1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/init.h> 29 #include <linux/interrupt.h> 30 #include <linux/kernel.h> 31 #include <linux/mempolicy.h> 32 #include <linux/mm.h> 33 #include <linux/memory.h> 34 #include <linux/export.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched.h> 37 #include <linux/sched/deadline.h> 38 #include <linux/sched/mm.h> 39 #include <linux/sched/task.h> 40 #include <linux/security.h> 41 #include <linux/spinlock.h> 42 #include <linux/oom.h> 43 #include <linux/sched/isolation.h> 44 #include <linux/cgroup.h> 45 #include <linux/wait.h> 46 47 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 48 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 49 50 /* 51 * There could be abnormal cpuset configurations for cpu or memory 52 * node binding, add this key to provide a quick low-cost judgment 53 * of the situation. 54 */ 55 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 56 57 /* See "Frequency meter" comments, below. */ 58 59 struct fmeter { 60 int cnt; /* unprocessed events count */ 61 int val; /* most recent output value */ 62 time64_t time; /* clock (secs) when val computed */ 63 spinlock_t lock; /* guards read or write of above */ 64 }; 65 66 /* 67 * Invalid partition error code 68 */ 69 enum prs_errcode { 70 PERR_NONE = 0, 71 PERR_INVCPUS, 72 PERR_INVPARENT, 73 PERR_NOTPART, 74 PERR_NOTEXCL, 75 PERR_NOCPUS, 76 PERR_HOTPLUG, 77 PERR_CPUSEMPTY, 78 }; 79 80 static const char * const perr_strings[] = { 81 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus", 82 [PERR_INVPARENT] = "Parent is an invalid partition root", 83 [PERR_NOTPART] = "Parent is not a partition root", 84 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", 85 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", 86 [PERR_HOTPLUG] = "No cpu available due to hotplug", 87 [PERR_CPUSEMPTY] = "cpuset.cpus is empty", 88 }; 89 90 struct cpuset { 91 struct cgroup_subsys_state css; 92 93 unsigned long flags; /* "unsigned long" so bitops work */ 94 95 /* 96 * On default hierarchy: 97 * 98 * The user-configured masks can only be changed by writing to 99 * cpuset.cpus and cpuset.mems, and won't be limited by the 100 * parent masks. 101 * 102 * The effective masks is the real masks that apply to the tasks 103 * in the cpuset. They may be changed if the configured masks are 104 * changed or hotplug happens. 105 * 106 * effective_mask == configured_mask & parent's effective_mask, 107 * and if it ends up empty, it will inherit the parent's mask. 108 * 109 * 110 * On legacy hierarchy: 111 * 112 * The user-configured masks are always the same with effective masks. 113 */ 114 115 /* user-configured CPUs and Memory Nodes allow to tasks */ 116 cpumask_var_t cpus_allowed; 117 nodemask_t mems_allowed; 118 119 /* effective CPUs and Memory Nodes allow to tasks */ 120 cpumask_var_t effective_cpus; 121 nodemask_t effective_mems; 122 123 /* 124 * CPUs allocated to child sub-partitions (default hierarchy only) 125 * - CPUs granted by the parent = effective_cpus U subparts_cpus 126 * - effective_cpus and subparts_cpus are mutually exclusive. 127 * 128 * effective_cpus contains only onlined CPUs, but subparts_cpus 129 * may have offlined ones. 130 */ 131 cpumask_var_t subparts_cpus; 132 133 /* 134 * This is old Memory Nodes tasks took on. 135 * 136 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 137 * - A new cpuset's old_mems_allowed is initialized when some 138 * task is moved into it. 139 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 140 * cpuset.mems_allowed and have tasks' nodemask updated, and 141 * then old_mems_allowed is updated to mems_allowed. 142 */ 143 nodemask_t old_mems_allowed; 144 145 struct fmeter fmeter; /* memory_pressure filter */ 146 147 /* 148 * Tasks are being attached to this cpuset. Used to prevent 149 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 150 */ 151 int attach_in_progress; 152 153 /* partition number for rebuild_sched_domains() */ 154 int pn; 155 156 /* for custom sched domain */ 157 int relax_domain_level; 158 159 /* number of CPUs in subparts_cpus */ 160 int nr_subparts_cpus; 161 162 /* partition root state */ 163 int partition_root_state; 164 165 /* 166 * Default hierarchy only: 167 * use_parent_ecpus - set if using parent's effective_cpus 168 * child_ecpus_count - # of children with use_parent_ecpus set 169 */ 170 int use_parent_ecpus; 171 int child_ecpus_count; 172 173 /* 174 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we 175 * know when to rebuild associated root domain bandwidth information. 176 */ 177 int nr_deadline_tasks; 178 int nr_migrate_dl_tasks; 179 u64 sum_migrate_dl_bw; 180 181 /* Invalid partition error code, not lock protected */ 182 enum prs_errcode prs_err; 183 184 /* Handle for cpuset.cpus.partition */ 185 struct cgroup_file partition_file; 186 }; 187 188 /* 189 * Partition root states: 190 * 191 * 0 - member (not a partition root) 192 * 1 - partition root 193 * 2 - partition root without load balancing (isolated) 194 * -1 - invalid partition root 195 * -2 - invalid isolated partition root 196 */ 197 #define PRS_MEMBER 0 198 #define PRS_ROOT 1 199 #define PRS_ISOLATED 2 200 #define PRS_INVALID_ROOT -1 201 #define PRS_INVALID_ISOLATED -2 202 203 static inline bool is_prs_invalid(int prs_state) 204 { 205 return prs_state < 0; 206 } 207 208 /* 209 * Temporary cpumasks for working with partitions that are passed among 210 * functions to avoid memory allocation in inner functions. 211 */ 212 struct tmpmasks { 213 cpumask_var_t addmask, delmask; /* For partition root */ 214 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 215 }; 216 217 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 218 { 219 return css ? container_of(css, struct cpuset, css) : NULL; 220 } 221 222 /* Retrieve the cpuset for a task */ 223 static inline struct cpuset *task_cs(struct task_struct *task) 224 { 225 return css_cs(task_css(task, cpuset_cgrp_id)); 226 } 227 228 static inline struct cpuset *parent_cs(struct cpuset *cs) 229 { 230 return css_cs(cs->css.parent); 231 } 232 233 void inc_dl_tasks_cs(struct task_struct *p) 234 { 235 struct cpuset *cs = task_cs(p); 236 237 cs->nr_deadline_tasks++; 238 } 239 240 void dec_dl_tasks_cs(struct task_struct *p) 241 { 242 struct cpuset *cs = task_cs(p); 243 244 cs->nr_deadline_tasks--; 245 } 246 247 /* bits in struct cpuset flags field */ 248 typedef enum { 249 CS_ONLINE, 250 CS_CPU_EXCLUSIVE, 251 CS_MEM_EXCLUSIVE, 252 CS_MEM_HARDWALL, 253 CS_MEMORY_MIGRATE, 254 CS_SCHED_LOAD_BALANCE, 255 CS_SPREAD_PAGE, 256 CS_SPREAD_SLAB, 257 } cpuset_flagbits_t; 258 259 /* convenient tests for these bits */ 260 static inline bool is_cpuset_online(struct cpuset *cs) 261 { 262 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 263 } 264 265 static inline int is_cpu_exclusive(const struct cpuset *cs) 266 { 267 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 268 } 269 270 static inline int is_mem_exclusive(const struct cpuset *cs) 271 { 272 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 273 } 274 275 static inline int is_mem_hardwall(const struct cpuset *cs) 276 { 277 return test_bit(CS_MEM_HARDWALL, &cs->flags); 278 } 279 280 static inline int is_sched_load_balance(const struct cpuset *cs) 281 { 282 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 283 } 284 285 static inline int is_memory_migrate(const struct cpuset *cs) 286 { 287 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 288 } 289 290 static inline int is_spread_page(const struct cpuset *cs) 291 { 292 return test_bit(CS_SPREAD_PAGE, &cs->flags); 293 } 294 295 static inline int is_spread_slab(const struct cpuset *cs) 296 { 297 return test_bit(CS_SPREAD_SLAB, &cs->flags); 298 } 299 300 static inline int is_partition_valid(const struct cpuset *cs) 301 { 302 return cs->partition_root_state > 0; 303 } 304 305 static inline int is_partition_invalid(const struct cpuset *cs) 306 { 307 return cs->partition_root_state < 0; 308 } 309 310 /* 311 * Callers should hold callback_lock to modify partition_root_state. 312 */ 313 static inline void make_partition_invalid(struct cpuset *cs) 314 { 315 if (is_partition_valid(cs)) 316 cs->partition_root_state = -cs->partition_root_state; 317 } 318 319 /* 320 * Send notification event of whenever partition_root_state changes. 321 */ 322 static inline void notify_partition_change(struct cpuset *cs, int old_prs) 323 { 324 if (old_prs == cs->partition_root_state) 325 return; 326 cgroup_file_notify(&cs->partition_file); 327 328 /* Reset prs_err if not invalid */ 329 if (is_partition_valid(cs)) 330 WRITE_ONCE(cs->prs_err, PERR_NONE); 331 } 332 333 static struct cpuset top_cpuset = { 334 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 335 (1 << CS_MEM_EXCLUSIVE)), 336 .partition_root_state = PRS_ROOT, 337 }; 338 339 /** 340 * cpuset_for_each_child - traverse online children of a cpuset 341 * @child_cs: loop cursor pointing to the current child 342 * @pos_css: used for iteration 343 * @parent_cs: target cpuset to walk children of 344 * 345 * Walk @child_cs through the online children of @parent_cs. Must be used 346 * with RCU read locked. 347 */ 348 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 349 css_for_each_child((pos_css), &(parent_cs)->css) \ 350 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 351 352 /** 353 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 354 * @des_cs: loop cursor pointing to the current descendant 355 * @pos_css: used for iteration 356 * @root_cs: target cpuset to walk ancestor of 357 * 358 * Walk @des_cs through the online descendants of @root_cs. Must be used 359 * with RCU read locked. The caller may modify @pos_css by calling 360 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 361 * iteration and the first node to be visited. 362 */ 363 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 364 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 365 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 366 367 /* 368 * There are two global locks guarding cpuset structures - cpuset_mutex and 369 * callback_lock. We also require taking task_lock() when dereferencing a 370 * task's cpuset pointer. See "The task_lock() exception", at the end of this 371 * comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems 372 * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset 373 * structures. Note that cpuset_mutex needs to be a mutex as it is used in 374 * paths that rely on priority inheritance (e.g. scheduler - on RT) for 375 * correctness. 376 * 377 * A task must hold both locks to modify cpusets. If a task holds 378 * cpuset_mutex, it blocks others, ensuring that it is the only task able to 379 * also acquire callback_lock and be able to modify cpusets. It can perform 380 * various checks on the cpuset structure first, knowing nothing will change. 381 * It can also allocate memory while just holding cpuset_mutex. While it is 382 * performing these checks, various callback routines can briefly acquire 383 * callback_lock to query cpusets. Once it is ready to make the changes, it 384 * takes callback_lock, blocking everyone else. 385 * 386 * Calls to the kernel memory allocator can not be made while holding 387 * callback_lock, as that would risk double tripping on callback_lock 388 * from one of the callbacks into the cpuset code from within 389 * __alloc_pages(). 390 * 391 * If a task is only holding callback_lock, then it has read-only 392 * access to cpusets. 393 * 394 * Now, the task_struct fields mems_allowed and mempolicy may be changed 395 * by other task, we use alloc_lock in the task_struct fields to protect 396 * them. 397 * 398 * The cpuset_common_file_read() handlers only hold callback_lock across 399 * small pieces of code, such as when reading out possibly multi-word 400 * cpumasks and nodemasks. 401 * 402 * Accessing a task's cpuset should be done in accordance with the 403 * guidelines for accessing subsystem state in kernel/cgroup.c 404 */ 405 406 static DEFINE_MUTEX(cpuset_mutex); 407 408 void cpuset_lock(void) 409 { 410 mutex_lock(&cpuset_mutex); 411 } 412 413 void cpuset_unlock(void) 414 { 415 mutex_unlock(&cpuset_mutex); 416 } 417 418 static DEFINE_SPINLOCK(callback_lock); 419 420 static struct workqueue_struct *cpuset_migrate_mm_wq; 421 422 /* 423 * CPU / memory hotplug is handled asynchronously. 424 */ 425 static void cpuset_hotplug_workfn(struct work_struct *work); 426 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 427 428 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 429 430 static inline void check_insane_mems_config(nodemask_t *nodes) 431 { 432 if (!cpusets_insane_config() && 433 movable_only_nodes(nodes)) { 434 static_branch_enable(&cpusets_insane_config_key); 435 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 436 "Cpuset allocations might fail even with a lot of memory available.\n", 437 nodemask_pr_args(nodes)); 438 } 439 } 440 441 /* 442 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 443 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 444 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 445 * With v2 behavior, "cpus" and "mems" are always what the users have 446 * requested and won't be changed by hotplug events. Only the effective 447 * cpus or mems will be affected. 448 */ 449 static inline bool is_in_v2_mode(void) 450 { 451 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 452 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 453 } 454 455 /** 456 * partition_is_populated - check if partition has tasks 457 * @cs: partition root to be checked 458 * @excluded_child: a child cpuset to be excluded in task checking 459 * Return: true if there are tasks, false otherwise 460 * 461 * It is assumed that @cs is a valid partition root. @excluded_child should 462 * be non-NULL when this cpuset is going to become a partition itself. 463 */ 464 static inline bool partition_is_populated(struct cpuset *cs, 465 struct cpuset *excluded_child) 466 { 467 struct cgroup_subsys_state *css; 468 struct cpuset *child; 469 470 if (cs->css.cgroup->nr_populated_csets) 471 return true; 472 if (!excluded_child && !cs->nr_subparts_cpus) 473 return cgroup_is_populated(cs->css.cgroup); 474 475 rcu_read_lock(); 476 cpuset_for_each_child(child, css, cs) { 477 if (child == excluded_child) 478 continue; 479 if (is_partition_valid(child)) 480 continue; 481 if (cgroup_is_populated(child->css.cgroup)) { 482 rcu_read_unlock(); 483 return true; 484 } 485 } 486 rcu_read_unlock(); 487 return false; 488 } 489 490 /* 491 * Return in pmask the portion of a task's cpusets's cpus_allowed that 492 * are online and are capable of running the task. If none are found, 493 * walk up the cpuset hierarchy until we find one that does have some 494 * appropriate cpus. 495 * 496 * One way or another, we guarantee to return some non-empty subset 497 * of cpu_online_mask. 498 * 499 * Call with callback_lock or cpuset_mutex held. 500 */ 501 static void guarantee_online_cpus(struct task_struct *tsk, 502 struct cpumask *pmask) 503 { 504 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 505 struct cpuset *cs; 506 507 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) 508 cpumask_copy(pmask, cpu_online_mask); 509 510 rcu_read_lock(); 511 cs = task_cs(tsk); 512 513 while (!cpumask_intersects(cs->effective_cpus, pmask)) { 514 cs = parent_cs(cs); 515 if (unlikely(!cs)) { 516 /* 517 * The top cpuset doesn't have any online cpu as a 518 * consequence of a race between cpuset_hotplug_work 519 * and cpu hotplug notifier. But we know the top 520 * cpuset's effective_cpus is on its way to be 521 * identical to cpu_online_mask. 522 */ 523 goto out_unlock; 524 } 525 } 526 cpumask_and(pmask, pmask, cs->effective_cpus); 527 528 out_unlock: 529 rcu_read_unlock(); 530 } 531 532 /* 533 * Return in *pmask the portion of a cpusets's mems_allowed that 534 * are online, with memory. If none are online with memory, walk 535 * up the cpuset hierarchy until we find one that does have some 536 * online mems. The top cpuset always has some mems online. 537 * 538 * One way or another, we guarantee to return some non-empty subset 539 * of node_states[N_MEMORY]. 540 * 541 * Call with callback_lock or cpuset_mutex held. 542 */ 543 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 544 { 545 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 546 cs = parent_cs(cs); 547 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 548 } 549 550 /* 551 * update task's spread flag if cpuset's page/slab spread flag is set 552 * 553 * Call with callback_lock or cpuset_mutex held. The check can be skipped 554 * if on default hierarchy. 