1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/sched/cputime.h> 5 6 #include <linux/bpf.h> 7 #include <linux/btf.h> 8 #include <linux/btf_ids.h> 9 10 static DEFINE_SPINLOCK(cgroup_rstat_lock); 11 static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock); 12 13 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); 14 15 static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu) 16 { 17 return per_cpu_ptr(cgrp->rstat_cpu, cpu); 18 } 19 20 /** 21 * cgroup_rstat_updated - keep track of updated rstat_cpu 22 * @cgrp: target cgroup 23 * @cpu: cpu on which rstat_cpu was updated 24 * 25 * @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching 26 * rstat_cpu->updated_children list. See the comment on top of 27 * cgroup_rstat_cpu definition for details. 28 */ 29 __bpf_kfunc void cgroup_rstat_updated(struct cgroup *cgrp, int cpu) 30 { 31 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); 32 unsigned long flags; 33 34 /* 35 * Speculative already-on-list test. This may race leading to 36 * temporary inaccuracies, which is fine. 37 * 38 * Because @parent's updated_children is terminated with @parent 39 * instead of NULL, we can tell whether @cgrp is on the list by 40 * testing the next pointer for NULL. 41 */ 42 if (data_race(cgroup_rstat_cpu(cgrp, cpu)->updated_next)) 43 return; 44 45 raw_spin_lock_irqsave(cpu_lock, flags); 46 47 /* put @cgrp and all ancestors on the corresponding updated lists */ 48 while (true) { 49 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 50 struct cgroup *parent = cgroup_parent(cgrp); 51 struct cgroup_rstat_cpu *prstatc; 52 53 /* 54 * Both additions and removals are bottom-up. If a cgroup 55 * is already in the tree, all ancestors are. 56 */ 57 if (rstatc->updated_next) 58 break; 59 60 /* Root has no parent to link it to, but mark it busy */ 61 if (!parent) { 62 rstatc->updated_next = cgrp; 63 break; 64 } 65 66 prstatc = cgroup_rstat_cpu(parent, cpu); 67 rstatc->updated_next = prstatc->updated_children; 68 prstatc->updated_children = cgrp; 69 70 cgrp = parent; 71 } 72 73 raw_spin_unlock_irqrestore(cpu_lock, flags); 74 } 75 76 /** 77 * cgroup_rstat_push_children - push children cgroups into the given list 78 * @head: current head of the list (= subtree root) 79 * @child: first child of the root 80 * @cpu: target cpu 81 * Return: A new singly linked list of cgroups to be flush 82 * 83 * Iteratively traverse down the cgroup_rstat_cpu updated tree level by 84 * level and push all the parents first before their next level children 85 * into a singly linked list built from the tail backward like "pushing" 86 * cgroups into a stack. The root is pushed by the caller. 87 */ 88 static struct cgroup *cgroup_rstat_push_children(struct cgroup *head, 89 struct cgroup *child, int cpu) 90 { 91 struct cgroup *chead = child; /* Head of child cgroup level */ 92 struct cgroup *ghead = NULL; /* Head of grandchild cgroup level */ 93 struct cgroup *parent, *grandchild; 94 struct cgroup_rstat_cpu *crstatc; 95 96 child->rstat_flush_next = NULL; 97 98 next_level: 99 while (chead) { 100 child = chead; 101 chead = child->rstat_flush_next; 102 parent = cgroup_parent(child); 103 104 /* updated_next is parent cgroup terminated */ 105 while (child != parent) { 106 child->rstat_flush_next = head; 107 head = child; 108 crstatc = cgroup_rstat_cpu(child, cpu); 109 grandchild = crstatc->updated_children; 110 if (grandchild != child) { 111 /* Push the grand child to the next level */ 112 crstatc->updated_children = child; 113 grandchild->rstat_flush_next = ghead; 114 ghead = grandchild; 115 } 116 child = crstatc->updated_next; 117 crstatc->updated_next = NULL; 118 } 119 } 120 121 if (ghead) { 122 chead = ghead; 123 ghead = NULL; 124 goto next_level; 125 } 126 return head; 127 } 128 129 /** 130 * cgroup_rstat_updated_list - return a list of updated cgroups to be flushed 131 * @root: root of the cgroup subtree to traverse 132 * @cpu: target cpu 133 * Return: A singly linked list of cgroups to be flushed 134 * 135 * Walks the updated rstat_cpu tree on @cpu from @root. During traversal, 136 * each returned cgroup is unlinked from the updated tree. 137 * 138 * The only ordering guarantee is that, for a parent and a child pair 139 * covered by a given traversal, the child is before its parent in 140 * the list. 141 * 142 * Note that updated_children is self terminated and points to a list of 143 * child cgroups if not empty. Whereas updated_next is like a sibling link 144 * within the children list and terminated by the parent cgroup. An exception 145 * here is the cgroup root whose updated_next can be self terminated. 146 */ 147 static struct cgroup *cgroup_rstat_updated_list(struct cgroup *root, int cpu) 148 { 149 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); 150 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(root, cpu); 151 struct cgroup *head = NULL, *parent, *child; 152 unsigned long flags; 153 154 /* 155 * The _irqsave() is needed because cgroup_rstat_lock is 156 * spinlock_t which is a sleeping lock on PREEMPT_RT. Acquiring 157 * this lock with the _irq() suffix only disables interrupts on 158 * a non-PREEMPT_RT kernel. The raw_spinlock_t below disables 159 * interrupts on both configurations. The _irqsave() ensures 160 * that interrupts are always disabled and later restored. 161 */ 162 raw_spin_lock_irqsave(cpu_lock, flags); 163 164 /* Return NULL if this subtree is not on-list */ 165 if (!rstatc->updated_next) 166 goto unlock_ret; 167 168 /* 169 * Unlink @root from its parent. As the updated_children list is 170 * singly linked, we have to walk it to find the removal point. 171 */ 172 parent = cgroup_parent(root); 173 if (parent) { 174 struct cgroup_rstat_cpu *prstatc; 175 struct cgroup **nextp; 176 177 prstatc = cgroup_rstat_cpu(parent, cpu); 178 nextp = &prstatc->updated_children; 179 while (*nextp != root) { 180 struct cgroup_rstat_cpu *nrstatc; 181 182 nrstatc = cgroup_rstat_cpu(*nextp, cpu); 183 WARN_ON_ONCE(*nextp == parent); 184 nextp = &nrstatc->updated_next; 185 } 186 *nextp = rstatc->updated_next; 187 } 188 189 rstatc->updated_next = NULL; 190 191 /* Push @root to the list first before pushing the children */ 192 head = root; 193 root->rstat_flush_next = NULL; 194 child = rstatc->updated_children; 195 rstatc->updated_children = root; 196 if (child != root) 197 head = cgroup_rstat_push_children(head, child, cpu); 198 unlock_ret: 199 raw_spin_unlock_irqrestore(cpu_lock, flags); 200 return head; 201 } 202 203 /* 204 * A hook for bpf stat collectors to attach to and flush their stats. 205 * Together with providing bpf kfuncs for cgroup_rstat_updated() and 206 * cgroup_rstat_flush(), this enables a complete workflow where bpf progs that 207 * collect cgroup stats can integrate with rstat for efficient flushing. 