1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/list.h> 37 #include <linux/mempolicy.h> 38 #include <linux/mm.h> 39 #include <linux/memory.h> 40 #include <linux/export.h> 41 #include <linux/mount.h> 42 #include <linux/namei.h> 43 #include <linux/pagemap.h> 44 #include <linux/proc_fs.h> 45 #include <linux/rcupdate.h> 46 #include <linux/sched.h> 47 #include <linux/sched/mm.h> 48 #include <linux/sched/task.h> 49 #include <linux/seq_file.h> 50 #include <linux/security.h> 51 #include <linux/slab.h> 52 #include <linux/spinlock.h> 53 #include <linux/stat.h> 54 #include <linux/string.h> 55 #include <linux/time.h> 56 #include <linux/time64.h> 57 #include <linux/backing-dev.h> 58 #include <linux/sort.h> 59 #include <linux/oom.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/uaccess.h> 62 #include <linux/atomic.h> 63 #include <linux/mutex.h> 64 #include <linux/cgroup.h> 65 #include <linux/wait.h> 66 67 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 68 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 69 70 /* See "Frequency meter" comments, below. */ 71 72 struct fmeter { 73 int cnt; /* unprocessed events count */ 74 int val; /* most recent output value */ 75 time64_t time; /* clock (secs) when val computed */ 76 spinlock_t lock; /* guards read or write of above */ 77 }; 78 79 struct cpuset { 80 struct cgroup_subsys_state css; 81 82 unsigned long flags; /* "unsigned long" so bitops work */ 83 84 /* 85 * On default hierarchy: 86 * 87 * The user-configured masks can only be changed by writing to 88 * cpuset.cpus and cpuset.mems, and won't be limited by the 89 * parent masks. 90 * 91 * The effective masks is the real masks that apply to the tasks 92 * in the cpuset. They may be changed if the configured masks are 93 * changed or hotplug happens. 94 * 95 * effective_mask == configured_mask & parent's effective_mask, 96 * and if it ends up empty, it will inherit the parent's mask. 97 * 98 * 99 * On legacy hierachy: 100 * 101 * The user-configured masks are always the same with effective masks. 102 */ 103 104 /* user-configured CPUs and Memory Nodes allow to tasks */ 105 cpumask_var_t cpus_allowed; 106 nodemask_t mems_allowed; 107 108 /* effective CPUs and Memory Nodes allow to tasks */ 109 cpumask_var_t effective_cpus; 110 nodemask_t effective_mems; 111 112 /* 113 * This is old Memory Nodes tasks took on. 114 * 115 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 116 * - A new cpuset's old_mems_allowed is initialized when some 117 * task is moved into it. 118 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 119 * cpuset.mems_allowed and have tasks' nodemask updated, and 120 * then old_mems_allowed is updated to mems_allowed. 121 */ 122 nodemask_t old_mems_allowed; 123 124 struct fmeter fmeter; /* memory_pressure filter */ 125 126 /* 127 * Tasks are being attached to this cpuset. Used to prevent 128 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 129 */ 130 int attach_in_progress; 131 132 /* partition number for rebuild_sched_domains() */ 133 int pn; 134 135 /* for custom sched domain */ 136 int relax_domain_level; 137 }; 138 139 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 140 { 141 return css ? container_of(css, struct cpuset, css) : NULL; 142 } 143 144 /* Retrieve the cpuset for a task */ 145 static inline struct cpuset *task_cs(struct task_struct *task) 146 { 147 return css_cs(task_css(task, cpuset_cgrp_id)); 148 } 149 150 static inline struct cpuset *parent_cs(struct cpuset *cs) 151 { 152 return css_cs(cs->css.parent); 153 } 154 155 #ifdef CONFIG_NUMA 156 static inline bool task_has_mempolicy(struct task_struct *task) 157 { 158 return task->mempolicy; 159 } 160 #else 161 static inline bool task_has_mempolicy(struct task_struct *task) 162 { 163 return false; 164 } 165 #endif 166 167 168 /* bits in struct cpuset flags field */ 169 typedef enum { 170 CS_ONLINE, 171 CS_CPU_EXCLUSIVE, 172 CS_MEM_EXCLUSIVE, 173 CS_MEM_HARDWALL, 174 CS_MEMORY_MIGRATE, 175 CS_SCHED_LOAD_BALANCE, 176 CS_SPREAD_PAGE, 177 CS_SPREAD_SLAB, 178 } cpuset_flagbits_t; 179 180 /* convenient tests for these bits */ 181 static inline bool is_cpuset_online(struct cpuset *cs) 182 { 183 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 184 } 185 186 static inline int is_cpu_exclusive(const struct cpuset *cs) 187 { 188 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 189 } 190 191 static inline int is_mem_exclusive(const struct cpuset *cs) 192 { 193 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 194 } 195 196 static inline int is_mem_hardwall(const struct cpuset *cs) 197 { 198 return test_bit(CS_MEM_HARDWALL, &cs->flags); 199 } 200 201 static inline int is_sched_load_balance(const struct cpuset *cs) 202 { 203 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 204 } 205 206 static inline int is_memory_migrate(const struct cpuset *cs) 207 { 208 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 209 } 210 211 static inline int is_spread_page(const struct cpuset *cs) 212 { 213 return test_bit(CS_SPREAD_PAGE, &cs->flags); 214 } 215 216 static inline int is_spread_slab(const struct cpuset *cs) 217 { 218 return test_bit(CS_SPREAD_SLAB, &cs->flags); 219 } 220 221 static struct cpuset top_cpuset = { 222 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 223 (1 << CS_MEM_EXCLUSIVE)), 224 }; 225 226 /** 227 * cpuset_for_each_child - traverse online children of a cpuset 228 * @child_cs: loop cursor pointing to the current child 229 * @pos_css: used for iteration 230 * @parent_cs: target cpuset to walk children of 231 * 232 * Walk @child_cs through the online children of @parent_cs. Must be used 233 * with RCU read locked. 234 */ 235 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 236 css_for_each_child((pos_css), &(parent_cs)->css) \ 237 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 238 239 /** 240 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 241 * @des_cs: loop cursor pointing to the current descendant 242 * @pos_css: used for iteration 243 * @root_cs: target cpuset to walk ancestor of 244 * 245 * Walk @des_cs through the online descendants of @root_cs. Must be used 246 * with RCU read locked. The caller may modify @pos_css by calling 247 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 248 * iteration and the first node to be visited. 249 */ 250 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 251 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 252 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 253 254 /* 255 * There are two global locks guarding cpuset structures - cpuset_mutex and 256 * callback_lock. We also require taking task_lock() when dereferencing a 257 * task's cpuset pointer. See "The task_lock() exception", at the end of this 258 * comment. 259 * 260 * A task must hold both locks to modify cpusets. If a task holds 261 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it 262 * is the only task able to also acquire callback_lock and be able to 263 * modify cpusets. It can perform various checks on the cpuset structure 264 * first, knowing nothing will change. It can also allocate memory while 265 * just holding cpuset_mutex. While it is performing these checks, various 266 * callback routines can briefly acquire callback_lock to query cpusets. 267 * Once it is ready to make the changes, it takes callback_lock, blocking 268 * everyone else. 269 * 270 * Calls to the kernel memory allocator can not be made while holding 271 * callback_lock, as that would risk double tripping on callback_lock 272 * from one of the callbacks into the cpuset code from within 273 * __alloc_pages(). 274 * 275 * If a task is only holding callback_lock, then it has read-only 276 * access to cpusets. 277 * 278 * Now, the task_struct fields mems_allowed and mempolicy may be changed 279 * by other task, we use alloc_lock in the task_struct fields to protect 280 * them. 281 * 282 * The cpuset_common_file_read() handlers only hold callback_lock across 283 * small pieces of code, such as when reading out possibly multi-word 284 * cpumasks and nodemasks. 285 * 286 * Accessing a task's cpuset should be done in accordance with the 287 * guidelines for accessing subsystem state in kernel/cgroup.c 288 */ 289 290 static DEFINE_MUTEX(cpuset_mutex); 291 static DEFINE_SPINLOCK(callback_lock); 292 293 static struct workqueue_struct *cpuset_migrate_mm_wq; 294 295 /* 296 * CPU / memory hotplug is handled asynchronously. 297 */ 298 static void cpuset_hotplug_workfn(struct work_struct *work); 299 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 300 301 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 302 303 /* 304 * Cgroup v2 behavior is used when on default hierarchy or the 305 * cgroup_v2_mode flag is set. 306 */ 307 static inline bool is_in_v2_mode(void) 308 { 309 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 310 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 311 } 312 313 /* 314 * This is ugly, but preserves the userspace API for existing cpuset 315 * users. If someone tries to mount the "cpuset" filesystem, we 316 * silently switch it to mount "cgroup" instead 317 */ 318 static struct dentry *cpuset_mount(struct file_system_type *fs_type, 319 int flags, const char *unused_dev_name, void *data) 320 { 321 struct file_system_type *cgroup_fs = get_fs_type("cgroup"); 322 struct dentry *ret = ERR_PTR(-ENODEV); 323 if (cgroup_fs) { 324 char mountopts[] = 325 "cpuset,noprefix," 326 "release_agent=/sbin/cpuset_release_agent"; 327 ret = cgroup_fs->mount(cgroup_fs, flags, 328 unused_dev_name, mountopts); 329 put_filesystem(cgroup_fs); 330 } 331 return ret; 332 } 333 334 static struct file_system_type cpuset_fs_type = { 335 .name = "cpuset", 336 .mount = cpuset_mount, 337 }; 338 339 /* 340 * Return in pmask the portion of a cpusets's cpus_allowed that 341 * are online. If none are online, walk up the cpuset hierarchy 342 * until we find one that does have some online cpus. 343 * 344 * One way or another, we guarantee to return some non-empty subset 345 * of cpu_online_mask. 346 * 347 * Call with callback_lock or cpuset_mutex held. 348 */ 349 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) 350 { 351 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) { 352 cs = parent_cs(cs); 353 if (unlikely(!cs)) { 354 /* 355 * The top cpuset doesn't have any online cpu as a 356 * consequence of a race between cpuset_hotplug_work 357 * and cpu hotplug notifier. But we know the top 358 * cpuset's effective_cpus is on its way to to be 359 * identical to cpu_online_mask. 360 */ 361 cpumask_copy(pmask, cpu_online_mask); 362 return; 363 } 364 } 365 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); 366 } 367 368 /* 369 * Return in *pmask the portion of a cpusets's mems_allowed that 370 * are online, with memory. If none are online with memory, walk 371 * up the cpuset hierarchy until we find one that does have some 372 * online mems. The top cpuset always has some mems online. 