1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Process number limiting controller for cgroups. 4 * 5 * Used to allow a cgroup hierarchy to stop any new processes from fork()ing 6 * after a certain limit is reached. 7 * 8 * Since it is trivial to hit the task limit without hitting any kmemcg limits 9 * in place, PIDs are a fundamental resource. As such, PID exhaustion must be 10 * preventable in the scope of a cgroup hierarchy by allowing resource limiting 11 * of the number of tasks in a cgroup. 12 * 13 * In order to use the `pids` controller, set the maximum number of tasks in 14 * pids.max (this is not available in the root cgroup for obvious reasons). The 15 * number of processes currently in the cgroup is given by pids.current. 16 * Organisational operations are not blocked by cgroup policies, so it is 17 * possible to have pids.current > pids.max. However, it is not possible to 18 * violate a cgroup policy through fork(). fork() will return -EAGAIN if forking 19 * would cause a cgroup policy to be violated. 20 * 21 * To set a cgroup to have no limit, set pids.max to "max". This is the default 22 * for all new cgroups (N.B. that PID limits are hierarchical, so the most 23 * stringent limit in the hierarchy is followed). 24 * 25 * pids.current tracks all child cgroup hierarchies, so parent/pids.current is 26 * a superset of parent/child/pids.current. 27 * 28 * Copyright (C) 2015 Aleksa Sarai <cyphar@cyphar.com> 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/threads.h> 33 #include <linux/atomic.h> 34 #include <linux/cgroup.h> 35 #include <linux/slab.h> 36 #include <linux/sched/task.h> 37 38 #define PIDS_MAX (PID_MAX_LIMIT + 1ULL) 39 #define PIDS_MAX_STR "max" 40 41 enum pidcg_event { 42 /* Fork failed in subtree because this pids_cgroup limit was hit. */ 43 PIDCG_MAX, 44 /* Fork failed in this pids_cgroup because ancestor limit was hit. */ 45 PIDCG_FORKFAIL, 46 NR_PIDCG_EVENTS, 47 }; 48 49 struct pids_cgroup { 50 struct cgroup_subsys_state css; 51 52 /* 53 * Use 64-bit types so that we can safely represent "max" as 54 * %PIDS_MAX = (%PID_MAX_LIMIT + 1). 55 */ 56 atomic64_t counter; 57 atomic64_t limit; 58 int64_t watermark; 59 60 /* Handles for pids.events[.local] */ 61 struct cgroup_file events_file; 62 struct cgroup_file events_local_file; 63 64 atomic64_t events[NR_PIDCG_EVENTS]; 65 atomic64_t events_local[NR_PIDCG_EVENTS]; 66 }; 67 68 static struct pids_cgroup *css_pids(struct cgroup_subsys_state *css) 69 { 70 return container_of(css, struct pids_cgroup, css); 71 } 72 73 static struct pids_cgroup *parent_pids(struct pids_cgroup *pids) 74 { 75 return css_pids(pids->css.parent); 76 } 77 78 static struct cgroup_subsys_state * 79 pids_css_alloc(struct cgroup_subsys_state *parent) 80 { 81 struct pids_cgroup *pids; 82 83 pids = kzalloc(sizeof(struct pids_cgroup), GFP_KERNEL); 84 if (!pids) 85 return ERR_PTR(-ENOMEM); 86 87 atomic64_set(&pids->limit, PIDS_MAX); 88 return &pids->css; 89 } 90 91 static void pids_css_free(struct cgroup_subsys_state *css) 92 { 93 kfree(css_pids(css)); 94 } 95 96 static void pids_update_watermark(struct pids_cgroup *p, int64_t nr_pids) 97 { 98 /* 99 * This is racy, but we don't need perfectly accurate tallying of 100 * the watermark, and this lets us avoid extra atomic overhead. 