xref: /linux/kernel/cgroup/cpuset.c (revision ff9f3d7aefddbaa9a9b0f18f83e4319b5cd0e63e)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/kthread.h>
37 #include <linux/list.h>
38 #include <linux/mempolicy.h>
39 #include <linux/mm.h>
40 #include <linux/memory.h>
41 #include <linux/export.h>
42 #include <linux/mount.h>
43 #include <linux/fs_context.h>
44 #include <linux/namei.h>
45 #include <linux/pagemap.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/sched.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/mm.h>
51 #include <linux/sched/task.h>
52 #include <linux/seq_file.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/spinlock.h>
56 #include <linux/stat.h>
57 #include <linux/string.h>
58 #include <linux/time.h>
59 #include <linux/time64.h>
60 #include <linux/backing-dev.h>
61 #include <linux/sort.h>
62 #include <linux/oom.h>
63 #include <linux/sched/isolation.h>
64 #include <linux/uaccess.h>
65 #include <linux/atomic.h>
66 #include <linux/mutex.h>
67 #include <linux/cgroup.h>
68 #include <linux/wait.h>
69 
70 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
71 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
72 
73 /*
74  * There could be abnormal cpuset configurations for cpu or memory
75  * node binding, add this key to provide a quick low-cost judgment
76  * of the situation.
77  */
78 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
79 
80 /* See "Frequency meter" comments, below. */
81 
82 struct fmeter {
83 	int cnt;		/* unprocessed events count */
84 	int val;		/* most recent output value */
85 	time64_t time;		/* clock (secs) when val computed */
86 	spinlock_t lock;	/* guards read or write of above */
87 };
88 
89 /*
90  * Invalid partition error code
91  */
92 enum prs_errcode {
93 	PERR_NONE = 0,
94 	PERR_INVCPUS,
95 	PERR_INVPARENT,
96 	PERR_NOTPART,
97 	PERR_NOTEXCL,
98 	PERR_NOCPUS,
99 	PERR_HOTPLUG,
100 	PERR_CPUSEMPTY,
101 };
102 
103 static const char * const perr_strings[] = {
104 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus",
105 	[PERR_INVPARENT] = "Parent is an invalid partition root",
106 	[PERR_NOTPART]   = "Parent is not a partition root",
107 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
108 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
109 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
110 	[PERR_CPUSEMPTY] = "cpuset.cpus is empty",
111 };
112 
113 struct cpuset {
114 	struct cgroup_subsys_state css;
115 
116 	unsigned long flags;		/* "unsigned long" so bitops work */
117 
118 	/*
119 	 * On default hierarchy:
120 	 *
121 	 * The user-configured masks can only be changed by writing to
122 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
123 	 * parent masks.
124 	 *
125 	 * The effective masks is the real masks that apply to the tasks
126 	 * in the cpuset. They may be changed if the configured masks are
127 	 * changed or hotplug happens.
128 	 *
129 	 * effective_mask == configured_mask & parent's effective_mask,
130 	 * and if it ends up empty, it will inherit the parent's mask.
131 	 *
132 	 *
133 	 * On legacy hierarchy:
134 	 *
135 	 * The user-configured masks are always the same with effective masks.
136 	 */
137 
138 	/* user-configured CPUs and Memory Nodes allow to tasks */
139 	cpumask_var_t cpus_allowed;
140 	nodemask_t mems_allowed;
141 
142 	/* effective CPUs and Memory Nodes allow to tasks */
143 	cpumask_var_t effective_cpus;
144 	nodemask_t effective_mems;
145 
146 	/*
147 	 * CPUs allocated to child sub-partitions (default hierarchy only)
148 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
149 	 * - effective_cpus and subparts_cpus are mutually exclusive.
150 	 *
151 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
152 	 * may have offlined ones.
153 	 */
154 	cpumask_var_t subparts_cpus;
155 
156 	/*
157 	 * This is old Memory Nodes tasks took on.
158 	 *
159 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
160 	 * - A new cpuset's old_mems_allowed is initialized when some
161 	 *   task is moved into it.
162 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
163 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
164 	 *   then old_mems_allowed is updated to mems_allowed.
165 	 */
166 	nodemask_t old_mems_allowed;
167 
168 	struct fmeter fmeter;		/* memory_pressure filter */
169 
170 	/*
171 	 * Tasks are being attached to this cpuset.  Used to prevent
172 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
173 	 */
174 	int attach_in_progress;
175 
176 	/* partition number for rebuild_sched_domains() */
177 	int pn;
178 
179 	/* for custom sched domain */
180 	int relax_domain_level;
181 
182 	/* number of CPUs in subparts_cpus */
183 	int nr_subparts_cpus;
184 
185 	/* partition root state */
186 	int partition_root_state;
187 
188 	/*
189 	 * Default hierarchy only:
190 	 * use_parent_ecpus - set if using parent's effective_cpus
191 	 * child_ecpus_count - # of children with use_parent_ecpus set
192 	 */
193 	int use_parent_ecpus;
194 	int child_ecpus_count;
195 
196 	/* Invalid partition error code, not lock protected */
197 	enum prs_errcode prs_err;
198 
199 	/* Handle for cpuset.cpus.partition */
200 	struct cgroup_file partition_file;
201 };
202 
203 /*
204  * Partition root states:
205  *
206  *   0 - member (not a partition root)
207  *   1 - partition root
208  *   2 - partition root without load balancing (isolated)
209  *  -1 - invalid partition root
210  *  -2 - invalid isolated partition root
211  */
212 #define PRS_MEMBER		0
213 #define PRS_ROOT		1
214 #define PRS_ISOLATED		2
215 #define PRS_INVALID_ROOT	-1
216 #define PRS_INVALID_ISOLATED	-2
217 
218 static inline bool is_prs_invalid(int prs_state)
219 {
220 	return prs_state < 0;
221 }
222 
223 /*
224  * Temporary cpumasks for working with partitions that are passed among
225  * functions to avoid memory allocation in inner functions.
226  */
227 struct tmpmasks {
228 	cpumask_var_t addmask, delmask;	/* For partition root */
229 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
230 };
231 
232 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
233 {
234 	return css ? container_of(css, struct cpuset, css) : NULL;
235 }
236 
237 /* Retrieve the cpuset for a task */
238 static inline struct cpuset *task_cs(struct task_struct *task)
239 {
240 	return css_cs(task_css(task, cpuset_cgrp_id));
241 }
242 
243 static inline struct cpuset *parent_cs(struct cpuset *cs)
244 {
245 	return css_cs(cs->css.parent);
246 }
247 
248 /* bits in struct cpuset flags field */
249 typedef enum {
250 	CS_ONLINE,
251 	CS_CPU_EXCLUSIVE,
252 	CS_MEM_EXCLUSIVE,
253 	CS_MEM_HARDWALL,
254 	CS_MEMORY_MIGRATE,
255 	CS_SCHED_LOAD_BALANCE,
256 	CS_SPREAD_PAGE,
257 	CS_SPREAD_SLAB,
258 } cpuset_flagbits_t;
259 
260 /* convenient tests for these bits */
261 static inline bool is_cpuset_online(struct cpuset *cs)
262 {
263 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
264 }
265 
266 static inline int is_cpu_exclusive(const struct cpuset *cs)
267 {
268 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
269 }
270 
271 static inline int is_mem_exclusive(const struct cpuset *cs)
272 {
273 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
274 }
275 
276 static inline int is_mem_hardwall(const struct cpuset *cs)
277 {
278 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
279 }
280 
281 static inline int is_sched_load_balance(const struct cpuset *cs)
282 {
283 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
284 }
285 
286 static inline int is_memory_migrate(const struct cpuset *cs)
287 {
288 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
289 }
290 
291 static inline int is_spread_page(const struct cpuset *cs)
292 {
293 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
294 }
295 
296 static inline int is_spread_slab(const struct cpuset *cs)
297 {
298 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
299 }
300 
301 static inline int is_partition_valid(const struct cpuset *cs)
302 {
303 	return cs->partition_root_state > 0;
304 }
305 
306 static inline int is_partition_invalid(const struct cpuset *cs)
307 {
308 	return cs->partition_root_state < 0;
309 }
310 
311 /*
312  * Callers should hold callback_lock to modify partition_root_state.
313  */
314 static inline void make_partition_invalid(struct cpuset *cs)
315 {
316 	if (is_partition_valid(cs))
317 		cs->partition_root_state = -cs->partition_root_state;
318 }
319 
320 /*
321  * Send notification event of whenever partition_root_state changes.
322  */
323 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
324 {
325 	if (old_prs == cs->partition_root_state)
326 		return;
327 	cgroup_file_notify(&cs->partition_file);
328 
329 	/* Reset prs_err if not invalid */
330 	if (is_partition_valid(cs))
331 		WRITE_ONCE(cs->prs_err, PERR_NONE);
332 }
333 
334 static struct cpuset top_cpuset = {
335 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
336 		  (1 << CS_MEM_EXCLUSIVE)),
337 	.partition_root_state = PRS_ROOT,
338 };
339 
340 /**
341  * cpuset_for_each_child - traverse online children of a cpuset
342  * @child_cs: loop cursor pointing to the current child
343  * @pos_css: used for iteration
344  * @parent_cs: target cpuset to walk children of
345  *
346  * Walk @child_cs through the online children of @parent_cs.  Must be used
347  * with RCU read locked.
348  */
349 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
350 	css_for_each_child((pos_css), &(parent_cs)->css)		\
351 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
352 
353 /**
354  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
355  * @des_cs: loop cursor pointing to the current descendant
356  * @pos_css: used for iteration
357  * @root_cs: target cpuset to walk ancestor of
358  *
359  * Walk @des_cs through the online descendants of @root_cs.  Must be used
360  * with RCU read locked.  The caller may modify @pos_css by calling
361  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
362  * iteration and the first node to be visited.
363  */
364 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
365 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
366 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
367 
368 /*
369  * There are two global locks guarding cpuset structures - cpuset_rwsem and
370  * callback_lock. We also require taking task_lock() when dereferencing a
371  * task's cpuset pointer. See "The task_lock() exception", at the end of this
372  * comment.  The cpuset code uses only cpuset_rwsem write lock.  Other
373  * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to
374  * prevent change to cpuset structures.
375  *
376  * A task must hold both locks to modify cpusets.  If a task holds
377  * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it
378  * is the only task able to also acquire callback_lock and be able to
379  * modify cpusets.  It can perform various checks on the cpuset structure
380  * first, knowing nothing will change.  It can also allocate memory while
381  * just holding cpuset_rwsem.  While it is performing these checks, various
382  * callback routines can briefly acquire callback_lock to query cpusets.
383  * Once it is ready to make the changes, it takes callback_lock, blocking
384  * everyone else.
385  *
386  * Calls to the kernel memory allocator can not be made while holding
387  * callback_lock, as that would risk double tripping on callback_lock
388  * from one of the callbacks into the cpuset code from within
389  * __alloc_pages().
390  *
391  * If a task is only holding callback_lock, then it has read-only
392  * access to cpusets.
393  *
394  * Now, the task_struct fields mems_allowed and mempolicy may be changed
395  * by other task, we use alloc_lock in the task_struct fields to protect
396  * them.
397  *
398  * The cpuset_common_file_read() handlers only hold callback_lock across
399  * small pieces of code, such as when reading out possibly multi-word
400  * cpumasks and nodemasks.
401  *
402  * Accessing a task's cpuset should be done in accordance with the
403  * guidelines for accessing subsystem state in kernel/cgroup.c
404  */
405 
406 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
407 
408 void cpuset_read_lock(void)
409 {
410 	percpu_down_read(&cpuset_rwsem);
411 }
412 
413 void cpuset_read_unlock(void)
414 {
415 	percpu_up_read(&cpuset_rwsem);
416 }
417 
418 static DEFINE_SPINLOCK(callback_lock);
419 
420 static struct workqueue_struct *cpuset_migrate_mm_wq;
421 
422 /*
423  * CPU / memory hotplug is handled asynchronously.
424  */
425 static void cpuset_hotplug_workfn(struct work_struct *work);
426 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
427 
428 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
429 
430 static inline void check_insane_mems_config(nodemask_t *nodes)
431 {
432 	if (!cpusets_insane_config() &&
433 		movable_only_nodes(nodes)) {
434 		static_branch_enable(&cpusets_insane_config_key);
435 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
436 			"Cpuset allocations might fail even with a lot of memory available.\n",
437 			nodemask_pr_args(nodes));
438 	}
439 }
440 
441 /*
442  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
443  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
444  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
445  * With v2 behavior, "cpus" and "mems" are always what the users have
446  * requested and won't be changed by hotplug events. Only the effective
447  * cpus or mems will be affected.
448  */
449 static inline bool is_in_v2_mode(void)
450 {
451 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
452 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
453 }
454 
455 /**
456  * partition_is_populated - check if partition has tasks
457  * @cs: partition root to be checked
458  * @excluded_child: a child cpuset to be excluded in task checking
459  * Return: true if there are tasks, false otherwise
460  *
461  * It is assumed that @cs is a valid partition root. @excluded_child should
462  * be non-NULL when this cpuset is going to become a partition itself.
463  */
464 static inline bool partition_is_populated(struct cpuset *cs,
465 					  struct cpuset *excluded_child)
466 {
467 	struct cgroup_subsys_state *css;
468 	struct cpuset *child;
469 
470 	if (cs->css.cgroup->nr_populated_csets)
471 		return true;
472 	if (!excluded_child && !cs->nr_subparts_cpus)
473 		return cgroup_is_populated(cs->css.cgroup);
474 
475 	rcu_read_lock();
476 	cpuset_for_each_child(child, css, cs) {
477 		if (child == excluded_child)
478 			continue;
479 		if (is_partition_valid(child))
480 			continue;
481 		if (cgroup_is_populated(child->css.cgroup)) {
482 			rcu_read_unlock();
483 			return true;
484 		}
485 	}
486 	rcu_read_unlock();
487 	return false;
488 }
489 
490 /*
491  * Return in pmask the portion of a task's cpusets's cpus_allowed that
492  * are online and are capable of running the task.  If none are found,
493  * walk up the cpuset hierarchy until we find one that does have some
494  * appropriate cpus.
495  *
496  * One way or another, we guarantee to return some non-empty subset
497  * of cpu_online_mask.
498  *
499  * Call with callback_lock or cpuset_rwsem held.
500  */
501 static void guarantee_online_cpus(struct task_struct *tsk,
502 				  struct cpumask *pmask)
503 {
504 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
505 	struct cpuset *cs;
506 
507 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
508 		cpumask_copy(pmask, cpu_online_mask);
509 
510 	rcu_read_lock();
511 	cs = task_cs(tsk);
512 
513 	while (!cpumask_intersects(cs->effective_cpus, pmask)) {
514 		cs = parent_cs(cs);
515 		if (unlikely(!cs)) {
516 			/*
517 			 * The top cpuset doesn't have any online cpu as a
518 			 * consequence of a race between cpuset_hotplug_work
519 			 * and cpu hotplug notifier.  But we know the top
520 			 * cpuset's effective_cpus is on its way to be
521 			 * identical to cpu_online_mask.
522 			 */
523 			goto out_unlock;
524 		}
525 	}
526 	cpumask_and(pmask, pmask, cs->effective_cpus);
527 
528 out_unlock:
529 	rcu_read_unlock();
530 }
531 
532 /*
533  * Return in *pmask the portion of a cpusets's mems_allowed that
534  * are online, with memory.  If none are online with memory, walk
535  * up the cpuset hierarchy until we find one that does have some
536  * online mems.  The top cpuset always has some mems online.
537  *
538  * One way or another, we guarantee to return some non-empty subset
539  * of node_states[N_MEMORY].
540  *
541  * Call with callback_lock or cpuset_rwsem held.
542  */
543 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
544 {
545 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
546 		cs = parent_cs(cs);
547 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
548 }
549 
550 /*
551  * update task's spread flag if cpuset's page/slab spread flag is set
552  *
553  * Call with callback_lock or cpuset_rwsem held. The check can be skipped
554  * if on default hierarchy.
555  */
556 static void cpuset_update_task_spread_flags(struct cpuset *cs,
557 					struct task_struct *tsk)
558 {
559 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
560 		return;
561 
562 	if (is_spread_page(cs))
563 		task_set_spread_page(tsk);
564 	else
565 		task_clear_spread_page(tsk);
566 
567 	if (is_spread_slab(cs))
568 		task_set_spread_slab(tsk);
569 	else
570 		task_clear_spread_slab(tsk);
571 }
572 
573 /*
574  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
575  *
576  * One cpuset is a subset of another if all its allowed CPUs and
577  * Memory Nodes are a subset of the other, and its exclusive flags
578  * are only set if the other's are set.  Call holding cpuset_rwsem.
579  */
580 
581 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
582 {
583 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
584 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
585 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
586 		is_mem_exclusive(p) <= is_mem_exclusive(q);
587 }
588 
589 /**
590  * alloc_cpumasks - allocate three cpumasks for cpuset
591  * @cs:  the cpuset that have cpumasks to be allocated.
592  * @tmp: the tmpmasks structure pointer
593  * Return: 0 if successful, -ENOMEM otherwise.
594  *
595  * Only one of the two input arguments should be non-NULL.
