and contention in 60 * production environments. The parameter @fast_path determine the 61 * tracepoints being added, allowing us to diagnose "flush" related 62 * operations without handling high-frequency fast-path "update" events. 63 */ 64 static __always_inline 65 unsigned long _css_rstat_cpu_lock(struct cgroup_subsys_state *css, int cpu, 66 const bool fast_path) 67 { 68 struct cgroup *cgrp = css->cgroup; 69 raw_spinlock_t *cpu_lock; 70 unsigned long flags; 71 bool contended; 72 73 /* 74 * The _irqsave() is needed because the locks used for flushing are 75 * spinlock_t which is a sleeping lock on PREEMPT_RT. Acquiring this lock 76 * with the _irq() suffix only disables interrupts on a non-PREEMPT_RT 77 * kernel. The raw_spinlock_t below disables interrupts on both 78 * configurations. The _irqsave() ensures that interrupts are always 79 * disabled and later restored. 80 */ 81 cpu_lock = ss_rstat_cpu_lock(css->ss, cpu); 82 contended = !raw_spin_trylock_irqsave(cpu_lock, flags); 83 if (contended) { 84 if (fast_path) 85 trace_cgroup_rstat_cpu_lock_contended_fastpath(cgrp, cpu, contended); 86 else 87 trace_cgroup_rstat_cpu_lock_contended(cgrp, cpu, contended); 88 89 raw_spin_lock_irqsave(cpu_lock, flags); 90 } 91 92 if (fast_path) 93 trace_cgroup_rstat_cpu_locked_fastpath(cgrp, cpu, contended); 94 else 95 trace_cgroup_rstat_cpu_locked(cgrp, cpu, contended); 96 97 return flags; 98 } 99 100 static __always_inline 101 void _css_rstat_cpu_unlock(struct cgroup_subsys_state *css, int cpu, 102 unsigned long flags, const bool fast_path) 103 { 104 struct cgroup *cgrp = css->cgroup; 105 raw_spinlock_t *cpu_lock; 106 107 if (fast_path) 108 trace_cgroup_rstat_cpu_unlock_fastpath(cgrp, cpu, false); 109 else 110 trace_cgroup_rstat_cpu_unlock(cgrp, cpu, false); 111 112 cpu_lock = ss_rstat_cpu_lock(css->ss, cpu); 113 raw_spin_unlock_irqrestore(cpu_lock, flags); 114 } 115 116 /** 117 * css_rstat_updated - keep track of updated rstat_cpu 118 * @css: target cgroup subsystem state 119 * @cpu: cpu on which rstat_cpu was updated 120 * 121 * @css's rstat_cpu on @cpu was updated. Put it on the parent's matching 122 * rstat_cpu->updated_children list. See the comment on top of 123 * css_rstat_cpu definition for details. 124 */ 125 __bpf_kfunc void css_rstat_updated(struct cgroup_subsys_state *css, int cpu) 126 { 127 unsigned long flags; 128 129 /* 130 * Since bpf programs can call this function, prevent access to 131 * uninitialized rstat pointers. 132 */ 133 if (!css_uses_rstat(css)) 134 return; 135 136 /* 137 * Speculative already-on-list test. This may race leading to 138 * temporary inaccuracies, which is fine. 139 * 140 * Because @parent's updated_children is terminated with @parent 141 * instead of NULL, we can tell whether @css is on the list by 142 * testing the next pointer for NULL. 143 */ 144 if (data_race(css_rstat_cpu(css, cpu)->updated_next)) 145 return; 146 147 flags = _css_rstat_cpu_lock(css, cpu, true); 148 149 /* put @css and all ancestors on the corresponding updated lists */ 150 while (true) { 151 struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu); 152 struct cgroup_subsys_state *parent = css->parent; 153 struct css_rstat_cpu *prstatc; 154 155 /* 156 * Both additions and removals are bottom-up. If a cgroup 157 * is already in the tree, all ancestors are. 158 */ 159 if (rstatc->updated_next) 160 break; 161 162 /* Root has no parent to link it to, but mark it busy */ 163 if (!parent) { 164 rstatc->updated_next = css; 165 break; 166 } 167 168 prstatc = css_rstat_cpu(parent, cpu); 169 rstatc->updated_next = prstatc->updated_children; 170 prstatc->updated_children = css; 171 172 css = parent; 173 } 174 175 _css_rstat_cpu_unlock(css, cpu, flags, true); 176 } 177 178 /** 179 * css_rstat_push_children - push children css's into the given list 180 * @head: current head of the list (= subtree root) 181 * @child: first child of the root 182 * @cpu: target cpu 183 * Return: A new singly linked list of css's to be flushed 184 * 185 * Iteratively traverse down the css_rstat_cpu updated tree level by 186 * level and push all the parents first before their next level children 187 * into a singly linked list via the rstat_flush_next pointer built from the 188 * tail backward like "pushing" css's into a stack. The root is pushed by 189 * the caller. 190 */ 191 static struct cgroup_subsys_state *css_rstat_push_children( 192 struct cgroup_subsys_state *head, 193 struct cgroup_subsys_state *child, int cpu) 194 { 195 struct cgroup_subsys_state *cnext = child; /* Next head of child css level */ 196 struct cgroup_subsys_state *ghead = NULL; /* Head of grandchild css level */ 197 struct cgroup_subsys_state *parent, *grandchild; 198 struct css_rstat_cpu *crstatc; 199 200 child->rstat_flush_next = NULL; 201 202 /* 203 * The subsystem rstat lock must be held for the whole duration from 204 * here as the rstat_flush_next list is being constructed to when 205 * it is consumed later in css_rstat_flush(). 206 */ 207 lockdep_assert_held(ss_rstat_lock(head->ss)); 208 209 /* 210 * Notation: -> updated_next pointer 211 * => rstat_flush_next pointer 212 * 213 * Assuming the following sample updated_children lists: 214 * P: C1 -> C2 -> P 215 * C1: G11 -> G12 -> C1 216 * C2: G21 -> G22 -> C2 217 * 218 * After 1st iteration: 219 * head => C2 => C1 => NULL 220 * ghead => G21 => G11 => NULL 221 * 222 * After 2nd iteration: 223 * head => G12 => G11 => G22 => G21 => C2 => C1 => NULL 224 */ 225 next_level: 226 while (cnext) { 227 child = cnext; 228 cnext = child->rstat_flush_next; 229 parent = child->parent; 230 231 /* updated_next is parent cgroup terminated if !NULL */ 232 while (child != parent) { 233 child->rstat_flush_next = head; 234 head = child; 235 crstatc = css_rstat_cpu(child, cpu); 236 grandchild = crstatc->updated_children; 237 if (grandchild != child) { 238 /* Push the grand child to the next level */ 239 crstatc->updated_children = child; 240 grandchild->rstat_flush_next = ghead; 241 ghead = grandchild; 242 } 243 child = crstatc->updated_next; 244 crstatc->updated_next = NULL; 245 } 246 } 247 248 if (ghead) { 249 cnext = ghead; 250 ghead = NULL; 251 goto next_level; 252 } 253 return head; 254 } 255 256 /** 257 * css_rstat_updated_list - build a list of updated css's to be flushed 258 * @root: root of the css subtree to traverse 259 * @cpu: target cpu 260 * Return: A singly linked list of css's to be flushed 261 * 262 * Walks the updated rstat_cpu tree on @cpu from @root. During traversal, 263 * each returned css is unlinked from the updated tree. 264 * 265 * The only ordering guarantee is that, for a parent and a child pair 266 * covered by a given traversal, the child is before its parent in 267 * the list. 268 * 269 * Note that updated_children is self terminated and points to a list of 270 * child css's if not empty. Whereas updated_next is like a sibling link 271 * within the children list and terminated by the parent css. An exception 272 * here is the css root whose updated_next can be self terminated. 