xref: /linux/kernel/cgroup/cpuset.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 #include "cgroup-internal.h"
25 #include "cpuset-internal.h"
26 
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/kernel.h>
30 #include <linux/mempolicy.h>
31 #include <linux/mm.h>
32 #include <linux/memory.h>
33 #include <linux/export.h>
34 #include <linux/rcupdate.h>
35 #include <linux/sched.h>
36 #include <linux/sched/deadline.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/task.h>
39 #include <linux/security.h>
40 #include <linux/oom.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/wait.h>
43 #include <linux/workqueue.h>
44 
45 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
46 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
47 
48 /*
49  * There could be abnormal cpuset configurations for cpu or memory
50  * node binding, add this key to provide a quick low-cost judgment
51  * of the situation.
52  */
53 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
54 
55 static const char * const perr_strings[] = {
56 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus.exclusive",
57 	[PERR_INVPARENT] = "Parent is an invalid partition root",
58 	[PERR_NOTPART]   = "Parent is not a partition root",
59 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
60 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
61 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
62 	[PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
63 	[PERR_HKEEPING]  = "partition config conflicts with housekeeping setup",
64 	[PERR_ACCESS]    = "Enable partition not permitted",
65 };
66 
67 /*
68  * Exclusive CPUs distributed out to sub-partitions of top_cpuset
69  */
70 static cpumask_var_t	subpartitions_cpus;
71 
72 /*
73  * Exclusive CPUs in isolated partitions
74  */
75 static cpumask_var_t	isolated_cpus;
76 
77 /*
78  * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot
79  */
80 static cpumask_var_t	boot_hk_cpus;
81 static bool		have_boot_isolcpus;
82 
83 /* List of remote partition root children */
84 static struct list_head remote_children;
85 
86 /*
87  * A flag to force sched domain rebuild at the end of an operation.
88  * It can be set in
89  *  - update_partition_sd_lb()
90  *  - remote_partition_check()
91  *  - update_cpumasks_hier()
92  *  - cpuset_update_flag()
93  *  - cpuset_hotplug_update_tasks()
94  *  - cpuset_handle_hotplug()
95  *
96  * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock.
97  *
98  * Note that update_relax_domain_level() in cpuset-v1.c can still call
99  * rebuild_sched_domains_locked() directly without using this flag.
100  */
101 static bool force_sd_rebuild;
102 
103 /*
104  * Partition root states:
105  *
106  *   0 - member (not a partition root)
107  *   1 - partition root
108  *   2 - partition root without load balancing (isolated)
109  *  -1 - invalid partition root
110  *  -2 - invalid isolated partition root
111  *
112  *  There are 2 types of partitions - local or remote. Local partitions are
113  *  those whose parents are partition root themselves. Setting of
114  *  cpuset.cpus.exclusive are optional in setting up local partitions.
115  *  Remote partitions are those whose parents are not partition roots. Passing
116  *  down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
117  *  nodes are mandatory in creating a remote partition.
118  *
119  *  For simplicity, a local partition can be created under a local or remote
120  *  partition but a remote partition cannot have any partition root in its
121  *  ancestor chain except the cgroup root.
122  */
123 #define PRS_MEMBER		0
124 #define PRS_ROOT		1
125 #define PRS_ISOLATED		2
126 #define PRS_INVALID_ROOT	-1
127 #define PRS_INVALID_ISOLATED	-2
128 
129 static inline bool is_prs_invalid(int prs_state)
130 {
131 	return prs_state < 0;
132 }
133 
134 /*
135  * Temporary cpumasks for working with partitions that are passed among
136  * functions to avoid memory allocation in inner functions.
137  */
138 struct tmpmasks {
139 	cpumask_var_t addmask, delmask;	/* For partition root */
140 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
141 };
142 
143 void inc_dl_tasks_cs(struct task_struct *p)
144 {
145 	struct cpuset *cs = task_cs(p);
146 
147 	cs->nr_deadline_tasks++;
148 }
149 
150 void dec_dl_tasks_cs(struct task_struct *p)
151 {
152 	struct cpuset *cs = task_cs(p);
153 
154 	cs->nr_deadline_tasks--;
155 }
156 
157 static inline int is_partition_valid(const struct cpuset *cs)
158 {
159 	return cs->partition_root_state > 0;
160 }
161 
162 static inline int is_partition_invalid(const struct cpuset *cs)
163 {
164 	return cs->partition_root_state < 0;
165 }
166 
167 /*
168  * Callers should hold callback_lock to modify partition_root_state.
169  */
170 static inline void make_partition_invalid(struct cpuset *cs)
171 {
172 	if (cs->partition_root_state > 0)
173 		cs->partition_root_state = -cs->partition_root_state;
174 }
175 
176 /*
177  * Send notification event of whenever partition_root_state changes.
178  */
179 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
180 {
181 	if (old_prs == cs->partition_root_state)
182 		return;
183 	cgroup_file_notify(&cs->partition_file);
184 
185 	/* Reset prs_err if not invalid */
186 	if (is_partition_valid(cs))
187 		WRITE_ONCE(cs->prs_err, PERR_NONE);
188 }
189 
190 static struct cpuset top_cpuset = {
191 	.flags = BIT(CS_ONLINE) | BIT(CS_CPU_EXCLUSIVE) |
192 		 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
193 	.partition_root_state = PRS_ROOT,
194 	.relax_domain_level = -1,
195 	.remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling),
196 };
197 
198 /*
199  * There are two global locks guarding cpuset structures - cpuset_mutex and
200  * callback_lock. We also require taking task_lock() when dereferencing a
201  * task's cpuset pointer. See "The task_lock() exception", at the end of this
202  * comment.  The cpuset code uses only cpuset_mutex. Other kernel subsystems
203  * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
204  * structures. Note that cpuset_mutex needs to be a mutex as it is used in
205  * paths that rely on priority inheritance (e.g. scheduler - on RT) for
206  * correctness.
207  *
208  * A task must hold both locks to modify cpusets.  If a task holds
209  * cpuset_mutex, it blocks others, ensuring that it is the only task able to
210  * also acquire callback_lock and be able to modify cpusets.  It can perform
211  * various checks on the cpuset structure first, knowing nothing will change.
212  * It can also allocate memory while just holding cpuset_mutex.  While it is
213  * performing these checks, various callback routines can briefly acquire
214  * callback_lock to query cpusets.  Once it is ready to make the changes, it
215  * takes callback_lock, blocking everyone else.
216  *
217  * Calls to the kernel memory allocator can not be made while holding
218  * callback_lock, as that would risk double tripping on callback_lock
219  * from one of the callbacks into the cpuset code from within
220  * __alloc_pages().
221  *
222  * If a task is only holding callback_lock, then it has read-only
223  * access to cpusets.
224  *
225  * Now, the task_struct fields mems_allowed and mempolicy may be changed
226  * by other task, we use alloc_lock in the task_struct fields to protect
227  * them.
228  *
229  * The cpuset_common_seq_show() handlers only hold callback_lock across
230  * small pieces of code, such as when reading out possibly multi-word
231  * cpumasks and nodemasks.
232  *
233  * Accessing a task's cpuset should be done in accordance with the
234  * guidelines for accessing subsystem state in kernel/cgroup.c
235  */
236 
237 static DEFINE_MUTEX(cpuset_mutex);
238 
239 void cpuset_lock(void)
240 {
241 	mutex_lock(&cpuset_mutex);
242 }
243 
244 void cpuset_unlock(void)
245 {
246 	mutex_unlock(&cpuset_mutex);
247 }
248 
249 static DEFINE_SPINLOCK(callback_lock);
250 
251 void cpuset_callback_lock_irq(void)
252 {
253 	spin_lock_irq(&callback_lock);
254 }
255 
256 void cpuset_callback_unlock_irq(void)
257 {
258 	spin_unlock_irq(&callback_lock);
259 }
260 
261 static struct workqueue_struct *cpuset_migrate_mm_wq;
262 
263 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
264 
265 static inline void check_insane_mems_config(nodemask_t *nodes)
266 {
267 	if (!cpusets_insane_config() &&
268 		movable_only_nodes(nodes)) {
269 		static_branch_enable(&cpusets_insane_config_key);
270 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
271 			"Cpuset allocations might fail even with a lot of memory available.\n",
272 			nodemask_pr_args(nodes));
273 	}
274 }
275 
276 /*
277  * decrease cs->attach_in_progress.
278  * wake_up cpuset_attach_wq if cs->attach_in_progress==0.
279  */
280 static inline void dec_attach_in_progress_locked(struct cpuset *cs)
281 {
282 	lockdep_assert_held(&cpuset_mutex);
283 
284 	cs->attach_in_progress--;
285 	if (!cs->attach_in_progress)
286 		wake_up(&cpuset_attach_wq);
287 }
288 
289 static inline void dec_attach_in_progress(struct cpuset *cs)
290 {
291 	mutex_lock(&cpuset_mutex);
292 	dec_attach_in_progress_locked(cs);
293 	mutex_unlock(&cpuset_mutex);
294 }
295 
296 static inline bool cpuset_v2(void)
297 {
298 	return !IS_ENABLED(CONFIG_CPUSETS_V1) ||
299 		cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
300 }
301 
302 /*
303  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
304  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
305  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
306  * With v2 behavior, "cpus" and "mems" are always what the users have
307  * requested and won't be changed by hotplug events. Only the effective
308  * cpus or mems will be affected.
309  */
310 static inline bool is_in_v2_mode(void)
311 {
312 	return cpuset_v2() ||
313 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
314 }
315 
316 /**
317  * partition_is_populated - check if partition has tasks
318  * @cs: partition root to be checked
319  * @excluded_child: a child cpuset to be excluded in task checking
320  * Return: true if there are tasks, false otherwise
321  *
322  * It is assumed that @cs is a valid partition root. @excluded_child should
323  * be non-NULL when this cpuset is going to become a partition itself.
324  */
325 static inline bool partition_is_populated(struct cpuset *cs,
326 					  struct cpuset *excluded_child)
327 {
328 	struct cgroup_subsys_state *css;
329 	struct cpuset *child;
330 
331 	if (cs->css.cgroup->nr_populated_csets)
332 		return true;
333 	if (!excluded_child && !cs->nr_subparts)
334 		return cgroup_is_populated(cs->css.cgroup);
335 
336 	rcu_read_lock();
337 	cpuset_for_each_child(child, css, cs) {
338 		if (child == excluded_child)
339 			continue;
340 		if (is_partition_valid(child))
341 			continue;
342 		if (cgroup_is_populated(child->css.cgroup)) {
343 			rcu_read_unlock();
344 			return true;
345 		}
346 	}
347 	rcu_read_unlock();
348 	return false;
349 }
350 
351 /*
352  * Return in pmask the portion of a task's cpusets's cpus_allowed that
353  * are online and are capable of running the task.  If none are found,
354  * walk up the cpuset hierarchy until we find one that does have some
355  * appropriate cpus.
356  *
357  * One way or another, we guarantee to return some non-empty subset
358  * of cpu_online_mask.
359  *
360  * Call with callback_lock or cpuset_mutex held.
361  */
362 static void guarantee_online_cpus(struct task_struct *tsk,
363 				  struct cpumask *pmask)
364 {
365 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
366 	struct cpuset *cs;
367 
368 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
369 		cpumask_copy(pmask, cpu_online_mask);
370 
371 	rcu_read_lock();
372 	cs = task_cs(tsk);
373 
374 	while (!cpumask_intersects(cs->effective_cpus, pmask))
375 		cs = parent_cs(cs);
376 
377 	cpumask_and(pmask, pmask, cs->effective_cpus);
378 	rcu_read_unlock();
379 }
380 
381 /*
382  * Return in *pmask the portion of a cpusets's mems_allowed that
383  * are online, with memory.  If none are online with memory, walk
384  * up the cpuset hierarchy until we find one that does have some
385  * online mems.  The top cpuset always has some mems online.
386  *
387  * One way or another, we guarantee to return some non-empty subset
388  * of node_states[N_MEMORY].
389  *
390  * Call with callback_lock or cpuset_mutex held.
391  */
392 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
393 {
394 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
395 		cs = parent_cs(cs);
396 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
397 }
398 
399 /**
400  * alloc_cpumasks - allocate three cpumasks for cpuset
401  * @cs:  the cpuset that have cpumasks to be allocated.
402  * @tmp: the tmpmasks structure pointer
403  * Return: 0 if successful, -ENOMEM otherwise.
404  *
405  * Only one of the two input arguments should be non-NULL.
406  */
407 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
408 {
409 	cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4;
410 
411 	if (cs) {
412 		pmask1 = &cs->cpus_allowed;
413 		pmask2 = &cs->effective_cpus;
414 		pmask3 = &cs->effective_xcpus;
415 		pmask4 = &cs->exclusive_cpus;
416 	} else {
417 		pmask1 = &tmp->new_cpus;
418 		pmask2 = &tmp->addmask;
419 		pmask3 = &tmp->delmask;
420 		pmask4 = NULL;
421 	}
422 
423 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
424 		return -ENOMEM;
425 
426 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
427 		goto free_one;
428 
429 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
430 		goto free_two;
431 
432 	if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL))
433 		goto free_three;
434 
435 
436 	return 0;
437 
438 free_three:
439 	free_cpumask_var(*pmask3);
440 free_two:
441 	free_cpumask_var(*pmask2);
442 free_one:
443 	free_cpumask_var(*pmask1);
444 	return -ENOMEM;
445 }
446 
447 /**
448  * free_cpumasks - free cpumasks in a tmpmasks structure
449  * @cs:  the cpuset that have cpumasks to be free.
450  * @tmp: the tmpmasks structure pointer
451  */
452 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
453 {
454 	if (cs) {
455 		free_cpumask_var(cs->cpus_allowed);
456 		free_cpumask_var(cs->effective_cpus);
457 		free_cpumask_var(cs->effective_xcpus);
458 		free_cpumask_var(cs->exclusive_cpus);
459 	}
460 	if (tmp) {
461 		free_cpumask_var(tmp->new_cpus);
462 		free_cpumask_var(tmp->addmask);
463 		free_cpumask_var(tmp->delmask);
464 	}
465 }
466 
467 /**
468  * alloc_trial_cpuset - allocate a trial cpuset
469  * @cs: the cpuset that the trial cpuset duplicates
470  */
471 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
472 {
473 	struct cpuset *trial;
474 
475 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
476 	if (!trial)
477 		return NULL;
478 
479 	if (alloc_cpumasks(trial, NULL)) {
480 		kfree(trial);
481 		return NULL;
482 	}
483 
484 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
485 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
486 	cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
487 	cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
488 	return trial;
489 }
490 
491 /**
492  * free_cpuset - free the cpuset
493  * @cs: the cpuset to be freed
494  */
495 static inline void free_cpuset(struct cpuset *cs)
496 {
497 	free_cpumasks(cs, NULL);
498 	kfree(cs);
499 }
500 
501 /* Return user specified exclusive CPUs */
502 static inline struct cpumask *user_xcpus(struct cpuset *cs)
503 {
504 	return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
505 						 : cs->exclusive_cpus;
506 }
507 
508 static inline bool xcpus_empty(struct cpuset *cs)
509 {
510 	return cpumask_empty(cs->cpus_allowed) &&
511 	       cpumask_empty(cs->exclusive_cpus);
512 }
513 
514 /*
515  * cpusets_are_exclusive() - check if two cpusets are exclusive
516  *
517  * Return true if exclusive, false if not
518  */
519 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
520 {
521 	struct cpumask *xcpus1 = user_xcpus(cs1);
522 	struct cpumask *xcpus2 = user_xcpus(cs2);
523 
524 	if (cpumask_intersects(xcpus1, xcpus2))
525 		return false;
526 	return true;
527 }
528 
529 /*
530  * validate_change() - Used to validate that any proposed cpuset change
531  *		       follows the structural rules for cpusets.
532  *
533  * If we replaced the flag and mask values of the current cpuset
534  * (cur) with those values in the trial cpuset (trial), would
535  * our various subset and exclusive rules still be valid?  Presumes
536  * cpuset_mutex held.
537  *
538  * 'cur' is the address of an actual, in-use cpuset.  Operations
539  * such as list traversal that depend on the actual address of the
540  * cpuset in the list must use cur below, not trial.
541  *
542  * 'trial' is the address of bulk structure copy of cur, with
543  * perhaps one or more of the fields cpus_allowed, mems_allowed,
544  * or flags changed to new, trial values.
545  *
546  * Return 0 if valid, -errno if not.
547  */
548 
549 static int validate_change(struct cpuset *cur, struct cpuset *trial)
550 {
551 	struct cgroup_subsys_state *css;
552 	struct cpuset *c, *par;
553 	int ret = 0;
554 
555 	rcu_read_lock();
556 
557 	if (!is_in_v2_mode())
558 		ret = cpuset1_validate_change(cur, trial);
559 	if (ret)
560 		goto out;
561 
562 	/* Remaining checks don't apply to root cpuset */
563 	if (cur == &top_cpuset)
564 		goto out;
565 
566 	par = parent_cs(cur);
567 
568 	/*
569 	 * Cpusets with tasks - existing or newly being attached - can't
570 	 * be changed to have empty cpus_allowed or mems_allowed.
571 	 */
572 	ret = -ENOSPC;
573 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
574 		if (!cpumask_empty(cur->cpus_allowed) &&
575 		    cpumask_empty(trial->cpus_allowed))
576 			goto out;
577 		if (!nodes_empty(cur->mems_allowed) &&
578 		    nodes_empty(trial->mems_allowed))
579 			goto out;
580 	}
581 
582 	/*
583 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
584 	 * tasks. This check is not done when scheduling is disabled as the
585 	 * users should know what they are doing.
586 	 *
587 	 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns
588 	 * cpus_allowed.
589 	 *
590 	 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only
591 	 * for non-isolated partition root. At this point, the target
592 	 * effective_cpus isn't computed yet. user_xcpus() is the best
593 	 * approximation.
594 	 *
595 	 * TBD: May need to precompute the real effective_cpus here in case
596 	 * incorrect scheduling of SCHED_DEADLINE tasks in a partition
597 	 * becomes an issue.