596  */
597 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
598 {
599 	cpumask_var_t *pmask1, *pmask2, *pmask3;
600 
601 	if (cs) {
602 		pmask1 = &cs->cpus_allowed;
603 		pmask2 = &cs->effective_cpus;
604 		pmask3 = &cs->subparts_cpus;
605 	} else {
606 		pmask1 = &tmp->new_cpus;
607 		pmask2 = &tmp->addmask;
608 		pmask3 = &tmp->delmask;
609 	}
610 
611 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
612 		return -ENOMEM;
613 
614 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
615 		goto free_one;
616 
617 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
618 		goto free_two;
619 
620 	return 0;
621 
622 free_two:
623 	free_cpumask_var(*pmask2);
624 free_one:
625 	free_cpumask_var(*pmask1);
626 	return -ENOMEM;
627 }
628 
629 /**
630  * free_cpumasks - free cpumasks in a tmpmasks structure
631  * @cs:  the cpuset that have cpumasks to be free.
632  * @tmp: the tmpmasks structure pointer
633  */
634 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
635 {
636 	if (cs) {
637 		free_cpumask_var(cs->cpus_allowed);
638 		free_cpumask_var(cs->effective_cpus);
639 		free_cpumask_var(cs->subparts_cpus);
640 	}
641 	if (tmp) {
642 		free_cpumask_var(tmp->new_cpus);
643 		free_cpumask_var(tmp->addmask);
644 		free_cpumask_var(tmp->delmask);
645 	}
646 }
647 
648 /**
649  * alloc_trial_cpuset - allocate a trial cpuset
650  * @cs: the cpuset that the trial cpuset duplicates
651  */
652 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
653 {
654 	struct cpuset *trial;
655 
656 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
657 	if (!trial)
658 		return NULL;
659 
660 	if (alloc_cpumasks(trial, NULL)) {
661 		kfree(trial);
662 		return NULL;
663 	}
664 
665 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
666 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
667 	return trial;
668 }
669 
670 /**
671  * free_cpuset - free the cpuset
672  * @cs: the cpuset to be freed
673  */
674 static inline void free_cpuset(struct cpuset *cs)
675 {
676 	free_cpumasks(cs, NULL);
677 	kfree(cs);
678 }
679 
680 /*
681  * validate_change_legacy() - Validate conditions specific to legacy (v1)
682  *                            behavior.
683  */
684 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
685 {
686 	struct cgroup_subsys_state *css;
687 	struct cpuset *c, *par;
688 	int ret;
689 
690 	WARN_ON_ONCE(!rcu_read_lock_held());
691 
692 	/* Each of our child cpusets must be a subset of us */
693 	ret = -EBUSY;
694 	cpuset_for_each_child(c, css, cur)
695 		if (!is_cpuset_subset(c, trial))
696 			goto out;
697 
698 	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
699 	ret = -EACCES;
700 	par = parent_cs(cur);
701 	if (par && !is_cpuset_subset(trial, par))
702 		goto out;
703 
704 	ret = 0;
705 out:
706 	return ret;
707 }
708 
709 /*
710  * validate_change() - Used to validate that any proposed cpuset change
711  *		       follows the structural rules for cpusets.
712  *
713  * If we replaced the flag and mask values of the current cpuset
714  * (cur) with those values in the trial cpuset (trial), would
715  * our various subset and exclusive rules still be valid?  Presumes
716  * cpuset_rwsem held.
717  *
718  * 'cur' is the address of an actual, in-use cpuset.  Operations
719  * such as list traversal that depend on the actual address of the
720  * cpuset in the list must use cur below, not trial.
721  *
722  * 'trial' is the address of bulk structure copy of cur, with
723  * perhaps one or more of the fields cpus_allowed, mems_allowed,
724  * or flags changed to new, trial values.
725  *
726  * Return 0 if valid, -errno if not.
727  */
728 
729 static int validate_change(struct cpuset *cur, struct cpuset *trial)
730 {
731 	struct cgroup_subsys_state *css;
732 	struct cpuset *c, *par;
733 	int ret = 0;
734 
735 	rcu_read_lock();
736 
737 	if (!is_in_v2_mode())
738 		ret = validate_change_legacy(cur, trial);
739 	if (ret)
740 		goto out;
741 
742 	/* Remaining checks don't apply to root cpuset */
743 	if (cur == &top_cpuset)
744 		goto out;
745 
746 	par = parent_cs(cur);
747 
748 	/*
749 	 * Cpusets with tasks - existing or newly being attached - can't
750 	 * be changed to have empty cpus_allowed or mems_allowed.
751 	 */
752 	ret = -ENOSPC;
753 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
754 		if (!cpumask_empty(cur->cpus_allowed) &&
755 		    cpumask_empty(trial->cpus_allowed))
756 			goto out;
757 		if (!nodes_empty(cur->mems_allowed) &&
758 		    nodes_empty(trial->mems_allowed))
759 			goto out;
760 	}
761 
762 	/*
763 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
764 	 * tasks.
765 	 */
766 	ret = -EBUSY;
767 	if (is_cpu_exclusive(cur) &&
768 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
769 				       trial->cpus_allowed))
770 		goto out;
771 
772 	/*
773 	 * If either I or some sibling (!= me) is exclusive, we can't
774 	 * overlap
775 	 */
776 	ret = -EINVAL;
777 	cpuset_for_each_child(c, css, par) {
778 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
779 		    c != cur &&
780 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
781 			goto out;
782 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
783 		    c != cur &&
784 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
785 			goto out;
786 	}
787 
788 	ret = 0;
789 out:
790 	rcu_read_unlock();
791 	return ret;
792 }
793 
794 #ifdef CONFIG_SMP
795 /*
796  * Helper routine for generate_sched_domains().
797  * Do cpusets a, b have overlapping effective cpus_allowed masks?
798  */
799 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
800 {
801 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
802 }
803 
804 static void
805 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
806 {
807 	if (dattr->relax_domain_level < c->relax_domain_level)
808 		dattr->relax_domain_level = c->relax_domain_level;
809 	return;
810 }
811 
812 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
813 				    struct cpuset *root_cs)
814 {
815 	struct cpuset *cp;
816 	struct cgroup_subsys_state *pos_css;
817 
818 	rcu_read_lock();
819 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
820 		/* skip the whole subtree if @cp doesn't have any CPU */
821 		if (cpumask_empty(cp->cpus_allowed)) {
822 			pos_css = css_rightmost_descendant(pos_css);
823 			continue;
824 		}
825 
826 		if (is_sched_load_balance(cp))
827 			update_domain_attr(dattr, cp);
828 	}
829 	rcu_read_unlock();
830 }
831 
832 /* Must be called with cpuset_rwsem held.  */
833 static inline int nr_cpusets(void)
834 {
835 	/* jump label reference count + the top-level cpuset */
836 	return static_key_count(&cpusets_enabled_key.key) + 1;
837 }
838 
839 /*
840  * generate_sched_domains()
841  *
842  * This function builds a partial partition of the systems CPUs
843  * A 'partial partition' is a set of non-overlapping subsets whose
844  * union is a subset of that set.
845  * The output of this function needs to be passed to kernel/sched/core.c
846  * partition_sched_domains() routine, which will rebuild the scheduler's
847  * load balancing domains (sched domains) as specified by that partial
848  * partition.
849  *
850  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
851  * for a background explanation of this.
852  *
853  * Does not return errors, on the theory that the callers of this
854  * routine would rather not worry about failures to rebuild sched
855  * domains when operating in the severe memory shortage situations
856  * that could cause allocation failures below.
857  *
858  * Must be called with cpuset_rwsem held.
859  *
860  * The three key local variables below are:
861  *    cp - cpuset pointer, used (together with pos_css) to perform a
862  *	   top-down scan of all cpusets. For our purposes, rebuilding
863  *	   the schedulers sched domains, we can ignore !is_sched_load_
864  *	   balance cpusets.
865  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
866  *	   that need to be load balanced, for convenient iterative
867  *	   access by the subsequent code that finds the best partition,
868  *	   i.e the set of domains (subsets) of CPUs such that the
869  *	   cpus_allowed of every cpuset marked is_sched_load_balance
870  *	   is a subset of one of these domains, while there are as
871  *	   many such domains as possible, each as small as possible.
872  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
873  *	   the kernel/sched/core.c routine partition_sched_domains() in a
874  *	   convenient format, that can be easily compared to the prior
875  *	   value to determine what partition elements (sched domains)
876  *	   were changed (added or removed.)
877  *
878  * Finding the best partition (set of domains):
879  *	The triple nested loops below over i, j, k scan over the
880  *	load balanced cpusets (using the array of cpuset pointers in
881  *	csa[]) looking for pairs of cpusets that have overlapping
882  *	cpus_allowed, but which don't have the same 'pn' partition
883  *	number and gives them in the same partition number.  It keeps
884  *	looping on the 'restart' label until it can no longer find
885  *	any such pairs.
886  *
887  *	The union of the cpus_allowed masks from the set of
888  *	all cpusets having the same 'pn' value then form the one
889  *	element of the partition (one sched domain) to be passed to
890  *	partition_sched_domains().
891  */
892 static int generate_sched_domains(cpumask_var_t **domains,
893 			struct sched_domain_attr **attributes)
894 {
895 	struct cpuset *cp;	/* top-down scan of cpusets */
896 	struct cpuset **csa;	/* array of all cpuset ptrs */
897 	int csn;		/* how many cpuset ptrs in csa so far */
898 	int i, j, k;		/* indices for partition finding loops */
899 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
900 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
901 	int ndoms = 0;		/* number of sched domains in result */
902 	int nslot;		/* next empty doms[] struct cpumask slot */
903 	struct cgroup_subsys_state *pos_css;
904 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
905 
906 	doms = NULL;
907 	dattr = NULL;
908 	csa = NULL;
909 
910 	/* Special case for the 99% of systems with one, full, sched domain */
911 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
912 		ndoms = 1;
913 		doms = alloc_sched_domains(ndoms);
914 		if (!doms)
915 			goto done;
916 
917 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
918 		if (dattr) {
919 			*dattr = SD_ATTR_INIT;
920 			update_domain_attr_tree(dattr, &top_cpuset);
921 		}
922 		cpumask_and(doms[0], top_cpuset.effective_cpus,
923 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
924 
925 		goto done;
926 	}
927 
928 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
929 	if (!csa)
930 		goto done;
931 	csn = 0;
932 
933 	rcu_read_lock();
934 	if (root_load_balance)
935 		csa[csn++] = &top_cpuset;
936 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
937 		if (cp == &top_cpuset)
938 			continue;
939 		/*
940 		 * Continue traversing beyond @cp iff @cp has some CPUs and
941 		 * isn't load balancing.  The former is obvious.  The
942 		 * latter: All child cpusets contain a subset of the
943 		 * parent's cpus, so just skip them, and then we call
944 		 * update_domain_attr_tree() to calc relax_domain_level of
945 		 * the corresponding sched domain.
946 		 *
947 		 * If root is load-balancing, we can skip @cp if it
948 		 * is a subset of the root's effective_cpus.
949 		 */
950 		if (!cpumask_empty(cp->cpus_allowed) &&
951 		    !(is_sched_load_balance(cp) &&
952 		      cpumask_intersects(cp->cpus_allowed,
953 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
954 			continue;
955 
956 		if (root_load_balance &&
957 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
958 			continue;
959 
960 		if (is_sched_load_balance(cp) &&
961 		    !cpumask_empty(cp->effective_cpus))
962 			csa[csn++] = cp;
963 
964 		/* skip @cp's subtree if not a partition root */
965 		if (!is_partition_valid(cp))
966 			pos_css = css_rightmost_descendant(pos_css);
967 	}
968 	rcu_read_unlock();
969 
970 	for (i = 0; i < csn; i++)
971 		csa[i]->pn = i;
972 	ndoms = csn;
973 
974 restart:
975 	/* Find the best partition (set of sched domains) */
976 	for (i = 0; i < csn; i++) {
977 		struct cpuset *a = csa[i];
978 		int apn = a->pn;
979 
980 		for (j = 0; j < csn; j++) {
981 			struct cpuset *b = csa[j];
982 			int bpn = b->pn;
983 
984 			if (apn != bpn && cpusets_overlap(a, b)) {
985 				for (k = 0; k < csn; k++) {
986 					struct cpuset *c = csa[k];
987 
988 					if (c->pn == bpn)
989 						c->pn = apn;
990 				}
991 				ndoms--;	/* one less element */
992 				goto restart;
993 			}
994 		}
995 	}
996 
997 	/*
998 	 * Now we know how many domains to create.
999 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
1000 	 */
1001 	doms = alloc_sched_domains(ndoms);
1002 	if (!doms)
1003 		goto done;
1004 
1005 	/*
1006 	 * The rest of the code, including the scheduler, can deal with
1007 	 * dattr==NULL case. No need to abort if alloc fails.
1008 	 */
1009 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
1010 			      GFP_KERNEL);
1011 
1012 	for (nslot = 0, i = 0; i < csn; i++) {
1013 		struct cpuset *a = csa[i];
1014 		struct cpumask *dp;
1015 		int apn = a->pn;
1016 
1017 		if (apn < 0) {
1018 			/* Skip completed partitions */
1019 			continue;
1020 		}
1021 
1022 		dp = doms[nslot];
1023 
1024 		if (nslot == ndoms) {
1025 			static int warnings = 10;
1026 			if (warnings) {
1027 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
1028 					nslot, ndoms, csn, i, apn);
1029 				warnings--;
1030 			}
1031 			continue;
1032 		}
1033 
1034 		cpumask_clear(dp);
1035 		if (dattr)
1036 			*(dattr + nslot) = SD_ATTR_INIT;
1037 		for (j = i; j < csn; j++) {
1038 			struct cpuset *b = csa[j];
1039 
1040 			if (apn == b->pn) {
1041 				cpumask_or(dp, dp, b->effective_cpus);
1042 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1043 				if (dattr)
1044 					update_domain_attr_tree(dattr + nslot, b);
1045 
1046 				/* Done with this partition */
1047 				b->pn = -1;
1048 			}
1049 		}
1050 		nslot++;
1051 	}
1052 	BUG_ON(nslot != ndoms);
1053 
1054 done:
1055 	kfree(csa);
1056 
1057 	/*
1058 	 * Fallback to the default domain if kmalloc() failed.
1059 	 * See comments in partition_sched_domains().
1060 	 */
1061 	if (doms == NULL)
1062 		ndoms = 1;
1063 
1064 	*domains    = doms;
1065 	*attributes = dattr;
1066 	return ndoms;
1067 }
1068 
1069 static void update_tasks_root_domain(struct cpuset *cs)
1070 {
1071 	struct css_task_iter it;
1072 	struct task_struct *task;
1073 
1074 	css_task_iter_start(&cs->css, 0, &it);
1075 
1076 	while ((task = css_task_iter_next(&it)))
1077 		dl_add_task_root_domain(task);
1078 
1079 	css_task_iter_end(&it);
1080 }
1081 
1082 static void rebuild_root_domains(void)
1083 {
1084 	struct cpuset *cs = NULL;
1085 	struct cgroup_subsys_state *pos_css;
1086 
1087 	percpu_rwsem_assert_held(&cpuset_rwsem);
1088 	lockdep_assert_cpus_held();
1089 	lockdep_assert_held(&sched_domains_mutex);
1090 
1091 	rcu_read_lock();
1092 
1093 	/*
1094 	 * Clear default root domain DL accounting, it will be computed again
1095 	 * if a task belongs to it.
1096 	 */
1097 	dl_clear_root_domain(&def_root_domain);
1098 
1099 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1100 
1101 		if (cpumask_empty(cs->effective_cpus)) {
1102 			pos_css = css_rightmost_descendant(pos_css);
1103 			continue;
1104 		}
1105 
1106 		css_get(&cs->css);
1107 
1108 		rcu_read_unlock();
1109 
1110 		update_tasks_root_domain(cs);
1111 
1112 		rcu_read_lock();
1113 		css_put(&cs->css);
1114 	}
1115 	rcu_read_unlock();
1116 }
1117 
1118 static void
1119 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1120 				    struct sched_domain_attr *dattr_new)
1121 {
1122 	mutex_lock(&sched_domains_mutex);
1123 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1124 	rebuild_root_domains();
1125 	mutex_unlock(&sched_domains_mutex);
1126 }
1127 
1128 /*
1129  * Rebuild scheduler domains.
1130  *
1131  * If the flag 'sched_load_balance' of any cpuset with non-empty
1132  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1133  * which has that flag enabled, or if any cpuset with a non-empty
1134  * 'cpus' is removed, then call this routine to rebuild the
1135  * scheduler's dynamic sched domains.
1136  *
1137  * Call with cpuset_rwsem held.  Takes cpus_read_lock().
1138  */
1139 static void rebuild_sched_domains_locked(void)
1140 {
1141 	struct cgroup_subsys_state *pos_css;
1142 	struct sched_domain_attr *attr;
1143 	cpumask_var_t *doms;
1144 	struct cpuset *cs;
1145 	int ndoms;
1146 
1147 	lockdep_assert_cpus_held();
1148 	percpu_rwsem_assert_held(&cpuset_rwsem);
1149 
1150 	/*
1151 	 * If we have raced with CPU hotplug, return early to avoid
1152 	 * passing doms with offlined cpu to partition_sched_domains().
