1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3
4 #include <linux/sched/cputime.h>
5
6 #include <linux/bpf.h>
7 #include <linux/btf.h>
8 #include <linux/btf_ids.h>
9
10 #include <trace/events/cgroup.h>
11
12 static DEFINE_SPINLOCK(rstat_base_lock);
13 static DEFINE_PER_CPU(struct llist_head, rstat_backlog_list);
14
15 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu);
16
17 /*
18 * Determines whether a given css can participate in rstat.
19 * css's that are cgroup::self use rstat for base stats.
20 * Other css's associated with a subsystem use rstat only when
21 * they define the ss->css_rstat_flush callback.
22 */
css_uses_rstat(struct cgroup_subsys_state * css)23 static inline bool css_uses_rstat(struct cgroup_subsys_state *css)
24 {
25 return css_is_self(css) || css->ss->css_rstat_flush != NULL;
26 }
27
css_rstat_cpu(struct cgroup_subsys_state * css,int cpu)28 static struct css_rstat_cpu *css_rstat_cpu(
29 struct cgroup_subsys_state *css, int cpu)
30 {
31 return per_cpu_ptr(css->rstat_cpu, cpu);
32 }
33
cgroup_rstat_base_cpu(struct cgroup * cgrp,int cpu)34 static struct cgroup_rstat_base_cpu *cgroup_rstat_base_cpu(
35 struct cgroup *cgrp, int cpu)
36 {
37 return per_cpu_ptr(cgrp->rstat_base_cpu, cpu);
38 }
39
ss_rstat_lock(struct cgroup_subsys * ss)40 static spinlock_t *ss_rstat_lock(struct cgroup_subsys *ss)
41 {
42 if (ss)
43 return &ss->rstat_ss_lock;
44
45 return &rstat_base_lock;
46 }
47
ss_lhead_cpu(struct cgroup_subsys * ss,int cpu)48 static inline struct llist_head *ss_lhead_cpu(struct cgroup_subsys *ss, int cpu)
49 {
50 if (ss)
51 return per_cpu_ptr(ss->lhead, cpu);
52 return per_cpu_ptr(&rstat_backlog_list, cpu);
53 }
54
55 /**
56 * css_rstat_updated - keep track of updated rstat_cpu
57 * @css: target cgroup subsystem state
58 * @cpu: cpu on which rstat_cpu was updated
59 *
60 * Atomically inserts the css in the ss's llist for the given cpu. This is
61 * reentrant safe i.e. safe against softirq, hardirq and nmi. The ss's llist
62 * will be processed at the flush time to create the update tree.
63 *
64 * NOTE: if the user needs the guarantee that the updater either add itself in
65 * the lockless list or the concurrent flusher flushes its updated stats, a
66 * memory barrier is needed before the call to css_rstat_updated() i.e. a
67 * barrier after updating the per-cpu stats and before calling
68 * css_rstat_updated().
69 */
css_rstat_updated(struct cgroup_subsys_state * css,int cpu)70 __bpf_kfunc void css_rstat_updated(struct cgroup_subsys_state *css, int cpu)
71 {
72 struct llist_head *lhead;
73 struct css_rstat_cpu *rstatc;
74 struct llist_node *self;
75
76 /*
77 * Since bpf programs can call this function, prevent access to
78 * uninitialized rstat pointers.
79 */
80 if (!css_uses_rstat(css))
81 return;
82
83 lockdep_assert_preemption_disabled();
84
85 /*
86 * For archs withnot nmi safe cmpxchg or percpu ops support, ignore
87 * the requests from nmi context.
88 */
89 if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
90 !IS_ENABLED(CONFIG_ARCH_HAS_NMI_SAFE_THIS_CPU_OPS)) && in_nmi())
91 return;
92
93 rstatc = css_rstat_cpu(css, cpu);
94 /*
95 * If already on list return. This check is racy and smp_mb() is needed
96 * to pair it with the smp_mb() in css_process_update_tree() if the
97 * guarantee that the updated stats are visible to concurrent flusher is
98 * needed.
99 */
100 if (llist_on_list(&rstatc->lnode))
101 return;
102
103 /*
104 * This function can be renentered by irqs and nmis for the same cgroup
105 * and may try to insert the same per-cpu lnode into the llist. Note
106 * that llist_add() does not protect against such scenarios. In addition
107 * this same per-cpu lnode can be modified through init_llist_node()
108 * from css_rstat_flush() running on a different CPU.
