1 // SPDX-License-Identifier: GPL-2.0-only 2 #include "cgroup-internal.h" 3 4 #include <linux/sched/cputime.h> 5 6 #include <linux/bpf.h> 7 #include <linux/btf.h> 8 #include <linux/btf_ids.h> 9 10 static DEFINE_SPINLOCK(cgroup_rstat_lock); 11 static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock); 12 13 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); 14 15 static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu) 16 { 17 return per_cpu_ptr(cgrp->rstat_cpu, cpu); 18 } 19 20 /** 21 * cgroup_rstat_updated - keep track of updated rstat_cpu 22 * @cgrp: target cgroup 23 * @cpu: cpu on which rstat_cpu was updated 24 * 25 * @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching 26 * rstat_cpu->updated_children list. See the comment on top of 27 * cgroup_rstat_cpu definition for details. 28 */ 29 __bpf_kfunc void cgroup_rstat_updated(struct cgroup *cgrp, int cpu) 30 { 31 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); 32 unsigned long flags; 33 34 /* 35 * Speculative already-on-list test. This may race leading to 36 * temporary inaccuracies, which is fine. 37 * 38 * Because @parent's updated_children is terminated with @parent 39 * instead of NULL, we can tell whether @cgrp is on the list by 40 * testing the next pointer for NULL. 41 */ 42 if (data_race(cgroup_rstat_cpu(cgrp, cpu)->updated_next)) 43 return; 44 45 raw_spin_lock_irqsave(cpu_lock, flags); 46 47 /* put @cgrp and all ancestors on the corresponding updated lists */ 48 while (true) { 49 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 50 struct cgroup *parent = cgroup_parent(cgrp); 51 struct cgroup_rstat_cpu *prstatc; 52 53 /* 54 * Both additions and removals are bottom-up. If a cgroup 55 * is already in the tree, all ancestors are. 56 */ 57 if (rstatc->updated_next) 58 break; 59 60 /* Root has no parent to link it to, but mark it busy */ 61 if (!parent) { 62 rstatc->updated_next = cgrp; 63 break; 64 } 65 66 prstatc = cgroup_rstat_cpu(parent, cpu); 67 rstatc->updated_next = prstatc->updated_children; 68 prstatc->updated_children = cgrp; 69 70 cgrp = parent; 71 } 72 73 raw_spin_unlock_irqrestore(cpu_lock, flags); 74 } 75 76 /** 77 * cgroup_rstat_cpu_pop_updated - iterate and dismantle rstat_cpu updated tree 78 * @pos: current position 79 * @root: root of the tree to traversal 80 * @cpu: target cpu 81 * 82 * Walks the updated rstat_cpu tree on @cpu from @root. %NULL @pos starts 83 * the traversal and %NULL return indicates the end. During traversal, 84 * each returned cgroup is unlinked from the tree. Must be called with the 85 * matching cgroup_rstat_cpu_lock held. 86 * 87 * The only ordering guarantee is that, for a parent and a child pair 88 * covered by a given traversal, if a child is visited, its parent is 89 * guaranteed to be visited afterwards. 90 */ 91 static struct cgroup *cgroup_rstat_cpu_pop_updated(struct cgroup *pos, 92 struct cgroup *root, int cpu) 93 { 94 struct cgroup_rstat_cpu *rstatc; 95 struct cgroup *parent; 96 97 if (pos == root) 98 return NULL; 99 100 /* 101 * We're gonna walk down to the first leaf and visit/remove it. We 102 * can pick whatever unvisited node as the starting point. 103 */ 104 if (!pos) { 105 pos = root; 106 /* return NULL if this subtree is not on-list */ 107 if (!cgroup_rstat_cpu(pos, cpu)->updated_next) 108 return NULL; 109 } else { 110 pos = cgroup_parent(pos); 111 } 112 113 /* walk down to the first leaf */ 114 while (true) { 115 rstatc = cgroup_rstat_cpu(pos, cpu); 116 if (rstatc->updated_children == pos) 117 break; 118 pos = rstatc->updated_children; 119 } 120 121 /* 122 * Unlink @pos from the tree. As the updated_children list is 123 * singly linked, we have to walk it to find the removal point. 