1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/kthread.h> 37 #include <linux/list.h> 38 #include <linux/mempolicy.h> 39 #include <linux/mm.h> 40 #include <linux/memory.h> 41 #include <linux/export.h> 42 #include <linux/mount.h> 43 #include <linux/fs_context.h> 44 #include <linux/namei.h> 45 #include <linux/pagemap.h> 46 #include <linux/proc_fs.h> 47 #include <linux/rcupdate.h> 48 #include <linux/sched.h> 49 #include <linux/sched/deadline.h> 50 #include <linux/sched/mm.h> 51 #include <linux/sched/task.h> 52 #include <linux/seq_file.h> 53 #include <linux/security.h> 54 #include <linux/slab.h> 55 #include <linux/spinlock.h> 56 #include <linux/stat.h> 57 #include <linux/string.h> 58 #include <linux/time.h> 59 #include <linux/time64.h> 60 #include <linux/backing-dev.h> 61 #include <linux/sort.h> 62 #include <linux/oom.h> 63 #include <linux/sched/isolation.h> 64 #include <linux/uaccess.h> 65 #include <linux/atomic.h> 66 #include <linux/mutex.h> 67 #include <linux/cgroup.h> 68 #include <linux/wait.h> 69 70 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 71 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 72 73 /* 74 * There could be abnormal cpuset configurations for cpu or memory 75 * node binding, add this key to provide a quick low-cost judgment 76 * of the situation. 77 */ 78 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 79 80 /* See "Frequency meter" comments, below. */ 81 82 struct fmeter { 83 int cnt; /* unprocessed events count */ 84 int val; /* most recent output value */ 85 time64_t time; /* clock (secs) when val computed */ 86 spinlock_t lock; /* guards read or write of above */ 87 }; 88 89 /* 90 * Invalid partition error code 91 */ 92 enum prs_errcode { 93 PERR_NONE = 0, 94 PERR_INVCPUS, 95 PERR_INVPARENT, 96 PERR_NOTPART, 97 PERR_NOTEXCL, 98 PERR_NOCPUS, 99 PERR_HOTPLUG, 100 PERR_CPUSEMPTY, 101 }; 102 103 static const char * const perr_strings[] = { 104 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus", 105 [PERR_INVPARENT] = "Parent is an invalid partition root", 106 [PERR_NOTPART] = "Parent is not a partition root", 107 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", 108 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", 109 [PERR_HOTPLUG] = "No cpu available due to hotplug", 110 [PERR_CPUSEMPTY] = "cpuset.cpus is empty", 111 }; 112 113 struct cpuset { 114 struct cgroup_subsys_state css; 115 116 unsigned long flags; /* "unsigned long" so bitops work */ 117 118 /* 119 * On default hierarchy: 120 * 121 * The user-configured masks can only be changed by writing to 122 * cpuset.cpus and cpuset.mems, and won't be limited by the 123 * parent masks. 124 * 125 * The effective masks is the real masks that apply to the tasks 126 * in the cpuset. They may be changed if the configured masks are 127 * changed or hotplug happens. 128 * 129 * effective_mask == configured_mask & parent's effective_mask, 130 * and if it ends up empty, it will inherit the parent's mask. 131 * 132 * 133 * On legacy hierarchy: 134 * 135 * The user-configured masks are always the same with effective masks. 136 */ 137 138 /* user-configured CPUs and Memory Nodes allow to tasks */ 139 cpumask_var_t cpus_allowed; 140 nodemask_t mems_allowed; 141 142 /* effective CPUs and Memory Nodes allow to tasks */ 143 cpumask_var_t effective_cpus; 144 nodemask_t effective_mems; 145 146 /* 147 * CPUs allocated to child sub-partitions (default hierarchy only) 148 * - CPUs granted by the parent = effective_cpus U subparts_cpus 149 * - effective_cpus and subparts_cpus are mutually exclusive. 150 * 151 * effective_cpus contains only onlined CPUs, but subparts_cpus 152 * may have offlined ones. 153 */ 154 cpumask_var_t subparts_cpus; 155 156 /* 157 * This is old Memory Nodes tasks took on. 158 * 159 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 160 * - A new cpuset's old_mems_allowed is initialized when some 161 * task is moved into it. 162 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 163 * cpuset.mems_allowed and have tasks' nodemask updated, and 164 * then old_mems_allowed is updated to mems_allowed. 165 */ 166 nodemask_t old_mems_allowed; 167 168 struct fmeter fmeter; /* memory_pressure filter */ 169 170 /* 171 * Tasks are being attached to this cpuset. Used to prevent 172 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 173 */ 174 int attach_in_progress; 175 176 /* partition number for rebuild_sched_domains() */ 177 int pn; 178 179 /* for custom sched domain */ 180 int relax_domain_level; 181 182 /* number of CPUs in subparts_cpus */ 183 int nr_subparts_cpus; 184 185 /* partition root state */ 186 int partition_root_state; 187 188 /* 189 * Default hierarchy only: 190 * use_parent_ecpus - set if using parent's effective_cpus 191 * child_ecpus_count - # of children with use_parent_ecpus set 192 */ 193 int use_parent_ecpus; 194 int child_ecpus_count; 195 196 /* Invalid partition error code, not lock protected */ 197 enum prs_errcode prs_err; 198 199 /* Handle for cpuset.cpus.partition */ 200 struct cgroup_file partition_file; 201 }; 202 203 /* 204 * Partition root states: 205 * 206 * 0 - member (not a partition root) 207 * 1 - partition root 208 * 2 - partition root without load balancing (isolated) 209 * -1 - invalid partition root 210 * -2 - invalid isolated partition root 211 */ 212 #define PRS_MEMBER 0 213 #define PRS_ROOT 1 214 #define PRS_ISOLATED 2 215 #define PRS_INVALID_ROOT -1 216 #define PRS_INVALID_ISOLATED -2 217 218 static inline bool is_prs_invalid(int prs_state) 219 { 220 return prs_state < 0; 221 } 222 223 /* 224 * Temporary cpumasks for working with partitions that are passed among 225 * functions to avoid memory allocation in inner functions. 226 */ 227 struct tmpmasks { 228 cpumask_var_t addmask, delmask; /* For partition root */ 229 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 230 }; 231 232 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 233 { 234 return css ? container_of(css, struct cpuset, css) : NULL; 235 } 236 237 /* Retrieve the cpuset for a task */ 238 static inline struct cpuset *task_cs(struct task_struct *task) 239 { 240 return css_cs(task_css(task, cpuset_cgrp_id)); 241 } 242 243 static inline struct cpuset *parent_cs(struct cpuset *cs) 244 { 245 return css_cs(cs->css.parent); 246 } 247 248 /* bits in struct cpuset flags field */ 249 typedef enum { 250 CS_ONLINE, 251 CS_CPU_EXCLUSIVE, 252 CS_MEM_EXCLUSIVE, 253 CS_MEM_HARDWALL, 254 CS_MEMORY_MIGRATE, 255 CS_SCHED_LOAD_BALANCE, 256 CS_SPREAD_PAGE, 257 CS_SPREAD_SLAB, 258 } cpuset_flagbits_t; 259 260 /* convenient tests for these bits */ 261 static inline bool is_cpuset_online(struct cpuset *cs) 262 { 263 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 264 } 265 266 static inline int is_cpu_exclusive(const struct cpuset *cs) 267 { 268 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 269 } 270 271 static inline int is_mem_exclusive(const struct cpuset *cs) 272 { 273 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 274 } 275 276 static inline int is_mem_hardwall(const struct cpuset *cs) 277 { 278 return test_bit(CS_MEM_HARDWALL, &cs->flags); 279 } 280 281 static inline int is_sched_load_balance(const struct cpuset *cs) 282 { 283 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 284 } 285 286 static inline int is_memory_migrate(const struct cpuset *cs) 287 { 288 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 289 } 290 291 static inline int is_spread_page(const struct cpuset *cs) 292 { 293 return test_bit(CS_SPREAD_PAGE, &cs->flags); 294 } 295 296 static inline int is_spread_slab(const struct cpuset *cs) 297 { 298 return test_bit(CS_SPREAD_SLAB, &cs->flags); 299 } 300 301 static inline int is_partition_valid(const struct cpuset *cs) 302 { 303 return cs->partition_root_state > 0; 304 } 305 306 static inline int is_partition_invalid(const struct cpuset *cs) 307 { 308 return cs->partition_root_state < 0; 309 } 310 311 /* 312 * Callers should hold callback_lock to modify partition_root_state. 313 */ 314 static inline void make_partition_invalid(struct cpuset *cs) 315 { 316 if (is_partition_valid(cs)) 317 cs->partition_root_state = -cs->partition_root_state; 318 } 319 320 /* 321 * Send notification event of whenever partition_root_state changes. 322 */ 323 static inline void notify_partition_change(struct cpuset *cs, int old_prs) 324 { 325 if (old_prs == cs->partition_root_state) 326 return; 327 cgroup_file_notify(&cs->partition_file); 328 329 /* Reset prs_err if not invalid */ 330 if (is_partition_valid(cs)) 331 WRITE_ONCE(cs->prs_err, PERR_NONE); 332 } 333 334 static struct cpuset top_cpuset = { 335 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 336 (1 << CS_MEM_EXCLUSIVE)), 337 .partition_root_state = PRS_ROOT, 338 }; 339 340 /** 341 * cpuset_for_each_child - traverse online children of a cpuset 342 * @child_cs: loop cursor pointing to the current child 343 * @pos_css: used for iteration 344 * @parent_cs: target cpuset to walk children of 345 * 346 * Walk @child_cs through the online children of @parent_cs. Must be used 347 * with RCU read locked. 348 */ 349 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 350 css_for_each_child((pos_css), &(parent_cs)->css) \ 351 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 352 353 /** 354 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 355 * @des_cs: loop cursor pointing to the current descendant 356 * @pos_css: used for iteration 357 * @root_cs: target cpuset to walk ancestor of 358 * 359 * Walk @des_cs through the online descendants of @root_cs. Must be used 360 * with RCU read locked. The caller may modify @pos_css by calling 361 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 362 * iteration and the first node to be visited. 363 */ 364 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 365 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 366 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 367 368 /* 369 * There are two global locks guarding cpuset structures - cpuset_rwsem and 370 * callback_lock. We also require taking task_lock() when dereferencing a 371 * task's cpuset pointer. See "The task_lock() exception", at the end of this 372 * comment. The cpuset code uses only cpuset_rwsem write lock. Other 373 * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to 374 * prevent change to cpuset structures. 375 * 376 * A task must hold both locks to modify cpusets. If a task holds 377 * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it 378 * is the only task able to also acquire callback_lock and be able to 379 * modify cpusets. It can perform various checks on the cpuset structure 380 * first, knowing nothing will change. It can also allocate memory while 381 * just holding cpuset_rwsem. While it is performing these checks, various 382 * callback routines can briefly acquire callback_lock to query cpusets. 383 * Once it is ready to make the changes, it takes callback_lock, blocking 384 * everyone else. 385 * 386 * Calls to the kernel memory allocator can not be made while holding 387 * callback_lock, as that would risk double tripping on callback_lock 388 * from one of the callbacks into the cpuset code from within 389 * __alloc_pages(). 390 * 391 * If a task is only holding callback_lock, then it has read-only 392 * access to cpusets. 393 * 394 * Now, the task_struct fields mems_allowed and mempolicy may be changed 395 * by other task, we use alloc_lock in the task_struct fields to protect 396 * them. 397 * 398 * The cpuset_common_file_read() handlers only hold callback_lock across 399 * small pieces of code, such as when reading out possibly multi-word 400 * cpumasks and nodemasks. 401 * 402 * Accessing a task's cpuset should be done in accordance with the 403 * guidelines for accessing subsystem state in kernel/cgroup.c 404 */ 405 406 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem); 407 408 void cpuset_read_lock(void) 409 { 410 percpu_down_read(&cpuset_rwsem); 411 } 412 413 void cpuset_read_unlock(void) 414 { 415 percpu_up_read(&cpuset_rwsem); 416 } 417 418 static DEFINE_SPINLOCK(callback_lock); 419 420 static struct workqueue_struct *cpuset_migrate_mm_wq; 421 422 /* 423 * CPU / memory hotplug is handled asynchronously. 424 */ 425 static void cpuset_hotplug_workfn(struct work_struct *work); 426 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 427 428 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 429 430 static inline void check_insane_mems_config(nodemask_t *nodes) 431 { 432 if (!cpusets_insane_config() && 433 movable_only_nodes(nodes)) { 434 static_branch_enable(&cpusets_insane_config_key); 435 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 436 "Cpuset allocations might fail even with a lot of memory available.\n", 437 nodemask_pr_args(nodes)); 438 } 439 } 440 441 /* 442 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 443 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 444 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 445 * With v2 behavior, "cpus" and "mems" are always what the users have 446 * requested and won't be changed by hotplug events. Only the effective 447 * cpus or mems will be affected. 448 */ 449 static inline bool is_in_v2_mode(void) 450 { 451 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 452 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 453 } 454 455 /** 456 * partition_is_populated - check if partition has tasks 457 * @cs: partition root to be checked 458 * @excluded_child: a child cpuset to be excluded in task checking 459 * Return: true if there are tasks, false otherwise 460 * 461 * It is assumed that @cs is a valid partition root. @excluded_child should 462 * be non-NULL when this cpuset is going to become a partition itself. 463 */ 464 static inline bool partition_is_populated(struct cpuset *cs, 465 struct cpuset *excluded_child) 466 { 467 struct cgroup_subsys_state *css; 468 struct cpuset *child; 469 470 if (cs->css.cgroup->nr_populated_csets) 471 return true; 472 if (!excluded_child && !cs->nr_subparts_cpus) 473 return cgroup_is_populated(cs->css.cgroup); 474 475 rcu_read_lock(); 476 cpuset_for_each_child(child, css, cs) { 477 if (child == excluded_child) 478 continue; 479 if (is_partition_valid(child)) 480 continue; 481 if (cgroup_is_populated(child->css.cgroup)) { 482 rcu_read_unlock(); 483 return true; 484 } 485 } 486 rcu_read_unlock(); 487 return false; 488 } 489 490 /* 491 * Return in pmask the portion of a task's cpusets's cpus_allowed that 492 * are online and are capable of running the task. If none are found, 493 * walk up the cpuset hierarchy until we find one that does have some 494 * appropriate cpus. 495 * 496 * One way or another, we guarantee to return some non-empty subset 497 * of cpu_online_mask. 498 * 499 * Call with callback_lock or cpuset_rwsem held. 500 */ 501 static void guarantee_online_cpus(struct task_struct *tsk, 502 struct cpumask *pmask) 503 { 504 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 505 struct cpuset *cs; 506 507 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) 508 cpumask_copy(pmask, cpu_online_mask); 509 510 rcu_read_lock(); 511 cs = task_cs(tsk); 512 513 while (!cpumask_intersects(cs->effective_cpus, pmask)) { 514 cs = parent_cs(cs); 515 if (unlikely(!cs)) { 516 /* 517 * The top cpuset doesn't have any online cpu as a 518 * consequence of a race between cpuset_hotplug_work 519 * and cpu hotplug notifier. But we know the top 520 * cpuset's effective_cpus is on its way to be 521 * identical to cpu_online_mask. 522 */ 523 goto out_unlock; 524 } 525 } 526 cpumask_and(pmask, pmask, cs->effective_cpus); 527 528 out_unlock: 529 rcu_read_unlock(); 530 } 531 532 /* 533 * Return in *pmask the portion of a cpusets's mems_allowed that 534 * are online, with memory. If none are online with memory, walk 535 * up the cpuset hierarchy until we find one that does have some 536 * online mems. The top cpuset always has some mems online. 537 * 538 * One way or another, we guarantee to return some non-empty subset 539 * of node_states[N_MEMORY]. 