109 *
110 * To protect against such stacked contexts of irqs/nmis, we use the
111 * fact that lnode points to itself when not on a list and then use
112 * try_cmpxchg() to atomically set to NULL to select the winner
113 * which will call llist_add(). The losers can assume the insertion is
114 * successful and the winner will eventually add the per-cpu lnode to
115 * the llist.
116 *
117 * Please note that we can not use this_cpu_cmpxchg() here as on some
118 * archs it is not safe against modifications from multiple CPUs.
119 */
120 self = &rstatc->lnode;
121 if (!try_cmpxchg(&rstatc->lnode.next, &self, NULL))
122 return;
123
124 lhead = ss_lhead_cpu(css->ss, cpu);
125 llist_add(&rstatc->lnode, lhead);
126 }
127
__css_process_update_tree(struct cgroup_subsys_state * css,int cpu)128 static void __css_process_update_tree(struct cgroup_subsys_state *css, int cpu)
129 {
130 /* put @css and all ancestors on the corresponding updated lists */
131 while (true) {
132 struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu);
133 struct cgroup_subsys_state *parent = css->parent;
134 struct css_rstat_cpu *prstatc;
135
136 /*
137 * Both additions and removals are bottom-up. If a cgroup
138 * is already in the tree, all ancestors are.
139 */
140 if (rstatc->updated_next)
141 break;
142
143 /* Root has no parent to link it to, but mark it busy */
144 if (!parent) {
145 rstatc->updated_next = css;
146 break;
147 }
148
149 prstatc = css_rstat_cpu(parent, cpu);
150 rstatc->updated_next = prstatc->updated_children;
151 prstatc->updated_children = css;
152
153 css = parent;
154 }
155 }
156
css_process_update_tree(struct cgroup_subsys * ss,int cpu)157 static void css_process_update_tree(struct cgroup_subsys *ss, int cpu)
158 {
159 struct llist_head *lhead = ss_lhead_cpu(ss, cpu);
160 struct llist_node *lnode;
161
162 while ((lnode = llist_del_first_init(lhead))) {
163 struct css_rstat_cpu *rstatc;
164
165 /*
166 * smp_mb() is needed here (more specifically in between
167 * init_llist_node() and per-cpu stats flushing) if the
168 * guarantee is required by a rstat user where etiher the
169 * updater should add itself on the lockless list or the
170 * flusher flush the stats updated by the updater who have
171 * observed that they are already on the list. The
172 * corresponding barrier pair for this one should be before
173 * css_rstat_updated() by the user.
174 *
175 * For now, there aren't any such user, so not adding the
176 * barrier here but if such a use-case arise, please add
177 * smp_mb() here.
178 */
179
180 rstatc = container_of(lnode, struct css_rstat_cpu, lnode);
181 __css_process_update_tree(rstatc->owner, cpu);
182 }
183 }
184
185 /**
186 * css_rstat_push_children - push children css's into the given list
187 * @head: current head of the list (= subtree root)
188 * @child: first child of the root
189 * @cpu: target cpu
190 * Return: A new singly linked list of css's to be flushed
191 *
192 * Iteratively traverse down the css_rstat_cpu updated tree level by
193 * level and push all the parents first before their next level children
194 * into a singly linked list via the rstat_flush_next pointer built from the
195 * tail backward like "pushing" css's into a stack. The root is pushed by
196 * the caller.
197 */
css_rstat_push_children(struct cgroup_subsys_state * head,struct cgroup_subsys_state * child,int cpu)198 static struct cgroup_subsys_state *css_rstat_push_children(
199 struct cgroup_subsys_state *head,
200 struct cgroup_subsys_state *child, int cpu)
201 {
202 struct cgroup_subsys_state *cnext = child; /* Next head of child css level */
203 struct cgroup_subsys_state *ghead = NULL; /* Head of grandchild css level */
204 struct cgroup_subsys_state *parent, *grandchild;
205 struct css_rstat_cpu *crstatc;
206
207 child->rstat_flush_next = NULL;
208
209 /*
210 * The subsystem rstat lock must be held for the whole duration from
211 * here as the rstat_flush_next list is being constructed to when
212 * it is consumed later in css_rstat_flush().
