xref: /linux/kernel/cgroup/cpuset.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/delay.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/kernel.h>
32 #include <linux/mempolicy.h>
33 #include <linux/mm.h>
34 #include <linux/memory.h>
35 #include <linux/export.h>
36 #include <linux/rcupdate.h>
37 #include <linux/sched.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/mm.h>
40 #include <linux/sched/task.h>
41 #include <linux/security.h>
42 #include <linux/spinlock.h>
43 #include <linux/oom.h>
44 #include <linux/sched/isolation.h>
45 #include <linux/cgroup.h>
46 #include <linux/wait.h>
47 #include <linux/workqueue.h>
48 
49 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
50 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
51 
52 /*
53  * There could be abnormal cpuset configurations for cpu or memory
54  * node binding, add this key to provide a quick low-cost judgment
55  * of the situation.
56  */
57 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
58 
59 /* See "Frequency meter" comments, below. */
60 
61 struct fmeter {
62 	int cnt;		/* unprocessed events count */
63 	int val;		/* most recent output value */
64 	time64_t time;		/* clock (secs) when val computed */
65 	spinlock_t lock;	/* guards read or write of above */
66 };
67 
68 /*
69  * Invalid partition error code
70  */
71 enum prs_errcode {
72 	PERR_NONE = 0,
73 	PERR_INVCPUS,
74 	PERR_INVPARENT,
75 	PERR_NOTPART,
76 	PERR_NOTEXCL,
77 	PERR_NOCPUS,
78 	PERR_HOTPLUG,
79 	PERR_CPUSEMPTY,
80 	PERR_HKEEPING,
81 };
82 
83 static const char * const perr_strings[] = {
84 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus.exclusive",
85 	[PERR_INVPARENT] = "Parent is an invalid partition root",
86 	[PERR_NOTPART]   = "Parent is not a partition root",
87 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
88 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
89 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
90 	[PERR_CPUSEMPTY] = "cpuset.cpus is empty",
91 	[PERR_HKEEPING]  = "partition config conflicts with housekeeping setup",
92 };
93 
94 struct cpuset {
95 	struct cgroup_subsys_state css;
96 
97 	unsigned long flags;		/* "unsigned long" so bitops work */
98 
99 	/*
100 	 * On default hierarchy:
101 	 *
102 	 * The user-configured masks can only be changed by writing to
103 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
104 	 * parent masks.
105 	 *
106 	 * The effective masks is the real masks that apply to the tasks
107 	 * in the cpuset. They may be changed if the configured masks are
108 	 * changed or hotplug happens.
109 	 *
110 	 * effective_mask == configured_mask & parent's effective_mask,
111 	 * and if it ends up empty, it will inherit the parent's mask.
112 	 *
113 	 *
114 	 * On legacy hierarchy:
115 	 *
116 	 * The user-configured masks are always the same with effective masks.
117 	 */
118 
119 	/* user-configured CPUs and Memory Nodes allow to tasks */
120 	cpumask_var_t cpus_allowed;
121 	nodemask_t mems_allowed;
122 
123 	/* effective CPUs and Memory Nodes allow to tasks */
124 	cpumask_var_t effective_cpus;
125 	nodemask_t effective_mems;
126 
127 	/*
128 	 * Exclusive CPUs dedicated to current cgroup (default hierarchy only)
129 	 *
130 	 * This exclusive CPUs must be a subset of cpus_allowed. A parent
131 	 * cgroup can only grant exclusive CPUs to one of its children.
132 	 *
133 	 * When the cgroup becomes a valid partition root, effective_xcpus
134 	 * defaults to cpus_allowed if not set. The effective_cpus of a valid
135 	 * partition root comes solely from its effective_xcpus and some of the
136 	 * effective_xcpus may be distributed to sub-partitions below & hence
137 	 * excluded from its effective_cpus.
138 	 */
139 	cpumask_var_t effective_xcpus;
140 
141 	/*
142 	 * Exclusive CPUs as requested by the user (default hierarchy only)
143 	 */
144 	cpumask_var_t exclusive_cpus;
145 
146 	/*
147 	 * This is old Memory Nodes tasks took on.
148 	 *
149 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
150 	 * - A new cpuset's old_mems_allowed is initialized when some
151 	 *   task is moved into it.
152 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
153 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
154 	 *   then old_mems_allowed is updated to mems_allowed.
155 	 */
156 	nodemask_t old_mems_allowed;
157 
158 	struct fmeter fmeter;		/* memory_pressure filter */
159 
160 	/*
161 	 * Tasks are being attached to this cpuset.  Used to prevent
162 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
163 	 */
164 	int attach_in_progress;
165 
166 	/* partition number for rebuild_sched_domains() */
167 	int pn;
168 
169 	/* for custom sched domain */
170 	int relax_domain_level;
171 
172 	/* number of valid sub-partitions */
173 	int nr_subparts;
174 
175 	/* partition root state */
176 	int partition_root_state;
177 
178 	/*
179 	 * Default hierarchy only:
180 	 * use_parent_ecpus - set if using parent's effective_cpus
181 	 * child_ecpus_count - # of children with use_parent_ecpus set
182 	 */
183 	int use_parent_ecpus;
184 	int child_ecpus_count;
185 
186 	/*
187 	 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we
188 	 * know when to rebuild associated root domain bandwidth information.
189 	 */
190 	int nr_deadline_tasks;
191 	int nr_migrate_dl_tasks;
192 	u64 sum_migrate_dl_bw;
193 
194 	/* Invalid partition error code, not lock protected */
195 	enum prs_errcode prs_err;
196 
197 	/* Handle for cpuset.cpus.partition */
198 	struct cgroup_file partition_file;
199 
200 	/* Remote partition silbling list anchored at remote_children */
201 	struct list_head remote_sibling;
202 };
203 
204 /*
205  * Exclusive CPUs distributed out to sub-partitions of top_cpuset
206  */
207 static cpumask_var_t	subpartitions_cpus;
208 
209 /*
210  * Exclusive CPUs in isolated partitions
211  */
212 static cpumask_var_t	isolated_cpus;
213 
214 /* List of remote partition root children */
215 static struct list_head remote_children;
216 
217 /*
218  * Partition root states:
219  *
220  *   0 - member (not a partition root)
221  *   1 - partition root
222  *   2 - partition root without load balancing (isolated)
223  *  -1 - invalid partition root
224  *  -2 - invalid isolated partition root
225  */
226 #define PRS_MEMBER		0
227 #define PRS_ROOT		1
228 #define PRS_ISOLATED		2
229 #define PRS_INVALID_ROOT	-1
230 #define PRS_INVALID_ISOLATED	-2
231 
232 static inline bool is_prs_invalid(int prs_state)
233 {
234 	return prs_state < 0;
235 }
236 
237 /*
238  * Temporary cpumasks for working with partitions that are passed among
239  * functions to avoid memory allocation in inner functions.
240  */
241 struct tmpmasks {
242 	cpumask_var_t addmask, delmask;	/* For partition root */
243 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
244 };
245 
246 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
247 {
248 	return css ? container_of(css, struct cpuset, css) : NULL;
249 }
250 
251 /* Retrieve the cpuset for a task */
252 static inline struct cpuset *task_cs(struct task_struct *task)
253 {
254 	return css_cs(task_css(task, cpuset_cgrp_id));
255 }
256 
257 static inline struct cpuset *parent_cs(struct cpuset *cs)
258 {
259 	return css_cs(cs->css.parent);
260 }
261 
262 void inc_dl_tasks_cs(struct task_struct *p)
263 {
264 	struct cpuset *cs = task_cs(p);
265 
266 	cs->nr_deadline_tasks++;
267 }
268 
269 void dec_dl_tasks_cs(struct task_struct *p)
270 {
271 	struct cpuset *cs = task_cs(p);
272 
273 	cs->nr_deadline_tasks--;
274 }
275 
276 /* bits in struct cpuset flags field */
277 typedef enum {
278 	CS_ONLINE,
279 	CS_CPU_EXCLUSIVE,
280 	CS_MEM_EXCLUSIVE,
281 	CS_MEM_HARDWALL,
282 	CS_MEMORY_MIGRATE,
283 	CS_SCHED_LOAD_BALANCE,
284 	CS_SPREAD_PAGE,
285 	CS_SPREAD_SLAB,
286 } cpuset_flagbits_t;
287 
288 /* convenient tests for these bits */
289 static inline bool is_cpuset_online(struct cpuset *cs)
290 {
291 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
292 }
293 
294 static inline int is_cpu_exclusive(const struct cpuset *cs)
295 {
296 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
297 }
298 
299 static inline int is_mem_exclusive(const struct cpuset *cs)
300 {
301 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
302 }
303 
304 static inline int is_mem_hardwall(const struct cpuset *cs)
305 {
306 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
307 }
308 
309 static inline int is_sched_load_balance(const struct cpuset *cs)
310 {
311 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
312 }
313 
314 static inline int is_memory_migrate(const struct cpuset *cs)
315 {
316 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
317 }
318 
319 static inline int is_spread_page(const struct cpuset *cs)
320 {
321 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
322 }
323 
324 static inline int is_spread_slab(const struct cpuset *cs)
325 {
326 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
327 }
328 
329 static inline int is_partition_valid(const struct cpuset *cs)
330 {
331 	return cs->partition_root_state > 0;
332 }
333 
334 static inline int is_partition_invalid(const struct cpuset *cs)
335 {
336 	return cs->partition_root_state < 0;
337 }
338 
339 /*
340  * Callers should hold callback_lock to modify partition_root_state.
341  */
342 static inline void make_partition_invalid(struct cpuset *cs)
343 {
344 	if (cs->partition_root_state > 0)
345 		cs->partition_root_state = -cs->partition_root_state;
346 }
347 
348 /*
349  * Send notification event of whenever partition_root_state changes.
350  */
351 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
352 {
353 	if (old_prs == cs->partition_root_state)
354 		return;
355 	cgroup_file_notify(&cs->partition_file);
356 
357 	/* Reset prs_err if not invalid */
358 	if (is_partition_valid(cs))
359 		WRITE_ONCE(cs->prs_err, PERR_NONE);
360 }
361 
362 static struct cpuset top_cpuset = {
363 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
364 		  (1 << CS_MEM_EXCLUSIVE)),
365 	.partition_root_state = PRS_ROOT,
366 	.remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling),
367 };
368 
369 /**
370  * cpuset_for_each_child - traverse online children of a cpuset
371  * @child_cs: loop cursor pointing to the current child
372  * @pos_css: used for iteration
373  * @parent_cs: target cpuset to walk children of
374  *
375  * Walk @child_cs through the online children of @parent_cs.  Must be used
376  * with RCU read locked.
377  */
378 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
379 	css_for_each_child((pos_css), &(parent_cs)->css)		\
380 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
381 
382 /**
383  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
384  * @des_cs: loop cursor pointing to the current descendant
385  * @pos_css: used for iteration
386  * @root_cs: target cpuset to walk ancestor of
387  *
388  * Walk @des_cs through the online descendants of @root_cs.  Must be used
389  * with RCU read locked.  The caller may modify @pos_css by calling
390  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
391  * iteration and the first node to be visited.
392  */
393 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
394 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
395 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
396 
397 /*
398  * There are two global locks guarding cpuset structures - cpuset_mutex and
399  * callback_lock. We also require taking task_lock() when dereferencing a
400  * task's cpuset pointer. See "The task_lock() exception", at the end of this
401  * comment.  The cpuset code uses only cpuset_mutex. Other kernel subsystems
402  * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
403  * structures. Note that cpuset_mutex needs to be a mutex as it is used in
404  * paths that rely on priority inheritance (e.g. scheduler - on RT) for
405  * correctness.
406  *
407  * A task must hold both locks to modify cpusets.  If a task holds
408  * cpuset_mutex, it blocks others, ensuring that it is the only task able to
409  * also acquire callback_lock and be able to modify cpusets.  It can perform
410  * various checks on the cpuset structure first, knowing nothing will change.
411  * It can also allocate memory while just holding cpuset_mutex.  While it is
412  * performing these checks, various callback routines can briefly acquire
413  * callback_lock to query cpusets.  Once it is ready to make the changes, it
414  * takes callback_lock, blocking everyone else.
415  *
416  * Calls to the kernel memory allocator can not be made while holding
417  * callback_lock, as that would risk double tripping on callback_lock
418  * from one of the callbacks into the cpuset code from within
419  * __alloc_pages().
420  *
421  * If a task is only holding callback_lock, then it has read-only
422  * access to cpusets.
423  *
424  * Now, the task_struct fields mems_allowed and mempolicy may be changed
425  * by other task, we use alloc_lock in the task_struct fields to protect
426  * them.
427  *
428  * The cpuset_common_file_read() handlers only hold callback_lock across
429  * small pieces of code, such as when reading out possibly multi-word
430  * cpumasks and nodemasks.
431  *
432  * Accessing a task's cpuset should be done in accordance with the
433  * guidelines for accessing subsystem state in kernel/cgroup.c
434  */
435 
436 static DEFINE_MUTEX(cpuset_mutex);
437 
438 void cpuset_lock(void)
439 {
440 	mutex_lock(&cpuset_mutex);
441 }
442 
443 void cpuset_unlock(void)
444 {
445 	mutex_unlock(&cpuset_mutex);
446 }
447 
448 static DEFINE_SPINLOCK(callback_lock);
449 
450 static struct workqueue_struct *cpuset_migrate_mm_wq;
451 
452 /*
453  * CPU / memory hotplug is handled asynchronously.
454  */
455 static void cpuset_hotplug_workfn(struct work_struct *work);
456 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
457 
458 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
459 
460 static inline void check_insane_mems_config(nodemask_t *nodes)
461 {
462 	if (!cpusets_insane_config() &&
463 		movable_only_nodes(nodes)) {
464 		static_branch_enable(&cpusets_insane_config_key);
465 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
466 			"Cpuset allocations might fail even with a lot of memory available.\n",
467 			nodemask_pr_args(nodes));
468 	}
469 }
470 
471 /*
472  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
473  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
474  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
475  * With v2 behavior, "cpus" and "mems" are always what the users have
476  * requested and won't be changed by hotplug events. Only the effective
477  * cpus or mems will be affected.