540 * 541 * Call with callback_lock or cpuset_rwsem held. 542 */ 543 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 544 { 545 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 546 cs = parent_cs(cs); 547 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 548 } 549 550 /* 551 * update task's spread flag if cpuset's page/slab spread flag is set 552 * 553 * Call with callback_lock or cpuset_rwsem held. The check can be skipped 554 * if on default hierarchy. 555 */ 556 static void cpuset_update_task_spread_flags(struct cpuset *cs, 557 struct task_struct *tsk) 558 { 559 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 560 return; 561 562 if (is_spread_page(cs)) 563 task_set_spread_page(tsk); 564 else 565 task_clear_spread_page(tsk); 566 567 if (is_spread_slab(cs)) 568 task_set_spread_slab(tsk); 569 else 570 task_clear_spread_slab(tsk); 571 } 572 573 /* 574 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 575 * 576 * One cpuset is a subset of another if all its allowed CPUs and 577 * Memory Nodes are a subset of the other, and its exclusive flags 578 * are only set if the other's are set. Call holding cpuset_rwsem. 579 */ 580 581 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 582 { 583 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 584 nodes_subset(p->mems_allowed, q->mems_allowed) && 585 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 586 is_mem_exclusive(p) <= is_mem_exclusive(q); 587 } 588 589 /** 590 * alloc_cpumasks - allocate three cpumasks for cpuset 591 * @cs: the cpuset that have cpumasks to be allocated. 592 * @tmp: the tmpmasks structure pointer 593 * Return: 0 if successful, -ENOMEM otherwise. 594 * 595 * Only one of the two input arguments should be non-NULL. 596 */ 597 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 598 { 599 cpumask_var_t *pmask1, *pmask2, *pmask3; 600 601 if (cs) { 602 pmask1 = &cs->cpus_allowed; 603 pmask2 = &cs->effective_cpus; 604 pmask3 = &cs->subparts_cpus; 605 } else { 606 pmask1 = &tmp->new_cpus; 607 pmask2 = &tmp->addmask; 608 pmask3 = &tmp->delmask; 609 } 610 611 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 612 return -ENOMEM; 613 614 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 615 goto free_one; 616 617 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 618 goto free_two; 619 620 return 0; 621 622 free_two: 623 free_cpumask_var(*pmask2); 624 free_one: 625 free_cpumask_var(*pmask1); 626 return -ENOMEM; 627 } 628 629 /** 630 * free_cpumasks - free cpumasks in a tmpmasks structure 631 * @cs: the cpuset that have cpumasks to be free. 632 * @tmp: the tmpmasks structure pointer 633 */ 634 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 635 { 636 if (cs) { 637 free_cpumask_var(cs->cpus_allowed); 638 free_cpumask_var(cs->effective_cpus); 639 free_cpumask_var(cs->subparts_cpus); 640 } 641 if (tmp) { 642 free_cpumask_var(tmp->new_cpus); 643 free_cpumask_var(tmp->addmask); 644 free_cpumask_var(tmp->delmask); 645 } 646 } 647 648 /** 649 * alloc_trial_cpuset - allocate a trial cpuset 650 * @cs: the cpuset that the trial cpuset duplicates 651 */ 652 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 653 { 654 struct cpuset *trial; 655 656 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 657 if (!trial) 658 return NULL; 659 660 if (alloc_cpumasks(trial, NULL)) { 661 kfree(trial); 662 return NULL; 663 } 664 665 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 666 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 667 return trial; 668 } 669 670 /** 671 * free_cpuset - free the cpuset 672 * @cs: the cpuset to be freed 673 */ 674 static inline void free_cpuset(struct cpuset *cs) 675 { 676 free_cpumasks(cs, NULL); 677 kfree(cs); 678 } 679 680 /* 681 * validate_change_legacy() - Validate conditions specific to legacy (v1) 682 * behavior. 683 */ 684 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial) 685 { 686 struct cgroup_subsys_state *css; 687 struct cpuset *c, *par; 688 int ret; 689 690 WARN_ON_ONCE(!rcu_read_lock_held()); 691 692 /* Each of our child cpusets must be a subset of us */ 693 ret = -EBUSY; 694 cpuset_for_each_child(c, css, cur) 695 if (!is_cpuset_subset(c, trial)) 696 goto out; 697 698 /* On legacy hierarchy, we must be a subset of our parent cpuset. */ 699 ret = -EACCES; 700 par = parent_cs(cur); 701 if (par && !is_cpuset_subset(trial, par)) 702 goto out; 703 704 ret = 0; 705 out: 706 return ret; 707 } 708 709 /* 710 * validate_change() - Used to validate that any proposed cpuset change 711 * follows the structural rules for cpusets. 712 * 713 * If we replaced the flag and mask values of the current cpuset 714 * (cur) with those values in the trial cpuset (trial), would 715 * our various subset and exclusive rules still be valid? Presumes 716 * cpuset_rwsem held. 717 * 718 * 'cur' is the address of an actual, in-use cpuset. Operations 719 * such as list traversal that depend on the actual address of the 720 * cpuset in the list must use cur below, not trial. 721 * 722 * 'trial' is the address of bulk structure copy of cur, with 723 * perhaps one or more of the fields cpus_allowed, mems_allowed, 724 * or flags changed to new, trial values. 725 * 726 * Return 0 if valid, -errno if not. 727 */ 728 729 static int validate_change(struct cpuset *cur, struct cpuset *trial) 730 { 731 struct cgroup_subsys_state *css; 732 struct cpuset *c, *par; 733 int ret = 0; 734 735 rcu_read_lock(); 736 737 if (!is_in_v2_mode()) 738 ret = validate_change_legacy(cur, trial); 739 if (ret) 740 goto out; 741 742 /* Remaining checks don't apply to root cpuset */ 743 if (cur == &top_cpuset) 744 goto out; 745 746 par = parent_cs(cur); 747 748 /* 749 * Cpusets with tasks - existing or newly being attached - can't 750 * be changed to have empty cpus_allowed or mems_allowed. 751 */ 752 ret = -ENOSPC; 753 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 754 if (!cpumask_empty(cur->cpus_allowed) && 755 cpumask_empty(trial->cpus_allowed)) 756 goto out; 757 if (!nodes_empty(cur->mems_allowed) && 758 nodes_empty(trial->mems_allowed)) 759 goto out; 760 } 761 762 /* 763 * We can't shrink if we won't have enough room for SCHED_DEADLINE 764 * tasks. 765 */ 766 ret = -EBUSY; 767 if (is_cpu_exclusive(cur) && 768 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 769 trial->cpus_allowed)) 770 goto out; 771 772 /* 773 * If either I or some sibling (!= me) is exclusive, we can't 774 * overlap 775 */ 776 ret = -EINVAL; 777 cpuset_for_each_child(c, css, par) { 778 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 779 c != cur && 780 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 781 goto out; 782 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 783 c != cur && 784 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 785 goto out; 786 } 787 788 ret = 0; 789 out: 790 rcu_read_unlock(); 791 return ret; 792 } 793 794 #ifdef CONFIG_SMP 795 /* 796 * Helper routine for generate_sched_domains(). 797 * Do cpusets a, b have overlapping effective cpus_allowed masks? 798 */ 799 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 800 { 801 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 802 } 803 804 static void 805 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 806 { 807 if (dattr->relax_domain_level < c->relax_domain_level) 808 dattr->relax_domain_level = c->relax_domain_level; 809 return; 810 } 811 812 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 813 struct cpuset *root_cs) 814 { 815 struct cpuset *cp; 816 struct cgroup_subsys_state *pos_css; 817 818 rcu_read_lock(); 819 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 820 /* skip the whole subtree if @cp doesn't have any CPU */ 821 if (cpumask_empty(cp->cpus_allowed)) { 822 pos_css = css_rightmost_descendant(pos_css); 823 continue; 824 } 825 826 if (is_sched_load_balance(cp)) 827 update_domain_attr(dattr, cp); 828 } 829 rcu_read_unlock(); 830 } 831 832 /* Must be called with cpuset_rwsem held. */ 833 static inline int nr_cpusets(void) 834 { 835 /* jump label reference count + the top-level cpuset */ 836 return static_key_count(&cpusets_enabled_key.key) + 1; 837 } 838 839 /* 840 * generate_sched_domains() 841 * 842 * This function builds a partial partition of the systems CPUs 843 * A 'partial partition' is a set of non-overlapping subsets whose 844 * union is a subset of that set. 845 * The output of this function needs to be passed to kernel/sched/core.c 846 * partition_sched_domains() routine, which will rebuild the scheduler's 847 * load balancing domains (sched domains) as specified by that partial 848 * partition. 849 * 850 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 851 * for a background explanation of this. 852 * 853 * Does not return errors, on the theory that the callers of this 854 * routine would rather not worry about failures to rebuild sched 855 * domains when operating in the severe memory shortage situations 856 * that could cause allocation failures below. 857 * 858 * Must be called with cpuset_rwsem held. 859 * 860 * The three key local variables below are: 861 * cp - cpuset pointer, used (together with pos_css) to perform a 862 * top-down scan of all cpusets. For our purposes, rebuilding 863 * the schedulers sched domains, we can ignore !is_sched_load_ 864 * balance cpusets. 865 * csa - (for CpuSet Array) Array of pointers to all the cpusets 866 * that need to be load balanced, for convenient iterative 867 * access by the subsequent code that finds the best partition, 868 * i.e the set of domains (subsets) of CPUs such that the 869 * cpus_allowed of every cpuset marked is_sched_load_balance 870 * is a subset of one of these domains, while there are as 871 * many such domains as possible, each as small as possible. 872 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 873 * the kernel/sched/core.c routine partition_sched_domains() in a 874 * convenient format, that can be easily compared to the prior 875 * value to determine what partition elements (sched domains) 876 * were changed (added or removed.) 877 * 878 * Finding the best partition (set of domains): 879 * The triple nested loops below over i, j, k scan over the 880 * load balanced cpusets (using the array of cpuset pointers in 881 * csa[]) looking for pairs of cpusets that have overlapping 882 * cpus_allowed, but which don't have the same 'pn' partition 883 * number and gives them in the same partition number. It keeps 884 * looping on the 'restart' label until it can no longer find 885 * any such pairs. 886 * 887 * The union of the cpus_allowed masks from the set of 888 * all cpusets having the same 'pn' value then form the one 889 * element of the partition (one sched domain) to be passed to 890 * partition_sched_domains(). 891 */ 892 static int generate_sched_domains(cpumask_var_t **domains, 893 struct sched_domain_attr **attributes) 894 { 895 struct cpuset *cp; /* top-down scan of cpusets */ 896 struct cpuset **csa; /* array of all cpuset ptrs */ 897 int csn; /* how many cpuset ptrs in csa so far */ 898 int i, j, k; /* indices for partition finding loops */ 899 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 900 struct sched_domain_attr *dattr; /* attributes for custom domains */ 901 int ndoms = 0; /* number of sched domains in result */ 902 int nslot; /* next empty doms[] struct cpumask slot */ 903 struct cgroup_subsys_state *pos_css; 904 bool root_load_balance = is_sched_load_balance(&top_cpuset); 905 906 doms = NULL; 907 dattr = NULL; 908 csa = NULL; 909 910 /* Special case for the 99% of systems with one, full, sched domain */ 911 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 912 ndoms = 1; 913 doms = alloc_sched_domains(ndoms); 914 if (!doms) 915 goto done; 916 917 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 918 if (dattr) { 919 *dattr = SD_ATTR_INIT; 920 update_domain_attr_tree(dattr, &top_cpuset); 921 } 922 cpumask_and(doms[0], top_cpuset.effective_cpus, 923 housekeeping_cpumask(HK_TYPE_DOMAIN)); 924 925 goto done; 926 } 927 928 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 929 if (!csa) 930 goto done; 931 csn = 0; 932 933 rcu_read_lock(); 934 if (root_load_balance) 935 csa[csn++] = &top_cpuset; 936 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 937 if (cp == &top_cpuset) 938 continue; 939 /* 940 * Continue traversing beyond @cp iff @cp has some CPUs and 941 * isn't load balancing. The former is obvious. The 942 * latter: All child cpusets contain a subset of the 943 * parent's cpus, so just skip them, and then we call 944 * update_domain_attr_tree() to calc relax_domain_level of 945 * the corresponding sched domain. 946 * 947 * If root is load-balancing, we can skip @cp if it 948 * is a subset of the root's effective_cpus. 949 */ 950 if (!cpumask_empty(cp->cpus_allowed) && 951 !(is_sched_load_balance(cp) && 952 cpumask_intersects(cp->cpus_allowed, 953 housekeeping_cpumask(HK_TYPE_DOMAIN)))) 954 continue; 955 956 if (root_load_balance && 957 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 958 continue; 959 960 if (is_sched_load_balance(cp) && 961 !cpumask_empty(cp->effective_cpus)) 962 csa[csn++] = cp; 963 964 /* skip @cp's subtree if not a partition root */ 965 if (!is_partition_valid(cp)) 966 pos_css = css_rightmost_descendant(pos_css); 967 } 968 rcu_read_unlock(); 969 970 for (i = 0; i < csn; i++) 971 csa[i]->pn = i; 972 ndoms = csn; 973 974 restart: 975 /* Find the best partition (set of sched domains) */ 976 for (i = 0; i < csn; i++) { 977 struct cpuset *a = csa[i]; 978 int apn = a->pn; 979 980 for (j = 0; j < csn; j++) { 981 struct cpuset *b = csa[j]; 982 int bpn = b->pn; 983 984 if (apn != bpn && cpusets_overlap(a, b)) { 985 for (k = 0; k < csn; k++) { 986 struct cpuset *c = csa[k]; 987 988 if (c->pn == bpn) 989 c->pn = apn; 990 } 991 ndoms--; /* one less element */ 992 goto restart; 993 } 994 } 995 } 996 997 /* 998 * Now we know how many domains to create. 999 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 1000 */ 1001 doms = alloc_sched_domains(ndoms); 1002 if (!doms) 1003 goto done; 1004 1005 /* 1006 * The rest of the code, including the scheduler, can deal with 1007 * dattr==NULL case. No need to abort if alloc fails. 1008 */ 1009 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 1010 GFP_KERNEL); 1011 1012 for (nslot = 0, i = 0; i < csn; i++) { 1013 struct cpuset *a = csa[i]; 1014 struct cpumask *dp; 1015 int apn = a->pn; 1016 1017 if (apn < 0) { 1018 /* Skip completed partitions */ 1019 continue; 1020 } 1021 1022 dp = doms[nslot]; 1023 1024 if (nslot == ndoms) { 1025 static int warnings = 10; 1026 if (warnings) { 1027 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 1028 nslot, ndoms, csn, i, apn); 1029 warnings--; 1030 } 1031 continue; 1032 } 1033 1034 cpumask_clear(dp); 1035 if (dattr) 1036 *(dattr + nslot) = SD_ATTR_INIT; 1037 for (j = i; j < csn; j++) { 1038 struct cpuset *b = csa[j]; 1039 1040 if (apn == b->pn) { 1041 cpumask_or(dp, dp, b->effective_cpus); 1042 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); 1043 if (dattr) 1044 update_domain_attr_tree(dattr + nslot, b); 1045 1046 /* Done with this partition */ 1047 b->pn = -1; 1048 } 1049 } 1050 nslot++; 1051 } 1052 BUG_ON(nslot != ndoms); 1053 1054 done: 1055 kfree(csa); 1056 1057 /* 1058 * Fallback to the default domain if kmalloc() failed. 1059 * See comments in partition_sched_domains(). 