213 */
214 lockdep_assert_held(ss_rstat_lock(head->ss));
215
216 /*
217 * Notation: -> updated_next pointer
218 * => rstat_flush_next pointer
219 *
220 * Assuming the following sample updated_children lists:
221 * P: C1 -> C2 -> P
222 * C1: G11 -> G12 -> C1
223 * C2: G21 -> G22 -> C2
224 *
225 * After 1st iteration:
226 * head => C2 => C1 => NULL
227 * ghead => G21 => G11 => NULL
228 *
229 * After 2nd iteration:
230 * head => G12 => G11 => G22 => G21 => C2 => C1 => NULL
231 */
232 next_level:
233 while (cnext) {
234 child = cnext;
235 cnext = child->rstat_flush_next;
236 parent = child->parent;
237
238 /* updated_next is parent cgroup terminated if !NULL */
239 while (child != parent) {
240 child->rstat_flush_next = head;
241 head = child;
242 crstatc = css_rstat_cpu(child, cpu);
243 grandchild = crstatc->updated_children;
244 if (grandchild != child) {
245 /* Push the grand child to the next level */
246 crstatc->updated_children = child;
247 grandchild->rstat_flush_next = ghead;
248 ghead = grandchild;
249 }
250 child = crstatc->updated_next;
251 crstatc->updated_next = NULL;
252 }
253 }
254
255 if (ghead) {
256 cnext = ghead;
257 ghead = NULL;
258 goto next_level;
259 }
260 return head;
261 }
262
263 /**
264 * css_rstat_updated_list - build a list of updated css's to be flushed
265 * @root: root of the css subtree to traverse
266 * @cpu: target cpu
267 * Return: A singly linked list of css's to be flushed
268 *
269 * Walks the updated rstat_cpu tree on @cpu from @root. During traversal,
270 * each returned css is unlinked from the updated tree.
271 *
272 * The only ordering guarantee is that, for a parent and a child pair
273 * covered by a given traversal, the child is before its parent in
274 * the list.
275 *
276 * Note that updated_children is self terminated and points to a list of
277 * child css's if not empty. Whereas updated_next is like a sibling link
278 * within the children list and terminated by the parent css. An exception
279 * here is the css root whose updated_next can be self terminated.
280 */
css_rstat_updated_list(struct cgroup_subsys_state * root,int cpu)281 static struct cgroup_subsys_state *css_rstat_updated_list(
282 struct cgroup_subsys_state *root, int cpu)
283 {
284 struct css_rstat_cpu *rstatc = css_rstat_cpu(root, cpu);
285 struct cgroup_subsys_state *head = NULL, *parent, *child;
286
287 css_process_update_tree(root->ss, cpu);
288
289 /* Return NULL if this subtree is not on-list */
290 if (!rstatc->updated_next)
291 return NULL;
292
293 /*
294 * Unlink @root from its parent. As the updated_children list is
295 * singly linked, we have to walk it to find the removal point.
296 */
297 parent = root->parent;
298 if (parent) {
299 struct css_rstat_cpu *prstatc;
300 struct cgroup_subsys_state **nextp;
301
302 prstatc = css_rstat_cpu(parent, cpu);
303 nextp = &prstatc->updated_children;
304 while (*nextp != root) {
305 struct css_rstat_cpu *nrstatc;
306
307 nrstatc = css_rstat_cpu(*nextp, cpu);
308 WARN_ON_ONCE(*nextp == parent);
309 nextp = &nrstatc->updated_next;
310 }
311 *nextp = rstatc->updated_next;
312 }
313
314 rstatc->updated_next = NULL;
315
316 /* Push @root to the list first before pushing the children */
317 head = root;
318 root->rstat_flush_next = NULL;
319 child = rstatc->updated_children;
320 rstatc->updated_children = root;
321 if (child != root)
322 head = css_rstat_push_children(head, child, cpu);
323
324 return head;
325 }
326
327 /*
328 * A hook for bpf stat collectors to attach to and flush their stats.
329 * Together with providing bpf kfuncs for css_rstat_updated() and
330 * css_rstat_flush(), this enables a complete workflow where bpf progs that
331 * collect cgroup stats can integrate with rstat for efficient flushing.
332 *
333 * A static noinline declaration here could cause the compiler to optimize away
334 * the function. A global noinline declaration will keep the definition, but may
335 * optimize away the callsite. Therefore, __weak is needed to ensure that the
336 * call is still emitted, by telling the compiler that we don't know what the
337 * function might eventually be.