478  */
479 static inline bool is_in_v2_mode(void)
480 {
481 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
482 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
483 }
484 
485 /**
486  * partition_is_populated - check if partition has tasks
487  * @cs: partition root to be checked
488  * @excluded_child: a child cpuset to be excluded in task checking
489  * Return: true if there are tasks, false otherwise
490  *
491  * It is assumed that @cs is a valid partition root. @excluded_child should
492  * be non-NULL when this cpuset is going to become a partition itself.
493  */
494 static inline bool partition_is_populated(struct cpuset *cs,
495 					  struct cpuset *excluded_child)
496 {
497 	struct cgroup_subsys_state *css;
498 	struct cpuset *child;
499 
500 	if (cs->css.cgroup->nr_populated_csets)
501 		return true;
502 	if (!excluded_child && !cs->nr_subparts)
503 		return cgroup_is_populated(cs->css.cgroup);
504 
505 	rcu_read_lock();
506 	cpuset_for_each_child(child, css, cs) {
507 		if (child == excluded_child)
508 			continue;
509 		if (is_partition_valid(child))
510 			continue;
511 		if (cgroup_is_populated(child->css.cgroup)) {
512 			rcu_read_unlock();
513 			return true;
514 		}
515 	}
516 	rcu_read_unlock();
517 	return false;
518 }
519 
520 /*
521  * Return in pmask the portion of a task's cpusets's cpus_allowed that
522  * are online and are capable of running the task.  If none are found,
523  * walk up the cpuset hierarchy until we find one that does have some
524  * appropriate cpus.
525  *
526  * One way or another, we guarantee to return some non-empty subset
527  * of cpu_online_mask.
528  *
529  * Call with callback_lock or cpuset_mutex held.
530  */
531 static void guarantee_online_cpus(struct task_struct *tsk,
532 				  struct cpumask *pmask)
533 {
534 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
535 	struct cpuset *cs;
536 
537 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
538 		cpumask_copy(pmask, cpu_online_mask);
539 
540 	rcu_read_lock();
541 	cs = task_cs(tsk);
542 
543 	while (!cpumask_intersects(cs->effective_cpus, pmask)) {
544 		cs = parent_cs(cs);
545 		if (unlikely(!cs)) {
546 			/*
547 			 * The top cpuset doesn't have any online cpu as a
548 			 * consequence of a race between cpuset_hotplug_work
549 			 * and cpu hotplug notifier.  But we know the top
550 			 * cpuset's effective_cpus is on its way to be
551 			 * identical to cpu_online_mask.
552 			 */
553 			goto out_unlock;
554 		}
555 	}
556 	cpumask_and(pmask, pmask, cs->effective_cpus);
557 
558 out_unlock:
559 	rcu_read_unlock();
560 }
561 
562 /*
563  * Return in *pmask the portion of a cpusets's mems_allowed that
564  * are online, with memory.  If none are online with memory, walk
565  * up the cpuset hierarchy until we find one that does have some
566  * online mems.  The top cpuset always has some mems online.
567  *
568  * One way or another, we guarantee to return some non-empty subset
569  * of node_states[N_MEMORY].
570  *
571  * Call with callback_lock or cpuset_mutex held.
572  */
573 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
574 {
575 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
576 		cs = parent_cs(cs);
577 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
578 }
579 
580 /*
581  * update task's spread flag if cpuset's page/slab spread flag is set
582  *
583  * Call with callback_lock or cpuset_mutex held. The check can be skipped
584  * if on default hierarchy.
585  */
586 static void cpuset_update_task_spread_flags(struct cpuset *cs,
587 					struct task_struct *tsk)
588 {
589 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
590 		return;
591 
592 	if (is_spread_page(cs))
593 		task_set_spread_page(tsk);
594 	else
595 		task_clear_spread_page(tsk);
596 
597 	if (is_spread_slab(cs))
598 		task_set_spread_slab(tsk);
599 	else
600 		task_clear_spread_slab(tsk);
601 }
602 
603 /*
604  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
605  *
606  * One cpuset is a subset of another if all its allowed CPUs and
607  * Memory Nodes are a subset of the other, and its exclusive flags
608  * are only set if the other's are set.  Call holding cpuset_mutex.
609  */
610 
611 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
612 {
613 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
614 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
615 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
616 		is_mem_exclusive(p) <= is_mem_exclusive(q);
617 }
618 
619 /**
620  * alloc_cpumasks - allocate three cpumasks for cpuset
621  * @cs:  the cpuset that have cpumasks to be allocated.
622  * @tmp: the tmpmasks structure pointer
623  * Return: 0 if successful, -ENOMEM otherwise.
624  *
625  * Only one of the two input arguments should be non-NULL.
626  */
627 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
628 {
629 	cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4;
630 
631 	if (cs) {
632 		pmask1 = &cs->cpus_allowed;
633 		pmask2 = &cs->effective_cpus;
634 		pmask3 = &cs->effective_xcpus;
635 		pmask4 = &cs->exclusive_cpus;
636 	} else {
637 		pmask1 = &tmp->new_cpus;
638 		pmask2 = &tmp->addmask;
639 		pmask3 = &tmp->delmask;
640 		pmask4 = NULL;
641 	}
642 
643 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
644 		return -ENOMEM;
645 
646 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
647 		goto free_one;
648 
649 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
650 		goto free_two;
651 
652 	if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL))
653 		goto free_three;
654 
655 
656 	return 0;
657 
658 free_three:
659 	free_cpumask_var(*pmask3);
660 free_two:
661 	free_cpumask_var(*pmask2);
662 free_one:
663 	free_cpumask_var(*pmask1);
664 	return -ENOMEM;
665 }
666 
667 /**
668  * free_cpumasks - free cpumasks in a tmpmasks structure
669  * @cs:  the cpuset that have cpumasks to be free.
670  * @tmp: the tmpmasks structure pointer
671  */
672 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
673 {
674 	if (cs) {
675 		free_cpumask_var(cs->cpus_allowed);
676 		free_cpumask_var(cs->effective_cpus);
677 		free_cpumask_var(cs->effective_xcpus);
678 		free_cpumask_var(cs->exclusive_cpus);
679 	}
680 	if (tmp) {
681 		free_cpumask_var(tmp->new_cpus);
682 		free_cpumask_var(tmp->addmask);
683 		free_cpumask_var(tmp->delmask);
684 	}
685 }
686 
687 /**
688  * alloc_trial_cpuset - allocate a trial cpuset
689  * @cs: the cpuset that the trial cpuset duplicates
690  */
691 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
692 {
693 	struct cpuset *trial;
694 
695 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
696 	if (!trial)
697 		return NULL;
698 
699 	if (alloc_cpumasks(trial, NULL)) {
700 		kfree(trial);
701 		return NULL;
702 	}
703 
704 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
705 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
706 	cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
707 	cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
708 	return trial;
709 }
710 
711 /**
712  * free_cpuset - free the cpuset
713  * @cs: the cpuset to be freed
714  */
715 static inline void free_cpuset(struct cpuset *cs)
716 {
717 	free_cpumasks(cs, NULL);
718 	kfree(cs);
719 }
720 
721 static inline struct cpumask *fetch_xcpus(struct cpuset *cs)
722 {
723 	return !cpumask_empty(cs->exclusive_cpus) ? cs->exclusive_cpus :
724 	       cpumask_empty(cs->effective_xcpus) ? cs->cpus_allowed
725 						  : cs->effective_xcpus;
726 }
727 
728 /*
729  * cpusets_are_exclusive() - check if two cpusets are exclusive
730  *
731  * Return true if exclusive, false if not
732  */
733 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
734 {
735 	struct cpumask *xcpus1 = fetch_xcpus(cs1);
736 	struct cpumask *xcpus2 = fetch_xcpus(cs2);
737 
738 	if (cpumask_intersects(xcpus1, xcpus2))
739 		return false;
740 	return true;
741 }
742 
743 /*
744  * validate_change_legacy() - Validate conditions specific to legacy (v1)
745  *                            behavior.
746  */
747 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
748 {
749 	struct cgroup_subsys_state *css;
750 	struct cpuset *c, *par;
751 	int ret;
752 
753 	WARN_ON_ONCE(!rcu_read_lock_held());
754 
755 	/* Each of our child cpusets must be a subset of us */
756 	ret = -EBUSY;
757 	cpuset_for_each_child(c, css, cur)
758 		if (!is_cpuset_subset(c, trial))
759 			goto out;
760 
761 	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
762 	ret = -EACCES;
763 	par = parent_cs(cur);
764 	if (par && !is_cpuset_subset(trial, par))
765 		goto out;
766 
767 	ret = 0;
768 out:
769 	return ret;
770 }
771 
772 /*
773  * validate_change() - Used to validate that any proposed cpuset change
774  *		       follows the structural rules for cpusets.
775  *
776  * If we replaced the flag and mask values of the current cpuset
777  * (cur) with those values in the trial cpuset (trial), would
778  * our various subset and exclusive rules still be valid?  Presumes
779  * cpuset_mutex held.
780  *
781  * 'cur' is the address of an actual, in-use cpuset.  Operations
782  * such as list traversal that depend on the actual address of the
783  * cpuset in the list must use cur below, not trial.
784  *
785  * 'trial' is the address of bulk structure copy of cur, with
786  * perhaps one or more of the fields cpus_allowed, mems_allowed,
787  * or flags changed to new, trial values.
788  *
789  * Return 0 if valid, -errno if not.
790  */
791 
792 static int validate_change(struct cpuset *cur, struct cpuset *trial)
793 {
794 	struct cgroup_subsys_state *css;
795 	struct cpuset *c, *par;
796 	int ret = 0;
797 
798 	rcu_read_lock();
799 
800 	if (!is_in_v2_mode())
801 		ret = validate_change_legacy(cur, trial);
802 	if (ret)
803 		goto out;
804 
805 	/* Remaining checks don't apply to root cpuset */
806 	if (cur == &top_cpuset)
807 		goto out;
808 
809 	par = parent_cs(cur);
810 
811 	/*
812 	 * Cpusets with tasks - existing or newly being attached - can't
813 	 * be changed to have empty cpus_allowed or mems_allowed.
814 	 */
815 	ret = -ENOSPC;
816 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
817 		if (!cpumask_empty(cur->cpus_allowed) &&
818 		    cpumask_empty(trial->cpus_allowed))
819 			goto out;
820 		if (!nodes_empty(cur->mems_allowed) &&
821 		    nodes_empty(trial->mems_allowed))
822 			goto out;
823 	}
824 
825 	/*
826 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
827 	 * tasks.
828 	 */
829 	ret = -EBUSY;
830 	if (is_cpu_exclusive(cur) &&
831 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
832 				       trial->cpus_allowed))
833 		goto out;
834 
835 	/*
836 	 * If either I or some sibling (!= me) is exclusive, we can't
837 	 * overlap
838 	 */
839 	ret = -EINVAL;
840 	cpuset_for_each_child(c, css, par) {
841 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
842 		    c != cur) {
843 			if (!cpusets_are_exclusive(trial, c))
844 				goto out;
845 		}
846 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
847 		    c != cur &&
848 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
849 			goto out;
850 	}
851 
852 	ret = 0;
853 out:
854 	rcu_read_unlock();
855 	return ret;
856 }
857 
858 #ifdef CONFIG_SMP
859 /*
860  * Helper routine for generate_sched_domains().
861  * Do cpusets a, b have overlapping effective cpus_allowed masks?
862  */
863 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
864 {
865 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
866 }
867 
868 static void
869 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
870 {
871 	if (dattr->relax_domain_level < c->relax_domain_level)
872 		dattr->relax_domain_level = c->relax_domain_level;
873 	return;
874 }
875 
876 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
877 				    struct cpuset *root_cs)
878 {
879 	struct cpuset *cp;
880 	struct cgroup_subsys_state *pos_css;
881 
882 	rcu_read_lock();
883 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
884 		/* skip the whole subtree if @cp doesn't have any CPU */
885 		if (cpumask_empty(cp->cpus_allowed)) {
886 			pos_css = css_rightmost_descendant(pos_css);
887 			continue;
888 		}
889 
890 		if (is_sched_load_balance(cp))
891 			update_domain_attr(dattr, cp);
892 	}
893 	rcu_read_unlock();
894 }
895 
896 /* Must be called with cpuset_mutex held.  */
897 static inline int nr_cpusets(void)
898 {
899 	/* jump label reference count + the top-level cpuset */
900 	return static_key_count(&cpusets_enabled_key.key) + 1;
901 }
902 
903 /*
904  * generate_sched_domains()
905  *
906  * This function builds a partial partition of the systems CPUs
907  * A 'partial partition' is a set of non-overlapping subsets whose
908  * union is a subset of that set.
909  * The output of this function needs to be passed to kernel/sched/core.c
910  * partition_sched_domains() routine, which will rebuild the scheduler's
911  * load balancing domains (sched domains) as specified by that partial
912  * partition.
913  *
914  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
915  * for a background explanation of this.
916  *
917  * Does not return errors, on the theory that the callers of this
918  * routine would rather not worry about failures to rebuild sched
919  * domains when operating in the severe memory shortage situations
920  * that could cause allocation failures below.
921  *
922  * Must be called with cpuset_mutex held.
923  *
924  * The three key local variables below are:
925  *    cp - cpuset pointer, used (together with pos_css) to perform a
926  *	   top-down scan of all cpusets. For our purposes, rebuilding
927  *	   the schedulers sched domains, we can ignore !is_sched_load_
928  *	   balance cpusets.
929  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
930  *	   that need to be load balanced, for convenient iterative
931  *	   access by the subsequent code that finds the best partition,
932  *	   i.e the set of domains (subsets) of CPUs such that the
933  *	   cpus_allowed of every cpuset marked is_sched_load_balance
934  *	   is a subset of one of these domains, while there are as
935  *	   many such domains as possible, each as small as possible.
936  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
937  *	   the kernel/sched/core.c routine partition_sched_domains() in a
938  *	   convenient format, that can be easily compared to the prior
939  *	   value to determine what partition elements (sched domains)
940  *	   were changed (added or removed.)
941  *
942  * Finding the best partition (set of domains):
943  *	The triple nested loops below over i, j, k scan over the
944  *	load balanced cpusets (using the array of cpuset pointers in
945  *	csa[]) looking for pairs of cpusets that have overlapping
946  *	cpus_allowed, but which don't have the same 'pn' partition
947  *	number and gives them in the same partition number.  It keeps
948  *	looping on the 'restart' label until it can no longer find
949  *	any such pairs.