555 */ 556 static void cpuset_update_task_spread_flags(struct cpuset *cs, 557 struct task_struct *tsk) 558 { 559 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 560 return; 561 562 if (is_spread_page(cs)) 563 task_set_spread_page(tsk); 564 else 565 task_clear_spread_page(tsk); 566 567 if (is_spread_slab(cs)) 568 task_set_spread_slab(tsk); 569 else 570 task_clear_spread_slab(tsk); 571 } 572 573 /* 574 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 575 * 576 * One cpuset is a subset of another if all its allowed CPUs and 577 * Memory Nodes are a subset of the other, and its exclusive flags 578 * are only set if the other's are set. Call holding cpuset_mutex. 579 */ 580 581 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 582 { 583 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 584 nodes_subset(p->mems_allowed, q->mems_allowed) && 585 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 586 is_mem_exclusive(p) <= is_mem_exclusive(q); 587 } 588 589 /** 590 * alloc_cpumasks - allocate three cpumasks for cpuset 591 * @cs: the cpuset that have cpumasks to be allocated. 592 * @tmp: the tmpmasks structure pointer 593 * Return: 0 if successful, -ENOMEM otherwise. 594 * 595 * Only one of the two input arguments should be non-NULL. 596 */ 597 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 598 { 599 cpumask_var_t *pmask1, *pmask2, *pmask3; 600 601 if (cs) { 602 pmask1 = &cs->cpus_allowed; 603 pmask2 = &cs->effective_cpus; 604 pmask3 = &cs->subparts_cpus; 605 } else { 606 pmask1 = &tmp->new_cpus; 607 pmask2 = &tmp->addmask; 608 pmask3 = &tmp->delmask; 609 } 610 611 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 612 return -ENOMEM; 613 614 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 615 goto free_one; 616 617 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 618 goto free_two; 619 620 return 0; 621 622 free_two: 623 free_cpumask_var(*pmask2); 624 free_one: 625 free_cpumask_var(*pmask1); 626 return -ENOMEM; 627 } 628 629 /** 630 * free_cpumasks - free cpumasks in a tmpmasks structure 631 * @cs: the cpuset that have cpumasks to be free. 632 * @tmp: the tmpmasks structure pointer 633 */ 634 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 635 { 636 if (cs) { 637 free_cpumask_var(cs->cpus_allowed); 638 free_cpumask_var(cs->effective_cpus); 639 free_cpumask_var(cs->subparts_cpus); 640 } 641 if (tmp) { 642 free_cpumask_var(tmp->new_cpus); 643 free_cpumask_var(tmp->addmask); 644 free_cpumask_var(tmp->delmask); 645 } 646 } 647 648 /** 649 * alloc_trial_cpuset - allocate a trial cpuset 650 * @cs: the cpuset that the trial cpuset duplicates 651 */ 652 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 653 { 654 struct cpuset *trial; 655 656 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 657 if (!trial) 658 return NULL; 659 660 if (alloc_cpumasks(trial, NULL)) { 661 kfree(trial); 662 return NULL; 663 } 664 665 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 666 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 667 return trial; 668 } 669 670 /** 671 * free_cpuset - free the cpuset 672 * @cs: the cpuset to be freed 673 */ 674 static inline void free_cpuset(struct cpuset *cs) 675 { 676 free_cpumasks(cs, NULL); 677 kfree(cs); 678 } 679 680 /* 681 * validate_change_legacy() - Validate conditions specific to legacy (v1) 682 * behavior. 683 */ 684 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial) 685 { 686 struct cgroup_subsys_state *css; 687 struct cpuset *c, *par; 688 int ret; 689 690 WARN_ON_ONCE(!rcu_read_lock_held()); 691 692 /* Each of our child cpusets must be a subset of us */ 693 ret = -EBUSY; 694 cpuset_for_each_child(c, css, cur) 695 if (!is_cpuset_subset(c, trial)) 696 goto out; 697 698 /* On legacy hierarchy, we must be a subset of our parent cpuset. */ 699 ret = -EACCES; 700 par = parent_cs(cur); 701 if (par && !is_cpuset_subset(trial, par)) 702 goto out; 703 704 ret = 0; 705 out: 706 return ret; 707 } 708 709 /* 710 * validate_change() - Used to validate that any proposed cpuset change 711 * follows the structural rules for cpusets. 712 * 713 * If we replaced the flag and mask values of the current cpuset 714 * (cur) with those values in the trial cpuset (trial), would 715 * our various subset and exclusive rules still be valid? Presumes 716 * cpuset_mutex held. 717 * 718 * 'cur' is the address of an actual, in-use cpuset. Operations 719 * such as list traversal that depend on the actual address of the 720 * cpuset in the list must use cur below, not trial. 721 * 722 * 'trial' is the address of bulk structure copy of cur, with 723 * perhaps one or more of the fields cpus_allowed, mems_allowed, 724 * or flags changed to new, trial values. 725 * 726 * Return 0 if valid, -errno if not. 727 */ 728 729 static int validate_change(struct cpuset *cur, struct cpuset *trial) 730 { 731 struct cgroup_subsys_state *css; 732 struct cpuset *c, *par; 733 int ret = 0; 734 735 rcu_read_lock(); 736 737 if (!is_in_v2_mode()) 738 ret = validate_change_legacy(cur, trial); 739 if (ret) 740 goto out; 741 742 /* Remaining checks don't apply to root cpuset */ 743 if (cur == &top_cpuset) 744 goto out; 745 746 par = parent_cs(cur); 747 748 /* 749 * Cpusets with tasks - existing or newly being attached - can't 750 * be changed to have empty cpus_allowed or mems_allowed. 751 */ 752 ret = -ENOSPC; 753 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 754 if (!cpumask_empty(cur->cpus_allowed) && 755 cpumask_empty(trial->cpus_allowed)) 756 goto out; 757 if (!nodes_empty(cur->mems_allowed) && 758 nodes_empty(trial->mems_allowed)) 759 goto out; 760 } 761 762 /* 763 * We can't shrink if we won't have enough room for SCHED_DEADLINE 764 * tasks. 765 */ 766 ret = -EBUSY; 767 if (is_cpu_exclusive(cur) && 768 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 769 trial->cpus_allowed)) 770 goto out; 771 772 /* 773 * If either I or some sibling (!= me) is exclusive, we can't 774 * overlap 775 */ 776 ret = -EINVAL; 777 cpuset_for_each_child(c, css, par) { 778 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 779 c != cur && 780 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 781 goto out; 782 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 783 c != cur && 784 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 785 goto out; 786 } 787 788 ret = 0; 789 out: 790 rcu_read_unlock(); 791 return ret; 792 } 793 794 #ifdef CONFIG_SMP 795 /* 796 * Helper routine for generate_sched_domains(). 797 * Do cpusets a, b have overlapping effective cpus_allowed masks? 798 */ 799 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 800 { 801 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 802 } 803 804 static void 805 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 806 { 807 if (dattr->relax_domain_level < c->relax_domain_level) 808 dattr->relax_domain_level = c->relax_domain_level; 809 return; 810 } 811 812 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 813 struct cpuset *root_cs) 814 { 815 struct cpuset *cp; 816 struct cgroup_subsys_state *pos_css; 817 818 rcu_read_lock(); 819 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 820 /* skip the whole subtree if @cp doesn't have any CPU */ 821 if (cpumask_empty(cp->cpus_allowed)) { 822 pos_css = css_rightmost_descendant(pos_css); 823 continue; 824 } 825 826 if (is_sched_load_balance(cp)) 827 update_domain_attr(dattr, cp); 828 } 829 rcu_read_unlock(); 830 } 831 832 /* Must be called with cpuset_mutex held. */ 833 static inline int nr_cpusets(void) 834 { 835 /* jump label reference count + the top-level cpuset */ 836 return static_key_count(&cpusets_enabled_key.key) + 1; 837 } 838 839 /* 840 * generate_sched_domains() 841 * 842 * This function builds a partial partition of the systems CPUs 843 * A 'partial partition' is a set of non-overlapping subsets whose 844 * union is a subset of that set. 845 * The output of this function needs to be passed to kernel/sched/core.c 846 * partition_sched_domains() routine, which will rebuild the scheduler's 847 * load balancing domains (sched domains) as specified by that partial 848 * partition. 849 * 850 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 851 * for a background explanation of this. 852 * 853 * Does not return errors, on the theory that the callers of this 854 * routine would rather not worry about failures to rebuild sched 855 * domains when operating in the severe memory shortage situations 856 * that could cause allocation failures below. 857 * 858 * Must be called with cpuset_mutex held. 859 * 860 * The three key local variables below are: 861 * cp - cpuset pointer, used (together with pos_css) to perform a 862 * top-down scan of all cpusets. For our purposes, rebuilding 863 * the schedulers sched domains, we can ignore !is_sched_load_ 864 * balance cpusets. 865 * csa - (for CpuSet Array) Array of pointers to all the cpusets 866 * that need to be load balanced, for convenient iterative 867 * access by the subsequent code that finds the best partition, 868 * i.e the set of domains (subsets) of CPUs such that the 869 * cpus_allowed of every cpuset marked is_sched_load_balance 870 * is a subset of one of these domains, while there are as 871 * many such domains as possible, each as small as possible. 872 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 873 * the kernel/sched/core.c routine partition_sched_domains() in a 874 * convenient format, that can be easily compared to the prior 875 * value to determine what partition elements (sched domains) 876 * were changed (added or removed.) 877 * 878 * Finding the best partition (set of domains): 879 * The triple nested loops below over i, j, k scan over the 880 * load balanced cpusets (using the array of cpuset pointers in 881 * csa[]) looking for pairs of cpusets that have overlapping 882 * cpus_allowed, but which don't have the same 'pn' partition 883 * number and gives them in the same partition number. It keeps 884 * looping on the 'restart' label until it can no longer find 885 * any such pairs. 886 * 887 * The union of the cpus_allowed masks from the set of 888 * all cpusets having the same 'pn' value then form the one 889 * element of the partition (one sched domain) to be passed to 890 * partition_sched_domains(). 891 */ 892 static int generate_sched_domains(cpumask_var_t **domains, 893 struct sched_domain_attr **attributes) 894 { 895 struct cpuset *cp; /* top-down scan of cpusets */ 896 struct cpuset **csa; /* array of all cpuset ptrs */ 897 int csn; /* how many cpuset ptrs in csa so far */ 898 int i, j, k; /* indices for partition finding loops */ 899 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 900 struct sched_domain_attr *dattr; /* attributes for custom domains */ 901 int ndoms = 0; /* number of sched domains in result */ 902 int nslot; /* next empty doms[] struct cpumask slot */ 903 struct cgroup_subsys_state *pos_css; 904 bool root_load_balance = is_sched_load_balance(&top_cpuset); 905 906 doms = NULL; 907 dattr = NULL; 908 csa = NULL; 909 910 /* Special case for the 99% of systems with one, full, sched domain */ 911 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 912 ndoms = 1; 913 doms = alloc_sched_domains(ndoms); 914 if (!doms) 915 goto done; 916 917 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 918 if (dattr) { 919 *dattr = SD_ATTR_INIT; 920 update_domain_attr_tree(dattr, &top_cpuset); 921 } 922 cpumask_and(doms[0], top_cpuset.effective_cpus, 923 housekeeping_cpumask(HK_TYPE_DOMAIN)); 924 925 goto done; 926 } 927 928 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 929 if (!csa) 930 goto done; 931 csn = 0; 932 933 rcu_read_lock(); 934 if (root_load_balance) 935 csa[csn++] = &top_cpuset; 936 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 937 if (cp == &top_cpuset) 938 continue; 939 /* 940 * Continue traversing beyond @cp iff @cp has some CPUs and 941 * isn't load balancing. The former is obvious. The 942 * latter: All child cpusets contain a subset of the 943 * parent's cpus, so just skip them, and then we call 944 * update_domain_attr_tree() to calc relax_domain_level of 945 * the corresponding sched domain. 946 * 947 * If root is load-balancing, we can skip @cp if it 948 * is a subset of the root's effective_cpus. 949 */ 950 if (!cpumask_empty(cp->cpus_allowed) && 951 !(is_sched_load_balance(cp) && 952 cpumask_intersects(cp->cpus_allowed, 953 housekeeping_cpumask(HK_TYPE_DOMAIN)))) 954 continue; 955 956 if (root_load_balance && 957 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 958 continue; 959 960 if (is_sched_load_balance(cp) && 961 !cpumask_empty(cp->effective_cpus)) 962 csa[csn++] = cp; 963 964 /* skip @cp's subtree if not a partition root */ 965 if (!is_partition_valid(cp)) 966 pos_css = css_rightmost_descendant(pos_css); 967 } 968 rcu_read_unlock(); 969 970 for (i = 0; i < csn; i++) 971 csa[i]->pn = i; 972 ndoms = csn; 973 974 restart: 975 /* Find the best partition (set of sched domains) */ 976 for (i = 0; i < csn; i++) { 977 struct cpuset *a = csa[i]; 978 int apn = a->pn; 979 980 for (j = 0; j < csn; j++) { 981 struct cpuset *b = csa[j]; 982 int bpn = b->pn; 983 984 if (apn != bpn && cpusets_overlap(a, b)) { 985 for (k = 0; k < csn; k++) { 986 struct cpuset *c = csa[k]; 987 988 if (c->pn == bpn) 989 c->pn = apn; 990 } 991 ndoms--; /* one less element */ 992 goto restart; 993 } 994 } 995 } 996 997 /* 998 * Now we know how many domains to create. 999 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 1000 */ 1001 doms = alloc_sched_domains(ndoms); 1002 if (!doms) 1003 goto done; 1004 1005 /* 1006 * The rest of the code, including the scheduler, can deal with 1007 * dattr==NULL case. No need to abort if alloc fails. 1008 */ 1009 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 1010 GFP_KERNEL); 1011 1012 for (nslot = 0, i = 0; i < csn; i++) { 1013 struct cpuset *a = csa[i]; 1014 struct cpumask *dp; 1015 int apn = a->pn; 1016 1017 if (apn < 0) { 1018 /* Skip completed partitions */ 1019 continue; 1020 } 1021 1022 dp = doms[nslot]; 1023 1024 if (nslot == ndoms) { 1025 static int warnings = 10; 1026 if (warnings) { 1027 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 1028 nslot, ndoms, csn, i, apn); 1029 warnings--; 1030 } 1031 continue; 1032 } 1033 1034 cpumask_clear(dp); 1035 if (dattr) 1036 *(dattr + nslot) = SD_ATTR_INIT; 1037 for (j = i; j < csn; j++) { 1038 struct cpuset *b = csa[j]; 1039 1040 if (apn == b->pn) { 1041 cpumask_or(dp, dp, b->effective_cpus); 1042 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); 1043 if (dattr) 1044 update_domain_attr_tree(dattr + nslot, b); 1045 1046 /* Done with this partition */ 1047 b->pn = -1; 1048 } 1049 } 1050 nslot++; 1051 } 1052 BUG_ON(nslot != ndoms); 1053 1054 done: 1055 kfree(csa); 1056 1057 /* 1058 * Fallback to the default domain if kmalloc() failed. 1059 * See comments in partition_sched_domains(). 1060 */ 1061 if (doms == NULL) 1062 ndoms = 1; 1063 1064 *domains = doms; 1065 *attributes = dattr; 1066 return ndoms; 1067 } 1068 1069 static void dl_update_tasks_root_domain(struct cpuset *cs) 1070 { 1071 struct css_task_iter it; 1072 struct task_struct *task; 1073 1074 if (cs->nr_deadline_tasks == 0) 1075 return; 1076 1077 css_task_iter_start(&cs->css, 0, &it); 1078 1079 while ((task = css_task_iter_next(&it))) 1080 dl_add_task_root_domain(task); 1081 1082 css_task_iter_end(&it); 1083 } 1084 1085 static void dl_rebuild_rd_accounting(void) 1086 { 1087 struct cpuset *cs = NULL; 1088 struct cgroup_subsys_state *pos_css; 1089 1090 lockdep_assert_held(&cpuset_mutex); 1091 lockdep_assert_cpus_held(); 1092 lockdep_assert_held(&sched_domains_mutex); 1093 1094 rcu_read_lock(); 1095 1096 /* 1097 * Clear default root domain DL accounting, it will be computed again 1098 * if a task belongs to it. 1099 */ 1100 dl_clear_root_domain(&def_root_domain); 1101 1102 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1103 1104 if (cpumask_empty(cs->effective_cpus)) { 1105 pos_css = css_rightmost_descendant(pos_css); 1106 continue; 1107 } 1108 1109 css_get(&cs->css); 1110 1111 rcu_read_unlock(); 1112 1113 dl_update_tasks_root_domain(cs); 1114 1115 rcu_read_lock(); 1116 css_put(&cs->css); 1117 } 1118 rcu_read_unlock(); 1119 } 1120 1121 static void 1122 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1123 struct sched_domain_attr *dattr_new) 1124 { 1125 mutex_lock(&sched_domains_mutex); 1126 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 1127 dl_rebuild_rd_accounting(); 1128 mutex_unlock(&sched_domains_mutex); 1129 } 1130 1131 /* 1132 * Rebuild scheduler domains. 