338 */
339
340 __bpf_hook_start();
341
bpf_rstat_flush(struct cgroup * cgrp,struct cgroup * parent,int cpu)342 __weak noinline void bpf_rstat_flush(struct cgroup *cgrp,
343 struct cgroup *parent, int cpu)
344 {
345 }
346
347 __bpf_hook_end();
348
349 /*
350 * Helper functions for locking.
351 *
352 * This makes it easier to diagnose locking issues and contention in
353 * production environments. The parameter @cpu_in_loop indicate lock
354 * was released and re-taken when collection data from the CPUs. The
355 * value -1 is used when obtaining the main lock else this is the CPU
356 * number processed last.
357 */
__css_rstat_lock(struct cgroup_subsys_state * css,int cpu_in_loop)358 static inline void __css_rstat_lock(struct cgroup_subsys_state *css,
359 int cpu_in_loop)
360 __acquires(ss_rstat_lock(css->ss))
361 {
362 struct cgroup *cgrp = css->cgroup;
363 spinlock_t *lock;
364 bool contended;
365
366 lock = ss_rstat_lock(css->ss);
367 contended = !spin_trylock_irq(lock);
368 if (contended) {
369 trace_cgroup_rstat_lock_contended(cgrp, cpu_in_loop, contended);
370 spin_lock_irq(lock);
371 }
372 trace_cgroup_rstat_locked(cgrp, cpu_in_loop, contended);
373 }
374
__css_rstat_unlock(struct cgroup_subsys_state * css,int cpu_in_loop)375 static inline void __css_rstat_unlock(struct cgroup_subsys_state *css,
376 int cpu_in_loop)
377 __releases(ss_rstat_lock(css->ss))
378 {
379 struct cgroup *cgrp = css->cgroup;
380 spinlock_t *lock;
381
382 lock = ss_rstat_lock(css->ss);
383 trace_cgroup_rstat_unlock(cgrp, cpu_in_loop, false);
384 spin_unlock_irq(lock);
385 }
386
387 /**
388 * css_rstat_flush - flush stats in @css's rstat subtree
389 * @css: target cgroup subsystem state
390 *
391 * Collect all per-cpu stats in @css's subtree into the global counters
392 * and propagate them upwards. After this function returns, all rstat
393 * nodes in the subtree have up-to-date ->stat.
394 *
395 * This also gets all rstat nodes in the subtree including @css off the
396 * ->updated_children lists.
397 *
398 * This function may block.
399 */
css_rstat_flush(struct cgroup_subsys_state * css)400 __bpf_kfunc void css_rstat_flush(struct cgroup_subsys_state *css)
401 {
402 int cpu;
403 bool is_self = css_is_self(css);
404
405 /*
406 * Since bpf programs can call this function, prevent access to
407 * uninitialized rstat pointers.
408 */
409 if (!css_uses_rstat(css))
410 return;
411
412 might_sleep();
413 for_each_possible_cpu(cpu) {
414 struct cgroup_subsys_state *pos;
415
416 /* Reacquire for each CPU to avoid disabling IRQs too long */
417 __css_rstat_lock(css, cpu);
418 pos = css_rstat_updated_list(css, cpu);
419 for (; pos; pos = pos->rstat_flush_next) {
420 if (is_self) {
421 cgroup_base_stat_flush(pos->cgroup, cpu);
422 bpf_rstat_flush(pos->cgroup,
423 cgroup_parent(pos->cgroup), cpu);
424 } else
425 pos->ss->css_rstat_flush(pos, cpu);
426 }
427 __css_rstat_unlock(css, cpu);
428 if (!cond_resched())
429 cpu_relax();
430 }
431 }
432
css_rstat_init(struct cgroup_subsys_state * css)433 int css_rstat_init(struct cgroup_subsys_state *css)
434 {
435 struct cgroup *cgrp = css->cgroup;
436 int cpu;
437 bool is_self = css_is_self(css);
438
439 if (is_self) {
440 /* the root cgrp has rstat_base_cpu preallocated */
441 if (!cgrp->rstat_base_cpu) {
442 cgrp->rstat_base_cpu = alloc_percpu(struct cgroup_rstat_base_cpu);
443 if (!cgrp->rstat_base_cpu)
444 return -ENOMEM;
445 }
446 } else if (css->ss->css_rstat_flush == NULL)
447 return 0;
448
449 /* the root cgrp's self css has rstat_cpu preallocated */