101 */ 102 if (nr_pids > READ_ONCE(p->watermark)) 103 WRITE_ONCE(p->watermark, nr_pids); 104 } 105 106 /** 107 * pids_cancel - uncharge the local pid count 108 * @pids: the pid cgroup state 109 * @num: the number of pids to cancel 110 * 111 * This function will WARN if the pid count goes under 0, because such a case is 112 * a bug in the pids controller proper. 113 */ 114 static void pids_cancel(struct pids_cgroup *pids, int num) 115 { 116 /* 117 * A negative count (or overflow for that matter) is invalid, 118 * and indicates a bug in the `pids` controller proper. 119 */ 120 WARN_ON_ONCE(atomic64_add_negative(-num, &pids->counter)); 121 } 122 123 /** 124 * pids_uncharge - hierarchically uncharge the pid count 125 * @pids: the pid cgroup state 126 * @num: the number of pids to uncharge 127 */ 128 static void pids_uncharge(struct pids_cgroup *pids, int num) 129 { 130 struct pids_cgroup *p; 131 132 for (p = pids; parent_pids(p); p = parent_pids(p)) 133 pids_cancel(p, num); 134 } 135 136 /** 137 * pids_charge - hierarchically charge the pid count 138 * @pids: the pid cgroup state 139 * @num: the number of pids to charge 140 * 141 * This function does *not* follow the pid limit set. It cannot fail and the new 142 * pid count may exceed the limit. This is only used for reverting failed 143 * attaches, where there is no other way out than violating the limit. 144 */ 145 static void pids_charge(struct pids_cgroup *pids, int num) 146 { 147 struct pids_cgroup *p; 148 149 for (p = pids; parent_pids(p); p = parent_pids(p)) { 150 int64_t new = atomic64_add_return(num, &p->counter); 151 152 pids_update_watermark(p, new); 153 } 154 } 155 156 /** 157 * pids_try_charge - hierarchically try to charge the pid count 158 * @pids: the pid cgroup state 159 * @num: the number of pids to charge 160 * @fail: storage of pid cgroup causing the fail 161 * 162 * This function follows the set limit. It will fail if the charge would cause 163 * the new value to exceed the hierarchical limit. Returns 0 if the charge 164 * succeeded, otherwise -EAGAIN. 165 */ 166 static int pids_try_charge(struct pids_cgroup *pids, int num, struct pids_cgroup **fail) 167 { 168 struct pids_cgroup *p, *q; 169 170 for (p = pids; parent_pids(p); p = parent_pids(p)) { 171 int64_t new = atomic64_add_return(num, &p->counter); 172 int64_t limit = atomic64_read(&p->limit); 173 174 /* 175 * Since new is capped to the maximum number of pid_t, if 176 * p->limit is %PIDS_MAX then we know that this test will never 177 * fail. 178 */ 179 if (new > limit) { 180 *fail = p; 181 goto revert; 182 } 183 /* 184 * Not technically accurate if we go over limit somewhere up 185 * the hierarchy, but that's tolerable for the watermark. 186 */ 187 pids_update_watermark(p, new); 188 } 189 190 return 0; 191 192 revert: 193 for (q = pids; q != p; q = parent_pids(q)) 194 pids_cancel(q, num); 195 pids_cancel(p, num); 196 197 return -EAGAIN; 198 } 199 200 static int pids_can_attach(struct cgroup_taskset *tset) 201 { 202 struct task_struct *task; 203 struct cgroup_subsys_state *dst_css; 204 205 cgroup_taskset_for_each(task, dst_css, tset) { 206 struct pids_cgroup *pids = css_pids(dst_css); 207 struct cgroup_subsys_state *old_css; 208 struct pids_cgroup *old_pids; 209 210 /* 211 * No need to pin @old_css between here and cancel_attach() 212 * because cgroup core protects it from being freed before 213 * the migration completes or fails. 