273 */ 274 static struct cgroup_subsys_state *css_rstat_updated_list( 275 struct cgroup_subsys_state *root, int cpu) 276 { 277 struct css_rstat_cpu *rstatc = css_rstat_cpu(root, cpu); 278 struct cgroup_subsys_state *head = NULL, *parent, *child; 279 unsigned long flags; 280 281 flags = _css_rstat_cpu_lock(root, cpu, false); 282 283 /* Return NULL if this subtree is not on-list */ 284 if (!rstatc->updated_next) 285 goto unlock_ret; 286 287 /* 288 * Unlink @root from its parent. As the updated_children list is 289 * singly linked, we have to walk it to find the removal point. 290 */ 291 parent = root->parent; 292 if (parent) { 293 struct css_rstat_cpu *prstatc; 294 struct cgroup_subsys_state **nextp; 295 296 prstatc = css_rstat_cpu(parent, cpu); 297 nextp = &prstatc->updated_children; 298 while (*nextp != root) { 299 struct css_rstat_cpu *nrstatc; 300 301 nrstatc = css_rstat_cpu(*nextp, cpu); 302 WARN_ON_ONCE(*nextp == parent); 303 nextp = &nrstatc->updated_next; 304 } 305 *nextp = rstatc->updated_next; 306 } 307 308 rstatc->updated_next = NULL; 309 310 /* Push @root to the list first before pushing the children */ 311 head = root; 312 root->rstat_flush_next = NULL; 313 child = rstatc->updated_children; 314 rstatc->updated_children = root; 315 if (child != root) 316 head = css_rstat_push_children(head, child, cpu); 317 unlock_ret: 318 _css_rstat_cpu_unlock(root, cpu, flags, false); 319 return head; 320 } 321 322 /* 323 * A hook for bpf stat collectors to attach to and flush their stats. 324 * Together with providing bpf kfuncs for css_rstat_updated() and 325 * css_rstat_flush(), this enables a complete workflow where bpf progs that 326 * collect cgroup stats can integrate with rstat for efficient flushing. 327 * 328 * A static noinline declaration here could cause the compiler to optimize away 329 * the function. A global noinline declaration will keep the definition, but may 330 * optimize away the callsite. Therefore, __weak is needed to ensure that the 331 * call is still emitted, by telling the compiler that we don't know what the 332 * function might eventually be. 333 */ 334 335 __bpf_hook_start(); 336 337 __weak noinline void bpf_rstat_flush(struct cgroup *cgrp, 338 struct cgroup *parent, int cpu) 339 { 340 } 341 342 __bpf_hook_end(); 343 344 /* 345 * Helper functions for locking. 346 * 347 * This makes it easier to diagnose locking issues and contention in 348 * production environments. The parameter @cpu_in_loop indicate lock 349 * was released and re-taken when collection data from the CPUs. The 350 * value -1 is used when obtaining the main lock else this is the CPU 351 * number processed last. 352 */ 353 static inline void __css_rstat_lock(struct cgroup_subsys_state *css, 354 int cpu_in_loop) 355 __acquires(ss_rstat_lock(css->ss)) 356 { 357 struct cgroup *cgrp = css->cgroup; 358 spinlock_t *lock; 359 bool contended; 360 361 lock = ss_rstat_lock(css->ss); 362 contended = !spin_trylock_irq(lock); 363 if (contended) { 364 trace_cgroup_rstat_lock_contended(cgrp, cpu_in_loop, contended); 365 spin_lock_irq(lock); 366 } 367 trace_cgroup_rstat_locked(cgrp, cpu_in_loop, contended); 368 } 369 370 static inline void __css_rstat_unlock(struct cgroup_subsys_state *css, 371 int cpu_in_loop) 372 __releases(ss_rstat_lock(css->ss)) 373 { 374 struct cgroup *cgrp = css->cgroup; 375 spinlock_t *lock; 376 377 lock = ss_rstat_lock(css->ss); 378 trace_cgroup_rstat_unlock(cgrp, cpu_in_loop, false); 379 spin_unlock_irq(lock); 380 } 381 382 /** 383 * css_rstat_flush - flush stats in @css's rstat subtree 384 * @css: target cgroup subsystem state 385 * 386 * Collect all per-cpu stats in @css's subtree into the global counters 387 * and propagate them upwards. After this function returns, all rstat 388 * nodes in the subtree have up-to-date ->stat. 389 * 390 * This also gets all rstat nodes in the subtree including @css off the 391 * ->updated_children lists. 