373 * 374 * One way or another, we guarantee to return some non-empty subset 375 * of node_states[N_MEMORY]. 376 * 377 * Call with callback_lock or cpuset_mutex held. 378 */ 379 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 380 { 381 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 382 cs = parent_cs(cs); 383 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 384 } 385 386 /* 387 * update task's spread flag if cpuset's page/slab spread flag is set 388 * 389 * Call with callback_lock or cpuset_mutex held. 390 */ 391 static void cpuset_update_task_spread_flag(struct cpuset *cs, 392 struct task_struct *tsk) 393 { 394 if (is_spread_page(cs)) 395 task_set_spread_page(tsk); 396 else 397 task_clear_spread_page(tsk); 398 399 if (is_spread_slab(cs)) 400 task_set_spread_slab(tsk); 401 else 402 task_clear_spread_slab(tsk); 403 } 404 405 /* 406 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 407 * 408 * One cpuset is a subset of another if all its allowed CPUs and 409 * Memory Nodes are a subset of the other, and its exclusive flags 410 * are only set if the other's are set. Call holding cpuset_mutex. 411 */ 412 413 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 414 { 415 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 416 nodes_subset(p->mems_allowed, q->mems_allowed) && 417 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 418 is_mem_exclusive(p) <= is_mem_exclusive(q); 419 } 420 421 /** 422 * alloc_trial_cpuset - allocate a trial cpuset 423 * @cs: the cpuset that the trial cpuset duplicates 424 */ 425 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 426 { 427 struct cpuset *trial; 428 429 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 430 if (!trial) 431 return NULL; 432 433 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) 434 goto free_cs; 435 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL)) 436 goto free_cpus; 437 438 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 439 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 440 return trial; 441 442 free_cpus: 443 free_cpumask_var(trial->cpus_allowed); 444 free_cs: 445 kfree(trial); 446 return NULL; 447 } 448 449 /** 450 * free_trial_cpuset - free the trial cpuset 451 * @trial: the trial cpuset to be freed 452 */ 453 static void free_trial_cpuset(struct cpuset *trial) 454 { 455 free_cpumask_var(trial->effective_cpus); 456 free_cpumask_var(trial->cpus_allowed); 457 kfree(trial); 458 } 459 460 /* 461 * validate_change() - Used to validate that any proposed cpuset change 462 * follows the structural rules for cpusets. 463 * 464 * If we replaced the flag and mask values of the current cpuset 465 * (cur) with those values in the trial cpuset (trial), would 466 * our various subset and exclusive rules still be valid? Presumes 467 * cpuset_mutex held. 468 * 469 * 'cur' is the address of an actual, in-use cpuset. Operations 470 * such as list traversal that depend on the actual address of the 471 * cpuset in the list must use cur below, not trial. 472 * 473 * 'trial' is the address of bulk structure copy of cur, with 474 * perhaps one or more of the fields cpus_allowed, mems_allowed, 475 * or flags changed to new, trial values. 476 * 477 * Return 0 if valid, -errno if not. 478 */ 479 480 static int validate_change(struct cpuset *cur, struct cpuset *trial) 481 { 482 struct cgroup_subsys_state *css; 483 struct cpuset *c, *par; 484 int ret; 485 486 rcu_read_lock(); 487 488 /* Each of our child cpusets must be a subset of us */ 489 ret = -EBUSY; 490 cpuset_for_each_child(c, css, cur) 491 if (!is_cpuset_subset(c, trial)) 492 goto out; 493 494 /* Remaining checks don't apply to root cpuset */ 495 ret = 0; 496 if (cur == &top_cpuset) 497 goto out; 498 499 par = parent_cs(cur); 500 501 /* On legacy hiearchy, we must be a subset of our parent cpuset. */ 502 ret = -EACCES; 503 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par)) 504 goto out; 505 506 /* 507 * If either I or some sibling (!= me) is exclusive, we can't 508 * overlap 509 */ 510 ret = -EINVAL; 511 cpuset_for_each_child(c, css, par) { 512 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 513 c != cur && 514 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 515 goto out; 516 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 517 c != cur && 518 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 519 goto out; 520 } 521 522 /* 523 * Cpusets with tasks - existing or newly being attached - can't 524 * be changed to have empty cpus_allowed or mems_allowed. 525 */ 526 ret = -ENOSPC; 527 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 528 if (!cpumask_empty(cur->cpus_allowed) && 529 cpumask_empty(trial->cpus_allowed)) 530 goto out; 531 if (!nodes_empty(cur->mems_allowed) && 532 nodes_empty(trial->mems_allowed)) 533 goto out; 534 } 535 536 /* 537 * We can't shrink if we won't have enough room for SCHED_DEADLINE 538 * tasks. 539 */ 540 ret = -EBUSY; 541 if (is_cpu_exclusive(cur) && 542 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 543 trial->cpus_allowed)) 544 goto out; 545 546 ret = 0; 547 out: 548 rcu_read_unlock(); 549 return ret; 550 } 551 552 #ifdef CONFIG_SMP 553 /* 554 * Helper routine for generate_sched_domains(). 555 * Do cpusets a, b have overlapping effective cpus_allowed masks? 556 */ 557 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 558 { 559 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 560 } 561 562 static void 563 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 564 { 565 if (dattr->relax_domain_level < c->relax_domain_level) 566 dattr->relax_domain_level = c->relax_domain_level; 567 return; 568 } 569 570 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 571 struct cpuset *root_cs) 572 { 573 struct cpuset *cp; 574 struct cgroup_subsys_state *pos_css; 575 576 rcu_read_lock(); 577 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 578 /* skip the whole subtree if @cp doesn't have any CPU */ 579 if (cpumask_empty(cp->cpus_allowed)) { 580 pos_css = css_rightmost_descendant(pos_css); 581 continue; 582 } 583 584 if (is_sched_load_balance(cp)) 585 update_domain_attr(dattr, cp); 586 } 587 rcu_read_unlock(); 588 } 589 590 /* Must be called with cpuset_mutex held. */ 591 static inline int nr_cpusets(void) 592 { 593 /* jump label reference count + the top-level cpuset */ 594 return static_key_count(&cpusets_enabled_key.key) + 1; 595 } 596 597 /* 598 * generate_sched_domains() 599 * 600 * This function builds a partial partition of the systems CPUs 601 * A 'partial partition' is a set of non-overlapping subsets whose 602 * union is a subset of that set. 603 * The output of this function needs to be passed to kernel/sched/core.c 604 * partition_sched_domains() routine, which will rebuild the scheduler's 605 * load balancing domains (sched domains) as specified by that partial 606 * partition. 607 * 608 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt 609 * for a background explanation of this. 610 * 611 * Does not return errors, on the theory that the callers of this 612 * routine would rather not worry about failures to rebuild sched 613 * domains when operating in the severe memory shortage situations 614 * that could cause allocation failures below. 615 * 616 * Must be called with cpuset_mutex held. 617 * 618 * The three key local variables below are: 619 * q - a linked-list queue of cpuset pointers, used to implement a 620 * top-down scan of all cpusets. This scan loads a pointer 621 * to each cpuset marked is_sched_load_balance into the 622 * array 'csa'. For our purposes, rebuilding the schedulers 623 * sched domains, we can ignore !is_sched_load_balance cpusets. 624 * csa - (for CpuSet Array) Array of pointers to all the cpusets 625 * that need to be load balanced, for convenient iterative 626 * access by the subsequent code that finds the best partition, 627 * i.e the set of domains (subsets) of CPUs such that the 628 * cpus_allowed of every cpuset marked is_sched_load_balance 629 * is a subset of one of these domains, while there are as 630 * many such domains as possible, each as small as possible. 631 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 632 * the kernel/sched/core.c routine partition_sched_domains() in a 633 * convenient format, that can be easily compared to the prior 634 * value to determine what partition elements (sched domains) 635 * were changed (added or removed.) 636 * 637 * Finding the best partition (set of domains): 638 * The triple nested loops below over i, j, k scan over the 639 * load balanced cpusets (using the array of cpuset pointers in 640 * csa[]) looking for pairs of cpusets that have overlapping 641 * cpus_allowed, but which don't have the same 'pn' partition 642 * number and gives them in the same partition number. It keeps 643 * looping on the 'restart' label until it can no longer find 644 * any such pairs. 645 * 646 * The union of the cpus_allowed masks from the set of 647 * all cpusets having the same 'pn' value then form the one 648 * element of the partition (one sched domain) to be passed to 649 * partition_sched_domains(). 650 */ 651 static int generate_sched_domains(cpumask_var_t **domains, 652 struct sched_domain_attr **attributes) 653 { 654 struct cpuset *cp; /* scans q */ 655 struct cpuset **csa; /* array of all cpuset ptrs */ 656 int csn; /* how many cpuset ptrs in csa so far */ 657 int i, j, k; /* indices for partition finding loops */ 658 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 659 struct sched_domain_attr *dattr; /* attributes for custom domains */ 660 int ndoms = 0; /* number of sched domains in result */ 661 int nslot; /* next empty doms[] struct cpumask slot */ 662 struct cgroup_subsys_state *pos_css; 663 664 doms = NULL; 665 dattr = NULL; 666 csa = NULL; 667 668 /* Special case for the 99% of systems with one, full, sched domain */ 669 if (is_sched_load_balance(&top_cpuset)) { 670 ndoms = 1; 671 doms = alloc_sched_domains(ndoms); 672 if (!doms) 673 goto done; 674 675 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 676 if (dattr) { 677 *dattr = SD_ATTR_INIT; 678 update_domain_attr_tree(dattr, &top_cpuset); 679 } 680 cpumask_and(doms[0], top_cpuset.effective_cpus, 681 housekeeping_cpumask(HK_FLAG_DOMAIN)); 682 683 goto done; 684 } 685 686 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL); 687 if (!csa) 688 goto done; 689 csn = 0; 690 691 rcu_read_lock(); 692 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 693 if (cp == &top_cpuset) 694 continue; 695 /* 696 * Continue traversing beyond @cp iff @cp has some CPUs and 697 * isn't load balancing. The former is obvious. The 698 * latter: All child cpusets contain a subset of the 699 * parent's cpus, so just skip them, and then we call 700 * update_domain_attr_tree() to calc relax_domain_level of 701 * the corresponding sched domain. 