450 if (!css->rstat_cpu) {
451 css->rstat_cpu = alloc_percpu(struct css_rstat_cpu);
452 if (!css->rstat_cpu) {
453 if (is_self)
454 free_percpu(cgrp->rstat_base_cpu);
455
456 return -ENOMEM;
457 }
458 }
459
460 /* ->updated_children list is self terminated */
461 for_each_possible_cpu(cpu) {
462 struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu);
463
464 rstatc->owner = rstatc->updated_children = css;
465 init_llist_node(&rstatc->lnode);
466
467 if (is_self) {
468 struct cgroup_rstat_base_cpu *rstatbc;
469
470 rstatbc = cgroup_rstat_base_cpu(cgrp, cpu);
471 u64_stats_init(&rstatbc->bsync);
472 }
473 }
474
475 return 0;
476 }
477
css_rstat_exit(struct cgroup_subsys_state * css)478 void css_rstat_exit(struct cgroup_subsys_state *css)
479 {
480 int cpu;
481
482 if (!css_uses_rstat(css))
483 return;
484
485 if (!css->rstat_cpu)
486 return;
487
488 css_rstat_flush(css);
489
490 /* sanity check */
491 for_each_possible_cpu(cpu) {
492 struct css_rstat_cpu *rstatc = css_rstat_cpu(css, cpu);
493
494 if (WARN_ON_ONCE(rstatc->updated_children != css) ||
495 WARN_ON_ONCE(rstatc->updated_next))
496 return;
497 }
498
499 if (css_is_self(css)) {
500 struct cgroup *cgrp = css->cgroup;
501
502 free_percpu(cgrp->rstat_base_cpu);
503 cgrp->rstat_base_cpu = NULL;
504 }
505
506 free_percpu(css->rstat_cpu);
507 css->rstat_cpu = NULL;
508 }
509
510 /**
511 * ss_rstat_init - subsystem-specific rstat initialization
512 * @ss: target subsystem
513 *
514 * If @ss is NULL, the static locks associated with the base stats
515 * are initialized. If @ss is non-NULL, the subsystem-specific locks
516 * are initialized.
517 */
ss_rstat_init(struct cgroup_subsys * ss)518 int __init ss_rstat_init(struct cgroup_subsys *ss)
519 {
520 int cpu;
521
522 if (ss) {
523 ss->lhead = alloc_percpu(struct llist_head);
524 if (!ss->lhead)
525 return -ENOMEM;
526 }
527
528 spin_lock_init(ss_rstat_lock(ss));
529 for_each_possible_cpu(cpu)
530 init_llist_head(ss_lhead_cpu(ss, cpu));
531
532 return 0;
533 }
534
535 /*
536 * Functions for cgroup basic resource statistics implemented on top of
537 * rstat.
538 */
cgroup_base_stat_add(struct cgroup_base_stat * dst_bstat,struct cgroup_base_stat * src_bstat)539 static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat,
540 struct cgroup_base_stat *src_bstat)
541 {
542 dst_bstat->cputime.utime += src_bstat->cputime.utime;
543 dst_bstat->cputime.stime += src_bstat->cputime.stime;
544 dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime;
545 #ifdef CONFIG_SCHED_CORE
546 dst_bstat->forceidle_sum += src_bstat->forceidle_sum;
547 #endif
548 dst_bstat->ntime += src_bstat->ntime;
549 }
550
cgroup_base_stat_sub(struct cgroup_base_stat * dst_bstat,struct cgroup_base_stat * src_bstat)551 static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat,
552 struct cgroup_base_stat *src_bstat)
553 {
554 dst_bstat->cputime.utime -= src_bstat->cputime.utime;
555 dst_bstat->cputime.stime -= src_bstat->cputime.stime;
556 dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime;
557 #ifdef CONFIG_SCHED_CORE
558 dst_bstat->forceidle_sum -= src_bstat->forceidle_sum;
559 #endif
560 dst_bstat->ntime -= src_bstat->ntime;
561 }
562
cgroup_base_stat_flush(struct cgroup * cgrp,int cpu)563 static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu)
564 {
565 struct cgroup_rstat_base_cpu *rstatbc = cgroup_rstat_base_cpu(cgrp, cpu);
566 struct cgroup *parent = cgroup_parent(cgrp);
567 struct cgroup_rstat_base_cpu *prstatbc;
568 struct cgroup_base_stat delta;
569 unsigned seq;
570