1153 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1154 	 *
1155 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1156 	 * should be the same as the active CPUs, so checking only top_cpuset
1157 	 * is enough to detect racing CPU offlines.
1158 	 */
1159 	if (!top_cpuset.nr_subparts_cpus &&
1160 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1161 		return;
1162 
1163 	/*
1164 	 * With subpartition CPUs, however, the effective CPUs of a partition
1165 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1166 	 * partition root could be offlined, all must be checked.
1167 	 */
1168 	if (top_cpuset.nr_subparts_cpus) {
1169 		rcu_read_lock();
1170 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1171 			if (!is_partition_valid(cs)) {
1172 				pos_css = css_rightmost_descendant(pos_css);
1173 				continue;
1174 			}
1175 			if (!cpumask_subset(cs->effective_cpus,
1176 					    cpu_active_mask)) {
1177 				rcu_read_unlock();
1178 				return;
1179 			}
1180 		}
1181 		rcu_read_unlock();
1182 	}
1183 
1184 	/* Generate domain masks and attrs */
1185 	ndoms = generate_sched_domains(&doms, &attr);
1186 
1187 	/* Have scheduler rebuild the domains */
1188 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1189 }
1190 #else /* !CONFIG_SMP */
1191 static void rebuild_sched_domains_locked(void)
1192 {
1193 }
1194 #endif /* CONFIG_SMP */
1195 
1196 void rebuild_sched_domains(void)
1197 {
1198 	cpus_read_lock();
1199 	percpu_down_write(&cpuset_rwsem);
1200 	rebuild_sched_domains_locked();
1201 	percpu_up_write(&cpuset_rwsem);
1202 	cpus_read_unlock();
1203 }
1204 
1205 /**
1206  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1207  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1208  * @new_cpus: the temp variable for the new effective_cpus mask
1209  *
1210  * Iterate through each task of @cs updating its cpus_allowed to the
1211  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1212  * cpuset membership stays stable.
1213  */
1214 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1215 {
1216 	struct css_task_iter it;
1217 	struct task_struct *task;
1218 	bool top_cs = cs == &top_cpuset;
1219 
1220 	css_task_iter_start(&cs->css, 0, &it);
1221 	while ((task = css_task_iter_next(&it))) {
1222 		/*
1223 		 * Percpu kthreads in top_cpuset are ignored
1224 		 */
1225 		if (top_cs && (task->flags & PF_KTHREAD) &&
1226 		    kthread_is_per_cpu(task))
1227 			continue;
1228 
1229 		cpumask_and(new_cpus, cs->effective_cpus,
1230 			    task_cpu_possible_mask(task));
1231 		set_cpus_allowed_ptr(task, new_cpus);
1232 	}
1233 	css_task_iter_end(&it);
1234 }
1235 
1236 /**
1237  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1238  * @new_cpus: the temp variable for the new effective_cpus mask
1239  * @cs: the cpuset the need to recompute the new effective_cpus mask
1240  * @parent: the parent cpuset
1241  *
1242  * If the parent has subpartition CPUs, include them in the list of
1243  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1244  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1245  * to mask those out.
1246  */
1247 static void compute_effective_cpumask(struct cpumask *new_cpus,
1248 				      struct cpuset *cs, struct cpuset *parent)
1249 {
1250 	if (parent->nr_subparts_cpus) {
1251 		cpumask_or(new_cpus, parent->effective_cpus,
1252 			   parent->subparts_cpus);
1253 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1254 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1255 	} else {
1256 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1257 	}
1258 }
1259 
1260 /*
1261  * Commands for update_parent_subparts_cpumask
1262  */
1263 enum subparts_cmd {
1264 	partcmd_enable,		/* Enable partition root	 */
1265 	partcmd_disable,	/* Disable partition root	 */
1266 	partcmd_update,		/* Update parent's subparts_cpus */
1267 	partcmd_invalidate,	/* Make partition invalid	 */
1268 };
1269 
1270 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1271 		       int turning_on);
1272 /**
1273  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1274  * @cs:      The cpuset that requests change in partition root state
1275  * @cmd:     Partition root state change command
1276  * @newmask: Optional new cpumask for partcmd_update
1277  * @tmp:     Temporary addmask and delmask
1278  * Return:   0 or a partition root state error code
1279  *
1280  * For partcmd_enable, the cpuset is being transformed from a non-partition
1281  * root to a partition root. The cpus_allowed mask of the given cpuset will
1282  * be put into parent's subparts_cpus and taken away from parent's
1283  * effective_cpus. The function will return 0 if all the CPUs listed in
1284  * cpus_allowed can be granted or an error code will be returned.
1285  *
1286  * For partcmd_disable, the cpuset is being transformed from a partition
1287  * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1288  * parent's subparts_cpus will be taken away from that cpumask and put back
1289  * into parent's effective_cpus. 0 will always be returned.
1290  *
1291  * For partcmd_update, if the optional newmask is specified, the cpu list is
1292  * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is
1293  * assumed to remain the same. The cpuset should either be a valid or invalid
1294  * partition root. The partition root state may change from valid to invalid
1295  * or vice versa. An error code will only be returned if transitioning from
1296  * invalid to valid violates the exclusivity rule.
1297  *
1298  * For partcmd_invalidate, the current partition will be made invalid.
1299  *
1300  * The partcmd_enable and partcmd_disable commands are used by
1301  * update_prstate(). An error code may be returned and the caller will check
1302  * for error.
1303  *
1304  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1305  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1306  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1307  * check for error and so partition_root_state and prs_error will be updated
1308  * directly.
1309  */
1310 static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd,
1311 					  struct cpumask *newmask,
1312 					  struct tmpmasks *tmp)
1313 {
1314 	struct cpuset *parent = parent_cs(cs);
1315 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1316 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1317 	int old_prs, new_prs;
1318 	int part_error = PERR_NONE;	/* Partition error? */
1319 
1320 	percpu_rwsem_assert_held(&cpuset_rwsem);
1321 
1322 	/*
1323 	 * The parent must be a partition root.
1324 	 * The new cpumask, if present, or the current cpus_allowed must
1325 	 * not be empty.
1326 	 */
1327 	if (!is_partition_valid(parent)) {
1328 		return is_partition_invalid(parent)
1329 		       ? PERR_INVPARENT : PERR_NOTPART;
1330 	}
1331 	if ((newmask && cpumask_empty(newmask)) ||
1332 	   (!newmask && cpumask_empty(cs->cpus_allowed)))
1333 		return PERR_CPUSEMPTY;
1334 
1335 	/*
1336 	 * new_prs will only be changed for the partcmd_update and
1337 	 * partcmd_invalidate commands.
1338 	 */
1339 	adding = deleting = false;
1340 	old_prs = new_prs = cs->partition_root_state;
1341 	if (cmd == partcmd_enable) {
1342 		/*
1343 		 * Enabling partition root is not allowed if cpus_allowed
1344 		 * doesn't overlap parent's cpus_allowed.
1345 		 */
1346 		if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed))
1347 			return PERR_INVCPUS;
1348 
1349 		/*
1350 		 * A parent can be left with no CPU as long as there is no
1351 		 * task directly associated with the parent partition.
1352 		 */
1353 		if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) &&
1354 		    partition_is_populated(parent, cs))
1355 			return PERR_NOCPUS;
1356 
1357 		cpumask_copy(tmp->addmask, cs->cpus_allowed);
1358 		adding = true;
1359 	} else if (cmd == partcmd_disable) {
1360 		/*
1361 		 * Need to remove cpus from parent's subparts_cpus for valid
1362 		 * partition root.
1363 		 */
1364 		deleting = !is_prs_invalid(old_prs) &&
1365 			   cpumask_and(tmp->delmask, cs->cpus_allowed,
1366 				       parent->subparts_cpus);
1367 	} else if (cmd == partcmd_invalidate) {
1368 		if (is_prs_invalid(old_prs))
1369 			return 0;
1370 
1371 		/*
1372 		 * Make the current partition invalid. It is assumed that
1373 		 * invalidation is caused by violating cpu exclusivity rule.
1374 		 */
1375 		deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1376 				       parent->subparts_cpus);
1377 		if (old_prs > 0) {
1378 			new_prs = -old_prs;
1379 			part_error = PERR_NOTEXCL;
1380 		}
1381 	} else if (newmask) {
1382 		/*
1383 		 * partcmd_update with newmask:
1384 		 *
1385 		 * Compute add/delete mask to/from subparts_cpus
1386 		 *
1387 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1388 		 * addmask = newmask & parent->cpus_allowed
1389 		 *		     & ~parent->subparts_cpus
1390 		 */
1391 		cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask);
1392 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1393 				       parent->subparts_cpus);
1394 
1395 		cpumask_and(tmp->addmask, newmask, parent->cpus_allowed);
1396 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1397 					parent->subparts_cpus);
1398 		/*
1399 		 * Make partition invalid if parent's effective_cpus could
1400 		 * become empty and there are tasks in the parent.
1401 		 */
1402 		if (adding &&
1403 		    cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1404 		    !cpumask_intersects(tmp->delmask, cpu_active_mask) &&
1405 		    partition_is_populated(parent, cs)) {
1406 			part_error = PERR_NOCPUS;
1407 			adding = false;
1408 			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1409 					       parent->subparts_cpus);
1410 		}
1411 	} else {
1412 		/*
1413 		 * partcmd_update w/o newmask:
1414 		 *
1415 		 * delmask = cpus_allowed & parent->subparts_cpus
1416 		 * addmask = cpus_allowed & parent->cpus_allowed
1417 		 *			  & ~parent->subparts_cpus
1418 		 *
1419 		 * This gets invoked either due to a hotplug event or from
1420 		 * update_cpumasks_hier(). This can cause the state of a
1421 		 * partition root to transition from valid to invalid or vice
1422 		 * versa. So we still need to compute the addmask and delmask.
1423 
1424 		 * A partition error happens when:
1425 		 * 1) Cpuset is valid partition, but parent does not distribute
1426 		 *    out any CPUs.
1427 		 * 2) Parent has tasks and all its effective CPUs will have
1428 		 *    to be distributed out.
1429 		 */
1430 		cpumask_and(tmp->addmask, cs->cpus_allowed,
1431 					  parent->cpus_allowed);
1432 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1433 					parent->subparts_cpus);
1434 
1435 		if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) ||
1436 		    (adding &&
1437 		     cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1438 		     partition_is_populated(parent, cs))) {
1439 			part_error = PERR_NOCPUS;
1440 			adding = false;
1441 		}
1442 
1443 		if (part_error && is_partition_valid(cs) &&
1444 		    parent->nr_subparts_cpus)
1445 			deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1446 					       parent->subparts_cpus);
1447 	}
1448 	if (part_error)
1449 		WRITE_ONCE(cs->prs_err, part_error);
1450 
1451 	if (cmd == partcmd_update) {
1452 		/*
1453 		 * Check for possible transition between valid and invalid
1454 		 * partition root.
1455 		 */
1456 		switch (cs->partition_root_state) {
1457 		case PRS_ROOT:
1458 		case PRS_ISOLATED:
1459 			if (part_error)
1460 				new_prs = -old_prs;
1461 			break;
1462 		case PRS_INVALID_ROOT:
1463 		case PRS_INVALID_ISOLATED:
1464 			if (!part_error)
1465 				new_prs = -old_prs;
1466 			break;
1467 		}
1468 	}
1469 
1470 	if (!adding && !deleting && (new_prs == old_prs))
1471 		return 0;
1472 
1473 	/*
1474 	 * Transitioning between invalid to valid or vice versa may require
1475 	 * changing CS_CPU_EXCLUSIVE and CS_SCHED_LOAD_BALANCE.
1476 	 */
1477 	if (old_prs != new_prs) {
1478 		if (is_prs_invalid(old_prs) && !is_cpu_exclusive(cs) &&
1479 		    (update_flag(CS_CPU_EXCLUSIVE, cs, 1) < 0))
1480 			return PERR_NOTEXCL;
1481 		if (is_prs_invalid(new_prs) && is_cpu_exclusive(cs))
1482 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1483 	}
1484 
1485 	/*
1486 	 * Change the parent's subparts_cpus.
1487 	 * Newly added CPUs will be removed from effective_cpus and
1488 	 * newly deleted ones will be added back to effective_cpus.
1489 	 */
1490 	spin_lock_irq(&callback_lock);
1491 	if (adding) {
1492 		cpumask_or(parent->subparts_cpus,
1493 			   parent->subparts_cpus, tmp->addmask);
1494 		cpumask_andnot(parent->effective_cpus,
1495 			       parent->effective_cpus, tmp->addmask);
1496 	}
1497 	if (deleting) {
1498 		cpumask_andnot(parent->subparts_cpus,
1499 			       parent->subparts_cpus, tmp->delmask);
1500 		/*
1501 		 * Some of the CPUs in subparts_cpus might have been offlined.
1502 		 */
1503 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1504 		cpumask_or(parent->effective_cpus,
1505 			   parent->effective_cpus, tmp->delmask);
1506 	}
1507 
1508 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1509 
1510 	if (old_prs != new_prs)
1511 		cs->partition_root_state = new_prs;
1512 
1513 	spin_unlock_irq(&callback_lock);
1514 
1515 	if (adding || deleting)
1516 		update_tasks_cpumask(parent, tmp->addmask);
1517 
1518 	/*
1519 	 * Set or clear CS_SCHED_LOAD_BALANCE when partcmd_update, if necessary.
1520 	 * rebuild_sched_domains_locked() may be called.
1521 	 */
1522 	if (old_prs != new_prs) {
1523 		if (old_prs == PRS_ISOLATED)
1524 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 1);
1525 		else if (new_prs == PRS_ISOLATED)
1526 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1527 	}
1528 	notify_partition_change(cs, old_prs);
1529 	return 0;
1530 }
1531 
1532 /*
1533  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1534  * @cs:  the cpuset to consider
1535  * @tmp: temp variables for calculating effective_cpus & partition setup
1536  * @force: don't skip any descendant cpusets if set
1537  *
1538  * When configured cpumask is changed, the effective cpumasks of this cpuset
1539  * and all its descendants need to be updated.
1540  *
1541  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1542  *
1543  * Called with cpuset_rwsem held
1544  */
1545 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
1546 				 bool force)
1547 {
1548 	struct cpuset *cp;
1549 	struct cgroup_subsys_state *pos_css;
1550 	bool need_rebuild_sched_domains = false;
1551 	int old_prs, new_prs;
1552 
1553 	rcu_read_lock();
1554 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1555 		struct cpuset *parent = parent_cs(cp);
1556 		bool update_parent = false;
1557 
1558 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1559 
1560 		/*
1561 		 * If it becomes empty, inherit the effective mask of the
1562 		 * parent, which is guaranteed to have some CPUs unless
1563 		 * it is a partition root that has explicitly distributed
1564 		 * out all its CPUs.
1565 		 */
1566 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1567 			if (is_partition_valid(cp) &&
1568 			    cpumask_equal(cp->cpus_allowed, cp->subparts_cpus))
1569 				goto update_parent_subparts;
1570 
1571 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1572 			if (!cp->use_parent_ecpus) {
1573 				cp->use_parent_ecpus = true;
1574 				parent->child_ecpus_count++;
1575 			}
1576 		} else if (cp->use_parent_ecpus) {
1577 			cp->use_parent_ecpus = false;
1578 			WARN_ON_ONCE(!parent->child_ecpus_count);
1579 			parent->child_ecpus_count--;
1580 		}
1581 
1582 		/*
1583 		 * Skip the whole subtree if the cpumask remains the same
1584 		 * and has no partition root state and force flag not set.
1585 		 */
1586 		if (!cp->partition_root_state && !force &&
1587 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1588 			pos_css = css_rightmost_descendant(pos_css);
1589 			continue;
1590 		}
1591 
1592 update_parent_subparts:
1593 		/*
1594 		 * update_parent_subparts_cpumask() should have been called
1595 		 * for cs already in update_cpumask(). We should also call
1596 		 * update_tasks_cpumask() again for tasks in the parent
1597 		 * cpuset if the parent's subparts_cpus changes.
1598 		 */
1599 		old_prs = new_prs = cp->partition_root_state;
1600 		if ((cp != cs) && old_prs) {
1601 			switch (parent->partition_root_state) {
1602 			case PRS_ROOT:
1603 			case PRS_ISOLATED:
1604 				update_parent = true;
1605 				break;
1606 
1607 			default:
1608 				/*
1609 				 * When parent is not a partition root or is
1610 				 * invalid, child partition roots become
1611 				 * invalid too.
1612 				 */
1613 				if (is_partition_valid(cp))
1614 					new_prs = -cp->partition_root_state;
1615 				WRITE_ONCE(cp->prs_err,
1616 					   is_partition_invalid(parent)
1617 					   ? PERR_INVPARENT : PERR_NOTPART);
1618 				break;
1619 			}
1620 		}
1621 
1622 		if (!css_tryget_online(&cp->css))
1623 			continue;
1624 		rcu_read_unlock();
1625 
1626 		if (update_parent) {
1627 			update_parent_subparts_cpumask(cp, partcmd_update, NULL,
1628 						       tmp);
1629 			/*
1630 			 * The cpuset partition_root_state may become
1631 			 * invalid. Capture it.