950  *
951  *	The union of the cpus_allowed masks from the set of
952  *	all cpusets having the same 'pn' value then form the one
953  *	element of the partition (one sched domain) to be passed to
954  *	partition_sched_domains().
955  */
956 static int generate_sched_domains(cpumask_var_t **domains,
957 			struct sched_domain_attr **attributes)
958 {
959 	struct cpuset *cp;	/* top-down scan of cpusets */
960 	struct cpuset **csa;	/* array of all cpuset ptrs */
961 	int csn;		/* how many cpuset ptrs in csa so far */
962 	int i, j, k;		/* indices for partition finding loops */
963 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
964 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
965 	int ndoms = 0;		/* number of sched domains in result */
966 	int nslot;		/* next empty doms[] struct cpumask slot */
967 	struct cgroup_subsys_state *pos_css;
968 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
969 
970 	doms = NULL;
971 	dattr = NULL;
972 	csa = NULL;
973 
974 	/* Special case for the 99% of systems with one, full, sched domain */
975 	if (root_load_balance && !top_cpuset.nr_subparts) {
976 		ndoms = 1;
977 		doms = alloc_sched_domains(ndoms);
978 		if (!doms)
979 			goto done;
980 
981 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
982 		if (dattr) {
983 			*dattr = SD_ATTR_INIT;
984 			update_domain_attr_tree(dattr, &top_cpuset);
985 		}
986 		cpumask_and(doms[0], top_cpuset.effective_cpus,
987 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
988 
989 		goto done;
990 	}
991 
992 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
993 	if (!csa)
994 		goto done;
995 	csn = 0;
996 
997 	rcu_read_lock();
998 	if (root_load_balance)
999 		csa[csn++] = &top_cpuset;
1000 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
1001 		if (cp == &top_cpuset)
1002 			continue;
1003 		/*
1004 		 * Continue traversing beyond @cp iff @cp has some CPUs and
1005 		 * isn't load balancing.  The former is obvious.  The
1006 		 * latter: All child cpusets contain a subset of the
1007 		 * parent's cpus, so just skip them, and then we call
1008 		 * update_domain_attr_tree() to calc relax_domain_level of
1009 		 * the corresponding sched domain.
1010 		 *
1011 		 * If root is load-balancing, we can skip @cp if it
1012 		 * is a subset of the root's effective_cpus.
1013 		 */
1014 		if (!cpumask_empty(cp->cpus_allowed) &&
1015 		    !(is_sched_load_balance(cp) &&
1016 		      cpumask_intersects(cp->cpus_allowed,
1017 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
1018 			continue;
1019 
1020 		if (root_load_balance &&
1021 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
1022 			continue;
1023 
1024 		if (is_sched_load_balance(cp) &&
1025 		    !cpumask_empty(cp->effective_cpus))
1026 			csa[csn++] = cp;
1027 
1028 		/* skip @cp's subtree if not a partition root */
1029 		if (!is_partition_valid(cp))
1030 			pos_css = css_rightmost_descendant(pos_css);
1031 	}
1032 	rcu_read_unlock();
1033 
1034 	for (i = 0; i < csn; i++)
1035 		csa[i]->pn = i;
1036 	ndoms = csn;
1037 
1038 restart:
1039 	/* Find the best partition (set of sched domains) */
1040 	for (i = 0; i < csn; i++) {
1041 		struct cpuset *a = csa[i];
1042 		int apn = a->pn;
1043 
1044 		for (j = 0; j < csn; j++) {
1045 			struct cpuset *b = csa[j];
1046 			int bpn = b->pn;
1047 
1048 			if (apn != bpn && cpusets_overlap(a, b)) {
1049 				for (k = 0; k < csn; k++) {
1050 					struct cpuset *c = csa[k];
1051 
1052 					if (c->pn == bpn)
1053 						c->pn = apn;
1054 				}
1055 				ndoms--;	/* one less element */
1056 				goto restart;
1057 			}
1058 		}
1059 	}
1060 
1061 	/*
1062 	 * Now we know how many domains to create.
1063 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
1064 	 */
1065 	doms = alloc_sched_domains(ndoms);
1066 	if (!doms)
1067 		goto done;
1068 
1069 	/*
1070 	 * The rest of the code, including the scheduler, can deal with
1071 	 * dattr==NULL case. No need to abort if alloc fails.
1072 	 */
1073 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
1074 			      GFP_KERNEL);
1075 
1076 	for (nslot = 0, i = 0; i < csn; i++) {
1077 		struct cpuset *a = csa[i];
1078 		struct cpumask *dp;
1079 		int apn = a->pn;
1080 
1081 		if (apn < 0) {
1082 			/* Skip completed partitions */
1083 			continue;
1084 		}
1085 
1086 		dp = doms[nslot];
1087 
1088 		if (nslot == ndoms) {
1089 			static int warnings = 10;
1090 			if (warnings) {
1091 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
1092 					nslot, ndoms, csn, i, apn);
1093 				warnings--;
1094 			}
1095 			continue;
1096 		}
1097 
1098 		cpumask_clear(dp);
1099 		if (dattr)
1100 			*(dattr + nslot) = SD_ATTR_INIT;
1101 		for (j = i; j < csn; j++) {
1102 			struct cpuset *b = csa[j];
1103 
1104 			if (apn == b->pn) {
1105 				cpumask_or(dp, dp, b->effective_cpus);
1106 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1107 				if (dattr)
1108 					update_domain_attr_tree(dattr + nslot, b);
1109 
1110 				/* Done with this partition */
1111 				b->pn = -1;
1112 			}
1113 		}
1114 		nslot++;
1115 	}
1116 	BUG_ON(nslot != ndoms);
1117 
1118 done:
1119 	kfree(csa);
1120 
1121 	/*
1122 	 * Fallback to the default domain if kmalloc() failed.
1123 	 * See comments in partition_sched_domains().
1124 	 */
1125 	if (doms == NULL)
1126 		ndoms = 1;
1127 
1128 	*domains    = doms;
1129 	*attributes = dattr;
1130 	return ndoms;
1131 }
1132 
1133 static void dl_update_tasks_root_domain(struct cpuset *cs)
1134 {
1135 	struct css_task_iter it;
1136 	struct task_struct *task;
1137 
1138 	if (cs->nr_deadline_tasks == 0)
1139 		return;
1140 
1141 	css_task_iter_start(&cs->css, 0, &it);
1142 
1143 	while ((task = css_task_iter_next(&it)))
1144 		dl_add_task_root_domain(task);
1145 
1146 	css_task_iter_end(&it);
1147 }
1148 
1149 static void dl_rebuild_rd_accounting(void)
1150 {
1151 	struct cpuset *cs = NULL;
1152 	struct cgroup_subsys_state *pos_css;
1153 
1154 	lockdep_assert_held(&cpuset_mutex);
1155 	lockdep_assert_cpus_held();
1156 	lockdep_assert_held(&sched_domains_mutex);
1157 
1158 	rcu_read_lock();
1159 
1160 	/*
1161 	 * Clear default root domain DL accounting, it will be computed again
1162 	 * if a task belongs to it.
1163 	 */
1164 	dl_clear_root_domain(&def_root_domain);
1165 
1166 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1167 
1168 		if (cpumask_empty(cs->effective_cpus)) {
1169 			pos_css = css_rightmost_descendant(pos_css);
1170 			continue;
1171 		}
1172 
1173 		css_get(&cs->css);
1174 
1175 		rcu_read_unlock();
1176 
1177 		dl_update_tasks_root_domain(cs);
1178 
1179 		rcu_read_lock();
1180 		css_put(&cs->css);
1181 	}
1182 	rcu_read_unlock();
1183 }
1184 
1185 static void
1186 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1187 				    struct sched_domain_attr *dattr_new)
1188 {
1189 	mutex_lock(&sched_domains_mutex);
1190 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1191 	dl_rebuild_rd_accounting();
1192 	mutex_unlock(&sched_domains_mutex);
1193 }
1194 
1195 /*
1196  * Rebuild scheduler domains.
1197  *
1198  * If the flag 'sched_load_balance' of any cpuset with non-empty
1199  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1200  * which has that flag enabled, or if any cpuset with a non-empty
1201  * 'cpus' is removed, then call this routine to rebuild the
1202  * scheduler's dynamic sched domains.
1203  *
1204  * Call with cpuset_mutex held.  Takes cpus_read_lock().
1205  */
1206 static void rebuild_sched_domains_locked(void)
1207 {
1208 	struct cgroup_subsys_state *pos_css;
1209 	struct sched_domain_attr *attr;
1210 	cpumask_var_t *doms;
1211 	struct cpuset *cs;
1212 	int ndoms;
1213 
1214 	lockdep_assert_cpus_held();
1215 	lockdep_assert_held(&cpuset_mutex);
1216 
1217 	/*
1218 	 * If we have raced with CPU hotplug, return early to avoid
1219 	 * passing doms with offlined cpu to partition_sched_domains().
1220 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1221 	 *
1222 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1223 	 * should be the same as the active CPUs, so checking only top_cpuset
1224 	 * is enough to detect racing CPU offlines.
1225 	 */
1226 	if (cpumask_empty(subpartitions_cpus) &&
1227 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1228 		return;
1229 
1230 	/*
1231 	 * With subpartition CPUs, however, the effective CPUs of a partition
1232 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1233 	 * partition root could be offlined, all must be checked.
1234 	 */
1235 	if (top_cpuset.nr_subparts) {
1236 		rcu_read_lock();
1237 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1238 			if (!is_partition_valid(cs)) {
1239 				pos_css = css_rightmost_descendant(pos_css);
1240 				continue;
1241 			}
1242 			if (!cpumask_subset(cs->effective_cpus,
1243 					    cpu_active_mask)) {
1244 				rcu_read_unlock();
1245 				return;
1246 			}
1247 		}
1248 		rcu_read_unlock();
1249 	}
1250 
1251 	/* Generate domain masks and attrs */
1252 	ndoms = generate_sched_domains(&doms, &attr);
1253 
1254 	/* Have scheduler rebuild the domains */
1255 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1256 }
1257 #else /* !CONFIG_SMP */
1258 static void rebuild_sched_domains_locked(void)
1259 {
1260 }
1261 #endif /* CONFIG_SMP */
1262 
1263 void rebuild_sched_domains(void)
1264 {
1265 	cpus_read_lock();
1266 	mutex_lock(&cpuset_mutex);
1267 	rebuild_sched_domains_locked();
1268 	mutex_unlock(&cpuset_mutex);
1269 	cpus_read_unlock();
1270 }
1271 
1272 /**
1273  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1274  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1275  * @new_cpus: the temp variable for the new effective_cpus mask
1276  *
1277  * Iterate through each task of @cs updating its cpus_allowed to the
1278  * effective cpuset's.  As this function is called with cpuset_mutex held,
1279  * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
1280  * is used instead of effective_cpus to make sure all offline CPUs are also
1281  * included as hotplug code won't update cpumasks for tasks in top_cpuset.
1282  */
1283 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1284 {
1285 	struct css_task_iter it;
1286 	struct task_struct *task;
1287 	bool top_cs = cs == &top_cpuset;
1288 
1289 	css_task_iter_start(&cs->css, 0, &it);
1290 	while ((task = css_task_iter_next(&it))) {
1291 		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1292 
1293 		if (top_cs) {
1294 			/*
1295 			 * Percpu kthreads in top_cpuset are ignored
1296 			 */
1297 			if (kthread_is_per_cpu(task))
1298 				continue;
1299 			cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1300 		} else {
1301 			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1302 		}
1303 		set_cpus_allowed_ptr(task, new_cpus);
1304 	}
1305 	css_task_iter_end(&it);
1306 }
1307 
1308 /**
1309  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1310  * @new_cpus: the temp variable for the new effective_cpus mask
1311  * @cs: the cpuset the need to recompute the new effective_cpus mask
1312  * @parent: the parent cpuset
1313  *
1314  * The result is valid only if the given cpuset isn't a partition root.
1315  */
1316 static void compute_effective_cpumask(struct cpumask *new_cpus,
1317 				      struct cpuset *cs, struct cpuset *parent)
1318 {
1319 	cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1320 }
1321 
1322 /*
1323  * Commands for update_parent_effective_cpumask
1324  */
1325 enum partition_cmd {
1326 	partcmd_enable,		/* Enable partition root	  */
1327 	partcmd_enablei,	/* Enable isolated partition root */
1328 	partcmd_disable,	/* Disable partition root	  */
1329 	partcmd_update,		/* Update parent's effective_cpus */
1330 	partcmd_invalidate,	/* Make partition invalid	  */
1331 };
1332 
1333 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1334 		       int turning_on);
1335 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1336 				    struct tmpmasks *tmp);
1337 
1338 /*
1339  * Update partition exclusive flag
1340  *
1341  * Return: 0 if successful, an error code otherwise
1342  */
1343 static int update_partition_exclusive(struct cpuset *cs, int new_prs)
1344 {
1345 	bool exclusive = (new_prs > 0);
1346 
1347 	if (exclusive && !is_cpu_exclusive(cs)) {
1348 		if (update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1349 			return PERR_NOTEXCL;
1350 	} else if (!exclusive && is_cpu_exclusive(cs)) {
1351 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1352 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1353 	}
1354 	return 0;
1355 }
1356 
1357 /*
1358  * Update partition load balance flag and/or rebuild sched domain
1359  *
1360  * Changing load balance flag will automatically call
1361  * rebuild_sched_domains_locked().
1362  * This function is for cgroup v2 only.
1363  */
1364 static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1365 {
1366 	int new_prs = cs->partition_root_state;
1367 	bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1368 	bool new_lb;
1369 
1370 	/*
1371 	 * If cs is not a valid partition root, the load balance state
1372 	 * will follow its parent.