598 	 */
599 	ret = -EBUSY;
600 	if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) &&
601 	    !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial)))
602 		goto out;
603 
604 	/*
605 	 * If either I or some sibling (!= me) is exclusive, we can't
606 	 * overlap. exclusive_cpus cannot overlap with each other if set.
607 	 */
608 	ret = -EINVAL;
609 	cpuset_for_each_child(c, css, par) {
610 		bool txset, cxset;	/* Are exclusive_cpus set? */
611 
612 		if (c == cur)
613 			continue;
614 
615 		txset = !cpumask_empty(trial->exclusive_cpus);
616 		cxset = !cpumask_empty(c->exclusive_cpus);
617 		if (is_cpu_exclusive(trial) || is_cpu_exclusive(c) ||
618 		    (txset && cxset)) {
619 			if (!cpusets_are_exclusive(trial, c))
620 				goto out;
621 		} else if (txset || cxset) {
622 			struct cpumask *xcpus, *acpus;
623 
624 			/*
625 			 * When just one of the exclusive_cpus's is set,
626 			 * cpus_allowed of the other cpuset, if set, cannot be
627 			 * a subset of it or none of those CPUs will be
628 			 * available if these exclusive CPUs are activated.
629 			 */
630 			if (txset) {
631 				xcpus = trial->exclusive_cpus;
632 				acpus = c->cpus_allowed;
633 			} else {
634 				xcpus = c->exclusive_cpus;
635 				acpus = trial->cpus_allowed;
636 			}
637 			if (!cpumask_empty(acpus) && cpumask_subset(acpus, xcpus))
638 				goto out;
639 		}
640 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
641 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
642 			goto out;
643 	}
644 
645 	ret = 0;
646 out:
647 	rcu_read_unlock();
648 	return ret;
649 }
650 
651 #ifdef CONFIG_SMP
652 /*
653  * Helper routine for generate_sched_domains().
654  * Do cpusets a, b have overlapping effective cpus_allowed masks?
655  */
656 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
657 {
658 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
659 }
660 
661 static void
662 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
663 {
664 	if (dattr->relax_domain_level < c->relax_domain_level)
665 		dattr->relax_domain_level = c->relax_domain_level;
666 	return;
667 }
668 
669 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
670 				    struct cpuset *root_cs)
671 {
672 	struct cpuset *cp;
673 	struct cgroup_subsys_state *pos_css;
674 
675 	rcu_read_lock();
676 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
677 		/* skip the whole subtree if @cp doesn't have any CPU */
678 		if (cpumask_empty(cp->cpus_allowed)) {
679 			pos_css = css_rightmost_descendant(pos_css);
680 			continue;
681 		}
682 
683 		if (is_sched_load_balance(cp))
684 			update_domain_attr(dattr, cp);
685 	}
686 	rcu_read_unlock();
687 }
688 
689 /* Must be called with cpuset_mutex held.  */
690 static inline int nr_cpusets(void)
691 {
692 	/* jump label reference count + the top-level cpuset */
693 	return static_key_count(&cpusets_enabled_key.key) + 1;
694 }
695 
696 /*
697  * generate_sched_domains()
698  *
699  * This function builds a partial partition of the systems CPUs
700  * A 'partial partition' is a set of non-overlapping subsets whose
701  * union is a subset of that set.
702  * The output of this function needs to be passed to kernel/sched/core.c
703  * partition_sched_domains() routine, which will rebuild the scheduler's
704  * load balancing domains (sched domains) as specified by that partial
705  * partition.
706  *
707  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
708  * for a background explanation of this.
709  *
710  * Does not return errors, on the theory that the callers of this
711  * routine would rather not worry about failures to rebuild sched
712  * domains when operating in the severe memory shortage situations
713  * that could cause allocation failures below.
714  *
715  * Must be called with cpuset_mutex held.
716  *
717  * The three key local variables below are:
718  *    cp - cpuset pointer, used (together with pos_css) to perform a
719  *	   top-down scan of all cpusets. For our purposes, rebuilding
720  *	   the schedulers sched domains, we can ignore !is_sched_load_
721  *	   balance cpusets.
722  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
723  *	   that need to be load balanced, for convenient iterative
724  *	   access by the subsequent code that finds the best partition,
725  *	   i.e the set of domains (subsets) of CPUs such that the
726  *	   cpus_allowed of every cpuset marked is_sched_load_balance
727  *	   is a subset of one of these domains, while there are as
728  *	   many such domains as possible, each as small as possible.
729  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
730  *	   the kernel/sched/core.c routine partition_sched_domains() in a
731  *	   convenient format, that can be easily compared to the prior
732  *	   value to determine what partition elements (sched domains)
733  *	   were changed (added or removed.)
734  *
735  * Finding the best partition (set of domains):
736  *	The double nested loops below over i, j scan over the load
737  *	balanced cpusets (using the array of cpuset pointers in csa[])
738  *	looking for pairs of cpusets that have overlapping cpus_allowed
739  *	and merging them using a union-find algorithm.
740  *
741  *	The union of the cpus_allowed masks from the set of all cpusets
742  *	having the same root then form the one element of the partition
743  *	(one sched domain) to be passed to partition_sched_domains().
744  *
745  */
746 static int generate_sched_domains(cpumask_var_t **domains,
747 			struct sched_domain_attr **attributes)
748 {
749 	struct cpuset *cp;	/* top-down scan of cpusets */
750 	struct cpuset **csa;	/* array of all cpuset ptrs */
751 	int csn;		/* how many cpuset ptrs in csa so far */
752 	int i, j;		/* indices for partition finding loops */
753 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
754 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
755 	int ndoms = 0;		/* number of sched domains in result */
756 	int nslot;		/* next empty doms[] struct cpumask slot */
757 	struct cgroup_subsys_state *pos_css;
758 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
759 	bool cgrpv2 = cpuset_v2();
760 	int nslot_update;
761 
762 	doms = NULL;
763 	dattr = NULL;
764 	csa = NULL;
765 
766 	/* Special case for the 99% of systems with one, full, sched domain */
767 	if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
768 single_root_domain:
769 		ndoms = 1;
770 		doms = alloc_sched_domains(ndoms);
771 		if (!doms)
772 			goto done;
773 
774 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
775 		if (dattr) {
776 			*dattr = SD_ATTR_INIT;
777 			update_domain_attr_tree(dattr, &top_cpuset);
778 		}
779 		cpumask_and(doms[0], top_cpuset.effective_cpus,
780 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
781 
782 		goto done;
783 	}
784 
785 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
786 	if (!csa)
787 		goto done;
788 	csn = 0;
789 
790 	rcu_read_lock();
791 	if (root_load_balance)
792 		csa[csn++] = &top_cpuset;
793 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
794 		if (cp == &top_cpuset)
795 			continue;
796 
797 		if (cgrpv2)
798 			goto v2;
799 
800 		/*
801 		 * v1:
802 		 * Continue traversing beyond @cp iff @cp has some CPUs and
803 		 * isn't load balancing.  The former is obvious.  The
804 		 * latter: All child cpusets contain a subset of the
805 		 * parent's cpus, so just skip them, and then we call
806 		 * update_domain_attr_tree() to calc relax_domain_level of
807 		 * the corresponding sched domain.
808 		 */
809 		if (!cpumask_empty(cp->cpus_allowed) &&
810 		    !(is_sched_load_balance(cp) &&
811 		      cpumask_intersects(cp->cpus_allowed,
812 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
813 			continue;
814 
815 		if (is_sched_load_balance(cp) &&
816 		    !cpumask_empty(cp->effective_cpus))
817 			csa[csn++] = cp;
818 
819 		/* skip @cp's subtree */
820 		pos_css = css_rightmost_descendant(pos_css);
821 		continue;
822 
823 v2:
824 		/*
825 		 * Only valid partition roots that are not isolated and with
826 		 * non-empty effective_cpus will be saved into csn[].
827 		 */
828 		if ((cp->partition_root_state == PRS_ROOT) &&
829 		    !cpumask_empty(cp->effective_cpus))
830 			csa[csn++] = cp;
831 
832 		/*
833 		 * Skip @cp's subtree if not a partition root and has no
834 		 * exclusive CPUs to be granted to child cpusets.
835 		 */
836 		if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
837 			pos_css = css_rightmost_descendant(pos_css);
838 	}
839 	rcu_read_unlock();
840 
841 	/*
842 	 * If there are only isolated partitions underneath the cgroup root,
843 	 * we can optimize out unneeded sched domains scanning.
844 	 */
845 	if (root_load_balance && (csn == 1))
846 		goto single_root_domain;
847 
848 	for (i = 0; i < csn; i++)
849 		uf_node_init(&csa[i]->node);
850 
851 	/* Merge overlapping cpusets */
852 	for (i = 0; i < csn; i++) {
853 		for (j = i + 1; j < csn; j++) {
854 			if (cpusets_overlap(csa[i], csa[j])) {
855 				/*
856 				 * Cgroup v2 shouldn't pass down overlapping
857 				 * partition root cpusets.
858 				 */
859 				WARN_ON_ONCE(cgrpv2);
860 				uf_union(&csa[i]->node, &csa[j]->node);
861 			}
862 		}
863 	}
864 
865 	/* Count the total number of domains */
866 	for (i = 0; i < csn; i++) {
867 		if (uf_find(&csa[i]->node) == &csa[i]->node)
868 			ndoms++;
869 	}
870 
871 	/*
872 	 * Now we know how many domains to create.
873 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
874 	 */
875 	doms = alloc_sched_domains(ndoms);
876 	if (!doms)
877 		goto done;
878 
879 	/*
880 	 * The rest of the code, including the scheduler, can deal with
881 	 * dattr==NULL case. No need to abort if alloc fails.
882 	 */
883 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
884 			      GFP_KERNEL);
885 
886 	/*
887 	 * Cgroup v2 doesn't support domain attributes, just set all of them
888 	 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
889 	 * subset of HK_TYPE_DOMAIN housekeeping CPUs.
890 	 */
891 	if (cgrpv2) {
892 		for (i = 0; i < ndoms; i++) {
893 			cpumask_copy(doms[i], csa[i]->effective_cpus);
894 			if (dattr)
895 				dattr[i] = SD_ATTR_INIT;
896 		}
897 		goto done;
898 	}
899 
900 	for (nslot = 0, i = 0; i < csn; i++) {
901 		nslot_update = 0;
902 		for (j = i; j < csn; j++) {
903 			if (uf_find(&csa[j]->node) == &csa[i]->node) {
904 				struct cpumask *dp = doms[nslot];
905 
906 				if (i == j) {
907 					nslot_update = 1;
908 					cpumask_clear(dp);
909 					if (dattr)
910 						*(dattr + nslot) = SD_ATTR_INIT;
911 				}
912 				cpumask_or(dp, dp, csa[j]->effective_cpus);
913 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
914 				if (dattr)
915 					update_domain_attr_tree(dattr + nslot, csa[j]);
916 			}
917 		}
918 		if (nslot_update)
919 			nslot++;
920 	}
921 	BUG_ON(nslot != ndoms);
922 
923 done:
924 	kfree(csa);
925 
926 	/*
927 	 * Fallback to the default domain if kmalloc() failed.
928 	 * See comments in partition_sched_domains().
929 	 */
930 	if (doms == NULL)
931 		ndoms = 1;
932 
933 	*domains    = doms;
934 	*attributes = dattr;
935 	return ndoms;
936 }
937 
938 static void dl_update_tasks_root_domain(struct cpuset *cs)
939 {
940 	struct css_task_iter it;
941 	struct task_struct *task;
942 
943 	if (cs->nr_deadline_tasks == 0)
944 		return;
945 
946 	css_task_iter_start(&cs->css, 0, &it);
947 
948 	while ((task = css_task_iter_next(&it)))
949 		dl_add_task_root_domain(task);
950 
951 	css_task_iter_end(&it);
952 }
953 
954 static void dl_rebuild_rd_accounting(void)
955 {
956 	struct cpuset *cs = NULL;
957 	struct cgroup_subsys_state *pos_css;
958 
959 	lockdep_assert_held(&cpuset_mutex);
960 	lockdep_assert_cpus_held();
961 	lockdep_assert_held(&sched_domains_mutex);
962 
963 	rcu_read_lock();
964 
965 	/*
966 	 * Clear default root domain DL accounting, it will be computed again
967 	 * if a task belongs to it.
968 	 */
969 	dl_clear_root_domain(&def_root_domain);
970 
971 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
972 
973 		if (cpumask_empty(cs->effective_cpus)) {
974 			pos_css = css_rightmost_descendant(pos_css);
975 			continue;
976 		}
977 
978 		css_get(&cs->css);
979 
980 		rcu_read_unlock();
981 
982 		dl_update_tasks_root_domain(cs);
983 
984 		rcu_read_lock();
985 		css_put(&cs->css);
986 	}
987 	rcu_read_unlock();
988 }
989 
990 static void
991 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
992 				    struct sched_domain_attr *dattr_new)
993 {
994 	mutex_lock(&sched_domains_mutex);
995 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
996 	dl_rebuild_rd_accounting();
997 	mutex_unlock(&sched_domains_mutex);
998 }
999 
1000 /*
1001  * Rebuild scheduler domains.
1002  *
1003  * If the flag 'sched_load_balance' of any cpuset with non-empty
1004  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1005  * which has that flag enabled, or if any cpuset with a non-empty
1006  * 'cpus' is removed, then call this routine to rebuild the
1007  * scheduler's dynamic sched domains.
1008  *
1009  * Call with cpuset_mutex held.  Takes cpus_read_lock().
1010  */
1011 void rebuild_sched_domains_locked(void)
1012 {
1013 	struct cgroup_subsys_state *pos_css;
1014 	struct sched_domain_attr *attr;
1015 	cpumask_var_t *doms;
1016 	struct cpuset *cs;
1017 	int ndoms;
1018 
1019 	lockdep_assert_cpus_held();
1020 	lockdep_assert_held(&cpuset_mutex);
1021 	force_sd_rebuild = false;
1022 
1023 	/*
1024 	 * If we have raced with CPU hotplug, return early to avoid
1025 	 * passing doms with offlined cpu to partition_sched_domains().
1026 	 * Anyways, cpuset_handle_hotplug() will rebuild sched domains.
1027 	 *
1028 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1029 	 * should be the same as the active CPUs, so checking only top_cpuset
1030 	 * is enough to detect racing CPU offlines.
1031 	 */
1032 	if (cpumask_empty(subpartitions_cpus) &&
1033 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1034 		return;
1035 
1036 	/*
1037 	 * With subpartition CPUs, however, the effective CPUs of a partition
1038 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1039 	 * partition root could be offlined, all must be checked.
1040 	 */
1041 	if (!cpumask_empty(subpartitions_cpus)) {
1042 		rcu_read_lock();
1043 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1044 			if (!is_partition_valid(cs)) {
1045 				pos_css = css_rightmost_descendant(pos_css);
1046 				continue;
1047 			}
1048 			if (!cpumask_subset(cs->effective_cpus,
1049 					    cpu_active_mask)) {
1050 				rcu_read_unlock();
1051 				return;
1052 			}
1053 		}
1054 		rcu_read_unlock();
1055 	}
1056 
1057 	/* Generate domain masks and attrs */
1058 	ndoms = generate_sched_domains(&doms, &attr);
1059 
1060 	/* Have scheduler rebuild the domains */
1061 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1062 }
1063 #else /* !CONFIG_SMP */
1064 void rebuild_sched_domains_locked(void)
1065 {
1066 }
1067 #endif /* CONFIG_SMP */
1068 
1069 static void rebuild_sched_domains_cpuslocked(void)
1070 {
1071 	mutex_lock(&cpuset_mutex);
1072 	rebuild_sched_domains_locked();
1073 	mutex_unlock(&cpuset_mutex);
1074 }
1075 
1076 void rebuild_sched_domains(void)
1077 {
1078 	cpus_read_lock();
1079 	rebuild_sched_domains_cpuslocked();
1080 	cpus_read_unlock();
1081 }
1082 
1083 /**
1084  * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1085  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1086  * @new_cpus: the temp variable for the new effective_cpus mask
1087  *
1088  * Iterate through each task of @cs updating its cpus_allowed to the
1089  * effective cpuset's.  As this function is called with cpuset_mutex held,
1090  * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
1091  * is used instead of effective_cpus to make sure all offline CPUs are also
1092  * included as hotplug code won't update cpumasks for tasks in top_cpuset.
1093  */
1094 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1095 {
1096 	struct css_task_iter it;
1097 	struct task_struct *task;
1098 	bool top_cs = cs == &top_cpuset;
1099 
1100 	css_task_iter_start(&cs->css, 0, &it);
1101 	while ((task = css_task_iter_next(&it))) {
1102 		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1103 
1104 		if (top_cs) {
1105 			/*
1106 			 * Percpu kthreads in top_cpuset are ignored
1107 			 */
1108 			if (kthread_is_per_cpu(task))
1109 				continue;
1110 			cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1111 		} else {
1112 			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1113 		}
1114 		set_cpus_allowed_ptr(task, new_cpus);
1115 	}
1116 	css_task_iter_end(&it);
1117 }
1118 
1119 /**
1120  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1121  * @new_cpus: the temp variable for the new effective_cpus mask
1122  * @cs: the cpuset the need to recompute the new effective_cpus mask
1123  * @parent: the parent cpuset
1124  *
1125  * The result is valid only if the given cpuset isn't a partition root.