1632 			 */
1633 			new_prs = cp->partition_root_state;
1634 		}
1635 
1636 		spin_lock_irq(&callback_lock);
1637 
1638 		if (cp->nr_subparts_cpus && !is_partition_valid(cp)) {
1639 			/*
1640 			 * Put all active subparts_cpus back to effective_cpus.
1641 			 */
1642 			cpumask_or(tmp->new_cpus, tmp->new_cpus,
1643 				   cp->subparts_cpus);
1644 			cpumask_and(tmp->new_cpus, tmp->new_cpus,
1645 				   cpu_active_mask);
1646 			cp->nr_subparts_cpus = 0;
1647 			cpumask_clear(cp->subparts_cpus);
1648 		}
1649 
1650 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1651 		if (cp->nr_subparts_cpus) {
1652 			/*
1653 			 * Make sure that effective_cpus & subparts_cpus
1654 			 * are mutually exclusive.
1655 			 */
1656 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1657 				       cp->subparts_cpus);
1658 		}
1659 
1660 		cp->partition_root_state = new_prs;
1661 		spin_unlock_irq(&callback_lock);
1662 
1663 		notify_partition_change(cp, old_prs);
1664 
1665 		WARN_ON(!is_in_v2_mode() &&
1666 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1667 
1668 		update_tasks_cpumask(cp, tmp->new_cpus);
1669 
1670 		/*
1671 		 * On legacy hierarchy, if the effective cpumask of any non-
1672 		 * empty cpuset is changed, we need to rebuild sched domains.
1673 		 * On default hierarchy, the cpuset needs to be a partition
1674 		 * root as well.
1675 		 */
1676 		if (!cpumask_empty(cp->cpus_allowed) &&
1677 		    is_sched_load_balance(cp) &&
1678 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1679 		    is_partition_valid(cp)))
1680 			need_rebuild_sched_domains = true;
1681 
1682 		rcu_read_lock();
1683 		css_put(&cp->css);
1684 	}
1685 	rcu_read_unlock();
1686 
1687 	if (need_rebuild_sched_domains)
1688 		rebuild_sched_domains_locked();
1689 }
1690 
1691 /**
1692  * update_sibling_cpumasks - Update siblings cpumasks
1693  * @parent:  Parent cpuset
1694  * @cs:      Current cpuset
1695  * @tmp:     Temp variables
1696  */
1697 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1698 				    struct tmpmasks *tmp)
1699 {
1700 	struct cpuset *sibling;
1701 	struct cgroup_subsys_state *pos_css;
1702 
1703 	percpu_rwsem_assert_held(&cpuset_rwsem);
1704 
1705 	/*
1706 	 * Check all its siblings and call update_cpumasks_hier()
1707 	 * if their use_parent_ecpus flag is set in order for them
1708 	 * to use the right effective_cpus value.
1709 	 *
1710 	 * The update_cpumasks_hier() function may sleep. So we have to
1711 	 * release the RCU read lock before calling it.
1712 	 */
1713 	rcu_read_lock();
1714 	cpuset_for_each_child(sibling, pos_css, parent) {
1715 		if (sibling == cs)
1716 			continue;
1717 		if (!sibling->use_parent_ecpus)
1718 			continue;
1719 		if (!css_tryget_online(&sibling->css))
1720 			continue;
1721 
1722 		rcu_read_unlock();
1723 		update_cpumasks_hier(sibling, tmp, false);
1724 		rcu_read_lock();
1725 		css_put(&sibling->css);
1726 	}
1727 	rcu_read_unlock();
1728 }
1729 
1730 /**
1731  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1732  * @cs: the cpuset to consider
1733  * @trialcs: trial cpuset
1734  * @buf: buffer of cpu numbers written to this cpuset
1735  */
1736 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1737 			  const char *buf)
1738 {
1739 	int retval;
1740 	struct tmpmasks tmp;
1741 	bool invalidate = false;
1742 
1743 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1744 	if (cs == &top_cpuset)
1745 		return -EACCES;
1746 
1747 	/*
1748 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1749 	 * Since cpulist_parse() fails on an empty mask, we special case
1750 	 * that parsing.  The validate_change() call ensures that cpusets
1751 	 * with tasks have cpus.
1752 	 */
1753 	if (!*buf) {
1754 		cpumask_clear(trialcs->cpus_allowed);
1755 	} else {
1756 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1757 		if (retval < 0)
1758 			return retval;
1759 
1760 		if (!cpumask_subset(trialcs->cpus_allowed,
1761 				    top_cpuset.cpus_allowed))
1762 			return -EINVAL;
1763 	}
1764 
1765 	/* Nothing to do if the cpus didn't change */
1766 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1767 		return 0;
1768 
1769 #ifdef CONFIG_CPUMASK_OFFSTACK
1770 	/*
1771 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1772 	 * to allocated cpumasks.
1773 	 *
1774 	 * Note that update_parent_subparts_cpumask() uses only addmask &
1775 	 * delmask, but not new_cpus.
1776 	 */
1777 	tmp.addmask  = trialcs->subparts_cpus;
1778 	tmp.delmask  = trialcs->effective_cpus;
1779 	tmp.new_cpus = NULL;
1780 #endif
1781 
1782 	retval = validate_change(cs, trialcs);
1783 
1784 	if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1785 		struct cpuset *cp, *parent;
1786 		struct cgroup_subsys_state *css;
1787 
1788 		/*
1789 		 * The -EINVAL error code indicates that partition sibling
1790 		 * CPU exclusivity rule has been violated. We still allow
1791 		 * the cpumask change to proceed while invalidating the
1792 		 * partition. However, any conflicting sibling partitions
1793 		 * have to be marked as invalid too.
1794 		 */
1795 		invalidate = true;
1796 		rcu_read_lock();
1797 		parent = parent_cs(cs);
1798 		cpuset_for_each_child(cp, css, parent)
1799 			if (is_partition_valid(cp) &&
1800 			    cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) {
1801 				rcu_read_unlock();
1802 				update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp);
1803 				rcu_read_lock();
1804 			}
1805 		rcu_read_unlock();
1806 		retval = 0;
1807 	}
1808 	if (retval < 0)
1809 		return retval;
1810 
1811 	if (cs->partition_root_state) {
1812 		if (invalidate)
1813 			update_parent_subparts_cpumask(cs, partcmd_invalidate,
1814 						       NULL, &tmp);
1815 		else
1816 			update_parent_subparts_cpumask(cs, partcmd_update,
1817 						trialcs->cpus_allowed, &tmp);
1818 	}
1819 
1820 	compute_effective_cpumask(trialcs->effective_cpus, trialcs,
1821 				  parent_cs(cs));
1822 	spin_lock_irq(&callback_lock);
1823 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1824 
1825 	/*
1826 	 * Make sure that subparts_cpus, if not empty, is a subset of
1827 	 * cpus_allowed. Clear subparts_cpus if partition not valid or
1828 	 * empty effective cpus with tasks.
1829 	 */
1830 	if (cs->nr_subparts_cpus) {
1831 		if (!is_partition_valid(cs) ||
1832 		   (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) &&
1833 		    partition_is_populated(cs, NULL))) {
1834 			cs->nr_subparts_cpus = 0;
1835 			cpumask_clear(cs->subparts_cpus);
1836 		} else {
1837 			cpumask_and(cs->subparts_cpus, cs->subparts_cpus,
1838 				    cs->cpus_allowed);
1839 			cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1840 		}
1841 	}
1842 	spin_unlock_irq(&callback_lock);
1843 
1844 #ifdef CONFIG_CPUMASK_OFFSTACK
1845 	/* Now trialcs->cpus_allowed is available */
1846 	tmp.new_cpus = trialcs->cpus_allowed;
1847 #endif
1848 
1849 	/* effective_cpus will be updated here */
1850 	update_cpumasks_hier(cs, &tmp, false);
1851 
1852 	if (cs->partition_root_state) {
1853 		struct cpuset *parent = parent_cs(cs);
1854 
1855 		/*
1856 		 * For partition root, update the cpumasks of sibling
1857 		 * cpusets if they use parent's effective_cpus.
1858 		 */
1859 		if (parent->child_ecpus_count)
1860 			update_sibling_cpumasks(parent, cs, &tmp);
1861 	}
1862 	return 0;
1863 }
1864 
1865 /*
1866  * Migrate memory region from one set of nodes to another.  This is
1867  * performed asynchronously as it can be called from process migration path
1868  * holding locks involved in process management.  All mm migrations are
1869  * performed in the queued order and can be waited for by flushing
1870  * cpuset_migrate_mm_wq.
1871  */
1872 
1873 struct cpuset_migrate_mm_work {
1874 	struct work_struct	work;
1875 	struct mm_struct	*mm;
1876 	nodemask_t		from;
1877 	nodemask_t		to;
1878 };
1879 
1880 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1881 {
1882 	struct cpuset_migrate_mm_work *mwork =
1883 		container_of(work, struct cpuset_migrate_mm_work, work);
1884 
1885 	/* on a wq worker, no need to worry about %current's mems_allowed */
1886 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1887 	mmput(mwork->mm);
1888 	kfree(mwork);
1889 }
1890 
1891 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1892 							const nodemask_t *to)
1893 {
1894 	struct cpuset_migrate_mm_work *mwork;
1895 
1896 	if (nodes_equal(*from, *to)) {
1897 		mmput(mm);
1898 		return;
1899 	}
1900 
1901 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1902 	if (mwork) {
1903 		mwork->mm = mm;
1904 		mwork->from = *from;
1905 		mwork->to = *to;
1906 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1907 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1908 	} else {
1909 		mmput(mm);
1910 	}
1911 }
1912 
1913 static void cpuset_post_attach(void)
1914 {
1915 	flush_workqueue(cpuset_migrate_mm_wq);
1916 }
1917 
1918 /*
1919  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1920  * @tsk: the task to change
1921  * @newmems: new nodes that the task will be set
1922  *
1923  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1924  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1925  * parallel, it might temporarily see an empty intersection, which results in
1926  * a seqlock check and retry before OOM or allocation failure.
1927  */
1928 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1929 					nodemask_t *newmems)
1930 {
1931 	task_lock(tsk);
1932 
1933 	local_irq_disable();
1934 	write_seqcount_begin(&tsk->mems_allowed_seq);
1935 
1936 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1937 	mpol_rebind_task(tsk, newmems);
1938 	tsk->mems_allowed = *newmems;
1939 
1940 	write_seqcount_end(&tsk->mems_allowed_seq);
1941 	local_irq_enable();
1942 
1943 	task_unlock(tsk);
1944 }
1945 
1946 static void *cpuset_being_rebound;
1947 
1948 /**
1949  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1950  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1951  *
1952  * Iterate through each task of @cs updating its mems_allowed to the
1953  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1954  * cpuset membership stays stable.
1955  */
1956 static void update_tasks_nodemask(struct cpuset *cs)
1957 {
1958 	static nodemask_t newmems;	/* protected by cpuset_rwsem */
1959 	struct css_task_iter it;
1960 	struct task_struct *task;
1961 
1962 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1963 
1964 	guarantee_online_mems(cs, &newmems);
1965 
1966 	/*
1967 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1968 	 * take while holding tasklist_lock.  Forks can happen - the
1969 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1970 	 * and rebind their vma mempolicies too.  Because we still hold
1971 	 * the global cpuset_rwsem, we know that no other rebind effort
1972 	 * will be contending for the global variable cpuset_being_rebound.
1973 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1974 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1975 	 */
1976 	css_task_iter_start(&cs->css, 0, &it);
1977 	while ((task = css_task_iter_next(&it))) {
1978 		struct mm_struct *mm;
1979 		bool migrate;
1980 
1981 		cpuset_change_task_nodemask(task, &newmems);
1982 
1983 		mm = get_task_mm(task);
1984 		if (!mm)
1985 			continue;
1986 
1987 		migrate = is_memory_migrate(cs);
1988 
1989 		mpol_rebind_mm(mm, &cs->mems_allowed);
1990 		if (migrate)
1991 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1992 		else
1993 			mmput(mm);
1994 	}
1995 	css_task_iter_end(&it);
1996 
1997 	/*
1998 	 * All the tasks' nodemasks have been updated, update
1999 	 * cs->old_mems_allowed.
2000 	 */
2001 	cs->old_mems_allowed = newmems;
2002 
2003 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2004 	cpuset_being_rebound = NULL;
2005 }
2006 
2007 /*
2008  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2009  * @cs: the cpuset to consider
2010  * @new_mems: a temp variable for calculating new effective_mems
2011  *
2012  * When configured nodemask is changed, the effective nodemasks of this cpuset
2013  * and all its descendants need to be updated.
2014  *
2015  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2016  *
2017  * Called with cpuset_rwsem held
2018  */
2019 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2020 {
2021 	struct cpuset *cp;
2022 	struct cgroup_subsys_state *pos_css;
2023 
2024 	rcu_read_lock();
2025 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2026 		struct cpuset *parent = parent_cs(cp);
2027 
2028 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2029 
2030 		/*
2031 		 * If it becomes empty, inherit the effective mask of the
2032 		 * parent, which is guaranteed to have some MEMs.
2033 		 */
2034 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2035 			*new_mems = parent->effective_mems;
2036 
2037 		/* Skip the whole subtree if the nodemask remains the same. */
2038 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2039 			pos_css = css_rightmost_descendant(pos_css);
2040 			continue;
2041 		}
2042 
2043 		if (!css_tryget_online(&cp->css))
2044 			continue;
2045 		rcu_read_unlock();
2046 
2047 		spin_lock_irq(&callback_lock);
2048 		cp->effective_mems = *new_mems;
2049 		spin_unlock_irq(&callback_lock);
2050 
2051 		WARN_ON(!is_in_v2_mode() &&
2052 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2053 
2054 		update_tasks_nodemask(cp);
2055 
2056 		rcu_read_lock();
2057 		css_put(&cp->css);
2058 	}
2059 	rcu_read_unlock();
2060 }
2061 
2062 /*
2063  * Handle user request to change the 'mems' memory placement
2064  * of a cpuset.  Needs to validate the request, update the
2065  * cpusets mems_allowed, and for each task in the cpuset,
2066  * update mems_allowed and rebind task's mempolicy and any vma
2067  * mempolicies and if the cpuset is marked 'memory_migrate',
2068  * migrate the tasks pages to the new memory.
2069  *
2070  * Call with cpuset_rwsem held. May take callback_lock during call.
2071  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2072  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2073  * their mempolicies to the cpusets new mems_allowed.
2074  */
2075 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2076 			   const char *buf)
2077 {
2078 	int retval;
2079 
2080 	/*
2081 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2082 	 * it's read-only
2083 	 */
2084 	if (cs == &top_cpuset) {
2085 		retval = -EACCES;
2086 		goto done;
2087 	}
2088 
2089 	/*
2090 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2091 	 * Since nodelist_parse() fails on an empty mask, we special case
2092 	 * that parsing.  The validate_change() call ensures that cpusets
2093 	 * with tasks have memory.
2094 	 */
2095 	if (!*buf) {
2096 		nodes_clear(trialcs->mems_allowed);
2097 	} else {
2098 		retval = nodelist_parse(buf, trialcs->mems_allowed);
2099 		if (retval < 0)
2100 			goto done;
2101 
2102 		if (!nodes_subset(trialcs->mems_allowed,
2103 				  top_cpuset.mems_allowed)) {
2104 			retval = -EINVAL;
2105 			goto done;
2106 		}
2107 	}
2108 
2109 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2110 		retval = 0;		/* Too easy - nothing to do */
2111 		goto done;
2112 	}
2113 	retval = validate_change(cs, trialcs);
2114 	if (retval < 0)
2115 		goto done;
2116 
2117 	check_insane_mems_config(&trialcs->mems_allowed);
2118 
2119 	spin_lock_irq(&callback_lock);
2120 	cs->mems_allowed = trialcs->mems_allowed;
2121 	spin_unlock_irq(&callback_lock);
2122 
2123 	/* use trialcs->mems_allowed as a temp variable */
2124 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2125 done:
2126 	return retval;
2127 }
2128 
2129 bool current_cpuset_is_being_rebound(void)
2130 {
2131 	bool ret;
2132 
2133 	rcu_read_lock();
2134 	ret = task_cs(current) == cpuset_being_rebound;
2135 	rcu_read_unlock();
2136 
2137 	return ret;
2138 }
2139 
2140 static int update_relax_domain_level(struct cpuset *cs, s64 val)
2141 {
2142 #ifdef CONFIG_SMP
2143 	if (val < -1 || val >= sched_domain_level_max)
2144 		return -EINVAL;
2145 #endif
2146 
2147 	if (val != cs->relax_domain_level) {
2148 		cs->relax_domain_level = val;
2149 		if (!cpumask_empty(cs->cpus_allowed) &&
2150 		    is_sched_load_balance(cs))
2151 			rebuild_sched_domains_locked();
2152 	}
2153 
2154 	return 0;
2155 }
2156 
2157 /**
2158  * update_tasks_flags - update the spread flags of tasks in the cpuset.