1060 */ 1061 if (doms == NULL) 1062 ndoms = 1; 1063 1064 *domains = doms; 1065 *attributes = dattr; 1066 return ndoms; 1067 } 1068 1069 static void update_tasks_root_domain(struct cpuset *cs) 1070 { 1071 struct css_task_iter it; 1072 struct task_struct *task; 1073 1074 css_task_iter_start(&cs->css, 0, &it); 1075 1076 while ((task = css_task_iter_next(&it))) 1077 dl_add_task_root_domain(task); 1078 1079 css_task_iter_end(&it); 1080 } 1081 1082 static void rebuild_root_domains(void) 1083 { 1084 struct cpuset *cs = NULL; 1085 struct cgroup_subsys_state *pos_css; 1086 1087 percpu_rwsem_assert_held(&cpuset_rwsem); 1088 lockdep_assert_cpus_held(); 1089 lockdep_assert_held(&sched_domains_mutex); 1090 1091 rcu_read_lock(); 1092 1093 /* 1094 * Clear default root domain DL accounting, it will be computed again 1095 * if a task belongs to it. 1096 */ 1097 dl_clear_root_domain(&def_root_domain); 1098 1099 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1100 1101 if (cpumask_empty(cs->effective_cpus)) { 1102 pos_css = css_rightmost_descendant(pos_css); 1103 continue; 1104 } 1105 1106 css_get(&cs->css); 1107 1108 rcu_read_unlock(); 1109 1110 update_tasks_root_domain(cs); 1111 1112 rcu_read_lock(); 1113 css_put(&cs->css); 1114 } 1115 rcu_read_unlock(); 1116 } 1117 1118 static void 1119 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1120 struct sched_domain_attr *dattr_new) 1121 { 1122 mutex_lock(&sched_domains_mutex); 1123 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 1124 rebuild_root_domains(); 1125 mutex_unlock(&sched_domains_mutex); 1126 } 1127 1128 /* 1129 * Rebuild scheduler domains. 1130 * 1131 * If the flag 'sched_load_balance' of any cpuset with non-empty 1132 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1133 * which has that flag enabled, or if any cpuset with a non-empty 1134 * 'cpus' is removed, then call this routine to rebuild the 1135 * scheduler's dynamic sched domains. 1136 * 1137 * Call with cpuset_rwsem held. Takes cpus_read_lock(). 1138 */ 1139 static void rebuild_sched_domains_locked(void) 1140 { 1141 struct cgroup_subsys_state *pos_css; 1142 struct sched_domain_attr *attr; 1143 cpumask_var_t *doms; 1144 struct cpuset *cs; 1145 int ndoms; 1146 1147 lockdep_assert_cpus_held(); 1148 percpu_rwsem_assert_held(&cpuset_rwsem); 1149 1150 /* 1151 * If we have raced with CPU hotplug, return early to avoid 1152 * passing doms with offlined cpu to partition_sched_domains(). 1153 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains. 1154 * 1155 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1156 * should be the same as the active CPUs, so checking only top_cpuset 1157 * is enough to detect racing CPU offlines. 1158 */ 1159 if (!top_cpuset.nr_subparts_cpus && 1160 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1161 return; 1162 1163 /* 1164 * With subpartition CPUs, however, the effective CPUs of a partition 1165 * root should be only a subset of the active CPUs. Since a CPU in any 1166 * partition root could be offlined, all must be checked. 1167 */ 1168 if (top_cpuset.nr_subparts_cpus) { 1169 rcu_read_lock(); 1170 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1171 if (!is_partition_valid(cs)) { 1172 pos_css = css_rightmost_descendant(pos_css); 1173 continue; 1174 } 1175 if (!cpumask_subset(cs->effective_cpus, 1176 cpu_active_mask)) { 1177 rcu_read_unlock(); 1178 return; 1179 } 1180 } 1181 rcu_read_unlock(); 1182 } 1183 1184 /* Generate domain masks and attrs */ 1185 ndoms = generate_sched_domains(&doms, &attr); 1186 1187 /* Have scheduler rebuild the domains */ 1188 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1189 } 1190 #else /* !CONFIG_SMP */ 1191 static void rebuild_sched_domains_locked(void) 1192 { 1193 } 1194 #endif /* CONFIG_SMP */ 1195 1196 void rebuild_sched_domains(void) 1197 { 1198 cpus_read_lock(); 1199 percpu_down_write(&cpuset_rwsem); 1200 rebuild_sched_domains_locked(); 1201 percpu_up_write(&cpuset_rwsem); 1202 cpus_read_unlock(); 1203 } 1204 1205 /** 1206 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1207 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1208 * @new_cpus: the temp variable for the new effective_cpus mask 1209 * 1210 * Iterate through each task of @cs updating its cpus_allowed to the 1211 * effective cpuset's. As this function is called with cpuset_rwsem held, 1212 * cpuset membership stays stable. 1213 */ 1214 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) 1215 { 1216 struct css_task_iter it; 1217 struct task_struct *task; 1218 bool top_cs = cs == &top_cpuset; 1219 1220 css_task_iter_start(&cs->css, 0, &it); 1221 while ((task = css_task_iter_next(&it))) { 1222 /* 1223 * Percpu kthreads in top_cpuset are ignored 1224 */ 1225 if (top_cs && (task->flags & PF_KTHREAD) && 1226 kthread_is_per_cpu(task)) 1227 continue; 1228 1229 cpumask_and(new_cpus, cs->effective_cpus, 1230 task_cpu_possible_mask(task)); 1231 set_cpus_allowed_ptr(task, new_cpus); 1232 } 1233 css_task_iter_end(&it); 1234 } 1235 1236 /** 1237 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1238 * @new_cpus: the temp variable for the new effective_cpus mask 1239 * @cs: the cpuset the need to recompute the new effective_cpus mask 1240 * @parent: the parent cpuset 1241 * 1242 * If the parent has subpartition CPUs, include them in the list of 1243 * allowable CPUs in computing the new effective_cpus mask. Since offlined 1244 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 1245 * to mask those out. 1246 */ 1247 static void compute_effective_cpumask(struct cpumask *new_cpus, 1248 struct cpuset *cs, struct cpuset *parent) 1249 { 1250 if (parent->nr_subparts_cpus) { 1251 cpumask_or(new_cpus, parent->effective_cpus, 1252 parent->subparts_cpus); 1253 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 1254 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 1255 } else { 1256 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1257 } 1258 } 1259 1260 /* 1261 * Commands for update_parent_subparts_cpumask 1262 */ 1263 enum subparts_cmd { 1264 partcmd_enable, /* Enable partition root */ 1265 partcmd_disable, /* Disable partition root */ 1266 partcmd_update, /* Update parent's subparts_cpus */ 1267 partcmd_invalidate, /* Make partition invalid */ 1268 }; 1269 1270 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1271 int turning_on); 1272 /** 1273 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1274 * @cs: The cpuset that requests change in partition root state 1275 * @cmd: Partition root state change command 1276 * @newmask: Optional new cpumask for partcmd_update 1277 * @tmp: Temporary addmask and delmask 1278 * Return: 0 or a partition root state error code 1279 * 1280 * For partcmd_enable, the cpuset is being transformed from a non-partition 1281 * root to a partition root. The cpus_allowed mask of the given cpuset will 1282 * be put into parent's subparts_cpus and taken away from parent's 1283 * effective_cpus. The function will return 0 if all the CPUs listed in 1284 * cpus_allowed can be granted or an error code will be returned. 1285 * 1286 * For partcmd_disable, the cpuset is being transformed from a partition 1287 * root back to a non-partition root. Any CPUs in cpus_allowed that are in 1288 * parent's subparts_cpus will be taken away from that cpumask and put back 1289 * into parent's effective_cpus. 0 will always be returned. 1290 * 1291 * For partcmd_update, if the optional newmask is specified, the cpu list is 1292 * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is 1293 * assumed to remain the same. The cpuset should either be a valid or invalid 1294 * partition root. The partition root state may change from valid to invalid 1295 * or vice versa. An error code will only be returned if transitioning from 1296 * invalid to valid violates the exclusivity rule. 1297 * 1298 * For partcmd_invalidate, the current partition will be made invalid. 1299 * 1300 * The partcmd_enable and partcmd_disable commands are used by 1301 * update_prstate(). An error code may be returned and the caller will check 1302 * for error. 1303 * 1304 * The partcmd_update command is used by update_cpumasks_hier() with newmask 1305 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used 1306 * by update_cpumask() with NULL newmask. In both cases, the callers won't 1307 * check for error and so partition_root_state and prs_error will be updated 1308 * directly. 1309 */ 1310 static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd, 1311 struct cpumask *newmask, 1312 struct tmpmasks *tmp) 1313 { 1314 struct cpuset *parent = parent_cs(cs); 1315 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1316 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1317 int old_prs, new_prs; 1318 int part_error = PERR_NONE; /* Partition error? */ 1319 1320 percpu_rwsem_assert_held(&cpuset_rwsem); 1321 1322 /* 1323 * The parent must be a partition root. 1324 * The new cpumask, if present, or the current cpus_allowed must 1325 * not be empty. 1326 */ 1327 if (!is_partition_valid(parent)) { 1328 return is_partition_invalid(parent) 1329 ? PERR_INVPARENT : PERR_NOTPART; 1330 } 1331 if ((newmask && cpumask_empty(newmask)) || 1332 (!newmask && cpumask_empty(cs->cpus_allowed))) 1333 return PERR_CPUSEMPTY; 1334 1335 /* 1336 * new_prs will only be changed for the partcmd_update and 1337 * partcmd_invalidate commands. 1338 */ 1339 adding = deleting = false; 1340 old_prs = new_prs = cs->partition_root_state; 1341 if (cmd == partcmd_enable) { 1342 /* 1343 * Enabling partition root is not allowed if cpus_allowed 1344 * doesn't overlap parent's cpus_allowed. 1345 */ 1346 if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed)) 1347 return PERR_INVCPUS; 1348 1349 /* 1350 * A parent can be left with no CPU as long as there is no 1351 * task directly associated with the parent partition. 1352 */ 1353 if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) && 1354 partition_is_populated(parent, cs)) 1355 return PERR_NOCPUS; 1356 1357 cpumask_copy(tmp->addmask, cs->cpus_allowed); 1358 adding = true; 1359 } else if (cmd == partcmd_disable) { 1360 /* 1361 * Need to remove cpus from parent's subparts_cpus for valid 1362 * partition root. 1363 */ 1364 deleting = !is_prs_invalid(old_prs) && 1365 cpumask_and(tmp->delmask, cs->cpus_allowed, 1366 parent->subparts_cpus); 1367 } else if (cmd == partcmd_invalidate) { 1368 if (is_prs_invalid(old_prs)) 1369 return 0; 1370 1371 /* 1372 * Make the current partition invalid. It is assumed that 1373 * invalidation is caused by violating cpu exclusivity rule. 1374 */ 1375 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1376 parent->subparts_cpus); 1377 if (old_prs > 0) { 1378 new_prs = -old_prs; 1379 part_error = PERR_NOTEXCL; 1380 } 1381 } else if (newmask) { 1382 /* 1383 * partcmd_update with newmask: 1384 * 1385 * Compute add/delete mask to/from subparts_cpus 1386 * 1387 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1388 * addmask = newmask & parent->cpus_allowed 1389 * & ~parent->subparts_cpus 1390 */ 1391 cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask); 1392 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1393 parent->subparts_cpus); 1394 1395 cpumask_and(tmp->addmask, newmask, parent->cpus_allowed); 1396 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1397 parent->subparts_cpus); 1398 /* 1399 * Make partition invalid if parent's effective_cpus could 1400 * become empty and there are tasks in the parent. 1401 */ 1402 if (adding && 1403 cpumask_subset(parent->effective_cpus, tmp->addmask) && 1404 !cpumask_intersects(tmp->delmask, cpu_active_mask) && 1405 partition_is_populated(parent, cs)) { 1406 part_error = PERR_NOCPUS; 1407 adding = false; 1408 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1409 parent->subparts_cpus); 1410 } 1411 } else { 1412 /* 1413 * partcmd_update w/o newmask: 1414 * 1415 * delmask = cpus_allowed & parent->subparts_cpus 1416 * addmask = cpus_allowed & parent->cpus_allowed 1417 * & ~parent->subparts_cpus 1418 * 1419 * This gets invoked either due to a hotplug event or from 1420 * update_cpumasks_hier(). This can cause the state of a 1421 * partition root to transition from valid to invalid or vice 1422 * versa. So we still need to compute the addmask and delmask. 1423 1424 * A partition error happens when: 1425 * 1) Cpuset is valid partition, but parent does not distribute 1426 * out any CPUs. 1427 * 2) Parent has tasks and all its effective CPUs will have 1428 * to be distributed out. 1429 */ 1430 cpumask_and(tmp->addmask, cs->cpus_allowed, 1431 parent->cpus_allowed); 1432 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1433 parent->subparts_cpus); 1434 1435 if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) || 1436 (adding && 1437 cpumask_subset(parent->effective_cpus, tmp->addmask) && 1438 partition_is_populated(parent, cs))) { 1439 part_error = PERR_NOCPUS; 1440 adding = false; 1441 } 1442 1443 if (part_error && is_partition_valid(cs) && 1444 parent->nr_subparts_cpus) 1445 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1446 parent->subparts_cpus); 1447 } 1448 if (part_error) 1449 WRITE_ONCE(cs->prs_err, part_error); 1450 1451 if (cmd == partcmd_update) { 1452 /* 1453 * Check for possible transition between valid and invalid 1454 * partition root. 1455 */ 1456 switch (cs->partition_root_state) { 1457 case PRS_ROOT: 1458 case PRS_ISOLATED: 1459 if (part_error) 1460 new_prs = -old_prs; 1461 break; 1462 case PRS_INVALID_ROOT: 1463 case PRS_INVALID_ISOLATED: 1464 if (!part_error) 1465 new_prs = -old_prs; 1466 break; 1467 } 1468 } 1469 1470 if (!adding && !deleting && (new_prs == old_prs)) 1471 return 0; 1472 1473 /* 1474 * Transitioning between invalid to valid or vice versa may require 1475 * changing CS_CPU_EXCLUSIVE and CS_SCHED_LOAD_BALANCE. 1476 */ 1477 if (old_prs != new_prs) { 1478 if (is_prs_invalid(old_prs) && !is_cpu_exclusive(cs) && 1479 (update_flag(CS_CPU_EXCLUSIVE, cs, 1) < 0)) 1480 return PERR_NOTEXCL; 1481 if (is_prs_invalid(new_prs) && is_cpu_exclusive(cs)) 1482 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1483 } 1484 1485 /* 1486 * Change the parent's subparts_cpus. 1487 * Newly added CPUs will be removed from effective_cpus and 1488 * newly deleted ones will be added back to effective_cpus. 1489 */ 1490 spin_lock_irq(&callback_lock); 1491 if (adding) { 1492 cpumask_or(parent->subparts_cpus, 1493 parent->subparts_cpus, tmp->addmask); 1494 cpumask_andnot(parent->effective_cpus, 1495 parent->effective_cpus, tmp->addmask); 1496 } 1497 if (deleting) { 1498 cpumask_andnot(parent->subparts_cpus, 1499 parent->subparts_cpus, tmp->delmask); 1500 /* 1501 * Some of the CPUs in subparts_cpus might have been offlined. 1502 */ 1503 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1504 cpumask_or(parent->effective_cpus, 1505 parent->effective_cpus, tmp->delmask); 1506 } 1507 1508 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1509 1510 if (old_prs != new_prs) 1511 cs->partition_root_state = new_prs; 1512 1513 spin_unlock_irq(&callback_lock); 1514 1515 if (adding || deleting) 1516 update_tasks_cpumask(parent, tmp->addmask); 1517 1518 /* 1519 * Set or clear CS_SCHED_LOAD_BALANCE when partcmd_update, if necessary. 1520 * rebuild_sched_domains_locked() may be called. 1521 */ 1522 if (old_prs != new_prs) { 1523 if (old_prs == PRS_ISOLATED) 1524 update_flag(CS_SCHED_LOAD_BALANCE, cs, 1); 1525 else if (new_prs == PRS_ISOLATED) 1526 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 1527 } 1528 notify_partition_change(cs, old_prs); 1529 return 0; 1530 } 1531 1532 /* 1533 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1534 * @cs: the cpuset to consider 1535 * @tmp: temp variables for calculating effective_cpus & partition setup 1536 * @force: don't skip any descendant cpusets if set 1537 * 1538 * When configured cpumask is changed, the effective cpumasks of this cpuset 1539 * and all its descendants need to be updated. 