1373 	 */
1374 	if (new_prs > 0) {
1375 		new_lb = (new_prs != PRS_ISOLATED);
1376 	} else {
1377 		new_lb = is_sched_load_balance(parent_cs(cs));
1378 	}
1379 	if (new_lb != !!is_sched_load_balance(cs)) {
1380 		rebuild_domains = true;
1381 		if (new_lb)
1382 			set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1383 		else
1384 			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1385 	}
1386 
1387 	if (rebuild_domains)
1388 		rebuild_sched_domains_locked();
1389 }
1390 
1391 /*
1392  * tasks_nocpu_error - Return true if tasks will have no effective_cpus
1393  */
1394 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1395 			      struct cpumask *xcpus)
1396 {
1397 	/*
1398 	 * A populated partition (cs or parent) can't have empty effective_cpus
1399 	 */
1400 	return (cpumask_subset(parent->effective_cpus, xcpus) &&
1401 		partition_is_populated(parent, cs)) ||
1402 	       (!cpumask_intersects(xcpus, cpu_active_mask) &&
1403 		partition_is_populated(cs, NULL));
1404 }
1405 
1406 static void reset_partition_data(struct cpuset *cs)
1407 {
1408 	struct cpuset *parent = parent_cs(cs);
1409 
1410 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
1411 		return;
1412 
1413 	lockdep_assert_held(&callback_lock);
1414 
1415 	cs->nr_subparts = 0;
1416 	if (cpumask_empty(cs->exclusive_cpus)) {
1417 		cpumask_clear(cs->effective_xcpus);
1418 		if (is_cpu_exclusive(cs))
1419 			clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1420 	}
1421 	if (!cpumask_and(cs->effective_cpus,
1422 			 parent->effective_cpus, cs->cpus_allowed)) {
1423 		cs->use_parent_ecpus = true;
1424 		parent->child_ecpus_count++;
1425 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1426 	}
1427 }
1428 
1429 /*
1430  * partition_xcpus_newstate - Exclusive CPUs state change
1431  * @old_prs: old partition_root_state
1432  * @new_prs: new partition_root_state
1433  * @xcpus: exclusive CPUs with state change
1434  */
1435 static void partition_xcpus_newstate(int old_prs, int new_prs, struct cpumask *xcpus)
1436 {
1437 	WARN_ON_ONCE(old_prs == new_prs);
1438 	if (new_prs == PRS_ISOLATED)
1439 		cpumask_or(isolated_cpus, isolated_cpus, xcpus);
1440 	else
1441 		cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
1442 }
1443 
1444 /*
1445  * partition_xcpus_add - Add new exclusive CPUs to partition
1446  * @new_prs: new partition_root_state
1447  * @parent: parent cpuset
1448  * @xcpus: exclusive CPUs to be added
1449  * Return: true if isolated_cpus modified, false otherwise
1450  *
1451  * Remote partition if parent == NULL
1452  */
1453 static bool partition_xcpus_add(int new_prs, struct cpuset *parent,
1454 				struct cpumask *xcpus)
1455 {
1456 	bool isolcpus_updated;
1457 
1458 	WARN_ON_ONCE(new_prs < 0);
1459 	lockdep_assert_held(&callback_lock);
1460 	if (!parent)
1461 		parent = &top_cpuset;
1462 
1463 
1464 	if (parent == &top_cpuset)
1465 		cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
1466 
1467 	isolcpus_updated = (new_prs != parent->partition_root_state);
1468 	if (isolcpus_updated)
1469 		partition_xcpus_newstate(parent->partition_root_state, new_prs,
1470 					 xcpus);
1471 
1472 	cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
1473 	return isolcpus_updated;
1474 }
1475 
1476 /*
1477  * partition_xcpus_del - Remove exclusive CPUs from partition
1478  * @old_prs: old partition_root_state
1479  * @parent: parent cpuset
1480  * @xcpus: exclusive CPUs to be removed
1481  * Return: true if isolated_cpus modified, false otherwise
1482  *
1483  * Remote partition if parent == NULL
1484  */
1485 static bool partition_xcpus_del(int old_prs, struct cpuset *parent,
1486 				struct cpumask *xcpus)
1487 {
1488 	bool isolcpus_updated;
1489 
1490 	WARN_ON_ONCE(old_prs < 0);
1491 	lockdep_assert_held(&callback_lock);
1492 	if (!parent)
1493 		parent = &top_cpuset;
1494 
1495 	if (parent == &top_cpuset)
1496 		cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
1497 
1498 	isolcpus_updated = (old_prs != parent->partition_root_state);
1499 	if (isolcpus_updated)
1500 		partition_xcpus_newstate(old_prs, parent->partition_root_state,
1501 					 xcpus);
1502 
1503 	cpumask_and(xcpus, xcpus, cpu_active_mask);
1504 	cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
1505 	return isolcpus_updated;
1506 }
1507 
1508 static void update_unbound_workqueue_cpumask(bool isolcpus_updated)
1509 {
1510 	int ret;
1511 
1512 	lockdep_assert_cpus_held();
1513 
1514 	if (!isolcpus_updated)
1515 		return;
1516 
1517 	ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
1518 	WARN_ON_ONCE(ret < 0);
1519 }
1520 
1521 /**
1522  * cpuset_cpu_is_isolated - Check if the given CPU is isolated
1523  * @cpu: the CPU number to be checked
1524  * Return: true if CPU is used in an isolated partition, false otherwise
1525  */
1526 bool cpuset_cpu_is_isolated(int cpu)
1527 {
1528 	return cpumask_test_cpu(cpu, isolated_cpus);
1529 }
1530 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
1531 
1532 /*
1533  * compute_effective_exclusive_cpumask - compute effective exclusive CPUs
1534  * @cs: cpuset
1535  * @xcpus: effective exclusive CPUs value to be set
1536  * Return: true if xcpus is not empty, false otherwise.
1537  *
1538  * Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set),
1539  * it must be a subset of cpus_allowed and parent's effective_xcpus.
1540  */
1541 static bool compute_effective_exclusive_cpumask(struct cpuset *cs,
1542 						struct cpumask *xcpus)
1543 {
1544 	struct cpuset *parent = parent_cs(cs);
1545 
1546 	if (!xcpus)
1547 		xcpus = cs->effective_xcpus;
1548 
1549 	if (!cpumask_empty(cs->exclusive_cpus))
1550 		cpumask_and(xcpus, cs->exclusive_cpus, cs->cpus_allowed);
1551 	else
1552 		cpumask_copy(xcpus, cs->cpus_allowed);
1553 
1554 	return cpumask_and(xcpus, xcpus, parent->effective_xcpus);
1555 }
1556 
1557 static inline bool is_remote_partition(struct cpuset *cs)
1558 {
1559 	return !list_empty(&cs->remote_sibling);
1560 }
1561 
1562 static inline bool is_local_partition(struct cpuset *cs)
1563 {
1564 	return is_partition_valid(cs) && !is_remote_partition(cs);
1565 }
1566 
1567 /*
1568  * remote_partition_enable - Enable current cpuset as a remote partition root
1569  * @cs: the cpuset to update
1570  * @new_prs: new partition_root_state
1571  * @tmp: temparary masks
1572  * Return: 1 if successful, 0 if error
1573  *
1574  * Enable the current cpuset to become a remote partition root taking CPUs
1575  * directly from the top cpuset. cpuset_mutex must be held by the caller.
1576  */
1577 static int remote_partition_enable(struct cpuset *cs, int new_prs,
1578 				   struct tmpmasks *tmp)
1579 {
1580 	bool isolcpus_updated;
1581 
1582 	/*
1583 	 * The user must have sysadmin privilege.
1584 	 */
1585 	if (!capable(CAP_SYS_ADMIN))
1586 		return 0;
1587 
1588 	/*
1589 	 * The requested exclusive_cpus must not be allocated to other
1590 	 * partitions and it can't use up all the root's effective_cpus.
1591 	 *
1592 	 * Note that if there is any local partition root above it or
1593 	 * remote partition root underneath it, its exclusive_cpus must
1594 	 * have overlapped with subpartitions_cpus.
1595 	 */
1596 	compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1597 	if (cpumask_empty(tmp->new_cpus) ||
1598 	    cpumask_intersects(tmp->new_cpus, subpartitions_cpus) ||
1599 	    cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1600 		return 0;
1601 
1602 	spin_lock_irq(&callback_lock);
1603 	isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
1604 	list_add(&cs->remote_sibling, &remote_children);
1605 	if (cs->use_parent_ecpus) {
1606 		struct cpuset *parent = parent_cs(cs);
1607 
1608 		cs->use_parent_ecpus = false;
1609 		parent->child_ecpus_count--;
1610 	}
1611 	spin_unlock_irq(&callback_lock);
1612 	update_unbound_workqueue_cpumask(isolcpus_updated);
1613 
1614 	/*
1615 	 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1616 	 */
1617 	update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1618 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1619 	return 1;
1620 }
1621 
1622 /*
1623  * remote_partition_disable - Remove current cpuset from remote partition list
1624  * @cs: the cpuset to update
1625  * @tmp: temparary masks
1626  *
1627  * The effective_cpus is also updated.
1628  *
1629  * cpuset_mutex must be held by the caller.
1630  */
1631 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1632 {
1633 	bool isolcpus_updated;
1634 
1635 	compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1636 	WARN_ON_ONCE(!is_remote_partition(cs));
1637 	WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus));
1638 
1639 	spin_lock_irq(&callback_lock);
1640 	list_del_init(&cs->remote_sibling);
1641 	isolcpus_updated = partition_xcpus_del(cs->partition_root_state,
1642 					       NULL, tmp->new_cpus);
1643 	cs->partition_root_state = -cs->partition_root_state;
1644 	if (!cs->prs_err)
1645 		cs->prs_err = PERR_INVCPUS;
1646 	reset_partition_data(cs);
1647 	spin_unlock_irq(&callback_lock);
1648 	update_unbound_workqueue_cpumask(isolcpus_updated);
1649 
1650 	/*
1651 	 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1652 	 */
1653 	update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1654 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1655 }
1656 
1657 /*
1658  * remote_cpus_update - cpus_exclusive change of remote partition
1659  * @cs: the cpuset to be updated
1660  * @newmask: the new effective_xcpus mask
1661  * @tmp: temparary masks
1662  *
1663  * top_cpuset and subpartitions_cpus will be updated or partition can be
1664  * invalidated.
1665  */
1666 static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask,
1667 			       struct tmpmasks *tmp)
1668 {
1669 	bool adding, deleting;
1670 	int prs = cs->partition_root_state;
1671 	int isolcpus_updated = 0;
1672 
1673 	if (WARN_ON_ONCE(!is_remote_partition(cs)))
1674 		return;
1675 
1676 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1677 
1678 	if (cpumask_empty(newmask))
1679 		goto invalidate;
1680 
1681 	adding   = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus);
1682 	deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask);
1683 
1684 	/*
1685 	 * Additions of remote CPUs is only allowed if those CPUs are
1686 	 * not allocated to other partitions and there are effective_cpus
1687 	 * left in the top cpuset.
1688 	 */
1689 	if (adding && (!capable(CAP_SYS_ADMIN) ||
1690 		       cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1691 		       cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)))
1692 		goto invalidate;
1693 
1694 	spin_lock_irq(&callback_lock);
1695 	if (adding)
1696 		isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask);
1697 	if (deleting)
1698 		isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask);
1699 	spin_unlock_irq(&callback_lock);
1700 	update_unbound_workqueue_cpumask(isolcpus_updated);
1701 
1702 	/*
1703 	 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1704 	 */
1705 	update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1706 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1707 	return;
1708 
1709 invalidate:
1710 	remote_partition_disable(cs, tmp);
1711 }
1712 
1713 /*
1714  * remote_partition_check - check if a child remote partition needs update
1715  * @cs: the cpuset to be updated
1716  * @newmask: the new effective_xcpus mask
1717  * @delmask: temporary mask for deletion (not in tmp)
1718  * @tmp: temparary masks
1719  *
1720  * This should be called before the given cs has updated its cpus_allowed
1721  * and/or effective_xcpus.
1722  */
1723 static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask,
1724 				   struct cpumask *delmask, struct tmpmasks *tmp)
1725 {
1726 	struct cpuset *child, *next;
1727 	int disable_cnt = 0;
1728 
1729 	/*
1730 	 * Compute the effective exclusive CPUs that will be deleted.
1731 	 */
1732 	if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) ||
1733 	    !cpumask_intersects(delmask, subpartitions_cpus))
1734 		return;	/* No deletion of exclusive CPUs in partitions */
1735 
1736 	/*
1737 	 * Searching the remote children list to look for those that will
1738 	 * be impacted by the deletion of exclusive CPUs.
1739 	 *
1740 	 * Since a cpuset must be removed from the remote children list
1741 	 * before it can go offline and holding cpuset_mutex will prevent
1742 	 * any change in cpuset status. RCU read lock isn't needed.
1743 	 */
1744 	lockdep_assert_held(&cpuset_mutex);
1745 	list_for_each_entry_safe(child, next, &remote_children, remote_sibling)
1746 		if (cpumask_intersects(child->effective_cpus, delmask)) {
1747 			remote_partition_disable(child, tmp);
1748 			disable_cnt++;
1749 		}
1750 	if (disable_cnt)
1751 		rebuild_sched_domains_locked();
1752 }
1753 
1754 /*
1755  * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1756  * @prstate: partition root state to be checked
1757  * @new_cpus: cpu mask
1758  * Return: true if there is conflict, false otherwise
1759  *
1760  * CPUs outside of housekeeping_cpumask(HK_TYPE_DOMAIN) can only be used in
1761  * an isolated partition.
1762  */
1763 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1764 {
1765 	const struct cpumask *hk_domain = housekeeping_cpumask(HK_TYPE_DOMAIN);
1766 	bool all_in_hk = cpumask_subset(new_cpus, hk_domain);
1767 
1768 	if (!all_in_hk && (prstate != PRS_ISOLATED))
1769 		return true;
1770 
1771 	return false;
1772 }
1773 
1774 /**
1775  * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1776  * @cs:      The cpuset that requests change in partition root state
1777  * @cmd:     Partition root state change command
1778  * @newmask: Optional new cpumask for partcmd_update
1779  * @tmp:     Temporary addmask and delmask
1780  * Return:   0 or a partition root state error code
1781  *
1782  * For partcmd_enable*, the cpuset is being transformed from a non-partition
1783  * root to a partition root. The effective_xcpus (cpus_allowed if
1784  * effective_xcpus not set) mask of the given cpuset will be taken away from
1785  * parent's effective_cpus. The function will return 0 if all the CPUs listed
1786  * in effective_xcpus can be granted or an error code will be returned.