702 */ 703 if (!cpumask_empty(cp->cpus_allowed) && 704 !(is_sched_load_balance(cp) && 705 cpumask_intersects(cp->cpus_allowed, 706 housekeeping_cpumask(HK_FLAG_DOMAIN)))) 707 continue; 708 709 if (is_sched_load_balance(cp)) 710 csa[csn++] = cp; 711 712 /* skip @cp's subtree */ 713 pos_css = css_rightmost_descendant(pos_css); 714 } 715 rcu_read_unlock(); 716 717 for (i = 0; i < csn; i++) 718 csa[i]->pn = i; 719 ndoms = csn; 720 721 restart: 722 /* Find the best partition (set of sched domains) */ 723 for (i = 0; i < csn; i++) { 724 struct cpuset *a = csa[i]; 725 int apn = a->pn; 726 727 for (j = 0; j < csn; j++) { 728 struct cpuset *b = csa[j]; 729 int bpn = b->pn; 730 731 if (apn != bpn && cpusets_overlap(a, b)) { 732 for (k = 0; k < csn; k++) { 733 struct cpuset *c = csa[k]; 734 735 if (c->pn == bpn) 736 c->pn = apn; 737 } 738 ndoms--; /* one less element */ 739 goto restart; 740 } 741 } 742 } 743 744 /* 745 * Now we know how many domains to create. 746 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 747 */ 748 doms = alloc_sched_domains(ndoms); 749 if (!doms) 750 goto done; 751 752 /* 753 * The rest of the code, including the scheduler, can deal with 754 * dattr==NULL case. No need to abort if alloc fails. 755 */ 756 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); 757 758 for (nslot = 0, i = 0; i < csn; i++) { 759 struct cpuset *a = csa[i]; 760 struct cpumask *dp; 761 int apn = a->pn; 762 763 if (apn < 0) { 764 /* Skip completed partitions */ 765 continue; 766 } 767 768 dp = doms[nslot]; 769 770 if (nslot == ndoms) { 771 static int warnings = 10; 772 if (warnings) { 773 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 774 nslot, ndoms, csn, i, apn); 775 warnings--; 776 } 777 continue; 778 } 779 780 cpumask_clear(dp); 781 if (dattr) 782 *(dattr + nslot) = SD_ATTR_INIT; 783 for (j = i; j < csn; j++) { 784 struct cpuset *b = csa[j]; 785 786 if (apn == b->pn) { 787 cpumask_or(dp, dp, b->effective_cpus); 788 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN)); 789 if (dattr) 790 update_domain_attr_tree(dattr + nslot, b); 791 792 /* Done with this partition */ 793 b->pn = -1; 794 } 795 } 796 nslot++; 797 } 798 BUG_ON(nslot != ndoms); 799 800 done: 801 kfree(csa); 802 803 /* 804 * Fallback to the default domain if kmalloc() failed. 805 * See comments in partition_sched_domains(). 806 */ 807 if (doms == NULL) 808 ndoms = 1; 809 810 *domains = doms; 811 *attributes = dattr; 812 return ndoms; 813 } 814 815 /* 816 * Rebuild scheduler domains. 817 * 818 * If the flag 'sched_load_balance' of any cpuset with non-empty 819 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 820 * which has that flag enabled, or if any cpuset with a non-empty 821 * 'cpus' is removed, then call this routine to rebuild the 822 * scheduler's dynamic sched domains. 823 * 824 * Call with cpuset_mutex held. Takes get_online_cpus(). 825 */ 826 static void rebuild_sched_domains_locked(void) 827 { 828 struct sched_domain_attr *attr; 829 cpumask_var_t *doms; 830 int ndoms; 831 832 lockdep_assert_held(&cpuset_mutex); 833 get_online_cpus(); 834 835 /* 836 * We have raced with CPU hotplug. Don't do anything to avoid 837 * passing doms with offlined cpu to partition_sched_domains(). 838 * Anyways, hotplug work item will rebuild sched domains. 839 */ 840 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 841 goto out; 842 843 /* Generate domain masks and attrs */ 844 ndoms = generate_sched_domains(&doms, &attr); 845 846 /* Have scheduler rebuild the domains */ 847 partition_sched_domains(ndoms, doms, attr); 848 out: 849 put_online_cpus(); 850 } 851 #else /* !CONFIG_SMP */ 852 static void rebuild_sched_domains_locked(void) 853 { 854 } 855 #endif /* CONFIG_SMP */ 856 857 void rebuild_sched_domains(void) 858 { 859 mutex_lock(&cpuset_mutex); 860 rebuild_sched_domains_locked(); 861 mutex_unlock(&cpuset_mutex); 862 } 863 864 /** 865 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 866 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 867 * 868 * Iterate through each task of @cs updating its cpus_allowed to the 869 * effective cpuset's. As this function is called with cpuset_mutex held, 870 * cpuset membership stays stable. 871 */ 872 static void update_tasks_cpumask(struct cpuset *cs) 873 { 874 struct css_task_iter it; 875 struct task_struct *task; 876 877 css_task_iter_start(&cs->css, 0, &it); 878 while ((task = css_task_iter_next(&it))) 879 set_cpus_allowed_ptr(task, cs->effective_cpus); 880 css_task_iter_end(&it); 881 } 882 883 /* 884 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 885 * @cs: the cpuset to consider 886 * @new_cpus: temp variable for calculating new effective_cpus 887 * 888 * When congifured cpumask is changed, the effective cpumasks of this cpuset 889 * and all its descendants need to be updated. 890 * 891 * On legacy hierachy, effective_cpus will be the same with cpu_allowed. 892 * 893 * Called with cpuset_mutex held 894 */ 895 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus) 896 { 897 struct cpuset *cp; 898 struct cgroup_subsys_state *pos_css; 899 bool need_rebuild_sched_domains = false; 900 901 rcu_read_lock(); 902 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 903 struct cpuset *parent = parent_cs(cp); 904 905 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus); 906 907 /* 908 * If it becomes empty, inherit the effective mask of the 909 * parent, which is guaranteed to have some CPUs. 910 */ 911 if (is_in_v2_mode() && cpumask_empty(new_cpus)) 912 cpumask_copy(new_cpus, parent->effective_cpus); 913 914 /* Skip the whole subtree if the cpumask remains the same. */ 915 if (cpumask_equal(new_cpus, cp->effective_cpus)) { 916 pos_css = css_rightmost_descendant(pos_css); 917 continue; 918 } 919 920 if (!css_tryget_online(&cp->css)) 921 continue; 922 rcu_read_unlock(); 923 924 spin_lock_irq(&callback_lock); 925 cpumask_copy(cp->effective_cpus, new_cpus); 926 spin_unlock_irq(&callback_lock); 927 928 WARN_ON(!is_in_v2_mode() && 929 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 930 931 update_tasks_cpumask(cp); 932 933 /* 934 * If the effective cpumask of any non-empty cpuset is changed, 935 * we need to rebuild sched domains. 936 */ 937 if (!cpumask_empty(cp->cpus_allowed) && 938 is_sched_load_balance(cp)) 939 need_rebuild_sched_domains = true; 940 941 rcu_read_lock(); 942 css_put(&cp->css); 943 } 944 rcu_read_unlock(); 945 946 if (need_rebuild_sched_domains) 947 rebuild_sched_domains_locked(); 948 } 949 950 /** 951 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 952 * @cs: the cpuset to consider 953 * @trialcs: trial cpuset 954 * @buf: buffer of cpu numbers written to this cpuset 955 */ 956 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 957 const char *buf) 958 { 959 int retval; 960 961 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 962 if (cs == &top_cpuset) 963 return -EACCES; 964 965 /* 966 * An empty cpus_allowed is ok only if the cpuset has no tasks. 967 * Since cpulist_parse() fails on an empty mask, we special case 968 * that parsing. The validate_change() call ensures that cpusets 969 * with tasks have cpus. 970 */ 971 if (!*buf) { 972 cpumask_clear(trialcs->cpus_allowed); 973 } else { 974 retval = cpulist_parse(buf, trialcs->cpus_allowed); 975 if (retval < 0) 976 return retval; 977 978 if (!cpumask_subset(trialcs->cpus_allowed, 979 top_cpuset.cpus_allowed)) 980 return -EINVAL; 981 } 982 983 /* Nothing to do if the cpus didn't change */ 984 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 985 return 0; 986 987 retval = validate_change(cs, trialcs); 988 if (retval < 0) 989 return retval; 990 991 spin_lock_irq(&callback_lock); 992 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 993 spin_unlock_irq(&callback_lock); 994 995 /* use trialcs->cpus_allowed as a temp variable */ 996 update_cpumasks_hier(cs, trialcs->cpus_allowed); 997 return 0; 998 } 999 1000 /* 1001 * Migrate memory region from one set of nodes to another. This is 1002 * performed asynchronously as it can be called from process migration path 1003 * holding locks involved in process management. All mm migrations are 1004 * performed in the queued order and can be waited for by flushing 1005 * cpuset_migrate_mm_wq. 1006 */ 1007 1008 struct cpuset_migrate_mm_work { 1009 struct work_struct work; 1010 struct mm_struct *mm; 1011 nodemask_t from; 1012 nodemask_t to; 1013 }; 1014 1015 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1016 { 1017 struct cpuset_migrate_mm_work *mwork = 1018 container_of(work, struct cpuset_migrate_mm_work, work); 1019 1020 /* on a wq worker, no need to worry about %current's mems_allowed */ 1021 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1022 mmput(mwork->mm); 1023 kfree(mwork); 1024 } 1025 1026 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1027 const nodemask_t *to) 1028 { 1029 struct cpuset_migrate_mm_work *mwork; 1030 1031 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1032 if (mwork) { 1033 mwork->mm = mm; 1034 mwork->from = *from; 1035 mwork->to = *to; 1036 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1037 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1038 } else { 1039 mmput(mm); 1040 } 1041 } 1042 1043 static void cpuset_post_attach(void) 1044 { 1045 flush_workqueue(cpuset_migrate_mm_wq); 1046 } 1047 1048 /* 1049 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1050 * @tsk: the task to change 1051 * @newmems: new nodes that the task will be set 1052 * 1053 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1054 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1055 * parallel, it might temporarily see an empty intersection, which results in 1056 * a seqlock check and retry before OOM or allocation failure. 