2159  * @cs: the cpuset in which each task's spread flags needs to be changed
2160  *
2161  * Iterate through each task of @cs updating its spread flags.  As this
2162  * function is called with cpuset_rwsem held, cpuset membership stays
2163  * stable.
2164  */
2165 static void update_tasks_flags(struct cpuset *cs)
2166 {
2167 	struct css_task_iter it;
2168 	struct task_struct *task;
2169 
2170 	css_task_iter_start(&cs->css, 0, &it);
2171 	while ((task = css_task_iter_next(&it)))
2172 		cpuset_update_task_spread_flags(cs, task);
2173 	css_task_iter_end(&it);
2174 }
2175 
2176 /*
2177  * update_flag - read a 0 or a 1 in a file and update associated flag
2178  * bit:		the bit to update (see cpuset_flagbits_t)
2179  * cs:		the cpuset to update
2180  * turning_on: 	whether the flag is being set or cleared
2181  *
2182  * Call with cpuset_rwsem held.
2183  */
2184 
2185 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2186 		       int turning_on)
2187 {
2188 	struct cpuset *trialcs;
2189 	int balance_flag_changed;
2190 	int spread_flag_changed;
2191 	int err;
2192 
2193 	trialcs = alloc_trial_cpuset(cs);
2194 	if (!trialcs)
2195 		return -ENOMEM;
2196 
2197 	if (turning_on)
2198 		set_bit(bit, &trialcs->flags);
2199 	else
2200 		clear_bit(bit, &trialcs->flags);
2201 
2202 	err = validate_change(cs, trialcs);
2203 	if (err < 0)
2204 		goto out;
2205 
2206 	balance_flag_changed = (is_sched_load_balance(cs) !=
2207 				is_sched_load_balance(trialcs));
2208 
2209 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2210 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2211 
2212 	spin_lock_irq(&callback_lock);
2213 	cs->flags = trialcs->flags;
2214 	spin_unlock_irq(&callback_lock);
2215 
2216 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2217 		rebuild_sched_domains_locked();
2218 
2219 	if (spread_flag_changed)
2220 		update_tasks_flags(cs);
2221 out:
2222 	free_cpuset(trialcs);
2223 	return err;
2224 }
2225 
2226 /**
2227  * update_prstate - update partition_root_state
2228  * @cs: the cpuset to update
2229  * @new_prs: new partition root state
2230  * Return: 0 if successful, != 0 if error
2231  *
2232  * Call with cpuset_rwsem held.
2233  */
2234 static int update_prstate(struct cpuset *cs, int new_prs)
2235 {
2236 	int err = PERR_NONE, old_prs = cs->partition_root_state;
2237 	bool sched_domain_rebuilt = false;
2238 	struct cpuset *parent = parent_cs(cs);
2239 	struct tmpmasks tmpmask;
2240 
2241 	if (old_prs == new_prs)
2242 		return 0;
2243 
2244 	/*
2245 	 * For a previously invalid partition root, leave it at being
2246 	 * invalid if new_prs is not "member".
2247 	 */
2248 	if (new_prs && is_prs_invalid(old_prs)) {
2249 		cs->partition_root_state = -new_prs;
2250 		return 0;
2251 	}
2252 
2253 	if (alloc_cpumasks(NULL, &tmpmask))
2254 		return -ENOMEM;
2255 
2256 	if (!old_prs) {
2257 		/*
2258 		 * Turning on partition root requires setting the
2259 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2260 		 * cannot be empty.
2261 		 */
2262 		if (cpumask_empty(cs->cpus_allowed)) {
2263 			err = PERR_CPUSEMPTY;
2264 			goto out;
2265 		}
2266 
2267 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2268 		if (err) {
2269 			err = PERR_NOTEXCL;
2270 			goto out;
2271 		}
2272 
2273 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
2274 						     NULL, &tmpmask);
2275 		if (err) {
2276 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2277 			goto out;
2278 		}
2279 
2280 		if (new_prs == PRS_ISOLATED) {
2281 			/*
2282 			 * Disable the load balance flag should not return an
2283 			 * error unless the system is running out of memory.
2284 			 */
2285 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2286 			sched_domain_rebuilt = true;
2287 		}
2288 	} else if (old_prs && new_prs) {
2289 		/*
2290 		 * A change in load balance state only, no change in cpumasks.
2291 		 */
2292 		update_flag(CS_SCHED_LOAD_BALANCE, cs, (new_prs != PRS_ISOLATED));
2293 		sched_domain_rebuilt = true;
2294 		goto out;	/* Sched domain is rebuilt in update_flag() */
2295 	} else {
2296 		/*
2297 		 * Switching back to member is always allowed even if it
2298 		 * disables child partitions.
2299 		 */
2300 		update_parent_subparts_cpumask(cs, partcmd_disable, NULL,
2301 					       &tmpmask);
2302 
2303 		/*
2304 		 * If there are child partitions, they will all become invalid.
2305 		 */
2306 		if (unlikely(cs->nr_subparts_cpus)) {
2307 			spin_lock_irq(&callback_lock);
2308 			cs->nr_subparts_cpus = 0;
2309 			cpumask_clear(cs->subparts_cpus);
2310 			compute_effective_cpumask(cs->effective_cpus, cs, parent);
2311 			spin_unlock_irq(&callback_lock);
2312 		}
2313 
2314 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
2315 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2316 
2317 		if (!is_sched_load_balance(cs)) {
2318 			/* Make sure load balance is on */
2319 			update_flag(CS_SCHED_LOAD_BALANCE, cs, 1);
2320 			sched_domain_rebuilt = true;
2321 		}
2322 	}
2323 
2324 	update_tasks_cpumask(parent, tmpmask.new_cpus);
2325 
2326 	if (parent->child_ecpus_count)
2327 		update_sibling_cpumasks(parent, cs, &tmpmask);
2328 
2329 	if (!sched_domain_rebuilt)
2330 		rebuild_sched_domains_locked();
2331 out:
2332 	/*
2333 	 * Make partition invalid if an error happen
2334 	 */
2335 	if (err)
2336 		new_prs = -new_prs;
2337 	spin_lock_irq(&callback_lock);
2338 	cs->partition_root_state = new_prs;
2339 	WRITE_ONCE(cs->prs_err, err);
2340 	spin_unlock_irq(&callback_lock);
2341 	/*
2342 	 * Update child cpusets, if present.
2343 	 * Force update if switching back to member.
2344 	 */
2345 	if (!list_empty(&cs->css.children))
2346 		update_cpumasks_hier(cs, &tmpmask, !new_prs);
2347 
2348 	notify_partition_change(cs, old_prs);
2349 	free_cpumasks(NULL, &tmpmask);
2350 	return 0;
2351 }
2352 
2353 /*
2354  * Frequency meter - How fast is some event occurring?
2355  *
2356  * These routines manage a digitally filtered, constant time based,
2357  * event frequency meter.  There are four routines:
2358  *   fmeter_init() - initialize a frequency meter.
2359  *   fmeter_markevent() - called each time the event happens.
2360  *   fmeter_getrate() - returns the recent rate of such events.
2361  *   fmeter_update() - internal routine used to update fmeter.
2362  *
2363  * A common data structure is passed to each of these routines,
2364  * which is used to keep track of the state required to manage the
2365  * frequency meter and its digital filter.
2366  *
2367  * The filter works on the number of events marked per unit time.
2368  * The filter is single-pole low-pass recursive (IIR).  The time unit
2369  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2370  * simulate 3 decimal digits of precision (multiplied by 1000).
2371  *
2372  * With an FM_COEF of 933, and a time base of 1 second, the filter
2373  * has a half-life of 10 seconds, meaning that if the events quit
2374  * happening, then the rate returned from the fmeter_getrate()
2375  * will be cut in half each 10 seconds, until it converges to zero.
2376  *
2377  * It is not worth doing a real infinitely recursive filter.  If more
2378  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2379  * just compute FM_MAXTICKS ticks worth, by which point the level
2380  * will be stable.
2381  *
2382  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2383  * arithmetic overflow in the fmeter_update() routine.
2384  *
2385  * Given the simple 32 bit integer arithmetic used, this meter works
2386  * best for reporting rates between one per millisecond (msec) and
2387  * one per 32 (approx) seconds.  At constant rates faster than one
2388  * per msec it maxes out at values just under 1,000,000.  At constant
2389  * rates between one per msec, and one per second it will stabilize
2390  * to a value N*1000, where N is the rate of events per second.
2391  * At constant rates between one per second and one per 32 seconds,
2392  * it will be choppy, moving up on the seconds that have an event,
2393  * and then decaying until the next event.  At rates slower than
2394  * about one in 32 seconds, it decays all the way back to zero between
2395  * each event.
2396  */
2397 
2398 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2399 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2400 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2401 #define FM_SCALE 1000		/* faux fixed point scale */
2402 
2403 /* Initialize a frequency meter */
2404 static void fmeter_init(struct fmeter *fmp)
2405 {
2406 	fmp->cnt = 0;
2407 	fmp->val = 0;
2408 	fmp->time = 0;
2409 	spin_lock_init(&fmp->lock);
2410 }
2411 
2412 /* Internal meter update - process cnt events and update value */
2413 static void fmeter_update(struct fmeter *fmp)
2414 {
2415 	time64_t now;
2416 	u32 ticks;
2417 
2418 	now = ktime_get_seconds();
2419 	ticks = now - fmp->time;
2420 
2421 	if (ticks == 0)
2422 		return;
2423 
2424 	ticks = min(FM_MAXTICKS, ticks);
2425 	while (ticks-- > 0)
2426 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2427 	fmp->time = now;
2428 
2429 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2430 	fmp->cnt = 0;
2431 }
2432 
2433 /* Process any previous ticks, then bump cnt by one (times scale). */
2434 static void fmeter_markevent(struct fmeter *fmp)
2435 {
2436 	spin_lock(&fmp->lock);
2437 	fmeter_update(fmp);
2438 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2439 	spin_unlock(&fmp->lock);
2440 }
2441 
2442 /* Process any previous ticks, then return current value. */
2443 static int fmeter_getrate(struct fmeter *fmp)
2444 {
2445 	int val;
2446 
2447 	spin_lock(&fmp->lock);
2448 	fmeter_update(fmp);
2449 	val = fmp->val;
2450 	spin_unlock(&fmp->lock);
2451 	return val;
2452 }
2453 
2454 static struct cpuset *cpuset_attach_old_cs;
2455 
2456 /*
2457  * Check to see if a cpuset can accept a new task
2458  * For v1, cpus_allowed and mems_allowed can't be empty.
2459  * For v2, effective_cpus can't be empty.
2460  * Note that in v1, effective_cpus = cpus_allowed.
2461  */
2462 static int cpuset_can_attach_check(struct cpuset *cs)
2463 {
2464 	if (cpumask_empty(cs->effective_cpus) ||
2465 	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
2466 		return -ENOSPC;
2467 	return 0;
2468 }
2469 
2470 /* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */
2471 static int cpuset_can_attach(struct cgroup_taskset *tset)
2472 {
2473 	struct cgroup_subsys_state *css;
2474 	struct cpuset *cs;
2475 	struct task_struct *task;
2476 	int ret;
2477 
2478 	/* used later by cpuset_attach() */
2479 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2480 	cs = css_cs(css);
2481 
2482 	percpu_down_write(&cpuset_rwsem);
2483 
2484 	/* Check to see if task is allowed in the cpuset */
2485 	ret = cpuset_can_attach_check(cs);
2486 	if (ret)
2487 		goto out_unlock;
2488 
2489 	cgroup_taskset_for_each(task, css, tset) {
2490 		ret = task_can_attach(task, cs->effective_cpus);
2491 		if (ret)
2492 			goto out_unlock;
2493 		ret = security_task_setscheduler(task);
2494 		if (ret)
2495 			goto out_unlock;
2496 	}
2497 
2498 	/*
2499 	 * Mark attach is in progress.  This makes validate_change() fail
2500 	 * changes which zero cpus/mems_allowed.
2501 	 */
2502 	cs->attach_in_progress++;
2503 out_unlock:
2504 	percpu_up_write(&cpuset_rwsem);
2505 	return ret;
2506 }
2507 
2508 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2509 {
2510 	struct cgroup_subsys_state *css;
2511 	struct cpuset *cs;
2512 
2513 	cgroup_taskset_first(tset, &css);
2514 	cs = css_cs(css);
2515 
2516 	percpu_down_write(&cpuset_rwsem);
2517 	cs->attach_in_progress--;
2518 	if (!cs->attach_in_progress)
2519 		wake_up(&cpuset_attach_wq);
2520 	percpu_up_write(&cpuset_rwsem);
2521 }
2522 
2523 /*
2524  * Protected by cpuset_rwsem. cpus_attach is used only by cpuset_attach_task()
2525  * but we can't allocate it dynamically there.  Define it global and
2526  * allocate from cpuset_init().
2527  */
2528 static cpumask_var_t cpus_attach;
2529 static nodemask_t cpuset_attach_nodemask_to;
2530 
2531 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
2532 {
2533 	percpu_rwsem_assert_held(&cpuset_rwsem);
2534 
2535 	if (cs != &top_cpuset)
2536 		guarantee_online_cpus(task, cpus_attach);
2537 	else
2538 		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
2539 			       cs->subparts_cpus);
2540 	/*
2541 	 * can_attach beforehand should guarantee that this doesn't
2542 	 * fail.  TODO: have a better way to handle failure here
2543 	 */
2544 	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2545 
2546 	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2547 	cpuset_update_task_spread_flags(cs, task);
2548 }
2549 
2550 static void cpuset_attach(struct cgroup_taskset *tset)
2551 {
2552 	struct task_struct *task;
2553 	struct task_struct *leader;
2554 	struct cgroup_subsys_state *css;
2555 	struct cpuset *cs;
2556 	struct cpuset *oldcs = cpuset_attach_old_cs;
2557 	bool cpus_updated, mems_updated;
2558 
2559 	cgroup_taskset_first(tset, &css);
2560 	cs = css_cs(css);
2561 
2562 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
2563 	percpu_down_write(&cpuset_rwsem);
2564 	cpus_updated = !cpumask_equal(cs->effective_cpus,
2565 				      oldcs->effective_cpus);
2566 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
2567 
2568 	/*
2569 	 * In the default hierarchy, enabling cpuset in the child cgroups
2570 	 * will trigger a number of cpuset_attach() calls with no change
2571 	 * in effective cpus and mems. In that case, we can optimize out
2572 	 * by skipping the task iteration and update.
2573 	 */
2574 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2575 	    !cpus_updated && !mems_updated) {
2576 		cpuset_attach_nodemask_to = cs->effective_mems;
2577 		goto out;
2578 	}
2579 
2580 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2581 
2582 	cgroup_taskset_for_each(task, css, tset)
2583 		cpuset_attach_task(cs, task);
2584 
2585 	/*
2586 	 * Change mm for all threadgroup leaders. This is expensive and may
2587 	 * sleep and should be moved outside migration path proper. Skip it
2588 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
2589 	 * not set.
2590 	 */
2591 	cpuset_attach_nodemask_to = cs->effective_mems;
2592 	if (!is_memory_migrate(cs) && !mems_updated)
2593 		goto out;
2594 
2595 	cgroup_taskset_for_each_leader(leader, css, tset) {
2596 		struct mm_struct *mm = get_task_mm(leader);
2597 
2598 		if (mm) {
2599 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2600 
2601 			/*
2602 			 * old_mems_allowed is the same with mems_allowed
2603 			 * here, except if this task is being moved
2604 			 * automatically due to hotplug.  In that case
2605 			 * @mems_allowed has been updated and is empty, so
2606 			 * @old_mems_allowed is the right nodesets that we
2607 			 * migrate mm from.