1126  */
1127 static void compute_effective_cpumask(struct cpumask *new_cpus,
1128 				      struct cpuset *cs, struct cpuset *parent)
1129 {
1130 	cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1131 }
1132 
1133 /*
1134  * Commands for update_parent_effective_cpumask
1135  */
1136 enum partition_cmd {
1137 	partcmd_enable,		/* Enable partition root	  */
1138 	partcmd_enablei,	/* Enable isolated partition root */
1139 	partcmd_disable,	/* Disable partition root	  */
1140 	partcmd_update,		/* Update parent's effective_cpus */
1141 	partcmd_invalidate,	/* Make partition invalid	  */
1142 };
1143 
1144 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1145 				    struct tmpmasks *tmp);
1146 
1147 /*
1148  * Update partition exclusive flag
1149  *
1150  * Return: 0 if successful, an error code otherwise
1151  */
1152 static int update_partition_exclusive(struct cpuset *cs, int new_prs)
1153 {
1154 	bool exclusive = (new_prs > PRS_MEMBER);
1155 
1156 	if (exclusive && !is_cpu_exclusive(cs)) {
1157 		if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1158 			return PERR_NOTEXCL;
1159 	} else if (!exclusive && is_cpu_exclusive(cs)) {
1160 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1161 		cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1162 	}
1163 	return 0;
1164 }
1165 
1166 /*
1167  * Update partition load balance flag and/or rebuild sched domain
1168  *
1169  * Changing load balance flag will automatically call
1170  * rebuild_sched_domains_locked().
1171  * This function is for cgroup v2 only.
1172  */
1173 static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1174 {
1175 	int new_prs = cs->partition_root_state;
1176 	bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1177 	bool new_lb;
1178 
1179 	/*
1180 	 * If cs is not a valid partition root, the load balance state
1181 	 * will follow its parent.
1182 	 */
1183 	if (new_prs > 0) {
1184 		new_lb = (new_prs != PRS_ISOLATED);
1185 	} else {
1186 		new_lb = is_sched_load_balance(parent_cs(cs));
1187 	}
1188 	if (new_lb != !!is_sched_load_balance(cs)) {
1189 		rebuild_domains = true;
1190 		if (new_lb)
1191 			set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1192 		else
1193 			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1194 	}
1195 
1196 	if (rebuild_domains)
1197 		cpuset_force_rebuild();
1198 }
1199 
1200 /*
1201  * tasks_nocpu_error - Return true if tasks will have no effective_cpus
1202  */
1203 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1204 			      struct cpumask *xcpus)
1205 {
1206 	/*
1207 	 * A populated partition (cs or parent) can't have empty effective_cpus
1208 	 */
1209 	return (cpumask_subset(parent->effective_cpus, xcpus) &&
1210 		partition_is_populated(parent, cs)) ||
1211 	       (!cpumask_intersects(xcpus, cpu_active_mask) &&
1212 		partition_is_populated(cs, NULL));
1213 }
1214 
1215 static void reset_partition_data(struct cpuset *cs)
1216 {
1217 	struct cpuset *parent = parent_cs(cs);
1218 
1219 	if (!cpuset_v2())
1220 		return;
1221 
1222 	lockdep_assert_held(&callback_lock);
1223 
1224 	cs->nr_subparts = 0;
1225 	if (cpumask_empty(cs->exclusive_cpus)) {
1226 		cpumask_clear(cs->effective_xcpus);
1227 		if (is_cpu_exclusive(cs))
1228 			clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1229 	}
1230 	if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed))
1231 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1232 }
1233 
1234 /*
1235  * partition_xcpus_newstate - Exclusive CPUs state change
1236  * @old_prs: old partition_root_state
1237  * @new_prs: new partition_root_state
1238  * @xcpus: exclusive CPUs with state change
1239  */
1240 static void partition_xcpus_newstate(int old_prs, int new_prs, struct cpumask *xcpus)
1241 {
1242 	WARN_ON_ONCE(old_prs == new_prs);
1243 	if (new_prs == PRS_ISOLATED)
1244 		cpumask_or(isolated_cpus, isolated_cpus, xcpus);
1245 	else
1246 		cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
1247 }
1248 
1249 /*
1250  * partition_xcpus_add - Add new exclusive CPUs to partition
1251  * @new_prs: new partition_root_state
1252  * @parent: parent cpuset
1253  * @xcpus: exclusive CPUs to be added
1254  * Return: true if isolated_cpus modified, false otherwise
1255  *
1256  * Remote partition if parent == NULL
1257  */
1258 static bool partition_xcpus_add(int new_prs, struct cpuset *parent,
1259 				struct cpumask *xcpus)
1260 {
1261 	bool isolcpus_updated;
1262 
1263 	WARN_ON_ONCE(new_prs < 0);
1264 	lockdep_assert_held(&callback_lock);
1265 	if (!parent)
1266 		parent = &top_cpuset;
1267 
1268 
1269 	if (parent == &top_cpuset)
1270 		cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
1271 
1272 	isolcpus_updated = (new_prs != parent->partition_root_state);
1273 	if (isolcpus_updated)
1274 		partition_xcpus_newstate(parent->partition_root_state, new_prs,
1275 					 xcpus);
1276 
1277 	cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
1278 	return isolcpus_updated;
1279 }
1280 
1281 /*
1282  * partition_xcpus_del - Remove exclusive CPUs from partition
1283  * @old_prs: old partition_root_state
1284  * @parent: parent cpuset
1285  * @xcpus: exclusive CPUs to be removed
1286  * Return: true if isolated_cpus modified, false otherwise
1287  *
1288  * Remote partition if parent == NULL
1289  */
1290 static bool partition_xcpus_del(int old_prs, struct cpuset *parent,
1291 				struct cpumask *xcpus)
1292 {
1293 	bool isolcpus_updated;
1294 
1295 	WARN_ON_ONCE(old_prs < 0);
1296 	lockdep_assert_held(&callback_lock);
1297 	if (!parent)
1298 		parent = &top_cpuset;
1299 
1300 	if (parent == &top_cpuset)
1301 		cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
1302 
1303 	isolcpus_updated = (old_prs != parent->partition_root_state);
1304 	if (isolcpus_updated)
1305 		partition_xcpus_newstate(old_prs, parent->partition_root_state,
1306 					 xcpus);
1307 
1308 	cpumask_and(xcpus, xcpus, cpu_active_mask);
1309 	cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
1310 	return isolcpus_updated;
1311 }
1312 
1313 static void update_unbound_workqueue_cpumask(bool isolcpus_updated)
1314 {
1315 	int ret;
1316 
1317 	lockdep_assert_cpus_held();
1318 
1319 	if (!isolcpus_updated)
1320 		return;
1321 
1322 	ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
1323 	WARN_ON_ONCE(ret < 0);
1324 }
1325 
1326 /**
1327  * cpuset_cpu_is_isolated - Check if the given CPU is isolated
1328  * @cpu: the CPU number to be checked
1329  * Return: true if CPU is used in an isolated partition, false otherwise
1330  */
1331 bool cpuset_cpu_is_isolated(int cpu)
1332 {
1333 	return cpumask_test_cpu(cpu, isolated_cpus);
1334 }
1335 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
1336 
1337 /*
1338  * compute_effective_exclusive_cpumask - compute effective exclusive CPUs
1339  * @cs: cpuset
1340  * @xcpus: effective exclusive CPUs value to be set
1341  * Return: true if xcpus is not empty, false otherwise.
1342  *
1343  * Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set),
1344  * it must be a subset of parent's effective_xcpus.
1345  */
1346 static bool compute_effective_exclusive_cpumask(struct cpuset *cs,
1347 						struct cpumask *xcpus)
1348 {
1349 	struct cpuset *parent = parent_cs(cs);
1350 
1351 	if (!xcpus)
1352 		xcpus = cs->effective_xcpus;
1353 
1354 	return cpumask_and(xcpus, user_xcpus(cs), parent->effective_xcpus);
1355 }
1356 
1357 static inline bool is_remote_partition(struct cpuset *cs)
1358 {
1359 	return !list_empty(&cs->remote_sibling);
1360 }
1361 
1362 static inline bool is_local_partition(struct cpuset *cs)
1363 {
1364 	return is_partition_valid(cs) && !is_remote_partition(cs);
1365 }
1366 
1367 /*
1368  * remote_partition_enable - Enable current cpuset as a remote partition root
1369  * @cs: the cpuset to update
1370  * @new_prs: new partition_root_state
1371  * @tmp: temporary masks
1372  * Return: 0 if successful, errcode if error
1373  *
1374  * Enable the current cpuset to become a remote partition root taking CPUs
1375  * directly from the top cpuset. cpuset_mutex must be held by the caller.
1376  */
1377 static int remote_partition_enable(struct cpuset *cs, int new_prs,
1378 				   struct tmpmasks *tmp)
1379 {
1380 	bool isolcpus_updated;
1381 
1382 	/*
1383 	 * The user must have sysadmin privilege.
1384 	 */
1385 	if (!capable(CAP_SYS_ADMIN))
1386 		return PERR_ACCESS;
1387 
1388 	/*
1389 	 * The requested exclusive_cpus must not be allocated to other
1390 	 * partitions and it can't use up all the root's effective_cpus.
1391 	 *
1392 	 * Note that if there is any local partition root above it or
1393 	 * remote partition root underneath it, its exclusive_cpus must
1394 	 * have overlapped with subpartitions_cpus.
1395 	 */
1396 	compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1397 	if (cpumask_empty(tmp->new_cpus) ||
1398 	    cpumask_intersects(tmp->new_cpus, subpartitions_cpus) ||
1399 	    cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1400 		return PERR_INVCPUS;
1401 
1402 	spin_lock_irq(&callback_lock);
1403 	isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
1404 	list_add(&cs->remote_sibling, &remote_children);
1405 	spin_unlock_irq(&callback_lock);
1406 	update_unbound_workqueue_cpumask(isolcpus_updated);
1407 
1408 	/*
1409 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1410 	 */
1411 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1412 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1413 	return 0;
1414 }
1415 
1416 /*
1417  * remote_partition_disable - Remove current cpuset from remote partition list
1418  * @cs: the cpuset to update
1419  * @tmp: temporary masks
1420  *
1421  * The effective_cpus is also updated.
1422  *
1423  * cpuset_mutex must be held by the caller.
1424  */
1425 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1426 {
1427 	bool isolcpus_updated;
1428 
1429 	compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1430 	WARN_ON_ONCE(!is_remote_partition(cs));
1431 	WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus));
1432 
1433 	spin_lock_irq(&callback_lock);
1434 	list_del_init(&cs->remote_sibling);
1435 	isolcpus_updated = partition_xcpus_del(cs->partition_root_state,
1436 					       NULL, tmp->new_cpus);
1437 	cs->partition_root_state = -cs->partition_root_state;
1438 	if (!cs->prs_err)
1439 		cs->prs_err = PERR_INVCPUS;
1440 	reset_partition_data(cs);
1441 	spin_unlock_irq(&callback_lock);
1442 	update_unbound_workqueue_cpumask(isolcpus_updated);
1443 
1444 	/*
1445 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1446 	 */
1447 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1448 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1449 }
1450 
1451 /*
1452  * remote_cpus_update - cpus_exclusive change of remote partition
1453  * @cs: the cpuset to be updated
1454  * @newmask: the new effective_xcpus mask
1455  * @tmp: temporary masks
1456  *
1457  * top_cpuset and subpartitions_cpus will be updated or partition can be
1458  * invalidated.
1459  */
1460 static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask,
1461 			       struct tmpmasks *tmp)
1462 {
1463 	bool adding, deleting;
1464 	int prs = cs->partition_root_state;
1465 	int isolcpus_updated = 0;
1466 
1467 	if (WARN_ON_ONCE(!is_remote_partition(cs)))
1468 		return;
1469 
1470 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1471 
1472 	if (cpumask_empty(newmask))
1473 		goto invalidate;
1474 
1475 	adding   = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus);
1476 	deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask);
1477 
1478 	/*
1479 	 * Additions of remote CPUs is only allowed if those CPUs are
1480 	 * not allocated to other partitions and there are effective_cpus
1481 	 * left in the top cpuset.
1482 	 */
1483 	if (adding && (!capable(CAP_SYS_ADMIN) ||
1484 		       cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1485 		       cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)))
1486 		goto invalidate;
1487 
1488 	spin_lock_irq(&callback_lock);
1489 	if (adding)
1490 		isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask);
1491 	if (deleting)
1492 		isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask);
1493 	spin_unlock_irq(&callback_lock);
1494 	update_unbound_workqueue_cpumask(isolcpus_updated);
1495 
1496 	/*
1497 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1498 	 */
1499 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1500 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1501 	return;
1502 
1503 invalidate:
1504 	remote_partition_disable(cs, tmp);
1505 }
1506 
1507 /*
1508  * remote_partition_check - check if a child remote partition needs update
1509  * @cs: the cpuset to be updated
1510  * @newmask: the new effective_xcpus mask
1511  * @delmask: temporary mask for deletion (not in tmp)
1512  * @tmp: temporary masks
1513  *
1514  * This should be called before the given cs has updated its cpus_allowed
1515  * and/or effective_xcpus.
1516  */
1517 static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask,
1518 				   struct cpumask *delmask, struct tmpmasks *tmp)
1519 {
1520 	struct cpuset *child, *next;
1521 	int disable_cnt = 0;
1522 
1523 	/*
1524 	 * Compute the effective exclusive CPUs that will be deleted.
1525 	 */
1526 	if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) ||
1527 	    !cpumask_intersects(delmask, subpartitions_cpus))
1528 		return;	/* No deletion of exclusive CPUs in partitions */
1529 
1530 	/*
1531 	 * Searching the remote children list to look for those that will
1532 	 * be impacted by the deletion of exclusive CPUs.
1533 	 *
1534 	 * Since a cpuset must be removed from the remote children list
1535 	 * before it can go offline and holding cpuset_mutex will prevent
1536 	 * any change in cpuset status. RCU read lock isn't needed.
1537 	 */
1538 	lockdep_assert_held(&cpuset_mutex);
1539 	list_for_each_entry_safe(child, next, &remote_children, remote_sibling)
1540 		if (cpumask_intersects(child->effective_cpus, delmask)) {
1541 			remote_partition_disable(child, tmp);
1542 			disable_cnt++;
1543 		}
1544 	if (disable_cnt)
1545 		cpuset_force_rebuild();
1546 }
1547 
1548 /*
1549  * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1550  * @prstate: partition root state to be checked
1551  * @new_cpus: cpu mask
1552  * Return: true if there is conflict, false otherwise
1553  *
1554  * CPUs outside of boot_hk_cpus, if defined, can only be used in an
1555  * isolated partition.
1556  */
1557 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1558 {
1559 	if (!have_boot_isolcpus)
1560 		return false;
1561 
1562 	if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus))
1563 		return true;
1564 
1565 	return false;
1566 }
1567 
1568 /**
1569  * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1570  * @cs:      The cpuset that requests change in partition root state
1571  * @cmd:     Partition root state change command
1572  * @newmask: Optional new cpumask for partcmd_update
1573  * @tmp:     Temporary addmask and delmask
1574  * Return:   0 or a partition root state error code
1575  *
1576  * For partcmd_enable*, the cpuset is being transformed from a non-partition
1577  * root to a partition root. The effective_xcpus (cpus_allowed if
1578  * effective_xcpus not set) mask of the given cpuset will be taken away from
1579  * parent's effective_cpus. The function will return 0 if all the CPUs listed
1580  * in effective_xcpus can be granted or an error code will be returned.
1581  *
1582  * For partcmd_disable, the cpuset is being transformed from a partition
1583  * root back to a non-partition root. Any CPUs in effective_xcpus will be
1584  * given back to parent's effective_cpus. 0 will always be returned.
1585  *
1586  * For partcmd_update, if the optional newmask is specified, the cpu list is
1587  * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1588  * assumed to remain the same. The cpuset should either be a valid or invalid
1589  * partition root. The partition root state may change from valid to invalid
1590  * or vice versa. An error code will be returned if transitioning from
1591  * invalid to valid violates the exclusivity rule.
1592  *
1593  * For partcmd_invalidate, the current partition will be made invalid.
1594  *
1595  * The partcmd_enable* and partcmd_disable commands are used by
1596  * update_prstate(). An error code may be returned and the caller will check
1597  * for error.
1598  *
1599  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1600  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1601  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1602  * check for error and so partition_root_state and prs_error will be updated
1603  * directly.
1604  */
1605 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1606 					   struct cpumask *newmask,
1607 					   struct tmpmasks *tmp)
1608 {
1609 	struct cpuset *parent = parent_cs(cs);
1610 	int adding;	/* Adding cpus to parent's effective_cpus	*/
1611 	int deleting;	/* Deleting cpus from parent's effective_cpus	*/
1612 	int old_prs, new_prs;
1613 	int part_error = PERR_NONE;	/* Partition error? */
1614 	int subparts_delta = 0;
1615 	struct cpumask *xcpus;		/* cs effective_xcpus */
1616 	int isolcpus_updated = 0;
1617 	bool nocpu;
1618 
1619 	lockdep_assert_held(&cpuset_mutex);
1620 
1621 	/*
1622 	 * new_prs will only be changed for the partcmd_update and
1623 	 * partcmd_invalidate commands.
1624 	 */
1625 	adding = deleting = false;
1626 	old_prs = new_prs = cs->partition_root_state;
1627 	xcpus = user_xcpus(cs);
1628 
1629 	if (cmd == partcmd_invalidate) {
1630 		if (is_prs_invalid(old_prs))
1631 			return 0;
1632 
1633 		/*
1634 		 * Make the current partition invalid.
1635 		 */
1636 		if (is_partition_valid(parent))
1637 			adding = cpumask_and(tmp->addmask,
1638 					     xcpus, parent->effective_xcpus);
1639 		if (old_prs > 0) {
1640 			new_prs = -old_prs;
1641 			subparts_delta--;
1642 		}
1643 		goto write_error;
1644 	}
1645 
1646 	/*
1647 	 * The parent must be a partition root.
1648 	 * The new cpumask, if present, or the current cpus_allowed must
1649 	 * not be empty.
1650 	 */
1651 	if (!is_partition_valid(parent)) {
1652 		return is_partition_invalid(parent)
1653 		       ? PERR_INVPARENT : PERR_NOTPART;
1654 	}
1655 	if (!newmask && xcpus_empty(cs))
1656 		return PERR_CPUSEMPTY;
1657 
1658 	nocpu = tasks_nocpu_error(parent, cs, xcpus);
1659 
1660 	if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
1661 		/*
1662 		 * Enabling partition root is not allowed if its
1663 		 * effective_xcpus is empty or doesn't overlap with
1664 		 * parent's effective_xcpus.