1057 */ 1058 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1059 nodemask_t *newmems) 1060 { 1061 task_lock(tsk); 1062 1063 local_irq_disable(); 1064 write_seqcount_begin(&tsk->mems_allowed_seq); 1065 1066 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1067 mpol_rebind_task(tsk, newmems); 1068 tsk->mems_allowed = *newmems; 1069 1070 write_seqcount_end(&tsk->mems_allowed_seq); 1071 local_irq_enable(); 1072 1073 task_unlock(tsk); 1074 } 1075 1076 static void *cpuset_being_rebound; 1077 1078 /** 1079 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1080 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1081 * 1082 * Iterate through each task of @cs updating its mems_allowed to the 1083 * effective cpuset's. As this function is called with cpuset_mutex held, 1084 * cpuset membership stays stable. 1085 */ 1086 static void update_tasks_nodemask(struct cpuset *cs) 1087 { 1088 static nodemask_t newmems; /* protected by cpuset_mutex */ 1089 struct css_task_iter it; 1090 struct task_struct *task; 1091 1092 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1093 1094 guarantee_online_mems(cs, &newmems); 1095 1096 /* 1097 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't 1098 * take while holding tasklist_lock. Forks can happen - the 1099 * mpol_dup() cpuset_being_rebound check will catch such forks, 1100 * and rebind their vma mempolicies too. Because we still hold 1101 * the global cpuset_mutex, we know that no other rebind effort 1102 * will be contending for the global variable cpuset_being_rebound. 1103 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1104 * is idempotent. Also migrate pages in each mm to new nodes. 1105 */ 1106 css_task_iter_start(&cs->css, 0, &it); 1107 while ((task = css_task_iter_next(&it))) { 1108 struct mm_struct *mm; 1109 bool migrate; 1110 1111 cpuset_change_task_nodemask(task, &newmems); 1112 1113 mm = get_task_mm(task); 1114 if (!mm) 1115 continue; 1116 1117 migrate = is_memory_migrate(cs); 1118 1119 mpol_rebind_mm(mm, &cs->mems_allowed); 1120 if (migrate) 1121 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1122 else 1123 mmput(mm); 1124 } 1125 css_task_iter_end(&it); 1126 1127 /* 1128 * All the tasks' nodemasks have been updated, update 1129 * cs->old_mems_allowed. 1130 */ 1131 cs->old_mems_allowed = newmems; 1132 1133 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1134 cpuset_being_rebound = NULL; 1135 } 1136 1137 /* 1138 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 1139 * @cs: the cpuset to consider 1140 * @new_mems: a temp variable for calculating new effective_mems 1141 * 1142 * When configured nodemask is changed, the effective nodemasks of this cpuset 1143 * and all its descendants need to be updated. 1144 * 1145 * On legacy hiearchy, effective_mems will be the same with mems_allowed. 1146 * 1147 * Called with cpuset_mutex held 1148 */ 1149 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 1150 { 1151 struct cpuset *cp; 1152 struct cgroup_subsys_state *pos_css; 1153 1154 rcu_read_lock(); 1155 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1156 struct cpuset *parent = parent_cs(cp); 1157 1158 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 1159 1160 /* 1161 * If it becomes empty, inherit the effective mask of the 1162 * parent, which is guaranteed to have some MEMs. 1163 */ 1164 if (is_in_v2_mode() && nodes_empty(*new_mems)) 1165 *new_mems = parent->effective_mems; 1166 1167 /* Skip the whole subtree if the nodemask remains the same. */ 1168 if (nodes_equal(*new_mems, cp->effective_mems)) { 1169 pos_css = css_rightmost_descendant(pos_css); 1170 continue; 1171 } 1172 1173 if (!css_tryget_online(&cp->css)) 1174 continue; 1175 rcu_read_unlock(); 1176 1177 spin_lock_irq(&callback_lock); 1178 cp->effective_mems = *new_mems; 1179 spin_unlock_irq(&callback_lock); 1180 1181 WARN_ON(!is_in_v2_mode() && 1182 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 1183 1184 update_tasks_nodemask(cp); 1185 1186 rcu_read_lock(); 1187 css_put(&cp->css); 1188 } 1189 rcu_read_unlock(); 1190 } 1191 1192 /* 1193 * Handle user request to change the 'mems' memory placement 1194 * of a cpuset. Needs to validate the request, update the 1195 * cpusets mems_allowed, and for each task in the cpuset, 1196 * update mems_allowed and rebind task's mempolicy and any vma 1197 * mempolicies and if the cpuset is marked 'memory_migrate', 1198 * migrate the tasks pages to the new memory. 1199 * 1200 * Call with cpuset_mutex held. May take callback_lock during call. 1201 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1202 * lock each such tasks mm->mmap_sem, scan its vma's and rebind 1203 * their mempolicies to the cpusets new mems_allowed. 1204 */ 1205 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 1206 const char *buf) 1207 { 1208 int retval; 1209 1210 /* 1211 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 1212 * it's read-only 1213 */ 1214 if (cs == &top_cpuset) { 1215 retval = -EACCES; 1216 goto done; 1217 } 1218 1219 /* 1220 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1221 * Since nodelist_parse() fails on an empty mask, we special case 1222 * that parsing. The validate_change() call ensures that cpusets 1223 * with tasks have memory. 1224 */ 1225 if (!*buf) { 1226 nodes_clear(trialcs->mems_allowed); 1227 } else { 1228 retval = nodelist_parse(buf, trialcs->mems_allowed); 1229 if (retval < 0) 1230 goto done; 1231 1232 if (!nodes_subset(trialcs->mems_allowed, 1233 top_cpuset.mems_allowed)) { 1234 retval = -EINVAL; 1235 goto done; 1236 } 1237 } 1238 1239 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 1240 retval = 0; /* Too easy - nothing to do */ 1241 goto done; 1242 } 1243 retval = validate_change(cs, trialcs); 1244 if (retval < 0) 1245 goto done; 1246 1247 spin_lock_irq(&callback_lock); 1248 cs->mems_allowed = trialcs->mems_allowed; 1249 spin_unlock_irq(&callback_lock); 1250 1251 /* use trialcs->mems_allowed as a temp variable */ 1252 update_nodemasks_hier(cs, &trialcs->mems_allowed); 1253 done: 1254 return retval; 1255 } 1256 1257 int current_cpuset_is_being_rebound(void) 1258 { 1259 int ret; 1260 1261 rcu_read_lock(); 1262 ret = task_cs(current) == cpuset_being_rebound; 1263 rcu_read_unlock(); 1264 1265 return ret; 1266 } 1267 1268 static int update_relax_domain_level(struct cpuset *cs, s64 val) 1269 { 1270 #ifdef CONFIG_SMP 1271 if (val < -1 || val >= sched_domain_level_max) 1272 return -EINVAL; 1273 #endif 1274 1275 if (val != cs->relax_domain_level) { 1276 cs->relax_domain_level = val; 1277 if (!cpumask_empty(cs->cpus_allowed) && 1278 is_sched_load_balance(cs)) 1279 rebuild_sched_domains_locked(); 1280 } 1281 1282 return 0; 1283 } 1284 1285 /** 1286 * update_tasks_flags - update the spread flags of tasks in the cpuset. 1287 * @cs: the cpuset in which each task's spread flags needs to be changed 1288 * 1289 * Iterate through each task of @cs updating its spread flags. As this 1290 * function is called with cpuset_mutex held, cpuset membership stays 1291 * stable. 1292 */ 1293 static void update_tasks_flags(struct cpuset *cs) 1294 { 1295 struct css_task_iter it; 1296 struct task_struct *task; 1297 1298 css_task_iter_start(&cs->css, 0, &it); 1299 while ((task = css_task_iter_next(&it))) 1300 cpuset_update_task_spread_flag(cs, task); 1301 css_task_iter_end(&it); 1302 } 1303 1304 /* 1305 * update_flag - read a 0 or a 1 in a file and update associated flag 1306 * bit: the bit to update (see cpuset_flagbits_t) 1307 * cs: the cpuset to update 1308 * turning_on: whether the flag is being set or cleared 1309 * 1310 * Call with cpuset_mutex held. 1311 */ 1312 1313 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1314 int turning_on) 1315 { 1316 struct cpuset *trialcs; 1317 int balance_flag_changed; 1318 int spread_flag_changed; 1319 int err; 1320 1321 trialcs = alloc_trial_cpuset(cs); 1322 if (!trialcs) 1323 return -ENOMEM; 1324 1325 if (turning_on) 1326 set_bit(bit, &trialcs->flags); 1327 else 1328 clear_bit(bit, &trialcs->flags); 1329 1330 err = validate_change(cs, trialcs); 1331 if (err < 0) 1332 goto out; 1333 1334 balance_flag_changed = (is_sched_load_balance(cs) != 1335 is_sched_load_balance(trialcs)); 1336 1337 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 1338 || (is_spread_page(cs) != is_spread_page(trialcs))); 1339 1340 spin_lock_irq(&callback_lock); 1341 cs->flags = trialcs->flags; 1342 spin_unlock_irq(&callback_lock); 1343 1344 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 1345 rebuild_sched_domains_locked(); 1346 1347 if (spread_flag_changed) 1348 update_tasks_flags(cs); 1349 out: 1350 free_trial_cpuset(trialcs); 1351 return err; 1352 } 1353 1354 /* 1355 * Frequency meter - How fast is some event occurring? 1356 * 1357 * These routines manage a digitally filtered, constant time based, 1358 * event frequency meter. There are four routines: 1359 * fmeter_init() - initialize a frequency meter. 1360 * fmeter_markevent() - called each time the event happens. 1361 * fmeter_getrate() - returns the recent rate of such events. 1362 * fmeter_update() - internal routine used to update fmeter. 1363 * 1364 * A common data structure is passed to each of these routines, 1365 * which is used to keep track of the state required to manage the 1366 * frequency meter and its digital filter. 1367 * 1368 * The filter works on the number of events marked per unit time. 1369 * The filter is single-pole low-pass recursive (IIR). The time unit 1370 * is 1 second. Arithmetic is done using 32-bit integers scaled to 1371 * simulate 3 decimal digits of precision (multiplied by 1000). 1372 * 1373 * With an FM_COEF of 933, and a time base of 1 second, the filter 1374 * has a half-life of 10 seconds, meaning that if the events quit 1375 * happening, then the rate returned from the fmeter_getrate() 1376 * will be cut in half each 10 seconds, until it converges to zero. 1377 * 1378 * It is not worth doing a real infinitely recursive filter. If more 1379 * than FM_MAXTICKS ticks have elapsed since the last filter event, 1380 * just compute FM_MAXTICKS ticks worth, by which point the level 1381 * will be stable. 1382 * 1383 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 1384 * arithmetic overflow in the fmeter_update() routine. 1385 * 1386 * Given the simple 32 bit integer arithmetic used, this meter works 1387 * best for reporting rates between one per millisecond (msec) and 1388 * one per 32 (approx) seconds. At constant rates faster than one 1389 * per msec it maxes out at values just under 1,000,000. At constant 1390 * rates between one per msec, and one per second it will stabilize 1391 * to a value N*1000, where N is the rate of events per second. 