1133 * 1134 * If the flag 'sched_load_balance' of any cpuset with non-empty 1135 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1136 * which has that flag enabled, or if any cpuset with a non-empty 1137 * 'cpus' is removed, then call this routine to rebuild the 1138 * scheduler's dynamic sched domains. 1139 * 1140 * Call with cpuset_mutex held. Takes cpus_read_lock(). 1141 */ 1142 static void rebuild_sched_domains_locked(void) 1143 { 1144 struct cgroup_subsys_state *pos_css; 1145 struct sched_domain_attr *attr; 1146 cpumask_var_t *doms; 1147 struct cpuset *cs; 1148 int ndoms; 1149 1150 lockdep_assert_cpus_held(); 1151 lockdep_assert_held(&cpuset_mutex); 1152 1153 /* 1154 * If we have raced with CPU hotplug, return early to avoid 1155 * passing doms with offlined cpu to partition_sched_domains(). 1156 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains. 1157 * 1158 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1159 * should be the same as the active CPUs, so checking only top_cpuset 1160 * is enough to detect racing CPU offlines. 1161 */ 1162 if (!top_cpuset.nr_subparts_cpus && 1163 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1164 return; 1165 1166 /* 1167 * With subpartition CPUs, however, the effective CPUs of a partition 1168 * root should be only a subset of the active CPUs. Since a CPU in any 1169 * partition root could be offlined, all must be checked. 1170 */ 1171 if (top_cpuset.nr_subparts_cpus) { 1172 rcu_read_lock(); 1173 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1174 if (!is_partition_valid(cs)) { 1175 pos_css = css_rightmost_descendant(pos_css); 1176 continue; 1177 } 1178 if (!cpumask_subset(cs->effective_cpus, 1179 cpu_active_mask)) { 1180 rcu_read_unlock(); 1181 return; 1182 } 1183 } 1184 rcu_read_unlock(); 1185 } 1186 1187 /* Generate domain masks and attrs */ 1188 ndoms = generate_sched_domains(&doms, &attr); 1189 1190 /* Have scheduler rebuild the domains */ 1191 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1192 } 1193 #else /* !CONFIG_SMP */ 1194 static void rebuild_sched_domains_locked(void) 1195 { 1196 } 1197 #endif /* CONFIG_SMP */ 1198 1199 void rebuild_sched_domains(void) 1200 { 1201 cpus_read_lock(); 1202 mutex_lock(&cpuset_mutex); 1203 rebuild_sched_domains_locked(); 1204 mutex_unlock(&cpuset_mutex); 1205 cpus_read_unlock(); 1206 } 1207 1208 /** 1209 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1210 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1211 * @new_cpus: the temp variable for the new effective_cpus mask 1212 * 1213 * Iterate through each task of @cs updating its cpus_allowed to the 1214 * effective cpuset's. As this function is called with cpuset_mutex held, 1215 * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask() 1216 * is used instead of effective_cpus to make sure all offline CPUs are also 1217 * included as hotplug code won't update cpumasks for tasks in top_cpuset. 1218 */ 1219 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) 1220 { 1221 struct css_task_iter it; 1222 struct task_struct *task; 1223 bool top_cs = cs == &top_cpuset; 1224 1225 css_task_iter_start(&cs->css, 0, &it); 1226 while ((task = css_task_iter_next(&it))) { 1227 const struct cpumask *possible_mask = task_cpu_possible_mask(task); 1228 1229 if (top_cs) { 1230 /* 1231 * Percpu kthreads in top_cpuset are ignored 1232 */ 1233 if (kthread_is_per_cpu(task)) 1234 continue; 1235 cpumask_andnot(new_cpus, possible_mask, cs->subparts_cpus); 1236 } else { 1237 cpumask_and(new_cpus, possible_mask, cs->effective_cpus); 1238 } 1239 set_cpus_allowed_ptr(task, new_cpus); 1240 } 1241 css_task_iter_end(&it); 1242 } 1243 1244 /** 1245 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1246 * @new_cpus: the temp variable for the new effective_cpus mask 1247 * @cs: the cpuset the need to recompute the new effective_cpus mask 1248 * @parent: the parent cpuset 1249 * 1250 * If the parent has subpartition CPUs, include them in the list of 1251 * allowable CPUs in computing the new effective_cpus mask. Since offlined 1252 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 1253 * to mask those out. 1254 */ 1255 static void compute_effective_cpumask(struct cpumask *new_cpus, 1256 struct cpuset *cs, struct cpuset *parent) 1257 { 1258 if (parent->nr_subparts_cpus && is_partition_valid(cs)) { 1259 cpumask_or(new_cpus, parent->effective_cpus, 1260 parent->subparts_cpus); 1261 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 1262 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 1263 } else { 1264 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1265 } 1266 } 1267 1268 /* 1269 * Commands for update_parent_subparts_cpumask 1270 */ 1271 enum subparts_cmd { 1272 partcmd_enable, /* Enable partition root */ 1273 partcmd_disable, /* Disable partition root */ 1274 partcmd_update, /* Update parent's subparts_cpus */ 1275 partcmd_invalidate, /* Make partition invalid */ 1276 }; 1277 1278 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1279 int turning_on); 1280 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1281 struct tmpmasks *tmp); 1282 1283 /* 1284 * Update partition exclusive flag 1285 * 1286 * Return: 0 if successful, an error code otherwise 1287 */ 1288 static int update_partition_exclusive(struct cpuset *cs, int new_prs) 1289 { 1290 bool exclusive = (new_prs > 0); 1291 1292 if (exclusive && !is_cpu_exclusive(cs)) { 1293 if (update_flag(CS_CPU_EXCLUSIVE, cs, 1)) 1294 return PERR_NOTEXCL; 1295 } else if (!exclusive && is_cpu_exclusive(cs)) { 1296 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1297 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1298 } 1299 return 0; 1300 } 1301 1302 /* 1303 * Update partition load balance flag and/or rebuild sched domain 1304 * 1305 * Changing load balance flag will automatically call 1306 * rebuild_sched_domains_locked(). 1307 */ 1308 static void update_partition_sd_lb(struct cpuset *cs, int old_prs) 1309 { 1310 int new_prs = cs->partition_root_state; 1311 bool new_lb = (new_prs != PRS_ISOLATED); 1312 bool rebuild_domains = (new_prs > 0) || (old_prs > 0); 1313 1314 if (new_lb != !!is_sched_load_balance(cs)) { 1315 rebuild_domains = true; 1316 if (new_lb) 1317 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1318 else 1319 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1320 } 1321 1322 if (rebuild_domains) 1323 rebuild_sched_domains_locked(); 1324 } 1325 1326 /** 1327 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1328 * @cs: The cpuset that requests change in partition root state 1329 * @cmd: Partition root state change command 1330 * @newmask: Optional new cpumask for partcmd_update 1331 * @tmp: Temporary addmask and delmask 1332 * Return: 0 or a partition root state error code 1333 * 1334 * For partcmd_enable, the cpuset is being transformed from a non-partition 1335 * root to a partition root. The cpus_allowed mask of the given cpuset will 1336 * be put into parent's subparts_cpus and taken away from parent's 1337 * effective_cpus. The function will return 0 if all the CPUs listed in 1338 * cpus_allowed can be granted or an error code will be returned. 1339 * 1340 * For partcmd_disable, the cpuset is being transformed from a partition 1341 * root back to a non-partition root. Any CPUs in cpus_allowed that are in 1342 * parent's subparts_cpus will be taken away from that cpumask and put back 1343 * into parent's effective_cpus. 0 will always be returned. 1344 * 1345 * For partcmd_update, if the optional newmask is specified, the cpu list is 1346 * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is 1347 * assumed to remain the same. The cpuset should either be a valid or invalid 1348 * partition root. The partition root state may change from valid to invalid 1349 * or vice versa. An error code will only be returned if transitioning from 1350 * invalid to valid violates the exclusivity rule. 1351 * 1352 * For partcmd_invalidate, the current partition will be made invalid. 1353 * 1354 * The partcmd_enable and partcmd_disable commands are used by 1355 * update_prstate(). An error code may be returned and the caller will check 1356 * for error. 1357 * 1358 * The partcmd_update command is used by update_cpumasks_hier() with newmask 1359 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used 1360 * by update_cpumask() with NULL newmask. In both cases, the callers won't 1361 * check for error and so partition_root_state and prs_error will be updated 1362 * directly. 1363 */ 1364 static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd, 1365 struct cpumask *newmask, 1366 struct tmpmasks *tmp) 1367 { 1368 struct cpuset *parent = parent_cs(cs); 1369 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1370 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1371 int old_prs, new_prs; 1372 int part_error = PERR_NONE; /* Partition error? */ 1373 1374 lockdep_assert_held(&cpuset_mutex); 1375 1376 /* 1377 * The parent must be a partition root. 1378 * The new cpumask, if present, or the current cpus_allowed must 1379 * not be empty. 1380 */ 1381 if (!is_partition_valid(parent)) { 1382 return is_partition_invalid(parent) 1383 ? PERR_INVPARENT : PERR_NOTPART; 1384 } 1385 if (!newmask && cpumask_empty(cs->cpus_allowed)) 1386 return PERR_CPUSEMPTY; 1387 1388 /* 1389 * new_prs will only be changed for the partcmd_update and 1390 * partcmd_invalidate commands. 1391 */ 1392 adding = deleting = false; 1393 old_prs = new_prs = cs->partition_root_state; 1394 if (cmd == partcmd_enable) { 1395 /* 1396 * Enabling partition root is not allowed if cpus_allowed 1397 * doesn't overlap parent's cpus_allowed. 1398 */ 1399 if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed)) 1400 return PERR_INVCPUS; 1401 1402 /* 1403 * A parent can be left with no CPU as long as there is no 1404 * task directly associated with the parent partition. 1405 */ 1406 if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) && 1407 partition_is_populated(parent, cs)) 1408 return PERR_NOCPUS; 1409 1410 cpumask_copy(tmp->addmask, cs->cpus_allowed); 1411 adding = true; 1412 } else if (cmd == partcmd_disable) { 1413 /* 1414 * Need to remove cpus from parent's subparts_cpus for valid 1415 * partition root. 1416 */ 1417 deleting = !is_prs_invalid(old_prs) && 1418 cpumask_and(tmp->delmask, cs->cpus_allowed, 1419 parent->subparts_cpus); 1420 } else if (cmd == partcmd_invalidate) { 1421 if (is_prs_invalid(old_prs)) 1422 return 0; 1423 1424 /* 1425 * Make the current partition invalid. It is assumed that 1426 * invalidation is caused by violating cpu exclusivity rule. 1427 */ 1428 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1429 parent->subparts_cpus); 1430 if (old_prs > 0) { 1431 new_prs = -old_prs; 1432 part_error = PERR_NOTEXCL; 1433 } 1434 } else if (newmask) { 1435 /* 1436 * partcmd_update with newmask: 1437 * 1438 * Compute add/delete mask to/from subparts_cpus 1439 * 1440 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1441 * addmask = newmask & parent->cpus_allowed 1442 * & ~parent->subparts_cpus 1443 */ 1444 cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask); 1445 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1446 parent->subparts_cpus); 1447 1448 cpumask_and(tmp->addmask, newmask, parent->cpus_allowed); 1449 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1450 parent->subparts_cpus); 1451 /* 1452 * Empty cpumask is not allowed 1453 */ 1454 if (cpumask_empty(newmask)) { 1455 part_error = PERR_CPUSEMPTY; 1456 /* 1457 * Make partition invalid if parent's effective_cpus could 1458 * become empty and there are tasks in the parent. 1459 */ 1460 } else if (adding && 1461 cpumask_subset(parent->effective_cpus, tmp->addmask) && 1462 !cpumask_intersects(tmp->delmask, cpu_active_mask) && 1463 partition_is_populated(parent, cs)) { 1464 part_error = PERR_NOCPUS; 1465 adding = false; 1466 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1467 parent->subparts_cpus); 1468 } 1469 } else { 1470 /* 1471 * partcmd_update w/o newmask: 1472 * 1473 * delmask = cpus_allowed & parent->subparts_cpus 1474 * addmask = cpus_allowed & parent->cpus_allowed 1475 * & ~parent->subparts_cpus 1476 * 1477 * This gets invoked either due to a hotplug event or from 1478 * update_cpumasks_hier(). This can cause the state of a 1479 * partition root to transition from valid to invalid or vice 1480 * versa. So we still need to compute the addmask and delmask. 1481 1482 * A partition error happens when: 1483 * 1) Cpuset is valid partition, but parent does not distribute 1484 * out any CPUs. 1485 * 2) Parent has tasks and all its effective CPUs will have 1486 * to be distributed out. 1487 */ 1488 cpumask_and(tmp->addmask, cs->cpus_allowed, 1489 parent->cpus_allowed); 1490 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1491 parent->subparts_cpus); 1492 1493 if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) || 1494 (adding && 1495 cpumask_subset(parent->effective_cpus, tmp->addmask) && 1496 partition_is_populated(parent, cs))) { 1497 part_error = PERR_NOCPUS; 1498 adding = false; 1499 } 1500 1501 if (part_error && is_partition_valid(cs) && 1502 parent->nr_subparts_cpus) 1503 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1504 parent->subparts_cpus); 1505 } 1506 if (part_error) 1507 WRITE_ONCE(cs->prs_err, part_error); 1508 1509 if (cmd == partcmd_update) { 1510 /* 1511 * Check for possible transition between valid and invalid 1512 * partition root. 1513 */ 1514 switch (cs->partition_root_state) { 1515 case PRS_ROOT: 1516 case PRS_ISOLATED: 1517 if (part_error) 1518 new_prs = -old_prs; 1519 break; 1520 case PRS_INVALID_ROOT: 1521 case PRS_INVALID_ISOLATED: 1522 if (!part_error) 1523 new_prs = -old_prs; 1524 break; 1525 } 1526 } 1527 1528 if (!adding && !deleting && (new_prs == old_prs)) 1529 return 0; 1530 1531 /* 1532 * Transitioning between invalid to valid or vice versa may require 1533 * changing CS_CPU_EXCLUSIVE. 1534 */ 1535 if (old_prs != new_prs) { 1536 int err = update_partition_exclusive(cs, new_prs); 1537 1538 if (err) 1539 return err; 1540 } 1541 1542 /* 1543 * Change the parent's subparts_cpus. 1544 * Newly added CPUs will be removed from effective_cpus and 1545 * newly deleted ones will be added back to effective_cpus. 1546 */ 1547 spin_lock_irq(&callback_lock); 1548 if (adding) { 1549 cpumask_or(parent->subparts_cpus, 1550 parent->subparts_cpus, tmp->addmask); 1551 cpumask_andnot(parent->effective_cpus, 1552 parent->effective_cpus, tmp->addmask); 1553 } 1554 if (deleting) { 1555 cpumask_andnot(parent->subparts_cpus, 1556 parent->subparts_cpus, tmp->delmask); 1557 /* 1558 * Some of the CPUs in subparts_cpus might have been offlined. 1559 */ 1560 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1561 cpumask_or(parent->effective_cpus, 1562 parent->effective_cpus, tmp->delmask); 1563 } 1564 1565 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1566 1567 if (old_prs != new_prs) 1568 cs->partition_root_state = new_prs; 1569 1570 spin_unlock_irq(&callback_lock); 1571 1572 if (adding || deleting) { 1573 update_tasks_cpumask(parent, tmp->addmask); 1574 if (parent->child_ecpus_count) 1575 update_sibling_cpumasks(parent, cs, tmp); 1576 } 1577 1578 /* 1579 * For partcmd_update without newmask, it is being called from 1580 * cpuset_hotplug_workfn() where cpus_read_lock() wasn't taken. 1581 * Update the load balance flag and scheduling domain if 1582 * cpus_read_trylock() is successful. 1583 */ 1584 if ((cmd == partcmd_update) && !newmask && cpus_read_trylock()) { 1585 update_partition_sd_lb(cs, old_prs); 1586 cpus_read_unlock(); 1587 } 1588 1589 notify_partition_change(cs, old_prs); 1590 return 0; 1591 } 1592 1593 /* 1594 * update_cpumasks_hier() flags 1595 */ 1596 #define HIER_CHECKALL 0x01 /* Check all cpusets with no skipping */ 1597 #define HIER_NO_SD_REBUILD 0x02 /* Don't rebuild sched domains */ 1598 1599 /* 1600 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1601 * @cs: the cpuset to consider 1602 * @tmp: temp variables for calculating effective_cpus & partition setup 1603 * @force: don't skip any descendant cpusets if set 1604 * 1605 * When configured cpumask is changed, the effective cpumasks of this cpuset 1606 * and all its descendants need to be updated. 