xref: /linux/kernel/cgroup/pids.c (revision 36110669ddf832e6c9ceba4dd203749d5be31d31)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Process number limiting controller for cgroups.
4  *
5  * Used to allow a cgroup hierarchy to stop any new processes from fork()ing
6  * after a certain limit is reached.
7  *
8  * Since it is trivial to hit the task limit without hitting any kmemcg limits
9  * in place, PIDs are a fundamental resource. As such, PID exhaustion must be
10  * preventable in the scope of a cgroup hierarchy by allowing resource limiting
11  * of the number of tasks in a cgroup.
12  *
13  * In order to use the `pids` controller, set the maximum number of tasks in
14  * pids.max (this is not available in the root cgroup for obvious reasons). The
15  * number of processes currently in the cgroup is given by pids.current.
16  * Organisational operations are not blocked by cgroup policies, so it is
17  * possible to have pids.current > pids.max. However, it is not possible to
18  * violate a cgroup policy through fork(). fork() will return -EAGAIN if forking
19  * would cause a cgroup policy to be violated.
20  *
21  * To set a cgroup to have no limit, set pids.max to "max". This is the default
22  * for all new cgroups (N.B. that PID limits are hierarchical, so the most
23  * stringent limit in the hierarchy is followed).
24  *
25  * pids.current tracks all child cgroup hierarchies, so parent/pids.current is
26  * a superset of parent/child/pids.current.
27  *
28  * Copyright (C) 2015 Aleksa Sarai <cyphar@cyphar.com>
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/threads.h>
33 #include <linux/atomic.h>
34 #include <linux/cgroup.h>
35 #include <linux/slab.h>
36 #include <linux/sched/task.h>
37 
38 #define PIDS_MAX (PID_MAX_LIMIT + 1ULL)
39 #define PIDS_MAX_STR "max"
40 
41 enum pidcg_event {
42 	/* Fork failed in subtree because this pids_cgroup limit was hit. */
43 	PIDCG_MAX,
44 	/* Fork failed in this pids_cgroup because ancestor limit was hit. */
45 	PIDCG_FORKFAIL,
46 	NR_PIDCG_EVENTS,
47 };
48 
49 struct pids_cgroup {
50 	struct cgroup_subsys_state	css;
51 
52 	/*
53 	 * Use 64-bit types so that we can safely represent "max" as
54 	 * %PIDS_MAX = (%PID_MAX_LIMIT + 1).
55 	 */
56 	atomic64_t			counter;
57 	atomic64_t			limit;
58 	int64_t				watermark;
59 
60 	/* Handles for pids.events[.local] */
61 	struct cgroup_file		events_file;
62 	struct cgroup_file		events_local_file;
63 
64 	atomic64_t			events[NR_PIDCG_EVENTS];
65 	atomic64_t			events_local[NR_PIDCG_EVENTS];
66 };
67 
68 static struct pids_cgroup *css_pids(struct cgroup_subsys_state *css)
69 {
70 	return container_of(css, struct pids_cgroup, css);
71 }
72 
73 static struct pids_cgroup *parent_pids(struct pids_cgroup *pids)
74 {
75 	return css_pids(pids->css.parent);
76 }
77 
78 static struct cgroup_subsys_state *
79 pids_css_alloc(struct cgroup_subsys_state *parent)
80 {
81 	struct pids_cgroup *pids;
82 
83 	pids = kzalloc(sizeof(struct pids_cgroup), GFP_KERNEL);
84 	if (!pids)
85 		return ERR_PTR(-ENOMEM);
86 
87 	atomic64_set(&pids->limit, PIDS_MAX);
88 	return &pids->css;
89 }
90 
91 static void pids_css_free(struct cgroup_subsys_state *css)
92 {
93 	kfree(css_pids(css));
94 }
95 
96 static void pids_update_watermark(struct pids_cgroup *p, int64_t nr_pids)
97 {
98 	/*
99 	 * This is racy, but we don't need perfectly accurate tallying of
100 	 * the watermark, and this lets us avoid extra atomic overhead.