2608 			 */
2609 			if (is_memory_migrate(cs))
2610 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2611 						  &cpuset_attach_nodemask_to);
2612 			else
2613 				mmput(mm);
2614 		}
2615 	}
2616 
2617 out:
2618 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2619 
2620 	cs->attach_in_progress--;
2621 	if (!cs->attach_in_progress)
2622 		wake_up(&cpuset_attach_wq);
2623 
2624 	percpu_up_write(&cpuset_rwsem);
2625 }
2626 
2627 /* The various types of files and directories in a cpuset file system */
2628 
2629 typedef enum {
2630 	FILE_MEMORY_MIGRATE,
2631 	FILE_CPULIST,
2632 	FILE_MEMLIST,
2633 	FILE_EFFECTIVE_CPULIST,
2634 	FILE_EFFECTIVE_MEMLIST,
2635 	FILE_SUBPARTS_CPULIST,
2636 	FILE_CPU_EXCLUSIVE,
2637 	FILE_MEM_EXCLUSIVE,
2638 	FILE_MEM_HARDWALL,
2639 	FILE_SCHED_LOAD_BALANCE,
2640 	FILE_PARTITION_ROOT,
2641 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2642 	FILE_MEMORY_PRESSURE_ENABLED,
2643 	FILE_MEMORY_PRESSURE,
2644 	FILE_SPREAD_PAGE,
2645 	FILE_SPREAD_SLAB,
2646 } cpuset_filetype_t;
2647 
2648 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2649 			    u64 val)
2650 {
2651 	struct cpuset *cs = css_cs(css);
2652 	cpuset_filetype_t type = cft->private;
2653 	int retval = 0;
2654 
2655 	cpus_read_lock();
2656 	percpu_down_write(&cpuset_rwsem);
2657 	if (!is_cpuset_online(cs)) {
2658 		retval = -ENODEV;
2659 		goto out_unlock;
2660 	}
2661 
2662 	switch (type) {
2663 	case FILE_CPU_EXCLUSIVE:
2664 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2665 		break;
2666 	case FILE_MEM_EXCLUSIVE:
2667 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2668 		break;
2669 	case FILE_MEM_HARDWALL:
2670 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2671 		break;
2672 	case FILE_SCHED_LOAD_BALANCE:
2673 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2674 		break;
2675 	case FILE_MEMORY_MIGRATE:
2676 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2677 		break;
2678 	case FILE_MEMORY_PRESSURE_ENABLED:
2679 		cpuset_memory_pressure_enabled = !!val;
2680 		break;
2681 	case FILE_SPREAD_PAGE:
2682 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2683 		break;
2684 	case FILE_SPREAD_SLAB:
2685 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2686 		break;
2687 	default:
2688 		retval = -EINVAL;
2689 		break;
2690 	}
2691 out_unlock:
2692 	percpu_up_write(&cpuset_rwsem);
2693 	cpus_read_unlock();
2694 	return retval;
2695 }
2696 
2697 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2698 			    s64 val)
2699 {
2700 	struct cpuset *cs = css_cs(css);
2701 	cpuset_filetype_t type = cft->private;
2702 	int retval = -ENODEV;
2703 
2704 	cpus_read_lock();
2705 	percpu_down_write(&cpuset_rwsem);
2706 	if (!is_cpuset_online(cs))
2707 		goto out_unlock;
2708 
2709 	switch (type) {
2710 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2711 		retval = update_relax_domain_level(cs, val);
2712 		break;
2713 	default:
2714 		retval = -EINVAL;
2715 		break;
2716 	}
2717 out_unlock:
2718 	percpu_up_write(&cpuset_rwsem);
2719 	cpus_read_unlock();
2720 	return retval;
2721 }
2722 
2723 /*
2724  * Common handling for a write to a "cpus" or "mems" file.
2725  */
2726 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2727 				    char *buf, size_t nbytes, loff_t off)
2728 {
2729 	struct cpuset *cs = css_cs(of_css(of));
2730 	struct cpuset *trialcs;
2731 	int retval = -ENODEV;
2732 
2733 	buf = strstrip(buf);
2734 
2735 	/*
2736 	 * CPU or memory hotunplug may leave @cs w/o any execution
2737 	 * resources, in which case the hotplug code asynchronously updates
2738 	 * configuration and transfers all tasks to the nearest ancestor
2739 	 * which can execute.
2740 	 *
2741 	 * As writes to "cpus" or "mems" may restore @cs's execution
2742 	 * resources, wait for the previously scheduled operations before
2743 	 * proceeding, so that we don't end up keep removing tasks added
2744 	 * after execution capability is restored.
2745 	 *
2746 	 * cpuset_hotplug_work calls back into cgroup core via
2747 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2748 	 * operation like this one can lead to a deadlock through kernfs
2749 	 * active_ref protection.  Let's break the protection.  Losing the
2750 	 * protection is okay as we check whether @cs is online after
2751 	 * grabbing cpuset_rwsem anyway.  This only happens on the legacy
2752 	 * hierarchies.
2753 	 */
2754 	css_get(&cs->css);
2755 	kernfs_break_active_protection(of->kn);
2756 	flush_work(&cpuset_hotplug_work);
2757 
2758 	cpus_read_lock();
2759 	percpu_down_write(&cpuset_rwsem);
2760 	if (!is_cpuset_online(cs))
2761 		goto out_unlock;
2762 
2763 	trialcs = alloc_trial_cpuset(cs);
2764 	if (!trialcs) {
2765 		retval = -ENOMEM;
2766 		goto out_unlock;
2767 	}
2768 
2769 	switch (of_cft(of)->private) {
2770 	case FILE_CPULIST:
2771 		retval = update_cpumask(cs, trialcs, buf);
2772 		break;
2773 	case FILE_MEMLIST:
2774 		retval = update_nodemask(cs, trialcs, buf);
2775 		break;
2776 	default:
2777 		retval = -EINVAL;
2778 		break;
2779 	}
2780 
2781 	free_cpuset(trialcs);
2782 out_unlock:
2783 	percpu_up_write(&cpuset_rwsem);
2784 	cpus_read_unlock();
2785 	kernfs_unbreak_active_protection(of->kn);
2786 	css_put(&cs->css);
2787 	flush_workqueue(cpuset_migrate_mm_wq);
2788 	return retval ?: nbytes;
2789 }
2790 
2791 /*
2792  * These ascii lists should be read in a single call, by using a user
2793  * buffer large enough to hold the entire map.  If read in smaller
2794  * chunks, there is no guarantee of atomicity.  Since the display format
2795  * used, list of ranges of sequential numbers, is variable length,
2796  * and since these maps can change value dynamically, one could read
2797  * gibberish by doing partial reads while a list was changing.
2798  */
2799 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2800 {
2801 	struct cpuset *cs = css_cs(seq_css(sf));
2802 	cpuset_filetype_t type = seq_cft(sf)->private;
2803 	int ret = 0;
2804 
2805 	spin_lock_irq(&callback_lock);
2806 
2807 	switch (type) {
2808 	case FILE_CPULIST:
2809 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2810 		break;
2811 	case FILE_MEMLIST:
2812 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2813 		break;
2814 	case FILE_EFFECTIVE_CPULIST:
2815 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2816 		break;
2817 	case FILE_EFFECTIVE_MEMLIST:
2818 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2819 		break;
2820 	case FILE_SUBPARTS_CPULIST:
2821 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2822 		break;
2823 	default:
2824 		ret = -EINVAL;
2825 	}
2826 
2827 	spin_unlock_irq(&callback_lock);
2828 	return ret;
2829 }
2830 
2831 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2832 {
2833 	struct cpuset *cs = css_cs(css);
2834 	cpuset_filetype_t type = cft->private;
2835 	switch (type) {
2836 	case FILE_CPU_EXCLUSIVE:
2837 		return is_cpu_exclusive(cs);
2838 	case FILE_MEM_EXCLUSIVE:
2839 		return is_mem_exclusive(cs);
2840 	case FILE_MEM_HARDWALL:
2841 		return is_mem_hardwall(cs);
2842 	case FILE_SCHED_LOAD_BALANCE:
2843 		return is_sched_load_balance(cs);
2844 	case FILE_MEMORY_MIGRATE:
2845 		return is_memory_migrate(cs);
2846 	case FILE_MEMORY_PRESSURE_ENABLED:
2847 		return cpuset_memory_pressure_enabled;
2848 	case FILE_MEMORY_PRESSURE:
2849 		return fmeter_getrate(&cs->fmeter);
2850 	case FILE_SPREAD_PAGE:
2851 		return is_spread_page(cs);
2852 	case FILE_SPREAD_SLAB:
2853 		return is_spread_slab(cs);
2854 	default:
2855 		BUG();
2856 	}
2857 
2858 	/* Unreachable but makes gcc happy */
2859 	return 0;
2860 }
2861 
2862 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2863 {
2864 	struct cpuset *cs = css_cs(css);
2865 	cpuset_filetype_t type = cft->private;
2866 	switch (type) {
2867 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2868 		return cs->relax_domain_level;
2869 	default:
2870 		BUG();
2871 	}
2872 
2873 	/* Unreachable but makes gcc happy */
2874 	return 0;
2875 }
2876 
2877 static int sched_partition_show(struct seq_file *seq, void *v)
2878 {
2879 	struct cpuset *cs = css_cs(seq_css(seq));
2880 	const char *err, *type = NULL;
2881 
2882 	switch (cs->partition_root_state) {
2883 	case PRS_ROOT:
2884 		seq_puts(seq, "root\n");
2885 		break;
2886 	case PRS_ISOLATED:
2887 		seq_puts(seq, "isolated\n");
2888 		break;
2889 	case PRS_MEMBER:
2890 		seq_puts(seq, "member\n");
2891 		break;
2892 	case PRS_INVALID_ROOT:
2893 		type = "root";
2894 		fallthrough;
2895 	case PRS_INVALID_ISOLATED:
2896 		if (!type)
2897 			type = "isolated";
2898 		err = perr_strings[READ_ONCE(cs->prs_err)];
2899 		if (err)
2900 			seq_printf(seq, "%s invalid (%s)\n", type, err);
2901 		else
2902 			seq_printf(seq, "%s invalid\n", type);
2903 		break;
2904 	}
2905 	return 0;
2906 }
2907 
2908 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2909 				     size_t nbytes, loff_t off)
2910 {
2911 	struct cpuset *cs = css_cs(of_css(of));
2912 	int val;
2913 	int retval = -ENODEV;
2914 
2915 	buf = strstrip(buf);
2916 
2917 	/*
2918 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2919 	 */
2920 	if (!strcmp(buf, "root"))
2921 		val = PRS_ROOT;
2922 	else if (!strcmp(buf, "member"))
2923 		val = PRS_MEMBER;
2924 	else if (!strcmp(buf, "isolated"))
2925 		val = PRS_ISOLATED;
2926 	else
2927 		return -EINVAL;
2928 
2929 	css_get(&cs->css);
2930 	cpus_read_lock();
2931 	percpu_down_write(&cpuset_rwsem);
2932 	if (!is_cpuset_online(cs))
2933 		goto out_unlock;
2934 
2935 	retval = update_prstate(cs, val);
2936 out_unlock:
2937 	percpu_up_write(&cpuset_rwsem);
2938 	cpus_read_unlock();
2939 	css_put(&cs->css);
2940 	return retval ?: nbytes;
2941 }
2942 
2943 /*
2944  * for the common functions, 'private' gives the type of file
2945  */
2946 
2947 static struct cftype legacy_files[] = {
2948 	{
2949 		.name = "cpus",
2950 		.seq_show = cpuset_common_seq_show,
2951 		.write = cpuset_write_resmask,
2952 		.max_write_len = (100U + 6 * NR_CPUS),
2953 		.private = FILE_CPULIST,
2954 	},
2955 
2956 	{
2957 		.name = "mems",
2958 		.seq_show = cpuset_common_seq_show,
2959 		.write = cpuset_write_resmask,
2960 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2961 		.private = FILE_MEMLIST,
2962 	},
2963 
2964 	{
2965 		.name = "effective_cpus",
2966 		.seq_show = cpuset_common_seq_show,
2967 		.private = FILE_EFFECTIVE_CPULIST,
2968 	},
2969 
2970 	{
2971 		.name = "effective_mems",
2972 		.seq_show = cpuset_common_seq_show,
2973 		.private = FILE_EFFECTIVE_MEMLIST,
2974 	},
2975 
2976 	{
2977 		.name = "cpu_exclusive",
2978 		.read_u64 = cpuset_read_u64,
2979 		.write_u64 = cpuset_write_u64,
2980 		.private = FILE_CPU_EXCLUSIVE,
2981 	},
2982 
2983 	{
2984 		.name = "mem_exclusive",
2985 		.read_u64 = cpuset_read_u64,
2986 		.write_u64 = cpuset_write_u64,
2987 		.private = FILE_MEM_EXCLUSIVE,
2988 	},
2989 
2990 	{
2991 		.name = "mem_hardwall",
2992 		.read_u64 = cpuset_read_u64,
2993 		.write_u64 = cpuset_write_u64,
2994 		.private = FILE_MEM_HARDWALL,
2995 	},
2996 
2997 	{
2998 		.name = "sched_load_balance",
2999 		.read_u64 = cpuset_read_u64,
3000 		.write_u64 = cpuset_write_u64,
3001 		.private = FILE_SCHED_LOAD_BALANCE,
3002 	},
3003 
3004 	{
3005 		.name = "sched_relax_domain_level",
3006 		.read_s64 = cpuset_read_s64,
3007 		.write_s64 = cpuset_write_s64,
3008 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
3009 	},
3010 
3011 	{
3012 		.name = "memory_migrate",
3013 		.read_u64 = cpuset_read_u64,
3014 		.write_u64 = cpuset_write_u64,
3015 		.private = FILE_MEMORY_MIGRATE,
3016 	},
3017 
3018 	{
3019 		.name = "memory_pressure",
3020 		.read_u64 = cpuset_read_u64,
3021 		.private = FILE_MEMORY_PRESSURE,
3022 	},
3023 
3024 	{
3025 		.name = "memory_spread_page",
3026 		.read_u64 = cpuset_read_u64,
3027 		.write_u64 = cpuset_write_u64,
3028 		.private = FILE_SPREAD_PAGE,
3029 	},
3030 
3031 	{
3032 		.name = "memory_spread_slab",
3033 		.read_u64 = cpuset_read_u64,
3034 		.write_u64 = cpuset_write_u64,
3035 		.private = FILE_SPREAD_SLAB,
3036 	},
3037 
3038 	{
3039 		.name = "memory_pressure_enabled",
3040 		.flags = CFTYPE_ONLY_ON_ROOT,
3041 		.read_u64 = cpuset_read_u64,
3042 		.write_u64 = cpuset_write_u64,
3043 		.private = FILE_MEMORY_PRESSURE_ENABLED,
3044 	},
3045 
3046 	{ }	/* terminate */
3047 };
3048 
3049 /*
3050  * This is currently a minimal set for the default hierarchy. It can be
3051  * expanded later on by migrating more features and control files from v1.
3052  */
3053 static struct cftype dfl_files[] = {
3054 	{
3055 		.name = "cpus",
3056 		.seq_show = cpuset_common_seq_show,
3057 		.write = cpuset_write_resmask,
3058 		.max_write_len = (100U + 6 * NR_CPUS),
3059 		.private = FILE_CPULIST,
3060 		.flags = CFTYPE_NOT_ON_ROOT,
3061 	},
3062 
3063 	{
3064 		.name = "mems",
3065 		.seq_show = cpuset_common_seq_show,
3066 		.write = cpuset_write_resmask,
3067 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3068 		.private = FILE_MEMLIST,
3069 		.flags = CFTYPE_NOT_ON_ROOT,
3070 	},
3071 
3072 	{
3073 		.name = "cpus.effective",
3074 		.seq_show = cpuset_common_seq_show,
3075 		.private = FILE_EFFECTIVE_CPULIST,
3076 	},
3077 
3078 	{
3079 		.name = "mems.effective",
3080 		.seq_show = cpuset_common_seq_show,
3081 		.private = FILE_EFFECTIVE_MEMLIST,
3082 	},
3083 
3084 	{
3085 		.name = "cpus.partition",
3086 		.seq_show = sched_partition_show,
3087 		.write = sched_partition_write,
3088 		.private = FILE_PARTITION_ROOT,
3089 		.flags = CFTYPE_NOT_ON_ROOT,
3090 		.file_offset = offsetof(struct cpuset, partition_file),
3091 	},
3092 
3093 	{
3094 		.name = "cpus.subpartitions",
3095 		.seq_show = cpuset_common_seq_show,
3096 		.private = FILE_SUBPARTS_CPULIST,
3097 		.flags = CFTYPE_DEBUG,
3098 	},
3099 
3100 	{ }	/* terminate */
3101 };
3102 
3103 
3104 /**
3105  * cpuset_css_alloc - Allocate a cpuset css
3106  * @parent_css: Parent css of the control group that the new cpuset will be
3107  *              part of
3108  * Return: cpuset css on success, -ENOMEM on failure.
3109  *
3110  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3111  * top cpuset css otherwise.
3112  */
3113 static struct cgroup_subsys_state *
3114 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3115 {
3116 	struct cpuset *cs;
3117 
3118 	if (!parent_css)
3119 		return &top_cpuset.css;
3120 
3121 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
3122 	if (!cs)
3123 		return ERR_PTR(-ENOMEM);
3124 
3125 	if (alloc_cpumasks(cs, NULL)) {
3126 		kfree(cs);
3127 		return ERR_PTR(-ENOMEM);
3128 	}
3129 
3130 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3131 	nodes_clear(cs->mems_allowed);
3132 	nodes_clear(cs->effective_mems);
3133 	fmeter_init(&cs->fmeter);
3134 	cs->relax_domain_level = -1;
3135 
3136 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3137 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
3138 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3139 
3140 	return &cs->css;
3141 }
3142 
3143 static int cpuset_css_online(struct cgroup_subsys_state *css)
3144 {
3145 	struct cpuset *cs = css_cs(css);
3146 	struct cpuset *parent = parent_cs(cs);
3147 	struct cpuset *tmp_cs;
3148 	struct cgroup_subsys_state *pos_css;
3149 
3150 	if (!parent)
3151 		return 0;
3152 
3153 	cpus_read_lock();
3154 	percpu_down_write(&cpuset_rwsem);
3155 
3156 	set_bit(CS_ONLINE, &cs->flags);
3157 	if (is_spread_page(parent))
3158 		set_bit(CS_SPREAD_PAGE, &cs->flags);
3159 	if (is_spread_slab(parent))
3160 		set_bit(CS_SPREAD_SLAB, &cs->flags);
3161 
3162 	cpuset_inc();
3163 
3164 	spin_lock_irq(&callback_lock);
3165 	if (is_in_v2_mode()) {
3166 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3167 		cs->effective_mems = parent->effective_mems;
3168 		cs->use_parent_ecpus = true;
3169 		parent->child_ecpus_count++;
3170 	}
3171 	spin_unlock_irq(&callback_lock);
3172 
3173 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3174 		goto out_unlock;
3175 
3176 	/*
3177 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3178 	 * set.  This flag handling is implemented in cgroup core for
3179 	 * historical reasons - the flag may be specified during mount.