1392 * At constant rates between one per second and one per 32 seconds, 1393 * it will be choppy, moving up on the seconds that have an event, 1394 * and then decaying until the next event. At rates slower than 1395 * about one in 32 seconds, it decays all the way back to zero between 1396 * each event. 1397 */ 1398 1399 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 1400 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 1401 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 1402 #define FM_SCALE 1000 /* faux fixed point scale */ 1403 1404 /* Initialize a frequency meter */ 1405 static void fmeter_init(struct fmeter *fmp) 1406 { 1407 fmp->cnt = 0; 1408 fmp->val = 0; 1409 fmp->time = 0; 1410 spin_lock_init(&fmp->lock); 1411 } 1412 1413 /* Internal meter update - process cnt events and update value */ 1414 static void fmeter_update(struct fmeter *fmp) 1415 { 1416 time64_t now; 1417 u32 ticks; 1418 1419 now = ktime_get_seconds(); 1420 ticks = now - fmp->time; 1421 1422 if (ticks == 0) 1423 return; 1424 1425 ticks = min(FM_MAXTICKS, ticks); 1426 while (ticks-- > 0) 1427 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 1428 fmp->time = now; 1429 1430 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 1431 fmp->cnt = 0; 1432 } 1433 1434 /* Process any previous ticks, then bump cnt by one (times scale). */ 1435 static void fmeter_markevent(struct fmeter *fmp) 1436 { 1437 spin_lock(&fmp->lock); 1438 fmeter_update(fmp); 1439 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 1440 spin_unlock(&fmp->lock); 1441 } 1442 1443 /* Process any previous ticks, then return current value. */ 1444 static int fmeter_getrate(struct fmeter *fmp) 1445 { 1446 int val; 1447 1448 spin_lock(&fmp->lock); 1449 fmeter_update(fmp); 1450 val = fmp->val; 1451 spin_unlock(&fmp->lock); 1452 return val; 1453 } 1454 1455 static struct cpuset *cpuset_attach_old_cs; 1456 1457 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 1458 static int cpuset_can_attach(struct cgroup_taskset *tset) 1459 { 1460 struct cgroup_subsys_state *css; 1461 struct cpuset *cs; 1462 struct task_struct *task; 1463 int ret; 1464 1465 /* used later by cpuset_attach() */ 1466 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 1467 cs = css_cs(css); 1468 1469 mutex_lock(&cpuset_mutex); 1470 1471 /* allow moving tasks into an empty cpuset if on default hierarchy */ 1472 ret = -ENOSPC; 1473 if (!is_in_v2_mode() && 1474 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 1475 goto out_unlock; 1476 1477 cgroup_taskset_for_each(task, css, tset) { 1478 ret = task_can_attach(task, cs->cpus_allowed); 1479 if (ret) 1480 goto out_unlock; 1481 ret = security_task_setscheduler(task); 1482 if (ret) 1483 goto out_unlock; 1484 } 1485 1486 /* 1487 * Mark attach is in progress. This makes validate_change() fail 1488 * changes which zero cpus/mems_allowed. 1489 */ 1490 cs->attach_in_progress++; 1491 ret = 0; 1492 out_unlock: 1493 mutex_unlock(&cpuset_mutex); 1494 return ret; 1495 } 1496 1497 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 1498 { 1499 struct cgroup_subsys_state *css; 1500 struct cpuset *cs; 1501 1502 cgroup_taskset_first(tset, &css); 1503 cs = css_cs(css); 1504 1505 mutex_lock(&cpuset_mutex); 1506 css_cs(css)->attach_in_progress--; 1507 mutex_unlock(&cpuset_mutex); 1508 } 1509 1510 /* 1511 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() 1512 * but we can't allocate it dynamically there. Define it global and 1513 * allocate from cpuset_init(). 1514 */ 1515 static cpumask_var_t cpus_attach; 1516 1517 static void cpuset_attach(struct cgroup_taskset *tset) 1518 { 1519 /* static buf protected by cpuset_mutex */ 1520 static nodemask_t cpuset_attach_nodemask_to; 1521 struct task_struct *task; 1522 struct task_struct *leader; 1523 struct cgroup_subsys_state *css; 1524 struct cpuset *cs; 1525 struct cpuset *oldcs = cpuset_attach_old_cs; 1526 1527 cgroup_taskset_first(tset, &css); 1528 cs = css_cs(css); 1529 1530 mutex_lock(&cpuset_mutex); 1531 1532 /* prepare for attach */ 1533 if (cs == &top_cpuset) 1534 cpumask_copy(cpus_attach, cpu_possible_mask); 1535 else 1536 guarantee_online_cpus(cs, cpus_attach); 1537 1538 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 1539 1540 cgroup_taskset_for_each(task, css, tset) { 1541 /* 1542 * can_attach beforehand should guarantee that this doesn't 1543 * fail. TODO: have a better way to handle failure here 1544 */ 1545 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 1546 1547 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 1548 cpuset_update_task_spread_flag(cs, task); 1549 } 1550 1551 /* 1552 * Change mm for all threadgroup leaders. This is expensive and may 1553 * sleep and should be moved outside migration path proper. 1554 */ 1555 cpuset_attach_nodemask_to = cs->effective_mems; 1556 cgroup_taskset_for_each_leader(leader, css, tset) { 1557 struct mm_struct *mm = get_task_mm(leader); 1558 1559 if (mm) { 1560 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 1561 1562 /* 1563 * old_mems_allowed is the same with mems_allowed 1564 * here, except if this task is being moved 1565 * automatically due to hotplug. In that case 1566 * @mems_allowed has been updated and is empty, so 1567 * @old_mems_allowed is the right nodesets that we 1568 * migrate mm from. 1569 */ 1570 if (is_memory_migrate(cs)) 1571 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 1572 &cpuset_attach_nodemask_to); 1573 else 1574 mmput(mm); 1575 } 1576 } 1577 1578 cs->old_mems_allowed = cpuset_attach_nodemask_to; 1579 1580 cs->attach_in_progress--; 1581 if (!cs->attach_in_progress) 1582 wake_up(&cpuset_attach_wq); 1583 1584 mutex_unlock(&cpuset_mutex); 1585 } 1586 1587 /* The various types of files and directories in a cpuset file system */ 1588 1589 typedef enum { 1590 FILE_MEMORY_MIGRATE, 1591 FILE_CPULIST, 1592 FILE_MEMLIST, 1593 FILE_EFFECTIVE_CPULIST, 1594 FILE_EFFECTIVE_MEMLIST, 1595 FILE_CPU_EXCLUSIVE, 1596 FILE_MEM_EXCLUSIVE, 1597 FILE_MEM_HARDWALL, 1598 FILE_SCHED_LOAD_BALANCE, 1599 FILE_SCHED_RELAX_DOMAIN_LEVEL, 1600 FILE_MEMORY_PRESSURE_ENABLED, 1601 FILE_MEMORY_PRESSURE, 1602 FILE_SPREAD_PAGE, 1603 FILE_SPREAD_SLAB, 1604 } cpuset_filetype_t; 1605 1606 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 1607 u64 val) 1608 { 1609 struct cpuset *cs = css_cs(css); 1610 cpuset_filetype_t type = cft->private; 1611 int retval = 0; 1612 1613 mutex_lock(&cpuset_mutex); 1614 if (!is_cpuset_online(cs)) { 1615 retval = -ENODEV; 1616 goto out_unlock; 1617 } 1618 1619 switch (type) { 1620 case FILE_CPU_EXCLUSIVE: 1621 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 1622 break; 1623 case FILE_MEM_EXCLUSIVE: 1624 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 1625 break; 1626 case FILE_MEM_HARDWALL: 1627 retval = update_flag(CS_MEM_HARDWALL, cs, val); 1628 break; 1629 case FILE_SCHED_LOAD_BALANCE: 1630 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 1631 break; 1632 case FILE_MEMORY_MIGRATE: 1633 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 1634 break; 1635 case FILE_MEMORY_PRESSURE_ENABLED: 1636 cpuset_memory_pressure_enabled = !!val; 1637 break; 1638 case FILE_SPREAD_PAGE: 1639 retval = update_flag(CS_SPREAD_PAGE, cs, val); 1640 break; 1641 case FILE_SPREAD_SLAB: 1642 retval = update_flag(CS_SPREAD_SLAB, cs, val); 1643 break; 1644 default: 1645 retval = -EINVAL; 1646 break; 1647 } 1648 out_unlock: 1649 mutex_unlock(&cpuset_mutex); 1650 return retval; 1651 } 1652 1653 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 1654 s64 val) 1655 { 1656 struct cpuset *cs = css_cs(css); 1657 cpuset_filetype_t type = cft->private; 1658 int retval = -ENODEV; 1659 1660 mutex_lock(&cpuset_mutex); 1661 if (!is_cpuset_online(cs)) 1662 goto out_unlock; 1663 1664 switch (type) { 1665 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 1666 retval = update_relax_domain_level(cs, val); 1667 break; 1668 default: 1669 retval = -EINVAL; 1670 break; 1671 } 1672 out_unlock: 1673 mutex_unlock(&cpuset_mutex); 1674 return retval; 1675 } 1676 1677 /* 1678 * Common handling for a write to a "cpus" or "mems" file. 1679 */ 1680 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 1681 char *buf, size_t nbytes, loff_t off) 1682 { 1683 struct cpuset *cs = css_cs(of_css(of)); 1684 struct cpuset *trialcs; 1685 int retval = -ENODEV; 1686 1687 buf = strstrip(buf); 1688 1689 /* 1690 * CPU or memory hotunplug may leave @cs w/o any execution 1691 * resources, in which case the hotplug code asynchronously updates 1692 * configuration and transfers all tasks to the nearest ancestor 1693 * which can execute. 1694 * 1695 * As writes to "cpus" or "mems" may restore @cs's execution 1696 * resources, wait for the previously scheduled operations before 1697 * proceeding, so that we don't end up keep removing tasks added 1698 * after execution capability is restored. 1699 * 1700 * cpuset_hotplug_work calls back into cgroup core via 1701 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 1702 * operation like this one can lead to a deadlock through kernfs 1703 * active_ref protection. Let's break the protection. Losing the 1704 * protection is okay as we check whether @cs is online after 1705 * grabbing cpuset_mutex anyway. This only happens on the legacy 1706 * hierarchies. 1707 */ 1708 css_get(&cs->css); 1709 kernfs_break_active_protection(of->kn); 1710 flush_work(&cpuset_hotplug_work); 1711 1712 mutex_lock(&cpuset_mutex); 1713 if (!is_cpuset_online(cs)) 1714 goto out_unlock; 1715 1716 trialcs = alloc_trial_cpuset(cs); 1717 if (!trialcs) { 1718 retval = -ENOMEM; 1719 goto out_unlock; 1720 } 1721 1722 switch (of_cft(of)->private) { 1723 case FILE_CPULIST: 1724 retval = update_cpumask(cs, trialcs, buf); 1725 break; 1726 case FILE_MEMLIST: 1727 retval = update_nodemask(cs, trialcs, buf); 1728 break; 1729 default: 1730 retval = -EINVAL; 1731 break; 1732 } 1733 1734 free_trial_cpuset(trialcs); 1735 out_unlock: 1736 mutex_unlock(&cpuset_mutex); 1737 kernfs_unbreak_active_protection(of->kn); 1738 css_put(&cs->css); 1739 flush_workqueue(cpuset_migrate_mm_wq); 1740 return retval ?: nbytes; 1741 } 1742 1743 /* 1744 * These ascii lists should be read in a single call, by using a user 1745 * buffer large enough to hold the entire map. If read in smaller 1746 * chunks, there is no guarantee of atomicity. Since the display format 1747 * used, list of ranges of sequential numbers, is variable length, 1748 * and since these maps can change value dynamically, one could read 1749 * gibberish by doing partial reads while a list was changing. 