1787  *
1788  * For partcmd_disable, the cpuset is being transformed from a partition
1789  * root back to a non-partition root. Any CPUs in effective_xcpus will be
1790  * given back to parent's effective_cpus. 0 will always be returned.
1791  *
1792  * For partcmd_update, if the optional newmask is specified, the cpu list is
1793  * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1794  * assumed to remain the same. The cpuset should either be a valid or invalid
1795  * partition root. The partition root state may change from valid to invalid
1796  * or vice versa. An error code will be returned if transitioning from
1797  * invalid to valid violates the exclusivity rule.
1798  *
1799  * For partcmd_invalidate, the current partition will be made invalid.
1800  *
1801  * The partcmd_enable* and partcmd_disable commands are used by
1802  * update_prstate(). An error code may be returned and the caller will check
1803  * for error.
1804  *
1805  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1806  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1807  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1808  * check for error and so partition_root_state and prs_error will be updated
1809  * directly.
1810  */
1811 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1812 					   struct cpumask *newmask,
1813 					   struct tmpmasks *tmp)
1814 {
1815 	struct cpuset *parent = parent_cs(cs);
1816 	int adding;	/* Adding cpus to parent's effective_cpus	*/
1817 	int deleting;	/* Deleting cpus from parent's effective_cpus	*/
1818 	int old_prs, new_prs;
1819 	int part_error = PERR_NONE;	/* Partition error? */
1820 	int subparts_delta = 0;
1821 	struct cpumask *xcpus;		/* cs effective_xcpus */
1822 	int isolcpus_updated = 0;
1823 	bool nocpu;
1824 
1825 	lockdep_assert_held(&cpuset_mutex);
1826 
1827 	/*
1828 	 * new_prs will only be changed for the partcmd_update and
1829 	 * partcmd_invalidate commands.
1830 	 */
1831 	adding = deleting = false;
1832 	old_prs = new_prs = cs->partition_root_state;
1833 	xcpus = !cpumask_empty(cs->exclusive_cpus)
1834 		? cs->effective_xcpus : cs->cpus_allowed;
1835 
1836 	if (cmd == partcmd_invalidate) {
1837 		if (is_prs_invalid(old_prs))
1838 			return 0;
1839 
1840 		/*
1841 		 * Make the current partition invalid.
1842 		 */
1843 		if (is_partition_valid(parent))
1844 			adding = cpumask_and(tmp->addmask,
1845 					     xcpus, parent->effective_xcpus);
1846 		if (old_prs > 0) {
1847 			new_prs = -old_prs;
1848 			subparts_delta--;
1849 		}
1850 		goto write_error;
1851 	}
1852 
1853 	/*
1854 	 * The parent must be a partition root.
1855 	 * The new cpumask, if present, or the current cpus_allowed must
1856 	 * not be empty.
1857 	 */
1858 	if (!is_partition_valid(parent)) {
1859 		return is_partition_invalid(parent)
1860 		       ? PERR_INVPARENT : PERR_NOTPART;
1861 	}
1862 	if (!newmask && cpumask_empty(cs->cpus_allowed))
1863 		return PERR_CPUSEMPTY;
1864 
1865 	nocpu = tasks_nocpu_error(parent, cs, xcpus);
1866 
1867 	if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
1868 		/*
1869 		 * Enabling partition root is not allowed if its
1870 		 * effective_xcpus is empty or doesn't overlap with
1871 		 * parent's effective_xcpus.
1872 		 */
1873 		if (cpumask_empty(xcpus) ||
1874 		    !cpumask_intersects(xcpus, parent->effective_xcpus))
1875 			return PERR_INVCPUS;
1876 
1877 		if (prstate_housekeeping_conflict(new_prs, xcpus))
1878 			return PERR_HKEEPING;
1879 
1880 		/*
1881 		 * A parent can be left with no CPU as long as there is no
1882 		 * task directly associated with the parent partition.
1883 		 */
1884 		if (nocpu)
1885 			return PERR_NOCPUS;
1886 
1887 		cpumask_copy(tmp->delmask, xcpus);
1888 		deleting = true;
1889 		subparts_delta++;
1890 		new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
1891 	} else if (cmd == partcmd_disable) {
1892 		/*
1893 		 * May need to add cpus to parent's effective_cpus for
1894 		 * valid partition root.
1895 		 */
1896 		adding = !is_prs_invalid(old_prs) &&
1897 			  cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus);
1898 		if (adding)
1899 			subparts_delta--;
1900 		new_prs = PRS_MEMBER;
1901 	} else if (newmask) {
1902 		/*
1903 		 * Empty cpumask is not allowed
1904 		 */
1905 		if (cpumask_empty(newmask)) {
1906 			part_error = PERR_CPUSEMPTY;
1907 			goto write_error;
1908 		}
1909 
1910 		/*
1911 		 * partcmd_update with newmask:
1912 		 *
1913 		 * Compute add/delete mask to/from effective_cpus
1914 		 *
1915 		 * For valid partition:
1916 		 *   addmask = exclusive_cpus & ~newmask
1917 		 *			      & parent->effective_xcpus
1918 		 *   delmask = newmask & ~exclusive_cpus
1919 		 *		       & parent->effective_xcpus
1920 		 *
1921 		 * For invalid partition:
1922 		 *   delmask = newmask & parent->effective_xcpus
1923 		 */
1924 		if (is_prs_invalid(old_prs)) {
1925 			adding = false;
1926 			deleting = cpumask_and(tmp->delmask,
1927 					newmask, parent->effective_xcpus);
1928 		} else {
1929 			cpumask_andnot(tmp->addmask, xcpus, newmask);
1930 			adding = cpumask_and(tmp->addmask, tmp->addmask,
1931 					     parent->effective_xcpus);
1932 
1933 			cpumask_andnot(tmp->delmask, newmask, xcpus);
1934 			deleting = cpumask_and(tmp->delmask, tmp->delmask,
1935 					       parent->effective_xcpus);
1936 		}
1937 		/*
1938 		 * Make partition invalid if parent's effective_cpus could
1939 		 * become empty and there are tasks in the parent.
1940 		 */
1941 		if (nocpu && (!adding ||
1942 		    !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
1943 			part_error = PERR_NOCPUS;
1944 			deleting = false;
1945 			adding = cpumask_and(tmp->addmask,
1946 					     xcpus, parent->effective_xcpus);
1947 		}
1948 	} else {
1949 		/*
1950 		 * partcmd_update w/o newmask
1951 		 *
1952 		 * delmask = effective_xcpus & parent->effective_cpus
1953 		 *
1954 		 * This can be called from:
1955 		 * 1) update_cpumasks_hier()
1956 		 * 2) cpuset_hotplug_update_tasks()
1957 		 *
1958 		 * Check to see if it can be transitioned from valid to
1959 		 * invalid partition or vice versa.
1960 		 *
1961 		 * A partition error happens when parent has tasks and all
1962 		 * its effective CPUs will have to be distributed out.
1963 		 */
1964 		WARN_ON_ONCE(!is_partition_valid(parent));
1965 		if (nocpu) {
1966 			part_error = PERR_NOCPUS;
1967 			if (is_partition_valid(cs))
1968 				adding = cpumask_and(tmp->addmask,
1969 						xcpus, parent->effective_xcpus);
1970 		} else if (is_partition_invalid(cs) &&
1971 			   cpumask_subset(xcpus, parent->effective_xcpus)) {
1972 			struct cgroup_subsys_state *css;
1973 			struct cpuset *child;
1974 			bool exclusive = true;
1975 
1976 			/*
1977 			 * Convert invalid partition to valid has to
1978 			 * pass the cpu exclusivity test.
1979 			 */
1980 			rcu_read_lock();
1981 			cpuset_for_each_child(child, css, parent) {
1982 				if (child == cs)
1983 					continue;
1984 				if (!cpusets_are_exclusive(cs, child)) {
1985 					exclusive = false;
1986 					break;
1987 				}
1988 			}
1989 			rcu_read_unlock();
1990 			if (exclusive)
1991 				deleting = cpumask_and(tmp->delmask,
1992 						xcpus, parent->effective_cpus);
1993 			else
1994 				part_error = PERR_NOTEXCL;
1995 		}
1996 	}
1997 
1998 write_error:
1999 	if (part_error)
2000 		WRITE_ONCE(cs->prs_err, part_error);
2001 
2002 	if (cmd == partcmd_update) {
2003 		/*
2004 		 * Check for possible transition between valid and invalid
2005 		 * partition root.
2006 		 */
2007 		switch (cs->partition_root_state) {
2008 		case PRS_ROOT:
2009 		case PRS_ISOLATED:
2010 			if (part_error) {
2011 				new_prs = -old_prs;
2012 				subparts_delta--;
2013 			}
2014 			break;
2015 		case PRS_INVALID_ROOT:
2016 		case PRS_INVALID_ISOLATED:
2017 			if (!part_error) {
2018 				new_prs = -old_prs;
2019 				subparts_delta++;
2020 			}
2021 			break;
2022 		}
2023 	}
2024 
2025 	if (!adding && !deleting && (new_prs == old_prs))
2026 		return 0;
2027 
2028 	/*
2029 	 * Transitioning between invalid to valid or vice versa may require
2030 	 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
2031 	 * validate_change() has already been successfully called and
2032 	 * CPU lists in cs haven't been updated yet. So defer it to later.
2033 	 */
2034 	if ((old_prs != new_prs) && (cmd != partcmd_update))  {
2035 		int err = update_partition_exclusive(cs, new_prs);
2036 
2037 		if (err)
2038 			return err;
2039 	}
2040 
2041 	/*
2042 	 * Change the parent's effective_cpus & effective_xcpus (top cpuset
2043 	 * only).
2044 	 *
2045 	 * Newly added CPUs will be removed from effective_cpus and
2046 	 * newly deleted ones will be added back to effective_cpus.
2047 	 */
2048 	spin_lock_irq(&callback_lock);
2049 	if (old_prs != new_prs) {
2050 		cs->partition_root_state = new_prs;
2051 		if (new_prs <= 0)
2052 			cs->nr_subparts = 0;
2053 	}
2054 	/*
2055 	 * Adding to parent's effective_cpus means deletion CPUs from cs
2056 	 * and vice versa.
2057 	 */
2058 	if (adding)
2059 		isolcpus_updated += partition_xcpus_del(old_prs, parent,
2060 							tmp->addmask);
2061 	if (deleting)
2062 		isolcpus_updated += partition_xcpus_add(new_prs, parent,
2063 							tmp->delmask);
2064 
2065 	if (is_partition_valid(parent)) {
2066 		parent->nr_subparts += subparts_delta;
2067 		WARN_ON_ONCE(parent->nr_subparts < 0);
2068 	}
2069 	spin_unlock_irq(&callback_lock);
2070 	update_unbound_workqueue_cpumask(isolcpus_updated);
2071 
2072 	if ((old_prs != new_prs) && (cmd == partcmd_update))
2073 		update_partition_exclusive(cs, new_prs);
2074 
2075 	if (adding || deleting) {
2076 		update_tasks_cpumask(parent, tmp->addmask);
2077 		update_sibling_cpumasks(parent, cs, tmp);
2078 	}
2079 
2080 	/*
2081 	 * For partcmd_update without newmask, it is being called from
2082 	 * cpuset_hotplug_workfn() where cpus_read_lock() wasn't taken.
2083 	 * Update the load balance flag and scheduling domain if
2084 	 * cpus_read_trylock() is successful.
2085 	 */
2086 	if ((cmd == partcmd_update) && !newmask && cpus_read_trylock()) {
2087 		update_partition_sd_lb(cs, old_prs);
2088 		cpus_read_unlock();
2089 	}
2090 
2091 	notify_partition_change(cs, old_prs);
2092 	return 0;
2093 }
2094 
2095 /**
2096  * compute_partition_effective_cpumask - compute effective_cpus for partition
2097  * @cs: partition root cpuset
2098  * @new_ecpus: previously computed effective_cpus to be updated
2099  *
2100  * Compute the effective_cpus of a partition root by scanning effective_xcpus
2101  * of child partition roots and excluding their effective_xcpus.
2102  *
2103  * This has the side effect of invalidating valid child partition roots,
2104  * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
2105  * or update_cpumasks_hier() where parent and children are modified
2106  * successively, we don't need to call update_parent_effective_cpumask()
2107  * and the child's effective_cpus will be updated in later iterations.
2108  *
2109  * Note that rcu_read_lock() is assumed to be held.
2110  */
2111 static void compute_partition_effective_cpumask(struct cpuset *cs,
2112 						struct cpumask *new_ecpus)
2113 {
2114 	struct cgroup_subsys_state *css;
2115 	struct cpuset *child;
2116 	bool populated = partition_is_populated(cs, NULL);
2117 
2118 	/*
2119 	 * Check child partition roots to see if they should be
2120 	 * invalidated when
2121 	 *  1) child effective_xcpus not a subset of new
2122 	 *     excluisve_cpus
2123 	 *  2) All the effective_cpus will be used up and cp
2124 	 *     has tasks
2125 	 */
2126 	compute_effective_exclusive_cpumask(cs, new_ecpus);
2127 	cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
2128 
2129 	rcu_read_lock();
2130 	cpuset_for_each_child(child, css, cs) {
2131 		if (!is_partition_valid(child))
2132 			continue;
2133 
2134 		child->prs_err = 0;
2135 		if (!cpumask_subset(child->effective_xcpus,
2136 				    cs->effective_xcpus))
2137 			child->prs_err = PERR_INVCPUS;
2138 		else if (populated &&
2139 			 cpumask_subset(new_ecpus, child->effective_xcpus))
2140 			child->prs_err = PERR_NOCPUS;
2141 
2142 		if (child->prs_err) {
2143 			int old_prs = child->partition_root_state;
2144 
2145 			/*
2146 			 * Invalidate child partition
2147 			 */
2148 			spin_lock_irq(&callback_lock);
2149 			make_partition_invalid(child);
2150 			cs->nr_subparts--;
2151 			child->nr_subparts = 0;
2152 			spin_unlock_irq(&callback_lock);
2153 			notify_partition_change(child, old_prs);
2154 			continue;
2155 		}
2156 		cpumask_andnot(new_ecpus, new_ecpus,
2157 			       child->effective_xcpus);
2158 	}
2159 	rcu_read_unlock();
2160 }
2161 
2162 /*
2163  * update_cpumasks_hier() flags
2164  */
2165 #define HIER_CHECKALL		0x01	/* Check all cpusets with no skipping */
2166 #define HIER_NO_SD_REBUILD	0x02	/* Don't rebuild sched domains */
2167 
2168 /*
2169  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
2170  * @cs:  the cpuset to consider
2171  * @tmp: temp variables for calculating effective_cpus & partition setup
2172  * @force: don't skip any descendant cpusets if set
2173  *
2174  * When configured cpumask is changed, the effective cpumasks of this cpuset
2175  * and all its descendants need to be updated.