1540 * 1541 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 1542 * 1543 * Called with cpuset_rwsem held 1544 */ 1545 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, 1546 bool force) 1547 { 1548 struct cpuset *cp; 1549 struct cgroup_subsys_state *pos_css; 1550 bool need_rebuild_sched_domains = false; 1551 int old_prs, new_prs; 1552 1553 rcu_read_lock(); 1554 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1555 struct cpuset *parent = parent_cs(cp); 1556 bool update_parent = false; 1557 1558 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1559 1560 /* 1561 * If it becomes empty, inherit the effective mask of the 1562 * parent, which is guaranteed to have some CPUs unless 1563 * it is a partition root that has explicitly distributed 1564 * out all its CPUs. 1565 */ 1566 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1567 if (is_partition_valid(cp) && 1568 cpumask_equal(cp->cpus_allowed, cp->subparts_cpus)) 1569 goto update_parent_subparts; 1570 1571 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1572 if (!cp->use_parent_ecpus) { 1573 cp->use_parent_ecpus = true; 1574 parent->child_ecpus_count++; 1575 } 1576 } else if (cp->use_parent_ecpus) { 1577 cp->use_parent_ecpus = false; 1578 WARN_ON_ONCE(!parent->child_ecpus_count); 1579 parent->child_ecpus_count--; 1580 } 1581 1582 /* 1583 * Skip the whole subtree if the cpumask remains the same 1584 * and has no partition root state and force flag not set. 1585 */ 1586 if (!cp->partition_root_state && !force && 1587 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { 1588 pos_css = css_rightmost_descendant(pos_css); 1589 continue; 1590 } 1591 1592 update_parent_subparts: 1593 /* 1594 * update_parent_subparts_cpumask() should have been called 1595 * for cs already in update_cpumask(). We should also call 1596 * update_tasks_cpumask() again for tasks in the parent 1597 * cpuset if the parent's subparts_cpus changes. 1598 */ 1599 old_prs = new_prs = cp->partition_root_state; 1600 if ((cp != cs) && old_prs) { 1601 switch (parent->partition_root_state) { 1602 case PRS_ROOT: 1603 case PRS_ISOLATED: 1604 update_parent = true; 1605 break; 1606 1607 default: 1608 /* 1609 * When parent is not a partition root or is 1610 * invalid, child partition roots become 1611 * invalid too. 1612 */ 1613 if (is_partition_valid(cp)) 1614 new_prs = -cp->partition_root_state; 1615 WRITE_ONCE(cp->prs_err, 1616 is_partition_invalid(parent) 1617 ? PERR_INVPARENT : PERR_NOTPART); 1618 break; 1619 } 1620 } 1621 1622 if (!css_tryget_online(&cp->css)) 1623 continue; 1624 rcu_read_unlock(); 1625 1626 if (update_parent) { 1627 update_parent_subparts_cpumask(cp, partcmd_update, NULL, 1628 tmp); 1629 /* 1630 * The cpuset partition_root_state may become 1631 * invalid. Capture it. 1632 */ 1633 new_prs = cp->partition_root_state; 1634 } 1635 1636 spin_lock_irq(&callback_lock); 1637 1638 if (cp->nr_subparts_cpus && !is_partition_valid(cp)) { 1639 /* 1640 * Put all active subparts_cpus back to effective_cpus. 1641 */ 1642 cpumask_or(tmp->new_cpus, tmp->new_cpus, 1643 cp->subparts_cpus); 1644 cpumask_and(tmp->new_cpus, tmp->new_cpus, 1645 cpu_active_mask); 1646 cp->nr_subparts_cpus = 0; 1647 cpumask_clear(cp->subparts_cpus); 1648 } 1649 1650 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1651 if (cp->nr_subparts_cpus) { 1652 /* 1653 * Make sure that effective_cpus & subparts_cpus 1654 * are mutually exclusive. 1655 */ 1656 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1657 cp->subparts_cpus); 1658 } 1659 1660 cp->partition_root_state = new_prs; 1661 spin_unlock_irq(&callback_lock); 1662 1663 notify_partition_change(cp, old_prs); 1664 1665 WARN_ON(!is_in_v2_mode() && 1666 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1667 1668 update_tasks_cpumask(cp, tmp->new_cpus); 1669 1670 /* 1671 * On legacy hierarchy, if the effective cpumask of any non- 1672 * empty cpuset is changed, we need to rebuild sched domains. 1673 * On default hierarchy, the cpuset needs to be a partition 1674 * root as well. 1675 */ 1676 if (!cpumask_empty(cp->cpus_allowed) && 1677 is_sched_load_balance(cp) && 1678 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1679 is_partition_valid(cp))) 1680 need_rebuild_sched_domains = true; 1681 1682 rcu_read_lock(); 1683 css_put(&cp->css); 1684 } 1685 rcu_read_unlock(); 1686 1687 if (need_rebuild_sched_domains) 1688 rebuild_sched_domains_locked(); 1689 } 1690 1691 /** 1692 * update_sibling_cpumasks - Update siblings cpumasks 1693 * @parent: Parent cpuset 1694 * @cs: Current cpuset 1695 * @tmp: Temp variables 1696 */ 1697 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1698 struct tmpmasks *tmp) 1699 { 1700 struct cpuset *sibling; 1701 struct cgroup_subsys_state *pos_css; 1702 1703 percpu_rwsem_assert_held(&cpuset_rwsem); 1704 1705 /* 1706 * Check all its siblings and call update_cpumasks_hier() 1707 * if their use_parent_ecpus flag is set in order for them 1708 * to use the right effective_cpus value. 1709 * 1710 * The update_cpumasks_hier() function may sleep. So we have to 1711 * release the RCU read lock before calling it. 1712 */ 1713 rcu_read_lock(); 1714 cpuset_for_each_child(sibling, pos_css, parent) { 1715 if (sibling == cs) 1716 continue; 1717 if (!sibling->use_parent_ecpus) 1718 continue; 1719 if (!css_tryget_online(&sibling->css)) 1720 continue; 1721 1722 rcu_read_unlock(); 1723 update_cpumasks_hier(sibling, tmp, false); 1724 rcu_read_lock(); 1725 css_put(&sibling->css); 1726 } 1727 rcu_read_unlock(); 1728 } 1729 1730 /** 1731 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1732 * @cs: the cpuset to consider 1733 * @trialcs: trial cpuset 1734 * @buf: buffer of cpu numbers written to this cpuset 1735 */ 1736 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1737 const char *buf) 1738 { 1739 int retval; 1740 struct tmpmasks tmp; 1741 bool invalidate = false; 1742 1743 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1744 if (cs == &top_cpuset) 1745 return -EACCES; 1746 1747 /* 1748 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1749 * Since cpulist_parse() fails on an empty mask, we special case 1750 * that parsing. The validate_change() call ensures that cpusets 1751 * with tasks have cpus. 1752 */ 1753 if (!*buf) { 1754 cpumask_clear(trialcs->cpus_allowed); 1755 } else { 1756 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1757 if (retval < 0) 1758 return retval; 1759 1760 if (!cpumask_subset(trialcs->cpus_allowed, 1761 top_cpuset.cpus_allowed)) 1762 return -EINVAL; 1763 } 1764 1765 /* Nothing to do if the cpus didn't change */ 1766 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1767 return 0; 1768 1769 #ifdef CONFIG_CPUMASK_OFFSTACK 1770 /* 1771 * Use the cpumasks in trialcs for tmpmasks when they are pointers 1772 * to allocated cpumasks. 1773 * 1774 * Note that update_parent_subparts_cpumask() uses only addmask & 1775 * delmask, but not new_cpus. 1776 */ 1777 tmp.addmask = trialcs->subparts_cpus; 1778 tmp.delmask = trialcs->effective_cpus; 1779 tmp.new_cpus = NULL; 1780 #endif 1781 1782 retval = validate_change(cs, trialcs); 1783 1784 if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { 1785 struct cpuset *cp, *parent; 1786 struct cgroup_subsys_state *css; 1787 1788 /* 1789 * The -EINVAL error code indicates that partition sibling 1790 * CPU exclusivity rule has been violated. We still allow 1791 * the cpumask change to proceed while invalidating the 1792 * partition. However, any conflicting sibling partitions 1793 * have to be marked as invalid too. 1794 */ 1795 invalidate = true; 1796 rcu_read_lock(); 1797 parent = parent_cs(cs); 1798 cpuset_for_each_child(cp, css, parent) 1799 if (is_partition_valid(cp) && 1800 cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) { 1801 rcu_read_unlock(); 1802 update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp); 1803 rcu_read_lock(); 1804 } 1805 rcu_read_unlock(); 1806 retval = 0; 1807 } 1808 if (retval < 0) 1809 return retval; 1810 1811 if (cs->partition_root_state) { 1812 if (invalidate) 1813 update_parent_subparts_cpumask(cs, partcmd_invalidate, 1814 NULL, &tmp); 1815 else 1816 update_parent_subparts_cpumask(cs, partcmd_update, 1817 trialcs->cpus_allowed, &tmp); 1818 } 1819 1820 compute_effective_cpumask(trialcs->effective_cpus, trialcs, 1821 parent_cs(cs)); 1822 spin_lock_irq(&callback_lock); 1823 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1824 1825 /* 1826 * Make sure that subparts_cpus, if not empty, is a subset of 1827 * cpus_allowed. Clear subparts_cpus if partition not valid or 1828 * empty effective cpus with tasks. 1829 */ 1830 if (cs->nr_subparts_cpus) { 1831 if (!is_partition_valid(cs) || 1832 (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) && 1833 partition_is_populated(cs, NULL))) { 1834 cs->nr_subparts_cpus = 0; 1835 cpumask_clear(cs->subparts_cpus); 1836 } else { 1837 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, 1838 cs->cpus_allowed); 1839 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1840 } 1841 } 1842 spin_unlock_irq(&callback_lock); 1843 1844 #ifdef CONFIG_CPUMASK_OFFSTACK 1845 /* Now trialcs->cpus_allowed is available */ 1846 tmp.new_cpus = trialcs->cpus_allowed; 1847 #endif 1848 1849 /* effective_cpus will be updated here */ 1850 update_cpumasks_hier(cs, &tmp, false); 1851 1852 if (cs->partition_root_state) { 1853 struct cpuset *parent = parent_cs(cs); 1854 1855 /* 1856 * For partition root, update the cpumasks of sibling 1857 * cpusets if they use parent's effective_cpus. 1858 */ 1859 if (parent->child_ecpus_count) 1860 update_sibling_cpumasks(parent, cs, &tmp); 1861 } 1862 return 0; 1863 } 1864 1865 /* 1866 * Migrate memory region from one set of nodes to another. This is 1867 * performed asynchronously as it can be called from process migration path 1868 * holding locks involved in process management. All mm migrations are 1869 * performed in the queued order and can be waited for by flushing 1870 * cpuset_migrate_mm_wq. 1871 */ 1872 1873 struct cpuset_migrate_mm_work { 1874 struct work_struct work; 1875 struct mm_struct *mm; 1876 nodemask_t from; 1877 nodemask_t to; 1878 }; 1879 1880 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1881 { 1882 struct cpuset_migrate_mm_work *mwork = 1883 container_of(work, struct cpuset_migrate_mm_work, work); 1884 1885 /* on a wq worker, no need to worry about %current's mems_allowed */ 1886 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1887 mmput(mwork->mm); 1888 kfree(mwork); 1889 } 1890 1891 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1892 const nodemask_t *to) 1893 { 1894 struct cpuset_migrate_mm_work *mwork; 1895 1896 if (nodes_equal(*from, *to)) { 1897 mmput(mm); 1898 return; 1899 } 1900 1901 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1902 if (mwork) { 1903 mwork->mm = mm; 1904 mwork->from = *from; 1905 mwork->to = *to; 1906 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1907 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1908 } else { 1909 mmput(mm); 1910 } 1911 } 1912 1913 static void cpuset_post_attach(void) 1914 { 1915 flush_workqueue(cpuset_migrate_mm_wq); 1916 } 1917 1918 /* 1919 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1920 * @tsk: the task to change 1921 * @newmems: new nodes that the task will be set 1922 * 1923 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1924 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1925 * parallel, it might temporarily see an empty intersection, which results in 1926 * a seqlock check and retry before OOM or allocation failure. 1927 */ 1928 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1929 nodemask_t *newmems) 1930 { 1931 task_lock(tsk); 1932 1933 local_irq_disable(); 1934 write_seqcount_begin(&tsk->mems_allowed_seq); 1935 1936 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1937 mpol_rebind_task(tsk, newmems); 1938 tsk->mems_allowed = *newmems; 1939 1940 write_seqcount_end(&tsk->mems_allowed_seq); 1941 local_irq_enable(); 1942 1943 task_unlock(tsk); 1944 } 1945 1946 static void *cpuset_being_rebound; 1947 1948 /** 1949 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1950 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1951 * 1952 * Iterate through each task of @cs updating its mems_allowed to the 1953 * effective cpuset's. As this function is called with cpuset_rwsem held, 1954 * cpuset membership stays stable. 1955 */ 1956 static void update_tasks_nodemask(struct cpuset *cs) 1957 { 1958 static nodemask_t newmems; /* protected by cpuset_rwsem */ 1959 struct css_task_iter it; 1960 struct task_struct *task; 1961 1962 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1963 1964 guarantee_online_mems(cs, &newmems); 1965 1966 /* 1967 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 1968 * take while holding tasklist_lock. Forks can happen - the 1969 * mpol_dup() cpuset_being_rebound check will catch such forks, 1970 * and rebind their vma mempolicies too. Because we still hold 1971 * the global cpuset_rwsem, we know that no other rebind effort 1972 * will be contending for the global variable cpuset_being_rebound. 1973 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1974 * is idempotent. Also migrate pages in each mm to new nodes. 1975 */ 1976 css_task_iter_start(&cs->css, 0, &it); 1977 while ((task = css_task_iter_next(&it))) { 1978 struct mm_struct *mm; 1979 bool migrate; 1980 1981 cpuset_change_task_nodemask(task, &newmems); 1982 1983 mm = get_task_mm(task); 1984 if (!mm) 1985 continue; 1986 1987 migrate = is_memory_migrate(cs); 1988 1989 mpol_rebind_mm(mm, &cs->mems_allowed); 1990 if (migrate) 1991 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1992 else 1993 mmput(mm); 1994 } 1995 css_task_iter_end(&it); 1996 1997 /* 1998 * All the tasks' nodemasks have been updated, update 1999 * cs->old_mems_allowed. 2000 */ 2001 cs->old_mems_allowed = newmems; 2002 2003 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 2004 cpuset_being_rebound = NULL; 2005 } 2006 2007 /* 2008 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 2009 * @cs: the cpuset to consider 2010 * @new_mems: a temp variable for calculating new effective_mems 2011 * 2012 * When configured nodemask is changed, the effective nodemasks of this cpuset 2013 * and all its descendants need to be updated. 2014 * 2015 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 2016 * 2017 * Called with cpuset_rwsem held 2018 */ 2019 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 2020 { 2021 struct cpuset *cp; 2022 struct cgroup_subsys_state *pos_css; 2023 2024 rcu_read_lock(); 2025 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2026 struct cpuset *parent = parent_cs(cp); 2027 2028 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 2029 2030 /* 2031 * If it becomes empty, inherit the effective mask of the 2032 * parent, which is guaranteed to have some MEMs. 2033 */ 2034 if (is_in_v2_mode() && nodes_empty(*new_mems)) 2035 *new_mems = parent->effective_mems; 2036 2037 /* Skip the whole subtree if the nodemask remains the same. */ 2038 if (nodes_equal(*new_mems, cp->effective_mems)) { 2039 pos_css = css_rightmost_descendant(pos_css); 2040 continue; 2041 } 2042 2043 if (!css_tryget_online(&cp->css)) 2044 continue; 2045 rcu_read_unlock(); 2046 2047 spin_lock_irq(&callback_lock); 2048 cp->effective_mems = *new_mems; 2049 spin_unlock_irq(&callback_lock); 2050 2051 WARN_ON(!is_in_v2_mode() && 2052 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 2053 2054 update_tasks_nodemask(cp); 2055 2056 rcu_read_lock(); 2057 css_put(&cp->css); 2058 } 2059 rcu_read_unlock(); 2060 } 2061 2062 /* 2063 * Handle user request to change the 'mems' memory placement 2064 * of a cpuset. Needs to validate the request, update the 2065 * cpusets mems_allowed, and for each task in the cpuset, 2066 * update mems_allowed and rebind task's mempolicy and any vma 2067 * mempolicies and if the cpuset is marked 'memory_migrate', 2068 * migrate the tasks pages to the new memory. 2069 * 2070 * Call with cpuset_rwsem held. May take callback_lock during call. 2071 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 2072 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 2073 * their mempolicies to the cpusets new mems_allowed. 2074 */ 2075 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 2076 const char *buf) 2077 { 2078 int retval; 2079 2080 /* 2081 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 2082 * it's read-only 2083 */ 2084 if (cs == &top_cpuset) { 2085 retval = -EACCES; 2086 goto done; 2087 } 2088 2089 /* 2090 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 2091 * Since nodelist_parse() fails on an empty mask, we special case 2092 * that parsing. The validate_change() call ensures that cpusets 2093 * with tasks have memory. 2094 */ 2095 if (!