214 */ 215 old_css = task_css(task, pids_cgrp_id); 216 old_pids = css_pids(old_css); 217 218 pids_charge(pids, 1); 219 pids_uncharge(old_pids, 1); 220 } 221 222 return 0; 223 } 224 225 static void pids_cancel_attach(struct cgroup_taskset *tset) 226 { 227 struct task_struct *task; 228 struct cgroup_subsys_state *dst_css; 229 230 cgroup_taskset_for_each(task, dst_css, tset) { 231 struct pids_cgroup *pids = css_pids(dst_css); 232 struct cgroup_subsys_state *old_css; 233 struct pids_cgroup *old_pids; 234 235 old_css = task_css(task, pids_cgrp_id); 236 old_pids = css_pids(old_css); 237 238 pids_charge(old_pids, 1); 239 pids_uncharge(pids, 1); 240 } 241 } 242 243 static void pids_event(struct pids_cgroup *pids_forking, 244 struct pids_cgroup *pids_over_limit) 245 { 246 struct pids_cgroup *p = pids_forking; 247 bool limit = false; 248 249 /* Only log the first time limit is hit. */ 250 if (atomic64_inc_return(&p->events_local[PIDCG_FORKFAIL]) == 1) { 251 pr_info("cgroup: fork rejected by pids controller in "); 252 pr_cont_cgroup_path(p->css.cgroup); 253 pr_cont("\n"); 254 } 255 cgroup_file_notify(&p->events_local_file); 256 if (!cgroup_subsys_on_dfl(pids_cgrp_subsys) || 257 cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) 258 return; 259 260 for (; parent_pids(p); p = parent_pids(p)) { 261 if (p == pids_over_limit) { 262 limit = true; 263 atomic64_inc(&p->events_local[PIDCG_MAX]); 264 cgroup_file_notify(&p->events_local_file); 265 } 266 if (limit) 267 atomic64_inc(&p->events[PIDCG_MAX]); 268 269 cgroup_file_notify(&p->events_file); 270 } 271 } 272 273 /* 274 * task_css_check(true) in pids_can_fork() and pids_cancel_fork() relies 275 * on cgroup_threadgroup_change_begin() held by the copy_process(). 276 */ 277 static int pids_can_fork(struct task_struct *task, struct css_set *cset) 278 { 279 struct cgroup_subsys_state *css; 280 struct pids_cgroup *pids, *pids_over_limit; 281 int err; 282 283 if (cset) 284 css = cset->subsys[pids_cgrp_id]; 285 else 286 css = task_css_check(current, pids_cgrp_id, true); 287 pids = css_pids(css); 288 err = pids_try_charge(pids, 1, &pids_over_limit); 289 if (err) 290 pids_event(pids, pids_over_limit); 291 292 return err; 293 } 294 295 static void pids_cancel_fork(struct task_struct *task, struct css_set *cset) 296 { 297 struct cgroup_subsys_state *css; 298 struct pids_cgroup *pids; 299 300 if (cset) 301 css = cset->subsys[pids_cgrp_id]; 302 else 303 css = task_css_check(current, pids_cgrp_id, true); 304 pids = css_pids(css); 305 pids_uncharge(pids, 1); 306 } 307 308 static void pids_release(struct task_struct *task) 309 { 310 struct pids_cgroup *pids = css_pids(task_css(task, pids_cgrp_id)); 311 312 pids_uncharge(pids, 1); 313 } 314 315 static ssize_t pids_max_write(struct kernfs_open_file *of, char *buf, 316 size_t nbytes, loff_t off) 317 { 318 struct cgroup_subsys_state *css = of_css(of); 319 struct pids_cgroup *pids = css_pids(css); 320 int64_t limit; 321 int err; 322 323 buf = strstrip(buf); 324 if (!strcmp(buf, PIDS_MAX_STR)) { 325 limit = PIDS_MAX; 326 goto set_limit; 327 } 328 329 err = kstrtoll(buf, 0, &limit); 330 if (err) 331 return err; 332 333 if (limit < 0 || limit >= PIDS_MAX) 334 return -EINVAL; 335 336 set_limit: 337 /* 338 * Limit updates don't need to be mutex'd, since it isn't 339 * critical that any racing fork()s follow the new limit. 