2176  *
2177  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
2178  *
2179  * Called with cpuset_mutex held
2180  */
2181 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
2182 				 int flags)
2183 {
2184 	struct cpuset *cp;
2185 	struct cgroup_subsys_state *pos_css;
2186 	bool need_rebuild_sched_domains = false;
2187 	int old_prs, new_prs;
2188 
2189 	rcu_read_lock();
2190 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2191 		struct cpuset *parent = parent_cs(cp);
2192 		bool remote = is_remote_partition(cp);
2193 		bool update_parent = false;
2194 
2195 		/*
2196 		 * Skip descendent remote partition that acquires CPUs
2197 		 * directly from top cpuset unless it is cs.
2198 		 */
2199 		if (remote && (cp != cs)) {
2200 			pos_css = css_rightmost_descendant(pos_css);
2201 			continue;
2202 		}
2203 
2204 		/*
2205 		 * Update effective_xcpus if exclusive_cpus set.
2206 		 * The case when exclusive_cpus isn't set is handled later.
2207 		 */
2208 		if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) {
2209 			spin_lock_irq(&callback_lock);
2210 			compute_effective_exclusive_cpumask(cp, NULL);
2211 			spin_unlock_irq(&callback_lock);
2212 		}
2213 
2214 		old_prs = new_prs = cp->partition_root_state;
2215 		if (remote || (is_partition_valid(parent) &&
2216 			       is_partition_valid(cp)))
2217 			compute_partition_effective_cpumask(cp, tmp->new_cpus);
2218 		else
2219 			compute_effective_cpumask(tmp->new_cpus, cp, parent);
2220 
2221 		/*
2222 		 * A partition with no effective_cpus is allowed as long as
2223 		 * there is no task associated with it. Call
2224 		 * update_parent_effective_cpumask() to check it.
2225 		 */
2226 		if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
2227 			update_parent = true;
2228 			goto update_parent_effective;
2229 		}
2230 
2231 		/*
2232 		 * If it becomes empty, inherit the effective mask of the
2233 		 * parent, which is guaranteed to have some CPUs unless
2234 		 * it is a partition root that has explicitly distributed
2235 		 * out all its CPUs.
2236 		 */
2237 		if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) {
2238 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2239 			if (!cp->use_parent_ecpus) {
2240 				cp->use_parent_ecpus = true;
2241 				parent->child_ecpus_count++;
2242 			}
2243 		} else if (cp->use_parent_ecpus) {
2244 			cp->use_parent_ecpus = false;
2245 			WARN_ON_ONCE(!parent->child_ecpus_count);
2246 			parent->child_ecpus_count--;
2247 		}
2248 
2249 		if (remote)
2250 			goto get_css;
2251 
2252 		/*
2253 		 * Skip the whole subtree if
2254 		 * 1) the cpumask remains the same,
2255 		 * 2) has no partition root state,
2256 		 * 3) HIER_CHECKALL flag not set, and
2257 		 * 4) for v2 load balance state same as its parent.
2258 		 */
2259 		if (!cp->partition_root_state && !(flags & HIER_CHECKALL) &&
2260 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2261 		    (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
2262 		    (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2263 			pos_css = css_rightmost_descendant(pos_css);
2264 			continue;
2265 		}
2266 
2267 update_parent_effective:
2268 		/*
2269 		 * update_parent_effective_cpumask() should have been called
2270 		 * for cs already in update_cpumask(). We should also call
2271 		 * update_tasks_cpumask() again for tasks in the parent
2272 		 * cpuset if the parent's effective_cpus changes.
2273 		 */
2274 		if ((cp != cs) && old_prs) {
2275 			switch (parent->partition_root_state) {
2276 			case PRS_ROOT:
2277 			case PRS_ISOLATED:
2278 				update_parent = true;
2279 				break;
2280 
2281 			default:
2282 				/*
2283 				 * When parent is not a partition root or is
2284 				 * invalid, child partition roots become
2285 				 * invalid too.
2286 				 */
2287 				if (is_partition_valid(cp))
2288 					new_prs = -cp->partition_root_state;
2289 				WRITE_ONCE(cp->prs_err,
2290 					   is_partition_invalid(parent)
2291 					   ? PERR_INVPARENT : PERR_NOTPART);
2292 				break;
2293 			}
2294 		}
2295 get_css:
2296 		if (!css_tryget_online(&cp->css))
2297 			continue;
2298 		rcu_read_unlock();
2299 
2300 		if (update_parent) {
2301 			update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
2302 			/*
2303 			 * The cpuset partition_root_state may become
2304 			 * invalid. Capture it.
2305 			 */
2306 			new_prs = cp->partition_root_state;
2307 		}
2308 
2309 		spin_lock_irq(&callback_lock);
2310 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2311 		cp->partition_root_state = new_prs;
2312 		/*
2313 		 * Make sure effective_xcpus is properly set for a valid
2314 		 * partition root.
2315 		 */
2316 		if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2317 			cpumask_and(cp->effective_xcpus,
2318 				    cp->cpus_allowed, parent->effective_xcpus);
2319 		else if (new_prs < 0)
2320 			reset_partition_data(cp);
2321 		spin_unlock_irq(&callback_lock);
2322 
2323 		notify_partition_change(cp, old_prs);
2324 
2325 		WARN_ON(!is_in_v2_mode() &&
2326 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2327 
2328 		update_tasks_cpumask(cp, cp->effective_cpus);
2329 
2330 		/*
2331 		 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2332 		 * from parent if current cpuset isn't a valid partition root
2333 		 * and their load balance states differ.
2334 		 */
2335 		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2336 		    !is_partition_valid(cp) &&
2337 		    (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2338 			if (is_sched_load_balance(parent))
2339 				set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2340 			else
2341 				clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2342 		}
2343 
2344 		/*
2345 		 * On legacy hierarchy, if the effective cpumask of any non-
2346 		 * empty cpuset is changed, we need to rebuild sched domains.
2347 		 * On default hierarchy, the cpuset needs to be a partition
2348 		 * root as well.
2349 		 */
2350 		if (!cpumask_empty(cp->cpus_allowed) &&
2351 		    is_sched_load_balance(cp) &&
2352 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
2353 		    is_partition_valid(cp)))
2354 			need_rebuild_sched_domains = true;
2355 
2356 		rcu_read_lock();
2357 		css_put(&cp->css);
2358 	}
2359 	rcu_read_unlock();
2360 
2361 	if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD))
2362 		rebuild_sched_domains_locked();
2363 }
2364 
2365 /**
2366  * update_sibling_cpumasks - Update siblings cpumasks
2367  * @parent:  Parent cpuset
2368  * @cs:      Current cpuset
2369  * @tmp:     Temp variables
2370  */
2371 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2372 				    struct tmpmasks *tmp)
2373 {
2374 	struct cpuset *sibling;
2375 	struct cgroup_subsys_state *pos_css;
2376 
2377 	lockdep_assert_held(&cpuset_mutex);
2378 
2379 	/*
2380 	 * Check all its siblings and call update_cpumasks_hier()
2381 	 * if their effective_cpus will need to be changed.
2382 	 *
2383 	 * With the addition of effective_xcpus which is a subset of
2384 	 * cpus_allowed. It is possible a change in parent's effective_cpus
2385 	 * due to a change in a child partition's effective_xcpus will impact
2386 	 * its siblings even if they do not inherit parent's effective_cpus
2387 	 * directly.
2388 	 *
2389 	 * The update_cpumasks_hier() function may sleep. So we have to
2390 	 * release the RCU read lock before calling it. HIER_NO_SD_REBUILD
2391 	 * flag is used to suppress rebuild of sched domains as the callers
2392 	 * will take care of that.
2393 	 */
2394 	rcu_read_lock();
2395 	cpuset_for_each_child(sibling, pos_css, parent) {
2396 		if (sibling == cs)
2397 			continue;
2398 		if (!sibling->use_parent_ecpus &&
2399 		    !is_partition_valid(sibling)) {
2400 			compute_effective_cpumask(tmp->new_cpus, sibling,
2401 						  parent);
2402 			if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2403 				continue;
2404 		}
2405 		if (!css_tryget_online(&sibling->css))
2406 			continue;
2407 
2408 		rcu_read_unlock();
2409 		update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD);
2410 		rcu_read_lock();
2411 		css_put(&sibling->css);
2412 	}
2413 	rcu_read_unlock();
2414 }
2415 
2416 /**
2417  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2418  * @cs: the cpuset to consider
2419  * @trialcs: trial cpuset
2420  * @buf: buffer of cpu numbers written to this cpuset
2421  */
2422 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2423 			  const char *buf)
2424 {
2425 	int retval;
2426 	struct tmpmasks tmp;
2427 	struct cpuset *parent = parent_cs(cs);
2428 	bool invalidate = false;
2429 	int hier_flags = 0;
2430 	int old_prs = cs->partition_root_state;
2431 
2432 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
2433 	if (cs == &top_cpuset)
2434 		return -EACCES;
2435 
2436 	/*
2437 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
2438 	 * Since cpulist_parse() fails on an empty mask, we special case
2439 	 * that parsing.  The validate_change() call ensures that cpusets
2440 	 * with tasks have cpus.
2441 	 */
2442 	if (!*buf) {
2443 		cpumask_clear(trialcs->cpus_allowed);
2444 		cpumask_clear(trialcs->effective_xcpus);
2445 	} else {
2446 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
2447 		if (retval < 0)
2448 			return retval;
2449 
2450 		if (!cpumask_subset(trialcs->cpus_allowed,
2451 				    top_cpuset.cpus_allowed))
2452 			return -EINVAL;
2453 
2454 		/*
2455 		 * When exclusive_cpus isn't explicitly set, it is constrainted
2456 		 * by cpus_allowed and parent's effective_xcpus. Otherwise,
2457 		 * trialcs->effective_xcpus is used as a temporary cpumask
2458 		 * for checking validity of the partition root.
2459 		 */
2460 		if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs))
2461 			compute_effective_exclusive_cpumask(trialcs, NULL);
2462 	}
2463 
2464 	/* Nothing to do if the cpus didn't change */
2465 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2466 		return 0;
2467 
2468 	if (alloc_cpumasks(NULL, &tmp))
2469 		return -ENOMEM;
2470 
2471 	if (old_prs) {
2472 		if (is_partition_valid(cs) &&
2473 		    cpumask_empty(trialcs->effective_xcpus)) {
2474 			invalidate = true;
2475 			cs->prs_err = PERR_INVCPUS;
2476 		} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2477 			invalidate = true;
2478 			cs->prs_err = PERR_HKEEPING;
2479 		} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2480 			invalidate = true;
2481 			cs->prs_err = PERR_NOCPUS;
2482 		}
2483 	}
2484 
2485 	/*
2486 	 * Check all the descendants in update_cpumasks_hier() if
2487 	 * effective_xcpus is to be changed.
2488 	 */
2489 	if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
2490 		hier_flags = HIER_CHECKALL;
2491 
2492 	retval = validate_change(cs, trialcs);
2493 
2494 	if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2495 		struct cgroup_subsys_state *css;
2496 		struct cpuset *cp;
2497 
2498 		/*
2499 		 * The -EINVAL error code indicates that partition sibling
2500 		 * CPU exclusivity rule has been violated. We still allow
2501 		 * the cpumask change to proceed while invalidating the
2502 		 * partition. However, any conflicting sibling partitions
2503 		 * have to be marked as invalid too.
2504 		 */
2505 		invalidate = true;
2506 		rcu_read_lock();
2507 		cpuset_for_each_child(cp, css, parent) {
2508 			struct cpumask *xcpus = fetch_xcpus(trialcs);
2509 
2510 			if (is_partition_valid(cp) &&
2511 			    cpumask_intersects(xcpus, cp->effective_xcpus)) {
2512 				rcu_read_unlock();
2513 				update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp);
2514 				rcu_read_lock();
2515 			}
2516 		}
2517 		rcu_read_unlock();
2518 		retval = 0;
2519 	}
2520 
2521 	if (retval < 0)
2522 		goto out_free;
2523 
2524 	if (is_partition_valid(cs) ||
2525 	   (is_partition_invalid(cs) && !invalidate)) {
2526 		struct cpumask *xcpus = trialcs->effective_xcpus;
2527 
2528 		if (cpumask_empty(xcpus) && is_partition_invalid(cs))
2529 			xcpus = trialcs->cpus_allowed;
2530 
2531 		/*
2532 		 * Call remote_cpus_update() to handle valid remote partition
2533 		 */
2534 		if (is_remote_partition(cs))
2535 			remote_cpus_update(cs, xcpus, &tmp);
2536 		else if (invalidate)
2537 			update_parent_effective_cpumask(cs, partcmd_invalidate,
2538 							NULL, &tmp);
2539 		else
2540 			update_parent_effective_cpumask(cs, partcmd_update,
2541 							xcpus, &tmp);
2542 	} else if (!cpumask_empty(cs->exclusive_cpus)) {
2543 		/*
2544 		 * Use trialcs->effective_cpus as a temp cpumask
2545 		 */
2546 		remote_partition_check(cs, trialcs->effective_xcpus,
2547 				       trialcs->effective_cpus, &tmp);
2548 	}
2549 
2550 	spin_lock_irq(&callback_lock);
2551 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2552 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2553 	if ((old_prs > 0) && !is_partition_valid(cs))
2554 		reset_partition_data(cs);
2555 	spin_unlock_irq(&callback_lock);
2556 
2557 	/* effective_cpus/effective_xcpus will be updated here */
2558 	update_cpumasks_hier(cs, &tmp, hier_flags);
2559 
2560 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2561 	if (cs->partition_root_state)
2562 		update_partition_sd_lb(cs, old_prs);
2563 out_free:
2564 	free_cpumasks(NULL, &tmp);
2565 	return retval;
2566 }
2567 
2568 /**
2569  * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2570  * @cs: the cpuset to consider
2571  * @trialcs: trial cpuset
2572  * @buf: buffer of cpu numbers written to this cpuset
2573  *
2574  * The tasks' cpumask will be updated if cs is a valid partition root.