124 * However, due to the way we traverse, @pos will be the first 125 * child in most cases. The only exception is @root. 126 */ 127 parent = cgroup_parent(pos); 128 if (parent) { 129 struct cgroup_rstat_cpu *prstatc; 130 struct cgroup **nextp; 131 132 prstatc = cgroup_rstat_cpu(parent, cpu); 133 nextp = &prstatc->updated_children; 134 while (*nextp != pos) { 135 struct cgroup_rstat_cpu *nrstatc; 136 137 nrstatc = cgroup_rstat_cpu(*nextp, cpu); 138 WARN_ON_ONCE(*nextp == parent); 139 nextp = &nrstatc->updated_next; 140 } 141 *nextp = rstatc->updated_next; 142 } 143 144 rstatc->updated_next = NULL; 145 return pos; 146 } 147 148 /* 149 * A hook for bpf stat collectors to attach to and flush their stats. 150 * Together with providing bpf kfuncs for cgroup_rstat_updated() and 151 * cgroup_rstat_flush(), this enables a complete workflow where bpf progs that 152 * collect cgroup stats can integrate with rstat for efficient flushing. 153 * 154 * A static noinline declaration here could cause the compiler to optimize away 155 * the function. A global noinline declaration will keep the definition, but may 156 * optimize away the callsite. Therefore, __weak is needed to ensure that the 157 * call is still emitted, by telling the compiler that we don't know what the 158 * function might eventually be. 159 */ 160 161 __bpf_hook_start(); 162 163 __weak noinline void bpf_rstat_flush(struct cgroup *cgrp, 164 struct cgroup *parent, int cpu) 165 { 166 } 167 168 __bpf_hook_end(); 169 170 /* see cgroup_rstat_flush() */ 171 static void cgroup_rstat_flush_locked(struct cgroup *cgrp) 172 __releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock) 173 { 174 int cpu; 175 176 lockdep_assert_held(&cgroup_rstat_lock); 177 178 for_each_possible_cpu(cpu) { 179 raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, 180 cpu); 181 struct cgroup *pos = NULL; 182 unsigned long flags; 183 184 /* 185 * The _irqsave() is needed because cgroup_rstat_lock is 186 * spinlock_t which is a sleeping lock on PREEMPT_RT. Acquiring 187 * this lock with the _irq() suffix only disables interrupts on 188 * a non-PREEMPT_RT kernel. The raw_spinlock_t below disables 189 * interrupts on both configurations. The _irqsave() ensures 190 * that interrupts are always disabled and later restored. 191 */ 192 raw_spin_lock_irqsave(cpu_lock, flags); 193 while ((pos = cgroup_rstat_cpu_pop_updated(pos, cgrp, cpu))) { 194 struct cgroup_subsys_state *css; 195 196 cgroup_base_stat_flush(pos, cpu); 197 bpf_rstat_flush(pos, cgroup_parent(pos), cpu); 198 199 rcu_read_lock(); 200 list_for_each_entry_rcu(css, &pos->rstat_css_list, 201 rstat_css_node) 202 css->ss->css_rstat_flush(css, cpu); 203 rcu_read_unlock(); 204 } 205 raw_spin_unlock_irqrestore(cpu_lock, flags); 206 207 /* play nice and yield if necessary */ 208 if (need_resched() || spin_needbreak(&cgroup_rstat_lock)) { 209 spin_unlock_irq(&cgroup_rstat_lock); 210 if (!cond_resched()) 211 cpu_relax(); 212 spin_lock_irq(&cgroup_rstat_lock); 213 } 214 } 215 } 216 217 /** 218 * cgroup_rstat_flush - flush stats in @cgrp's subtree 219 * @cgrp: target cgroup 220 * 221 * Collect all per-cpu stats in @cgrp's subtree into the global counters 222 * and propagate them upwards. After this function returns, all cgroups in 223 * the subtree have up-to-date ->stat. 224 * 225 * This also gets all cgroups in the subtree including @cgrp off the 226 * ->updated_children lists. 227 * 228 * This function may block. 229 */ 230 __bpf_kfunc void cgroup_rstat_flush(struct cgroup *cgrp) 231 { 232 might_sleep(); 233 234 spin_lock_irq(&cgroup_rstat_lock); 235 cgroup_rstat_flush_locked(cgrp); 236 spin_unlock_irq(&cgroup_rstat_lock); 237 } 238 239 /** 240 * cgroup_rstat_flush_hold - flush stats in @cgrp's subtree and hold 241 * @cgrp: target cgroup 242 * 243 * Flush stats in @cgrp's subtree and prevent further flushes. Must be 244 * paired with cgroup_rstat_flush_release(). 245 * 246 * This function may block. 