571 /* Root-level stats are sourced from system-wide CPU stats */
572 if (!parent)
573 return;
574
575 /* fetch the current per-cpu values */
576 do {
577 seq = __u64_stats_fetch_begin(&rstatbc->bsync);
578 delta = rstatbc->bstat;
579 } while (__u64_stats_fetch_retry(&rstatbc->bsync, seq));
580
581 /* propagate per-cpu delta to cgroup and per-cpu global statistics */
582 cgroup_base_stat_sub(&delta, &rstatbc->last_bstat);
583 cgroup_base_stat_add(&cgrp->bstat, &delta);
584 cgroup_base_stat_add(&rstatbc->last_bstat, &delta);
585 cgroup_base_stat_add(&rstatbc->subtree_bstat, &delta);
586
587 /* propagate cgroup and per-cpu global delta to parent (unless that's root) */
588 if (cgroup_parent(parent)) {
589 delta = cgrp->bstat;
590 cgroup_base_stat_sub(&delta, &cgrp->last_bstat);
591 cgroup_base_stat_add(&parent->bstat, &delta);
592 cgroup_base_stat_add(&cgrp->last_bstat, &delta);
593
594 delta = rstatbc->subtree_bstat;
595 prstatbc = cgroup_rstat_base_cpu(parent, cpu);
596 cgroup_base_stat_sub(&delta, &rstatbc->last_subtree_bstat);
597 cgroup_base_stat_add(&prstatbc->subtree_bstat, &delta);
598 cgroup_base_stat_add(&rstatbc->last_subtree_bstat, &delta);
599 }
600 }
601
602 static struct cgroup_rstat_base_cpu *
cgroup_base_stat_cputime_account_begin(struct cgroup * cgrp,unsigned long * flags)603 cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags)
604 {
605 struct cgroup_rstat_base_cpu *rstatbc;
606
607 rstatbc = get_cpu_ptr(cgrp->rstat_base_cpu);
608 *flags = u64_stats_update_begin_irqsave(&rstatbc->bsync);
609 return rstatbc;
610 }
611
cgroup_base_stat_cputime_account_end(struct cgroup * cgrp,struct cgroup_rstat_base_cpu * rstatbc,unsigned long flags)612 static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp,
613 struct cgroup_rstat_base_cpu *rstatbc,
614 unsigned long flags)
615 {
616 u64_stats_update_end_irqrestore(&rstatbc->bsync, flags);
617 css_rstat_updated(&cgrp->self, smp_processor_id());
618 put_cpu_ptr(rstatbc);
619 }
620
__cgroup_account_cputime(struct cgroup * cgrp,u64 delta_exec)621 void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec)
622 {
623 struct cgroup_rstat_base_cpu *rstatbc;
624 unsigned long flags;
625
626 rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
627 rstatbc->bstat.cputime.sum_exec_runtime += delta_exec;
628 cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags);
629 }
630
__cgroup_account_cputime_field(struct cgroup * cgrp,enum cpu_usage_stat index,u64 delta_exec)631 void __cgroup_account_cputime_field(struct cgroup *cgrp,
632 enum cpu_usage_stat index, u64 delta_exec)
633 {
634 struct cgroup_rstat_base_cpu *rstatbc;
635 unsigned long flags;
636
637 rstatbc = cgroup_base_stat_cputime_account_begin(cgrp, &flags);
638
639 switch (index) {
640 case CPUTIME_NICE:
641 rstatbc->bstat.ntime += delta_exec;
642 fallthrough;
643 case CPUTIME_USER:
644 rstatbc->bstat.cputime.utime += delta_exec;
645 break;
646 case CPUTIME_SYSTEM:
647 case CPUTIME_IRQ:
648 case CPUTIME_SOFTIRQ:
649 rstatbc->bstat.cputime.stime += delta_exec;
650 break;
651 #ifdef CONFIG_SCHED_CORE
652 case CPUTIME_FORCEIDLE:
653 rstatbc->bstat.forceidle_sum += delta_exec;
654 break;
655 #endif
656 default:
657 break;
658 }
659
660 cgroup_base_stat_cputime_account_end(cgrp, rstatbc, flags);
661 }
662
663 /*
664 * compute the cputime for the root cgroup by getting the per cpu data
665 * at a global level, then categorizing the fields in a manner consistent
666 * with how it is done by __cgroup_account_cputime_field for each bit of
667 * cpu time attributed to a cgroup.