392 * 393 * This function may block. 394 */ 395 __bpf_kfunc void css_rstat_flush(struct cgroup_subsys_state *css) 396 { 397 int cpu; 398 bool is_self = css_is_self(css); 399 400 /* 401 * Since bpf programs can call this function, prevent access to 402 * uninitialized rstat pointers. 403 */ 404 if (!css_uses_rstat(css)) 405 return; 406 407 might_sleep(); 408 for_each_possible_cpu(cpu) { 409 struct cgroup_subsys_state *pos; 410 411 /* Reacquire for each CPU to avoid disabling IRQs too long */ 412 __css_rstat_lock(css, cpu); 413 pos = css_rstat_updated_list(css, cpu); 414 for (; pos; pos = pos->rstat_flush_next) { 415 if (is_self) { 416 cgroup_base_stat_flush(pos->cgroup, cpu); 417 bpf_rstat_flush(pos->cgroup, 418 cgroup_parent(pos->cgroup), cpu); 419 } else 420 pos->ss->css_rstat_flush(pos, cpu); 421 } 422 __css_rstat_unlock(css, cpu); 423 if (!cond_resched()) 424 cpu_relax(); 425 } 426 } 427 428 int css_rstat_init(struct cgroup_subsys_state *css) 429 { 430 struct cgroup *cgrp = css->cgroup; 431 int cpu; 432 bool is_self = css_is_self(css); 433 434 if (is_self) { 435 /* the root cgrp has rstat_base_cpu preallocated */ 436 if (!cgrp->rstat_base_cpu) { 437 cgrp->rstat_base_cpu = alloc_percpu(struct cgroup_rstat_base_cpu); 438 if (!cgrp->rstat_base_cpu) 439 return -ENOMEM; 440 } 441 } else if (css->ss->css_rstat_flush == NULL) 442 return 0; 443 444 /* the root cgrp's self css has rstat_cpu preallocated */ 445 if (!css->rstat_cpu) { 446 css->rstat_cpu = alloc_percpu(struct css_rstat_cpu); 447 if (!css->rstat_cpu) { 448 if (is_self) 449 free_percpu(cgrp->rstat_base_cpu); 450 451 return -ENOMEM; 452 } 453 } 454 455 /* ->updated_children list is self terminated */ 456 for_each_possible_cpu(cpu) { 457 struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu); 458 459 rstatc->updated_children = css; 460 461 if (is_self) { 462 struct cgroup_rstat_base_cpu *rstatbc; 463 464 rstatbc = cgroup_rstat_base_cpu(cgrp, cpu); 465 u64_stats_init(&rstatbc->bsync); 466 } 467 } 468 469 return 0; 470 } 471 472 void css_rstat_exit(struct cgroup_subsys_state *css) 473 { 474 int cpu; 475 476 if (!css_uses_rstat(css)) 477 return; 478 479 css_rstat_flush(css); 480 481 /* sanity check */ 482 for_each_possible_cpu(cpu) { 483 struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu); 484 485 if (WARN_ON_ONCE(rstatc->updated_children != css) || 486 WARN_ON_ONCE(rstatc->updated_next)) 487 return; 488 } 489 490 if (css_is_self(css)) { 491 struct cgroup *cgrp = css->cgroup; 492 493 free_percpu(cgrp->rstat_base_cpu); 494 cgrp->rstat_base_cpu = NULL; 495 } 496 497 free_percpu(css->rstat_cpu); 498 css->rstat_cpu = NULL; 499 } 500 501 /** 502 * ss_rstat_init - subsystem-specific rstat initialization 503 * @ss: target subsystem 504 * 505 * If @ss is NULL, the static locks associated with the base stats 506 * are initialized. If @ss is non-NULL, the subsystem-specific locks 507 * are initialized. 508 */ 509 int __init ss_rstat_init(struct cgroup_subsys *ss) 510 { 511 int cpu; 512 513 #ifdef CONFIG_SMP 514 /* 515 * On uniprocessor machines, arch_spinlock_t is defined as an empty 516 * struct. Avoid allocating a size of zero by having this block 517 * excluded in this case. It's acceptable to leave the subsystem locks 518 * unitialized since the associated lock functions are no-ops in the 519 * non-smp case. 520 */ 521 if (ss) { 522 ss->rstat_ss_cpu_lock = alloc_percpu(raw_spinlock_t); 523 if (!ss->rstat_ss_cpu_lock) 524 return -ENOMEM; 525 } 526 #endif 527 528 spin_lock_init(ss_rstat_lock(ss)); 529 for_each_possible_cpu(cpu) 530 raw_spin_lock_init(ss_rstat_cpu_lock(ss, cpu)); 531 532 return 0; 533 } 534 535 /* 536 * Functions for cgroup basic resource statistics implemented on top of 537 * rstat. 