1665 		 */
1666 		if (cpumask_empty(xcpus) ||
1667 		    !cpumask_intersects(xcpus, parent->effective_xcpus))
1668 			return PERR_INVCPUS;
1669 
1670 		if (prstate_housekeeping_conflict(new_prs, xcpus))
1671 			return PERR_HKEEPING;
1672 
1673 		/*
1674 		 * A parent can be left with no CPU as long as there is no
1675 		 * task directly associated with the parent partition.
1676 		 */
1677 		if (nocpu)
1678 			return PERR_NOCPUS;
1679 
1680 		cpumask_copy(tmp->delmask, xcpus);
1681 		deleting = true;
1682 		subparts_delta++;
1683 		new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
1684 	} else if (cmd == partcmd_disable) {
1685 		/*
1686 		 * May need to add cpus to parent's effective_cpus for
1687 		 * valid partition root.
1688 		 */
1689 		adding = !is_prs_invalid(old_prs) &&
1690 			  cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus);
1691 		if (adding)
1692 			subparts_delta--;
1693 		new_prs = PRS_MEMBER;
1694 	} else if (newmask) {
1695 		/*
1696 		 * Empty cpumask is not allowed
1697 		 */
1698 		if (cpumask_empty(newmask)) {
1699 			part_error = PERR_CPUSEMPTY;
1700 			goto write_error;
1701 		}
1702 		/* Check newmask again, whether cpus are available for parent/cs */
1703 		nocpu |= tasks_nocpu_error(parent, cs, newmask);
1704 
1705 		/*
1706 		 * partcmd_update with newmask:
1707 		 *
1708 		 * Compute add/delete mask to/from effective_cpus
1709 		 *
1710 		 * For valid partition:
1711 		 *   addmask = exclusive_cpus & ~newmask
1712 		 *			      & parent->effective_xcpus
1713 		 *   delmask = newmask & ~exclusive_cpus
1714 		 *		       & parent->effective_xcpus
1715 		 *
1716 		 * For invalid partition:
1717 		 *   delmask = newmask & parent->effective_xcpus
1718 		 */
1719 		if (is_prs_invalid(old_prs)) {
1720 			adding = false;
1721 			deleting = cpumask_and(tmp->delmask,
1722 					newmask, parent->effective_xcpus);
1723 		} else {
1724 			cpumask_andnot(tmp->addmask, xcpus, newmask);
1725 			adding = cpumask_and(tmp->addmask, tmp->addmask,
1726 					     parent->effective_xcpus);
1727 
1728 			cpumask_andnot(tmp->delmask, newmask, xcpus);
1729 			deleting = cpumask_and(tmp->delmask, tmp->delmask,
1730 					       parent->effective_xcpus);
1731 		}
1732 		/*
1733 		 * Make partition invalid if parent's effective_cpus could
1734 		 * become empty and there are tasks in the parent.
1735 		 */
1736 		if (nocpu && (!adding ||
1737 		    !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
1738 			part_error = PERR_NOCPUS;
1739 			deleting = false;
1740 			adding = cpumask_and(tmp->addmask,
1741 					     xcpus, parent->effective_xcpus);
1742 		}
1743 	} else {
1744 		/*
1745 		 * partcmd_update w/o newmask
1746 		 *
1747 		 * delmask = effective_xcpus & parent->effective_cpus
1748 		 *
1749 		 * This can be called from:
1750 		 * 1) update_cpumasks_hier()
1751 		 * 2) cpuset_hotplug_update_tasks()
1752 		 *
1753 		 * Check to see if it can be transitioned from valid to
1754 		 * invalid partition or vice versa.
1755 		 *
1756 		 * A partition error happens when parent has tasks and all
1757 		 * its effective CPUs will have to be distributed out.
1758 		 */
1759 		WARN_ON_ONCE(!is_partition_valid(parent));
1760 		if (nocpu) {
1761 			part_error = PERR_NOCPUS;
1762 			if (is_partition_valid(cs))
1763 				adding = cpumask_and(tmp->addmask,
1764 						xcpus, parent->effective_xcpus);
1765 		} else if (is_partition_invalid(cs) &&
1766 			   cpumask_subset(xcpus, parent->effective_xcpus)) {
1767 			struct cgroup_subsys_state *css;
1768 			struct cpuset *child;
1769 			bool exclusive = true;
1770 
1771 			/*
1772 			 * Convert invalid partition to valid has to
1773 			 * pass the cpu exclusivity test.
1774 			 */
1775 			rcu_read_lock();
1776 			cpuset_for_each_child(child, css, parent) {
1777 				if (child == cs)
1778 					continue;
1779 				if (!cpusets_are_exclusive(cs, child)) {
1780 					exclusive = false;
1781 					break;
1782 				}
1783 			}
1784 			rcu_read_unlock();
1785 			if (exclusive)
1786 				deleting = cpumask_and(tmp->delmask,
1787 						xcpus, parent->effective_cpus);
1788 			else
1789 				part_error = PERR_NOTEXCL;
1790 		}
1791 	}
1792 
1793 write_error:
1794 	if (part_error)
1795 		WRITE_ONCE(cs->prs_err, part_error);
1796 
1797 	if (cmd == partcmd_update) {
1798 		/*
1799 		 * Check for possible transition between valid and invalid
1800 		 * partition root.
1801 		 */
1802 		switch (cs->partition_root_state) {
1803 		case PRS_ROOT:
1804 		case PRS_ISOLATED:
1805 			if (part_error) {
1806 				new_prs = -old_prs;
1807 				subparts_delta--;
1808 			}
1809 			break;
1810 		case PRS_INVALID_ROOT:
1811 		case PRS_INVALID_ISOLATED:
1812 			if (!part_error) {
1813 				new_prs = -old_prs;
1814 				subparts_delta++;
1815 			}
1816 			break;
1817 		}
1818 	}
1819 
1820 	if (!adding && !deleting && (new_prs == old_prs))
1821 		return 0;
1822 
1823 	/*
1824 	 * Transitioning between invalid to valid or vice versa may require
1825 	 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
1826 	 * validate_change() has already been successfully called and
1827 	 * CPU lists in cs haven't been updated yet. So defer it to later.
1828 	 */
1829 	if ((old_prs != new_prs) && (cmd != partcmd_update))  {
1830 		int err = update_partition_exclusive(cs, new_prs);
1831 
1832 		if (err)
1833 			return err;
1834 	}
1835 
1836 	/*
1837 	 * Change the parent's effective_cpus & effective_xcpus (top cpuset
1838 	 * only).
1839 	 *
1840 	 * Newly added CPUs will be removed from effective_cpus and
1841 	 * newly deleted ones will be added back to effective_cpus.
1842 	 */
1843 	spin_lock_irq(&callback_lock);
1844 	if (old_prs != new_prs) {
1845 		cs->partition_root_state = new_prs;
1846 		if (new_prs <= 0)
1847 			cs->nr_subparts = 0;
1848 	}
1849 	/*
1850 	 * Adding to parent's effective_cpus means deletion CPUs from cs
1851 	 * and vice versa.
1852 	 */
1853 	if (adding)
1854 		isolcpus_updated += partition_xcpus_del(old_prs, parent,
1855 							tmp->addmask);
1856 	if (deleting)
1857 		isolcpus_updated += partition_xcpus_add(new_prs, parent,
1858 							tmp->delmask);
1859 
1860 	if (is_partition_valid(parent)) {
1861 		parent->nr_subparts += subparts_delta;
1862 		WARN_ON_ONCE(parent->nr_subparts < 0);
1863 	}
1864 	spin_unlock_irq(&callback_lock);
1865 	update_unbound_workqueue_cpumask(isolcpus_updated);
1866 
1867 	if ((old_prs != new_prs) && (cmd == partcmd_update))
1868 		update_partition_exclusive(cs, new_prs);
1869 
1870 	if (adding || deleting) {
1871 		cpuset_update_tasks_cpumask(parent, tmp->addmask);
1872 		update_sibling_cpumasks(parent, cs, tmp);
1873 	}
1874 
1875 	/*
1876 	 * For partcmd_update without newmask, it is being called from
1877 	 * cpuset_handle_hotplug(). Update the load balance flag and
1878 	 * scheduling domain accordingly.
1879 	 */
1880 	if ((cmd == partcmd_update) && !newmask)
1881 		update_partition_sd_lb(cs, old_prs);
1882 
1883 	notify_partition_change(cs, old_prs);
1884 	return 0;
1885 }
1886 
1887 /**
1888  * compute_partition_effective_cpumask - compute effective_cpus for partition
1889  * @cs: partition root cpuset
1890  * @new_ecpus: previously computed effective_cpus to be updated
1891  *
1892  * Compute the effective_cpus of a partition root by scanning effective_xcpus
1893  * of child partition roots and excluding their effective_xcpus.
1894  *
1895  * This has the side effect of invalidating valid child partition roots,
1896  * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
1897  * or update_cpumasks_hier() where parent and children are modified
1898  * successively, we don't need to call update_parent_effective_cpumask()
1899  * and the child's effective_cpus will be updated in later iterations.
1900  *
1901  * Note that rcu_read_lock() is assumed to be held.
1902  */
1903 static void compute_partition_effective_cpumask(struct cpuset *cs,
1904 						struct cpumask *new_ecpus)
1905 {
1906 	struct cgroup_subsys_state *css;
1907 	struct cpuset *child;
1908 	bool populated = partition_is_populated(cs, NULL);
1909 
1910 	/*
1911 	 * Check child partition roots to see if they should be
1912 	 * invalidated when
1913 	 *  1) child effective_xcpus not a subset of new
1914 	 *     excluisve_cpus
1915 	 *  2) All the effective_cpus will be used up and cp
1916 	 *     has tasks
1917 	 */
1918 	compute_effective_exclusive_cpumask(cs, new_ecpus);
1919 	cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
1920 
1921 	rcu_read_lock();
1922 	cpuset_for_each_child(child, css, cs) {
1923 		if (!is_partition_valid(child))
1924 			continue;
1925 
1926 		child->prs_err = 0;
1927 		if (!cpumask_subset(child->effective_xcpus,
1928 				    cs->effective_xcpus))
1929 			child->prs_err = PERR_INVCPUS;
1930 		else if (populated &&
1931 			 cpumask_subset(new_ecpus, child->effective_xcpus))
1932 			child->prs_err = PERR_NOCPUS;
1933 
1934 		if (child->prs_err) {
1935 			int old_prs = child->partition_root_state;
1936 
1937 			/*
1938 			 * Invalidate child partition
1939 			 */
1940 			spin_lock_irq(&callback_lock);
1941 			make_partition_invalid(child);
1942 			cs->nr_subparts--;
1943 			child->nr_subparts = 0;
1944 			spin_unlock_irq(&callback_lock);
1945 			notify_partition_change(child, old_prs);
1946 			continue;
1947 		}
1948 		cpumask_andnot(new_ecpus, new_ecpus,
1949 			       child->effective_xcpus);
1950 	}
1951 	rcu_read_unlock();
1952 }
1953 
1954 /*
1955  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1956  * @cs:  the cpuset to consider
1957  * @tmp: temp variables for calculating effective_cpus & partition setup
1958  * @force: don't skip any descendant cpusets if set
1959  *
1960  * When configured cpumask is changed, the effective cpumasks of this cpuset
1961  * and all its descendants need to be updated.
1962  *
1963  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1964  *
1965  * Called with cpuset_mutex held
1966  */
1967 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
1968 				 bool force)
1969 {
1970 	struct cpuset *cp;
1971 	struct cgroup_subsys_state *pos_css;
1972 	bool need_rebuild_sched_domains = false;
1973 	int old_prs, new_prs;
1974 
1975 	rcu_read_lock();
1976 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1977 		struct cpuset *parent = parent_cs(cp);
1978 		bool remote = is_remote_partition(cp);
1979 		bool update_parent = false;
1980 
1981 		/*
1982 		 * Skip descendent remote partition that acquires CPUs
1983 		 * directly from top cpuset unless it is cs.
1984 		 */
1985 		if (remote && (cp != cs)) {
1986 			pos_css = css_rightmost_descendant(pos_css);
1987 			continue;
1988 		}
1989 
1990 		/*
1991 		 * Update effective_xcpus if exclusive_cpus set.
1992 		 * The case when exclusive_cpus isn't set is handled later.
1993 		 */
1994 		if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) {
1995 			spin_lock_irq(&callback_lock);
1996 			compute_effective_exclusive_cpumask(cp, NULL);
1997 			spin_unlock_irq(&callback_lock);
1998 		}
1999 
2000 		old_prs = new_prs = cp->partition_root_state;
2001 		if (remote || (is_partition_valid(parent) &&
2002 			       is_partition_valid(cp)))
2003 			compute_partition_effective_cpumask(cp, tmp->new_cpus);
2004 		else
2005 			compute_effective_cpumask(tmp->new_cpus, cp, parent);
2006 
2007 		/*
2008 		 * A partition with no effective_cpus is allowed as long as
2009 		 * there is no task associated with it. Call
2010 		 * update_parent_effective_cpumask() to check it.
2011 		 */
2012 		if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
2013 			update_parent = true;
2014 			goto update_parent_effective;
2015 		}
2016 
2017 		/*
2018 		 * If it becomes empty, inherit the effective mask of the
2019 		 * parent, which is guaranteed to have some CPUs unless
2020 		 * it is a partition root that has explicitly distributed
2021 		 * out all its CPUs.
2022 		 */
2023 		if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus))
2024 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2025 
2026 		if (remote)
2027 			goto get_css;
2028 
2029 		/*
2030 		 * Skip the whole subtree if
2031 		 * 1) the cpumask remains the same,
2032 		 * 2) has no partition root state,
2033 		 * 3) force flag not set, and
2034 		 * 4) for v2 load balance state same as its parent.
2035 		 */
2036 		if (!cp->partition_root_state && !force &&
2037 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2038 		    (!cpuset_v2() ||
2039 		    (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2040 			pos_css = css_rightmost_descendant(pos_css);
2041 			continue;
2042 		}
2043 
2044 update_parent_effective:
2045 		/*
2046 		 * update_parent_effective_cpumask() should have been called
2047 		 * for cs already in update_cpumask(). We should also call
2048 		 * cpuset_update_tasks_cpumask() again for tasks in the parent
2049 		 * cpuset if the parent's effective_cpus changes.
2050 		 */
2051 		if ((cp != cs) && old_prs) {
2052 			switch (parent->partition_root_state) {
2053 			case PRS_ROOT:
2054 			case PRS_ISOLATED:
2055 				update_parent = true;
2056 				break;
2057 
2058 			default:
2059 				/*
2060 				 * When parent is not a partition root or is
2061 				 * invalid, child partition roots become
2062 				 * invalid too.
2063 				 */
2064 				if (is_partition_valid(cp))
2065 					new_prs = -cp->partition_root_state;
2066 				WRITE_ONCE(cp->prs_err,
2067 					   is_partition_invalid(parent)
2068 					   ? PERR_INVPARENT : PERR_NOTPART);
2069 				break;
2070 			}
2071 		}
2072 get_css:
2073 		if (!css_tryget_online(&cp->css))
2074 			continue;
2075 		rcu_read_unlock();
2076 
2077 		if (update_parent) {
2078 			update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
2079 			/*
2080 			 * The cpuset partition_root_state may become
2081 			 * invalid. Capture it.
2082 			 */
2083 			new_prs = cp->partition_root_state;
2084 		}
2085 
2086 		spin_lock_irq(&callback_lock);
2087 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2088 		cp->partition_root_state = new_prs;
2089 		/*
2090 		 * Make sure effective_xcpus is properly set for a valid
2091 		 * partition root.
2092 		 */
2093 		if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2094 			cpumask_and(cp->effective_xcpus,
2095 				    cp->cpus_allowed, parent->effective_xcpus);
2096 		else if (new_prs < 0)
2097 			reset_partition_data(cp);
2098 		spin_unlock_irq(&callback_lock);
2099 
2100 		notify_partition_change(cp, old_prs);
2101 
2102 		WARN_ON(!is_in_v2_mode() &&
2103 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2104 
2105 		cpuset_update_tasks_cpumask(cp, cp->effective_cpus);
2106 
2107 		/*
2108 		 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2109 		 * from parent if current cpuset isn't a valid partition root
2110 		 * and their load balance states differ.
2111 		 */
2112 		if (cpuset_v2() && !is_partition_valid(cp) &&
2113 		    (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2114 			if (is_sched_load_balance(parent))
2115 				set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2116 			else
2117 				clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2118 		}
2119 
2120 		/*
2121 		 * On legacy hierarchy, if the effective cpumask of any non-
2122 		 * empty cpuset is changed, we need to rebuild sched domains.
2123 		 * On default hierarchy, the cpuset needs to be a partition
2124 		 * root as well.
2125 		 */
2126 		if (!cpumask_empty(cp->cpus_allowed) &&
2127 		    is_sched_load_balance(cp) &&
2128 		   (!cpuset_v2() || is_partition_valid(cp)))
2129 			need_rebuild_sched_domains = true;
2130 
2131 		rcu_read_lock();
2132 		css_put(&cp->css);
2133 	}
2134 	rcu_read_unlock();
2135 
2136 	if (need_rebuild_sched_domains)
2137 		cpuset_force_rebuild();
2138 }
2139 
2140 /**
2141  * update_sibling_cpumasks - Update siblings cpumasks
2142  * @parent:  Parent cpuset
2143  * @cs:      Current cpuset
2144  * @tmp:     Temp variables
2145  */
2146 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2147 				    struct tmpmasks *tmp)
2148 {
2149 	struct cpuset *sibling;
2150 	struct cgroup_subsys_state *pos_css;
2151 
2152 	lockdep_assert_held(&cpuset_mutex);
2153 
2154 	/*
2155 	 * Check all its siblings and call update_cpumasks_hier()
2156 	 * if their effective_cpus will need to be changed.
2157 	 *
2158 	 * It is possible a change in parent's effective_cpus
2159 	 * due to a change in a child partition's effective_xcpus will impact
2160 	 * its siblings even if they do not inherit parent's effective_cpus
2161 	 * directly.