*buf) { 2096 nodes_clear(trialcs->mems_allowed); 2097 } else { 2098 retval = nodelist_parse(buf, trialcs->mems_allowed); 2099 if (retval < 0) 2100 goto done; 2101 2102 if (!nodes_subset(trialcs->mems_allowed, 2103 top_cpuset.mems_allowed)) { 2104 retval = -EINVAL; 2105 goto done; 2106 } 2107 } 2108 2109 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 2110 retval = 0; /* Too easy - nothing to do */ 2111 goto done; 2112 } 2113 retval = validate_change(cs, trialcs); 2114 if (retval < 0) 2115 goto done; 2116 2117 check_insane_mems_config(&trialcs->mems_allowed); 2118 2119 spin_lock_irq(&callback_lock); 2120 cs->mems_allowed = trialcs->mems_allowed; 2121 spin_unlock_irq(&callback_lock); 2122 2123 /* use trialcs->mems_allowed as a temp variable */ 2124 update_nodemasks_hier(cs, &trialcs->mems_allowed); 2125 done: 2126 return retval; 2127 } 2128 2129 bool current_cpuset_is_being_rebound(void) 2130 { 2131 bool ret; 2132 2133 rcu_read_lock(); 2134 ret = task_cs(current) == cpuset_being_rebound; 2135 rcu_read_unlock(); 2136 2137 return ret; 2138 } 2139 2140 static int update_relax_domain_level(struct cpuset *cs, s64 val) 2141 { 2142 #ifdef CONFIG_SMP 2143 if (val < -1 || val >= sched_domain_level_max) 2144 return -EINVAL; 2145 #endif 2146 2147 if (val != cs->relax_domain_level) { 2148 cs->relax_domain_level = val; 2149 if (!cpumask_empty(cs->cpus_allowed) && 2150 is_sched_load_balance(cs)) 2151 rebuild_sched_domains_locked(); 2152 } 2153 2154 return 0; 2155 } 2156 2157 /** 2158 * update_tasks_flags - update the spread flags of tasks in the cpuset. 2159 * @cs: the cpuset in which each task's spread flags needs to be changed 2160 * 2161 * Iterate through each task of @cs updating its spread flags. As this 2162 * function is called with cpuset_rwsem held, cpuset membership stays 2163 * stable. 2164 */ 2165 static void update_tasks_flags(struct cpuset *cs) 2166 { 2167 struct css_task_iter it; 2168 struct task_struct *task; 2169 2170 css_task_iter_start(&cs->css, 0, &it); 2171 while ((task = css_task_iter_next(&it))) 2172 cpuset_update_task_spread_flags(cs, task); 2173 css_task_iter_end(&it); 2174 } 2175 2176 /* 2177 * update_flag - read a 0 or a 1 in a file and update associated flag 2178 * bit: the bit to update (see cpuset_flagbits_t) 2179 * cs: the cpuset to update 2180 * turning_on: whether the flag is being set or cleared 2181 * 2182 * Call with cpuset_rwsem held. 2183 */ 2184 2185 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 2186 int turning_on) 2187 { 2188 struct cpuset *trialcs; 2189 int balance_flag_changed; 2190 int spread_flag_changed; 2191 int err; 2192 2193 trialcs = alloc_trial_cpuset(cs); 2194 if (!trialcs) 2195 return -ENOMEM; 2196 2197 if (turning_on) 2198 set_bit(bit, &trialcs->flags); 2199 else 2200 clear_bit(bit, &trialcs->flags); 2201 2202 err = validate_change(cs, trialcs); 2203 if (err < 0) 2204 goto out; 2205 2206 balance_flag_changed = (is_sched_load_balance(cs) != 2207 is_sched_load_balance(trialcs)); 2208 2209 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 2210 || (is_spread_page(cs) != is_spread_page(trialcs))); 2211 2212 spin_lock_irq(&callback_lock); 2213 cs->flags = trialcs->flags; 2214 spin_unlock_irq(&callback_lock); 2215 2216 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 2217 rebuild_sched_domains_locked(); 2218 2219 if (spread_flag_changed) 2220 update_tasks_flags(cs); 2221 out: 2222 free_cpuset(trialcs); 2223 return err; 2224 } 2225 2226 /** 2227 * update_prstate - update partition_root_state 2228 * @cs: the cpuset to update 2229 * @new_prs: new partition root state 2230 * Return: 0 if successful, != 0 if error 2231 * 2232 * Call with cpuset_rwsem held. 2233 */ 2234 static int update_prstate(struct cpuset *cs, int new_prs) 2235 { 2236 int err = PERR_NONE, old_prs = cs->partition_root_state; 2237 bool sched_domain_rebuilt = false; 2238 struct cpuset *parent = parent_cs(cs); 2239 struct tmpmasks tmpmask; 2240 2241 if (old_prs == new_prs) 2242 return 0; 2243 2244 /* 2245 * For a previously invalid partition root, leave it at being 2246 * invalid if new_prs is not "member". 2247 */ 2248 if (new_prs && is_prs_invalid(old_prs)) { 2249 cs->partition_root_state = -new_prs; 2250 return 0; 2251 } 2252 2253 if (alloc_cpumasks(NULL, &tmpmask)) 2254 return -ENOMEM; 2255 2256 if (!old_prs) { 2257 /* 2258 * Turning on partition root requires setting the 2259 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed 2260 * cannot be empty. 2261 */ 2262 if (cpumask_empty(cs->cpus_allowed)) { 2263 err = PERR_CPUSEMPTY; 2264 goto out; 2265 } 2266 2267 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); 2268 if (err) { 2269 err = PERR_NOTEXCL; 2270 goto out; 2271 } 2272 2273 err = update_parent_subparts_cpumask(cs, partcmd_enable, 2274 NULL, &tmpmask); 2275 if (err) { 2276 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2277 goto out; 2278 } 2279 2280 if (new_prs == PRS_ISOLATED) { 2281 /* 2282 * Disable the load balance flag should not return an 2283 * error unless the system is running out of memory. 2284 */ 2285 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2286 sched_domain_rebuilt = true; 2287 } 2288 } else if (old_prs && new_prs) { 2289 /* 2290 * A change in load balance state only, no change in cpumasks. 2291 */ 2292 update_flag(CS_SCHED_LOAD_BALANCE, cs, (new_prs != PRS_ISOLATED)); 2293 sched_domain_rebuilt = true; 2294 goto out; /* Sched domain is rebuilt in update_flag() */ 2295 } else { 2296 /* 2297 * Switching back to member is always allowed even if it 2298 * disables child partitions. 2299 */ 2300 update_parent_subparts_cpumask(cs, partcmd_disable, NULL, 2301 &tmpmask); 2302 2303 /* 2304 * If there are child partitions, they will all become invalid. 2305 */ 2306 if (unlikely(cs->nr_subparts_cpus)) { 2307 spin_lock_irq(&callback_lock); 2308 cs->nr_subparts_cpus = 0; 2309 cpumask_clear(cs->subparts_cpus); 2310 compute_effective_cpumask(cs->effective_cpus, cs, parent); 2311 spin_unlock_irq(&callback_lock); 2312 } 2313 2314 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 2315 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2316 2317 if (!is_sched_load_balance(cs)) { 2318 /* Make sure load balance is on */ 2319 update_flag(CS_SCHED_LOAD_BALANCE, cs, 1); 2320 sched_domain_rebuilt = true; 2321 } 2322 } 2323 2324 update_tasks_cpumask(parent, tmpmask.new_cpus); 2325 2326 if (parent->child_ecpus_count) 2327 update_sibling_cpumasks(parent, cs, &tmpmask); 2328 2329 if (!sched_domain_rebuilt) 2330 rebuild_sched_domains_locked(); 2331 out: 2332 /* 2333 * Make partition invalid if an error happen 2334 */ 2335 if (err) 2336 new_prs = -new_prs; 2337 spin_lock_irq(&callback_lock); 2338 cs->partition_root_state = new_prs; 2339 WRITE_ONCE(cs->prs_err, err); 2340 spin_unlock_irq(&callback_lock); 2341 /* 2342 * Update child cpusets, if present. 2343 * Force update if switching back to member. 2344 */ 2345 if (!list_empty(&cs->css.children)) 2346 update_cpumasks_hier(cs, &tmpmask, !new_prs); 2347 2348 notify_partition_change(cs, old_prs); 2349 free_cpumasks(NULL, &tmpmask); 2350 return 0; 2351 } 2352 2353 /* 2354 * Frequency meter - How fast is some event occurring? 2355 * 2356 * These routines manage a digitally filtered, constant time based, 2357 * event frequency meter. There are four routines: 2358 * fmeter_init() - initialize a frequency meter. 2359 * fmeter_markevent() - called each time the event happens. 2360 * fmeter_getrate() - returns the recent rate of such events. 2361 * fmeter_update() - internal routine used to update fmeter. 2362 * 2363 * A common data structure is passed to each of these routines, 2364 * which is used to keep track of the state required to manage the 2365 * frequency meter and its digital filter. 2366 * 2367 * The filter works on the number of events marked per unit time. 2368 * The filter is single-pole low-pass recursive (IIR). The time unit 2369 * is 1 second. Arithmetic is done using 32-bit integers scaled to 2370 * simulate 3 decimal digits of precision (multiplied by 1000). 2371 * 2372 * With an FM_COEF of 933, and a time base of 1 second, the filter 2373 * has a half-life of 10 seconds, meaning that if the events quit 2374 * happening, then the rate returned from the fmeter_getrate() 2375 * will be cut in half each 10 seconds, until it converges to zero. 2376 * 2377 * It is not worth doing a real infinitely recursive filter. If more 2378 * than FM_MAXTICKS ticks have elapsed since the last filter event, 2379 * just compute FM_MAXTICKS ticks worth, by which point the level 2380 * will be stable. 2381 * 2382 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 2383 * arithmetic overflow in the fmeter_update() routine. 2384 * 2385 * Given the simple 32 bit integer arithmetic used, this meter works 2386 * best for reporting rates between one per millisecond (msec) and 2387 * one per 32 (approx) seconds. At constant rates faster than one 2388 * per msec it maxes out at values just under 1,000,000. At constant 2389 * rates between one per msec, and one per second it will stabilize 2390 * to a value N*1000, where N is the rate of events per second. 2391 * At constant rates between one per second and one per 32 seconds, 2392 * it will be choppy, moving up on the seconds that have an event, 2393 * and then decaying until the next event. At rates slower than 2394 * about one in 32 seconds, it decays all the way back to zero between 2395 * each event. 2396 */ 2397 2398 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 2399 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 2400 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 2401 #define FM_SCALE 1000 /* faux fixed point scale */ 2402 2403 /* Initialize a frequency meter */ 2404 static void fmeter_init(struct fmeter *fmp) 2405 { 2406 fmp->cnt = 0; 2407 fmp->val = 0; 2408 fmp->time = 0; 2409 spin_lock_init(&fmp->lock); 2410 } 2411 2412 /* Internal meter update - process cnt events and update value */ 2413 static void fmeter_update(struct fmeter *fmp) 2414 { 2415 time64_t now; 2416 u32 ticks; 2417 2418 now = ktime_get_seconds(); 2419 ticks = now - fmp->time; 2420 2421 if (ticks == 0) 2422 return; 2423 2424 ticks = min(FM_MAXTICKS, ticks); 2425 while (ticks-- > 0) 2426 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2427 fmp->time = now; 2428 2429 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2430 fmp->cnt = 0; 2431 } 2432 2433 /* Process any previous ticks, then bump cnt by one (times scale). */ 2434 static void fmeter_markevent(struct fmeter *fmp) 2435 { 2436 spin_lock(&fmp->lock); 2437 fmeter_update(fmp); 2438 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2439 spin_unlock(&fmp->lock); 2440 } 2441 2442 /* Process any previous ticks, then return current value. */ 2443 static int fmeter_getrate(struct fmeter *fmp) 2444 { 2445 int val; 2446 2447 spin_lock(&fmp->lock); 2448 fmeter_update(fmp); 2449 val = fmp->val; 2450 spin_unlock(&fmp->lock); 2451 return val; 2452 } 2453 2454 static struct cpuset *cpuset_attach_old_cs; 2455 2456 /* 2457 * Check to see if a cpuset can accept a new task 2458 * For v1, cpus_allowed and mems_allowed can't be empty. 2459 * For v2, effective_cpus can't be empty. 2460 * Note that in v1, effective_cpus = cpus_allowed. 2461 */ 2462 static int cpuset_can_attach_check(struct cpuset *cs) 2463 { 2464 if (cpumask_empty(cs->effective_cpus) || 2465 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) 2466 return -ENOSPC; 2467 return 0; 2468 } 2469 2470 /* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */ 2471 static int cpuset_can_attach(struct cgroup_taskset *tset) 2472 { 2473 struct cgroup_subsys_state *css; 2474 struct cpuset *cs; 2475 struct task_struct *task; 2476 int ret; 2477 2478 /* used later by cpuset_attach() */ 2479 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2480 cs = css_cs(css); 2481 2482 percpu_down_write(&cpuset_rwsem); 2483 2484 /* Check to see if task is allowed in the cpuset */ 2485 ret = cpuset_can_attach_check(cs); 2486 if (ret) 2487 goto out_unlock; 2488 2489 cgroup_taskset_for_each(task, css, tset) { 2490 ret = task_can_attach(task, cs->effective_cpus); 2491 if (ret) 2492 goto out_unlock; 2493 ret = security_task_setscheduler(task); 2494 if (ret) 2495 goto out_unlock; 2496 } 2497 2498 /* 2499 * Mark attach is in progress. This makes validate_change() fail 2500 * changes which zero cpus/mems_allowed. 2501 */ 2502 cs->attach_in_progress++; 2503 out_unlock: 2504 percpu_up_write(&cpuset_rwsem); 2505 return ret; 2506 } 2507 2508 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2509 { 2510 struct cgroup_subsys_state *css; 2511 struct cpuset *cs; 2512 2513 cgroup_taskset_first(tset, &css); 2514 cs = css_cs(css); 2515 2516 percpu_down_write(&cpuset_rwsem); 2517 cs->attach_in_progress--; 2518 if (!cs->attach_in_progress) 2519 wake_up(&cpuset_attach_wq); 2520 percpu_up_write(&cpuset_rwsem); 2521 } 2522 2523 /* 2524 * Protected by cpuset_rwsem. cpus_attach is used only by cpuset_attach_task() 2525 * but we can't allocate it dynamically there. Define it global and 2526 * allocate from cpuset_init(). 2527 */ 2528 static cpumask_var_t cpus_attach; 2529 static nodemask_t cpuset_attach_nodemask_to; 2530 2531 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) 2532 { 2533 percpu_rwsem_assert_held(&cpuset_rwsem); 2534 2535 if (cs != &top_cpuset) 2536 guarantee_online_cpus(task, cpus_attach); 2537 else 2538 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), 2539 cs->subparts_cpus); 2540 /* 2541 * can_attach beforehand should guarantee that this doesn't 2542 * fail. TODO: have a better way to handle failure here 2543 */ 2544 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2545 2546 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2547 cpuset_update_task_spread_flags(cs, task); 2548 } 2549 2550 static void cpuset_attach(struct cgroup_taskset *tset) 2551 { 2552 struct task_struct *task; 2553 struct task_struct *leader; 2554 struct cgroup_subsys_state *css; 2555 struct cpuset *cs; 2556 struct cpuset *oldcs = cpuset_attach_old_cs; 2557 bool cpus_updated, mems_updated; 2558 2559 cgroup_taskset_first(tset, &css); 2560 cs = css_cs(css); 2561 2562 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ 2563 percpu_down_write(&cpuset_rwsem); 2564 cpus_updated = !cpumask_equal(cs->effective_cpus, 2565 oldcs->effective_cpus); 2566 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 2567 2568 /* 2569 * In the default hierarchy, enabling cpuset in the child cgroups 2570 * will trigger a number of cpuset_attach() calls with no change 2571 * in effective cpus and mems. In that case, we can optimize out 2572 * by skipping the task iteration and update. 