538 */ 539 static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, 540 struct cgroup_base_stat *src_bstat) 541 { 542 dst_bstat->cputime.utime += src_bstat->cputime.utime; 543 dst_bstat->cputime.stime += src_bstat->cputime.stime; 544 dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; 545 #ifdef CONFIG_SCHED_CORE 546 dst_bstat->forceidle_sum += src_bstat->forceidle_sum; 547 #endif 548 dst_bstat->ntime += src_bstat->ntime; 549 } 550 551 static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, 552 struct cgroup_base_stat *src_bstat) 553 { 554 dst_bstat->cputime.utime -= src_bstat->cputime.utime; 555 dst_bstat->cputime.stime -= src_bstat->cputime.stime; 556 dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; 557 #ifdef CONFIG_SCHED_CORE 558 dst_bstat->forceidle_sum -= src_bstat->forceidle_sum; 559 #endif 560 dst_bstat->ntime -= src_bstat->ntime; 561 } 562 563 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) 564 { 565 struct cgroup_rstat_base_cpu *rstatbc = cgroup_rstat_base_cpu(cgrp, cpu); 566 struct cgroup *parent = cgroup_parent(cgrp); 567 struct cgroup_rstat_base_cpu *prstatbc; 568 struct cgroup_base_stat delta; 569 unsigned seq; 570 571 /* Root-level stats are sourced from system-wide CPU stats */ 572 if (!parent) 573 return; 574 575 /* fetch the current per-cpu values */ 576 do { 577 seq = __u64_stats_fetch_begin(&rstatbc->bsync); 578 delta = rstatbc->bstat; 579 } while (__u64_stats_fetch_retry(&rstatbc->bsync, seq)); 580 581 /* propagate per-cpu delta to cgroup and per-cpu global statistics */ 582 cgroup_base_stat_sub(&delta, &rstatbc->last_bstat); 583 cgroup_base_stat_add(&cgrp->bstat, &delta); 584 cgroup_base_stat_add(&rstatbc->last_bstat, &delta); 585 cgroup_base_stat_add(&rstatbc->subtree_bstat, &delta); 586 587 /* propagate cgroup and per-cpu global delta to parent (unless that's root) */ 588 if (cgroup_parent(parent)) { 589 delta = cgrp->bstat; 590 cgroup_base_stat_sub(&delta, &cgrp->last_bstat); 591 cgroup_base_stat_add(&parent->bstat, &delta); 592 cgroup_base_stat_add(&cgrp->last_bstat, &delta); 593 594 delta = rstatbc->subtree_bstat; 595 prstatbc = cgroup_rstat_base_cpu(parent, cpu); 596 cgroup_base_stat_sub(&delta, &rstatbc->last_subtree_bstat); 597 cgroup_base_stat_add(&prstatbc->subtree_bstat, &delta); 598 cgroup_base_stat_add(&rstatbc->last_subtree_bstat, &delta); 599 } 600 } 601 602 static struct cgroup_rstat_base_cpu * 603 cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags) 604 { 605 struct cgroup_rstat_base_cpu *rstatbc; 606 607 rstatbc = get_cpu_ptr(cgrp->rstat_base_cpu); 608 *flags = u64_stats_update_begin_irqsave(&rstatbc->bsync); 609 return rstatbc; 610 } 611 612 static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, 613 struct cgroup_rstat_base_cpu *rstatbc, 614 unsigned long flags) 615 { 616 u64_stats_update_end_irqrestore(&rstatbc->bsync, flags); 617 css_rstat_updated(&cgrp->self, smp_processor_id()); 618 put_cpu_ptr(rstatbc); 619 } 620 621 void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) 622 { 623 struct cgroup_rstat_base_cpu *rstatbc; 624 unsigned long flags; 625 626 rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 627 rstatbc->bstat.cputime.sum_exec_runtime += delta_exec; 628 cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags); 629 } 630 631 void __cgroup_account_cputime_field(struct cgroup *cgrp, 632 enum cpu_usage_stat index, u64 delta_exec) 633 { 634 struct cgroup_rstat_base_cpu *rstatbc; 