2162 	 *
2163 	 * The update_cpumasks_hier() function may sleep. So we have to
2164 	 * release the RCU read lock before calling it.
2165 	 */
2166 	rcu_read_lock();
2167 	cpuset_for_each_child(sibling, pos_css, parent) {
2168 		if (sibling == cs)
2169 			continue;
2170 		if (!is_partition_valid(sibling)) {
2171 			compute_effective_cpumask(tmp->new_cpus, sibling,
2172 						  parent);
2173 			if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2174 				continue;
2175 		}
2176 		if (!css_tryget_online(&sibling->css))
2177 			continue;
2178 
2179 		rcu_read_unlock();
2180 		update_cpumasks_hier(sibling, tmp, false);
2181 		rcu_read_lock();
2182 		css_put(&sibling->css);
2183 	}
2184 	rcu_read_unlock();
2185 }
2186 
2187 /**
2188  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2189  * @cs: the cpuset to consider
2190  * @trialcs: trial cpuset
2191  * @buf: buffer of cpu numbers written to this cpuset
2192  */
2193 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2194 			  const char *buf)
2195 {
2196 	int retval;
2197 	struct tmpmasks tmp;
2198 	struct cpuset *parent = parent_cs(cs);
2199 	bool invalidate = false;
2200 	bool force = false;
2201 	int old_prs = cs->partition_root_state;
2202 
2203 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
2204 	if (cs == &top_cpuset)
2205 		return -EACCES;
2206 
2207 	/*
2208 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
2209 	 * Since cpulist_parse() fails on an empty mask, we special case
2210 	 * that parsing.  The validate_change() call ensures that cpusets
2211 	 * with tasks have cpus.
2212 	 */
2213 	if (!*buf) {
2214 		cpumask_clear(trialcs->cpus_allowed);
2215 		if (cpumask_empty(trialcs->exclusive_cpus))
2216 			cpumask_clear(trialcs->effective_xcpus);
2217 	} else {
2218 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
2219 		if (retval < 0)
2220 			return retval;
2221 
2222 		if (!cpumask_subset(trialcs->cpus_allowed,
2223 				    top_cpuset.cpus_allowed))
2224 			return -EINVAL;
2225 
2226 		/*
2227 		 * When exclusive_cpus isn't explicitly set, it is constrained
2228 		 * by cpus_allowed and parent's effective_xcpus. Otherwise,
2229 		 * trialcs->effective_xcpus is used as a temporary cpumask
2230 		 * for checking validity of the partition root.
2231 		 */
2232 		if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs))
2233 			compute_effective_exclusive_cpumask(trialcs, NULL);
2234 	}
2235 
2236 	/* Nothing to do if the cpus didn't change */
2237 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2238 		return 0;
2239 
2240 	if (alloc_cpumasks(NULL, &tmp))
2241 		return -ENOMEM;
2242 
2243 	if (old_prs) {
2244 		if (is_partition_valid(cs) &&
2245 		    cpumask_empty(trialcs->effective_xcpus)) {
2246 			invalidate = true;
2247 			cs->prs_err = PERR_INVCPUS;
2248 		} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2249 			invalidate = true;
2250 			cs->prs_err = PERR_HKEEPING;
2251 		} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2252 			invalidate = true;
2253 			cs->prs_err = PERR_NOCPUS;
2254 		}
2255 	}
2256 
2257 	/*
2258 	 * Check all the descendants in update_cpumasks_hier() if
2259 	 * effective_xcpus is to be changed.
2260 	 */
2261 	force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2262 
2263 	retval = validate_change(cs, trialcs);
2264 
2265 	if ((retval == -EINVAL) && cpuset_v2()) {
2266 		struct cgroup_subsys_state *css;
2267 		struct cpuset *cp;
2268 
2269 		/*
2270 		 * The -EINVAL error code indicates that partition sibling
2271 		 * CPU exclusivity rule has been violated. We still allow
2272 		 * the cpumask change to proceed while invalidating the
2273 		 * partition. However, any conflicting sibling partitions
2274 		 * have to be marked as invalid too.
2275 		 */
2276 		invalidate = true;
2277 		rcu_read_lock();
2278 		cpuset_for_each_child(cp, css, parent) {
2279 			struct cpumask *xcpus = user_xcpus(trialcs);
2280 
2281 			if (is_partition_valid(cp) &&
2282 			    cpumask_intersects(xcpus, cp->effective_xcpus)) {
2283 				rcu_read_unlock();
2284 				update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp);
2285 				rcu_read_lock();
2286 			}
2287 		}
2288 		rcu_read_unlock();
2289 		retval = 0;
2290 	}
2291 
2292 	if (retval < 0)
2293 		goto out_free;
2294 
2295 	if (is_partition_valid(cs) ||
2296 	   (is_partition_invalid(cs) && !invalidate)) {
2297 		struct cpumask *xcpus = trialcs->effective_xcpus;
2298 
2299 		if (cpumask_empty(xcpus) && is_partition_invalid(cs))
2300 			xcpus = trialcs->cpus_allowed;
2301 
2302 		/*
2303 		 * Call remote_cpus_update() to handle valid remote partition
2304 		 */
2305 		if (is_remote_partition(cs))
2306 			remote_cpus_update(cs, xcpus, &tmp);
2307 		else if (invalidate)
2308 			update_parent_effective_cpumask(cs, partcmd_invalidate,
2309 							NULL, &tmp);
2310 		else
2311 			update_parent_effective_cpumask(cs, partcmd_update,
2312 							xcpus, &tmp);
2313 	} else if (!cpumask_empty(cs->exclusive_cpus)) {
2314 		/*
2315 		 * Use trialcs->effective_cpus as a temp cpumask
2316 		 */
2317 		remote_partition_check(cs, trialcs->effective_xcpus,
2318 				       trialcs->effective_cpus, &tmp);
2319 	}
2320 
2321 	spin_lock_irq(&callback_lock);
2322 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2323 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2324 	if ((old_prs > 0) && !is_partition_valid(cs))
2325 		reset_partition_data(cs);
2326 	spin_unlock_irq(&callback_lock);
2327 
2328 	/* effective_cpus/effective_xcpus will be updated here */
2329 	update_cpumasks_hier(cs, &tmp, force);
2330 
2331 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2332 	if (cs->partition_root_state)
2333 		update_partition_sd_lb(cs, old_prs);
2334 out_free:
2335 	free_cpumasks(NULL, &tmp);
2336 	return retval;
2337 }
2338 
2339 /**
2340  * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2341  * @cs: the cpuset to consider
2342  * @trialcs: trial cpuset
2343  * @buf: buffer of cpu numbers written to this cpuset
2344  *
2345  * The tasks' cpumask will be updated if cs is a valid partition root.
2346  */
2347 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2348 				    const char *buf)
2349 {
2350 	int retval;
2351 	struct tmpmasks tmp;
2352 	struct cpuset *parent = parent_cs(cs);
2353 	bool invalidate = false;
2354 	bool force = false;
2355 	int old_prs = cs->partition_root_state;
2356 
2357 	if (!*buf) {
2358 		cpumask_clear(trialcs->exclusive_cpus);
2359 		cpumask_clear(trialcs->effective_xcpus);
2360 	} else {
2361 		retval = cpulist_parse(buf, trialcs->exclusive_cpus);
2362 		if (retval < 0)
2363 			return retval;
2364 	}
2365 
2366 	/* Nothing to do if the CPUs didn't change */
2367 	if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2368 		return 0;
2369 
2370 	if (*buf)
2371 		compute_effective_exclusive_cpumask(trialcs, NULL);
2372 
2373 	/*
2374 	 * Check all the descendants in update_cpumasks_hier() if
2375 	 * effective_xcpus is to be changed.
2376 	 */
2377 	force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2378 
2379 	retval = validate_change(cs, trialcs);
2380 	if (retval)
2381 		return retval;
2382 
2383 	if (alloc_cpumasks(NULL, &tmp))
2384 		return -ENOMEM;
2385 
2386 	if (old_prs) {
2387 		if (cpumask_empty(trialcs->effective_xcpus)) {
2388 			invalidate = true;
2389 			cs->prs_err = PERR_INVCPUS;
2390 		} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2391 			invalidate = true;
2392 			cs->prs_err = PERR_HKEEPING;
2393 		} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2394 			invalidate = true;
2395 			cs->prs_err = PERR_NOCPUS;
2396 		}
2397 
2398 		if (is_remote_partition(cs)) {
2399 			if (invalidate)
2400 				remote_partition_disable(cs, &tmp);
2401 			else
2402 				remote_cpus_update(cs, trialcs->effective_xcpus,
2403 						   &tmp);
2404 		} else if (invalidate) {
2405 			update_parent_effective_cpumask(cs, partcmd_invalidate,
2406 							NULL, &tmp);
2407 		} else {
2408 			update_parent_effective_cpumask(cs, partcmd_update,
2409 						trialcs->effective_xcpus, &tmp);
2410 		}
2411 	} else if (!cpumask_empty(trialcs->exclusive_cpus)) {
2412 		/*
2413 		 * Use trialcs->effective_cpus as a temp cpumask
2414 		 */
2415 		remote_partition_check(cs, trialcs->effective_xcpus,
2416 				       trialcs->effective_cpus, &tmp);
2417 	}
2418 	spin_lock_irq(&callback_lock);
2419 	cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2420 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2421 	if ((old_prs > 0) && !is_partition_valid(cs))
2422 		reset_partition_data(cs);
2423 	spin_unlock_irq(&callback_lock);
2424 
2425 	/*
2426 	 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2427 	 * of the subtree when it is a valid partition root or effective_xcpus
2428 	 * is updated.
2429 	 */
2430 	if (is_partition_valid(cs) || force)
2431 		update_cpumasks_hier(cs, &tmp, force);
2432 
2433 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2434 	if (cs->partition_root_state)
2435 		update_partition_sd_lb(cs, old_prs);
2436 
2437 	free_cpumasks(NULL, &tmp);
2438 	return 0;
2439 }
2440 
2441 /*
2442  * Migrate memory region from one set of nodes to another.  This is
2443  * performed asynchronously as it can be called from process migration path
2444  * holding locks involved in process management.  All mm migrations are
2445  * performed in the queued order and can be waited for by flushing
2446  * cpuset_migrate_mm_wq.
2447  */
2448 
2449 struct cpuset_migrate_mm_work {
2450 	struct work_struct	work;
2451 	struct mm_struct	*mm;
2452 	nodemask_t		from;
2453 	nodemask_t		to;
2454 };
2455 
2456 static void cpuset_migrate_mm_workfn(struct work_struct *work)
2457 {
2458 	struct cpuset_migrate_mm_work *mwork =
2459 		container_of(work, struct cpuset_migrate_mm_work, work);
2460 
2461 	/* on a wq worker, no need to worry about %current's mems_allowed */
2462 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2463 	mmput(mwork->mm);
2464 	kfree(mwork);
2465 }
2466 
2467 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2468 							const nodemask_t *to)
2469 {
2470 	struct cpuset_migrate_mm_work *mwork;
2471 
2472 	if (nodes_equal(*from, *to)) {
2473 		mmput(mm);
2474 		return;
2475 	}
2476 
2477 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2478 	if (mwork) {
2479 		mwork->mm = mm;
2480 		mwork->from = *from;
2481 		mwork->to = *to;
2482 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2483 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
2484 	} else {
2485 		mmput(mm);
2486 	}
2487 }
2488 
2489 static void cpuset_post_attach(void)
2490 {
2491 	flush_workqueue(cpuset_migrate_mm_wq);
2492 }
2493 
2494 /*
2495  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2496  * @tsk: the task to change
2497  * @newmems: new nodes that the task will be set
2498  *
2499  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2500  * and rebind an eventual tasks' mempolicy. If the task is allocating in
2501  * parallel, it might temporarily see an empty intersection, which results in
2502  * a seqlock check and retry before OOM or allocation failure.
2503  */
2504 static void cpuset_change_task_nodemask(struct task_struct *tsk,
2505 					nodemask_t *newmems)
2506 {
2507 	task_lock(tsk);
2508 
2509 	local_irq_disable();
2510 	write_seqcount_begin(&tsk->mems_allowed_seq);
2511 
2512 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2513 	mpol_rebind_task(tsk, newmems);
2514 	tsk->mems_allowed = *newmems;
2515 
2516 	write_seqcount_end(&tsk->mems_allowed_seq);
2517 	local_irq_enable();
2518 
2519 	task_unlock(tsk);
2520 }
2521 
2522 static void *cpuset_being_rebound;
2523 
2524 /**
2525  * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2526  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2527  *
2528  * Iterate through each task of @cs updating its mems_allowed to the
2529  * effective cpuset's.  As this function is called with cpuset_mutex held,
2530  * cpuset membership stays stable.
2531  */
2532 void cpuset_update_tasks_nodemask(struct cpuset *cs)
2533 {
2534 	static nodemask_t newmems;	/* protected by cpuset_mutex */
2535 	struct css_task_iter it;
2536 	struct task_struct *task;
2537 
2538 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
2539 
2540 	guarantee_online_mems(cs, &newmems);
2541 
2542 	/*
2543 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2544 	 * take while holding tasklist_lock.  Forks can happen - the
2545 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
2546 	 * and rebind their vma mempolicies too.  Because we still hold
2547 	 * the global cpuset_mutex, we know that no other rebind effort
2548 	 * will be contending for the global variable cpuset_being_rebound.
2549 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2550 	 * is idempotent.  Also migrate pages in each mm to new nodes.
2551 	 */
2552 	css_task_iter_start(&cs->css, 0, &it);
2553 	while ((task = css_task_iter_next(&it))) {
2554 		struct mm_struct *mm;
2555 		bool migrate;
2556 
2557 		cpuset_change_task_nodemask(task, &newmems);
2558 
2559 		mm = get_task_mm(task);
2560 		if (!mm)
2561 			continue;
2562 
2563 		migrate = is_memory_migrate(cs);
2564 
2565 		mpol_rebind_mm(mm, &cs->mems_allowed);
2566 		if (migrate)
2567 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2568 		else
2569 			mmput(mm);
2570 	}
2571 	css_task_iter_end(&it);
2572 
2573 	/*
2574 	 * All the tasks' nodemasks have been updated, update
2575 	 * cs->old_mems_allowed.
2576 	 */
2577 	cs->old_mems_allowed = newmems;
2578 
2579 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2580 	cpuset_being_rebound = NULL;
2581 }
2582 
2583 /*
2584  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2585  * @cs: the cpuset to consider
2586  * @new_mems: a temp variable for calculating new effective_mems
2587  *
2588  * When configured nodemask is changed, the effective nodemasks of this cpuset
2589  * and all its descendants need to be updated.
2590  *
2591  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2592  *
2593  * Called with cpuset_mutex held
2594  */
2595 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2596 {
2597 	struct cpuset *cp;
2598 	struct cgroup_subsys_state *pos_css;
2599 
2600 	rcu_read_lock();
2601 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2602 		struct cpuset *parent = parent_cs(cp);
2603 
2604 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2605 
2606 		/*
2607 		 * If it becomes empty, inherit the effective mask of the
2608 		 * parent, which is guaranteed to have some MEMs.
2609 		 */
2610 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2611 			*new_mems = parent->effective_mems;
2612 
2613 		/* Skip the whole subtree if the nodemask remains the same. */
2614 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2615 			pos_css = css_rightmost_descendant(pos_css);
2616 			continue;
2617 		}
2618 
2619 		if (!css_tryget_online(&cp->css))
2620 			continue;
2621 		rcu_read_unlock();
2622 
2623 		spin_lock_irq(&callback_lock);
2624 		cp->effective_mems = *new_mems;
2625 		spin_unlock_irq(&callback_lock);
2626 
2627 		WARN_ON(!is_in_v2_mode() &&
2628 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2629 
2630 		cpuset_update_tasks_nodemask(cp);
2631 
2632 		rcu_read_lock();
2633 		css_put(&cp->css);
2634 	}
2635 	rcu_read_unlock();
2636 }
2637 
2638 /*
2639  * Handle user request to change the 'mems' memory placement
2640  * of a cpuset.  Needs to validate the request, update the
2641  * cpusets mems_allowed, and for each task in the cpuset,
2642  * update mems_allowed and rebind task's mempolicy and any vma
2643  * mempolicies and if the cpuset is marked 'memory_migrate',
2644  * migrate the tasks pages to the new memory.
2645  *
2646  * Call with cpuset_mutex held. May take callback_lock during call.
2647  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2648  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2649  * their mempolicies to the cpusets new mems_allowed.
2650  */
2651 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2652 			   const char *buf)
2653 {
2654 	int retval;
2655 
2656 	/*
2657 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2658 	 * it's read-only
2659 	 */
2660 	if (cs == &top_cpuset) {
2661 		retval = -EACCES;
2662 		goto done;
2663 	}
2664 
2665 	/*
2666 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2667 	 * Since nodelist_parse() fails on an empty mask, we special case
2668 	 * that parsing.  The validate_change() call ensures that cpusets
2669 	 * with tasks have memory.
2670 	 */
2671 	if (!*buf) {
2672 		nodes_clear(trialcs->mems_allowed);
2673 	} else {
2674 		retval = nodelist_parse(buf, trialcs->mems_allowed);
2675 		if (retval < 0)
2676 			goto done;
2677 
2678 		if (!nodes_subset(trialcs->mems_allowed,
2679 				  top_cpuset.mems_allowed)) {
2680 			retval = -EINVAL;
2681 			goto done;
2682 		}
2683 	}
2684 
2685 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2686 		retval = 0;		/* Too easy - nothing to do */
2687 		goto done;
2688 	}
2689 	retval = validate_change(cs, trialcs);
2690 	if (retval < 0)
2691 		goto done;
2692 
2693 	check_insane_mems_config(&trialcs->mems_allowed);
2694 
2695 	spin_lock_irq(&callback_lock);
2696 	cs->mems_allowed = trialcs->mems_allowed;
2697 	spin_unlock_irq(&callback_lock);
2698 
2699 	/* use trialcs->mems_allowed as a temp variable */
2700 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2701 done:
2702 	return retval;
2703 }
2704 
2705 bool current_cpuset_is_being_rebound(void)
2706 {
2707 	bool ret;
2708 
2709 	rcu_read_lock();
2710 	ret = task_cs(current) == cpuset_being_rebound;
2711 	rcu_read_unlock();
2712 
2713 	return ret;
2714 }
2715 
2716 /*
2717  * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag
2718  * bit:		the bit to update (see cpuset_flagbits_t)
2719  * cs:		the cpuset to update
2720  * turning_on: 	whether the flag is being set or cleared
2721  *
2722  * Call with cpuset_mutex held.