2573 */ 2574 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2575 !cpus_updated && !mems_updated) { 2576 cpuset_attach_nodemask_to = cs->effective_mems; 2577 goto out; 2578 } 2579 2580 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2581 2582 cgroup_taskset_for_each(task, css, tset) 2583 cpuset_attach_task(cs, task); 2584 2585 /* 2586 * Change mm for all threadgroup leaders. This is expensive and may 2587 * sleep and should be moved outside migration path proper. Skip it 2588 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is 2589 * not set. 2590 */ 2591 cpuset_attach_nodemask_to = cs->effective_mems; 2592 if (!is_memory_migrate(cs) && !mems_updated) 2593 goto out; 2594 2595 cgroup_taskset_for_each_leader(leader, css, tset) { 2596 struct mm_struct *mm = get_task_mm(leader); 2597 2598 if (mm) { 2599 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2600 2601 /* 2602 * old_mems_allowed is the same with mems_allowed 2603 * here, except if this task is being moved 2604 * automatically due to hotplug. In that case 2605 * @mems_allowed has been updated and is empty, so 2606 * @old_mems_allowed is the right nodesets that we 2607 * migrate mm from. 2608 */ 2609 if (is_memory_migrate(cs)) 2610 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2611 &cpuset_attach_nodemask_to); 2612 else 2613 mmput(mm); 2614 } 2615 } 2616 2617 out: 2618 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2619 2620 cs->attach_in_progress--; 2621 if (!cs->attach_in_progress) 2622 wake_up(&cpuset_attach_wq); 2623 2624 percpu_up_write(&cpuset_rwsem); 2625 } 2626 2627 /* The various types of files and directories in a cpuset file system */ 2628 2629 typedef enum { 2630 FILE_MEMORY_MIGRATE, 2631 FILE_CPULIST, 2632 FILE_MEMLIST, 2633 FILE_EFFECTIVE_CPULIST, 2634 FILE_EFFECTIVE_MEMLIST, 2635 FILE_SUBPARTS_CPULIST, 2636 FILE_CPU_EXCLUSIVE, 2637 FILE_MEM_EXCLUSIVE, 2638 FILE_MEM_HARDWALL, 2639 FILE_SCHED_LOAD_BALANCE, 2640 FILE_PARTITION_ROOT, 2641 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2642 FILE_MEMORY_PRESSURE_ENABLED, 2643 FILE_MEMORY_PRESSURE, 2644 FILE_SPREAD_PAGE, 2645 FILE_SPREAD_SLAB, 2646 } cpuset_filetype_t; 2647 2648 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2649 u64 val) 2650 { 2651 struct cpuset *cs = css_cs(css); 2652 cpuset_filetype_t type = cft->private; 2653 int retval = 0; 2654 2655 cpus_read_lock(); 2656 percpu_down_write(&cpuset_rwsem); 2657 if (!is_cpuset_online(cs)) { 2658 retval = -ENODEV; 2659 goto out_unlock; 2660 } 2661 2662 switch (type) { 2663 case FILE_CPU_EXCLUSIVE: 2664 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2665 break; 2666 case FILE_MEM_EXCLUSIVE: 2667 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2668 break; 2669 case FILE_MEM_HARDWALL: 2670 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2671 break; 2672 case FILE_SCHED_LOAD_BALANCE: 2673 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2674 break; 2675 case FILE_MEMORY_MIGRATE: 2676 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2677 break; 2678 case FILE_MEMORY_PRESSURE_ENABLED: 2679 cpuset_memory_pressure_enabled = !!val; 2680 break; 2681 case FILE_SPREAD_PAGE: 2682 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2683 break; 2684 case FILE_SPREAD_SLAB: 2685 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2686 break; 2687 default: 2688 retval = -EINVAL; 2689 break; 2690 } 2691 out_unlock: 2692 percpu_up_write(&cpuset_rwsem); 2693 cpus_read_unlock(); 2694 return retval; 2695 } 2696 2697 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2698 s64 val) 2699 { 2700 struct cpuset *cs = css_cs(css); 2701 cpuset_filetype_t type = cft->private; 2702 int retval = -ENODEV; 2703 2704 cpus_read_lock(); 2705 percpu_down_write(&cpuset_rwsem); 2706 if (!is_cpuset_online(cs)) 2707 goto out_unlock; 2708 2709 switch (type) { 2710 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2711 retval = update_relax_domain_level(cs, val); 2712 break; 2713 default: 2714 retval = -EINVAL; 2715 break; 2716 } 2717 out_unlock: 2718 percpu_up_write(&cpuset_rwsem); 2719 cpus_read_unlock(); 2720 return retval; 2721 } 2722 2723 /* 2724 * Common handling for a write to a "cpus" or "mems" file. 2725 */ 2726 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2727 char *buf, size_t nbytes, loff_t off) 2728 { 2729 struct cpuset *cs = css_cs(of_css(of)); 2730 struct cpuset *trialcs; 2731 int retval = -ENODEV; 2732 2733 buf = strstrip(buf); 2734 2735 /* 2736 * CPU or memory hotunplug may leave @cs w/o any execution 2737 * resources, in which case the hotplug code asynchronously updates 2738 * configuration and transfers all tasks to the nearest ancestor 2739 * which can execute. 2740 * 2741 * As writes to "cpus" or "mems" may restore @cs's execution 2742 * resources, wait for the previously scheduled operations before 2743 * proceeding, so that we don't end up keep removing tasks added 2744 * after execution capability is restored. 2745 * 2746 * cpuset_hotplug_work calls back into cgroup core via 2747 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2748 * operation like this one can lead to a deadlock through kernfs 2749 * active_ref protection. Let's break the protection. Losing the 2750 * protection is okay as we check whether @cs is online after 2751 * grabbing cpuset_rwsem anyway. This only happens on the legacy 2752 * hierarchies. 2753 */ 2754 css_get(&cs->css); 2755 kernfs_break_active_protection(of->kn); 2756 flush_work(&cpuset_hotplug_work); 2757 2758 cpus_read_lock(); 2759 percpu_down_write(&cpuset_rwsem); 2760 if (!is_cpuset_online(cs)) 2761 goto out_unlock; 2762 2763 trialcs = alloc_trial_cpuset(cs); 2764 if (!trialcs) { 2765 retval = -ENOMEM; 2766 goto out_unlock; 2767 } 2768 2769 switch (of_cft(of)->private) { 2770 case FILE_CPULIST: 2771 retval = update_cpumask(cs, trialcs, buf); 2772 break; 2773 case FILE_MEMLIST: 2774 retval = update_nodemask(cs, trialcs, buf); 2775 break; 2776 default: 2777 retval = -EINVAL; 2778 break; 2779 } 2780 2781 free_cpuset(trialcs); 2782 out_unlock: 2783 percpu_up_write(&cpuset_rwsem); 2784 cpus_read_unlock(); 2785 kernfs_unbreak_active_protection(of->kn); 2786 css_put(&cs->css); 2787 flush_workqueue(cpuset_migrate_mm_wq); 2788 return retval ?: nbytes; 2789 } 2790 2791 /* 2792 * These ascii lists should be read in a single call, by using a user 2793 * buffer large enough to hold the entire map. If read in smaller 2794 * chunks, there is no guarantee of atomicity. Since the display format 2795 * used, list of ranges of sequential numbers, is variable length, 2796 * and since these maps can change value dynamically, one could read 2797 * gibberish by doing partial reads while a list was changing. 2798 */ 2799 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2800 { 2801 struct cpuset *cs = css_cs(seq_css(sf)); 2802 cpuset_filetype_t type = seq_cft(sf)->private; 2803 int ret = 0; 2804 2805 spin_lock_irq(&callback_lock); 2806 2807 switch (type) { 2808 case FILE_CPULIST: 2809 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2810 break; 2811 case FILE_MEMLIST: 2812 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2813 break; 2814 case FILE_EFFECTIVE_CPULIST: 2815 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2816 break; 2817 case FILE_EFFECTIVE_MEMLIST: 2818 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2819 break; 2820 case FILE_SUBPARTS_CPULIST: 2821 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2822 break; 2823 default: 2824 ret = -EINVAL; 2825 } 2826 2827 spin_unlock_irq(&callback_lock); 2828 return ret; 2829 } 2830 2831 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2832 { 2833 struct cpuset *cs = css_cs(css); 2834 cpuset_filetype_t type = cft->private; 2835 switch (type) { 2836 case FILE_CPU_EXCLUSIVE: 2837 return is_cpu_exclusive(cs); 2838 case FILE_MEM_EXCLUSIVE: 2839 return is_mem_exclusive(cs); 2840 case FILE_MEM_HARDWALL: 2841 return is_mem_hardwall(cs); 2842 case FILE_SCHED_LOAD_BALANCE: 2843 return is_sched_load_balance(cs); 2844 case FILE_MEMORY_MIGRATE: 2845 return is_memory_migrate(cs); 2846 case FILE_MEMORY_PRESSURE_ENABLED: 2847 return cpuset_memory_pressure_enabled; 2848 case FILE_MEMORY_PRESSURE: 2849 return fmeter_getrate(&cs->fmeter); 2850 case FILE_SPREAD_PAGE: 2851 return is_spread_page(cs); 2852 case FILE_SPREAD_SLAB: 2853 return is_spread_slab(cs); 2854 default: 2855 BUG(); 2856 } 2857 2858 /* Unreachable but makes gcc happy */ 2859 return 0; 2860 } 2861 2862 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2863 { 2864 struct cpuset *cs = css_cs(css); 2865 cpuset_filetype_t type = cft->private; 2866 switch (type) { 2867 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2868 return cs->relax_domain_level; 2869 default: 2870 BUG(); 2871 } 2872 2873 /* Unreachable but makes gcc happy */ 2874 return 0; 2875 } 2876 2877 static int sched_partition_show(struct seq_file *seq, void *v) 2878 { 2879 struct cpuset *cs = css_cs(seq_css(seq)); 2880 const char *err, *type = NULL; 2881 2882 switch (cs->partition_root_state) { 2883 case PRS_ROOT: 2884 seq_puts(seq, "root\n"); 2885 break; 2886 case PRS_ISOLATED: 2887 seq_puts(seq, "isolated\n"); 2888 break; 2889 case PRS_MEMBER: 2890 seq_puts(seq, "member\n"); 2891 break; 2892 case PRS_INVALID_ROOT: 2893 type = "root"; 2894 fallthrough; 2895 case PRS_INVALID_ISOLATED: 2896 if (!type) 2897 type = "isolated"; 2898 err = perr_strings[READ_ONCE(cs->prs_err)]; 2899 if (err) 2900 seq_printf(seq, "%s invalid (%s)\n", type, err); 2901 else 2902 seq_printf(seq, "%s invalid\n", type); 2903 break; 2904 } 2905 return 0; 2906 } 2907 2908 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 2909 size_t nbytes, loff_t off) 2910 { 2911 struct cpuset *cs = css_cs(of_css(of)); 2912 int val; 2913 int retval = -ENODEV; 2914 2915 buf = strstrip(buf); 2916 2917 /* 2918 * Convert "root" to ENABLED, and convert "member" to DISABLED. 2919 */ 2920 if (!strcmp(buf, "root")) 2921 val = PRS_ROOT; 2922 else if (!strcmp(buf, "member")) 2923 val = PRS_MEMBER; 2924 else if (!strcmp(buf, "isolated")) 2925 val = PRS_ISOLATED; 2926 else 2927 return -EINVAL; 2928 2929 css_get(&cs->css); 2930 cpus_read_lock(); 2931 percpu_down_write(&cpuset_rwsem); 2932 if (!is_cpuset_online(cs)) 2933 goto out_unlock; 2934 2935 retval = update_prstate(cs, val); 2936 out_unlock: 2937 percpu_up_write(&cpuset_rwsem); 2938 cpus_read_unlock(); 2939 css_put(&cs->css); 2940 return retval ?: nbytes; 2941 } 2942 2943 /* 2944 * for the common functions, 'private' gives the type of file 2945 */ 2946 2947 static struct cftype legacy_files[] = { 2948 { 2949 .name = "cpus", 2950 .seq_show = cpuset_common_seq_show, 2951 .write = cpuset_write_resmask, 2952 .max_write_len = (100U + 6 * NR_CPUS), 2953 .private = FILE_CPULIST, 2954 }, 2955 2956 { 2957 .name = "mems", 2958 .seq_show = cpuset_common_seq_show, 2959 .write = cpuset_write_resmask, 2960 .max_write_len = (100U + 6 * MAX_NUMNODES), 2961 .private = FILE_MEMLIST, 2962 }, 2963 2964 { 2965 .name = "effective_cpus", 2966 .seq_show = cpuset_common_seq_show, 2967 .private = FILE_EFFECTIVE_CPULIST, 2968 }, 2969 2970 { 2971 .name = "effective_mems", 2972 .seq_show = cpuset_common_seq_show, 2973 .private = FILE_EFFECTIVE_MEMLIST, 2974 }, 2975 2976 { 2977 .name = "cpu_exclusive", 2978 .read_u64 = cpuset_read_u64, 2979 .write_u64 = cpuset_write_u64, 2980 .private = FILE_CPU_EXCLUSIVE, 2981 }, 2982 2983 { 2984 .name = "mem_exclusive", 2985 .read_u64 = cpuset_read_u64, 2986 .write_u64 = cpuset_write_u64, 2987 .private = FILE_MEM_EXCLUSIVE, 2988 }, 2989 2990 { 2991 .name = "mem_hardwall", 2992 .read_u64 = cpuset_read_u64, 2993 .write_u64 = cpuset_write_u64, 2994 .private = FILE_MEM_HARDWALL, 2995 }, 2996 2997 { 2998 .name = "sched_load_balance", 2999 .read_u64 = cpuset_read_u64, 3000 .write_u64 = cpuset_write_u64, 3001 .private = FILE_SCHED_LOAD_BALANCE, 3002 }, 3003 3004 { 3005 .name = "sched_relax_domain_level", 3006 .read_s64 = cpuset_read_s64, 3007 .write_s64 = cpuset_write_s64, 3008 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 3009 }, 3010 3011 { 3012 .name = "memory_migrate", 3013 .read_u64 = cpuset_read_u64, 3014 .write_u64 = cpuset_write_u64, 3015 .private = FILE_MEMORY_MIGRATE, 3016 }, 3017 3018 { 3019 .name = "memory_pressure", 3020 .read_u64 = cpuset_read_u64, 3021 .private = FILE_MEMORY_PRESSURE, 3022 }, 3023 3024 { 3025 .name = "memory_spread_page", 3026 .read_u64 = cpuset_read_u64, 3027 .write_u64 = cpuset_write_u64, 3028 .private = FILE_SPREAD_PAGE, 3029 }, 3030 3031 { 3032 .name = "memory_spread_slab", 3033 .read_u64 = cpuset_read_u64, 3034 .write_u64 = cpuset_write_u64, 3035 .private = FILE_SPREAD_SLAB, 3036 }, 3037 3038 { 3039 .name = "memory_pressure_enabled", 3040 .flags = CFTYPE_ONLY_ON_ROOT, 3041 .read_u64 = cpuset_read_u64, 3042 .write_u64 = cpuset_write_u64, 3043 .private = FILE_MEMORY_PRESSURE_ENABLED, 3044 }, 3045 3046 { } /* terminate */ 3047 }; 3048 3049 /* 3050 * This is currently a minimal set for the default hierarchy. It can be 3051 * expanded later on by migrating more features and control files from v1. 3052 */ 3053 static struct cftype dfl_files[] = { 3054 { 3055 .name = "cpus", 3056 .seq_show = cpuset_common_seq_show, 3057 .write = cpuset_write_resmask, 3058 .max_write_len = (100U + 6 * NR_CPUS), 3059 .private = FILE_CPULIST, 3060 .flags = CFTYPE_NOT_ON_ROOT, 3061 }, 3062 3063 { 3064 .name = "mems", 3065 .seq_show = cpuset_common_seq_show, 3066 .write = cpuset_write_resmask, 3067 .max_write_len = (100U + 6 * MAX_NUMNODES), 3068 .private = FILE_MEMLIST, 3069 .flags = CFTYPE_NOT_ON_ROOT, 3070 }, 3071 3072 { 3073 .name = "cpus.effective", 3074 .seq_show = cpuset_common_seq_show, 3075 .private = FILE_EFFECTIVE_CPULIST, 3076 }, 3077 3078 { 3079 .name = "mems.effective", 3080 .seq_show = cpuset_common_seq_show, 3081 .private = FILE_EFFECTIVE_MEMLIST, 3082 }, 3083 3084 { 3085 .name = "cpus.partition", 3086 .seq_show = sched_partition_show, 3087 .write = sched_partition_write, 3088 .private = FILE_PARTITION_ROOT, 3089 .flags = CFTYPE_NOT_ON_ROOT, 3090 .file_offset = offsetof(struct cpuset, partition_file), 3091 }, 3092 3093 { 3094 .name = "cpus.subpartitions", 3095 .seq_show = cpuset_common_seq_show, 3096 .private = FILE_SUBPARTS_CPULIST, 3097 .flags = CFTYPE_DEBUG, 3098 }, 3099 3100 { } /* terminate */ 3101 }; 3102 3103 3104 /** 3105 * cpuset_css_alloc - Allocate a cpuset css 3106 * @parent_css: Parent css of the control group that the new cpuset will be 3107 * part of 3108 * Return: cpuset css on success, -ENOMEM on failure. 3109 * 3110 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return 3111 * top cpuset css otherwise. 3112 */ 3113 static struct cgroup_subsys_state * 3114 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 3115 { 3116 struct cpuset *cs; 3117 3118 if (!parent_css) 3119 return &top_cpuset.css; 3120 3121 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 3122 if (!cs) 3123 return ERR_PTR(-ENOMEM); 3124 3125 if (alloc_cpumasks(cs, NULL)) { 3126 kfree(cs); 3127 return ERR_PTR(-ENOMEM); 3128 } 3129 3130 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3131 nodes_clear(cs->mems_allowed); 3132 nodes_clear(cs->effective_mems); 3133 fmeter_init(&cs->fmeter); 3134 cs->relax_domain_level = -1; 3135 3136 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 3137 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 3138 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 3139 3140 return &cs->css; 3141 } 3142 3143 static int cpuset_css_online(struct cgroup_subsys_state *css) 3144 { 3145 struct cpuset *cs = css_cs(css); 3146 struct cpuset *parent = parent_cs(cs); 3147 struct cpuset *tmp_cs; 3148 struct cgroup_subsys_state *pos_css; 3149 3150 if (!parent) 3151 return 0; 3152 3153 cpus_read_lock(); 3154 percpu_down_write(&cpuset_rwsem); 3155 3156 set_bit(CS_ONLINE, &cs->flags); 3157 if (is_spread_page(parent)) 3158 set_bit(CS_SPREAD_PAGE, &cs->flags); 3159 if (is_spread_slab(parent)) 3160 set_bit(CS_SPREAD_SLAB, &cs->flags); 3161 3162 cpuset_inc(); 3163 3164 spin_lock_irq(&callback_lock); 3165 if (is_in_v2_mode()) { 3166 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 3167 cs->effective_mems = parent->effective_mems; 3168 cs->use_parent_ecpus = true; 3169 parent->child_ecpus_count++; 3170 } 3171 spin_unlock_irq(&callback_lock); 3172 3173 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 3174 goto out_unlock; 3175 3176 /* 3177 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 3178 * set. This flag handling is implemented in cgroup core for 3179 * historical reasons - the flag may be specified during mount. 3180 * 3181 * Currently, if any sibling cpusets have exclusive cpus or mem, we 3182 * refuse to clone the configuration - thereby refusing the task to 3183 * be entered, and as a result refusing the sys_unshare() or 3184 * clone() which initiated it. If this becomes a problem for some 3185 * users who wish to allow that scenario, then this could be 3186 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 3187 * (and likewise for mems) to the new cgroup. 3188 */ 3189 rcu_read_lock(); 3190 cpuset_for_each_child(tmp_cs, pos_css, parent) { 3191 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 3192 rcu_read_unlock(); 3193 goto out_unlock; 3194 } 3195 } 3196 rcu_read_unlock(); 3197 3198 spin_lock_irq(&callback_lock); 3199 cs->mems_allowed = parent->mems_allowed; 3200 cs->effective_mems = parent->mems_allowed; 3201 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 3202 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 3203 spin_unlock_irq(&callback_lock); 3204 out_unlock: 3205 percpu_up_write(&cpuset_rwsem); 3206 cpus_read_unlock(); 3207 return 0; 3208 } 3209 3210 /* 3211 * If the cpuset being removed has its flag 'sched_load_balance' 3212 * enabled, then simulate turning sched_load_balance off, which 3213 * will call rebuild_sched_domains_locked(). That is not needed 3214 * in the default hierarchy where only changes in partition 3215 * will cause repartitioning. 