635 unsigned long flags; 636 637 rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 638 639 switch (index) { 640 case CPUTIME_NICE: 641 rstatbc->bstat.ntime += delta_exec; 642 fallthrough; 643 case CPUTIME_USER: 644 rstatbc->bstat.cputime.utime += delta_exec; 645 break; 646 case CPUTIME_SYSTEM: 647 case CPUTIME_IRQ: 648 case CPUTIME_SOFTIRQ: 649 rstatbc->bstat.cputime.stime += delta_exec; 650 break; 651 #ifdef CONFIG_SCHED_CORE 652 case CPUTIME_FORCEIDLE: 653 rstatbc->bstat.forceidle_sum += delta_exec; 654 break; 655 #endif 656 default: 657 break; 658 } 659 660 cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags); 661 } 662 663 /* 664 * compute the cputime for the root cgroup by getting the per cpu data 665 * at a global level, then categorizing the fields in a manner consistent 666 * with how it is done by __cgroup_account_cputime_field for each bit of 667 * cpu time attributed to a cgroup. 668 */ 669 static void root_cgroup_cputime(struct cgroup_base_stat *bstat) 670 { 671 struct task_cputime *cputime = &bstat->cputime; 672 int i; 673 674 memset(bstat, 0, sizeof(*bstat)); 675 for_each_possible_cpu(i) { 676 struct kernel_cpustat kcpustat; 677 u64 *cpustat = kcpustat.cpustat; 678 u64 user = 0; 679 u64 sys = 0; 680 681 kcpustat_cpu_fetch(&kcpustat, i); 682 683 user += cpustat[CPUTIME_USER]; 684 user += cpustat[CPUTIME_NICE]; 685 cputime->utime += user; 686 687 sys += cpustat[CPUTIME_SYSTEM]; 688 sys += cpustat[CPUTIME_IRQ]; 689 sys += cpustat[CPUTIME_SOFTIRQ]; 690 cputime->stime += sys; 691 692 cputime->sum_exec_runtime += user; 693 cputime->sum_exec_runtime += sys; 694 695 #ifdef CONFIG_SCHED_CORE 696 bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE]; 697 #endif 698 bstat->ntime += cpustat[CPUTIME_NICE]; 699 } 700 } 701 702 703 static void cgroup_force_idle_show(struct seq_file *seq, struct cgroup_base_stat *bstat) 704 { 705 #ifdef CONFIG_SCHED_CORE 706 u64 forceidle_time = bstat->forceidle_sum; 707 708 do_div(forceidle_time, NSEC_PER_USEC); 709 seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time); 710 #endif 711 } 712 713 void cgroup_base_stat_cputime_show(struct seq_file *seq) 714 { 715 struct cgroup *cgrp = seq_css(seq)->cgroup; 716 struct cgroup_base_stat bstat; 717 718 if (cgroup_parent(cgrp)) { 719 css_rstat_flush(&cgrp->self); 720 __css_rstat_lock(&cgrp->self, -1); 721 bstat = cgrp->bstat; 722 cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, 723 &bstat.cputime.utime, &bstat.cputime.stime); 724 __css_rstat_unlock(&cgrp->self, -1); 725 } else { 726 root_cgroup_cputime(&bstat); 727 } 728 729 do_div(bstat.cputime.sum_exec_runtime, NSEC_PER_USEC); 730 do_div(bstat.cputime.utime, NSEC_PER_USEC); 731 do_div(bstat.cputime.stime, NSEC_PER_USEC); 732 do_div(bstat.ntime, NSEC_PER_USEC); 733 734 seq_printf(seq, "usage_usec %llu\n" 735 "user_usec %llu\n" 736 "system_usec %llu\n" 737 "nice_usec %llu\n", 738 bstat.cputime.sum_exec_runtime, 739 bstat.cputime.utime, 740 bstat.cputime.stime, 741 bstat.ntime); 742 743 cgroup_force_idle_show(seq, &bstat); 744 } 745 746 /* Add bpf kfuncs for css_rstat_updated() and css_rstat_flush() */ 747 BTF_KFUNCS_START(bpf_rstat_kfunc_ids) 748 BTF_ID_FLAGS(func, css_rstat_updated) 749 BTF_ID_FLAGS(func, css_rstat_flush, KF_SLEEPABLE) 750 BTF_KFUNCS_END(bpf_rstat_kfunc_ids) 751 752 static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = { 753 .owner = THIS_MODULE, 754 .set = &bpf_rstat_kfunc_ids, 755 }; 756 757 static int __init bpf_rstat_kfunc_init(void) 758 { 759 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 760 &bpf_rstat_kfunc_set); 761 } 762 late_initcall(bpf_rstat_kfunc_init); 763