2723  */
2724 
2725 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2726 		       int turning_on)
2727 {
2728 	struct cpuset *trialcs;
2729 	int balance_flag_changed;
2730 	int spread_flag_changed;
2731 	int err;
2732 
2733 	trialcs = alloc_trial_cpuset(cs);
2734 	if (!trialcs)
2735 		return -ENOMEM;
2736 
2737 	if (turning_on)
2738 		set_bit(bit, &trialcs->flags);
2739 	else
2740 		clear_bit(bit, &trialcs->flags);
2741 
2742 	err = validate_change(cs, trialcs);
2743 	if (err < 0)
2744 		goto out;
2745 
2746 	balance_flag_changed = (is_sched_load_balance(cs) !=
2747 				is_sched_load_balance(trialcs));
2748 
2749 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2750 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2751 
2752 	spin_lock_irq(&callback_lock);
2753 	cs->flags = trialcs->flags;
2754 	spin_unlock_irq(&callback_lock);
2755 
2756 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) {
2757 		if (cpuset_v2())
2758 			cpuset_force_rebuild();
2759 		else
2760 			rebuild_sched_domains_locked();
2761 	}
2762 
2763 	if (spread_flag_changed)
2764 		cpuset1_update_tasks_flags(cs);
2765 out:
2766 	free_cpuset(trialcs);
2767 	return err;
2768 }
2769 
2770 /**
2771  * update_prstate - update partition_root_state
2772  * @cs: the cpuset to update
2773  * @new_prs: new partition root state
2774  * Return: 0 if successful, != 0 if error
2775  *
2776  * Call with cpuset_mutex held.
2777  */
2778 static int update_prstate(struct cpuset *cs, int new_prs)
2779 {
2780 	int err = PERR_NONE, old_prs = cs->partition_root_state;
2781 	struct cpuset *parent = parent_cs(cs);
2782 	struct tmpmasks tmpmask;
2783 	bool new_xcpus_state = false;
2784 
2785 	if (old_prs == new_prs)
2786 		return 0;
2787 
2788 	/*
2789 	 * Treat a previously invalid partition root as if it is a "member".
2790 	 */
2791 	if (new_prs && is_prs_invalid(old_prs))
2792 		old_prs = PRS_MEMBER;
2793 
2794 	if (alloc_cpumasks(NULL, &tmpmask))
2795 		return -ENOMEM;
2796 
2797 	/*
2798 	 * Setup effective_xcpus if not properly set yet, it will be cleared
2799 	 * later if partition becomes invalid.
2800 	 */
2801 	if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) {
2802 		spin_lock_irq(&callback_lock);
2803 		cpumask_and(cs->effective_xcpus,
2804 			    cs->cpus_allowed, parent->effective_xcpus);
2805 		spin_unlock_irq(&callback_lock);
2806 	}
2807 
2808 	err = update_partition_exclusive(cs, new_prs);
2809 	if (err)
2810 		goto out;
2811 
2812 	if (!old_prs) {
2813 		/*
2814 		 * cpus_allowed and exclusive_cpus cannot be both empty.
2815 		 */
2816 		if (xcpus_empty(cs)) {
2817 			err = PERR_CPUSEMPTY;
2818 			goto out;
2819 		}
2820 
2821 		/*
2822 		 * If parent is valid partition, enable local partiion.
2823 		 * Otherwise, enable a remote partition.
2824 		 */
2825 		if (is_partition_valid(parent)) {
2826 			enum partition_cmd cmd = (new_prs == PRS_ROOT)
2827 					       ? partcmd_enable : partcmd_enablei;
2828 
2829 			err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
2830 		} else {
2831 			err = remote_partition_enable(cs, new_prs, &tmpmask);
2832 		}
2833 	} else if (old_prs && new_prs) {
2834 		/*
2835 		 * A change in load balance state only, no change in cpumasks.
2836 		 */
2837 		new_xcpus_state = true;
2838 	} else {
2839 		/*
2840 		 * Switching back to member is always allowed even if it
2841 		 * disables child partitions.
2842 		 */
2843 		if (is_remote_partition(cs))
2844 			remote_partition_disable(cs, &tmpmask);
2845 		else
2846 			update_parent_effective_cpumask(cs, partcmd_disable,
2847 							NULL, &tmpmask);
2848 
2849 		/*
2850 		 * Invalidation of child partitions will be done in
2851 		 * update_cpumasks_hier().
2852 		 */
2853 	}
2854 out:
2855 	/*
2856 	 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
2857 	 * happens.
2858 	 */
2859 	if (err) {
2860 		new_prs = -new_prs;
2861 		update_partition_exclusive(cs, new_prs);
2862 	}
2863 
2864 	spin_lock_irq(&callback_lock);
2865 	cs->partition_root_state = new_prs;
2866 	WRITE_ONCE(cs->prs_err, err);
2867 	if (!is_partition_valid(cs))
2868 		reset_partition_data(cs);
2869 	else if (new_xcpus_state)
2870 		partition_xcpus_newstate(old_prs, new_prs, cs->effective_xcpus);
2871 	spin_unlock_irq(&callback_lock);
2872 	update_unbound_workqueue_cpumask(new_xcpus_state);
2873 
2874 	/* Force update if switching back to member */
2875 	update_cpumasks_hier(cs, &tmpmask, !new_prs);
2876 
2877 	/* Update sched domains and load balance flag */
2878 	update_partition_sd_lb(cs, old_prs);
2879 
2880 	notify_partition_change(cs, old_prs);
2881 	if (force_sd_rebuild)
2882 		rebuild_sched_domains_locked();
2883 	free_cpumasks(NULL, &tmpmask);
2884 	return 0;
2885 }
2886 
2887 static struct cpuset *cpuset_attach_old_cs;
2888 
2889 /*
2890  * Check to see if a cpuset can accept a new task
2891  * For v1, cpus_allowed and mems_allowed can't be empty.
2892  * For v2, effective_cpus can't be empty.
2893  * Note that in v1, effective_cpus = cpus_allowed.
2894  */
2895 static int cpuset_can_attach_check(struct cpuset *cs)
2896 {
2897 	if (cpumask_empty(cs->effective_cpus) ||
2898 	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
2899 		return -ENOSPC;
2900 	return 0;
2901 }
2902 
2903 static void reset_migrate_dl_data(struct cpuset *cs)
2904 {
2905 	cs->nr_migrate_dl_tasks = 0;
2906 	cs->sum_migrate_dl_bw = 0;
2907 }
2908 
2909 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2910 static int cpuset_can_attach(struct cgroup_taskset *tset)
2911 {
2912 	struct cgroup_subsys_state *css;
2913 	struct cpuset *cs, *oldcs;
2914 	struct task_struct *task;
2915 	bool cpus_updated, mems_updated;
2916 	int ret;
2917 
2918 	/* used later by cpuset_attach() */
2919 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2920 	oldcs = cpuset_attach_old_cs;
2921 	cs = css_cs(css);
2922 
2923 	mutex_lock(&cpuset_mutex);
2924 
2925 	/* Check to see if task is allowed in the cpuset */
2926 	ret = cpuset_can_attach_check(cs);
2927 	if (ret)
2928 		goto out_unlock;
2929 
2930 	cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
2931 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
2932 
2933 	cgroup_taskset_for_each(task, css, tset) {
2934 		ret = task_can_attach(task);
2935 		if (ret)
2936 			goto out_unlock;
2937 
2938 		/*
2939 		 * Skip rights over task check in v2 when nothing changes,
2940 		 * migration permission derives from hierarchy ownership in
2941 		 * cgroup_procs_write_permission()).
2942 		 */
2943 		if (!cpuset_v2() || (cpus_updated || mems_updated)) {
2944 			ret = security_task_setscheduler(task);
2945 			if (ret)
2946 				goto out_unlock;
2947 		}
2948 
2949 		if (dl_task(task)) {
2950 			cs->nr_migrate_dl_tasks++;
2951 			cs->sum_migrate_dl_bw += task->dl.dl_bw;
2952 		}
2953 	}
2954 
2955 	if (!cs->nr_migrate_dl_tasks)
2956 		goto out_success;
2957 
2958 	if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
2959 		int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
2960 
2961 		if (unlikely(cpu >= nr_cpu_ids)) {
2962 			reset_migrate_dl_data(cs);
2963 			ret = -EINVAL;
2964 			goto out_unlock;
2965 		}
2966 
2967 		ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
2968 		if (ret) {
2969 			reset_migrate_dl_data(cs);
2970 			goto out_unlock;
2971 		}
2972 	}
2973 
2974 out_success:
2975 	/*
2976 	 * Mark attach is in progress.  This makes validate_change() fail
2977 	 * changes which zero cpus/mems_allowed.
2978 	 */
2979 	cs->attach_in_progress++;
2980 out_unlock:
2981 	mutex_unlock(&cpuset_mutex);
2982 	return ret;
2983 }
2984 
2985 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2986 {
2987 	struct cgroup_subsys_state *css;
2988 	struct cpuset *cs;
2989 
2990 	cgroup_taskset_first(tset, &css);
2991 	cs = css_cs(css);
2992 
2993 	mutex_lock(&cpuset_mutex);
2994 	dec_attach_in_progress_locked(cs);
2995 
2996 	if (cs->nr_migrate_dl_tasks) {
2997 		int cpu = cpumask_any(cs->effective_cpus);
2998 
2999 		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
3000 		reset_migrate_dl_data(cs);
3001 	}
3002 
3003 	mutex_unlock(&cpuset_mutex);
3004 }
3005 
3006 /*
3007  * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
3008  * but we can't allocate it dynamically there.  Define it global and
3009  * allocate from cpuset_init().
3010  */
3011 static cpumask_var_t cpus_attach;
3012 static nodemask_t cpuset_attach_nodemask_to;
3013 
3014 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
3015 {
3016 	lockdep_assert_held(&cpuset_mutex);
3017 
3018 	if (cs != &top_cpuset)
3019 		guarantee_online_cpus(task, cpus_attach);
3020 	else
3021 		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3022 			       subpartitions_cpus);
3023 	/*
3024 	 * can_attach beforehand should guarantee that this doesn't
3025 	 * fail.  TODO: have a better way to handle failure here
3026 	 */
3027 	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
3028 
3029 	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3030 	cpuset1_update_task_spread_flags(cs, task);
3031 }
3032 
3033 static void cpuset_attach(struct cgroup_taskset *tset)
3034 {
3035 	struct task_struct *task;
3036 	struct task_struct *leader;
3037 	struct cgroup_subsys_state *css;
3038 	struct cpuset *cs;
3039 	struct cpuset *oldcs = cpuset_attach_old_cs;
3040 	bool cpus_updated, mems_updated;
3041 
3042 	cgroup_taskset_first(tset, &css);
3043 	cs = css_cs(css);
3044 
3045 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
3046 	mutex_lock(&cpuset_mutex);
3047 	cpus_updated = !cpumask_equal(cs->effective_cpus,
3048 				      oldcs->effective_cpus);
3049 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3050 
3051 	/*
3052 	 * In the default hierarchy, enabling cpuset in the child cgroups
3053 	 * will trigger a number of cpuset_attach() calls with no change
3054 	 * in effective cpus and mems. In that case, we can optimize out
3055 	 * by skipping the task iteration and update.
3056 	 */
3057 	if (cpuset_v2() && !cpus_updated && !mems_updated) {
3058 		cpuset_attach_nodemask_to = cs->effective_mems;
3059 		goto out;
3060 	}
3061 
3062 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3063 
3064 	cgroup_taskset_for_each(task, css, tset)
3065 		cpuset_attach_task(cs, task);
3066 
3067 	/*
3068 	 * Change mm for all threadgroup leaders. This is expensive and may
3069 	 * sleep and should be moved outside migration path proper. Skip it
3070 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3071 	 * not set.
3072 	 */
3073 	cpuset_attach_nodemask_to = cs->effective_mems;
3074 	if (!is_memory_migrate(cs) && !mems_updated)
3075 		goto out;
3076 
3077 	cgroup_taskset_for_each_leader(leader, css, tset) {
3078 		struct mm_struct *mm = get_task_mm(leader);
3079 
3080 		if (mm) {
3081 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3082 
3083 			/*
3084 			 * old_mems_allowed is the same with mems_allowed
3085 			 * here, except if this task is being moved
3086 			 * automatically due to hotplug.  In that case
3087 			 * @mems_allowed has been updated and is empty, so
3088 			 * @old_mems_allowed is the right nodesets that we
3089 			 * migrate mm from.
3090 			 */
3091 			if (is_memory_migrate(cs))
3092 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3093 						  &cpuset_attach_nodemask_to);
3094 			else
3095 				mmput(mm);
3096 		}
3097 	}
3098 
3099 out:
3100 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
3101 
3102 	if (cs->nr_migrate_dl_tasks) {
3103 		cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3104 		oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3105 		reset_migrate_dl_data(cs);
3106 	}
3107 
3108 	dec_attach_in_progress_locked(cs);
3109 
3110 	mutex_unlock(&cpuset_mutex);
3111 }
3112 
3113 /*
3114  * Common handling for a write to a "cpus" or "mems" file.
3115  */
3116 ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3117 				    char *buf, size_t nbytes, loff_t off)
3118 {
3119 	struct cpuset *cs = css_cs(of_css(of));
3120 	struct cpuset *trialcs;
3121 	int retval = -ENODEV;
3122 
3123 	buf = strstrip(buf);
3124 
3125 	/*
3126 	 * CPU or memory hotunplug may leave @cs w/o any execution
3127 	 * resources, in which case the hotplug code asynchronously updates
3128 	 * configuration and transfers all tasks to the nearest ancestor
3129 	 * which can execute.
3130 	 *
3131 	 * As writes to "cpus" or "mems" may restore @cs's execution
3132 	 * resources, wait for the previously scheduled operations before
3133 	 * proceeding, so that we don't end up keep removing tasks added
3134 	 * after execution capability is restored.
3135 	 *
3136 	 * cpuset_handle_hotplug may call back into cgroup core asynchronously
3137 	 * via cgroup_transfer_tasks() and waiting for it from a cgroupfs
3138 	 * operation like this one can lead to a deadlock through kernfs
3139 	 * active_ref protection.  Let's break the protection.  Losing the
3140 	 * protection is okay as we check whether @cs is online after
3141 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
3142 	 * hierarchies.
3143 	 */
3144 	css_get(&cs->css);
3145 	kernfs_break_active_protection(of->kn);
3146 
3147 	cpus_read_lock();
3148 	mutex_lock(&cpuset_mutex);
3149 	if (!is_cpuset_online(cs))
3150 		goto out_unlock;
3151 
3152 	trialcs = alloc_trial_cpuset(cs);
3153 	if (!trialcs) {
3154 		retval = -ENOMEM;
3155 		goto out_unlock;
3156 	}
3157 
3158 	switch (of_cft(of)->private) {
3159 	case FILE_CPULIST:
3160 		retval = update_cpumask(cs, trialcs, buf);
3161 		break;
3162 	case FILE_EXCLUSIVE_CPULIST:
3163 		retval = update_exclusive_cpumask(cs, trialcs, buf);
3164 		break;
3165 	case FILE_MEMLIST:
3166 		retval = update_nodemask(cs, trialcs, buf);
3167 		break;
3168 	default:
3169 		retval = -EINVAL;
3170 		break;
3171 	}
3172 
3173 	free_cpuset(trialcs);
3174 	if (force_sd_rebuild)
3175 		rebuild_sched_domains_locked();
3176 out_unlock:
3177 	mutex_unlock(&cpuset_mutex);
3178 	cpus_read_unlock();
3179 	kernfs_unbreak_active_protection(of->kn);
3180 	css_put(&cs->css);
3181 	flush_workqueue(cpuset_migrate_mm_wq);
3182 	return retval ?: nbytes;
3183 }
3184 
3185 /*
3186  * These ascii lists should be read in a single call, by using a user
3187  * buffer large enough to hold the entire map.  If read in smaller
3188  * chunks, there is no guarantee of atomicity.  Since the display format
3189  * used, list of ranges of sequential numbers, is variable length,
3190  * and since these maps can change value dynamically, one could read
3191  * gibberish by doing partial reads while a list was changing.