3216 * 3217 * If the cpuset has the 'sched.partition' flag enabled, simulate 3218 * turning 'sched.partition" off. 3219 */ 3220 3221 static void cpuset_css_offline(struct cgroup_subsys_state *css) 3222 { 3223 struct cpuset *cs = css_cs(css); 3224 3225 cpus_read_lock(); 3226 percpu_down_write(&cpuset_rwsem); 3227 3228 if (is_partition_valid(cs)) 3229 update_prstate(cs, 0); 3230 3231 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 3232 is_sched_load_balance(cs)) 3233 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 3234 3235 if (cs->use_parent_ecpus) { 3236 struct cpuset *parent = parent_cs(cs); 3237 3238 cs->use_parent_ecpus = false; 3239 parent->child_ecpus_count--; 3240 } 3241 3242 cpuset_dec(); 3243 clear_bit(CS_ONLINE, &cs->flags); 3244 3245 percpu_up_write(&cpuset_rwsem); 3246 cpus_read_unlock(); 3247 } 3248 3249 static void cpuset_css_free(struct cgroup_subsys_state *css) 3250 { 3251 struct cpuset *cs = css_cs(css); 3252 3253 free_cpuset(cs); 3254 } 3255 3256 static void cpuset_bind(struct cgroup_subsys_state *root_css) 3257 { 3258 percpu_down_write(&cpuset_rwsem); 3259 spin_lock_irq(&callback_lock); 3260 3261 if (is_in_v2_mode()) { 3262 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 3263 top_cpuset.mems_allowed = node_possible_map; 3264 } else { 3265 cpumask_copy(top_cpuset.cpus_allowed, 3266 top_cpuset.effective_cpus); 3267 top_cpuset.mems_allowed = top_cpuset.effective_mems; 3268 } 3269 3270 spin_unlock_irq(&callback_lock); 3271 percpu_up_write(&cpuset_rwsem); 3272 } 3273 3274 /* 3275 * In case the child is cloned into a cpuset different from its parent, 3276 * additional checks are done to see if the move is allowed. 3277 */ 3278 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) 3279 { 3280 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3281 bool same_cs; 3282 int ret; 3283 3284 rcu_read_lock(); 3285 same_cs = (cs == task_cs(current)); 3286 rcu_read_unlock(); 3287 3288 if (same_cs) 3289 return 0; 3290 3291 lockdep_assert_held(&cgroup_mutex); 3292 percpu_down_write(&cpuset_rwsem); 3293 3294 /* Check to see if task is allowed in the cpuset */ 3295 ret = cpuset_can_attach_check(cs); 3296 if (ret) 3297 goto out_unlock; 3298 3299 ret = task_can_attach(task, cs->effective_cpus); 3300 if (ret) 3301 goto out_unlock; 3302 3303 ret = security_task_setscheduler(task); 3304 if (ret) 3305 goto out_unlock; 3306 3307 /* 3308 * Mark attach is in progress. This makes validate_change() fail 3309 * changes which zero cpus/mems_allowed. 3310 */ 3311 cs->attach_in_progress++; 3312 out_unlock: 3313 percpu_up_write(&cpuset_rwsem); 3314 return ret; 3315 } 3316 3317 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) 3318 { 3319 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3320 bool same_cs; 3321 3322 rcu_read_lock(); 3323 same_cs = (cs == task_cs(current)); 3324 rcu_read_unlock(); 3325 3326 if (same_cs) 3327 return; 3328 3329 percpu_down_write(&cpuset_rwsem); 3330 cs->attach_in_progress--; 3331 if (!cs->attach_in_progress) 3332 wake_up(&cpuset_attach_wq); 3333 percpu_up_write(&cpuset_rwsem); 3334 } 3335 3336 /* 3337 * Make sure the new task conform to the current state of its parent, 3338 * which could have been changed by cpuset just after it inherits the 3339 * state from the parent and before it sits on the cgroup's task list. 3340 */ 3341 static void cpuset_fork(struct task_struct *task) 3342 { 3343 struct cpuset *cs; 3344 bool same_cs; 3345 3346 rcu_read_lock(); 3347 cs = task_cs(task); 3348 same_cs = (cs == task_cs(current)); 3349 rcu_read_unlock(); 3350 3351 if (same_cs) { 3352 if (cs == &top_cpuset) 3353 return; 3354 3355 set_cpus_allowed_ptr(task, current->cpus_ptr); 3356 task->mems_allowed = current->mems_allowed; 3357 return; 3358 } 3359 3360 /* CLONE_INTO_CGROUP */ 3361 percpu_down_write(&cpuset_rwsem); 3362 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3363 cpuset_attach_task(cs, task); 3364 3365 cs->attach_in_progress--; 3366 if (!cs->attach_in_progress) 3367 wake_up(&cpuset_attach_wq); 3368 3369 percpu_up_write(&cpuset_rwsem); 3370 } 3371 3372 struct cgroup_subsys cpuset_cgrp_subsys = { 3373 .css_alloc = cpuset_css_alloc, 3374 .css_online = cpuset_css_online, 3375 .css_offline = cpuset_css_offline, 3376 .css_free = cpuset_css_free, 3377 .can_attach = cpuset_can_attach, 3378 .cancel_attach = cpuset_cancel_attach, 3379 .attach = cpuset_attach, 3380 .post_attach = cpuset_post_attach, 3381 .bind = cpuset_bind, 3382 .can_fork = cpuset_can_fork, 3383 .cancel_fork = cpuset_cancel_fork, 3384 .fork = cpuset_fork, 3385 .legacy_cftypes = legacy_files, 3386 .dfl_cftypes = dfl_files, 3387 .early_init = true, 3388 .threaded = true, 3389 }; 3390 3391 /** 3392 * cpuset_init - initialize cpusets at system boot 3393 * 3394 * Description: Initialize top_cpuset 3395 **/ 3396 3397 int __init cpuset_init(void) 3398 { 3399 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 3400 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 3401 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 3402 3403 cpumask_setall(top_cpuset.cpus_allowed); 3404 nodes_setall(top_cpuset.mems_allowed); 3405 cpumask_setall(top_cpuset.effective_cpus); 3406 nodes_setall(top_cpuset.effective_mems); 3407 3408 fmeter_init(&top_cpuset.fmeter); 3409 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 3410 top_cpuset.relax_domain_level = -1; 3411 3412 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 3413 3414 return 0; 3415 } 3416 3417 /* 3418 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 3419 * or memory nodes, we need to walk over the cpuset hierarchy, 3420 * removing that CPU or node from all cpusets. If this removes the 3421 * last CPU or node from a cpuset, then move the tasks in the empty 3422 * cpuset to its next-highest non-empty parent. 3423 */ 3424 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 3425 { 3426 struct cpuset *parent; 3427 3428 /* 3429 * Find its next-highest non-empty parent, (top cpuset 3430 * has online cpus, so can't be empty). 3431 */ 3432 parent = parent_cs(cs); 3433 while (cpumask_empty(parent->cpus_allowed) || 3434 nodes_empty(parent->mems_allowed)) 3435 parent = parent_cs(parent); 3436 3437 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 3438 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 3439 pr_cont_cgroup_name(cs->css.cgroup); 3440 pr_cont("\n"); 3441 } 3442 } 3443 3444 static void 3445 hotplug_update_tasks_legacy(struct cpuset *cs, 3446 struct cpumask *new_cpus, nodemask_t *new_mems, 3447 bool cpus_updated, bool mems_updated) 3448 { 3449 bool is_empty; 3450 3451 spin_lock_irq(&callback_lock); 3452 cpumask_copy(cs->cpus_allowed, new_cpus); 3453 cpumask_copy(cs->effective_cpus, new_cpus); 3454 cs->mems_allowed = *new_mems; 3455 cs->effective_mems = *new_mems; 3456 spin_unlock_irq(&callback_lock); 3457 3458 /* 3459 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 3460 * as the tasks will be migrated to an ancestor. 3461 */ 3462 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 3463 update_tasks_cpumask(cs, new_cpus); 3464 if (mems_updated && !nodes_empty(cs->mems_allowed)) 3465 update_tasks_nodemask(cs); 3466 3467 is_empty = cpumask_empty(cs->cpus_allowed) || 3468 nodes_empty(cs->mems_allowed); 3469 3470 percpu_up_write(&cpuset_rwsem); 3471 3472 /* 3473 * Move tasks to the nearest ancestor with execution resources, 3474 * This is full cgroup operation which will also call back into 3475 * cpuset. Should be done outside any lock. 3476 */ 3477 if (is_empty) 3478 remove_tasks_in_empty_cpuset(cs); 3479 3480 percpu_down_write(&cpuset_rwsem); 3481 } 3482 3483 static void 3484 hotplug_update_tasks(struct cpuset *cs, 3485 struct cpumask *new_cpus, nodemask_t *new_mems, 3486 bool cpus_updated, bool mems_updated) 3487 { 3488 /* A partition root is allowed to have empty effective cpus */ 3489 if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) 3490 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3491 if (nodes_empty(*new_mems)) 3492 *new_mems = parent_cs(cs)->effective_mems; 3493 3494 spin_lock_irq(&callback_lock); 3495 cpumask_copy(cs->effective_cpus, new_cpus); 3496 cs->effective_mems = *new_mems; 3497 spin_unlock_irq(&callback_lock); 3498 3499 if (cpus_updated) 3500 update_tasks_cpumask(cs, new_cpus); 3501 if (mems_updated) 3502 update_tasks_nodemask(cs); 3503 } 3504 3505 static bool force_rebuild; 3506 3507 void cpuset_force_rebuild(void) 3508 { 3509 force_rebuild = true; 3510 } 3511 3512 /** 3513 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3514 * @cs: cpuset in interest 3515 * @tmp: the tmpmasks structure pointer 3516 * 3517 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3518 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3519 * all its tasks are moved to the nearest ancestor with both resources. 3520 */ 3521 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3522 { 3523 static cpumask_t new_cpus; 3524 static nodemask_t new_mems; 3525 bool cpus_updated; 3526 bool mems_updated; 3527 struct cpuset *parent; 3528 retry: 3529 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3530 3531 percpu_down_write(&cpuset_rwsem); 3532 3533 /* 3534 * We have raced with task attaching. We wait until attaching 3535 * is finished, so we won't attach a task to an empty cpuset. 3536 */ 3537 if (cs->attach_in_progress) { 3538 percpu_up_write(&cpuset_rwsem); 3539 goto retry; 3540 } 3541 3542 parent = parent_cs(cs); 3543 compute_effective_cpumask(&new_cpus, cs, parent); 3544 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3545 3546 if (cs->nr_subparts_cpus) 3547 /* 3548 * Make sure that CPUs allocated to child partitions 3549 * do not show up in effective_cpus. 3550 */ 3551 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 3552 3553 if (!tmp || !cs->partition_root_state) 3554 goto update_tasks; 3555 3556 /* 3557 * In the unlikely event that a partition root has empty 3558 * effective_cpus with tasks, we will have to invalidate child 3559 * partitions, if present, by setting nr_subparts_cpus to 0 to 3560 * reclaim their cpus. 3561 */ 3562 if (cs->nr_subparts_cpus && is_partition_valid(cs) && 3563 cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) { 3564 spin_lock_irq(&callback_lock); 3565 cs->nr_subparts_cpus = 0; 3566 cpumask_clear(cs->subparts_cpus); 3567 spin_unlock_irq(&callback_lock); 3568 compute_effective_cpumask(&new_cpus, cs, parent); 3569 } 3570 3571 /* 3572 * Force the partition to become invalid if either one of 3573 * the following conditions hold: 3574 * 1) empty effective cpus but not valid empty partition. 3575 * 2) parent is invalid or doesn't grant any cpus to child 3576 * partitions. 3577 */ 3578 if (is_partition_valid(cs) && (!parent->nr_subparts_cpus || 3579 (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) { 3580 int old_prs, parent_prs; 3581 3582 update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp); 3583 if (cs->nr_subparts_cpus) { 3584 spin_lock_irq(&callback_lock); 3585 cs->nr_subparts_cpus = 0; 3586 cpumask_clear(cs->subparts_cpus); 3587 spin_unlock_irq(&callback_lock); 3588 compute_effective_cpumask(&new_cpus, cs, parent); 3589 } 3590 3591 old_prs = cs->partition_root_state; 3592 parent_prs = parent->partition_root_state; 3593 if (is_partition_valid(cs)) { 3594 spin_lock_irq(&callback_lock); 3595 make_partition_invalid(cs); 3596 spin_unlock_irq(&callback_lock); 3597 if (is_prs_invalid(parent_prs)) 3598 WRITE_ONCE(cs->prs_err, PERR_INVPARENT); 3599 else if (!parent_prs) 3600 WRITE_ONCE(cs->prs_err, PERR_NOTPART); 3601 else 3602 WRITE_ONCE(cs->prs_err, PERR_HOTPLUG); 3603 notify_partition_change(cs, old_prs); 3604 } 3605 cpuset_force_rebuild(); 3606 } 3607 3608 /* 3609 * On the other hand, an invalid partition root may be transitioned 3610 * back to a regular one. 3611 */ 3612 else if (is_partition_valid(parent) && is_partition_invalid(cs)) { 3613 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp); 3614 if (is_partition_valid(cs)) 3615 cpuset_force_rebuild(); 3616 } 3617 3618 update_tasks: 3619 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3620 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3621 3622 if (mems_updated) 3623 check_insane_mems_config(&new_mems); 3624 3625 if (is_in_v2_mode()) 3626 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3627 cpus_updated, mems_updated); 3628 else 3629 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3630 cpus_updated, mems_updated); 3631 3632 percpu_up_write(&cpuset_rwsem); 3633 } 3634 3635 /** 3636 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3637 * 3638 * This function is called after either CPU or memory configuration has 3639 * changed and updates cpuset accordingly. The top_cpuset is always 3640 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3641 * order to make cpusets transparent (of no affect) on systems that are 3642 * actively using CPU hotplug but making no active use of cpusets. 3643 * 3644 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3645 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3646 * all descendants. 3647 * 3648 * Note that CPU offlining during suspend is ignored. We don't modify 3649 * cpusets across suspend/resume cycles at all. 3650 */ 3651 static void cpuset_hotplug_workfn(struct work_struct *work) 3652 { 3653 static cpumask_t new_cpus; 3654 static nodemask_t new_mems; 3655 bool cpus_updated, mems_updated; 3656 bool on_dfl = is_in_v2_mode(); 3657 struct tmpmasks tmp, *ptmp = NULL; 3658 3659 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3660 ptmp = &tmp; 3661 3662 percpu_down_write(&cpuset_rwsem); 3663 3664 /* fetch the available cpus/mems and find out which changed how */ 3665 cpumask_copy(&new_cpus, cpu_active_mask); 3666 new_mems = node_states[N_MEMORY]; 3667 3668 /* 3669 * If subparts_cpus is populated, it is likely that the check below 3670 * will produce a false positive on cpus_updated when the cpu list 3671 * isn't changed. It is extra work, but it is better to be safe. 3672 */ 3673 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3674 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3675 3676 /* 3677 * In the rare case that hotplug removes all the cpus in subparts_cpus, 3678 * we assumed that cpus are updated. 3679 */ 3680 if (!cpus_updated && top_cpuset.nr_subparts_cpus) 3681 cpus_updated = true; 3682 3683 /* synchronize cpus_allowed to cpu_active_mask */ 3684 if (cpus_updated) { 3685 spin_lock_irq(&callback_lock); 3686 if (!on_dfl) 3687 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3688 /* 3689 * Make sure that CPUs allocated to child partitions 3690 * do not show up in effective_cpus. If no CPU is left, 3691 * we clear the subparts_cpus & let the child partitions 3692 * fight for the CPUs again. 3693 */ 3694 if (top_cpuset.nr_subparts_cpus) { 3695 if (cpumask_subset(&new_cpus, 3696 top_cpuset.subparts_cpus)) { 3697 top_cpuset.nr_subparts_cpus = 0; 3698 cpumask_clear(top_cpuset.subparts_cpus); 3699 } else { 3700 cpumask_andnot(&new_cpus, &new_cpus, 3701 top_cpuset.subparts_cpus); 3702 } 3703 } 3704 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3705 spin_unlock_irq(&callback_lock); 3706 /* we don't mess with cpumasks of tasks in top_cpuset */ 3707 } 3708 3709 /* synchronize mems_allowed to N_MEMORY */ 3710 if (mems_updated) { 3711 spin_lock_irq(&callback_lock); 3712 if (!on_dfl) 3713 top_cpuset.mems_allowed = new_mems; 3714 top_cpuset.effective_mems = new_mems; 3715 spin_unlock_irq(&callback_lock); 3716 update_tasks_nodemask(&top_cpuset); 3717 } 3718 3719 percpu_up_write(&cpuset_rwsem); 3720 3721 /* if cpus or mems changed, we need to propagate to descendants */ 3722 if (cpus_updated || mems_updated) { 3723 struct cpuset *cs; 3724 struct cgroup_subsys_state *pos_css; 3725 3726 rcu_read_lock(); 3727 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3728 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3729 continue; 3730 rcu_read_unlock(); 3731 3732 cpuset_hotplug_update_tasks(cs, ptmp); 3733 3734 rcu_read_lock(); 3735 css_put(&cs->css); 3736 } 3737 rcu_read_unlock(); 3738 } 3739 3740 /* rebuild sched domains if cpus_allowed has changed */ 3741 if (cpus_updated || force_rebuild) { 3742 force_rebuild = false; 3743 rebuild_sched_domains(); 3744 } 3745 3746 free_cpumasks(NULL, ptmp); 3747 } 3748 3749 void cpuset_update_active_cpus(void) 3750 { 3751 /* 3752 * We're inside cpu hotplug critical region which usually nests 3753 * inside cgroup synchronization. Bounce actual hotplug processing 3754 * to a work item to avoid reverse locking order. 