1607 * 1608 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 1609 * 1610 * Called with cpuset_mutex held 1611 */ 1612 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, 1613 int flags) 1614 { 1615 struct cpuset *cp; 1616 struct cgroup_subsys_state *pos_css; 1617 bool need_rebuild_sched_domains = false; 1618 int old_prs, new_prs; 1619 1620 rcu_read_lock(); 1621 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1622 struct cpuset *parent = parent_cs(cp); 1623 bool update_parent = false; 1624 1625 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1626 1627 /* 1628 * If it becomes empty, inherit the effective mask of the 1629 * parent, which is guaranteed to have some CPUs unless 1630 * it is a partition root that has explicitly distributed 1631 * out all its CPUs. 1632 */ 1633 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1634 if (is_partition_valid(cp) && 1635 cpumask_equal(cp->cpus_allowed, cp->subparts_cpus)) 1636 goto update_parent_subparts; 1637 1638 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1639 if (!cp->use_parent_ecpus) { 1640 cp->use_parent_ecpus = true; 1641 parent->child_ecpus_count++; 1642 } 1643 } else if (cp->use_parent_ecpus) { 1644 cp->use_parent_ecpus = false; 1645 WARN_ON_ONCE(!parent->child_ecpus_count); 1646 parent->child_ecpus_count--; 1647 } 1648 1649 /* 1650 * Skip the whole subtree if 1651 * 1) the cpumask remains the same, 1652 * 2) has no partition root state, 1653 * 3) HIER_CHECKALL flag not set, and 1654 * 4) for v2 load balance state same as its parent. 1655 */ 1656 if (!cp->partition_root_state && !(flags & HIER_CHECKALL) && 1657 cpumask_equal(tmp->new_cpus, cp->effective_cpus) && 1658 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1659 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { 1660 pos_css = css_rightmost_descendant(pos_css); 1661 continue; 1662 } 1663 1664 update_parent_subparts: 1665 /* 1666 * update_parent_subparts_cpumask() should have been called 1667 * for cs already in update_cpumask(). We should also call 1668 * update_tasks_cpumask() again for tasks in the parent 1669 * cpuset if the parent's subparts_cpus changes. 1670 */ 1671 old_prs = new_prs = cp->partition_root_state; 1672 if ((cp != cs) && old_prs) { 1673 switch (parent->partition_root_state) { 1674 case PRS_ROOT: 1675 case PRS_ISOLATED: 1676 update_parent = true; 1677 break; 1678 1679 default: 1680 /* 1681 * When parent is not a partition root or is 1682 * invalid, child partition roots become 1683 * invalid too. 1684 */ 1685 if (is_partition_valid(cp)) 1686 new_prs = -cp->partition_root_state; 1687 WRITE_ONCE(cp->prs_err, 1688 is_partition_invalid(parent) 1689 ? PERR_INVPARENT : PERR_NOTPART); 1690 break; 1691 } 1692 } 1693 1694 if (!css_tryget_online(&cp->css)) 1695 continue; 1696 rcu_read_unlock(); 1697 1698 if (update_parent) { 1699 update_parent_subparts_cpumask(cp, partcmd_update, NULL, 1700 tmp); 1701 /* 1702 * The cpuset partition_root_state may become 1703 * invalid. Capture it. 1704 */ 1705 new_prs = cp->partition_root_state; 1706 } 1707 1708 spin_lock_irq(&callback_lock); 1709 1710 if (cp->nr_subparts_cpus && !is_partition_valid(cp)) { 1711 /* 1712 * Put all active subparts_cpus back to effective_cpus. 1713 */ 1714 cpumask_or(tmp->new_cpus, tmp->new_cpus, 1715 cp->subparts_cpus); 1716 cpumask_and(tmp->new_cpus, tmp->new_cpus, 1717 cpu_active_mask); 1718 cp->nr_subparts_cpus = 0; 1719 cpumask_clear(cp->subparts_cpus); 1720 } 1721 1722 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1723 if (cp->nr_subparts_cpus) { 1724 /* 1725 * Make sure that effective_cpus & subparts_cpus 1726 * are mutually exclusive. 1727 */ 1728 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1729 cp->subparts_cpus); 1730 } 1731 1732 cp->partition_root_state = new_prs; 1733 spin_unlock_irq(&callback_lock); 1734 1735 notify_partition_change(cp, old_prs); 1736 1737 WARN_ON(!is_in_v2_mode() && 1738 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1739 1740 update_tasks_cpumask(cp, tmp->new_cpus); 1741 1742 /* 1743 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE 1744 * from parent if current cpuset isn't a valid partition root 1745 * and their load balance states differ. 1746 */ 1747 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 1748 !is_partition_valid(cp) && 1749 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { 1750 if (is_sched_load_balance(parent)) 1751 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 1752 else 1753 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 1754 } 1755 1756 /* 1757 * On legacy hierarchy, if the effective cpumask of any non- 1758 * empty cpuset is changed, we need to rebuild sched domains. 1759 * On default hierarchy, the cpuset needs to be a partition 1760 * root as well. 1761 */ 1762 if (!cpumask_empty(cp->cpus_allowed) && 1763 is_sched_load_balance(cp) && 1764 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1765 is_partition_valid(cp))) 1766 need_rebuild_sched_domains = true; 1767 1768 rcu_read_lock(); 1769 css_put(&cp->css); 1770 } 1771 rcu_read_unlock(); 1772 1773 if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD)) 1774 rebuild_sched_domains_locked(); 1775 } 1776 1777 /** 1778 * update_sibling_cpumasks - Update siblings cpumasks 1779 * @parent: Parent cpuset 1780 * @cs: Current cpuset 1781 * @tmp: Temp variables 1782 */ 1783 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1784 struct tmpmasks *tmp) 1785 { 1786 struct cpuset *sibling; 1787 struct cgroup_subsys_state *pos_css; 1788 1789 lockdep_assert_held(&cpuset_mutex); 1790 1791 /* 1792 * Check all its siblings and call update_cpumasks_hier() 1793 * if their use_parent_ecpus flag is set in order for them 1794 * to use the right effective_cpus value. 1795 * 1796 * The update_cpumasks_hier() function may sleep. So we have to 1797 * release the RCU read lock before calling it. HIER_NO_SD_REBUILD 1798 * flag is used to suppress rebuild of sched domains as the callers 1799 * will take care of that. 1800 */ 1801 rcu_read_lock(); 1802 cpuset_for_each_child(sibling, pos_css, parent) { 1803 if (sibling == cs) 1804 continue; 1805 if (!sibling->use_parent_ecpus) 1806 continue; 1807 if (!css_tryget_online(&sibling->css)) 1808 continue; 1809 1810 rcu_read_unlock(); 1811 update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD); 1812 rcu_read_lock(); 1813 css_put(&sibling->css); 1814 } 1815 rcu_read_unlock(); 1816 } 1817 1818 /** 1819 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1820 * @cs: the cpuset to consider 1821 * @trialcs: trial cpuset 1822 * @buf: buffer of cpu numbers written to this cpuset 1823 */ 1824 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1825 const char *buf) 1826 { 1827 int retval; 1828 struct tmpmasks tmp; 1829 bool invalidate = false; 1830 int old_prs = cs->partition_root_state; 1831 1832 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1833 if (cs == &top_cpuset) 1834 return -EACCES; 1835 1836 /* 1837 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1838 * Since cpulist_parse() fails on an empty mask, we special case 1839 * that parsing. The validate_change() call ensures that cpusets 1840 * with tasks have cpus. 1841 */ 1842 if (!*buf) { 1843 cpumask_clear(trialcs->cpus_allowed); 1844 } else { 1845 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1846 if (retval < 0) 1847 return retval; 1848 1849 if (!cpumask_subset(trialcs->cpus_allowed, 1850 top_cpuset.cpus_allowed)) 1851 return -EINVAL; 1852 } 1853 1854 /* Nothing to do if the cpus didn't change */ 1855 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1856 return 0; 1857 1858 if (alloc_cpumasks(NULL, &tmp)) 1859 return -ENOMEM; 1860 1861 retval = validate_change(cs, trialcs); 1862 1863 if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { 1864 struct cpuset *cp, *parent; 1865 struct cgroup_subsys_state *css; 1866 1867 /* 1868 * The -EINVAL error code indicates that partition sibling 1869 * CPU exclusivity rule has been violated. We still allow 1870 * the cpumask change to proceed while invalidating the 1871 * partition. However, any conflicting sibling partitions 1872 * have to be marked as invalid too. 1873 */ 1874 invalidate = true; 1875 rcu_read_lock(); 1876 parent = parent_cs(cs); 1877 cpuset_for_each_child(cp, css, parent) 1878 if (is_partition_valid(cp) && 1879 cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) { 1880 rcu_read_unlock(); 1881 update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp); 1882 rcu_read_lock(); 1883 } 1884 rcu_read_unlock(); 1885 retval = 0; 1886 } 1887 if (retval < 0) 1888 goto out_free; 1889 1890 if (cs->partition_root_state) { 1891 if (invalidate) 1892 update_parent_subparts_cpumask(cs, partcmd_invalidate, 1893 NULL, &tmp); 1894 else 1895 update_parent_subparts_cpumask(cs, partcmd_update, 1896 trialcs->cpus_allowed, &tmp); 1897 } 1898 1899 compute_effective_cpumask(trialcs->effective_cpus, trialcs, 1900 parent_cs(cs)); 1901 spin_lock_irq(&callback_lock); 1902 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1903 1904 /* 1905 * Make sure that subparts_cpus, if not empty, is a subset of 1906 * cpus_allowed. Clear subparts_cpus if partition not valid or 1907 * empty effective cpus with tasks. 1908 */ 1909 if (cs->nr_subparts_cpus) { 1910 if (!is_partition_valid(cs) || 1911 (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) && 1912 partition_is_populated(cs, NULL))) { 1913 cs->nr_subparts_cpus = 0; 1914 cpumask_clear(cs->subparts_cpus); 1915 } else { 1916 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, 1917 cs->cpus_allowed); 1918 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1919 } 1920 } 1921 spin_unlock_irq(&callback_lock); 1922 1923 /* effective_cpus will be updated here */ 1924 update_cpumasks_hier(cs, &tmp, 0); 1925 1926 if (cs->partition_root_state) { 1927 struct cpuset *parent = parent_cs(cs); 1928 1929 /* 1930 * For partition root, update the cpumasks of sibling 1931 * cpusets if they use parent's effective_cpus. 1932 */ 1933 if (parent->child_ecpus_count) 1934 update_sibling_cpumasks(parent, cs, &tmp); 1935 1936 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains */ 1937 update_partition_sd_lb(cs, old_prs); 1938 } 1939 out_free: 1940 free_cpumasks(NULL, &tmp); 1941 return 0; 1942 } 1943 1944 /* 1945 * Migrate memory region from one set of nodes to another. This is 1946 * performed asynchronously as it can be called from process migration path 1947 * holding locks involved in process management. All mm migrations are 1948 * performed in the queued order and can be waited for by flushing 1949 * cpuset_migrate_mm_wq. 1950 */ 1951 1952 struct cpuset_migrate_mm_work { 1953 struct work_struct work; 1954 struct mm_struct *mm; 1955 nodemask_t from; 1956 nodemask_t to; 1957 }; 1958 1959 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1960 { 1961 struct cpuset_migrate_mm_work *mwork = 1962 container_of(work, struct cpuset_migrate_mm_work, work); 1963 1964 /* on a wq worker, no need to worry about %current's mems_allowed */ 1965 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1966 mmput(mwork->mm); 1967 kfree(mwork); 1968 } 1969 1970 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1971 const nodemask_t *to) 1972 { 1973 struct cpuset_migrate_mm_work *mwork; 1974 1975 if (nodes_equal(*from, *to)) { 1976 mmput(mm); 1977 return; 1978 } 1979 1980 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1981 if (mwork) { 1982 mwork->mm = mm; 1983 mwork->from = *from; 1984 mwork->to = *to; 1985 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1986 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1987 } else { 1988 mmput(mm); 1989 } 1990 } 1991 1992 static void cpuset_post_attach(void) 1993 { 1994 flush_workqueue(cpuset_migrate_mm_wq); 1995 } 1996 1997 /* 1998 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1999 * @tsk: the task to change 2000 * @newmems: new nodes that the task will be set 2001 * 2002 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 2003 * and rebind an eventual tasks' mempolicy. If the task is allocating in 2004 * parallel, it might temporarily see an empty intersection, which results in 2005 * a seqlock check and retry before OOM or allocation failure. 2006 */ 2007 static void cpuset_change_task_nodemask(struct task_struct *tsk, 2008 nodemask_t *newmems) 2009 { 2010 task_lock(tsk); 2011 2012 local_irq_disable(); 2013 write_seqcount_begin(&tsk->mems_allowed_seq); 2014 2015 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 2016 mpol_rebind_task(tsk, newmems); 2017 tsk->mems_allowed = *newmems; 2018 2019 write_seqcount_end(&tsk->mems_allowed_seq); 2020 local_irq_enable(); 2021 2022 task_unlock(tsk); 2023 } 2024 2025 static void *cpuset_being_rebound; 2026 2027 /** 2028 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 2029 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 2030 * 2031 * Iterate through each task of @cs updating its mems_allowed to the 2032 * effective cpuset's. As this function is called with cpuset_mutex held, 2033 * cpuset membership stays stable. 2034 */ 2035 static void update_tasks_nodemask(struct cpuset *cs) 2036 { 2037 static nodemask_t newmems; /* protected by cpuset_mutex */ 2038 struct css_task_iter it; 2039 struct task_struct *task; 2040 2041 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 2042 2043 guarantee_online_mems(cs, &newmems); 2044 2045 /* 2046 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 2047 * take while holding tasklist_lock. Forks can happen - the 2048 * mpol_dup() cpuset_being_rebound check will catch such forks, 2049 * and rebind their vma mempolicies too. Because we still hold 2050 * the global cpuset_mutex, we know that no other rebind effort 2051 * will be contending for the global variable cpuset_being_rebound. 2052 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 2053 * is idempotent. Also migrate pages in each mm to new nodes. 2054 */ 2055 css_task_iter_start(&cs->css, 0, &it); 2056 while ((task = css_task_iter_next(&it))) { 2057 struct mm_struct *mm; 2058 bool migrate; 2059 2060 cpuset_change_task_nodemask(task, &newmems); 2061 2062 mm = get_task_mm(task); 2063 if (!mm) 2064 continue; 2065 2066 migrate = is_memory_migrate(cs); 2067 2068 mpol_rebind_mm(mm, &cs->mems_allowed); 2069 if (migrate) 2070 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 2071 else 2072 mmput(mm); 2073 } 2074 css_task_iter_end(&it); 2075 2076 /* 2077 * All the tasks' nodemasks have been updated, update 2078 * cs->old_mems_allowed. 2079 */ 2080 cs->old_mems_allowed = newmems; 2081 2082 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 2083 cpuset_being_rebound = NULL; 2084 } 2085 2086 /* 2087 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 2088 * @cs: the cpuset to consider 2089 * @new_mems: a temp variable for calculating new effective_mems 2090 * 2091 * When configured nodemask is changed, the effective nodemasks of this cpuset 2092 * and all its descendants need to be updated. 2093 * 2094 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 2095 * 2096 * Called with cpuset_mutex held 2097 */ 2098 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 2099 { 2100 struct cpuset *cp; 2101 struct cgroup_subsys_state *pos_css; 2102 2103 rcu_read_lock(); 2104 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2105 struct cpuset *parent = parent_cs(cp); 2106 2107 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 2108 2109 /* 2110 * If it becomes empty, inherit the effective mask of the 2111 * parent, which is guaranteed to have some MEMs. 2112 */ 2113 if (is_in_v2_mode() && nodes_empty(*new_mems)) 2114 *new_mems = parent->effective_mems; 2115 2116 /* Skip the whole subtree if the nodemask remains the same. */ 2117 if (nodes_equal(*new_mems, cp->effective_mems)) { 2118 pos_css = css_rightmost_descendant(pos_css); 2119 continue; 2120 } 2121 2122 if (!css_tryget_online(&cp->css)) 2123 continue; 2124 rcu_read_unlock(); 2125 2126 spin_lock_irq(&callback_lock); 2127 cp->effective_mems = *new_mems; 2128 spin_unlock_irq(&callback_lock); 2129 2130 WARN_ON(!is_in_v2_mode() && 2131 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 2132 2133 update_tasks_nodemask(cp); 2134 2135 rcu_read_lock(); 2136 css_put(&cp->css); 2137 } 2138 rcu_read_unlock(); 2139 } 2140 2141 /* 2142 * Handle user request to change the 'mems' memory placement 2143 * of a cpuset. Needs to validate the request, update the 2144 * cpusets mems_allowed, and for each task in the cpuset, 2145 * update mems_allowed and rebind task's mempolicy and any vma 2146 * mempolicies and if the cpuset is marked 'memory_migrate', 2147 * migrate the tasks pages to the new memory. 