101 	 */
102 	if (nr_pids > READ_ONCE(p->watermark))
103 		WRITE_ONCE(p->watermark, nr_pids);
104 }
105 
106 /**
107  * pids_cancel - uncharge the local pid count
108  * @pids: the pid cgroup state
109  * @num: the number of pids to cancel
110  *
111  * This function will WARN if the pid count goes under 0, because such a case is
112  * a bug in the pids controller proper.
113  */
114 static void pids_cancel(struct pids_cgroup *pids, int num)
115 {
116 	/*
117 	 * A negative count (or overflow for that matter) is invalid,
118 	 * and indicates a bug in the `pids` controller proper.
119 	 */
120 	WARN_ON_ONCE(atomic64_add_negative(-num, &pids->counter));
121 }
122 
123 /**
124  * pids_uncharge - hierarchically uncharge the pid count
125  * @pids: the pid cgroup state
126  * @num: the number of pids to uncharge
127  */
128 static void pids_uncharge(struct pids_cgroup *pids, int num)
129 {
130 	struct pids_cgroup *p;
131 
132 	for (p = pids; parent_pids(p); p = parent_pids(p))
133 		pids_cancel(p, num);
134 }
135 
136 /**
137  * pids_charge - hierarchically charge the pid count
138  * @pids: the pid cgroup state
139  * @num: the number of pids to charge
140  *
141  * This function does *not* follow the pid limit set. It cannot fail and the new
142  * pid count may exceed the limit. This is only used for reverting failed
143  * attaches, where there is no other way out than violating the limit.
144  */
145 static void pids_charge(struct pids_cgroup *pids, int num)
146 {
147 	struct pids_cgroup *p;
148 
149 	for (p = pids; parent_pids(p); p = parent_pids(p)) {
150 		int64_t new = atomic64_add_return(num, &p->counter);
151 
152 		pids_update_watermark(p, new);
153 	}
154 }
155 
156 /**
157  * pids_try_charge - hierarchically try to charge the pid count
158  * @pids: the pid cgroup state
159  * @num: the number of pids to charge
160  * @fail: storage of pid cgroup causing the fail
161  *
162  * This function follows the set limit. It will fail if the charge would cause
163  * the new value to exceed the hierarchical limit. Returns 0 if the charge
164  * succeeded, otherwise -EAGAIN.
165  */
166 static int pids_try_charge(struct pids_cgroup *pids, int num, struct pids_cgroup **fail)
167 {
168 	struct pids_cgroup *p, *q;
169 
170 	for (p = pids; parent_pids(p); p = parent_pids(p)) {
171 		int64_t new = atomic64_add_return(num, &p->counter);
172 		int64_t limit = atomic64_read(&p->limit);
173 
174 		/*
175 		 * Since new is capped to the maximum number of pid_t, if
176 		 * p->limit is %PIDS_MAX then we know that this test will never
177 		 * fail.
178 		 */
179 		if (new > limit) {
180 			*fail = p;
181 			goto revert;
182 		}
183 		/*
184 		 * Not technically accurate if we go over limit somewhere up
185 		 * the hierarchy, but that's tolerable for the watermark.
186 		 */
187 		pids_update_watermark(p, new);
188 	}
189 
190 	return 0;
191 
192 revert:
193 	for (q = pids; q != p; q = parent_pids(q))
194 		pids_cancel(q, num);
195 	pids_cancel(p, num);
196 
197 	return -EAGAIN;
198 }
199 
200 static int pids_can_attach(struct cgroup_taskset *tset)
201 {
202 	struct task_struct *task;
203 	struct cgroup_subsys_state *dst_css;
204 
205 	cgroup_taskset_for_each(task, dst_css, tset) {
206 		struct pids_cgroup *pids = css_pids(dst_css);
207 		struct cgroup_subsys_state *old_css;
208 		struct pids_cgroup *old_pids;
209 
210 		/*
211 		 * No need to pin @old_css between here and cancel_attach()
212 		 * because cgroup core protects it from being freed before
213 		 * the migration completes or fails.