208 * 209 * A static noinline declaration here could cause the compiler to optimize away 210 * the function. A global noinline declaration will keep the definition, but may 211 * optimize away the callsite. Therefore, __weak is needed to ensure that the 212 * call is still emitted, by telling the compiler that we don't know what the 213 * function might eventually be. 214 */ 215 216 __bpf_hook_start(); 217 218 __weak noinline void bpf_rstat_flush(struct cgroup *cgrp, 219 struct cgroup *parent, int cpu) 220 { 221 } 222 223 __bpf_hook_end(); 224 225 /* see cgroup_rstat_flush() */ 226 static void cgroup_rstat_flush_locked(struct cgroup *cgrp) 227 __releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock) 228 { 229 int cpu; 230 231 lockdep_assert_held(&cgroup_rstat_lock); 232 233 for_each_possible_cpu(cpu) { 234 struct cgroup *pos = cgroup_rstat_updated_list(cgrp, cpu); 235 236 for (; pos; pos = pos->rstat_flush_next) { 237 struct cgroup_subsys_state *css; 238 239 cgroup_base_stat_flush(pos, cpu); 240 bpf_rstat_flush(pos, cgroup_parent(pos), cpu); 241 242 rcu_read_lock(); 243 list_for_each_entry_rcu(css, &pos->rstat_css_list, 244 rstat_css_node) 245 css->ss->css_rstat_flush(css, cpu); 246 rcu_read_unlock(); 247 } 248 249 /* play nice and yield if necessary */ 250 if (need_resched() || spin_needbreak(&cgroup_rstat_lock)) { 251 spin_unlock_irq(&cgroup_rstat_lock); 252 if (!cond_resched()) 253 cpu_relax(); 254 spin_lock_irq(&cgroup_rstat_lock); 255 } 256 } 257 } 258 259 /** 260 * cgroup_rstat_flush - flush stats in @cgrp's subtree 261 * @cgrp: target cgroup 262 * 263 * Collect all per-cpu stats in @cgrp's subtree into the global counters 264 * and propagate them upwards. After this function returns, all cgroups in 265 * the subtree have up-to-date ->stat. 266 * 267 * This also gets all cgroups in the subtree including @cgrp off the 268 * ->updated_children lists. 269 * 270 * This function may block. 271 */ 272 __bpf_kfunc void cgroup_rstat_flush(struct cgroup *cgrp) 273 { 274 might_sleep(); 275 276 spin_lock_irq(&cgroup_rstat_lock); 277 cgroup_rstat_flush_locked(cgrp); 278 spin_unlock_irq(&cgroup_rstat_lock); 279 } 280 281 /** 282 * cgroup_rstat_flush_hold - flush stats in @cgrp's subtree and hold 283 * @cgrp: target cgroup 284 * 285 * Flush stats in @cgrp's subtree and prevent further flushes. Must be 286 * paired with cgroup_rstat_flush_release(). 287 * 288 * This function may block. 289 */ 290 void cgroup_rstat_flush_hold(struct cgroup *cgrp) 291 __acquires(&cgroup_rstat_lock) 292 { 293 might_sleep(); 294 spin_lock_irq(&cgroup_rstat_lock); 295 cgroup_rstat_flush_locked(cgrp); 296 } 297 298 /** 299 * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold() 300 */ 301 void cgroup_rstat_flush_release(void) 302 __releases(&cgroup_rstat_lock) 303 { 304 spin_unlock_irq(&cgroup_rstat_lock); 305 } 306 307 int cgroup_rstat_init(struct cgroup *cgrp) 308 { 309 int cpu; 310 311 /* the root cgrp has rstat_cpu preallocated */ 312 if (!cgrp->rstat_cpu) { 313 cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu); 314 if (!cgrp->rstat_cpu) 315 return -ENOMEM; 316 } 317 318 /* ->updated_children list is self terminated */ 319 for_each_possible_cpu(cpu) { 320 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 321 322 rstatc->updated_children = cgrp; 323 u64_stats_init(&rstatc->bsync); 324 } 325 326 return 0; 327 } 328 329 void cgroup_rstat_exit(struct cgroup *cgrp) 330 { 331 int cpu; 332 333 cgroup_rstat_flush(cgrp); 334 335 /* sanity check */ 336 for_each_possible_cpu(cpu) { 337 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 338 339 if (WARN_ON_ONCE(rstatc->updated_children != cgrp) || 340 WARN_ON_ONCE(rstatc->updated_next)) 341 return; 342 } 343 344 free_percpu(cgrp->rstat_cpu); 345 cgrp->rstat_cpu = NULL; 346 } 347 348 void __init cgroup_rstat_boot(void) 349 { 350 int cpu; 351 352 for_each_possible_cpu(cpu) 353 raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu)); 354 } 355 356 /* 357 * Functions for cgroup basic resource statistics implemented on top of 358 * rstat. 