1750 */ 1751 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 1752 { 1753 struct cpuset *cs = css_cs(seq_css(sf)); 1754 cpuset_filetype_t type = seq_cft(sf)->private; 1755 int ret = 0; 1756 1757 spin_lock_irq(&callback_lock); 1758 1759 switch (type) { 1760 case FILE_CPULIST: 1761 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 1762 break; 1763 case FILE_MEMLIST: 1764 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 1765 break; 1766 case FILE_EFFECTIVE_CPULIST: 1767 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 1768 break; 1769 case FILE_EFFECTIVE_MEMLIST: 1770 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 1771 break; 1772 default: 1773 ret = -EINVAL; 1774 } 1775 1776 spin_unlock_irq(&callback_lock); 1777 return ret; 1778 } 1779 1780 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 1781 { 1782 struct cpuset *cs = css_cs(css); 1783 cpuset_filetype_t type = cft->private; 1784 switch (type) { 1785 case FILE_CPU_EXCLUSIVE: 1786 return is_cpu_exclusive(cs); 1787 case FILE_MEM_EXCLUSIVE: 1788 return is_mem_exclusive(cs); 1789 case FILE_MEM_HARDWALL: 1790 return is_mem_hardwall(cs); 1791 case FILE_SCHED_LOAD_BALANCE: 1792 return is_sched_load_balance(cs); 1793 case FILE_MEMORY_MIGRATE: 1794 return is_memory_migrate(cs); 1795 case FILE_MEMORY_PRESSURE_ENABLED: 1796 return cpuset_memory_pressure_enabled; 1797 case FILE_MEMORY_PRESSURE: 1798 return fmeter_getrate(&cs->fmeter); 1799 case FILE_SPREAD_PAGE: 1800 return is_spread_page(cs); 1801 case FILE_SPREAD_SLAB: 1802 return is_spread_slab(cs); 1803 default: 1804 BUG(); 1805 } 1806 1807 /* Unreachable but makes gcc happy */ 1808 return 0; 1809 } 1810 1811 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 1812 { 1813 struct cpuset *cs = css_cs(css); 1814 cpuset_filetype_t type = cft->private; 1815 switch (type) { 1816 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 1817 return cs->relax_domain_level; 1818 default: 1819 BUG(); 1820 } 1821 1822 /* Unrechable but makes gcc happy */ 1823 return 0; 1824 } 1825 1826 1827 /* 1828 * for the common functions, 'private' gives the type of file 1829 */ 1830 1831 static struct cftype files[] = { 1832 { 1833 .name = "cpus", 1834 .seq_show = cpuset_common_seq_show, 1835 .write = cpuset_write_resmask, 1836 .max_write_len = (100U + 6 * NR_CPUS), 1837 .private = FILE_CPULIST, 1838 }, 1839 1840 { 1841 .name = "mems", 1842 .seq_show = cpuset_common_seq_show, 1843 .write = cpuset_write_resmask, 1844 .max_write_len = (100U + 6 * MAX_NUMNODES), 1845 .private = FILE_MEMLIST, 1846 }, 1847 1848 { 1849 .name = "effective_cpus", 1850 .seq_show = cpuset_common_seq_show, 1851 .private = FILE_EFFECTIVE_CPULIST, 1852 }, 1853 1854 { 1855 .name = "effective_mems", 1856 .seq_show = cpuset_common_seq_show, 1857 .private = FILE_EFFECTIVE_MEMLIST, 1858 }, 1859 1860 { 1861 .name = "cpu_exclusive", 1862 .read_u64 = cpuset_read_u64, 1863 .write_u64 = cpuset_write_u64, 1864 .private = FILE_CPU_EXCLUSIVE, 1865 }, 1866 1867 { 1868 .name = "mem_exclusive", 1869 .read_u64 = cpuset_read_u64, 1870 .write_u64 = cpuset_write_u64, 1871 .private = FILE_MEM_EXCLUSIVE, 1872 }, 1873 1874 { 1875 .name = "mem_hardwall", 1876 .read_u64 = cpuset_read_u64, 1877 .write_u64 = cpuset_write_u64, 1878 .private = FILE_MEM_HARDWALL, 1879 }, 1880 1881 { 1882 .name = "sched_load_balance", 1883 .read_u64 = cpuset_read_u64, 1884 .write_u64 = cpuset_write_u64, 1885 .private = FILE_SCHED_LOAD_BALANCE, 1886 }, 1887 1888 { 1889 .name = "sched_relax_domain_level", 1890 .read_s64 = cpuset_read_s64, 1891 .write_s64 = cpuset_write_s64, 1892 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 1893 }, 1894 1895 { 1896 .name = "memory_migrate", 1897 .read_u64 = cpuset_read_u64, 1898 .write_u64 = cpuset_write_u64, 1899 .private = FILE_MEMORY_MIGRATE, 1900 }, 1901 1902 { 1903 .name = "memory_pressure", 1904 .read_u64 = cpuset_read_u64, 1905 .private = FILE_MEMORY_PRESSURE, 1906 }, 1907 1908 { 1909 .name = "memory_spread_page", 1910 .read_u64 = cpuset_read_u64, 1911 .write_u64 = cpuset_write_u64, 1912 .private = FILE_SPREAD_PAGE, 1913 }, 1914 1915 { 1916 .name = "memory_spread_slab", 1917 .read_u64 = cpuset_read_u64, 1918 .write_u64 = cpuset_write_u64, 1919 .private = FILE_SPREAD_SLAB, 1920 }, 1921 1922 { 1923 .name = "memory_pressure_enabled", 1924 .flags = CFTYPE_ONLY_ON_ROOT, 1925 .read_u64 = cpuset_read_u64, 1926 .write_u64 = cpuset_write_u64, 1927 .private = FILE_MEMORY_PRESSURE_ENABLED, 1928 }, 1929 1930 { } /* terminate */ 1931 }; 1932 1933 /* 1934 * cpuset_css_alloc - allocate a cpuset css 1935 * cgrp: control group that the new cpuset will be part of 1936 */ 1937 1938 static struct cgroup_subsys_state * 1939 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 1940 { 1941 struct cpuset *cs; 1942 1943 if (!parent_css) 1944 return &top_cpuset.css; 1945 1946 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 1947 if (!cs) 1948 return ERR_PTR(-ENOMEM); 1949 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) 1950 goto free_cs; 1951 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL)) 1952 goto free_cpus; 1953 1954 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1955 cpumask_clear(cs->cpus_allowed); 1956 nodes_clear(cs->mems_allowed); 1957 cpumask_clear(cs->effective_cpus); 1958 nodes_clear(cs->effective_mems); 1959 fmeter_init(&cs->fmeter); 1960 cs->relax_domain_level = -1; 1961 1962 return &cs->css; 1963 1964 free_cpus: 1965 free_cpumask_var(cs->cpus_allowed); 1966 free_cs: 1967 kfree(cs); 1968 return ERR_PTR(-ENOMEM); 1969 } 1970 1971 static int cpuset_css_online(struct cgroup_subsys_state *css) 1972 { 1973 struct cpuset *cs = css_cs(css); 1974 struct cpuset *parent = parent_cs(cs); 1975 struct cpuset *tmp_cs; 1976 struct cgroup_subsys_state *pos_css; 1977 1978 if (!parent) 1979 return 0; 1980 1981 mutex_lock(&cpuset_mutex); 1982 1983 set_bit(CS_ONLINE, &cs->flags); 1984 if (is_spread_page(parent)) 1985 set_bit(CS_SPREAD_PAGE, &cs->flags); 1986 if (is_spread_slab(parent)) 1987 set_bit(CS_SPREAD_SLAB, &cs->flags); 1988 1989 cpuset_inc(); 1990 1991 spin_lock_irq(&callback_lock); 1992 if (is_in_v2_mode()) { 1993 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 1994 cs->effective_mems = parent->effective_mems; 1995 } 1996 spin_unlock_irq(&callback_lock); 1997 1998 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 1999 goto out_unlock; 2000 2001 /* 2002 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 2003 * set. This flag handling is implemented in cgroup core for 2004 * histrical reasons - the flag may be specified during mount. 2005 * 2006 * Currently, if any sibling cpusets have exclusive cpus or mem, we 2007 * refuse to clone the configuration - thereby refusing the task to 2008 * be entered, and as a result refusing the sys_unshare() or 2009 * clone() which initiated it. If this becomes a problem for some 2010 * users who wish to allow that scenario, then this could be 2011 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 2012 * (and likewise for mems) to the new cgroup. 2013 */ 2014 rcu_read_lock(); 2015 cpuset_for_each_child(tmp_cs, pos_css, parent) { 2016 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 2017 rcu_read_unlock(); 2018 goto out_unlock; 2019 } 2020 } 2021 rcu_read_unlock(); 2022 2023 spin_lock_irq(&callback_lock); 2024 cs->mems_allowed = parent->mems_allowed; 2025 cs->effective_mems = parent->mems_allowed; 2026 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 2027 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 2028 spin_unlock_irq(&callback_lock); 2029 out_unlock: 2030 mutex_unlock(&cpuset_mutex); 2031 return 0; 2032 } 2033 2034 /* 2035 * If the cpuset being removed has its flag 'sched_load_balance' 2036 * enabled, then simulate turning sched_load_balance off, which 2037 * will call rebuild_sched_domains_locked(). 2038 */ 2039 2040 static void cpuset_css_offline(struct cgroup_subsys_state *css) 2041 { 2042 struct cpuset *cs = css_cs(css); 2043 2044 mutex_lock(&cpuset_mutex); 2045 2046 if (is_sched_load_balance(cs)) 2047 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2048 2049 cpuset_dec(); 2050 clear_bit(CS_ONLINE, &cs->flags); 2051 2052 mutex_unlock(&cpuset_mutex); 2053 } 2054 2055 static void cpuset_css_free(struct cgroup_subsys_state *css) 2056 { 2057 struct cpuset *cs = css_cs(css); 2058 2059 free_cpumask_var(cs->effective_cpus); 2060 free_cpumask_var(cs->cpus_allowed); 2061 kfree(cs); 2062 } 2063 2064 static void cpuset_bind(struct cgroup_subsys_state *root_css) 2065 { 2066 mutex_lock(&cpuset_mutex); 2067 spin_lock_irq(&callback_lock); 2068 2069 if (is_in_v2_mode()) { 2070 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 2071 top_cpuset.mems_allowed = node_possible_map; 2072 } else { 2073 cpumask_copy(top_cpuset.cpus_allowed, 2074 top_cpuset.effective_cpus); 2075 top_cpuset.mems_allowed = top_cpuset.effective_mems; 2076 } 2077 2078 spin_unlock_irq(&callback_lock); 2079 mutex_unlock(&cpuset_mutex); 2080 } 2081 2082 /* 2083 * Make sure the new task conform to the current state of its parent, 2084 * which could have been changed by cpuset just after it inherits the 2085 * state from the parent and before it sits on the cgroup's task list. 2086 */ 2087 static void cpuset_fork(struct task_struct *task) 2088 { 2089 if (task_css_is_root(task, cpuset_cgrp_id)) 2090 return; 2091 2092 set_cpus_allowed_ptr(task, ¤t->cpus_allowed); 2093 task->mems_allowed = current->mems_allowed; 2094 } 2095 2096 struct cgroup_subsys cpuset_cgrp_subsys = { 2097 .css_alloc = cpuset_css_alloc, 2098 .css_online = cpuset_css_online, 2099 .css_offline = cpuset_css_offline, 2100 .css_free = cpuset_css_free, 2101 .can_attach = cpuset_can_attach, 2102 .cancel_attach = cpuset_cancel_attach, 2103 .attach = cpuset_attach, 2104 .post_attach = cpuset_post_attach, 2105 .bind = cpuset_bind, 2106 .fork = cpuset_fork, 2107 .legacy_cftypes = files, 2108 .early_init = true, 2109 }; 2110 2111 /** 2112 * cpuset_init - initialize cpusets at system boot 2113 * 2114 * Description: Initialize top_cpuset and the cpuset internal file system, 2115 **/ 2116 2117 int __init cpuset_init(void) 2118 { 2119 int err = 0; 2120 2121 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 2122 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 2123 2124 cpumask_setall(top_cpuset.cpus_allowed); 2125 nodes_setall(top_cpuset.mems_allowed); 2126 cpumask_setall(top_cpuset.effective_cpus); 2127 nodes_setall(top_cpuset.effective_mems); 2128 2129 fmeter_init(&top_cpuset.fmeter); 2130 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 2131 top_cpuset.relax_domain_level = -1; 2132 2133 err = register_filesystem(&cpuset_fs_type); 2134 if (err < 0) 2135 return err; 2136 2137 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 2138 2139 return 0; 2140 } 2141 2142 /* 2143 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 2144 * or memory nodes, we need to walk over the cpuset hierarchy, 2145 * removing that CPU or node from all cpusets. If this removes the 2146 * last CPU or node from a cpuset, then move the tasks in the empty 2147 * cpuset to its next-highest non-empty parent. 