3192  */
3193 int cpuset_common_seq_show(struct seq_file *sf, void *v)
3194 {
3195 	struct cpuset *cs = css_cs(seq_css(sf));
3196 	cpuset_filetype_t type = seq_cft(sf)->private;
3197 	int ret = 0;
3198 
3199 	spin_lock_irq(&callback_lock);
3200 
3201 	switch (type) {
3202 	case FILE_CPULIST:
3203 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3204 		break;
3205 	case FILE_MEMLIST:
3206 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3207 		break;
3208 	case FILE_EFFECTIVE_CPULIST:
3209 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3210 		break;
3211 	case FILE_EFFECTIVE_MEMLIST:
3212 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3213 		break;
3214 	case FILE_EXCLUSIVE_CPULIST:
3215 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3216 		break;
3217 	case FILE_EFFECTIVE_XCPULIST:
3218 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3219 		break;
3220 	case FILE_SUBPARTS_CPULIST:
3221 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3222 		break;
3223 	case FILE_ISOLATED_CPULIST:
3224 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
3225 		break;
3226 	default:
3227 		ret = -EINVAL;
3228 	}
3229 
3230 	spin_unlock_irq(&callback_lock);
3231 	return ret;
3232 }
3233 
3234 static int sched_partition_show(struct seq_file *seq, void *v)
3235 {
3236 	struct cpuset *cs = css_cs(seq_css(seq));
3237 	const char *err, *type = NULL;
3238 
3239 	switch (cs->partition_root_state) {
3240 	case PRS_ROOT:
3241 		seq_puts(seq, "root\n");
3242 		break;
3243 	case PRS_ISOLATED:
3244 		seq_puts(seq, "isolated\n");
3245 		break;
3246 	case PRS_MEMBER:
3247 		seq_puts(seq, "member\n");
3248 		break;
3249 	case PRS_INVALID_ROOT:
3250 		type = "root";
3251 		fallthrough;
3252 	case PRS_INVALID_ISOLATED:
3253 		if (!type)
3254 			type = "isolated";
3255 		err = perr_strings[READ_ONCE(cs->prs_err)];
3256 		if (err)
3257 			seq_printf(seq, "%s invalid (%s)\n", type, err);
3258 		else
3259 			seq_printf(seq, "%s invalid\n", type);
3260 		break;
3261 	}
3262 	return 0;
3263 }
3264 
3265 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
3266 				     size_t nbytes, loff_t off)
3267 {
3268 	struct cpuset *cs = css_cs(of_css(of));
3269 	int val;
3270 	int retval = -ENODEV;
3271 
3272 	buf = strstrip(buf);
3273 
3274 	if (!strcmp(buf, "root"))
3275 		val = PRS_ROOT;
3276 	else if (!strcmp(buf, "member"))
3277 		val = PRS_MEMBER;
3278 	else if (!strcmp(buf, "isolated"))
3279 		val = PRS_ISOLATED;
3280 	else
3281 		return -EINVAL;
3282 
3283 	css_get(&cs->css);
3284 	cpus_read_lock();
3285 	mutex_lock(&cpuset_mutex);
3286 	if (!is_cpuset_online(cs))
3287 		goto out_unlock;
3288 
3289 	retval = update_prstate(cs, val);
3290 out_unlock:
3291 	mutex_unlock(&cpuset_mutex);
3292 	cpus_read_unlock();
3293 	css_put(&cs->css);
3294 	return retval ?: nbytes;
3295 }
3296 
3297 /*
3298  * This is currently a minimal set for the default hierarchy. It can be
3299  * expanded later on by migrating more features and control files from v1.
3300  */
3301 static struct cftype dfl_files[] = {
3302 	{
3303 		.name = "cpus",
3304 		.seq_show = cpuset_common_seq_show,
3305 		.write = cpuset_write_resmask,
3306 		.max_write_len = (100U + 6 * NR_CPUS),
3307 		.private = FILE_CPULIST,
3308 		.flags = CFTYPE_NOT_ON_ROOT,
3309 	},
3310 
3311 	{
3312 		.name = "mems",
3313 		.seq_show = cpuset_common_seq_show,
3314 		.write = cpuset_write_resmask,
3315 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3316 		.private = FILE_MEMLIST,
3317 		.flags = CFTYPE_NOT_ON_ROOT,
3318 	},
3319 
3320 	{
3321 		.name = "cpus.effective",
3322 		.seq_show = cpuset_common_seq_show,
3323 		.private = FILE_EFFECTIVE_CPULIST,
3324 	},
3325 
3326 	{
3327 		.name = "mems.effective",
3328 		.seq_show = cpuset_common_seq_show,
3329 		.private = FILE_EFFECTIVE_MEMLIST,
3330 	},
3331 
3332 	{
3333 		.name = "cpus.partition",
3334 		.seq_show = sched_partition_show,
3335 		.write = sched_partition_write,
3336 		.private = FILE_PARTITION_ROOT,
3337 		.flags = CFTYPE_NOT_ON_ROOT,
3338 		.file_offset = offsetof(struct cpuset, partition_file),
3339 	},
3340 
3341 	{
3342 		.name = "cpus.exclusive",
3343 		.seq_show = cpuset_common_seq_show,
3344 		.write = cpuset_write_resmask,
3345 		.max_write_len = (100U + 6 * NR_CPUS),
3346 		.private = FILE_EXCLUSIVE_CPULIST,
3347 		.flags = CFTYPE_NOT_ON_ROOT,
3348 	},
3349 
3350 	{
3351 		.name = "cpus.exclusive.effective",
3352 		.seq_show = cpuset_common_seq_show,
3353 		.private = FILE_EFFECTIVE_XCPULIST,
3354 		.flags = CFTYPE_NOT_ON_ROOT,
3355 	},
3356 
3357 	{
3358 		.name = "cpus.subpartitions",
3359 		.seq_show = cpuset_common_seq_show,
3360 		.private = FILE_SUBPARTS_CPULIST,
3361 		.flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
3362 	},
3363 
3364 	{
3365 		.name = "cpus.isolated",
3366 		.seq_show = cpuset_common_seq_show,
3367 		.private = FILE_ISOLATED_CPULIST,
3368 		.flags = CFTYPE_ONLY_ON_ROOT,
3369 	},
3370 
3371 	{ }	/* terminate */
3372 };
3373 
3374 
3375 /**
3376  * cpuset_css_alloc - Allocate a cpuset css
3377  * @parent_css: Parent css of the control group that the new cpuset will be
3378  *              part of
3379  * Return: cpuset css on success, -ENOMEM on failure.
3380  *
3381  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3382  * top cpuset css otherwise.
3383  */
3384 static struct cgroup_subsys_state *
3385 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3386 {
3387 	struct cpuset *cs;
3388 
3389 	if (!parent_css)
3390 		return &top_cpuset.css;
3391 
3392 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
3393 	if (!cs)
3394 		return ERR_PTR(-ENOMEM);
3395 
3396 	if (alloc_cpumasks(cs, NULL)) {
3397 		kfree(cs);
3398 		return ERR_PTR(-ENOMEM);
3399 	}
3400 
3401 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3402 	fmeter_init(&cs->fmeter);
3403 	cs->relax_domain_level = -1;
3404 	INIT_LIST_HEAD(&cs->remote_sibling);
3405 
3406 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3407 	if (cpuset_v2())
3408 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3409 
3410 	return &cs->css;
3411 }
3412 
3413 static int cpuset_css_online(struct cgroup_subsys_state *css)
3414 {
3415 	struct cpuset *cs = css_cs(css);
3416 	struct cpuset *parent = parent_cs(cs);
3417 	struct cpuset *tmp_cs;
3418 	struct cgroup_subsys_state *pos_css;
3419 
3420 	if (!parent)
3421 		return 0;
3422 
3423 	cpus_read_lock();
3424 	mutex_lock(&cpuset_mutex);
3425 
3426 	set_bit(CS_ONLINE, &cs->flags);
3427 	if (is_spread_page(parent))
3428 		set_bit(CS_SPREAD_PAGE, &cs->flags);
3429 	if (is_spread_slab(parent))
3430 		set_bit(CS_SPREAD_SLAB, &cs->flags);
3431 	/*
3432 	 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
3433 	 */
3434 	if (cpuset_v2() && !is_sched_load_balance(parent))
3435 		clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3436 
3437 	cpuset_inc();
3438 
3439 	spin_lock_irq(&callback_lock);
3440 	if (is_in_v2_mode()) {
3441 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3442 		cs->effective_mems = parent->effective_mems;
3443 	}
3444 	spin_unlock_irq(&callback_lock);
3445 
3446 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3447 		goto out_unlock;
3448 
3449 	/*
3450 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3451 	 * set.  This flag handling is implemented in cgroup core for
3452 	 * historical reasons - the flag may be specified during mount.
3453 	 *
3454 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3455 	 * refuse to clone the configuration - thereby refusing the task to
3456 	 * be entered, and as a result refusing the sys_unshare() or
3457 	 * clone() which initiated it.  If this becomes a problem for some
3458 	 * users who wish to allow that scenario, then this could be
3459 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3460 	 * (and likewise for mems) to the new cgroup.
3461 	 */
3462 	rcu_read_lock();
3463 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3464 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3465 			rcu_read_unlock();
3466 			goto out_unlock;
3467 		}
3468 	}
3469 	rcu_read_unlock();
3470 
3471 	spin_lock_irq(&callback_lock);
3472 	cs->mems_allowed = parent->mems_allowed;
3473 	cs->effective_mems = parent->mems_allowed;
3474 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3475 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3476 	spin_unlock_irq(&callback_lock);
3477 out_unlock:
3478 	mutex_unlock(&cpuset_mutex);
3479 	cpus_read_unlock();
3480 	return 0;
3481 }
3482 
3483 /*
3484  * If the cpuset being removed has its flag 'sched_load_balance'
3485  * enabled, then simulate turning sched_load_balance off, which
3486  * will call rebuild_sched_domains_locked(). That is not needed
3487  * in the default hierarchy where only changes in partition
3488  * will cause repartitioning.
3489  *
3490  * If the cpuset has the 'sched.partition' flag enabled, simulate
3491  * turning 'sched.partition" off.
3492  */
3493 
3494 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3495 {
3496 	struct cpuset *cs = css_cs(css);
3497 
3498 	cpus_read_lock();
3499 	mutex_lock(&cpuset_mutex);
3500 
3501 	if (is_partition_valid(cs))
3502 		update_prstate(cs, 0);
3503 
3504 	if (!cpuset_v2() && is_sched_load_balance(cs))
3505 		cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3506 
3507 	cpuset_dec();
3508 	clear_bit(CS_ONLINE, &cs->flags);
3509 
3510 	mutex_unlock(&cpuset_mutex);
3511 	cpus_read_unlock();
3512 }
3513 
3514 static void cpuset_css_free(struct cgroup_subsys_state *css)
3515 {
3516 	struct cpuset *cs = css_cs(css);
3517 
3518 	free_cpuset(cs);
3519 }
3520 
3521 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3522 {
3523 	mutex_lock(&cpuset_mutex);
3524 	spin_lock_irq(&callback_lock);
3525 
3526 	if (is_in_v2_mode()) {
3527 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3528 		cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
3529 		top_cpuset.mems_allowed = node_possible_map;
3530 	} else {
3531 		cpumask_copy(top_cpuset.cpus_allowed,
3532 			     top_cpuset.effective_cpus);
3533 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
3534 	}
3535 
3536 	spin_unlock_irq(&callback_lock);
3537 	mutex_unlock(&cpuset_mutex);
3538 }
3539 
3540 /*
3541  * In case the child is cloned into a cpuset different from its parent,
3542  * additional checks are done to see if the move is allowed.
3543  */
3544 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3545 {
3546 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3547 	bool same_cs;
3548 	int ret;
3549 
3550 	rcu_read_lock();
3551 	same_cs = (cs == task_cs(current));
3552 	rcu_read_unlock();
3553 
3554 	if (same_cs)
3555 		return 0;
3556 
3557 	lockdep_assert_held(&cgroup_mutex);
3558 	mutex_lock(&cpuset_mutex);
3559 
3560 	/* Check to see if task is allowed in the cpuset */
3561 	ret = cpuset_can_attach_check(cs);
3562 	if (ret)
3563 		goto out_unlock;
3564 
3565 	ret = task_can_attach(task);
3566 	if (ret)
3567 		goto out_unlock;
3568 
3569 	ret = security_task_setscheduler(task);
3570 	if (ret)
3571 		goto out_unlock;
3572 
3573 	/*
3574 	 * Mark attach is in progress.  This makes validate_change() fail
3575 	 * changes which zero cpus/mems_allowed.
3576 	 */
3577 	cs->attach_in_progress++;
3578 out_unlock:
3579 	mutex_unlock(&cpuset_mutex);
3580 	return ret;
3581 }
3582 
3583 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3584 {
3585 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3586 	bool same_cs;
3587 
3588 	rcu_read_lock();
3589 	same_cs = (cs == task_cs(current));
3590 	rcu_read_unlock();
3591 
3592 	if (same_cs)
3593 		return;
3594 
3595 	dec_attach_in_progress(cs);
3596 }
3597 
3598 /*
3599  * Make sure the new task conform to the current state of its parent,
3600  * which could have been changed by cpuset just after it inherits the
3601  * state from the parent and before it sits on the cgroup's task list.
3602  */
3603 static void cpuset_fork(struct task_struct *task)
3604 {
3605 	struct cpuset *cs;
3606 	bool same_cs;
3607 
3608 	rcu_read_lock();
3609 	cs = task_cs(task);
3610 	same_cs = (cs == task_cs(current));
3611 	rcu_read_unlock();
3612 
3613 	if (same_cs) {
3614 		if (cs == &top_cpuset)
3615 			return;
3616 
3617 		set_cpus_allowed_ptr(task, current->cpus_ptr);
3618 		task->mems_allowed = current->mems_allowed;
3619 		return;
3620 	}
3621 
3622 	/* CLONE_INTO_CGROUP */
3623 	mutex_lock(&cpuset_mutex);
3624 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3625 	cpuset_attach_task(cs, task);
3626 
3627 	dec_attach_in_progress_locked(cs);
3628 	mutex_unlock(&cpuset_mutex);
3629 }
3630 
3631 struct cgroup_subsys cpuset_cgrp_subsys = {
3632 	.css_alloc	= cpuset_css_alloc,
3633 	.css_online	= cpuset_css_online,
3634 	.css_offline	= cpuset_css_offline,
3635 	.css_free	= cpuset_css_free,
3636 	.can_attach	= cpuset_can_attach,
3637 	.cancel_attach	= cpuset_cancel_attach,
3638 	.attach		= cpuset_attach,
3639 	.post_attach	= cpuset_post_attach,
3640 	.bind		= cpuset_bind,
3641 	.can_fork	= cpuset_can_fork,
3642 	.cancel_fork	= cpuset_cancel_fork,
3643 	.fork		= cpuset_fork,
3644 #ifdef CONFIG_CPUSETS_V1
3645 	.legacy_cftypes	= cpuset1_files,
3646 #endif
3647 	.dfl_cftypes	= dfl_files,
3648 	.early_init	= true,
3649 	.threaded	= true,
3650 };
3651 
3652 /**
3653  * cpuset_init - initialize cpusets at system boot
3654  *
3655  * Description: Initialize top_cpuset
3656  **/
3657 
3658 int __init cpuset_init(void)
3659 {
3660 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3661 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3662 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
3663 	BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
3664 	BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
3665 	BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
3666 
3667 	cpumask_setall(top_cpuset.cpus_allowed);
3668 	nodes_setall(top_cpuset.mems_allowed);
3669 	cpumask_setall(top_cpuset.effective_cpus);
3670 	cpumask_setall(top_cpuset.effective_xcpus);
3671 	cpumask_setall(top_cpuset.exclusive_cpus);
3672 	nodes_setall(top_cpuset.effective_mems);
3673 
3674 	fmeter_init(&top_cpuset.fmeter);
3675 	INIT_LIST_HEAD(&remote_children);
3676 
3677 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3678 
3679 	have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN);
3680 	if (have_boot_isolcpus) {
3681 		BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL));
3682 		cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN));
3683 		cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus);
3684 	}
3685 
3686 	return 0;
3687 }
3688 
3689 static void
3690 hotplug_update_tasks(struct cpuset *cs,
3691 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3692 		     bool cpus_updated, bool mems_updated)
3693 {
3694 	/* A partition root is allowed to have empty effective cpus */
3695 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3696 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3697 	if (nodes_empty(*new_mems))
3698 		*new_mems = parent_cs(cs)->effective_mems;
3699 
3700 	spin_lock_irq(&callback_lock);
3701 	cpumask_copy(cs->effective_cpus, new_cpus);
3702 	cs->effective_mems = *new_mems;
3703 	spin_unlock_irq(&callback_lock);
3704 
3705 	if (cpus_updated)
3706 		cpuset_update_tasks_cpumask(cs, new_cpus);
3707 	if (mems_updated)
3708 		cpuset_update_tasks_nodemask(cs);
3709 }
3710 
3711 void cpuset_force_rebuild(void)
3712 {
3713 	force_sd_rebuild = true;
3714 }
3715 
3716 /**
3717  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3718  * @cs: cpuset in interest
3719  * @tmp: the tmpmasks structure pointer
3720  *
3721  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3722  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3723  * all its tasks are moved to the nearest ancestor with both resources.
3724  */
3725 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3726 {
3727 	static cpumask_t new_cpus;
3728 	static nodemask_t new_mems;
3729 	bool cpus_updated;
3730 	bool mems_updated;
3731 	bool remote;
3732 	int partcmd = -1;
3733 	struct cpuset *parent;
3734 retry:
3735 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3736 
3737 	mutex_lock(&cpuset_mutex);
3738 
3739 	/*
3740 	 * We have raced with task attaching. We wait until attaching
3741 	 * is finished, so we won't attach a task to an empty cpuset.
3742 	 */
3743 	if (cs->attach_in_progress) {
3744 		mutex_unlock(&cpuset_mutex);
3745 		goto retry;
3746 	}
3747 
3748 	parent = parent_cs(cs);
3749 	compute_effective_cpumask(&new_cpus, cs, parent);
3750 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3751 
3752 	if (!tmp || !cs->partition_root_state)
3753 		goto update_tasks;
3754 
3755 	/*
3756 	 * Compute effective_cpus for valid partition root, may invalidate
3757 	 * child partition roots if necessary.
3758 	 */
3759 	remote = is_remote_partition(cs);
3760 	if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
3761 		compute_partition_effective_cpumask(cs, &new_cpus);
3762 
3763 	if (remote && cpumask_empty(&new_cpus) &&
3764 	    partition_is_populated(cs, NULL)) {
3765 		remote_partition_disable(cs, tmp);
3766 		compute_effective_cpumask(&new_cpus, cs, parent);
3767 		remote = false;
3768 		cpuset_force_rebuild();
3769 	}
3770 
3771 	/*
3772 	 * Force the partition to become invalid if either one of
3773 	 * the following conditions hold:
3774 	 * 1) empty effective cpus but not valid empty partition.
3775 	 * 2) parent is invalid or doesn't grant any cpus to child
3776 	 *    partitions.
3777 	 */
3778 	if (is_local_partition(cs) && (!is_partition_valid(parent) ||
3779 				tasks_nocpu_error(parent, cs, &new_cpus)))
3780 		partcmd = partcmd_invalidate;
3781 	/*
3782 	 * On the other hand, an invalid partition root may be transitioned
3783 	 * back to a regular one.