359 */ 360 static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, 361 struct cgroup_base_stat *src_bstat) 362 { 363 dst_bstat->cputime.utime += src_bstat->cputime.utime; 364 dst_bstat->cputime.stime += src_bstat->cputime.stime; 365 dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; 366 #ifdef CONFIG_SCHED_CORE 367 dst_bstat->forceidle_sum += src_bstat->forceidle_sum; 368 #endif 369 } 370 371 static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, 372 struct cgroup_base_stat *src_bstat) 373 { 374 dst_bstat->cputime.utime -= src_bstat->cputime.utime; 375 dst_bstat->cputime.stime -= src_bstat->cputime.stime; 376 dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; 377 #ifdef CONFIG_SCHED_CORE 378 dst_bstat->forceidle_sum -= src_bstat->forceidle_sum; 379 #endif 380 } 381 382 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) 383 { 384 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 385 struct cgroup *parent = cgroup_parent(cgrp); 386 struct cgroup_rstat_cpu *prstatc; 387 struct cgroup_base_stat delta; 388 unsigned seq; 389 390 /* Root-level stats are sourced from system-wide CPU stats */ 391 if (!parent) 392 return; 393 394 /* fetch the current per-cpu values */ 395 do { 396 seq = __u64_stats_fetch_begin(&rstatc->bsync); 397 delta = rstatc->bstat; 398 } while (__u64_stats_fetch_retry(&rstatc->bsync, seq)); 399 400 /* propagate per-cpu delta to cgroup and per-cpu global statistics */ 401 cgroup_base_stat_sub(&delta, &rstatc->last_bstat); 402 cgroup_base_stat_add(&cgrp->bstat, &delta); 403 cgroup_base_stat_add(&rstatc->last_bstat, &delta); 404 cgroup_base_stat_add(&rstatc->subtree_bstat, &delta); 405 406 /* propagate cgroup and per-cpu global delta to parent (unless that's root) */ 407 if (cgroup_parent(parent)) { 408 delta = cgrp->bstat; 409 cgroup_base_stat_sub(&delta, &cgrp->last_bstat); 410 cgroup_base_stat_add(&parent->bstat, &delta); 411 cgroup_base_stat_add(&cgrp->last_bstat, &delta); 412 413 delta = rstatc->subtree_bstat; 414 prstatc = cgroup_rstat_cpu(parent, cpu); 415 cgroup_base_stat_sub(&delta, &rstatc->last_subtree_bstat); 416 cgroup_base_stat_add(&prstatc->subtree_bstat, &delta); 417 cgroup_base_stat_add(&rstatc->last_subtree_bstat, &delta); 418 } 419 } 420 421 static struct cgroup_rstat_cpu * 422 cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags) 423 { 424 struct cgroup_rstat_cpu *rstatc; 425 426 rstatc = get_cpu_ptr(cgrp->rstat_cpu); 427 *flags = u64_stats_update_begin_irqsave(&rstatc->bsync); 428 return rstatc; 429 } 430 431 static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, 432 struct cgroup_rstat_cpu *rstatc, 433 unsigned long flags) 434 { 435 u64_stats_update_end_irqrestore(&rstatc->bsync, flags); 436 cgroup_rstat_updated(cgrp, smp_processor_id()); 437 put_cpu_ptr(rstatc); 438 } 439 440 void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) 441 { 442 struct cgroup_rstat_cpu *rstatc; 443 unsigned long flags; 444 445 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 446 rstatc->bstat.cputime.sum_exec_runtime += delta_exec; 447 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags); 448 } 449 450 void __cgroup_account_cputime_field(struct cgroup *cgrp, 451 enum cpu_usage_stat index, u64 delta_exec) 452 { 453 struct cgroup_rstat_cpu *rstatc; 454 unsigned long flags; 