2148 */ 2149 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 2150 { 2151 struct cpuset *parent; 2152 2153 /* 2154 * Find its next-highest non-empty parent, (top cpuset 2155 * has online cpus, so can't be empty). 2156 */ 2157 parent = parent_cs(cs); 2158 while (cpumask_empty(parent->cpus_allowed) || 2159 nodes_empty(parent->mems_allowed)) 2160 parent = parent_cs(parent); 2161 2162 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 2163 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 2164 pr_cont_cgroup_name(cs->css.cgroup); 2165 pr_cont("\n"); 2166 } 2167 } 2168 2169 static void 2170 hotplug_update_tasks_legacy(struct cpuset *cs, 2171 struct cpumask *new_cpus, nodemask_t *new_mems, 2172 bool cpus_updated, bool mems_updated) 2173 { 2174 bool is_empty; 2175 2176 spin_lock_irq(&callback_lock); 2177 cpumask_copy(cs->cpus_allowed, new_cpus); 2178 cpumask_copy(cs->effective_cpus, new_cpus); 2179 cs->mems_allowed = *new_mems; 2180 cs->effective_mems = *new_mems; 2181 spin_unlock_irq(&callback_lock); 2182 2183 /* 2184 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 2185 * as the tasks will be migratecd to an ancestor. 2186 */ 2187 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 2188 update_tasks_cpumask(cs); 2189 if (mems_updated && !nodes_empty(cs->mems_allowed)) 2190 update_tasks_nodemask(cs); 2191 2192 is_empty = cpumask_empty(cs->cpus_allowed) || 2193 nodes_empty(cs->mems_allowed); 2194 2195 mutex_unlock(&cpuset_mutex); 2196 2197 /* 2198 * Move tasks to the nearest ancestor with execution resources, 2199 * This is full cgroup operation which will also call back into 2200 * cpuset. Should be done outside any lock. 2201 */ 2202 if (is_empty) 2203 remove_tasks_in_empty_cpuset(cs); 2204 2205 mutex_lock(&cpuset_mutex); 2206 } 2207 2208 static void 2209 hotplug_update_tasks(struct cpuset *cs, 2210 struct cpumask *new_cpus, nodemask_t *new_mems, 2211 bool cpus_updated, bool mems_updated) 2212 { 2213 if (cpumask_empty(new_cpus)) 2214 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 2215 if (nodes_empty(*new_mems)) 2216 *new_mems = parent_cs(cs)->effective_mems; 2217 2218 spin_lock_irq(&callback_lock); 2219 cpumask_copy(cs->effective_cpus, new_cpus); 2220 cs->effective_mems = *new_mems; 2221 spin_unlock_irq(&callback_lock); 2222 2223 if (cpus_updated) 2224 update_tasks_cpumask(cs); 2225 if (mems_updated) 2226 update_tasks_nodemask(cs); 2227 } 2228 2229 /** 2230 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 2231 * @cs: cpuset in interest 2232 * 2233 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 2234 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 2235 * all its tasks are moved to the nearest ancestor with both resources. 2236 */ 2237 static void cpuset_hotplug_update_tasks(struct cpuset *cs) 2238 { 2239 static cpumask_t new_cpus; 2240 static nodemask_t new_mems; 2241 bool cpus_updated; 2242 bool mems_updated; 2243 retry: 2244 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 2245 2246 mutex_lock(&cpuset_mutex); 2247 2248 /* 2249 * We have raced with task attaching. We wait until attaching 2250 * is finished, so we won't attach a task to an empty cpuset. 2251 */ 2252 if (cs->attach_in_progress) { 2253 mutex_unlock(&cpuset_mutex); 2254 goto retry; 2255 } 2256 2257 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus); 2258 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems); 2259 2260 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 2261 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 2262 2263 if (is_in_v2_mode()) 2264 hotplug_update_tasks(cs, &new_cpus, &new_mems, 2265 cpus_updated, mems_updated); 2266 else 2267 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 2268 cpus_updated, mems_updated); 2269 2270 mutex_unlock(&cpuset_mutex); 2271 } 2272 2273 static bool force_rebuild; 2274 2275 void cpuset_force_rebuild(void) 2276 { 2277 force_rebuild = true; 2278 } 2279 2280 /** 2281 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 2282 * 2283 * This function is called after either CPU or memory configuration has 2284 * changed and updates cpuset accordingly. The top_cpuset is always 2285 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 2286 * order to make cpusets transparent (of no affect) on systems that are 2287 * actively using CPU hotplug but making no active use of cpusets. 2288 * 2289 * Non-root cpusets are only affected by offlining. If any CPUs or memory 2290 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 2291 * all descendants. 2292 * 2293 * Note that CPU offlining during suspend is ignored. We don't modify 2294 * cpusets across suspend/resume cycles at all. 2295 */ 2296 static void cpuset_hotplug_workfn(struct work_struct *work) 2297 { 2298 static cpumask_t new_cpus; 2299 static nodemask_t new_mems; 2300 bool cpus_updated, mems_updated; 2301 bool on_dfl = is_in_v2_mode(); 2302 2303 mutex_lock(&cpuset_mutex); 2304 2305 /* fetch the available cpus/mems and find out which changed how */ 2306 cpumask_copy(&new_cpus, cpu_active_mask); 2307 new_mems = node_states[N_MEMORY]; 2308 2309 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 2310 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 2311 2312 /* synchronize cpus_allowed to cpu_active_mask */ 2313 if (cpus_updated) { 2314 spin_lock_irq(&callback_lock); 2315 if (!on_dfl) 2316 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 2317 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 2318 spin_unlock_irq(&callback_lock); 2319 /* we don't mess with cpumasks of tasks in top_cpuset */ 2320 } 2321 2322 /* synchronize mems_allowed to N_MEMORY */ 2323 if (mems_updated) { 2324 spin_lock_irq(&callback_lock); 2325 if (!on_dfl) 2326 top_cpuset.mems_allowed = new_mems; 2327 top_cpuset.effective_mems = new_mems; 2328 spin_unlock_irq(&callback_lock); 2329 update_tasks_nodemask(&top_cpuset); 2330 } 2331 2332 mutex_unlock(&cpuset_mutex); 2333 2334 /* if cpus or mems changed, we need to propagate to descendants */ 2335 if (cpus_updated || mems_updated) { 2336 struct cpuset *cs; 2337 struct cgroup_subsys_state *pos_css; 2338 2339 rcu_read_lock(); 2340 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 2341 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 2342 continue; 2343 rcu_read_unlock(); 2344 2345 cpuset_hotplug_update_tasks(cs); 2346 2347 rcu_read_lock(); 2348 css_put(&cs->css); 2349 } 2350 rcu_read_unlock(); 2351 } 2352 2353 /* rebuild sched domains if cpus_allowed has changed */ 2354 if (cpus_updated || force_rebuild) { 2355 force_rebuild = false; 2356 rebuild_sched_domains(); 2357 } 2358 } 2359 2360 void cpuset_update_active_cpus(void) 2361 { 2362 /* 2363 * We're inside cpu hotplug critical region which usually nests 2364 * inside cgroup synchronization. Bounce actual hotplug processing 2365 * to a work item to avoid reverse locking order. 2366 */ 2367 schedule_work(&cpuset_hotplug_work); 2368 } 2369 2370 void cpuset_wait_for_hotplug(void) 2371 { 2372 flush_work(&cpuset_hotplug_work); 2373 } 2374 2375 /* 2376 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 2377 * Call this routine anytime after node_states[N_MEMORY] changes. 2378 * See cpuset_update_active_cpus() for CPU hotplug handling. 2379 */ 2380 static int cpuset_track_online_nodes(struct notifier_block *self, 2381 unsigned long action, void *arg) 2382 { 2383 schedule_work(&cpuset_hotplug_work); 2384 return NOTIFY_OK; 2385 } 2386 2387 static struct notifier_block cpuset_track_online_nodes_nb = { 2388 .notifier_call = cpuset_track_online_nodes, 2389 .priority = 10, /* ??! */ 2390 }; 2391 2392 /** 2393 * cpuset_init_smp - initialize cpus_allowed 2394 * 2395 * Description: Finish top cpuset after cpu, node maps are initialized 2396 */ 2397 void __init cpuset_init_smp(void) 2398 { 2399 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 2400 top_cpuset.mems_allowed = node_states[N_MEMORY]; 2401 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 2402 2403 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 2404 top_cpuset.effective_mems = node_states[N_MEMORY]; 2405 2406 register_hotmemory_notifier(&cpuset_track_online_nodes_nb); 2407 2408 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 2409 BUG_ON(!cpuset_migrate_mm_wq); 2410 } 2411 2412 /** 2413 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 2414 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 2415 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 2416 * 2417 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 2418 * attached to the specified @tsk. Guaranteed to return some non-empty 2419 * subset of cpu_online_mask, even if this means going outside the 2420 * tasks cpuset. 2421 **/ 2422 2423 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 2424 { 2425 unsigned long flags; 2426 2427 spin_lock_irqsave(&callback_lock, flags); 2428 rcu_read_lock(); 2429 guarantee_online_cpus(task_cs(tsk), pmask); 2430 rcu_read_unlock(); 2431 spin_unlock_irqrestore(&callback_lock, flags); 2432 } 2433 2434 void cpuset_cpus_allowed_fallback(struct task_struct *tsk) 2435 { 2436 rcu_read_lock(); 2437 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus); 2438 rcu_read_unlock(); 2439 2440 /* 2441 * We own tsk->cpus_allowed, nobody can change it under us. 2442 * 2443 * But we used cs && cs->cpus_allowed lockless and thus can 2444 * race with cgroup_attach_task() or update_cpumask() and get 2445 * the wrong tsk->cpus_allowed. However, both cases imply the 2446 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 2447 * which takes task_rq_lock(). 2448 * 2449 * If we are called after it dropped the lock we must see all 2450 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 2451 * set any mask even if it is not right from task_cs() pov, 2452 * the pending set_cpus_allowed_ptr() will fix things. 2453 * 2454 * select_fallback_rq() will fix things ups and set cpu_possible_mask 2455 * if required. 