247 */ 248 void cgroup_rstat_flush_hold(struct cgroup *cgrp) 249 __acquires(&cgroup_rstat_lock) 250 { 251 might_sleep(); 252 spin_lock_irq(&cgroup_rstat_lock); 253 cgroup_rstat_flush_locked(cgrp); 254 } 255 256 /** 257 * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold() 258 */ 259 void cgroup_rstat_flush_release(void) 260 __releases(&cgroup_rstat_lock) 261 { 262 spin_unlock_irq(&cgroup_rstat_lock); 263 } 264 265 int cgroup_rstat_init(struct cgroup *cgrp) 266 { 267 int cpu; 268 269 /* the root cgrp has rstat_cpu preallocated */ 270 if (!cgrp->rstat_cpu) { 271 cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu); 272 if (!cgrp->rstat_cpu) 273 return -ENOMEM; 274 } 275 276 /* ->updated_children list is self terminated */ 277 for_each_possible_cpu(cpu) { 278 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 279 280 rstatc->updated_children = cgrp; 281 u64_stats_init(&rstatc->bsync); 282 } 283 284 return 0; 285 } 286 287 void cgroup_rstat_exit(struct cgroup *cgrp) 288 { 289 int cpu; 290 291 cgroup_rstat_flush(cgrp); 292 293 /* sanity check */ 294 for_each_possible_cpu(cpu) { 295 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 296 297 if (WARN_ON_ONCE(rstatc->updated_children != cgrp) || 298 WARN_ON_ONCE(rstatc->updated_next)) 299 return; 300 } 301 302 free_percpu(cgrp->rstat_cpu); 303 cgrp->rstat_cpu = NULL; 304 } 305 306 void __init cgroup_rstat_boot(void) 307 { 308 int cpu; 309 310 for_each_possible_cpu(cpu) 311 raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu)); 312 } 313 314 /* 315 * Functions for cgroup basic resource statistics implemented on top of 316 * rstat. 317 */ 318 static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, 319 struct cgroup_base_stat *src_bstat) 320 { 321 dst_bstat->cputime.utime += src_bstat->cputime.utime; 322 dst_bstat->cputime.stime += src_bstat->cputime.stime; 323 dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; 324 #ifdef CONFIG_SCHED_CORE 325 dst_bstat->forceidle_sum += src_bstat->forceidle_sum; 326 #endif 327 } 328 329 static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, 330 struct cgroup_base_stat *src_bstat) 331 { 332 dst_bstat->cputime.utime -= src_bstat->cputime.utime; 333 dst_bstat->cputime.stime -= src_bstat->cputime.stime; 334 dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; 335 #ifdef CONFIG_SCHED_CORE 336 dst_bstat->forceidle_sum -= src_bstat->forceidle_sum; 337 #endif 338 } 339 340 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) 341 { 342 struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); 343 struct cgroup *parent = cgroup_parent(cgrp); 344 struct cgroup_rstat_cpu *prstatc; 345 struct cgroup_base_stat delta; 346 unsigned seq; 347 348 /* Root-level stats are sourced from system-wide CPU stats */ 349 if (!parent) 350 return; 351 352 /* fetch the current per-cpu values */ 353 do { 354 seq = __u64_stats_fetch_begin(&rstatc->bsync); 355 delta = rstatc->bstat; 356 } while (__u64_stats_fetch_retry(&rstatc->bsync, seq)); 357 358 /* propagate per-cpu delta to cgroup and per-cpu global statistics */ 359 cgroup_base_stat_sub(&delta, &rstatc->last_bstat); 360 cgroup_base_stat_add(&cgrp->bstat, &delta); 361 cgroup_base_stat_add(&rstatc->last_bstat, &delta); 362 cgroup_base_stat_add(&rstatc->subtree_bstat, &delta); 363 364 /* propagate cgroup and per-cpu global delta to parent (unless that's root) */ 365 if (cgroup_parent(parent)) { 366 delta = cgrp->bstat; 367 cgroup_base_stat_sub(&delta, &cgrp->last_bstat); 368 cgroup_base_stat_add(&parent->bstat, &delta); 369 cgroup_base_stat_add(&cgrp->last_bstat, &delta); 370 371 delta = rstatc->subtree_bstat; 372 prstatc = cgroup_rstat_cpu(parent, cpu); 373 cgroup_base_stat_sub(&delta, &rstatc->last_subtree_bstat); 374 cgroup_base_stat_add(&prstatc->subtree_bstat, &delta); 375 cgroup_base_stat_add(&rstatc->last_subtree_bstat, &delta); 376 } 377 } 378 379 static struct cgroup_rstat_cpu * 380 cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags) 381 { 382 struct cgroup_rstat_cpu *rstatc; 383 384 rstatc = get_cpu_ptr(cgrp->rstat_cpu); 385 *flags = u64_stats_update_begin_irqsave(&rstatc->bsync); 386 return rstatc; 387 } 388 389 static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, 390 struct cgroup_rstat_cpu *rstatc, 391 unsigned long flags) 392 { 393 u64_stats_update_end_irqrestore(&rstatc->bsync, flags); 394 cgroup_rstat_updated(cgrp, smp_processor_id()); 395 put_cpu_ptr(rstatc); 396 } 397 398 