2575  */
2576 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2577 				    const char *buf)
2578 {
2579 	int retval;
2580 	struct tmpmasks tmp;
2581 	struct cpuset *parent = parent_cs(cs);
2582 	bool invalidate = false;
2583 	int hier_flags = 0;
2584 	int old_prs = cs->partition_root_state;
2585 
2586 	if (!*buf) {
2587 		cpumask_clear(trialcs->exclusive_cpus);
2588 		cpumask_clear(trialcs->effective_xcpus);
2589 	} else {
2590 		retval = cpulist_parse(buf, trialcs->exclusive_cpus);
2591 		if (retval < 0)
2592 			return retval;
2593 		if (!is_cpu_exclusive(cs))
2594 			set_bit(CS_CPU_EXCLUSIVE, &trialcs->flags);
2595 	}
2596 
2597 	/* Nothing to do if the CPUs didn't change */
2598 	if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2599 		return 0;
2600 
2601 	if (*buf)
2602 		compute_effective_exclusive_cpumask(trialcs, NULL);
2603 
2604 	/*
2605 	 * Check all the descendants in update_cpumasks_hier() if
2606 	 * effective_xcpus is to be changed.
2607 	 */
2608 	if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
2609 		hier_flags = HIER_CHECKALL;
2610 
2611 	retval = validate_change(cs, trialcs);
2612 	if (retval)
2613 		return retval;
2614 
2615 	if (alloc_cpumasks(NULL, &tmp))
2616 		return -ENOMEM;
2617 
2618 	if (old_prs) {
2619 		if (cpumask_empty(trialcs->effective_xcpus)) {
2620 			invalidate = true;
2621 			cs->prs_err = PERR_INVCPUS;
2622 		} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2623 			invalidate = true;
2624 			cs->prs_err = PERR_HKEEPING;
2625 		} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2626 			invalidate = true;
2627 			cs->prs_err = PERR_NOCPUS;
2628 		}
2629 
2630 		if (is_remote_partition(cs)) {
2631 			if (invalidate)
2632 				remote_partition_disable(cs, &tmp);
2633 			else
2634 				remote_cpus_update(cs, trialcs->effective_xcpus,
2635 						   &tmp);
2636 		} else if (invalidate) {
2637 			update_parent_effective_cpumask(cs, partcmd_invalidate,
2638 							NULL, &tmp);
2639 		} else {
2640 			update_parent_effective_cpumask(cs, partcmd_update,
2641 						trialcs->effective_xcpus, &tmp);
2642 		}
2643 	} else if (!cpumask_empty(trialcs->exclusive_cpus)) {
2644 		/*
2645 		 * Use trialcs->effective_cpus as a temp cpumask
2646 		 */
2647 		remote_partition_check(cs, trialcs->effective_xcpus,
2648 				       trialcs->effective_cpus, &tmp);
2649 	}
2650 	spin_lock_irq(&callback_lock);
2651 	cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2652 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2653 	if ((old_prs > 0) && !is_partition_valid(cs))
2654 		reset_partition_data(cs);
2655 	spin_unlock_irq(&callback_lock);
2656 
2657 	/*
2658 	 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2659 	 * of the subtree when it is a valid partition root or effective_xcpus
2660 	 * is updated.
2661 	 */
2662 	if (is_partition_valid(cs) || hier_flags)
2663 		update_cpumasks_hier(cs, &tmp, hier_flags);
2664 
2665 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2666 	if (cs->partition_root_state)
2667 		update_partition_sd_lb(cs, old_prs);
2668 
2669 	free_cpumasks(NULL, &tmp);
2670 	return 0;
2671 }
2672 
2673 /*
2674  * Migrate memory region from one set of nodes to another.  This is
2675  * performed asynchronously as it can be called from process migration path
2676  * holding locks involved in process management.  All mm migrations are
2677  * performed in the queued order and can be waited for by flushing
2678  * cpuset_migrate_mm_wq.
2679  */
2680 
2681 struct cpuset_migrate_mm_work {
2682 	struct work_struct	work;
2683 	struct mm_struct	*mm;
2684 	nodemask_t		from;
2685 	nodemask_t		to;
2686 };
2687 
2688 static void cpuset_migrate_mm_workfn(struct work_struct *work)
2689 {
2690 	struct cpuset_migrate_mm_work *mwork =
2691 		container_of(work, struct cpuset_migrate_mm_work, work);
2692 
2693 	/* on a wq worker, no need to worry about %current's mems_allowed */
2694 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2695 	mmput(mwork->mm);
2696 	kfree(mwork);
2697 }
2698 
2699 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2700 							const nodemask_t *to)
2701 {
2702 	struct cpuset_migrate_mm_work *mwork;
2703 
2704 	if (nodes_equal(*from, *to)) {
2705 		mmput(mm);
2706 		return;
2707 	}
2708 
2709 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2710 	if (mwork) {
2711 		mwork->mm = mm;
2712 		mwork->from = *from;
2713 		mwork->to = *to;
2714 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2715 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
2716 	} else {
2717 		mmput(mm);
2718 	}
2719 }
2720 
2721 static void cpuset_post_attach(void)
2722 {
2723 	flush_workqueue(cpuset_migrate_mm_wq);
2724 }
2725 
2726 /*
2727  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2728  * @tsk: the task to change
2729  * @newmems: new nodes that the task will be set
2730  *
2731  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2732  * and rebind an eventual tasks' mempolicy. If the task is allocating in
2733  * parallel, it might temporarily see an empty intersection, which results in
2734  * a seqlock check and retry before OOM or allocation failure.
2735  */
2736 static void cpuset_change_task_nodemask(struct task_struct *tsk,
2737 					nodemask_t *newmems)
2738 {
2739 	task_lock(tsk);
2740 
2741 	local_irq_disable();
2742 	write_seqcount_begin(&tsk->mems_allowed_seq);
2743 
2744 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2745 	mpol_rebind_task(tsk, newmems);
2746 	tsk->mems_allowed = *newmems;
2747 
2748 	write_seqcount_end(&tsk->mems_allowed_seq);
2749 	local_irq_enable();
2750 
2751 	task_unlock(tsk);
2752 }
2753 
2754 static void *cpuset_being_rebound;
2755 
2756 /**
2757  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2758  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2759  *
2760  * Iterate through each task of @cs updating its mems_allowed to the
2761  * effective cpuset's.  As this function is called with cpuset_mutex held,
2762  * cpuset membership stays stable.
2763  */
2764 static void update_tasks_nodemask(struct cpuset *cs)
2765 {
2766 	static nodemask_t newmems;	/* protected by cpuset_mutex */
2767 	struct css_task_iter it;
2768 	struct task_struct *task;
2769 
2770 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
2771 
2772 	guarantee_online_mems(cs, &newmems);
2773 
2774 	/*
2775 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2776 	 * take while holding tasklist_lock.  Forks can happen - the
2777 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
2778 	 * and rebind their vma mempolicies too.  Because we still hold
2779 	 * the global cpuset_mutex, we know that no other rebind effort
2780 	 * will be contending for the global variable cpuset_being_rebound.
2781 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2782 	 * is idempotent.  Also migrate pages in each mm to new nodes.
2783 	 */
2784 	css_task_iter_start(&cs->css, 0, &it);
2785 	while ((task = css_task_iter_next(&it))) {
2786 		struct mm_struct *mm;
2787 		bool migrate;
2788 
2789 		cpuset_change_task_nodemask(task, &newmems);
2790 
2791 		mm = get_task_mm(task);
2792 		if (!mm)
2793 			continue;
2794 
2795 		migrate = is_memory_migrate(cs);
2796 
2797 		mpol_rebind_mm(mm, &cs->mems_allowed);
2798 		if (migrate)
2799 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2800 		else
2801 			mmput(mm);
2802 	}
2803 	css_task_iter_end(&it);
2804 
2805 	/*
2806 	 * All the tasks' nodemasks have been updated, update
2807 	 * cs->old_mems_allowed.
2808 	 */
2809 	cs->old_mems_allowed = newmems;
2810 
2811 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2812 	cpuset_being_rebound = NULL;
2813 }
2814 
2815 /*
2816  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2817  * @cs: the cpuset to consider
2818  * @new_mems: a temp variable for calculating new effective_mems
2819  *
2820  * When configured nodemask is changed, the effective nodemasks of this cpuset
2821  * and all its descendants need to be updated.
2822  *
2823  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2824  *
2825  * Called with cpuset_mutex held
2826  */
2827 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2828 {
2829 	struct cpuset *cp;
2830 	struct cgroup_subsys_state *pos_css;
2831 
2832 	rcu_read_lock();
2833 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2834 		struct cpuset *parent = parent_cs(cp);
2835 
2836 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2837 
2838 		/*
2839 		 * If it becomes empty, inherit the effective mask of the
2840 		 * parent, which is guaranteed to have some MEMs.
2841 		 */
2842 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2843 			*new_mems = parent->effective_mems;
2844 
2845 		/* Skip the whole subtree if the nodemask remains the same. */
2846 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2847 			pos_css = css_rightmost_descendant(pos_css);
2848 			continue;
2849 		}
2850 
2851 		if (!css_tryget_online(&cp->css))
2852 			continue;
2853 		rcu_read_unlock();
2854 
2855 		spin_lock_irq(&callback_lock);
2856 		cp->effective_mems = *new_mems;
2857 		spin_unlock_irq(&callback_lock);
2858 
2859 		WARN_ON(!is_in_v2_mode() &&
2860 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2861 
2862 		update_tasks_nodemask(cp);
2863 
2864 		rcu_read_lock();
2865 		css_put(&cp->css);
2866 	}
2867 	rcu_read_unlock();
2868 }
2869 
2870 /*
2871  * Handle user request to change the 'mems' memory placement
2872  * of a cpuset.  Needs to validate the request, update the
2873  * cpusets mems_allowed, and for each task in the cpuset,
2874  * update mems_allowed and rebind task's mempolicy and any vma
2875  * mempolicies and if the cpuset is marked 'memory_migrate',
2876  * migrate the tasks pages to the new memory.
2877  *
2878  * Call with cpuset_mutex held. May take callback_lock during call.
2879  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2880  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2881  * their mempolicies to the cpusets new mems_allowed.
2882  */
2883 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2884 			   const char *buf)
2885 {
2886 	int retval;
2887 
2888 	/*
2889 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2890 	 * it's read-only
2891 	 */
2892 	if (cs == &top_cpuset) {
2893 		retval = -EACCES;
2894 		goto done;
2895 	}
2896 
2897 	/*
2898 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2899 	 * Since nodelist_parse() fails on an empty mask, we special case
2900 	 * that parsing.  The validate_change() call ensures that cpusets
2901 	 * with tasks have memory.
2902 	 */
2903 	if (!*buf) {
2904 		nodes_clear(trialcs->mems_allowed);
2905 	} else {
2906 		retval = nodelist_parse(buf, trialcs->mems_allowed);
2907 		if (retval < 0)
2908 			goto done;
2909 
2910 		if (!nodes_subset(trialcs->mems_allowed,
2911 				  top_cpuset.mems_allowed)) {
2912 			retval = -EINVAL;
2913 			goto done;
2914 		}
2915 	}
2916 
2917 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2918 		retval = 0;		/* Too easy - nothing to do */
2919 		goto done;
2920 	}
2921 	retval = validate_change(cs, trialcs);
2922 	if (retval < 0)
2923 		goto done;
2924 
2925 	check_insane_mems_config(&trialcs->mems_allowed);
2926 
2927 	spin_lock_irq(&callback_lock);
2928 	cs->mems_allowed = trialcs->mems_allowed;
2929 	spin_unlock_irq(&callback_lock);
2930 
2931 	/* use trialcs->mems_allowed as a temp variable */
2932 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2933 done:
2934 	return retval;
2935 }
2936 
2937 bool current_cpuset_is_being_rebound(void)
2938 {
2939 	bool ret;
2940 
2941 	rcu_read_lock();
2942 	ret = task_cs(current) == cpuset_being_rebound;
2943 	rcu_read_unlock();
2944 
2945 	return ret;
2946 }
2947 
2948 static int update_relax_domain_level(struct cpuset *cs, s64 val)
2949 {
2950 #ifdef CONFIG_SMP
2951 	if (val < -1 || val >= sched_domain_level_max)
2952 		return -EINVAL;
2953 #endif
2954 
2955 	if (val != cs->relax_domain_level) {
2956 		cs->relax_domain_level = val;
2957 		if (!cpumask_empty(cs->cpus_allowed) &&
2958 		    is_sched_load_balance(cs))
2959 			rebuild_sched_domains_locked();
2960 	}
2961 
2962 	return 0;
2963 }
2964 
2965 /**
2966  * update_tasks_flags - update the spread flags of tasks in the cpuset.
2967  * @cs: the cpuset in which each task's spread flags needs to be changed
2968  *
2969  * Iterate through each task of @cs updating its spread flags.  As this
2970  * function is called with cpuset_mutex held, cpuset membership stays
2971  * stable.
2972  */
2973 static void update_tasks_flags(struct cpuset *cs)
2974 {
2975 	struct css_task_iter it;
2976 	struct task_struct *task;
2977 
2978 	css_task_iter_start(&cs->css, 0, &it);
2979 	while ((task = css_task_iter_next(&it)))
2980 		cpuset_update_task_spread_flags(cs, task);
2981 	css_task_iter_end(&it);
2982 }
2983 
2984 /*
2985  * update_flag - read a 0 or a 1 in a file and update associated flag
2986  * bit:		the bit to update (see cpuset_flagbits_t)
2987  * cs:		the cpuset to update
2988  * turning_on: 	whether the flag is being set or cleared
2989  *
2990  * Call with cpuset_mutex held.