2148 * 2149 * Call with cpuset_mutex held. May take callback_lock during call. 2150 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 2151 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 2152 * their mempolicies to the cpusets new mems_allowed. 2153 */ 2154 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 2155 const char *buf) 2156 { 2157 int retval; 2158 2159 /* 2160 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 2161 * it's read-only 2162 */ 2163 if (cs == &top_cpuset) { 2164 retval = -EACCES; 2165 goto done; 2166 } 2167 2168 /* 2169 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 2170 * Since nodelist_parse() fails on an empty mask, we special case 2171 * that parsing. The validate_change() call ensures that cpusets 2172 * with tasks have memory. 2173 */ 2174 if (!*buf) { 2175 nodes_clear(trialcs->mems_allowed); 2176 } else { 2177 retval = nodelist_parse(buf, trialcs->mems_allowed); 2178 if (retval < 0) 2179 goto done; 2180 2181 if (!nodes_subset(trialcs->mems_allowed, 2182 top_cpuset.mems_allowed)) { 2183 retval = -EINVAL; 2184 goto done; 2185 } 2186 } 2187 2188 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 2189 retval = 0; /* Too easy - nothing to do */ 2190 goto done; 2191 } 2192 retval = validate_change(cs, trialcs); 2193 if (retval < 0) 2194 goto done; 2195 2196 check_insane_mems_config(&trialcs->mems_allowed); 2197 2198 spin_lock_irq(&callback_lock); 2199 cs->mems_allowed = trialcs->mems_allowed; 2200 spin_unlock_irq(&callback_lock); 2201 2202 /* use trialcs->mems_allowed as a temp variable */ 2203 update_nodemasks_hier(cs, &trialcs->mems_allowed); 2204 done: 2205 return retval; 2206 } 2207 2208 bool current_cpuset_is_being_rebound(void) 2209 { 2210 bool ret; 2211 2212 rcu_read_lock(); 2213 ret = task_cs(current) == cpuset_being_rebound; 2214 rcu_read_unlock(); 2215 2216 return ret; 2217 } 2218 2219 static int update_relax_domain_level(struct cpuset *cs, s64 val) 2220 { 2221 #ifdef CONFIG_SMP 2222 if (val < -1 || val >= sched_domain_level_max) 2223 return -EINVAL; 2224 #endif 2225 2226 if (val != cs->relax_domain_level) { 2227 cs->relax_domain_level = val; 2228 if (!cpumask_empty(cs->cpus_allowed) && 2229 is_sched_load_balance(cs)) 2230 rebuild_sched_domains_locked(); 2231 } 2232 2233 return 0; 2234 } 2235 2236 /** 2237 * update_tasks_flags - update the spread flags of tasks in the cpuset. 2238 * @cs: the cpuset in which each task's spread flags needs to be changed 2239 * 2240 * Iterate through each task of @cs updating its spread flags. As this 2241 * function is called with cpuset_mutex held, cpuset membership stays 2242 * stable. 2243 */ 2244 static void update_tasks_flags(struct cpuset *cs) 2245 { 2246 struct css_task_iter it; 2247 struct task_struct *task; 2248 2249 css_task_iter_start(&cs->css, 0, &it); 2250 while ((task = css_task_iter_next(&it))) 2251 cpuset_update_task_spread_flags(cs, task); 2252 css_task_iter_end(&it); 2253 } 2254 2255 /* 2256 * update_flag - read a 0 or a 1 in a file and update associated flag 2257 * bit: the bit to update (see cpuset_flagbits_t) 2258 * cs: the cpuset to update 2259 * turning_on: whether the flag is being set or cleared 2260 * 2261 * Call with cpuset_mutex held. 2262 */ 2263 2264 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 2265 int turning_on) 2266 { 2267 struct cpuset *trialcs; 2268 int balance_flag_changed; 2269 int spread_flag_changed; 2270 int err; 2271 2272 trialcs = alloc_trial_cpuset(cs); 2273 if (!trialcs) 2274 return -ENOMEM; 2275 2276 if (turning_on) 2277 set_bit(bit, &trialcs->flags); 2278 else 2279 clear_bit(bit, &trialcs->flags); 2280 2281 err = validate_change(cs, trialcs); 2282 if (err < 0) 2283 goto out; 2284 2285 balance_flag_changed = (is_sched_load_balance(cs) != 2286 is_sched_load_balance(trialcs)); 2287 2288 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 2289 || (is_spread_page(cs) != is_spread_page(trialcs))); 2290 2291 spin_lock_irq(&callback_lock); 2292 cs->flags = trialcs->flags; 2293 spin_unlock_irq(&callback_lock); 2294 2295 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 2296 rebuild_sched_domains_locked(); 2297 2298 if (spread_flag_changed) 2299 update_tasks_flags(cs); 2300 out: 2301 free_cpuset(trialcs); 2302 return err; 2303 } 2304 2305 /** 2306 * update_prstate - update partition_root_state 2307 * @cs: the cpuset to update 2308 * @new_prs: new partition root state 2309 * Return: 0 if successful, != 0 if error 2310 * 2311 * Call with cpuset_mutex held. 2312 */ 2313 static int update_prstate(struct cpuset *cs, int new_prs) 2314 { 2315 int err = PERR_NONE, old_prs = cs->partition_root_state; 2316 struct cpuset *parent = parent_cs(cs); 2317 struct tmpmasks tmpmask; 2318 2319 if (old_prs == new_prs) 2320 return 0; 2321 2322 /* 2323 * For a previously invalid partition root, leave it at being 2324 * invalid if new_prs is not "member". 2325 */ 2326 if (new_prs && is_prs_invalid(old_prs)) { 2327 cs->partition_root_state = -new_prs; 2328 return 0; 2329 } 2330 2331 if (alloc_cpumasks(NULL, &tmpmask)) 2332 return -ENOMEM; 2333 2334 err = update_partition_exclusive(cs, new_prs); 2335 if (err) 2336 goto out; 2337 2338 if (!old_prs) { 2339 /* 2340 * cpus_allowed cannot be empty. 2341 */ 2342 if (cpumask_empty(cs->cpus_allowed)) { 2343 err = PERR_CPUSEMPTY; 2344 goto out; 2345 } 2346 2347 err = update_parent_subparts_cpumask(cs, partcmd_enable, 2348 NULL, &tmpmask); 2349 } else if (old_prs && new_prs) { 2350 /* 2351 * A change in load balance state only, no change in cpumasks. 2352 */ 2353 ; 2354 } else { 2355 /* 2356 * Switching back to member is always allowed even if it 2357 * disables child partitions. 2358 */ 2359 update_parent_subparts_cpumask(cs, partcmd_disable, NULL, 2360 &tmpmask); 2361 2362 /* 2363 * If there are child partitions, they will all become invalid. 2364 */ 2365 if (unlikely(cs->nr_subparts_cpus)) { 2366 spin_lock_irq(&callback_lock); 2367 cs->nr_subparts_cpus = 0; 2368 cpumask_clear(cs->subparts_cpus); 2369 compute_effective_cpumask(cs->effective_cpus, cs, parent); 2370 spin_unlock_irq(&callback_lock); 2371 } 2372 } 2373 out: 2374 /* 2375 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error 2376 * happens. 2377 */ 2378 if (err) { 2379 new_prs = -new_prs; 2380 update_partition_exclusive(cs, new_prs); 2381 } 2382 2383 spin_lock_irq(&callback_lock); 2384 cs->partition_root_state = new_prs; 2385 WRITE_ONCE(cs->prs_err, err); 2386 spin_unlock_irq(&callback_lock); 2387 2388 /* 2389 * Update child cpusets, if present. 2390 * Force update if switching back to member. 2391 */ 2392 if (!list_empty(&cs->css.children)) 2393 update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0); 2394 2395 /* Update sched domains and load balance flag */ 2396 update_partition_sd_lb(cs, old_prs); 2397 2398 notify_partition_change(cs, old_prs); 2399 free_cpumasks(NULL, &tmpmask); 2400 return 0; 2401 } 2402 2403 /* 2404 * Frequency meter - How fast is some event occurring? 2405 * 2406 * These routines manage a digitally filtered, constant time based, 2407 * event frequency meter. There are four routines: 2408 * fmeter_init() - initialize a frequency meter. 2409 * fmeter_markevent() - called each time the event happens. 2410 * fmeter_getrate() - returns the recent rate of such events. 2411 * fmeter_update() - internal routine used to update fmeter. 2412 * 2413 * A common data structure is passed to each of these routines, 2414 * which is used to keep track of the state required to manage the 2415 * frequency meter and its digital filter. 2416 * 2417 * The filter works on the number of events marked per unit time. 2418 * The filter is single-pole low-pass recursive (IIR). The time unit 2419 * is 1 second. Arithmetic is done using 32-bit integers scaled to 2420 * simulate 3 decimal digits of precision (multiplied by 1000). 2421 * 2422 * With an FM_COEF of 933, and a time base of 1 second, the filter 2423 * has a half-life of 10 seconds, meaning that if the events quit 2424 * happening, then the rate returned from the fmeter_getrate() 2425 * will be cut in half each 10 seconds, until it converges to zero. 2426 * 2427 * It is not worth doing a real infinitely recursive filter. If more 2428 * than FM_MAXTICKS ticks have elapsed since the last filter event, 2429 * just compute FM_MAXTICKS ticks worth, by which point the level 2430 * will be stable. 2431 * 2432 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 2433 * arithmetic overflow in the fmeter_update() routine. 2434 * 2435 * Given the simple 32 bit integer arithmetic used, this meter works 2436 * best for reporting rates between one per millisecond (msec) and 2437 * one per 32 (approx) seconds. At constant rates faster than one 2438 * per msec it maxes out at values just under 1,000,000. At constant 2439 * rates between one per msec, and one per second it will stabilize 2440 * to a value N*1000, where N is the rate of events per second. 2441 * At constant rates between one per second and one per 32 seconds, 2442 * it will be choppy, moving up on the seconds that have an event, 2443 * and then decaying until the next event. At rates slower than 2444 * about one in 32 seconds, it decays all the way back to zero between 2445 * each event. 2446 */ 2447 2448 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 2449 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 2450 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 2451 #define FM_SCALE 1000 /* faux fixed point scale */ 2452 2453 /* Initialize a frequency meter */ 2454 static void fmeter_init(struct fmeter *fmp) 2455 { 2456 fmp->cnt = 0; 2457 fmp->val = 0; 2458 fmp->time = 0; 2459 spin_lock_init(&fmp->lock); 2460 } 2461 2462 /* Internal meter update - process cnt events and update value */ 2463 static void fmeter_update(struct fmeter *fmp) 2464 { 2465 time64_t now; 2466 u32 ticks; 2467 2468 now = ktime_get_seconds(); 2469 ticks = now - fmp->time; 2470 2471 if (ticks == 0) 2472 return; 2473 2474 ticks = min(FM_MAXTICKS, ticks); 2475 while (ticks-- > 0) 2476 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2477 fmp->time = now; 2478 2479 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2480 fmp->cnt = 0; 2481 } 2482 2483 /* Process any previous ticks, then bump cnt by one (times scale). */ 2484 static void fmeter_markevent(struct fmeter *fmp) 2485 { 2486 spin_lock(&fmp->lock); 2487 fmeter_update(fmp); 2488 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2489 spin_unlock(&fmp->lock); 2490 } 2491 2492 /* Process any previous ticks, then return current value. */ 2493 static int fmeter_getrate(struct fmeter *fmp) 2494 { 2495 int val; 2496 2497 spin_lock(&fmp->lock); 2498 fmeter_update(fmp); 2499 val = fmp->val; 2500 spin_unlock(&fmp->lock); 2501 return val; 2502 } 2503 2504 static struct cpuset *cpuset_attach_old_cs; 2505 2506 /* 2507 * Check to see if a cpuset can accept a new task 2508 * For v1, cpus_allowed and mems_allowed can't be empty. 2509 * For v2, effective_cpus can't be empty. 2510 * Note that in v1, effective_cpus = cpus_allowed. 2511 */ 2512 static int cpuset_can_attach_check(struct cpuset *cs) 2513 { 2514 if (cpumask_empty(cs->effective_cpus) || 2515 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) 2516 return -ENOSPC; 2517 return 0; 2518 } 2519 2520 static void reset_migrate_dl_data(struct cpuset *cs) 2521 { 2522 cs->nr_migrate_dl_tasks = 0; 2523 cs->sum_migrate_dl_bw = 0; 2524 } 2525 2526 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 2527 static int cpuset_can_attach(struct cgroup_taskset *tset) 2528 { 2529 struct cgroup_subsys_state *css; 2530 struct cpuset *cs, *oldcs; 2531 struct task_struct *task; 2532 bool cpus_updated, mems_updated; 2533 int ret; 2534 2535 /* used later by cpuset_attach() */ 2536 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2537 oldcs = cpuset_attach_old_cs; 2538 cs = css_cs(css); 2539 2540 mutex_lock(&cpuset_mutex); 2541 2542 /* Check to see if task is allowed in the cpuset */ 2543 ret = cpuset_can_attach_check(cs); 2544 if (ret) 2545 goto out_unlock; 2546 2547 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); 2548 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 2549 2550 cgroup_taskset_for_each(task, css, tset) { 2551 ret = task_can_attach(task); 2552 if (ret) 2553 goto out_unlock; 2554 2555 /* 2556 * Skip rights over task check in v2 when nothing changes, 2557 * migration permission derives from hierarchy ownership in 2558 * cgroup_procs_write_permission()). 2559 */ 2560 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 2561 (cpus_updated || mems_updated)) { 2562 ret = security_task_setscheduler(task); 2563 if (ret) 2564 goto out_unlock; 2565 } 2566 2567 if (dl_task(task)) { 2568 cs->nr_migrate_dl_tasks++; 2569 cs->sum_migrate_dl_bw += task->dl.dl_bw; 2570 } 2571 } 2572 2573 if (!cs->nr_migrate_dl_tasks) 2574 goto out_success; 2575 2576 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { 2577 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); 2578 2579 if (unlikely(cpu >= nr_cpu_ids)) { 2580 reset_migrate_dl_data(cs); 2581 ret = -EINVAL; 2582 goto out_unlock; 2583 } 2584 2585 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); 2586 if (ret) { 2587 reset_migrate_dl_data(cs); 2588 goto out_unlock; 2589 } 2590 } 2591 2592 out_success: 2593 /* 2594 * Mark attach is in progress. This makes validate_change() fail 2595 * changes which zero cpus/mems_allowed. 2596 */ 2597 cs->attach_in_progress++; 2598 out_unlock: 2599 mutex_unlock(&cpuset_mutex); 2600 return ret; 2601 } 2602 2603 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2604 { 2605 struct cgroup_subsys_state *css; 2606 struct cpuset *cs; 2607 2608 cgroup_taskset_first(tset, &css); 2609 cs = css_cs(css); 2610 2611 mutex_lock(&cpuset_mutex); 2612 cs->attach_in_progress--; 2613 if (!cs->attach_in_progress) 2614 wake_up(&cpuset_attach_wq); 2615 2616 if (cs->nr_migrate_dl_tasks) { 2617 int cpu = cpumask_any(cs->effective_cpus); 2618 2619 dl_bw_free(cpu, cs->sum_migrate_dl_bw); 2620 reset_migrate_dl_data(cs); 2621 } 2622 2623 mutex_unlock(&cpuset_mutex); 2624 } 2625 2626 /* 2627 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() 2628 * but we can't allocate it dynamically there. Define it global and 2629 * allocate from cpuset_init(). 2630 */ 2631 static cpumask_var_t cpus_attach; 2632 static nodemask_t cpuset_attach_nodemask_to; 2633 2634 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) 2635 { 2636 lockdep_assert_held(&cpuset_mutex); 2637 2638 if (cs != &top_cpuset) 2639 guarantee_online_cpus(task, cpus_attach); 2640 else 2641 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), 2642 cs->subparts_cpus); 2643 /* 2644 * can_attach beforehand should guarantee that this doesn't 2645 * fail. TODO: have a better way to handle failure here 2646 */ 2647 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2648 2649 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2650 cpuset_update_task_spread_flags(cs, task); 2651 } 2652 2653 static void cpuset_attach(struct cgroup_taskset *tset) 2654 { 2655 struct task_struct *task; 2656 struct task_struct *leader; 2657 struct cgroup_subsys_state *css; 2658 struct cpuset *cs; 2659 struct cpuset *oldcs = cpuset_attach_old_cs; 2660 bool cpus_updated, mems_updated; 2661 2662 cgroup_taskset_first(tset, &css); 2663 cs = css_cs(css); 2664 2665 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ 2666 mutex_lock(&cpuset_mutex); 2667 cpus_updated = !cpumask_equal(cs->effective_cpus, 2668 oldcs->effective_cpus); 2669 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 2670 2671 /* 2672 * In the default hierarchy, enabling cpuset in the child cgroups 2673 * will trigger a number of cpuset_attach() calls with no change 2674 * in effective cpus and mems. In that case, we can optimize out 2675 * by skipping the task iteration and update. 