3784 	 */
3785 	else if (is_partition_valid(parent) && is_partition_invalid(cs))
3786 		partcmd = partcmd_update;
3787 
3788 	if (partcmd >= 0) {
3789 		update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
3790 		if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
3791 			compute_partition_effective_cpumask(cs, &new_cpus);
3792 			cpuset_force_rebuild();
3793 		}
3794 	}
3795 
3796 update_tasks:
3797 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3798 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3799 	if (!cpus_updated && !mems_updated)
3800 		goto unlock;	/* Hotplug doesn't affect this cpuset */
3801 
3802 	if (mems_updated)
3803 		check_insane_mems_config(&new_mems);
3804 
3805 	if (is_in_v2_mode())
3806 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3807 				     cpus_updated, mems_updated);
3808 	else
3809 		cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems,
3810 					    cpus_updated, mems_updated);
3811 
3812 unlock:
3813 	mutex_unlock(&cpuset_mutex);
3814 }
3815 
3816 /**
3817  * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
3818  *
3819  * This function is called after either CPU or memory configuration has
3820  * changed and updates cpuset accordingly.  The top_cpuset is always
3821  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3822  * order to make cpusets transparent (of no affect) on systems that are
3823  * actively using CPU hotplug but making no active use of cpusets.
3824  *
3825  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3826  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3827  * all descendants.
3828  *
3829  * Note that CPU offlining during suspend is ignored.  We don't modify
3830  * cpusets across suspend/resume cycles at all.
3831  *
3832  * CPU / memory hotplug is handled synchronously.
3833  */
3834 static void cpuset_handle_hotplug(void)
3835 {
3836 	static cpumask_t new_cpus;
3837 	static nodemask_t new_mems;
3838 	bool cpus_updated, mems_updated;
3839 	bool on_dfl = is_in_v2_mode();
3840 	struct tmpmasks tmp, *ptmp = NULL;
3841 
3842 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3843 		ptmp = &tmp;
3844 
3845 	lockdep_assert_cpus_held();
3846 	mutex_lock(&cpuset_mutex);
3847 
3848 	/* fetch the available cpus/mems and find out which changed how */
3849 	cpumask_copy(&new_cpus, cpu_active_mask);
3850 	new_mems = node_states[N_MEMORY];
3851 
3852 	/*
3853 	 * If subpartitions_cpus is populated, it is likely that the check
3854 	 * below will produce a false positive on cpus_updated when the cpu
3855 	 * list isn't changed. It is extra work, but it is better to be safe.
3856 	 */
3857 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
3858 		       !cpumask_empty(subpartitions_cpus);
3859 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3860 
3861 	/* For v1, synchronize cpus_allowed to cpu_active_mask */
3862 	if (cpus_updated) {
3863 		cpuset_force_rebuild();
3864 		spin_lock_irq(&callback_lock);
3865 		if (!on_dfl)
3866 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3867 		/*
3868 		 * Make sure that CPUs allocated to child partitions
3869 		 * do not show up in effective_cpus. If no CPU is left,
3870 		 * we clear the subpartitions_cpus & let the child partitions
3871 		 * fight for the CPUs again.
3872 		 */
3873 		if (!cpumask_empty(subpartitions_cpus)) {
3874 			if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
3875 				top_cpuset.nr_subparts = 0;
3876 				cpumask_clear(subpartitions_cpus);
3877 			} else {
3878 				cpumask_andnot(&new_cpus, &new_cpus,
3879 					       subpartitions_cpus);
3880 			}
3881 		}
3882 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3883 		spin_unlock_irq(&callback_lock);
3884 		/* we don't mess with cpumasks of tasks in top_cpuset */
3885 	}
3886 
3887 	/* synchronize mems_allowed to N_MEMORY */
3888 	if (mems_updated) {
3889 		spin_lock_irq(&callback_lock);
3890 		if (!on_dfl)
3891 			top_cpuset.mems_allowed = new_mems;
3892 		top_cpuset.effective_mems = new_mems;
3893 		spin_unlock_irq(&callback_lock);
3894 		cpuset_update_tasks_nodemask(&top_cpuset);
3895 	}
3896 
3897 	mutex_unlock(&cpuset_mutex);
3898 
3899 	/* if cpus or mems changed, we need to propagate to descendants */
3900 	if (cpus_updated || mems_updated) {
3901 		struct cpuset *cs;
3902 		struct cgroup_subsys_state *pos_css;
3903 
3904 		rcu_read_lock();
3905 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3906 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3907 				continue;
3908 			rcu_read_unlock();
3909 
3910 			cpuset_hotplug_update_tasks(cs, ptmp);
3911 
3912 			rcu_read_lock();
3913 			css_put(&cs->css);
3914 		}
3915 		rcu_read_unlock();
3916 	}
3917 
3918 	/* rebuild sched domains if necessary */
3919 	if (force_sd_rebuild)
3920 		rebuild_sched_domains_cpuslocked();
3921 
3922 	free_cpumasks(NULL, ptmp);
3923 }
3924 
3925 void cpuset_update_active_cpus(void)
3926 {
3927 	/*
3928 	 * We're inside cpu hotplug critical region which usually nests
3929 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3930 	 * to a work item to avoid reverse locking order.
3931 	 */
3932 	cpuset_handle_hotplug();
3933 }
3934 
3935 /*
3936  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3937  * Call this routine anytime after node_states[N_MEMORY] changes.
3938  * See cpuset_update_active_cpus() for CPU hotplug handling.
3939  */
3940 static int cpuset_track_online_nodes(struct notifier_block *self,
3941 				unsigned long action, void *arg)
3942 {
3943 	cpuset_handle_hotplug();
3944 	return NOTIFY_OK;
3945 }
3946 
3947 /**
3948  * cpuset_init_smp - initialize cpus_allowed
3949  *
3950  * Description: Finish top cpuset after cpu, node maps are initialized
3951  */
3952 void __init cpuset_init_smp(void)
3953 {
3954 	/*
3955 	 * cpus_allowd/mems_allowed set to v2 values in the initial
3956 	 * cpuset_bind() call will be reset to v1 values in another
3957 	 * cpuset_bind() call when v1 cpuset is mounted.
3958 	 */
3959 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3960 
3961 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3962 	top_cpuset.effective_mems = node_states[N_MEMORY];
3963 
3964 	hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
3965 
3966 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3967 	BUG_ON(!cpuset_migrate_mm_wq);
3968 }
3969 
3970 /**
3971  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3972  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3973  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3974  *
3975  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3976  * attached to the specified @tsk.  Guaranteed to return some non-empty
3977  * subset of cpu_online_mask, even if this means going outside the
3978  * tasks cpuset, except when the task is in the top cpuset.
3979  **/
3980 
3981 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3982 {
3983 	unsigned long flags;
3984 	struct cpuset *cs;
3985 
3986 	spin_lock_irqsave(&callback_lock, flags);
3987 	rcu_read_lock();
3988 
3989 	cs = task_cs(tsk);
3990 	if (cs != &top_cpuset)
3991 		guarantee_online_cpus(tsk, pmask);
3992 	/*
3993 	 * Tasks in the top cpuset won't get update to their cpumasks
3994 	 * when a hotplug online/offline event happens. So we include all
3995 	 * offline cpus in the allowed cpu list.
3996 	 */
3997 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
3998 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3999 
4000 		/*
4001 		 * We first exclude cpus allocated to partitions. If there is no
4002 		 * allowable online cpu left, we fall back to all possible cpus.
4003 		 */
4004 		cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
4005 		if (!cpumask_intersects(pmask, cpu_online_mask))
4006 			cpumask_copy(pmask, possible_mask);
4007 	}
4008 
4009 	rcu_read_unlock();
4010 	spin_unlock_irqrestore(&callback_lock, flags);
4011 }
4012 
4013 /**
4014  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
4015  * @tsk: pointer to task_struct with which the scheduler is struggling
4016  *
4017  * Description: In the case that the scheduler cannot find an allowed cpu in
4018  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
4019  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
4020  * which will not contain a sane cpumask during cases such as cpu hotplugging.
4021  * This is the absolute last resort for the scheduler and it is only used if
4022  * _every_ other avenue has been traveled.
4023  *
4024  * Returns true if the affinity of @tsk was changed, false otherwise.
4025  **/
4026 
4027 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4028 {
4029 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4030 	const struct cpumask *cs_mask;
4031 	bool changed = false;
4032 
4033 	rcu_read_lock();
4034 	cs_mask = task_cs(tsk)->cpus_allowed;
4035 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4036 		do_set_cpus_allowed(tsk, cs_mask);
4037 		changed = true;
4038 	}
4039 	rcu_read_unlock();
4040 
4041 	/*
4042 	 * We own tsk->cpus_allowed, nobody can change it under us.
4043 	 *
4044 	 * But we used cs && cs->cpus_allowed lockless and thus can
4045 	 * race with cgroup_attach_task() or update_cpumask() and get
4046 	 * the wrong tsk->cpus_allowed. However, both cases imply the
4047 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4048 	 * which takes task_rq_lock().
4049 	 *
4050 	 * If we are called after it dropped the lock we must see all
4051 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4052 	 * set any mask even if it is not right from task_cs() pov,
4053 	 * the pending set_cpus_allowed_ptr() will fix things.
4054 	 *
4055 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4056 	 * if required.
4057 	 */
4058 	return changed;
4059 }
4060 
4061 void __init cpuset_init_current_mems_allowed(void)
4062 {
4063 	nodes_setall(current->mems_allowed);
4064 }
4065 
4066 /**
4067  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4068  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4069  *
4070  * Description: Returns the nodemask_t mems_allowed of the cpuset
4071  * attached to the specified @tsk.  Guaranteed to return some non-empty
4072  * subset of node_states[N_MEMORY], even if this means going outside the
4073  * tasks cpuset.
4074  **/
4075 
4076 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4077 {
4078 	nodemask_t mask;
4079 	unsigned long flags;
4080 
4081 	spin_lock_irqsave(&callback_lock, flags);
4082 	rcu_read_lock();
4083 	guarantee_online_mems(task_cs(tsk), &mask);
4084 	rcu_read_unlock();
4085 	spin_unlock_irqrestore(&callback_lock, flags);
4086 
4087 	return mask;
4088 }
4089 
4090 /**
4091  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4092  * @nodemask: the nodemask to be checked
4093  *
4094  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4095  */
4096 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4097 {
4098 	return nodes_intersects(*nodemask, current->mems_allowed);
4099 }
4100 
4101 /*
4102  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4103  * mem_hardwall ancestor to the specified cpuset.  Call holding
4104  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
4105  * (an unusual configuration), then returns the root cpuset.
4106  */
4107 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4108 {
4109 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4110 		cs = parent_cs(cs);
4111 	return cs;
4112 }
4113 
4114 /*
4115  * cpuset_node_allowed - Can we allocate on a memory node?
4116  * @node: is this an allowed node?
4117  * @gfp_mask: memory allocation flags
4118  *
4119  * If we're in interrupt, yes, we can always allocate.  If @node is set in
4120  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
4121  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4122  * yes.  If current has access to memory reserves as an oom victim, yes.
4123  * Otherwise, no.
4124  *
4125  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4126  * and do not allow allocations outside the current tasks cpuset
4127  * unless the task has been OOM killed.
4128  * GFP_KERNEL allocations are not so marked, so can escape to the
4129  * nearest enclosing hardwalled ancestor cpuset.
4130  *
4131  * Scanning up parent cpusets requires callback_lock.  The
4132  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4133  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4134  * current tasks mems_allowed came up empty on the first pass over
4135  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
4136  * cpuset are short of memory, might require taking the callback_lock.
4137  *
4138  * The first call here from mm/page_alloc:get_page_from_freelist()
4139  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4140  * so no allocation on a node outside the cpuset is allowed (unless
4141  * in interrupt, of course).
4142  *
4143  * The second pass through get_page_from_freelist() doesn't even call
4144  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
4145  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4146  * in alloc_flags.  That logic and the checks below have the combined
4147  * affect that:
4148  *	in_interrupt - any node ok (current task context irrelevant)
4149  *	GFP_ATOMIC   - any node ok
4150  *	tsk_is_oom_victim   - any node ok
4151  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
4152  *	GFP_USER     - only nodes in current tasks mems allowed ok.
4153  */
4154 bool cpuset_node_allowed(int node, gfp_t gfp_mask)
4155 {
4156 	struct cpuset *cs;		/* current cpuset ancestors */
4157 	bool allowed;			/* is allocation in zone z allowed? */
4158 	unsigned long flags;
4159 
4160 	if (in_interrupt())
4161 		return true;
4162 	if (node_isset(node, current->mems_allowed))
4163 		return true;
4164 	/*
4165 	 * Allow tasks that have access to memory reserves because they have
4166 	 * been OOM killed to get memory anywhere.
4167 	 */
4168 	if (unlikely(tsk_is_oom_victim(current)))
4169 		return true;
4170 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4171 		return false;
4172 
4173 	if (current->flags & PF_EXITING) /* Let dying task have memory */
4174 		return true;
4175 
4176 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4177 	spin_lock_irqsave(&callback_lock, flags);
4178 
4179 	rcu_read_lock();
4180 	cs = nearest_hardwall_ancestor(task_cs(current));
4181 	allowed = node_isset(node, cs->mems_allowed);
4182 	rcu_read_unlock();
4183 
4184 	spin_unlock_irqrestore(&callback_lock, flags);
4185 	return allowed;
4186 }
4187 
4188 /**
4189  * cpuset_spread_node() - On which node to begin search for a page
4190  * @rotor: round robin rotor
4191  *
4192  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4193  * tasks in a cpuset with is_spread_page or is_spread_slab set),
4194  * and if the memory allocation used cpuset_mem_spread_node()
4195  * to determine on which node to start looking, as it will for
4196  * certain page cache or slab cache pages such as used for file
4197  * system buffers and inode caches, then instead of starting on the
4198  * local node to look for a free page, rather spread the starting
4199  * node around the tasks mems_allowed nodes.
4200  *
4201  * We don't have to worry about the returned node being offline
4202  * because "it can't happen", and even if it did, it would be ok.
4203  *
4204  * The routines calling guarantee_online_mems() are careful to
4205  * only set nodes in task->mems_allowed that are online.  So it
4206  * should not be possible for the following code to return an
4207  * offline node.  But if it did, that would be ok, as this routine
4208  * is not returning the node where the allocation must be, only
4209  * the node where the search should start.  The zonelist passed to
4210  * __alloc_pages() will include all nodes.  If the slab allocator
4211  * is passed an offline node, it will fall back to the local node.
4212  * See kmem_cache_alloc_node().
4213  */
4214 static int cpuset_spread_node(int *rotor)
4215 {
4216 	return *rotor = next_node_in(*rotor, current->mems_allowed);
4217 }
4218 
4219 /**
4220  * cpuset_mem_spread_node() - On which node to begin search for a file page
4221  */
4222 int cpuset_mem_spread_node(void)
4223 {
4224 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4225 		current->cpuset_mem_spread_rotor =
4226 			node_random(&current->mems_allowed);
4227 
4228 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4229 }
4230 
4231 /**
4232  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4233  * @tsk1: pointer to task_struct of some task.
4234  * @tsk2: pointer to task_struct of some other task.
4235  *
4236  * Description: Return true if @tsk1's mems_allowed intersects the
4237  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
4238  * one of the task's memory usage might impact the memory available
4239  * to the other.
4240  **/
4241 
4242 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4243 				   const struct task_struct *tsk2)
4244 {
4245 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4246 }
4247 
4248 /**
4249  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4250  *
4251  * Description: Prints current's name, cpuset name, and cached copy of its
4252  * mems_allowed to the kernel log.
4253  */
4254 void cpuset_print_current_mems_allowed(void)
4255 {
4256 	struct cgroup *cgrp;
4257 
4258 	rcu_read_lock();
4259 
4260 	cgrp = task_cs(current)->css.cgroup;
4261 	pr_cont(",cpuset=");
4262 	pr_cont_cgroup_name(cgrp);
4263 	pr_cont(",mems_allowed=%*pbl",
4264 		nodemask_pr_args(&current->mems_allowed));
4265 
4266 	rcu_read_unlock();
4267 }
4268 
4269 #ifdef CONFIG_PROC_PID_CPUSET
4270 /*
4271  * proc_cpuset_show()
4272  *  - Print tasks cpuset path into seq_file.
4273  *  - Used for /proc/<pid>/cpuset.
4274  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
4275  *    doesn't really matter if tsk->cpuset changes after we read it,
4276  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
4277  *    anyway.
4278  */
4279 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
4280 		     struct pid *pid, struct task_struct *tsk)
4281 {
4282 	char *buf;
4283 	struct cgroup_subsys_state *css;
4284 	int retval;
4285 
4286 	retval = -ENOMEM;
4287 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
4288 	if (!buf)
4289 		goto out;
4290 
4291 	rcu_read_lock();
4292 	spin_lock_irq(&css_set_lock);
4293 	css = task_css(tsk, cpuset_cgrp_id);
4294 	retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX,
4295 				       current->nsproxy->cgroup_ns);
4296 	spin_unlock_irq(&css_set_lock);
4297 	rcu_read_unlock();
4298 
4299 	if (retval == -E2BIG)
4300 		retval = -ENAMETOOLONG;
4301 	if (retval < 0)
4302 		goto out_free;
4303 	seq_puts(m, buf);
4304 	seq_putc(m, '\n');
4305 	retval = 0;
4306 out_free:
4307 	kfree(buf);
4308 out:
4309 	return retval;
4310 }
4311 #endif /* CONFIG_PROC_PID_CPUSET */
4312 
4313 /* Display task mems_allowed in /proc/<pid>/status file. */
4314 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4315 {
4316 	seq_printf(m, "Mems_allowed:\t%*pb\n",
4317 		   nodemask_pr_args(&task->mems_allowed));
4318 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4319 		   nodemask_pr_args(&task->mems_allowed));
4320 }
4321