3180 	 *
3181 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3182 	 * refuse to clone the configuration - thereby refusing the task to
3183 	 * be entered, and as a result refusing the sys_unshare() or
3184 	 * clone() which initiated it.  If this becomes a problem for some
3185 	 * users who wish to allow that scenario, then this could be
3186 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3187 	 * (and likewise for mems) to the new cgroup.
3188 	 */
3189 	rcu_read_lock();
3190 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3191 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3192 			rcu_read_unlock();
3193 			goto out_unlock;
3194 		}
3195 	}
3196 	rcu_read_unlock();
3197 
3198 	spin_lock_irq(&callback_lock);
3199 	cs->mems_allowed = parent->mems_allowed;
3200 	cs->effective_mems = parent->mems_allowed;
3201 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3202 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3203 	spin_unlock_irq(&callback_lock);
3204 out_unlock:
3205 	percpu_up_write(&cpuset_rwsem);
3206 	cpus_read_unlock();
3207 	return 0;
3208 }
3209 
3210 /*
3211  * If the cpuset being removed has its flag 'sched_load_balance'
3212  * enabled, then simulate turning sched_load_balance off, which
3213  * will call rebuild_sched_domains_locked(). That is not needed
3214  * in the default hierarchy where only changes in partition
3215  * will cause repartitioning.
3216  *
3217  * If the cpuset has the 'sched.partition' flag enabled, simulate
3218  * turning 'sched.partition" off.
3219  */
3220 
3221 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3222 {
3223 	struct cpuset *cs = css_cs(css);
3224 
3225 	cpus_read_lock();
3226 	percpu_down_write(&cpuset_rwsem);
3227 
3228 	if (is_partition_valid(cs))
3229 		update_prstate(cs, 0);
3230 
3231 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3232 	    is_sched_load_balance(cs))
3233 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3234 
3235 	if (cs->use_parent_ecpus) {
3236 		struct cpuset *parent = parent_cs(cs);
3237 
3238 		cs->use_parent_ecpus = false;
3239 		parent->child_ecpus_count--;
3240 	}
3241 
3242 	cpuset_dec();
3243 	clear_bit(CS_ONLINE, &cs->flags);
3244 
3245 	percpu_up_write(&cpuset_rwsem);
3246 	cpus_read_unlock();
3247 }
3248 
3249 static void cpuset_css_free(struct cgroup_subsys_state *css)
3250 {
3251 	struct cpuset *cs = css_cs(css);
3252 
3253 	free_cpuset(cs);
3254 }
3255 
3256 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3257 {
3258 	percpu_down_write(&cpuset_rwsem);
3259 	spin_lock_irq(&callback_lock);
3260 
3261 	if (is_in_v2_mode()) {
3262 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3263 		top_cpuset.mems_allowed = node_possible_map;
3264 	} else {
3265 		cpumask_copy(top_cpuset.cpus_allowed,
3266 			     top_cpuset.effective_cpus);
3267 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
3268 	}
3269 
3270 	spin_unlock_irq(&callback_lock);
3271 	percpu_up_write(&cpuset_rwsem);
3272 }
3273 
3274 /*
3275  * In case the child is cloned into a cpuset different from its parent,
3276  * additional checks are done to see if the move is allowed.
3277  */
3278 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3279 {
3280 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3281 	bool same_cs;
3282 	int ret;
3283 
3284 	rcu_read_lock();
3285 	same_cs = (cs == task_cs(current));
3286 	rcu_read_unlock();
3287 
3288 	if (same_cs)
3289 		return 0;
3290 
3291 	lockdep_assert_held(&cgroup_mutex);
3292 	percpu_down_write(&cpuset_rwsem);
3293 
3294 	/* Check to see if task is allowed in the cpuset */
3295 	ret = cpuset_can_attach_check(cs);
3296 	if (ret)
3297 		goto out_unlock;
3298 
3299 	ret = task_can_attach(task, cs->effective_cpus);
3300 	if (ret)
3301 		goto out_unlock;
3302 
3303 	ret = security_task_setscheduler(task);
3304 	if (ret)
3305 		goto out_unlock;
3306 
3307 	/*
3308 	 * Mark attach is in progress.  This makes validate_change() fail
3309 	 * changes which zero cpus/mems_allowed.
3310 	 */
3311 	cs->attach_in_progress++;
3312 out_unlock:
3313 	percpu_up_write(&cpuset_rwsem);
3314 	return ret;
3315 }
3316 
3317 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3318 {
3319 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3320 	bool same_cs;
3321 
3322 	rcu_read_lock();
3323 	same_cs = (cs == task_cs(current));
3324 	rcu_read_unlock();
3325 
3326 	if (same_cs)
3327 		return;
3328 
3329 	percpu_down_write(&cpuset_rwsem);
3330 	cs->attach_in_progress--;
3331 	if (!cs->attach_in_progress)
3332 		wake_up(&cpuset_attach_wq);
3333 	percpu_up_write(&cpuset_rwsem);
3334 }
3335 
3336 /*
3337  * Make sure the new task conform to the current state of its parent,
3338  * which could have been changed by cpuset just after it inherits the
3339  * state from the parent and before it sits on the cgroup's task list.
3340  */
3341 static void cpuset_fork(struct task_struct *task)
3342 {
3343 	struct cpuset *cs;
3344 	bool same_cs;
3345 
3346 	rcu_read_lock();
3347 	cs = task_cs(task);
3348 	same_cs = (cs == task_cs(current));
3349 	rcu_read_unlock();
3350 
3351 	if (same_cs) {
3352 		if (cs == &top_cpuset)
3353 			return;
3354 
3355 		set_cpus_allowed_ptr(task, current->cpus_ptr);
3356 		task->mems_allowed = current->mems_allowed;
3357 		return;
3358 	}
3359 
3360 	/* CLONE_INTO_CGROUP */
3361 	percpu_down_write(&cpuset_rwsem);
3362 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3363 	cpuset_attach_task(cs, task);
3364 
3365 	cs->attach_in_progress--;
3366 	if (!cs->attach_in_progress)
3367 		wake_up(&cpuset_attach_wq);
3368 
3369 	percpu_up_write(&cpuset_rwsem);
3370 }
3371 
3372 struct cgroup_subsys cpuset_cgrp_subsys = {
3373 	.css_alloc	= cpuset_css_alloc,
3374 	.css_online	= cpuset_css_online,
3375 	.css_offline	= cpuset_css_offline,
3376 	.css_free	= cpuset_css_free,
3377 	.can_attach	= cpuset_can_attach,
3378 	.cancel_attach	= cpuset_cancel_attach,
3379 	.attach		= cpuset_attach,
3380 	.post_attach	= cpuset_post_attach,
3381 	.bind		= cpuset_bind,
3382 	.can_fork	= cpuset_can_fork,
3383 	.cancel_fork	= cpuset_cancel_fork,
3384 	.fork		= cpuset_fork,
3385 	.legacy_cftypes	= legacy_files,
3386 	.dfl_cftypes	= dfl_files,
3387 	.early_init	= true,
3388 	.threaded	= true,
3389 };
3390 
3391 /**
3392  * cpuset_init - initialize cpusets at system boot
3393  *
3394  * Description: Initialize top_cpuset
3395  **/
3396 
3397 int __init cpuset_init(void)
3398 {
3399 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3400 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3401 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3402 
3403 	cpumask_setall(top_cpuset.cpus_allowed);
3404 	nodes_setall(top_cpuset.mems_allowed);
3405 	cpumask_setall(top_cpuset.effective_cpus);
3406 	nodes_setall(top_cpuset.effective_mems);
3407 
3408 	fmeter_init(&top_cpuset.fmeter);
3409 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3410 	top_cpuset.relax_domain_level = -1;
3411 
3412 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3413 
3414 	return 0;
3415 }
3416 
3417 /*
3418  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3419  * or memory nodes, we need to walk over the cpuset hierarchy,
3420  * removing that CPU or node from all cpusets.  If this removes the
3421  * last CPU or node from a cpuset, then move the tasks in the empty
3422  * cpuset to its next-highest non-empty parent.
3423  */
3424 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3425 {
3426 	struct cpuset *parent;
3427 
3428 	/*
3429 	 * Find its next-highest non-empty parent, (top cpuset
3430 	 * has online cpus, so can't be empty).
3431 	 */
3432 	parent = parent_cs(cs);
3433 	while (cpumask_empty(parent->cpus_allowed) ||
3434 			nodes_empty(parent->mems_allowed))
3435 		parent = parent_cs(parent);
3436 
3437 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3438 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3439 		pr_cont_cgroup_name(cs->css.cgroup);
3440 		pr_cont("\n");
3441 	}
3442 }
3443 
3444 static void
3445 hotplug_update_tasks_legacy(struct cpuset *cs,
3446 			    struct cpumask *new_cpus, nodemask_t *new_mems,
3447 			    bool cpus_updated, bool mems_updated)
3448 {
3449 	bool is_empty;
3450 
3451 	spin_lock_irq(&callback_lock);
3452 	cpumask_copy(cs->cpus_allowed, new_cpus);
3453 	cpumask_copy(cs->effective_cpus, new_cpus);
3454 	cs->mems_allowed = *new_mems;
3455 	cs->effective_mems = *new_mems;
3456 	spin_unlock_irq(&callback_lock);
3457 
3458 	/*
3459 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3460 	 * as the tasks will be migrated to an ancestor.
3461 	 */
3462 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3463 		update_tasks_cpumask(cs, new_cpus);
3464 	if (mems_updated && !nodes_empty(cs->mems_allowed))
3465 		update_tasks_nodemask(cs);
3466 
3467 	is_empty = cpumask_empty(cs->cpus_allowed) ||
3468 		   nodes_empty(cs->mems_allowed);
3469 
3470 	percpu_up_write(&cpuset_rwsem);
3471 
3472 	/*
3473 	 * Move tasks to the nearest ancestor with execution resources,
3474 	 * This is full cgroup operation which will also call back into
3475 	 * cpuset. Should be done outside any lock.
3476 	 */
3477 	if (is_empty)
3478 		remove_tasks_in_empty_cpuset(cs);
3479 
3480 	percpu_down_write(&cpuset_rwsem);
3481 }
3482 
3483 static void
3484 hotplug_update_tasks(struct cpuset *cs,
3485 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3486 		     bool cpus_updated, bool mems_updated)
3487 {
3488 	/* A partition root is allowed to have empty effective cpus */
3489 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3490 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3491 	if (nodes_empty(*new_mems))
3492 		*new_mems = parent_cs(cs)->effective_mems;
3493 
3494 	spin_lock_irq(&callback_lock);
3495 	cpumask_copy(cs->effective_cpus, new_cpus);
3496 	cs->effective_mems = *new_mems;
3497 	spin_unlock_irq(&callback_lock);
3498 
3499 	if (cpus_updated)
3500 		update_tasks_cpumask(cs, new_cpus);
3501 	if (mems_updated)
3502 		update_tasks_nodemask(cs);
3503 }
3504 
3505 static bool force_rebuild;
3506 
3507 void cpuset_force_rebuild(void)
3508 {
3509 	force_rebuild = true;
3510 }
3511 
3512 /**
3513  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3514  * @cs: cpuset in interest
3515  * @tmp: the tmpmasks structure pointer
3516  *
3517  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3518  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3519  * all its tasks are moved to the nearest ancestor with both resources.
3520  */
3521 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3522 {
3523 	static cpumask_t new_cpus;
3524 	static nodemask_t new_mems;
3525 	bool cpus_updated;
3526 	bool mems_updated;
3527 	struct cpuset *parent;
3528 retry:
3529 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3530 
3531 	percpu_down_write(&cpuset_rwsem);
3532 
3533 	/*
3534 	 * We have raced with task attaching. We wait until attaching
3535 	 * is finished, so we won't attach a task to an empty cpuset.
3536 	 */
3537 	if (cs->attach_in_progress) {
3538 		percpu_up_write(&cpuset_rwsem);
3539 		goto retry;
3540 	}
3541 
3542 	parent = parent_cs(cs);
3543 	compute_effective_cpumask(&new_cpus, cs, parent);
3544 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3545 
3546 	if (cs->nr_subparts_cpus)
3547 		/*
3548 		 * Make sure that CPUs allocated to child partitions
3549 		 * do not show up in effective_cpus.
3550 		 */
3551 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3552 
3553 	if (!tmp || !cs->partition_root_state)
3554 		goto update_tasks;
3555 
3556 	/*
3557 	 * In the unlikely event that a partition root has empty
3558 	 * effective_cpus with tasks, we will have to invalidate child
3559 	 * partitions, if present, by setting nr_subparts_cpus to 0 to
3560 	 * reclaim their cpus.
3561 	 */
3562 	if (cs->nr_subparts_cpus && is_partition_valid(cs) &&
3563 	    cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) {
3564 		spin_lock_irq(&callback_lock);
3565 		cs->nr_subparts_cpus = 0;
3566 		cpumask_clear(cs->subparts_cpus);
3567 		spin_unlock_irq(&callback_lock);
3568 		compute_effective_cpumask(&new_cpus, cs, parent);
3569 	}
3570 
3571 	/*
3572 	 * Force the partition to become invalid if either one of
3573 	 * the following conditions hold:
3574 	 * 1) empty effective cpus but not valid empty partition.
3575 	 * 2) parent is invalid or doesn't grant any cpus to child
3576 	 *    partitions.
3577 	 */
3578 	if (is_partition_valid(cs) && (!parent->nr_subparts_cpus ||
3579 	   (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) {
3580 		int old_prs, parent_prs;
3581 
3582 		update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp);
3583 		if (cs->nr_subparts_cpus) {
3584 			spin_lock_irq(&callback_lock);
3585 			cs->nr_subparts_cpus = 0;
3586 			cpumask_clear(cs->subparts_cpus);
3587 			spin_unlock_irq(&callback_lock);
3588 			compute_effective_cpumask(&new_cpus, cs, parent);
3589 		}
3590 
3591 		old_prs = cs->partition_root_state;
3592 		parent_prs = parent->partition_root_state;
3593 		if (is_partition_valid(cs)) {
3594 			spin_lock_irq(&callback_lock);
3595 			make_partition_invalid(cs);
3596 			spin_unlock_irq(&callback_lock);
3597 			if (is_prs_invalid(parent_prs))
3598 				WRITE_ONCE(cs->prs_err, PERR_INVPARENT);
3599 			else if (!parent_prs)
3600 				WRITE_ONCE(cs->prs_err, PERR_NOTPART);
3601 			else
3602 				WRITE_ONCE(cs->prs_err, PERR_HOTPLUG);
3603 			notify_partition_change(cs, old_prs);
3604 		}
3605 		cpuset_force_rebuild();
3606 	}
3607 
3608 	/*
3609 	 * On the other hand, an invalid partition root may be transitioned
3610 	 * back to a regular one.
3611 	 */
3612 	else if (is_partition_valid(parent) && is_partition_invalid(cs)) {
3613 		update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp);
3614 		if (is_partition_valid(cs))
3615 			cpuset_force_rebuild();
3616 	}
3617 
3618 update_tasks:
3619 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3620 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3621 
3622 	if (mems_updated)
3623 		check_insane_mems_config(&new_mems);
3624 
3625 	if (is_in_v2_mode())
3626 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3627 				     cpus_updated, mems_updated);
3628 	else
3629 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3630 					    cpus_updated, mems_updated);
3631 
3632 	percpu_up_write(&cpuset_rwsem);
3633 }
3634 
3635 /**
3636  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3637  *
3638  * This function is called after either CPU or memory configuration has
3639  * changed and updates cpuset accordingly.  The top_cpuset is always
3640  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3641  * order to make cpusets transparent (of no affect) on systems that are
3642  * actively using CPU hotplug but making no active use of cpusets.
3643  *
3644  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3645  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3646  * all descendants.
3647  *
3648  * Note that CPU offlining during suspend is ignored.  We don't modify
3649  * cpusets across suspend/resume cycles at all.
3650  */
3651 static void cpuset_hotplug_workfn(struct work_struct *work)
3652 {
3653 	static cpumask_t new_cpus;
3654 	static nodemask_t new_mems;
3655 	bool cpus_updated, mems_updated;
3656 	bool on_dfl = is_in_v2_mode();
3657 	struct tmpmasks tmp, *ptmp = NULL;
3658 
3659 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3660 		ptmp = &tmp;
3661 
3662 	percpu_down_write(&cpuset_rwsem);
3663 
3664 	/* fetch the available cpus/mems and find out which changed how */
3665 	cpumask_copy(&new_cpus, cpu_active_mask);
3666 	new_mems = node_states[N_MEMORY];
3667 
3668 	/*
3669 	 * If subparts_cpus is populated, it is likely that the check below
3670 	 * will produce a false positive on cpus_updated when the cpu list
3671 	 * isn't changed. It is extra work, but it is better to be safe.