2676 */ 2677 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2678 !cpus_updated && !mems_updated) { 2679 cpuset_attach_nodemask_to = cs->effective_mems; 2680 goto out; 2681 } 2682 2683 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2684 2685 cgroup_taskset_for_each(task, css, tset) 2686 cpuset_attach_task(cs, task); 2687 2688 /* 2689 * Change mm for all threadgroup leaders. This is expensive and may 2690 * sleep and should be moved outside migration path proper. Skip it 2691 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is 2692 * not set. 2693 */ 2694 cpuset_attach_nodemask_to = cs->effective_mems; 2695 if (!is_memory_migrate(cs) && !mems_updated) 2696 goto out; 2697 2698 cgroup_taskset_for_each_leader(leader, css, tset) { 2699 struct mm_struct *mm = get_task_mm(leader); 2700 2701 if (mm) { 2702 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2703 2704 /* 2705 * old_mems_allowed is the same with mems_allowed 2706 * here, except if this task is being moved 2707 * automatically due to hotplug. In that case 2708 * @mems_allowed has been updated and is empty, so 2709 * @old_mems_allowed is the right nodesets that we 2710 * migrate mm from. 2711 */ 2712 if (is_memory_migrate(cs)) 2713 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2714 &cpuset_attach_nodemask_to); 2715 else 2716 mmput(mm); 2717 } 2718 } 2719 2720 out: 2721 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2722 2723 if (cs->nr_migrate_dl_tasks) { 2724 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; 2725 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; 2726 reset_migrate_dl_data(cs); 2727 } 2728 2729 cs->attach_in_progress--; 2730 if (!cs->attach_in_progress) 2731 wake_up(&cpuset_attach_wq); 2732 2733 mutex_unlock(&cpuset_mutex); 2734 } 2735 2736 /* The various types of files and directories in a cpuset file system */ 2737 2738 typedef enum { 2739 FILE_MEMORY_MIGRATE, 2740 FILE_CPULIST, 2741 FILE_MEMLIST, 2742 FILE_EFFECTIVE_CPULIST, 2743 FILE_EFFECTIVE_MEMLIST, 2744 FILE_SUBPARTS_CPULIST, 2745 FILE_CPU_EXCLUSIVE, 2746 FILE_MEM_EXCLUSIVE, 2747 FILE_MEM_HARDWALL, 2748 FILE_SCHED_LOAD_BALANCE, 2749 FILE_PARTITION_ROOT, 2750 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2751 FILE_MEMORY_PRESSURE_ENABLED, 2752 FILE_MEMORY_PRESSURE, 2753 FILE_SPREAD_PAGE, 2754 FILE_SPREAD_SLAB, 2755 } cpuset_filetype_t; 2756 2757 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2758 u64 val) 2759 { 2760 struct cpuset *cs = css_cs(css); 2761 cpuset_filetype_t type = cft->private; 2762 int retval = 0; 2763 2764 cpus_read_lock(); 2765 mutex_lock(&cpuset_mutex); 2766 if (!is_cpuset_online(cs)) { 2767 retval = -ENODEV; 2768 goto out_unlock; 2769 } 2770 2771 switch (type) { 2772 case FILE_CPU_EXCLUSIVE: 2773 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2774 break; 2775 case FILE_MEM_EXCLUSIVE: 2776 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2777 break; 2778 case FILE_MEM_HARDWALL: 2779 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2780 break; 2781 case FILE_SCHED_LOAD_BALANCE: 2782 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2783 break; 2784 case FILE_MEMORY_MIGRATE: 2785 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2786 break; 2787 case FILE_MEMORY_PRESSURE_ENABLED: 2788 cpuset_memory_pressure_enabled = !!val; 2789 break; 2790 case FILE_SPREAD_PAGE: 2791 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2792 break; 2793 case FILE_SPREAD_SLAB: 2794 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2795 break; 2796 default: 2797 retval = -EINVAL; 2798 break; 2799 } 2800 out_unlock: 2801 mutex_unlock(&cpuset_mutex); 2802 cpus_read_unlock(); 2803 return retval; 2804 } 2805 2806 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2807 s64 val) 2808 { 2809 struct cpuset *cs = css_cs(css); 2810 cpuset_filetype_t type = cft->private; 2811 int retval = -ENODEV; 2812 2813 cpus_read_lock(); 2814 mutex_lock(&cpuset_mutex); 2815 if (!is_cpuset_online(cs)) 2816 goto out_unlock; 2817 2818 switch (type) { 2819 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2820 retval = update_relax_domain_level(cs, val); 2821 break; 2822 default: 2823 retval = -EINVAL; 2824 break; 2825 } 2826 out_unlock: 2827 mutex_unlock(&cpuset_mutex); 2828 cpus_read_unlock(); 2829 return retval; 2830 } 2831 2832 /* 2833 * Common handling for a write to a "cpus" or "mems" file. 2834 */ 2835 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2836 char *buf, size_t nbytes, loff_t off) 2837 { 2838 struct cpuset *cs = css_cs(of_css(of)); 2839 struct cpuset *trialcs; 2840 int retval = -ENODEV; 2841 2842 buf = strstrip(buf); 2843 2844 /* 2845 * CPU or memory hotunplug may leave @cs w/o any execution 2846 * resources, in which case the hotplug code asynchronously updates 2847 * configuration and transfers all tasks to the nearest ancestor 2848 * which can execute. 2849 * 2850 * As writes to "cpus" or "mems" may restore @cs's execution 2851 * resources, wait for the previously scheduled operations before 2852 * proceeding, so that we don't end up keep removing tasks added 2853 * after execution capability is restored. 2854 * 2855 * cpuset_hotplug_work calls back into cgroup core via 2856 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2857 * operation like this one can lead to a deadlock through kernfs 2858 * active_ref protection. Let's break the protection. Losing the 2859 * protection is okay as we check whether @cs is online after 2860 * grabbing cpuset_mutex anyway. This only happens on the legacy 2861 * hierarchies. 2862 */ 2863 css_get(&cs->css); 2864 kernfs_break_active_protection(of->kn); 2865 flush_work(&cpuset_hotplug_work); 2866 2867 cpus_read_lock(); 2868 mutex_lock(&cpuset_mutex); 2869 if (!is_cpuset_online(cs)) 2870 goto out_unlock; 2871 2872 trialcs = alloc_trial_cpuset(cs); 2873 if (!trialcs) { 2874 retval = -ENOMEM; 2875 goto out_unlock; 2876 } 2877 2878 switch (of_cft(of)->private) { 2879 case FILE_CPULIST: 2880 retval = update_cpumask(cs, trialcs, buf); 2881 break; 2882 case FILE_MEMLIST: 2883 retval = update_nodemask(cs, trialcs, buf); 2884 break; 2885 default: 2886 retval = -EINVAL; 2887 break; 2888 } 2889 2890 free_cpuset(trialcs); 2891 out_unlock: 2892 mutex_unlock(&cpuset_mutex); 2893 cpus_read_unlock(); 2894 kernfs_unbreak_active_protection(of->kn); 2895 css_put(&cs->css); 2896 flush_workqueue(cpuset_migrate_mm_wq); 2897 return retval ?: nbytes; 2898 } 2899 2900 /* 2901 * These ascii lists should be read in a single call, by using a user 2902 * buffer large enough to hold the entire map. If read in smaller 2903 * chunks, there is no guarantee of atomicity. Since the display format 2904 * used, list of ranges of sequential numbers, is variable length, 2905 * and since these maps can change value dynamically, one could read 2906 * gibberish by doing partial reads while a list was changing. 2907 */ 2908 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2909 { 2910 struct cpuset *cs = css_cs(seq_css(sf)); 2911 cpuset_filetype_t type = seq_cft(sf)->private; 2912 int ret = 0; 2913 2914 spin_lock_irq(&callback_lock); 2915 2916 switch (type) { 2917 case FILE_CPULIST: 2918 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2919 break; 2920 case FILE_MEMLIST: 2921 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2922 break; 2923 case FILE_EFFECTIVE_CPULIST: 2924 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2925 break; 2926 case FILE_EFFECTIVE_MEMLIST: 2927 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2928 break; 2929 case FILE_SUBPARTS_CPULIST: 2930 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2931 break; 2932 default: 2933 ret = -EINVAL; 2934 } 2935 2936 spin_unlock_irq(&callback_lock); 2937 return ret; 2938 } 2939 2940 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2941 { 2942 struct cpuset *cs = css_cs(css); 2943 cpuset_filetype_t type = cft->private; 2944 switch (type) { 2945 case FILE_CPU_EXCLUSIVE: 2946 return is_cpu_exclusive(cs); 2947 case FILE_MEM_EXCLUSIVE: 2948 return is_mem_exclusive(cs); 2949 case FILE_MEM_HARDWALL: 2950 return is_mem_hardwall(cs); 2951 case FILE_SCHED_LOAD_BALANCE: 2952 return is_sched_load_balance(cs); 2953 case FILE_MEMORY_MIGRATE: 2954 return is_memory_migrate(cs); 2955 case FILE_MEMORY_PRESSURE_ENABLED: 2956 return cpuset_memory_pressure_enabled; 2957 case FILE_MEMORY_PRESSURE: 2958 return fmeter_getrate(&cs->fmeter); 2959 case FILE_SPREAD_PAGE: 2960 return is_spread_page(cs); 2961 case FILE_SPREAD_SLAB: 2962 return is_spread_slab(cs); 2963 default: 2964 BUG(); 2965 } 2966 2967 /* Unreachable but makes gcc happy */ 2968 return 0; 2969 } 2970 2971 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2972 { 2973 struct cpuset *cs = css_cs(css); 2974 cpuset_filetype_t type = cft->private; 2975 switch (type) { 2976 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2977 return cs->relax_domain_level; 2978 default: 2979 BUG(); 2980 } 2981 2982 /* Unreachable but makes gcc happy */ 2983 return 0; 2984 } 2985 2986 static int sched_partition_show(struct seq_file *seq, void *v) 2987 { 2988 struct cpuset *cs = css_cs(seq_css(seq)); 2989 const char *err, *type = NULL; 2990 2991 switch (cs->partition_root_state) { 2992 case PRS_ROOT: 2993 seq_puts(seq, "root\n"); 2994 break; 2995 case PRS_ISOLATED: 2996 seq_puts(seq, "isolated\n"); 2997 break; 2998 case PRS_MEMBER: 2999 seq_puts(seq, "member\n"); 3000 break; 3001 case PRS_INVALID_ROOT: 3002 type = "root"; 3003 fallthrough; 3004 case PRS_INVALID_ISOLATED: 3005 if (!type) 3006 type = "isolated"; 3007 err = perr_strings[READ_ONCE(cs->prs_err)]; 3008 if (err) 3009 seq_printf(seq, "%s invalid (%s)\n", type, err); 3010 else 3011 seq_printf(seq, "%s invalid\n", type); 3012 break; 3013 } 3014 return 0; 3015 } 3016 3017 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 3018 size_t nbytes, loff_t off) 3019 { 3020 struct cpuset *cs = css_cs(of_css(of)); 3021 int val; 3022 int retval = -ENODEV; 3023 3024 buf = strstrip(buf); 3025 3026 /* 3027 * Convert "root" to ENABLED, and convert "member" to DISABLED. 3028 */ 3029 if (!strcmp(buf, "root")) 3030 val = PRS_ROOT; 3031 else if (!strcmp(buf, "member")) 3032 val = PRS_MEMBER; 3033 else if (!strcmp(buf, "isolated")) 3034 val = PRS_ISOLATED; 3035 else 3036 return -EINVAL; 3037 3038 css_get(&cs->css); 3039 cpus_read_lock(); 3040 mutex_lock(&cpuset_mutex); 3041 if (!is_cpuset_online(cs)) 3042 goto out_unlock; 3043 3044 retval = update_prstate(cs, val); 3045 out_unlock: 3046 mutex_unlock(&cpuset_mutex); 3047 cpus_read_unlock(); 3048 css_put(&cs->css); 3049 return retval ?: nbytes; 3050 } 3051 3052 /* 3053 * for the common functions, 'private' gives the type of file 3054 */ 3055 3056 static struct cftype legacy_files[] = { 3057 { 3058 .name = "cpus", 3059 .seq_show = cpuset_common_seq_show, 3060 .write = cpuset_write_resmask, 3061 .max_write_len = (100U + 6 * NR_CPUS), 3062 .private = FILE_CPULIST, 3063 }, 3064 3065 { 3066 .name = "mems", 3067 .seq_show = cpuset_common_seq_show, 3068 .write = cpuset_write_resmask, 3069 .max_write_len = (100U + 6 * MAX_NUMNODES), 3070 .private = FILE_MEMLIST, 3071 }, 3072 3073 { 3074 .name = "effective_cpus", 3075 .seq_show = cpuset_common_seq_show, 3076 .private = FILE_EFFECTIVE_CPULIST, 3077 }, 3078 3079 { 3080 .name = "effective_mems", 3081 .seq_show = cpuset_common_seq_show, 3082 .private = FILE_EFFECTIVE_MEMLIST, 3083 }, 3084 3085 { 3086 .name = "cpu_exclusive", 3087 .read_u64 = cpuset_read_u64, 3088 .write_u64 = cpuset_write_u64, 3089 .private = FILE_CPU_EXCLUSIVE, 3090 }, 3091 3092 { 3093 .name = "mem_exclusive", 3094 .read_u64 = cpuset_read_u64, 3095 .write_u64 = cpuset_write_u64, 3096 .private = FILE_MEM_EXCLUSIVE, 3097 }, 3098 3099 { 3100 .name = "mem_hardwall", 3101 .read_u64 = cpuset_read_u64, 3102 .write_u64 = cpuset_write_u64, 3103 .private = FILE_MEM_HARDWALL, 3104 }, 3105 3106 { 3107 .name = "sched_load_balance", 3108 .read_u64 = cpuset_read_u64, 3109 .write_u64 = cpuset_write_u64, 3110 .private = FILE_SCHED_LOAD_BALANCE, 3111 }, 3112 3113 { 3114 .name = "sched_relax_domain_level", 3115 .read_s64 = cpuset_read_s64, 3116 .write_s64 = cpuset_write_s64, 3117 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 3118 }, 3119 3120 { 3121 .name = "memory_migrate", 3122 .read_u64 = cpuset_read_u64, 3123 .write_u64 = cpuset_write_u64, 3124 .private = FILE_MEMORY_MIGRATE, 3125 }, 3126 3127 { 3128 .name = "memory_pressure", 3129 .read_u64 = cpuset_read_u64, 3130 .private = FILE_MEMORY_PRESSURE, 3131 }, 3132 3133 { 3134 .name = "memory_spread_page", 3135 .read_u64 = cpuset_read_u64, 3136 .write_u64 = cpuset_write_u64, 3137 .private = FILE_SPREAD_PAGE, 3138 }, 3139 3140 { 3141 .name = "memory_spread_slab", 3142 .read_u64 = cpuset_read_u64, 3143 .write_u64 = cpuset_write_u64, 3144 .private = FILE_SPREAD_SLAB, 3145 }, 3146 3147 { 3148 .name = "memory_pressure_enabled", 3149 .flags = CFTYPE_ONLY_ON_ROOT, 3150 .read_u64 = cpuset_read_u64, 3151 .write_u64 = cpuset_write_u64, 3152 .private = FILE_MEMORY_PRESSURE_ENABLED, 3153 }, 3154 3155 { } /* terminate */ 3156 }; 3157 3158 /* 3159 * This is currently a minimal set for the default hierarchy. It can be 3160 * expanded later on by migrating more features and control files from v1. 3161 */ 3162 static struct cftype dfl_files[] = { 3163 { 3164 .name = "cpus", 3165 .seq_show = cpuset_common_seq_show, 3166 .write = cpuset_write_resmask, 3167 .max_write_len = (100U + 6 * NR_CPUS), 3168 .private = FILE_CPULIST, 3169 .flags = CFTYPE_NOT_ON_ROOT, 3170 }, 3171 3172 { 3173 .name = "mems", 3174 .seq_show = cpuset_common_seq_show, 3175 .write = cpuset_write_resmask, 3176 .max_write_len = (100U + 6 * MAX_NUMNODES), 3177 .private = FILE_MEMLIST, 3178 .flags = CFTYPE_NOT_ON_ROOT, 3179 }, 3180 3181 { 3182 .name = "cpus.effective", 3183 .seq_show = cpuset_common_seq_show, 3184 .private = FILE_EFFECTIVE_CPULIST, 3185 }, 3186 3187 { 3188 .name = "mems.effective", 3189 .seq_show = cpuset_common_seq_show, 3190 .private = FILE_EFFECTIVE_MEMLIST, 3191 }, 3192 3193 { 3194 .name = "cpus.partition", 3195 .seq_show = sched_partition_show, 3196 .write = sched_partition_write, 3197 .private = FILE_PARTITION_ROOT, 3198 .flags = CFTYPE_NOT_ON_ROOT, 3199 .file_offset = offsetof(struct cpuset, partition_file), 3200 }, 3201 3202 { 3203 .name = "cpus.subpartitions", 3204 .seq_show = cpuset_common_seq_show, 3205 .private = FILE_SUBPARTS_CPULIST, 3206 .flags = CFTYPE_DEBUG, 3207 }, 3208 3209 { } /* terminate */ 3210 }; 3211 3212 3213 /** 3214 * cpuset_css_alloc - Allocate a cpuset css 3215 * @parent_css: Parent css of the control group that the new cpuset will be 3216 * part of 3217 * Return: cpuset css on success, -ENOMEM on failure. 3218 * 3219 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return 3220 * top cpuset css otherwise. 3221 */ 3222 static struct cgroup_subsys_state * 3223 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 3224 { 3225 struct cpuset *cs; 3226 3227 if (!parent_css) 3228 return &top_cpuset.css; 3229 3230 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 3231 if (!cs) 3232 return ERR_PTR(-ENOMEM); 3233 3234 if (alloc_cpumasks(cs, NULL)) { 3235 kfree(cs); 3236 return ERR_PTR(-ENOMEM); 3237 } 3238 3239 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3240 nodes_clear(cs->mems_allowed); 3241 nodes_clear(cs->effective_mems); 3242 fmeter_init(&cs->fmeter); 3243 cs->relax_domain_level = -1; 3244 3245 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 3246 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 3247 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 3248 3249 return &cs->css; 3250 } 3251 3252 static int cpuset_css_online(struct cgroup_subsys_state *css) 3253 { 3254 struct cpuset *cs = css_cs(css); 3255 struct cpuset *parent = parent_cs(cs); 3256 struct cpuset *tmp_cs; 3257 struct cgroup_subsys_state *pos_css; 3258 3259 if (!parent) 3260 return 0; 3261 3262 cpus_read_lock(); 3263 mutex_lock(&cpuset_mutex); 3264 3265 set_bit(CS_ONLINE, &cs->flags); 3266 if (is_spread_page(parent)) 3267 set_bit(CS_SPREAD_PAGE, &cs->flags); 3268 if (is_spread_slab(parent)) 3269 set_bit(CS_SPREAD_SLAB, &cs->flags); 3270 3271 cpuset_inc(); 3272 3273 spin_lock_irq(&callback_lock); 3274 if (is_in_v2_mode()) { 3275 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 3276 cs->effective_mems = parent->effective_mems; 3277 cs->use_parent_ecpus = true; 3278 parent->child_ecpus_count++; 3279 } 3280 3281 /* 3282 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated 3283 */ 3284 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 3285 !is_sched_load_balance(parent)) 3286 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3287 3288 spin_unlock_irq(&callback_lock); 3289 3290 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 3291 goto out_unlock; 3292 3293 /* 3294 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 3295 * set. This flag handling is implemented in cgroup core for 3296 * historical reasons - the flag may be specified during mount. 3297 * 3298 * Currently, if any sibling cpusets have exclusive cpus or mem, we 3299 * refuse to clone the configuration - thereby refusing the task to 3300 * be entered, and as a result refusing the sys_unshare() or 3301 * clone() which initiated it. If this becomes a problem for some 3302 * users who wish to allow that scenario, then this could be 3303 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 3304 * (and likewise for mems) to the new cgroup. 