214 		 */
215 		old_css = task_css(task, pids_cgrp_id);
216 		old_pids = css_pids(old_css);
217 
218 		pids_charge(pids, 1);
219 		pids_uncharge(old_pids, 1);
220 	}
221 
222 	return 0;
223 }
224 
225 static void pids_cancel_attach(struct cgroup_taskset *tset)
226 {
227 	struct task_struct *task;
228 	struct cgroup_subsys_state *dst_css;
229 
230 	cgroup_taskset_for_each(task, dst_css, tset) {
231 		struct pids_cgroup *pids = css_pids(dst_css);
232 		struct cgroup_subsys_state *old_css;
233 		struct pids_cgroup *old_pids;
234 
235 		old_css = task_css(task, pids_cgrp_id);
236 		old_pids = css_pids(old_css);
237 
238 		pids_charge(old_pids, 1);
239 		pids_uncharge(pids, 1);
240 	}
241 }
242 
243 static void pids_event(struct pids_cgroup *pids_forking,
244 		       struct pids_cgroup *pids_over_limit)
245 {
246 	struct pids_cgroup *p = pids_forking;
247 
248 	/* Only log the first time limit is hit. */
249 	if (atomic64_inc_return(&p->events_local[PIDCG_FORKFAIL]) == 1) {
250 		pr_info("cgroup: fork rejected by pids controller in ");
251 		pr_cont_cgroup_path(p->css.cgroup);
252 		pr_cont("\n");
253 	}
254 	if (!cgroup_subsys_on_dfl(pids_cgrp_subsys) ||
255 	    cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) {
256 		cgroup_file_notify(&p->events_local_file);
257 		return;
258 	}
259 
260 	atomic64_inc(&pids_over_limit->events_local[PIDCG_MAX]);
261 	cgroup_file_notify(&pids_over_limit->events_local_file);
262 
263 	for (p = pids_over_limit; parent_pids(p); p = parent_pids(p)) {
264 		atomic64_inc(&p->events[PIDCG_MAX]);
265 		cgroup_file_notify(&p->events_file);
266 	}
267 }
268 
269 /*
270  * task_css_check(true) in pids_can_fork() and pids_cancel_fork() relies
271  * on cgroup_threadgroup_change_begin() held by the copy_process().
272  */
273 static int pids_can_fork(struct task_struct *task, struct css_set *cset)
274 {
275 	struct pids_cgroup *pids, *pids_over_limit;
276 	int err;
277 
278 	pids = css_pids(cset->subsys[pids_cgrp_id]);
279 	err = pids_try_charge(pids, 1, &pids_over_limit);
280 	if (err)
281 		pids_event(pids, pids_over_limit);
282 
283 	return err;
284 }
285 
286 static void pids_cancel_fork(struct task_struct *task, struct css_set *cset)
287 {
288 	struct pids_cgroup *pids;
289 
290 	pids = css_pids(cset->subsys[pids_cgrp_id]);
291 	pids_uncharge(pids, 1);
292 }
293 
294 static void pids_release(struct task_struct *task)
295 {
296 	struct pids_cgroup *pids = css_pids(task_css(task, pids_cgrp_id));
297 
298 	pids_uncharge(pids, 1);
299 }
300 
301 static ssize_t pids_max_write(struct kernfs_open_file *of, char *buf,
302 			      size_t nbytes, loff_t off)
303 {
304 	struct cgroup_subsys_state *css = of_css(of);
305 	struct pids_cgroup *pids = css_pids(css);
306 	int64_t limit;
307 	int err;
308 
309 	buf = strstrip(buf);
310 	if (!strcmp(buf, PIDS_MAX_STR)) {
311 		limit = PIDS_MAX;
312 		goto set_limit;
313 	}
314 
315 	err = kstrtoll(buf, 0, &limit);
316 	if (err)
317 		return err;
318 
319 	if (limit < 0 || limit >= PIDS_MAX)
320 		return -EINVAL;
321 
322 set_limit:
323 	/*
324 	 * Limit updates don't need to be mutex'd, since it isn't
325 	 * critical that any racing fork()s follow the new limit.