455 456 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 457 458 switch (index) { 459 case CPUTIME_USER: 460 case CPUTIME_NICE: 461 rstatc->bstat.cputime.utime += delta_exec; 462 break; 463 case CPUTIME_SYSTEM: 464 case CPUTIME_IRQ: 465 case CPUTIME_SOFTIRQ: 466 rstatc->bstat.cputime.stime += delta_exec; 467 break; 468 #ifdef CONFIG_SCHED_CORE 469 case CPUTIME_FORCEIDLE: 470 rstatc->bstat.forceidle_sum += delta_exec; 471 break; 472 #endif 473 default: 474 break; 475 } 476 477 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags); 478 } 479 480 /* 481 * compute the cputime for the root cgroup by getting the per cpu data 482 * at a global level, then categorizing the fields in a manner consistent 483 * with how it is done by __cgroup_account_cputime_field for each bit of 484 * cpu time attributed to a cgroup. 485 */ 486 static void root_cgroup_cputime(struct cgroup_base_stat *bstat) 487 { 488 struct task_cputime *cputime = &bstat->cputime; 489 int i; 490 491 memset(bstat, 0, sizeof(*bstat)); 492 for_each_possible_cpu(i) { 493 struct kernel_cpustat kcpustat; 494 u64 *cpustat = kcpustat.cpustat; 495 u64 user = 0; 496 u64 sys = 0; 497 498 kcpustat_cpu_fetch(&kcpustat, i); 499 500 user += cpustat[CPUTIME_USER]; 501 user += cpustat[CPUTIME_NICE]; 502 cputime->utime += user; 503 504 sys += cpustat[CPUTIME_SYSTEM]; 505 sys += cpustat[CPUTIME_IRQ]; 506 sys += cpustat[CPUTIME_SOFTIRQ]; 507 cputime->stime += sys; 508 509 cputime->sum_exec_runtime += user; 510 cputime->sum_exec_runtime += sys; 511 cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL]; 512 513 #ifdef CONFIG_SCHED_CORE 514 bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE]; 515 #endif 516 } 517 } 518 519 void cgroup_base_stat_cputime_show(struct seq_file *seq) 520 { 521 struct cgroup *cgrp = seq_css(seq)->cgroup; 522 u64 usage, utime, stime; 523 struct cgroup_base_stat bstat; 524 #ifdef CONFIG_SCHED_CORE 525 u64 forceidle_time; 526 #endif 527 528 if (cgroup_parent(cgrp)) { 529 cgroup_rstat_flush_hold(cgrp); 530 usage = cgrp->bstat.cputime.sum_exec_runtime; 531 cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, 532 &utime, &stime); 533 #ifdef CONFIG_SCHED_CORE 534 forceidle_time = cgrp->bstat.forceidle_sum; 535 #endif 536 cgroup_rstat_flush_release(); 537 } else { 538 root_cgroup_cputime(&bstat); 539 usage = bstat.cputime.sum_exec_runtime; 540 utime = bstat.cputime.utime; 541 stime = bstat.cputime.stime; 542 #ifdef CONFIG_SCHED_CORE 543 forceidle_time = bstat.forceidle_sum; 544 #endif 545 } 546 547 do_div(usage, NSEC_PER_USEC); 548 do_div(utime, NSEC_PER_USEC); 549 do_div(stime, NSEC_PER_USEC); 550 #ifdef CONFIG_SCHED_CORE 551 do_div(forceidle_time, NSEC_PER_USEC); 552 #endif 553 554 seq_printf(seq, "usage_usec %llu\n" 555 "user_usec %llu\n" 556 "system_usec %llu\n", 557 usage, utime, stime); 558 559 #ifdef CONFIG_SCHED_CORE 560 seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time); 561 #endif 562 } 563 564 /* Add bpf kfuncs for cgroup_rstat_updated() and cgroup_rstat_flush() */ 565 BTF_KFUNCS_START(bpf_rstat_kfunc_ids) 566 BTF_ID_FLAGS(func, cgroup_rstat_updated) 567 BTF_ID_FLAGS(func, cgroup_rstat_flush, KF_SLEEPABLE) 568 BTF_KFUNCS_END(bpf_rstat_kfunc_ids) 569 570 static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = { 571 .owner = THIS_MODULE, 572 .set = &bpf_rstat_kfunc_ids, 573 }; 574 575 static int __init bpf_rstat_kfunc_init(void) 576 { 577 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 578 &bpf_rstat_kfunc_set); 579 } 580 late_initcall(bpf_rstat_kfunc_init); 581