3305 */ 3306 rcu_read_lock(); 3307 cpuset_for_each_child(tmp_cs, pos_css, parent) { 3308 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 3309 rcu_read_unlock(); 3310 goto out_unlock; 3311 } 3312 } 3313 rcu_read_unlock(); 3314 3315 spin_lock_irq(&callback_lock); 3316 cs->mems_allowed = parent->mems_allowed; 3317 cs->effective_mems = parent->mems_allowed; 3318 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 3319 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 3320 spin_unlock_irq(&callback_lock); 3321 out_unlock: 3322 mutex_unlock(&cpuset_mutex); 3323 cpus_read_unlock(); 3324 return 0; 3325 } 3326 3327 /* 3328 * If the cpuset being removed has its flag 'sched_load_balance' 3329 * enabled, then simulate turning sched_load_balance off, which 3330 * will call rebuild_sched_domains_locked(). That is not needed 3331 * in the default hierarchy where only changes in partition 3332 * will cause repartitioning. 3333 * 3334 * If the cpuset has the 'sched.partition' flag enabled, simulate 3335 * turning 'sched.partition" off. 3336 */ 3337 3338 static void cpuset_css_offline(struct cgroup_subsys_state *css) 3339 { 3340 struct cpuset *cs = css_cs(css); 3341 3342 cpus_read_lock(); 3343 mutex_lock(&cpuset_mutex); 3344 3345 if (is_partition_valid(cs)) 3346 update_prstate(cs, 0); 3347 3348 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 3349 is_sched_load_balance(cs)) 3350 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 3351 3352 if (cs->use_parent_ecpus) { 3353 struct cpuset *parent = parent_cs(cs); 3354 3355 cs->use_parent_ecpus = false; 3356 parent->child_ecpus_count--; 3357 } 3358 3359 cpuset_dec(); 3360 clear_bit(CS_ONLINE, &cs->flags); 3361 3362 mutex_unlock(&cpuset_mutex); 3363 cpus_read_unlock(); 3364 } 3365 3366 static void cpuset_css_free(struct cgroup_subsys_state *css) 3367 { 3368 struct cpuset *cs = css_cs(css); 3369 3370 free_cpuset(cs); 3371 } 3372 3373 static void cpuset_bind(struct cgroup_subsys_state *root_css) 3374 { 3375 mutex_lock(&cpuset_mutex); 3376 spin_lock_irq(&callback_lock); 3377 3378 if (is_in_v2_mode()) { 3379 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 3380 top_cpuset.mems_allowed = node_possible_map; 3381 } else { 3382 cpumask_copy(top_cpuset.cpus_allowed, 3383 top_cpuset.effective_cpus); 3384 top_cpuset.mems_allowed = top_cpuset.effective_mems; 3385 } 3386 3387 spin_unlock_irq(&callback_lock); 3388 mutex_unlock(&cpuset_mutex); 3389 } 3390 3391 /* 3392 * In case the child is cloned into a cpuset different from its parent, 3393 * additional checks are done to see if the move is allowed. 3394 */ 3395 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) 3396 { 3397 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3398 bool same_cs; 3399 int ret; 3400 3401 rcu_read_lock(); 3402 same_cs = (cs == task_cs(current)); 3403 rcu_read_unlock(); 3404 3405 if (same_cs) 3406 return 0; 3407 3408 lockdep_assert_held(&cgroup_mutex); 3409 mutex_lock(&cpuset_mutex); 3410 3411 /* Check to see if task is allowed in the cpuset */ 3412 ret = cpuset_can_attach_check(cs); 3413 if (ret) 3414 goto out_unlock; 3415 3416 ret = task_can_attach(task); 3417 if (ret) 3418 goto out_unlock; 3419 3420 ret = security_task_setscheduler(task); 3421 if (ret) 3422 goto out_unlock; 3423 3424 /* 3425 * Mark attach is in progress. This makes validate_change() fail 3426 * changes which zero cpus/mems_allowed. 3427 */ 3428 cs->attach_in_progress++; 3429 out_unlock: 3430 mutex_unlock(&cpuset_mutex); 3431 return ret; 3432 } 3433 3434 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) 3435 { 3436 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3437 bool same_cs; 3438 3439 rcu_read_lock(); 3440 same_cs = (cs == task_cs(current)); 3441 rcu_read_unlock(); 3442 3443 if (same_cs) 3444 return; 3445 3446 mutex_lock(&cpuset_mutex); 3447 cs->attach_in_progress--; 3448 if (!cs->attach_in_progress) 3449 wake_up(&cpuset_attach_wq); 3450 mutex_unlock(&cpuset_mutex); 3451 } 3452 3453 /* 3454 * Make sure the new task conform to the current state of its parent, 3455 * which could have been changed by cpuset just after it inherits the 3456 * state from the parent and before it sits on the cgroup's task list. 3457 */ 3458 static void cpuset_fork(struct task_struct *task) 3459 { 3460 struct cpuset *cs; 3461 bool same_cs; 3462 3463 rcu_read_lock(); 3464 cs = task_cs(task); 3465 same_cs = (cs == task_cs(current)); 3466 rcu_read_unlock(); 3467 3468 if (same_cs) { 3469 if (cs == &top_cpuset) 3470 return; 3471 3472 set_cpus_allowed_ptr(task, current->cpus_ptr); 3473 task->mems_allowed = current->mems_allowed; 3474 return; 3475 } 3476 3477 /* CLONE_INTO_CGROUP */ 3478 mutex_lock(&cpuset_mutex); 3479 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3480 cpuset_attach_task(cs, task); 3481 3482 cs->attach_in_progress--; 3483 if (!cs->attach_in_progress) 3484 wake_up(&cpuset_attach_wq); 3485 3486 mutex_unlock(&cpuset_mutex); 3487 } 3488 3489 struct cgroup_subsys cpuset_cgrp_subsys = { 3490 .css_alloc = cpuset_css_alloc, 3491 .css_online = cpuset_css_online, 3492 .css_offline = cpuset_css_offline, 3493 .css_free = cpuset_css_free, 3494 .can_attach = cpuset_can_attach, 3495 .cancel_attach = cpuset_cancel_attach, 3496 .attach = cpuset_attach, 3497 .post_attach = cpuset_post_attach, 3498 .bind = cpuset_bind, 3499 .can_fork = cpuset_can_fork, 3500 .cancel_fork = cpuset_cancel_fork, 3501 .fork = cpuset_fork, 3502 .legacy_cftypes = legacy_files, 3503 .dfl_cftypes = dfl_files, 3504 .early_init = true, 3505 .threaded = true, 3506 }; 3507 3508 /** 3509 * cpuset_init - initialize cpusets at system boot 3510 * 3511 * Description: Initialize top_cpuset 3512 **/ 3513 3514 int __init cpuset_init(void) 3515 { 3516 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 3517 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 3518 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 3519 3520 cpumask_setall(top_cpuset.cpus_allowed); 3521 nodes_setall(top_cpuset.mems_allowed); 3522 cpumask_setall(top_cpuset.effective_cpus); 3523 nodes_setall(top_cpuset.effective_mems); 3524 3525 fmeter_init(&top_cpuset.fmeter); 3526 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 3527 top_cpuset.relax_domain_level = -1; 3528 3529 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 3530 3531 return 0; 3532 } 3533 3534 /* 3535 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 3536 * or memory nodes, we need to walk over the cpuset hierarchy, 3537 * removing that CPU or node from all cpusets. If this removes the 3538 * last CPU or node from a cpuset, then move the tasks in the empty 3539 * cpuset to its next-highest non-empty parent. 3540 */ 3541 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 3542 { 3543 struct cpuset *parent; 3544 3545 /* 3546 * Find its next-highest non-empty parent, (top cpuset 3547 * has online cpus, so can't be empty). 3548 */ 3549 parent = parent_cs(cs); 3550 while (cpumask_empty(parent->cpus_allowed) || 3551 nodes_empty(parent->mems_allowed)) 3552 parent = parent_cs(parent); 3553 3554 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 3555 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 3556 pr_cont_cgroup_name(cs->css.cgroup); 3557 pr_cont("\n"); 3558 } 3559 } 3560 3561 static void 3562 hotplug_update_tasks_legacy(struct cpuset *cs, 3563 struct cpumask *new_cpus, nodemask_t *new_mems, 3564 bool cpus_updated, bool mems_updated) 3565 { 3566 bool is_empty; 3567 3568 spin_lock_irq(&callback_lock); 3569 cpumask_copy(cs->cpus_allowed, new_cpus); 3570 cpumask_copy(cs->effective_cpus, new_cpus); 3571 cs->mems_allowed = *new_mems; 3572 cs->effective_mems = *new_mems; 3573 spin_unlock_irq(&callback_lock); 3574 3575 /* 3576 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 3577 * as the tasks will be migrated to an ancestor. 3578 */ 3579 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 3580 update_tasks_cpumask(cs, new_cpus); 3581 if (mems_updated && !nodes_empty(cs->mems_allowed)) 3582 update_tasks_nodemask(cs); 3583 3584 is_empty = cpumask_empty(cs->cpus_allowed) || 3585 nodes_empty(cs->mems_allowed); 3586 3587 /* 3588 * Move tasks to the nearest ancestor with execution resources, 3589 * This is full cgroup operation which will also call back into 3590 * cpuset. Should be done outside any lock. 3591 */ 3592 if (is_empty) { 3593 mutex_unlock(&cpuset_mutex); 3594 remove_tasks_in_empty_cpuset(cs); 3595 mutex_lock(&cpuset_mutex); 3596 } 3597 } 3598 3599 static void 3600 hotplug_update_tasks(struct cpuset *cs, 3601 struct cpumask *new_cpus, nodemask_t *new_mems, 3602 bool cpus_updated, bool mems_updated) 3603 { 3604 /* A partition root is allowed to have empty effective cpus */ 3605 if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) 3606 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3607 if (nodes_empty(*new_mems)) 3608 *new_mems = parent_cs(cs)->effective_mems; 3609 3610 spin_lock_irq(&callback_lock); 3611 cpumask_copy(cs->effective_cpus, new_cpus); 3612 cs->effective_mems = *new_mems; 3613 spin_unlock_irq(&callback_lock); 3614 3615 if (cpus_updated) 3616 update_tasks_cpumask(cs, new_cpus); 3617 if (mems_updated) 3618 update_tasks_nodemask(cs); 3619 } 3620 3621 static bool force_rebuild; 3622 3623 void cpuset_force_rebuild(void) 3624 { 3625 force_rebuild = true; 3626 } 3627 3628 /** 3629 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3630 * @cs: cpuset in interest 3631 * @tmp: the tmpmasks structure pointer 3632 * 3633 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3634 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3635 * all its tasks are moved to the nearest ancestor with both resources. 3636 */ 3637 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3638 { 3639 static cpumask_t new_cpus; 3640 static nodemask_t new_mems; 3641 bool cpus_updated; 3642 bool mems_updated; 3643 struct cpuset *parent; 3644 retry: 3645 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3646 3647 mutex_lock(&cpuset_mutex); 3648 3649 /* 3650 * We have raced with task attaching. We wait until attaching 3651 * is finished, so we won't attach a task to an empty cpuset. 3652 */ 3653 if (cs->attach_in_progress) { 3654 mutex_unlock(&cpuset_mutex); 3655 goto retry; 3656 } 3657 3658 parent = parent_cs(cs); 3659 compute_effective_cpumask(&new_cpus, cs, parent); 3660 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3661 3662 if (cs->nr_subparts_cpus) 3663 /* 3664 * Make sure that CPUs allocated to child partitions 3665 * do not show up in effective_cpus. 3666 */ 3667 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 3668 3669 if (!tmp || !cs->partition_root_state) 3670 goto update_tasks; 3671 3672 /* 3673 * In the unlikely event that a partition root has empty 3674 * effective_cpus with tasks, we will have to invalidate child 3675 * partitions, if present, by setting nr_subparts_cpus to 0 to 3676 * reclaim their cpus. 3677 */ 3678 if (cs->nr_subparts_cpus && is_partition_valid(cs) && 3679 cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) { 3680 spin_lock_irq(&callback_lock); 3681 cs->nr_subparts_cpus = 0; 3682 cpumask_clear(cs->subparts_cpus); 3683 spin_unlock_irq(&callback_lock); 3684 compute_effective_cpumask(&new_cpus, cs, parent); 3685 } 3686 3687 /* 3688 * Force the partition to become invalid if either one of 3689 * the following conditions hold: 3690 * 1) empty effective cpus but not valid empty partition. 3691 * 2) parent is invalid or doesn't grant any cpus to child 3692 * partitions. 3693 */ 3694 if (is_partition_valid(cs) && (!parent->nr_subparts_cpus || 3695 (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) { 3696 int old_prs, parent_prs; 3697 3698 update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp); 3699 if (cs->nr_subparts_cpus) { 3700 spin_lock_irq(&callback_lock); 3701 cs->nr_subparts_cpus = 0; 3702 cpumask_clear(cs->subparts_cpus); 3703 spin_unlock_irq(&callback_lock); 3704 compute_effective_cpumask(&new_cpus, cs, parent); 3705 } 3706 3707 old_prs = cs->partition_root_state; 3708 parent_prs = parent->partition_root_state; 3709 if (is_partition_valid(cs)) { 3710 spin_lock_irq(&callback_lock); 3711 make_partition_invalid(cs); 3712 spin_unlock_irq(&callback_lock); 3713 if (is_prs_invalid(parent_prs)) 3714 WRITE_ONCE(cs->prs_err, PERR_INVPARENT); 3715 else if (!parent_prs) 3716 WRITE_ONCE(cs->prs_err, PERR_NOTPART); 3717 else 3718 WRITE_ONCE(cs->prs_err, PERR_HOTPLUG); 3719 notify_partition_change(cs, old_prs); 3720 } 3721 cpuset_force_rebuild(); 3722 } 3723 3724 /* 3725 * On the other hand, an invalid partition root may be transitioned 3726 * back to a regular one. 3727 */ 3728 else if (is_partition_valid(parent) && is_partition_invalid(cs)) { 3729 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp); 3730 if (is_partition_valid(cs)) 3731 cpuset_force_rebuild(); 3732 } 3733 3734 update_tasks: 3735 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3736 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3737 if (!cpus_updated && !mems_updated) 3738 goto unlock; /* Hotplug doesn't affect this cpuset */ 3739 3740 if (mems_updated) 3741 check_insane_mems_config(&new_mems); 3742 3743 if (is_in_v2_mode()) 3744 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3745 cpus_updated, mems_updated); 3746 else 3747 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3748 cpus_updated, mems_updated); 3749 3750 unlock: 3751 mutex_unlock(&cpuset_mutex); 3752 } 3753 3754 /** 3755 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3756 * @work: unused 3757 * 3758 * This function is called after either CPU or memory configuration has 3759 * changed and updates cpuset accordingly. The top_cpuset is always 3760 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3761 * order to make cpusets transparent (of no affect) on systems that are 3762 * actively using CPU hotplug but making no active use of cpusets. 3763 * 3764 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3765 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3766 * all descendants. 3767 * 3768 * Note that CPU offlining during suspend is ignored. We don't modify 3769 * cpusets across suspend/resume cycles at all. 3770 */ 3771 static void cpuset_hotplug_workfn(struct work_struct *work) 3772 { 3773 static cpumask_t new_cpus; 3774 static nodemask_t new_mems; 3775 bool cpus_updated, mems_updated; 3776 bool on_dfl = is_in_v2_mode(); 3777 struct tmpmasks tmp, *ptmp = NULL; 3778 3779 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3780 ptmp = &tmp; 3781 3782 mutex_lock(&cpuset_mutex); 3783 3784 /* fetch the available cpus/mems and find out which changed how */ 3785 cpumask_copy(&new_cpus, cpu_active_mask); 3786 new_mems = node_states[N_MEMORY]; 3787 3788 /* 3789 * If subparts_cpus is populated, it is likely that the check below 3790 * will produce a false positive on cpus_updated when the cpu list 3791 * isn't changed. It is extra work, but it is better to be safe. 3792 */ 3793 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3794 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3795 3796 /* 3797 * In the rare case that hotplug removes all the cpus in subparts_cpus, 3798 * we assumed that cpus are updated. 3799 */ 3800 if (!cpus_updated && top_cpuset.nr_subparts_cpus) 3801 cpus_updated = true; 3802 3803 /* synchronize cpus_allowed to cpu_active_mask */ 3804 if (cpus_updated) { 3805 spin_lock_irq(&callback_lock); 3806 if (!on_dfl) 3807 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3808 /* 3809 * Make sure that CPUs allocated to child partitions 3810 * do not show up in effective_cpus. If no CPU is left, 3811 * we clear the subparts_cpus & let the child partitions 3812 * fight for the CPUs again. 