340 */ 341 atomic64_set(&pids->limit, limit); 342 return nbytes; 343 } 344 345 static int pids_max_show(struct seq_file *sf, void *v) 346 { 347 struct cgroup_subsys_state *css = seq_css(sf); 348 struct pids_cgroup *pids = css_pids(css); 349 int64_t limit = atomic64_read(&pids->limit); 350 351 if (limit >= PIDS_MAX) 352 seq_printf(sf, "%s\n", PIDS_MAX_STR); 353 else 354 seq_printf(sf, "%lld\n", limit); 355 356 return 0; 357 } 358 359 static s64 pids_current_read(struct cgroup_subsys_state *css, 360 struct cftype *cft) 361 { 362 struct pids_cgroup *pids = css_pids(css); 363 364 return atomic64_read(&pids->counter); 365 } 366 367 static s64 pids_peak_read(struct cgroup_subsys_state *css, 368 struct cftype *cft) 369 { 370 struct pids_cgroup *pids = css_pids(css); 371 372 return READ_ONCE(pids->watermark); 373 } 374 375 static int __pids_events_show(struct seq_file *sf, bool local) 376 { 377 struct pids_cgroup *pids = css_pids(seq_css(sf)); 378 enum pidcg_event pe = PIDCG_MAX; 379 atomic64_t *events; 380 381 if (!cgroup_subsys_on_dfl(pids_cgrp_subsys) || 382 cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) { 383 pe = PIDCG_FORKFAIL; 384 local = true; 385 } 386 events = local ? pids->events_local : pids->events; 387 388 seq_printf(sf, "max %lld\n", (s64)atomic64_read(&events[pe])); 389 return 0; 390 } 391 392 static int pids_events_show(struct seq_file *sf, void *v) 393 { 394 __pids_events_show(sf, false); 395 return 0; 396 } 397 398 static int pids_events_local_show(struct seq_file *sf, void *v) 399 { 400 __pids_events_show(sf, true); 401 return 0; 402 } 403 404 static struct cftype pids_files[] = { 405 { 406 .name = "max", 407 .write = pids_max_write, 408 .seq_show = pids_max_show, 409 .flags = CFTYPE_NOT_ON_ROOT, 410 }, 411 { 412 .name = "current", 413 .read_s64 = pids_current_read, 414 .flags = CFTYPE_NOT_ON_ROOT, 415 }, 416 { 417 .name = "peak", 418 .flags = CFTYPE_NOT_ON_ROOT, 419 .read_s64 = pids_peak_read, 420 }, 421 { 422 .name = "events", 423 .seq_show = pids_events_show, 424 .file_offset = offsetof(struct pids_cgroup, events_file), 425 .flags = CFTYPE_NOT_ON_ROOT, 426 }, 427 { 428 .name = "events.local", 429 .seq_show = pids_events_local_show, 430 .file_offset = offsetof(struct pids_cgroup, events_local_file), 431 .flags = CFTYPE_NOT_ON_ROOT, 432 }, 433 { } /* terminate */ 434 }; 435 436 static struct cftype pids_files_legacy[] = { 437 { 438 .name = "max", 439 .write = pids_max_write, 440 .seq_show = pids_max_show, 441 .flags = CFTYPE_NOT_ON_ROOT, 442 }, 443 { 444 .name = "current", 445 .read_s64 = pids_current_read, 446 .flags = CFTYPE_NOT_ON_ROOT, 447 }, 448 { 449 .name = "peak", 450 .flags = CFTYPE_NOT_ON_ROOT, 451 .read_s64 = pids_peak_read, 452 }, 453 { 454 .name = "events", 455 .seq_show = pids_events_show, 456 .file_offset = offsetof(struct pids_cgroup, events_file), 457 .flags = CFTYPE_NOT_ON_ROOT, 458 }, 459 { } /* terminate */ 460 }; 461 462 463 struct cgroup_subsys pids_cgrp_subsys = { 464 .css_alloc = pids_css_alloc, 465 .css_free = pids_css_free, 466 .can_attach = pids_can_attach, 467 .cancel_attach = pids_cancel_attach, 468 .can_fork = pids_can_fork, 469 .cancel_fork = pids_cancel_fork, 470 .release = pids_release, 471 .legacy_cftypes = pids_files_legacy, 472 .dfl_cftypes = pids_files, 473 .threaded = true, 474 }; 475