326 	 */
327 	atomic64_set(&pids->limit, limit);
328 	return nbytes;
329 }
330 
331 static int pids_max_show(struct seq_file *sf, void *v)
332 {
333 	struct cgroup_subsys_state *css = seq_css(sf);
334 	struct pids_cgroup *pids = css_pids(css);
335 	int64_t limit = atomic64_read(&pids->limit);
336 
337 	if (limit >= PIDS_MAX)
338 		seq_printf(sf, "%s\n", PIDS_MAX_STR);
339 	else
340 		seq_printf(sf, "%lld\n", limit);
341 
342 	return 0;
343 }
344 
345 static s64 pids_current_read(struct cgroup_subsys_state *css,
346 			     struct cftype *cft)
347 {
348 	struct pids_cgroup *pids = css_pids(css);
349 
350 	return atomic64_read(&pids->counter);
351 }
352 
353 static s64 pids_peak_read(struct cgroup_subsys_state *css,
354 			  struct cftype *cft)
355 {
356 	struct pids_cgroup *pids = css_pids(css);
357 
358 	return READ_ONCE(pids->watermark);
359 }
360 
361 static int __pids_events_show(struct seq_file *sf, bool local)
362 {
363 	struct pids_cgroup *pids = css_pids(seq_css(sf));
364 	enum pidcg_event pe = PIDCG_MAX;
365 	atomic64_t *events;
366 
367 	if (!cgroup_subsys_on_dfl(pids_cgrp_subsys) ||
368 	    cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) {
369 		pe = PIDCG_FORKFAIL;
370 		local = true;
371 	}
372 	events = local ? pids->events_local : pids->events;
373 
374 	seq_printf(sf, "max %lld\n", (s64)atomic64_read(&events[pe]));
375 	return 0;
376 }
377 
378 static int pids_events_show(struct seq_file *sf, void *v)
379 {
380 	__pids_events_show(sf, false);
381 	return 0;
382 }
383 
384 static int pids_events_local_show(struct seq_file *sf, void *v)
385 {
386 	__pids_events_show(sf, true);
387 	return 0;
388 }
389 
390 static struct cftype pids_files[] = {
391 	{
392 		.name = "max",
393 		.write = pids_max_write,
394 		.seq_show = pids_max_show,
395 		.flags = CFTYPE_NOT_ON_ROOT,
396 	},
397 	{
398 		.name = "current",
399 		.read_s64 = pids_current_read,
400 		.flags = CFTYPE_NOT_ON_ROOT,
401 	},
402 	{
403 		.name = "peak",
404 		.flags = CFTYPE_NOT_ON_ROOT,
405 		.read_s64 = pids_peak_read,
406 	},
407 	{
408 		.name = "events",
409 		.seq_show = pids_events_show,
410 		.file_offset = offsetof(struct pids_cgroup, events_file),
411 		.flags = CFTYPE_NOT_ON_ROOT,
412 	},
413 	{
414 		.name = "events.local",
415 		.seq_show = pids_events_local_show,
416 		.file_offset = offsetof(struct pids_cgroup, events_local_file),
417 		.flags = CFTYPE_NOT_ON_ROOT,
418 	},
419 	{ }	/* terminate */
420 };
421 
422 static struct cftype pids_files_legacy[] = {
423 	{
424 		.name = "max",
425 		.write = pids_max_write,
426 		.seq_show = pids_max_show,
427 		.flags = CFTYPE_NOT_ON_ROOT,
428 	},
429 	{
430 		.name = "current",
431 		.read_s64 = pids_current_read,
432 		.flags = CFTYPE_NOT_ON_ROOT,
433 	},
434 	{
435 		.name = "peak",
436 		.flags = CFTYPE_NOT_ON_ROOT,
437 		.read_s64 = pids_peak_read,
438 	},
439 	{
440 		.name = "events",
441 		.seq_show = pids_events_show,
442 		.file_offset = offsetof(struct pids_cgroup, events_file),
443 		.flags = CFTYPE_NOT_ON_ROOT,
444 	},
445 	{ }	/* terminate */
446 };
447 
448 
449 struct cgroup_subsys pids_cgrp_subsys = {
450 	.css_alloc	= pids_css_alloc,
451 	.css_free	= pids_css_free,
452 	.can_attach 	= pids_can_attach,
453 	.cancel_attach 	= pids_cancel_attach,
454 	.can_fork	= pids_can_fork,
455 	.cancel_fork	= pids_cancel_fork,
456 	.release	= pids_release,
457 	.legacy_cftypes = pids_files_legacy,
458 	.dfl_cftypes	= pids_files,
459 	.threaded	= true,
460 };
461