668 */
root_cgroup_cputime(struct cgroup_base_stat * bstat)669 static void root_cgroup_cputime(struct cgroup_base_stat *bstat)
670 {
671 struct task_cputime *cputime = &bstat->cputime;
672 int i;
673
674 memset(bstat, 0, sizeof(*bstat));
675 for_each_possible_cpu(i) {
676 struct kernel_cpustat kcpustat;
677 u64 *cpustat = kcpustat.cpustat;
678 u64 user = 0;
679 u64 sys = 0;
680
681 kcpustat_cpu_fetch(&kcpustat, i);
682
683 user += cpustat[CPUTIME_USER];
684 user += cpustat[CPUTIME_NICE];
685 cputime->utime += user;
686
687 sys += cpustat[CPUTIME_SYSTEM];
688 sys += cpustat[CPUTIME_IRQ];
689 sys += cpustat[CPUTIME_SOFTIRQ];
690 cputime->stime += sys;
691
692 cputime->sum_exec_runtime += user;
693 cputime->sum_exec_runtime += sys;
694
695 #ifdef CONFIG_SCHED_CORE
696 bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE];
697 #endif
698 bstat->ntime += cpustat[CPUTIME_NICE];
699 }
700 }
701
702
cgroup_force_idle_show(struct seq_file * seq,struct cgroup_base_stat * bstat)703 static void cgroup_force_idle_show(struct seq_file *seq, struct cgroup_base_stat *bstat)
704 {
705 #ifdef CONFIG_SCHED_CORE
706 u64 forceidle_time = bstat->forceidle_sum;
707
708 do_div(forceidle_time, NSEC_PER_USEC);
709 seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time);
710 #endif
711 }
712
cgroup_base_stat_cputime_show(struct seq_file * seq)713 void cgroup_base_stat_cputime_show(struct seq_file *seq)
714 {
715 struct cgroup *cgrp = seq_css(seq)->cgroup;
716 struct cgroup_base_stat bstat;
717
718 if (cgroup_parent(cgrp)) {
719 css_rstat_flush(&cgrp->self);
720 __css_rstat_lock(&cgrp->self, -1);
721 bstat = cgrp->bstat;
722 cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime,
723 &bstat.cputime.utime, &bstat.cputime.stime);
724 __css_rstat_unlock(&cgrp->self, -1);
725 } else {
726 root_cgroup_cputime(&bstat);
727 }
728
729 do_div(bstat.cputime.sum_exec_runtime, NSEC_PER_USEC);
730 do_div(bstat.cputime.utime, NSEC_PER_USEC);
731 do_div(bstat.cputime.stime, NSEC_PER_USEC);
732 do_div(bstat.ntime, NSEC_PER_USEC);
733
734 seq_printf(seq, "usage_usec %llu\n"
735 "user_usec %llu\n"
736 "system_usec %llu\n"
737 "nice_usec %llu\n",
738 bstat.cputime.sum_exec_runtime,
739 bstat.cputime.utime,
740 bstat.cputime.stime,
741 bstat.ntime);
742
743 cgroup_force_idle_show(seq, &bstat);
744 }
745
746 /* Add bpf kfuncs for css_rstat_updated() and css_rstat_flush() */
747 BTF_KFUNCS_START(bpf_rstat_kfunc_ids)
748 BTF_ID_FLAGS(func, css_rstat_updated)
749 BTF_ID_FLAGS(func, css_rstat_flush, KF_SLEEPABLE)
750 BTF_KFUNCS_END(bpf_rstat_kfunc_ids)
751
752 static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = {
753 .owner = THIS_MODULE,
754 .set = &bpf_rstat_kfunc_ids,
755 };
756
bpf_rstat_kfunc_init(void)757 static int __init bpf_rstat_kfunc_init(void)
758 {
759 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
760 &bpf_rstat_kfunc_set);
761 }
762 late_initcall(bpf_rstat_kfunc_init);
763