3672 	 */
3673 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3674 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3675 
3676 	/*
3677 	 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3678 	 * we assumed that cpus are updated.
3679 	 */
3680 	if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3681 		cpus_updated = true;
3682 
3683 	/* synchronize cpus_allowed to cpu_active_mask */
3684 	if (cpus_updated) {
3685 		spin_lock_irq(&callback_lock);
3686 		if (!on_dfl)
3687 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3688 		/*
3689 		 * Make sure that CPUs allocated to child partitions
3690 		 * do not show up in effective_cpus. If no CPU is left,
3691 		 * we clear the subparts_cpus & let the child partitions
3692 		 * fight for the CPUs again.
3693 		 */
3694 		if (top_cpuset.nr_subparts_cpus) {
3695 			if (cpumask_subset(&new_cpus,
3696 					   top_cpuset.subparts_cpus)) {
3697 				top_cpuset.nr_subparts_cpus = 0;
3698 				cpumask_clear(top_cpuset.subparts_cpus);
3699 			} else {
3700 				cpumask_andnot(&new_cpus, &new_cpus,
3701 					       top_cpuset.subparts_cpus);
3702 			}
3703 		}
3704 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3705 		spin_unlock_irq(&callback_lock);
3706 		/* we don't mess with cpumasks of tasks in top_cpuset */
3707 	}
3708 
3709 	/* synchronize mems_allowed to N_MEMORY */
3710 	if (mems_updated) {
3711 		spin_lock_irq(&callback_lock);
3712 		if (!on_dfl)
3713 			top_cpuset.mems_allowed = new_mems;
3714 		top_cpuset.effective_mems = new_mems;
3715 		spin_unlock_irq(&callback_lock);
3716 		update_tasks_nodemask(&top_cpuset);
3717 	}
3718 
3719 	percpu_up_write(&cpuset_rwsem);
3720 
3721 	/* if cpus or mems changed, we need to propagate to descendants */
3722 	if (cpus_updated || mems_updated) {
3723 		struct cpuset *cs;
3724 		struct cgroup_subsys_state *pos_css;
3725 
3726 		rcu_read_lock();
3727 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3728 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3729 				continue;
3730 			rcu_read_unlock();
3731 
3732 			cpuset_hotplug_update_tasks(cs, ptmp);
3733 
3734 			rcu_read_lock();
3735 			css_put(&cs->css);
3736 		}
3737 		rcu_read_unlock();
3738 	}
3739 
3740 	/* rebuild sched domains if cpus_allowed has changed */
3741 	if (cpus_updated || force_rebuild) {
3742 		force_rebuild = false;
3743 		rebuild_sched_domains();
3744 	}
3745 
3746 	free_cpumasks(NULL, ptmp);
3747 }
3748 
3749 void cpuset_update_active_cpus(void)
3750 {
3751 	/*
3752 	 * We're inside cpu hotplug critical region which usually nests
3753 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3754 	 * to a work item to avoid reverse locking order.
3755 	 */
3756 	schedule_work(&cpuset_hotplug_work);
3757 }
3758 
3759 void cpuset_wait_for_hotplug(void)
3760 {
3761 	flush_work(&cpuset_hotplug_work);
3762 }
3763 
3764 /*
3765  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3766  * Call this routine anytime after node_states[N_MEMORY] changes.
3767  * See cpuset_update_active_cpus() for CPU hotplug handling.
3768  */
3769 static int cpuset_track_online_nodes(struct notifier_block *self,
3770 				unsigned long action, void *arg)
3771 {
3772 	schedule_work(&cpuset_hotplug_work);
3773 	return NOTIFY_OK;
3774 }
3775 
3776 /**
3777  * cpuset_init_smp - initialize cpus_allowed
3778  *
3779  * Description: Finish top cpuset after cpu, node maps are initialized
3780  */
3781 void __init cpuset_init_smp(void)
3782 {
3783 	/*
3784 	 * cpus_allowd/mems_allowed set to v2 values in the initial
3785 	 * cpuset_bind() call will be reset to v1 values in another
3786 	 * cpuset_bind() call when v1 cpuset is mounted.
3787 	 */
3788 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3789 
3790 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3791 	top_cpuset.effective_mems = node_states[N_MEMORY];
3792 
3793 	hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
3794 
3795 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3796 	BUG_ON(!cpuset_migrate_mm_wq);
3797 }
3798 
3799 /**
3800  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3801  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3802  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3803  *
3804  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3805  * attached to the specified @tsk.  Guaranteed to return some non-empty
3806  * subset of cpu_online_mask, even if this means going outside the
3807  * tasks cpuset, except when the task is in the top cpuset.
3808  **/
3809 
3810 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3811 {
3812 	unsigned long flags;
3813 	struct cpuset *cs;
3814 
3815 	spin_lock_irqsave(&callback_lock, flags);
3816 	rcu_read_lock();
3817 
3818 	cs = task_cs(tsk);
3819 	if (cs != &top_cpuset)
3820 		guarantee_online_cpus(tsk, pmask);
3821 	/*
3822 	 * Tasks in the top cpuset won't get update to their cpumasks
3823 	 * when a hotplug online/offline event happens. So we include all
3824 	 * offline cpus in the allowed cpu list.
3825 	 */
3826 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
3827 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3828 
3829 		/*
3830 		 * We first exclude cpus allocated to partitions. If there is no
3831 		 * allowable online cpu left, we fall back to all possible cpus.
3832 		 */
3833 		cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus);
3834 		if (!cpumask_intersects(pmask, cpu_online_mask))
3835 			cpumask_copy(pmask, possible_mask);
3836 	}
3837 
3838 	rcu_read_unlock();
3839 	spin_unlock_irqrestore(&callback_lock, flags);
3840 }
3841 
3842 /**
3843  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3844  * @tsk: pointer to task_struct with which the scheduler is struggling
3845  *
3846  * Description: In the case that the scheduler cannot find an allowed cpu in
3847  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3848  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3849  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3850  * This is the absolute last resort for the scheduler and it is only used if
3851  * _every_ other avenue has been traveled.
3852  *
3853  * Returns true if the affinity of @tsk was changed, false otherwise.
3854  **/
3855 
3856 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3857 {
3858 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3859 	const struct cpumask *cs_mask;
3860 	bool changed = false;
3861 
3862 	rcu_read_lock();
3863 	cs_mask = task_cs(tsk)->cpus_allowed;
3864 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3865 		do_set_cpus_allowed(tsk, cs_mask);
3866 		changed = true;
3867 	}
3868 	rcu_read_unlock();
3869 
3870 	/*
3871 	 * We own tsk->cpus_allowed, nobody can change it under us.
3872 	 *
3873 	 * But we used cs && cs->cpus_allowed lockless and thus can
3874 	 * race with cgroup_attach_task() or update_cpumask() and get
3875 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3876 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3877 	 * which takes task_rq_lock().
3878 	 *
3879 	 * If we are called after it dropped the lock we must see all
3880 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3881 	 * set any mask even if it is not right from task_cs() pov,
3882 	 * the pending set_cpus_allowed_ptr() will fix things.
3883 	 *
3884 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3885 	 * if required.
3886 	 */
3887 	return changed;
3888 }
3889 
3890 void __init cpuset_init_current_mems_allowed(void)
3891 {
3892 	nodes_setall(current->mems_allowed);
3893 }
3894 
3895 /**
3896  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3897  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3898  *
3899  * Description: Returns the nodemask_t mems_allowed of the cpuset
3900  * attached to the specified @tsk.  Guaranteed to return some non-empty
3901  * subset of node_states[N_MEMORY], even if this means going outside the
3902  * tasks cpuset.
3903  **/
3904 
3905 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3906 {
3907 	nodemask_t mask;
3908 	unsigned long flags;
3909 
3910 	spin_lock_irqsave(&callback_lock, flags);
3911 	rcu_read_lock();
3912 	guarantee_online_mems(task_cs(tsk), &mask);
3913 	rcu_read_unlock();
3914 	spin_unlock_irqrestore(&callback_lock, flags);
3915 
3916 	return mask;
3917 }
3918 
3919 /**
3920  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3921  * @nodemask: the nodemask to be checked
3922  *
3923  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3924  */
3925 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3926 {
3927 	return nodes_intersects(*nodemask, current->mems_allowed);
3928 }
3929 
3930 /*
3931  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3932  * mem_hardwall ancestor to the specified cpuset.  Call holding
3933  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3934  * (an unusual configuration), then returns the root cpuset.
3935  */
3936 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3937 {
3938 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3939 		cs = parent_cs(cs);
3940 	return cs;
3941 }
3942 
3943 /*
3944  * __cpuset_node_allowed - Can we allocate on a memory node?
3945  * @node: is this an allowed node?
3946  * @gfp_mask: memory allocation flags
3947  *
3948  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3949  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3950  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3951  * yes.  If current has access to memory reserves as an oom victim, yes.
3952  * Otherwise, no.
3953  *
3954  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3955  * and do not allow allocations outside the current tasks cpuset
3956  * unless the task has been OOM killed.
3957  * GFP_KERNEL allocations are not so marked, so can escape to the
3958  * nearest enclosing hardwalled ancestor cpuset.
3959  *
3960  * Scanning up parent cpusets requires callback_lock.  The
3961  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3962  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3963  * current tasks mems_allowed came up empty on the first pass over
3964  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3965  * cpuset are short of memory, might require taking the callback_lock.
3966  *
3967  * The first call here from mm/page_alloc:get_page_from_freelist()
3968  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3969  * so no allocation on a node outside the cpuset is allowed (unless
3970  * in interrupt, of course).
3971  *
3972  * The second pass through get_page_from_freelist() doesn't even call
3973  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3974  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3975  * in alloc_flags.  That logic and the checks below have the combined
3976  * affect that:
3977  *	in_interrupt - any node ok (current task context irrelevant)
3978  *	GFP_ATOMIC   - any node ok
3979  *	tsk_is_oom_victim   - any node ok
3980  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3981  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3982  */
3983 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3984 {
3985 	struct cpuset *cs;		/* current cpuset ancestors */
3986 	bool allowed;			/* is allocation in zone z allowed? */
3987 	unsigned long flags;
3988 
3989 	if (in_interrupt())
3990 		return true;
3991 	if (node_isset(node, current->mems_allowed))
3992 		return true;
3993 	/*
3994 	 * Allow tasks that have access to memory reserves because they have
3995 	 * been OOM killed to get memory anywhere.
3996 	 */
3997 	if (unlikely(tsk_is_oom_victim(current)))
3998 		return true;
3999 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4000 		return false;
4001 
4002 	if (current->flags & PF_EXITING) /* Let dying task have memory */
4003 		return true;
4004 
4005 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4006 	spin_lock_irqsave(&callback_lock, flags);
4007 
4008 	rcu_read_lock();
4009 	cs = nearest_hardwall_ancestor(task_cs(current));
4010 	allowed = node_isset(node, cs->mems_allowed);
4011 	rcu_read_unlock();
4012 
4013 	spin_unlock_irqrestore(&callback_lock, flags);
4014 	return allowed;
4015 }
4016 
4017 /**
4018  * cpuset_spread_node() - On which node to begin search for a page
4019  *
4020  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4021  * tasks in a cpuset with is_spread_page or is_spread_slab set),
4022  * and if the memory allocation used cpuset_mem_spread_node()
4023  * to determine on which node to start looking, as it will for
4024  * certain page cache or slab cache pages such as used for file
4025  * system buffers and inode caches, then instead of starting on the
4026  * local node to look for a free page, rather spread the starting
4027  * node around the tasks mems_allowed nodes.
4028  *
4029  * We don't have to worry about the returned node being offline
4030  * because "it can't happen", and even if it did, it would be ok.
4031  *
4032  * The routines calling guarantee_online_mems() are careful to
4033  * only set nodes in task->mems_allowed that are online.  So it
4034  * should not be possible for the following code to return an
4035  * offline node.  But if it did, that would be ok, as this routine
4036  * is not returning the node where the allocation must be, only
4037  * the node where the search should start.  The zonelist passed to
4038  * __alloc_pages() will include all nodes.  If the slab allocator
4039  * is passed an offline node, it will fall back to the local node.
4040  * See kmem_cache_alloc_node().
4041  */
4042 static int cpuset_spread_node(int *rotor)
4043 {
4044 	return *rotor = next_node_in(*rotor, current->mems_allowed);
4045 }
4046 
4047 /**
4048  * cpuset_mem_spread_node() - On which node to begin search for a file page
4049  */
4050 int cpuset_mem_spread_node(void)
4051 {
4052 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4053 		current->cpuset_mem_spread_rotor =
4054 			node_random(&current->mems_allowed);
4055 
4056 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4057 }
4058 
4059 /**
4060  * cpuset_slab_spread_node() - On which node to begin search for a slab page
4061  */
4062 int cpuset_slab_spread_node(void)
4063 {
4064 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
4065 		current->cpuset_slab_spread_rotor =
4066 			node_random(&current->mems_allowed);
4067 
4068 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
4069 }
4070 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
4071 
4072 /**
4073  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4074  * @tsk1: pointer to task_struct of some task.
4075  * @tsk2: pointer to task_struct of some other task.
4076  *
4077  * Description: Return true if @tsk1's mems_allowed intersects the
4078  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
4079  * one of the task's memory usage might impact the memory available
4080  * to the other.
4081  **/
4082 
4083 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4084 				   const struct task_struct *tsk2)
4085 {
4086 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4087 }
4088 
4089 /**
4090  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4091  *
4092  * Description: Prints current's name, cpuset name, and cached copy of its
4093  * mems_allowed to the kernel log.
4094  */
4095 void cpuset_print_current_mems_allowed(void)
4096 {
4097 	struct cgroup *cgrp;
4098 
4099 	rcu_read_lock();
4100 
4101 	cgrp = task_cs(current)->css.cgroup;
4102 	pr_cont(",cpuset=");
4103 	pr_cont_cgroup_name(cgrp);
4104 	pr_cont(",mems_allowed=%*pbl",
4105 		nodemask_pr_args(&current->mems_allowed));
4106 
4107 	rcu_read_unlock();
4108 }
4109 
4110 /*
4111  * Collection of memory_pressure is suppressed unless
4112  * this flag is enabled by writing "1" to the special
4113  * cpuset file 'memory_pressure_enabled' in the root cpuset.
4114  */
4115 
4116 int cpuset_memory_pressure_enabled __read_mostly;
4117 
4118 /*
4119  * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
4120  *
4121  * Keep a running average of the rate of synchronous (direct)
4122  * page reclaim efforts initiated by tasks in each cpuset.
4123  *
4124  * This represents the rate at which some task in the cpuset
4125  * ran low on memory on all nodes it was allowed to use, and
4126  * had to enter the kernels page reclaim code in an effort to
4127  * create more free memory by tossing clean pages or swapping
4128  * or writing dirty pages.
4129  *
4130  * Display to user space in the per-cpuset read-only file
4131  * "memory_pressure".  Value displayed is an integer
4132  * representing the recent rate of entry into the synchronous
4133  * (direct) page reclaim by any task attached to the cpuset.
4134  */
4135 
4136 void __cpuset_memory_pressure_bump(void)
4137 {
4138 	rcu_read_lock();
4139 	fmeter_markevent(&task_cs(current)->fmeter);
4140 	rcu_read_unlock();
4141 }
4142 
4143 #ifdef CONFIG_PROC_PID_CPUSET
4144 /*
4145  * proc_cpuset_show()
4146  *  - Print tasks cpuset path into seq_file.
4147  *  - Used for /proc/<pid>/cpuset.
4148  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
4149  *    doesn't really matter if tsk->cpuset changes after we read it,
4150  *    and we take cpuset_rwsem, keeping cpuset_attach() from changing it
4151  *    anyway.
4152  */
4153 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
4154 		     struct pid *pid, struct task_struct *tsk)
4155 {
4156 	char *buf;
4157 	struct cgroup_subsys_state *css;
4158 	int retval;
4159 
4160 	retval = -ENOMEM;
4161 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
4162 	if (!buf)
4163 		goto out;
4164 
4165 	css = task_get_css(tsk, cpuset_cgrp_id);
4166 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
4167 				current->nsproxy->cgroup_ns);
4168 	css_put(css);
4169 	if (retval >= PATH_MAX)
4170 		retval = -ENAMETOOLONG;
4171 	if (retval < 0)
4172 		goto out_free;
4173 	seq_puts(m, buf);
4174 	seq_putc(m, '\n');
4175 	retval = 0;
4176 out_free:
4177 	kfree(buf);
4178 out:
4179 	return retval;
4180 }
4181 #endif /* CONFIG_PROC_PID_CPUSET */
4182 
4183 /* Display task mems_allowed in /proc/<pid>/status file. */
4184 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4185 {
4186 	seq_printf(m, "Mems_allowed:\t%*pb\n",
4187 		   nodemask_pr_args(&task->mems_allowed));
4188 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4189 		   nodemask_pr_args(&task->mems_allowed));
4190 }
4191