3813 */ 3814 if (top_cpuset.nr_subparts_cpus) { 3815 if (cpumask_subset(&new_cpus, 3816 top_cpuset.subparts_cpus)) { 3817 top_cpuset.nr_subparts_cpus = 0; 3818 cpumask_clear(top_cpuset.subparts_cpus); 3819 } else { 3820 cpumask_andnot(&new_cpus, &new_cpus, 3821 top_cpuset.subparts_cpus); 3822 } 3823 } 3824 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3825 spin_unlock_irq(&callback_lock); 3826 /* we don't mess with cpumasks of tasks in top_cpuset */ 3827 } 3828 3829 /* synchronize mems_allowed to N_MEMORY */ 3830 if (mems_updated) { 3831 spin_lock_irq(&callback_lock); 3832 if (!on_dfl) 3833 top_cpuset.mems_allowed = new_mems; 3834 top_cpuset.effective_mems = new_mems; 3835 spin_unlock_irq(&callback_lock); 3836 update_tasks_nodemask(&top_cpuset); 3837 } 3838 3839 mutex_unlock(&cpuset_mutex); 3840 3841 /* if cpus or mems changed, we need to propagate to descendants */ 3842 if (cpus_updated || mems_updated) { 3843 struct cpuset *cs; 3844 struct cgroup_subsys_state *pos_css; 3845 3846 rcu_read_lock(); 3847 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3848 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3849 continue; 3850 rcu_read_unlock(); 3851 3852 cpuset_hotplug_update_tasks(cs, ptmp); 3853 3854 rcu_read_lock(); 3855 css_put(&cs->css); 3856 } 3857 rcu_read_unlock(); 3858 } 3859 3860 /* rebuild sched domains if cpus_allowed has changed */ 3861 if (cpus_updated || force_rebuild) { 3862 force_rebuild = false; 3863 rebuild_sched_domains(); 3864 } 3865 3866 free_cpumasks(NULL, ptmp); 3867 } 3868 3869 void cpuset_update_active_cpus(void) 3870 { 3871 /* 3872 * We're inside cpu hotplug critical region which usually nests 3873 * inside cgroup synchronization. Bounce actual hotplug processing 3874 * to a work item to avoid reverse locking order. 3875 */ 3876 schedule_work(&cpuset_hotplug_work); 3877 } 3878 3879 void cpuset_wait_for_hotplug(void) 3880 { 3881 flush_work(&cpuset_hotplug_work); 3882 } 3883 3884 /* 3885 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3886 * Call this routine anytime after node_states[N_MEMORY] changes. 3887 * See cpuset_update_active_cpus() for CPU hotplug handling. 3888 */ 3889 static int cpuset_track_online_nodes(struct notifier_block *self, 3890 unsigned long action, void *arg) 3891 { 3892 schedule_work(&cpuset_hotplug_work); 3893 return NOTIFY_OK; 3894 } 3895 3896 /** 3897 * cpuset_init_smp - initialize cpus_allowed 3898 * 3899 * Description: Finish top cpuset after cpu, node maps are initialized 3900 */ 3901 void __init cpuset_init_smp(void) 3902 { 3903 /* 3904 * cpus_allowd/mems_allowed set to v2 values in the initial 3905 * cpuset_bind() call will be reset to v1 values in another 3906 * cpuset_bind() call when v1 cpuset is mounted. 3907 */ 3908 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3909 3910 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3911 top_cpuset.effective_mems = node_states[N_MEMORY]; 3912 3913 hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); 3914 3915 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3916 BUG_ON(!cpuset_migrate_mm_wq); 3917 } 3918 3919 /** 3920 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3921 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3922 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3923 * 3924 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3925 * attached to the specified @tsk. Guaranteed to return some non-empty 3926 * subset of cpu_online_mask, even if this means going outside the 3927 * tasks cpuset, except when the task is in the top cpuset. 3928 **/ 3929 3930 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3931 { 3932 unsigned long flags; 3933 struct cpuset *cs; 3934 3935 spin_lock_irqsave(&callback_lock, flags); 3936 rcu_read_lock(); 3937 3938 cs = task_cs(tsk); 3939 if (cs != &top_cpuset) 3940 guarantee_online_cpus(tsk, pmask); 3941 /* 3942 * Tasks in the top cpuset won't get update to their cpumasks 3943 * when a hotplug online/offline event happens. So we include all 3944 * offline cpus in the allowed cpu list. 3945 */ 3946 if ((cs == &top_cpuset) || cpumask_empty(pmask)) { 3947 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3948 3949 /* 3950 * We first exclude cpus allocated to partitions. If there is no 3951 * allowable online cpu left, we fall back to all possible cpus. 3952 */ 3953 cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus); 3954 if (!cpumask_intersects(pmask, cpu_online_mask)) 3955 cpumask_copy(pmask, possible_mask); 3956 } 3957 3958 rcu_read_unlock(); 3959 spin_unlock_irqrestore(&callback_lock, flags); 3960 } 3961 3962 /** 3963 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3964 * @tsk: pointer to task_struct with which the scheduler is struggling 3965 * 3966 * Description: In the case that the scheduler cannot find an allowed cpu in 3967 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 3968 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 3969 * which will not contain a sane cpumask during cases such as cpu hotplugging. 3970 * This is the absolute last resort for the scheduler and it is only used if 3971 * _every_ other avenue has been traveled. 3972 * 3973 * Returns true if the affinity of @tsk was changed, false otherwise. 3974 **/ 3975 3976 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3977 { 3978 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3979 const struct cpumask *cs_mask; 3980 bool changed = false; 3981 3982 rcu_read_lock(); 3983 cs_mask = task_cs(tsk)->cpus_allowed; 3984 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 3985 do_set_cpus_allowed(tsk, cs_mask); 3986 changed = true; 3987 } 3988 rcu_read_unlock(); 3989 3990 /* 3991 * We own tsk->cpus_allowed, nobody can change it under us. 3992 * 3993 * But we used cs && cs->cpus_allowed lockless and thus can 3994 * race with cgroup_attach_task() or update_cpumask() and get 3995 * the wrong tsk->cpus_allowed. However, both cases imply the 3996 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 3997 * which takes task_rq_lock(). 3998 * 3999 * If we are called after it dropped the lock we must see all 4000 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 4001 * set any mask even if it is not right from task_cs() pov, 4002 * the pending set_cpus_allowed_ptr() will fix things. 4003 * 4004 * select_fallback_rq() will fix things ups and set cpu_possible_mask 4005 * if required. 4006 */ 4007 return changed; 4008 } 4009 4010 void __init cpuset_init_current_mems_allowed(void) 4011 { 4012 nodes_setall(current->mems_allowed); 4013 } 4014 4015 /** 4016 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 4017 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 4018 * 4019 * Description: Returns the nodemask_t mems_allowed of the cpuset 4020 * attached to the specified @tsk. Guaranteed to return some non-empty 4021 * subset of node_states[N_MEMORY], even if this means going outside the 4022 * tasks cpuset. 4023 **/ 4024 4025 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 4026 { 4027 nodemask_t mask; 4028 unsigned long flags; 4029 4030 spin_lock_irqsave(&callback_lock, flags); 4031 rcu_read_lock(); 4032 guarantee_online_mems(task_cs(tsk), &mask); 4033 rcu_read_unlock(); 4034 spin_unlock_irqrestore(&callback_lock, flags); 4035 4036 return mask; 4037 } 4038 4039 /** 4040 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 4041 * @nodemask: the nodemask to be checked 4042 * 4043 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 4044 */ 4045 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 4046 { 4047 return nodes_intersects(*nodemask, current->mems_allowed); 4048 } 4049 4050 /* 4051 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 4052 * mem_hardwall ancestor to the specified cpuset. Call holding 4053 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 4054 * (an unusual configuration), then returns the root cpuset. 4055 */ 4056 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 4057 { 4058 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 4059 cs = parent_cs(cs); 4060 return cs; 4061 } 4062 4063 /* 4064 * cpuset_node_allowed - Can we allocate on a memory node? 4065 * @node: is this an allowed node? 4066 * @gfp_mask: memory allocation flags 4067 * 4068 * If we're in interrupt, yes, we can always allocate. If @node is set in 4069 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 4070 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 4071 * yes. If current has access to memory reserves as an oom victim, yes. 4072 * Otherwise, no. 4073 * 4074 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 4075 * and do not allow allocations outside the current tasks cpuset 4076 * unless the task has been OOM killed. 4077 * GFP_KERNEL allocations are not so marked, so can escape to the 4078 * nearest enclosing hardwalled ancestor cpuset. 4079 * 4080 * Scanning up parent cpusets requires callback_lock. The 4081 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 4082 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 4083 * current tasks mems_allowed came up empty on the first pass over 4084 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 4085 * cpuset are short of memory, might require taking the callback_lock. 4086 * 4087 * The first call here from mm/page_alloc:get_page_from_freelist() 4088 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 4089 * so no allocation on a node outside the cpuset is allowed (unless 4090 * in interrupt, of course). 4091 * 4092 * The second pass through get_page_from_freelist() doesn't even call 4093 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 4094 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 4095 * in alloc_flags. That logic and the checks below have the combined 4096 * affect that: 4097 * in_interrupt - any node ok (current task context irrelevant) 4098 * GFP_ATOMIC - any node ok 4099 * tsk_is_oom_victim - any node ok 4100 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 4101 * GFP_USER - only nodes in current tasks mems allowed ok. 4102 */ 4103 bool cpuset_node_allowed(int node, gfp_t gfp_mask) 4104 { 4105 struct cpuset *cs; /* current cpuset ancestors */ 4106 bool allowed; /* is allocation in zone z allowed? */ 4107 unsigned long flags; 4108 4109 if (in_interrupt()) 4110 return true; 4111 if (node_isset(node, current->mems_allowed)) 4112 return true; 4113 /* 4114 * Allow tasks that have access to memory reserves because they have 4115 * been OOM killed to get memory anywhere. 4116 */ 4117 if (unlikely(tsk_is_oom_victim(current))) 4118 return true; 4119 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 4120 return false; 4121 4122 if (current->flags & PF_EXITING) /* Let dying task have memory */ 4123 return true; 4124 4125 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 4126 spin_lock_irqsave(&callback_lock, flags); 4127 4128 rcu_read_lock(); 4129 cs = nearest_hardwall_ancestor(task_cs(current)); 4130 allowed = node_isset(node, cs->mems_allowed); 4131 rcu_read_unlock(); 4132 4133 spin_unlock_irqrestore(&callback_lock, flags); 4134 return allowed; 4135 } 4136 4137 /** 4138 * cpuset_spread_node() - On which node to begin search for a page 4139 * @rotor: round robin rotor 4140 * 4141 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 4142 * tasks in a cpuset with is_spread_page or is_spread_slab set), 4143 * and if the memory allocation used cpuset_mem_spread_node() 4144 * to determine on which node to start looking, as it will for 4145 * certain page cache or slab cache pages such as used for file 4146 * system buffers and inode caches, then instead of starting on the 4147 * local node to look for a free page, rather spread the starting 4148 * node around the tasks mems_allowed nodes. 4149 * 4150 * We don't have to worry about the returned node being offline 4151 * because "it can't happen", and even if it did, it would be ok. 4152 * 4153 * The routines calling guarantee_online_mems() are careful to 4154 * only set nodes in task->mems_allowed that are online. So it 4155 * should not be possible for the following code to return an 4156 * offline node. But if it did, that would be ok, as this routine 4157 * is not returning the node where the allocation must be, only 4158 * the node where the search should start. The zonelist passed to 4159 * __alloc_pages() will include all nodes. If the slab allocator 4160 * is passed an offline node, it will fall back to the local node. 4161 * See kmem_cache_alloc_node(). 4162 */ 4163 static int cpuset_spread_node(int *rotor) 4164 { 4165 return *rotor = next_node_in(*rotor, current->mems_allowed); 4166 } 4167 4168 /** 4169 * cpuset_mem_spread_node() - On which node to begin search for a file page 4170 */ 4171 int cpuset_mem_spread_node(void) 4172 { 4173 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 4174 current->cpuset_mem_spread_rotor = 4175 node_random(¤t->mems_allowed); 4176 4177 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 4178 } 4179 4180 /** 4181 * cpuset_slab_spread_node() - On which node to begin search for a slab page 4182 */ 4183 int cpuset_slab_spread_node(void) 4184 { 4185 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 4186 current->cpuset_slab_spread_rotor = 4187 node_random(¤t->mems_allowed); 4188 4189 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 4190 } 4191 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 4192 4193 /** 4194 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 4195 * @tsk1: pointer to task_struct of some task. 4196 * @tsk2: pointer to task_struct of some other task. 4197 * 4198 * Description: Return true if @tsk1's mems_allowed intersects the 4199 * mems_allowed of @tsk2. Used by the OOM killer to determine if 4200 * one of the task's memory usage might impact the memory available 4201 * to the other. 4202 **/ 4203 4204 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 4205 const struct task_struct *tsk2) 4206 { 4207 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 4208 } 4209 4210 /** 4211 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 4212 * 4213 * Description: Prints current's name, cpuset name, and cached copy of its 4214 * mems_allowed to the kernel log. 4215 */ 4216 void cpuset_print_current_mems_allowed(void) 4217 { 4218 struct cgroup *cgrp; 4219 4220 rcu_read_lock(); 4221 4222 cgrp = task_cs(current)->css.cgroup; 4223 pr_cont(",cpuset="); 4224 pr_cont_cgroup_name(cgrp); 4225 pr_cont(",mems_allowed=%*pbl", 4226 nodemask_pr_args(¤t->mems_allowed)); 4227 4228 rcu_read_unlock(); 4229 } 4230 4231 /* 4232 * Collection of memory_pressure is suppressed unless 4233 * this flag is enabled by writing "1" to the special 4234 * cpuset file 'memory_pressure_enabled' in the root cpuset. 4235 */ 4236 4237 int cpuset_memory_pressure_enabled __read_mostly; 4238 4239 /* 4240 * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 4241 * 4242 * Keep a running average of the rate of synchronous (direct) 4243 * page reclaim efforts initiated by tasks in each cpuset. 4244 * 4245 * This represents the rate at which some task in the cpuset 4246 * ran low on memory on all nodes it was allowed to use, and 4247 * had to enter the kernels page reclaim code in an effort to 4248 * create more free memory by tossing clean pages or swapping 4249 * or writing dirty pages. 4250 * 4251 * Display to user space in the per-cpuset read-only file 4252 * "memory_pressure". Value displayed is an integer 4253 * representing the recent rate of entry into the synchronous 4254 * (direct) page reclaim by any task attached to the cpuset. 4255 */ 4256 4257 void __cpuset_memory_pressure_bump(void) 4258 { 4259 rcu_read_lock(); 4260 fmeter_markevent(&task_cs(current)->fmeter); 4261 rcu_read_unlock(); 4262 } 4263 4264 #ifdef CONFIG_PROC_PID_CPUSET 4265 /* 4266 * proc_cpuset_show() 4267 * - Print tasks cpuset path into seq_file. 4268 * - Used for /proc/<pid>/cpuset. 4269 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 4270 * doesn't really matter if tsk->cpuset changes after we read it, 4271 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 4272 * anyway. 4273 */ 4274 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 4275 struct pid *pid, struct task_struct *tsk) 4276 { 4277 char *buf; 4278 struct cgroup_subsys_state *css; 4279 int retval; 4280 4281 retval = -ENOMEM; 4282 buf = kmalloc(PATH_MAX, GFP_KERNEL); 4283 if (!buf) 4284 goto out; 4285 4286 css = task_get_css(tsk, cpuset_cgrp_id); 4287 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 4288 current->nsproxy->cgroup_ns); 4289 css_put(css); 4290 if (retval >= PATH_MAX) 4291 retval = -ENAMETOOLONG; 4292 if (retval < 0) 4293 goto out_free; 4294 seq_puts(m, buf); 4295 seq_putc(m, '\n'); 4296 retval = 0; 4297 out_free: 4298 kfree(buf); 4299 out: 4300 return retval; 4301 } 4302 #endif /* CONFIG_PROC_PID_CPUSET */ 4303 4304 /* Display task mems_allowed in /proc/<pid>/status file. */ 4305 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 4306 { 4307 seq_printf(m, "Mems_allowed:\t%*pb\n", 4308 nodemask_pr_args(&task->mems_allowed)); 4309 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 4310 nodemask_pr_args(&task->mems_allowed)); 4311 } 4312