3755 */ 3756 schedule_work(&cpuset_hotplug_work); 3757 } 3758 3759 void cpuset_wait_for_hotplug(void) 3760 { 3761 flush_work(&cpuset_hotplug_work); 3762 } 3763 3764 /* 3765 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3766 * Call this routine anytime after node_states[N_MEMORY] changes. 3767 * See cpuset_update_active_cpus() for CPU hotplug handling. 3768 */ 3769 static int cpuset_track_online_nodes(struct notifier_block *self, 3770 unsigned long action, void *arg) 3771 { 3772 schedule_work(&cpuset_hotplug_work); 3773 return NOTIFY_OK; 3774 } 3775 3776 /** 3777 * cpuset_init_smp - initialize cpus_allowed 3778 * 3779 * Description: Finish top cpuset after cpu, node maps are initialized 3780 */ 3781 void __init cpuset_init_smp(void) 3782 { 3783 /* 3784 * cpus_allowd/mems_allowed set to v2 values in the initial 3785 * cpuset_bind() call will be reset to v1 values in another 3786 * cpuset_bind() call when v1 cpuset is mounted. 3787 */ 3788 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3789 3790 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3791 top_cpuset.effective_mems = node_states[N_MEMORY]; 3792 3793 hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); 3794 3795 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3796 BUG_ON(!cpuset_migrate_mm_wq); 3797 } 3798 3799 /** 3800 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3801 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3802 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3803 * 3804 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3805 * attached to the specified @tsk. Guaranteed to return some non-empty 3806 * subset of cpu_online_mask, even if this means going outside the 3807 * tasks cpuset, except when the task is in the top cpuset. 3808 **/ 3809 3810 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3811 { 3812 unsigned long flags; 3813 struct cpuset *cs; 3814 3815 spin_lock_irqsave(&callback_lock, flags); 3816 rcu_read_lock(); 3817 3818 cs = task_cs(tsk); 3819 if (cs != &top_cpuset) 3820 guarantee_online_cpus(tsk, pmask); 3821 /* 3822 * Tasks in the top cpuset won't get update to their cpumasks 3823 * when a hotplug online/offline event happens. So we include all 3824 * offline cpus in the allowed cpu list. 3825 */ 3826 if ((cs == &top_cpuset) || cpumask_empty(pmask)) { 3827 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3828 3829 /* 3830 * We first exclude cpus allocated to partitions. If there is no 3831 * allowable online cpu left, we fall back to all possible cpus. 3832 */ 3833 cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus); 3834 if (!cpumask_intersects(pmask, cpu_online_mask)) 3835 cpumask_copy(pmask, possible_mask); 3836 } 3837 3838 rcu_read_unlock(); 3839 spin_unlock_irqrestore(&callback_lock, flags); 3840 } 3841 3842 /** 3843 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3844 * @tsk: pointer to task_struct with which the scheduler is struggling 3845 * 3846 * Description: In the case that the scheduler cannot find an allowed cpu in 3847 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 3848 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 3849 * which will not contain a sane cpumask during cases such as cpu hotplugging. 3850 * This is the absolute last resort for the scheduler and it is only used if 3851 * _every_ other avenue has been traveled. 3852 * 3853 * Returns true if the affinity of @tsk was changed, false otherwise. 3854 **/ 3855 3856 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3857 { 3858 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3859 const struct cpumask *cs_mask; 3860 bool changed = false; 3861 3862 rcu_read_lock(); 3863 cs_mask = task_cs(tsk)->cpus_allowed; 3864 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 3865 do_set_cpus_allowed(tsk, cs_mask); 3866 changed = true; 3867 } 3868 rcu_read_unlock(); 3869 3870 /* 3871 * We own tsk->cpus_allowed, nobody can change it under us. 3872 * 3873 * But we used cs && cs->cpus_allowed lockless and thus can 3874 * race with cgroup_attach_task() or update_cpumask() and get 3875 * the wrong tsk->cpus_allowed. However, both cases imply the 3876 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 3877 * which takes task_rq_lock(). 3878 * 3879 * If we are called after it dropped the lock we must see all 3880 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 3881 * set any mask even if it is not right from task_cs() pov, 3882 * the pending set_cpus_allowed_ptr() will fix things. 3883 * 3884 * select_fallback_rq() will fix things ups and set cpu_possible_mask 3885 * if required. 3886 */ 3887 return changed; 3888 } 3889 3890 void __init cpuset_init_current_mems_allowed(void) 3891 { 3892 nodes_setall(current->mems_allowed); 3893 } 3894 3895 /** 3896 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 3897 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 3898 * 3899 * Description: Returns the nodemask_t mems_allowed of the cpuset 3900 * attached to the specified @tsk. Guaranteed to return some non-empty 3901 * subset of node_states[N_MEMORY], even if this means going outside the 3902 * tasks cpuset. 3903 **/ 3904 3905 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 3906 { 3907 nodemask_t mask; 3908 unsigned long flags; 3909 3910 spin_lock_irqsave(&callback_lock, flags); 3911 rcu_read_lock(); 3912 guarantee_online_mems(task_cs(tsk), &mask); 3913 rcu_read_unlock(); 3914 spin_unlock_irqrestore(&callback_lock, flags); 3915 3916 return mask; 3917 } 3918 3919 /** 3920 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 3921 * @nodemask: the nodemask to be checked 3922 * 3923 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 3924 */ 3925 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 3926 { 3927 return nodes_intersects(*nodemask, current->mems_allowed); 3928 } 3929 3930 /* 3931 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 3932 * mem_hardwall ancestor to the specified cpuset. Call holding 3933 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 3934 * (an unusual configuration), then returns the root cpuset. 3935 */ 3936 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 3937 { 3938 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 3939 cs = parent_cs(cs); 3940 return cs; 3941 } 3942 3943 /* 3944 * __cpuset_node_allowed - Can we allocate on a memory node? 3945 * @node: is this an allowed node? 3946 * @gfp_mask: memory allocation flags 3947 * 3948 * If we're in interrupt, yes, we can always allocate. If @node is set in 3949 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 3950 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 3951 * yes. If current has access to memory reserves as an oom victim, yes. 3952 * Otherwise, no. 3953 * 3954 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 3955 * and do not allow allocations outside the current tasks cpuset 3956 * unless the task has been OOM killed. 3957 * GFP_KERNEL allocations are not so marked, so can escape to the 3958 * nearest enclosing hardwalled ancestor cpuset. 3959 * 3960 * Scanning up parent cpusets requires callback_lock. The 3961 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 3962 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 3963 * current tasks mems_allowed came up empty on the first pass over 3964 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 3965 * cpuset are short of memory, might require taking the callback_lock. 3966 * 3967 * The first call here from mm/page_alloc:get_page_from_freelist() 3968 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 3969 * so no allocation on a node outside the cpuset is allowed (unless 3970 * in interrupt, of course). 3971 * 3972 * The second pass through get_page_from_freelist() doesn't even call 3973 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 3974 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 3975 * in alloc_flags. That logic and the checks below have the combined 3976 * affect that: 3977 * in_interrupt - any node ok (current task context irrelevant) 3978 * GFP_ATOMIC - any node ok 3979 * tsk_is_oom_victim - any node ok 3980 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 3981 * GFP_USER - only nodes in current tasks mems allowed ok. 3982 */ 3983 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 3984 { 3985 struct cpuset *cs; /* current cpuset ancestors */ 3986 bool allowed; /* is allocation in zone z allowed? */ 3987 unsigned long flags; 3988 3989 if (in_interrupt()) 3990 return true; 3991 if (node_isset(node, current->mems_allowed)) 3992 return true; 3993 /* 3994 * Allow tasks that have access to memory reserves because they have 3995 * been OOM killed to get memory anywhere. 3996 */ 3997 if (unlikely(tsk_is_oom_victim(current))) 3998 return true; 3999 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 4000 return false; 4001 4002 if (current->flags & PF_EXITING) /* Let dying task have memory */ 4003 return true; 4004 4005 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 4006 spin_lock_irqsave(&callback_lock, flags); 4007 4008 rcu_read_lock(); 4009 cs = nearest_hardwall_ancestor(task_cs(current)); 4010 allowed = node_isset(node, cs->mems_allowed); 4011 rcu_read_unlock(); 4012 4013 spin_unlock_irqrestore(&callback_lock, flags); 4014 return allowed; 4015 } 4016 4017 /** 4018 * cpuset_spread_node() - On which node to begin search for a page 4019 * 4020 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 4021 * tasks in a cpuset with is_spread_page or is_spread_slab set), 4022 * and if the memory allocation used cpuset_mem_spread_node() 4023 * to determine on which node to start looking, as it will for 4024 * certain page cache or slab cache pages such as used for file 4025 * system buffers and inode caches, then instead of starting on the 4026 * local node to look for a free page, rather spread the starting 4027 * node around the tasks mems_allowed nodes. 4028 * 4029 * We don't have to worry about the returned node being offline 4030 * because "it can't happen", and even if it did, it would be ok. 4031 * 4032 * The routines calling guarantee_online_mems() are careful to 4033 * only set nodes in task->mems_allowed that are online. So it 4034 * should not be possible for the following code to return an 4035 * offline node. But if it did, that would be ok, as this routine 4036 * is not returning the node where the allocation must be, only 4037 * the node where the search should start. The zonelist passed to 4038 * __alloc_pages() will include all nodes. If the slab allocator 4039 * is passed an offline node, it will fall back to the local node. 4040 * See kmem_cache_alloc_node(). 4041 */ 4042 static int cpuset_spread_node(int *rotor) 4043 { 4044 return *rotor = next_node_in(*rotor, current->mems_allowed); 4045 } 4046 4047 /** 4048 * cpuset_mem_spread_node() - On which node to begin search for a file page 4049 */ 4050 int cpuset_mem_spread_node(void) 4051 { 4052 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 4053 current->cpuset_mem_spread_rotor = 4054 node_random(¤t->mems_allowed); 4055 4056 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 4057 } 4058 4059 /** 4060 * cpuset_slab_spread_node() - On which node to begin search for a slab page 4061 */ 4062 int cpuset_slab_spread_node(void) 4063 { 4064 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 4065 current->cpuset_slab_spread_rotor = 4066 node_random(¤t->mems_allowed); 4067 4068 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 4069 } 4070 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 4071 4072 /** 4073 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 4074 * @tsk1: pointer to task_struct of some task. 4075 * @tsk2: pointer to task_struct of some other task. 4076 * 4077 * Description: Return true if @tsk1's mems_allowed intersects the 4078 * mems_allowed of @tsk2. Used by the OOM killer to determine if 4079 * one of the task's memory usage might impact the memory available 4080 * to the other. 4081 **/ 4082 4083 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 4084 const struct task_struct *tsk2) 4085 { 4086 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 4087 } 4088 4089 /** 4090 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 4091 * 4092 * Description: Prints current's name, cpuset name, and cached copy of its 4093 * mems_allowed to the kernel log. 4094 */ 4095 void cpuset_print_current_mems_allowed(void) 4096 { 4097 struct cgroup *cgrp; 4098 4099 rcu_read_lock(); 4100 4101 cgrp = task_cs(current)->css.cgroup; 4102 pr_cont(",cpuset="); 4103 pr_cont_cgroup_name(cgrp); 4104 pr_cont(",mems_allowed=%*pbl", 4105 nodemask_pr_args(¤t->mems_allowed)); 4106 4107 rcu_read_unlock(); 4108 } 4109 4110 /* 4111 * Collection of memory_pressure is suppressed unless 4112 * this flag is enabled by writing "1" to the special 4113 * cpuset file 'memory_pressure_enabled' in the root cpuset. 4114 */ 4115 4116 int cpuset_memory_pressure_enabled __read_mostly; 4117 4118 /* 4119 * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 4120 * 4121 * Keep a running average of the rate of synchronous (direct) 4122 * page reclaim efforts initiated by tasks in each cpuset. 4123 * 4124 * This represents the rate at which some task in the cpuset 4125 * ran low on memory on all nodes it was allowed to use, and 4126 * had to enter the kernels page reclaim code in an effort to 4127 * create more free memory by tossing clean pages or swapping 4128 * or writing dirty pages. 4129 * 4130 * Display to user space in the per-cpuset read-only file 4131 * "memory_pressure". Value displayed is an integer 4132 * representing the recent rate of entry into the synchronous 4133 * (direct) page reclaim by any task attached to the cpuset. 4134 */ 4135 4136 void __cpuset_memory_pressure_bump(void) 4137 { 4138 rcu_read_lock(); 4139 fmeter_markevent(&task_cs(current)->fmeter); 4140 rcu_read_unlock(); 4141 } 4142 4143 #ifdef CONFIG_PROC_PID_CPUSET 4144 /* 4145 * proc_cpuset_show() 4146 * - Print tasks cpuset path into seq_file. 4147 * - Used for /proc/<pid>/cpuset. 4148 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 4149 * doesn't really matter if tsk->cpuset changes after we read it, 4150 * and we take cpuset_rwsem, keeping cpuset_attach() from changing it 4151 * anyway. 4152 */ 4153 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 4154 struct pid *pid, struct task_struct *tsk) 4155 { 4156 char *buf; 4157 struct cgroup_subsys_state *css; 4158 int retval; 4159 4160 retval = -ENOMEM; 4161 buf = kmalloc(PATH_MAX, GFP_KERNEL); 4162 if (!buf) 4163 goto out; 4164 4165 css = task_get_css(tsk, cpuset_cgrp_id); 4166 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 4167 current->nsproxy->cgroup_ns); 4168 css_put(css); 4169 if (retval >= PATH_MAX) 4170 retval = -ENAMETOOLONG; 4171 if (retval < 0) 4172 goto out_free; 4173 seq_puts(m, buf); 4174 seq_putc(m, '\n'); 4175 retval = 0; 4176 out_free: 4177 kfree(buf); 4178 out: 4179 return retval; 4180 } 4181 #endif /* CONFIG_PROC_PID_CPUSET */ 4182 4183 /* Display task mems_allowed in /proc/<pid>/status file. */ 4184 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 4185 { 4186 seq_printf(m, "Mems_allowed:\t%*pb\n", 4187 nodemask_pr_args(&task->mems_allowed)); 4188 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 4189 nodemask_pr_args(&task->mems_allowed)); 4190 } 4191