void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) 399 { 400 struct cgroup_rstat_cpu *rstatc; 401 unsigned long flags; 402 403 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 404 rstatc->bstat.cputime.sum_exec_runtime += delta_exec; 405 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags); 406 } 407 408 void __cgroup_account_cputime_field(struct cgroup *cgrp, 409 enum cpu_usage_stat index, u64 delta_exec) 410 { 411 struct cgroup_rstat_cpu *rstatc; 412 unsigned long flags; 413 414 rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); 415 416 switch (index) { 417 case CPUTIME_USER: 418 case CPUTIME_NICE: 419 rstatc->bstat.cputime.utime += delta_exec; 420 break; 421 case CPUTIME_SYSTEM: 422 case CPUTIME_IRQ: 423 case CPUTIME_SOFTIRQ: 424 rstatc->bstat.cputime.stime += delta_exec; 425 break; 426 #ifdef CONFIG_SCHED_CORE 427 case CPUTIME_FORCEIDLE: 428 rstatc->bstat.forceidle_sum += delta_exec; 429 break; 430 #endif 431 default: 432 break; 433 } 434 435 cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags); 436 } 437 438 /* 439 * compute the cputime for the root cgroup by getting the per cpu data 440 * at a global level, then categorizing the fields in a manner consistent 441 * with how it is done by __cgroup_account_cputime_field for each bit of 442 * cpu time attributed to a cgroup. 443 */ 444 static void root_cgroup_cputime(struct cgroup_base_stat *bstat) 445 { 446 struct task_cputime *cputime = &bstat->cputime; 447 int i; 448 449 memset(bstat, 0, sizeof(*bstat)); 450 for_each_possible_cpu(i) { 451 struct kernel_cpustat kcpustat; 452 u64 *cpustat = kcpustat.cpustat; 453 u64 user = 0; 454 u64 sys = 0; 455 456 kcpustat_cpu_fetch(&kcpustat, i); 457 458 user += cpustat[CPUTIME_USER]; 459 user += cpustat[CPUTIME_NICE]; 460 cputime->utime += user; 461 462 sys += cpustat[CPUTIME_SYSTEM]; 463 sys += cpustat[CPUTIME_IRQ]; 464 sys += cpustat[CPUTIME_SOFTIRQ]; 465 cputime->stime += sys; 466 467 cputime->sum_exec_runtime += user; 468 cputime->sum_exec_runtime += sys; 469 cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL]; 470 471 #ifdef CONFIG_SCHED_CORE 472 bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE]; 473 #endif 474 } 475 } 476 477 void cgroup_base_stat_cputime_show(struct seq_file *seq) 478 { 479 struct cgroup *cgrp = seq_css(seq)->cgroup; 480 u64 usage, utime, stime; 481 struct cgroup_base_stat bstat; 482 #ifdef CONFIG_SCHED_CORE 483 u64 forceidle_time; 484 #endif 485 486 if (cgroup_parent(cgrp)) { 487 cgroup_rstat_flush_hold(cgrp); 488 usage = cgrp->bstat.cputime.sum_exec_runtime; 489 cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, 490 &utime, &stime); 491 #ifdef CONFIG_SCHED_CORE 492 forceidle_time = cgrp->bstat.forceidle_sum; 493 #endif 494 cgroup_rstat_flush_release(); 495 } else { 496 root_cgroup_cputime(&bstat); 497 usage = bstat.cputime.sum_exec_runtime; 498 utime = bstat.cputime.utime; 499 stime = bstat.cputime.stime; 500 #ifdef CONFIG_SCHED_CORE 501 forceidle_time = bstat.forceidle_sum; 502 #endif 503 } 504 505 do_div(usage, NSEC_PER_USEC); 506 do_div(utime, NSEC_PER_USEC); 507 do_div(stime, NSEC_PER_USEC); 508 #ifdef CONFIG_SCHED_CORE 509 do_div(forceidle_time, NSEC_PER_USEC); 510 #endif 511 512 seq_printf(seq, "usage_usec %llu\n" 513 "user_usec %llu\n" 514 "system_usec %llu\n", 515 usage, utime, stime); 516 517 #ifdef CONFIG_SCHED_CORE 518 seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time); 519 #endif 520 } 521 522 /* Add bpf kfuncs for cgroup_rstat_updated() and cgroup_rstat_flush() */ 523 BTF_SET8_START(bpf_rstat_kfunc_ids) 524 BTF_ID_FLAGS(func, cgroup_rstat_updated) 525 BTF_ID_FLAGS(func, cgroup_rstat_flush, KF_SLEEPABLE) 526 BTF_SET8_END(bpf_rstat_kfunc_ids) 527 528 static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = { 529 .owner = THIS_MODULE, 530 .set = &bpf_rstat_kfunc_ids, 531 }; 532 533 static int __init bpf_rstat_kfunc_init(void) 534 { 535 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 536 &bpf_rstat_kfunc_set); 537 } 538 late_initcall(bpf_rstat_kfunc_init); 539