2456 */ 2457 } 2458 2459 void __init cpuset_init_current_mems_allowed(void) 2460 { 2461 nodes_setall(current->mems_allowed); 2462 } 2463 2464 /** 2465 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 2466 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 2467 * 2468 * Description: Returns the nodemask_t mems_allowed of the cpuset 2469 * attached to the specified @tsk. Guaranteed to return some non-empty 2470 * subset of node_states[N_MEMORY], even if this means going outside the 2471 * tasks cpuset. 2472 **/ 2473 2474 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 2475 { 2476 nodemask_t mask; 2477 unsigned long flags; 2478 2479 spin_lock_irqsave(&callback_lock, flags); 2480 rcu_read_lock(); 2481 guarantee_online_mems(task_cs(tsk), &mask); 2482 rcu_read_unlock(); 2483 spin_unlock_irqrestore(&callback_lock, flags); 2484 2485 return mask; 2486 } 2487 2488 /** 2489 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed 2490 * @nodemask: the nodemask to be checked 2491 * 2492 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 2493 */ 2494 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 2495 { 2496 return nodes_intersects(*nodemask, current->mems_allowed); 2497 } 2498 2499 /* 2500 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 2501 * mem_hardwall ancestor to the specified cpuset. Call holding 2502 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 2503 * (an unusual configuration), then returns the root cpuset. 2504 */ 2505 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 2506 { 2507 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 2508 cs = parent_cs(cs); 2509 return cs; 2510 } 2511 2512 /** 2513 * cpuset_node_allowed - Can we allocate on a memory node? 2514 * @node: is this an allowed node? 2515 * @gfp_mask: memory allocation flags 2516 * 2517 * If we're in interrupt, yes, we can always allocate. If @node is set in 2518 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 2519 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 2520 * yes. If current has access to memory reserves as an oom victim, yes. 2521 * Otherwise, no. 2522 * 2523 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 2524 * and do not allow allocations outside the current tasks cpuset 2525 * unless the task has been OOM killed. 2526 * GFP_KERNEL allocations are not so marked, so can escape to the 2527 * nearest enclosing hardwalled ancestor cpuset. 2528 * 2529 * Scanning up parent cpusets requires callback_lock. The 2530 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 2531 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 2532 * current tasks mems_allowed came up empty on the first pass over 2533 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 2534 * cpuset are short of memory, might require taking the callback_lock. 2535 * 2536 * The first call here from mm/page_alloc:get_page_from_freelist() 2537 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 2538 * so no allocation on a node outside the cpuset is allowed (unless 2539 * in interrupt, of course). 2540 * 2541 * The second pass through get_page_from_freelist() doesn't even call 2542 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 2543 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 2544 * in alloc_flags. That logic and the checks below have the combined 2545 * affect that: 2546 * in_interrupt - any node ok (current task context irrelevant) 2547 * GFP_ATOMIC - any node ok 2548 * tsk_is_oom_victim - any node ok 2549 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 2550 * GFP_USER - only nodes in current tasks mems allowed ok. 2551 */ 2552 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 2553 { 2554 struct cpuset *cs; /* current cpuset ancestors */ 2555 int allowed; /* is allocation in zone z allowed? */ 2556 unsigned long flags; 2557 2558 if (in_interrupt()) 2559 return true; 2560 if (node_isset(node, current->mems_allowed)) 2561 return true; 2562 /* 2563 * Allow tasks that have access to memory reserves because they have 2564 * been OOM killed to get memory anywhere. 2565 */ 2566 if (unlikely(tsk_is_oom_victim(current))) 2567 return true; 2568 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 2569 return false; 2570 2571 if (current->flags & PF_EXITING) /* Let dying task have memory */ 2572 return true; 2573 2574 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 2575 spin_lock_irqsave(&callback_lock, flags); 2576 2577 rcu_read_lock(); 2578 cs = nearest_hardwall_ancestor(task_cs(current)); 2579 allowed = node_isset(node, cs->mems_allowed); 2580 rcu_read_unlock(); 2581 2582 spin_unlock_irqrestore(&callback_lock, flags); 2583 return allowed; 2584 } 2585 2586 /** 2587 * cpuset_mem_spread_node() - On which node to begin search for a file page 2588 * cpuset_slab_spread_node() - On which node to begin search for a slab page 2589 * 2590 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 2591 * tasks in a cpuset with is_spread_page or is_spread_slab set), 2592 * and if the memory allocation used cpuset_mem_spread_node() 2593 * to determine on which node to start looking, as it will for 2594 * certain page cache or slab cache pages such as used for file 2595 * system buffers and inode caches, then instead of starting on the 2596 * local node to look for a free page, rather spread the starting 2597 * node around the tasks mems_allowed nodes. 2598 * 2599 * We don't have to worry about the returned node being offline 2600 * because "it can't happen", and even if it did, it would be ok. 2601 * 2602 * The routines calling guarantee_online_mems() are careful to 2603 * only set nodes in task->mems_allowed that are online. So it 2604 * should not be possible for the following code to return an 2605 * offline node. But if it did, that would be ok, as this routine 2606 * is not returning the node where the allocation must be, only 2607 * the node where the search should start. The zonelist passed to 2608 * __alloc_pages() will include all nodes. If the slab allocator 2609 * is passed an offline node, it will fall back to the local node. 2610 * See kmem_cache_alloc_node(). 2611 */ 2612 2613 static int cpuset_spread_node(int *rotor) 2614 { 2615 return *rotor = next_node_in(*rotor, current->mems_allowed); 2616 } 2617 2618 int cpuset_mem_spread_node(void) 2619 { 2620 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 2621 current->cpuset_mem_spread_rotor = 2622 node_random(¤t->mems_allowed); 2623 2624 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 2625 } 2626 2627 int cpuset_slab_spread_node(void) 2628 { 2629 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 2630 current->cpuset_slab_spread_rotor = 2631 node_random(¤t->mems_allowed); 2632 2633 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 2634 } 2635 2636 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 2637 2638 /** 2639 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 2640 * @tsk1: pointer to task_struct of some task. 2641 * @tsk2: pointer to task_struct of some other task. 2642 * 2643 * Description: Return true if @tsk1's mems_allowed intersects the 2644 * mems_allowed of @tsk2. Used by the OOM killer to determine if 2645 * one of the task's memory usage might impact the memory available 2646 * to the other. 2647 **/ 2648 2649 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 2650 const struct task_struct *tsk2) 2651 { 2652 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 2653 } 2654 2655 /** 2656 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 2657 * 2658 * Description: Prints current's name, cpuset name, and cached copy of its 2659 * mems_allowed to the kernel log. 2660 */ 2661 void cpuset_print_current_mems_allowed(void) 2662 { 2663 struct cgroup *cgrp; 2664 2665 rcu_read_lock(); 2666 2667 cgrp = task_cs(current)->css.cgroup; 2668 pr_info("%s cpuset=", current->comm); 2669 pr_cont_cgroup_name(cgrp); 2670 pr_cont(" mems_allowed=%*pbl\n", 2671 nodemask_pr_args(¤t->mems_allowed)); 2672 2673 rcu_read_unlock(); 2674 } 2675 2676 /* 2677 * Collection of memory_pressure is suppressed unless 2678 * this flag is enabled by writing "1" to the special 2679 * cpuset file 'memory_pressure_enabled' in the root cpuset. 2680 */ 2681 2682 int cpuset_memory_pressure_enabled __read_mostly; 2683 2684 /** 2685 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 2686 * 2687 * Keep a running average of the rate of synchronous (direct) 2688 * page reclaim efforts initiated by tasks in each cpuset. 2689 * 2690 * This represents the rate at which some task in the cpuset 2691 * ran low on memory on all nodes it was allowed to use, and 2692 * had to enter the kernels page reclaim code in an effort to 2693 * create more free memory by tossing clean pages or swapping 2694 * or writing dirty pages. 2695 * 2696 * Display to user space in the per-cpuset read-only file 2697 * "memory_pressure". Value displayed is an integer 2698 * representing the recent rate of entry into the synchronous 2699 * (direct) page reclaim by any task attached to the cpuset. 2700 **/ 2701 2702 void __cpuset_memory_pressure_bump(void) 2703 { 2704 rcu_read_lock(); 2705 fmeter_markevent(&task_cs(current)->fmeter); 2706 rcu_read_unlock(); 2707 } 2708 2709 #ifdef CONFIG_PROC_PID_CPUSET 2710 /* 2711 * proc_cpuset_show() 2712 * - Print tasks cpuset path into seq_file. 2713 * - Used for /proc/<pid>/cpuset. 2714 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 2715 * doesn't really matter if tsk->cpuset changes after we read it, 2716 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 2717 * anyway. 2718 */ 2719 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 2720 struct pid *pid, struct task_struct *tsk) 2721 { 2722 char *buf; 2723 struct cgroup_subsys_state *css; 2724 int retval; 2725 2726 retval = -ENOMEM; 2727 buf = kmalloc(PATH_MAX, GFP_KERNEL); 2728 if (!buf) 2729 goto out; 2730 2731 css = task_get_css(tsk, cpuset_cgrp_id); 2732 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 2733 current->nsproxy->cgroup_ns); 2734 css_put(css); 2735 if (retval >= PATH_MAX) 2736 retval = -ENAMETOOLONG; 2737 if (retval < 0) 2738 goto out_free; 2739 seq_puts(m, buf); 2740 seq_putc(m, '\n'); 2741 retval = 0; 2742 out_free: 2743 kfree(buf); 2744 out: 2745 return retval; 2746 } 2747 #endif /* CONFIG_PROC_PID_CPUSET */ 2748 2749 /* Display task mems_allowed in /proc/<pid>/status file. */ 2750 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 2751 { 2752 seq_printf(m, "Mems_allowed:\t%*pb\n", 2753 nodemask_pr_args(&task->mems_allowed)); 2754 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 2755 nodemask_pr_args(&task->mems_allowed)); 2756 } 2757