2991  */
2992 
2993 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2994 		       int turning_on)
2995 {
2996 	struct cpuset *trialcs;
2997 	int balance_flag_changed;
2998 	int spread_flag_changed;
2999 	int err;
3000 
3001 	trialcs = alloc_trial_cpuset(cs);
3002 	if (!trialcs)
3003 		return -ENOMEM;
3004 
3005 	if (turning_on)
3006 		set_bit(bit, &trialcs->flags);
3007 	else
3008 		clear_bit(bit, &trialcs->flags);
3009 
3010 	err = validate_change(cs, trialcs);
3011 	if (err < 0)
3012 		goto out;
3013 
3014 	balance_flag_changed = (is_sched_load_balance(cs) !=
3015 				is_sched_load_balance(trialcs));
3016 
3017 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
3018 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
3019 
3020 	spin_lock_irq(&callback_lock);
3021 	cs->flags = trialcs->flags;
3022 	spin_unlock_irq(&callback_lock);
3023 
3024 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
3025 		rebuild_sched_domains_locked();
3026 
3027 	if (spread_flag_changed)
3028 		update_tasks_flags(cs);
3029 out:
3030 	free_cpuset(trialcs);
3031 	return err;
3032 }
3033 
3034 /**
3035  * update_prstate - update partition_root_state
3036  * @cs: the cpuset to update
3037  * @new_prs: new partition root state
3038  * Return: 0 if successful, != 0 if error
3039  *
3040  * Call with cpuset_mutex held.
3041  */
3042 static int update_prstate(struct cpuset *cs, int new_prs)
3043 {
3044 	int err = PERR_NONE, old_prs = cs->partition_root_state;
3045 	struct cpuset *parent = parent_cs(cs);
3046 	struct tmpmasks tmpmask;
3047 	bool new_xcpus_state = false;
3048 
3049 	if (old_prs == new_prs)
3050 		return 0;
3051 
3052 	/*
3053 	 * Treat a previously invalid partition root as if it is a "member".
3054 	 */
3055 	if (new_prs && is_prs_invalid(old_prs))
3056 		old_prs = PRS_MEMBER;
3057 
3058 	if (alloc_cpumasks(NULL, &tmpmask))
3059 		return -ENOMEM;
3060 
3061 	/*
3062 	 * Setup effective_xcpus if not properly set yet, it will be cleared
3063 	 * later if partition becomes invalid.
3064 	 */
3065 	if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) {
3066 		spin_lock_irq(&callback_lock);
3067 		cpumask_and(cs->effective_xcpus,
3068 			    cs->cpus_allowed, parent->effective_xcpus);
3069 		spin_unlock_irq(&callback_lock);
3070 	}
3071 
3072 	err = update_partition_exclusive(cs, new_prs);
3073 	if (err)
3074 		goto out;
3075 
3076 	if (!old_prs) {
3077 		enum partition_cmd cmd = (new_prs == PRS_ROOT)
3078 				       ? partcmd_enable : partcmd_enablei;
3079 
3080 		/*
3081 		 * cpus_allowed cannot be empty.
3082 		 */
3083 		if (cpumask_empty(cs->cpus_allowed)) {
3084 			err = PERR_CPUSEMPTY;
3085 			goto out;
3086 		}
3087 
3088 		err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
3089 		/*
3090 		 * If an attempt to become local partition root fails,
3091 		 * try to become a remote partition root instead.
3092 		 */
3093 		if (err && remote_partition_enable(cs, new_prs, &tmpmask))
3094 			err = 0;
3095 	} else if (old_prs && new_prs) {
3096 		/*
3097 		 * A change in load balance state only, no change in cpumasks.
3098 		 */
3099 		new_xcpus_state = true;
3100 	} else {
3101 		/*
3102 		 * Switching back to member is always allowed even if it
3103 		 * disables child partitions.
3104 		 */
3105 		if (is_remote_partition(cs))
3106 			remote_partition_disable(cs, &tmpmask);
3107 		else
3108 			update_parent_effective_cpumask(cs, partcmd_disable,
3109 							NULL, &tmpmask);
3110 
3111 		/*
3112 		 * Invalidation of child partitions will be done in
3113 		 * update_cpumasks_hier().
3114 		 */
3115 	}
3116 out:
3117 	/*
3118 	 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
3119 	 * happens.
3120 	 */
3121 	if (err) {
3122 		new_prs = -new_prs;
3123 		update_partition_exclusive(cs, new_prs);
3124 	}
3125 
3126 	spin_lock_irq(&callback_lock);
3127 	cs->partition_root_state = new_prs;
3128 	WRITE_ONCE(cs->prs_err, err);
3129 	if (!is_partition_valid(cs))
3130 		reset_partition_data(cs);
3131 	else if (new_xcpus_state)
3132 		partition_xcpus_newstate(old_prs, new_prs, cs->effective_xcpus);
3133 	spin_unlock_irq(&callback_lock);
3134 	update_unbound_workqueue_cpumask(new_xcpus_state);
3135 
3136 	/* Force update if switching back to member */
3137 	update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0);
3138 
3139 	/* Update sched domains and load balance flag */
3140 	update_partition_sd_lb(cs, old_prs);
3141 
3142 	notify_partition_change(cs, old_prs);
3143 	free_cpumasks(NULL, &tmpmask);
3144 	return 0;
3145 }
3146 
3147 /*
3148  * Frequency meter - How fast is some event occurring?
3149  *
3150  * These routines manage a digitally filtered, constant time based,
3151  * event frequency meter.  There are four routines:
3152  *   fmeter_init() - initialize a frequency meter.
3153  *   fmeter_markevent() - called each time the event happens.
3154  *   fmeter_getrate() - returns the recent rate of such events.
3155  *   fmeter_update() - internal routine used to update fmeter.
3156  *
3157  * A common data structure is passed to each of these routines,
3158  * which is used to keep track of the state required to manage the
3159  * frequency meter and its digital filter.
3160  *
3161  * The filter works on the number of events marked per unit time.
3162  * The filter is single-pole low-pass recursive (IIR).  The time unit
3163  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
3164  * simulate 3 decimal digits of precision (multiplied by 1000).
3165  *
3166  * With an FM_COEF of 933, and a time base of 1 second, the filter
3167  * has a half-life of 10 seconds, meaning that if the events quit
3168  * happening, then the rate returned from the fmeter_getrate()
3169  * will be cut in half each 10 seconds, until it converges to zero.
3170  *
3171  * It is not worth doing a real infinitely recursive filter.  If more
3172  * than FM_MAXTICKS ticks have elapsed since the last filter event,
3173  * just compute FM_MAXTICKS ticks worth, by which point the level
3174  * will be stable.
3175  *
3176  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
3177  * arithmetic overflow in the fmeter_update() routine.
3178  *
3179  * Given the simple 32 bit integer arithmetic used, this meter works
3180  * best for reporting rates between one per millisecond (msec) and
3181  * one per 32 (approx) seconds.  At constant rates faster than one
3182  * per msec it maxes out at values just under 1,000,000.  At constant
3183  * rates between one per msec, and one per second it will stabilize
3184  * to a value N*1000, where N is the rate of events per second.
3185  * At constant rates between one per second and one per 32 seconds,
3186  * it will be choppy, moving up on the seconds that have an event,
3187  * and then decaying until the next event.  At rates slower than
3188  * about one in 32 seconds, it decays all the way back to zero between
3189  * each event.
3190  */
3191 
3192 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
3193 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
3194 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
3195 #define FM_SCALE 1000		/* faux fixed point scale */
3196 
3197 /* Initialize a frequency meter */
3198 static void fmeter_init(struct fmeter *fmp)
3199 {
3200 	fmp->cnt = 0;
3201 	fmp->val = 0;
3202 	fmp->time = 0;
3203 	spin_lock_init(&fmp->lock);
3204 }
3205 
3206 /* Internal meter update - process cnt events and update value */
3207 static void fmeter_update(struct fmeter *fmp)
3208 {
3209 	time64_t now;
3210 	u32 ticks;
3211 
3212 	now = ktime_get_seconds();
3213 	ticks = now - fmp->time;
3214 
3215 	if (ticks == 0)
3216 		return;
3217 
3218 	ticks = min(FM_MAXTICKS, ticks);
3219 	while (ticks-- > 0)
3220 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
3221 	fmp->time = now;
3222 
3223 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
3224 	fmp->cnt = 0;
3225 }
3226 
3227 /* Process any previous ticks, then bump cnt by one (times scale). */
3228 static void fmeter_markevent(struct fmeter *fmp)
3229 {
3230 	spin_lock(&fmp->lock);
3231 	fmeter_update(fmp);
3232 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
3233 	spin_unlock(&fmp->lock);
3234 }
3235 
3236 /* Process any previous ticks, then return current value. */
3237 static int fmeter_getrate(struct fmeter *fmp)
3238 {
3239 	int val;
3240 
3241 	spin_lock(&fmp->lock);
3242 	fmeter_update(fmp);
3243 	val = fmp->val;
3244 	spin_unlock(&fmp->lock);
3245 	return val;
3246 }
3247 
3248 static struct cpuset *cpuset_attach_old_cs;
3249 
3250 /*
3251  * Check to see if a cpuset can accept a new task
3252  * For v1, cpus_allowed and mems_allowed can't be empty.
3253  * For v2, effective_cpus can't be empty.
3254  * Note that in v1, effective_cpus = cpus_allowed.
3255  */
3256 static int cpuset_can_attach_check(struct cpuset *cs)
3257 {
3258 	if (cpumask_empty(cs->effective_cpus) ||
3259 	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
3260 		return -ENOSPC;
3261 	return 0;
3262 }
3263 
3264 static void reset_migrate_dl_data(struct cpuset *cs)
3265 {
3266 	cs->nr_migrate_dl_tasks = 0;
3267 	cs->sum_migrate_dl_bw = 0;
3268 }
3269 
3270 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
3271 static int cpuset_can_attach(struct cgroup_taskset *tset)
3272 {
3273 	struct cgroup_subsys_state *css;
3274 	struct cpuset *cs, *oldcs;
3275 	struct task_struct *task;
3276 	bool cpus_updated, mems_updated;
3277 	int ret;
3278 
3279 	/* used later by cpuset_attach() */
3280 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
3281 	oldcs = cpuset_attach_old_cs;
3282 	cs = css_cs(css);
3283 
3284 	mutex_lock(&cpuset_mutex);
3285 
3286 	/* Check to see if task is allowed in the cpuset */
3287 	ret = cpuset_can_attach_check(cs);
3288 	if (ret)
3289 		goto out_unlock;
3290 
3291 	cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
3292 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3293 
3294 	cgroup_taskset_for_each(task, css, tset) {
3295 		ret = task_can_attach(task);
3296 		if (ret)
3297 			goto out_unlock;
3298 
3299 		/*
3300 		 * Skip rights over task check in v2 when nothing changes,
3301 		 * migration permission derives from hierarchy ownership in
3302 		 * cgroup_procs_write_permission()).
3303 		 */
3304 		if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
3305 		    (cpus_updated || mems_updated)) {
3306 			ret = security_task_setscheduler(task);
3307 			if (ret)
3308 				goto out_unlock;
3309 		}
3310 
3311 		if (dl_task(task)) {
3312 			cs->nr_migrate_dl_tasks++;
3313 			cs->sum_migrate_dl_bw += task->dl.dl_bw;
3314 		}
3315 	}
3316 
3317 	if (!cs->nr_migrate_dl_tasks)
3318 		goto out_success;
3319 
3320 	if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
3321 		int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
3322 
3323 		if (unlikely(cpu >= nr_cpu_ids)) {
3324 			reset_migrate_dl_data(cs);
3325 			ret = -EINVAL;
3326 			goto out_unlock;
3327 		}
3328 
3329 		ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
3330 		if (ret) {
3331 			reset_migrate_dl_data(cs);
3332 			goto out_unlock;
3333 		}
3334 	}
3335 
3336 out_success:
3337 	/*
3338 	 * Mark attach is in progress.  This makes validate_change() fail
3339 	 * changes which zero cpus/mems_allowed.
3340 	 */
3341 	cs->attach_in_progress++;
3342 out_unlock:
3343 	mutex_unlock(&cpuset_mutex);
3344 	return ret;
3345 }
3346 
3347 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
3348 {
3349 	struct cgroup_subsys_state *css;
3350 	struct cpuset *cs;
3351 
3352 	cgroup_taskset_first(tset, &css);
3353 	cs = css_cs(css);
3354 
3355 	mutex_lock(&cpuset_mutex);
3356 	cs->attach_in_progress--;
3357 	if (!cs->attach_in_progress)
3358 		wake_up(&cpuset_attach_wq);
3359 
3360 	if (cs->nr_migrate_dl_tasks) {
3361 		int cpu = cpumask_any(cs->effective_cpus);
3362 
3363 		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
3364 		reset_migrate_dl_data(cs);
3365 	}
3366 
3367 	mutex_unlock(&cpuset_mutex);
3368 }
3369 
3370 /*
3371  * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
3372  * but we can't allocate it dynamically there.  Define it global and
3373  * allocate from cpuset_init().
3374  */
3375 static cpumask_var_t cpus_attach;
3376 static nodemask_t cpuset_attach_nodemask_to;
3377 
3378 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
3379 {
3380 	lockdep_assert_held(&cpuset_mutex);
3381 
3382 	if (cs != &top_cpuset)
3383 		guarantee_online_cpus(task, cpus_attach);
3384 	else
3385 		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3386 			       subpartitions_cpus);
3387 	/*
3388 	 * can_attach beforehand should guarantee that this doesn't
3389 	 * fail.  TODO: have a better way to handle failure here
3390 	 */
3391 	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
3392 
3393 	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3394 	cpuset_update_task_spread_flags(cs, task);
3395 }
3396 
3397 static void cpuset_attach(struct cgroup_taskset *tset)
3398 {
3399 	struct task_struct *task;
3400 	struct task_struct *leader;
3401 	struct cgroup_subsys_state *css;
3402 	struct cpuset *cs;
3403 	struct cpuset *oldcs = cpuset_attach_old_cs;
3404 	bool cpus_updated, mems_updated;
3405 
3406 	cgroup_taskset_first(tset, &css);
3407 	cs = css_cs(css);
3408 
3409 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
3410 	mutex_lock(&cpuset_mutex);
3411 	cpus_updated = !cpumask_equal(cs->effective_cpus,
3412 				      oldcs->effective_cpus);
3413 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3414 
3415 	/*
3416 	 * In the default hierarchy, enabling cpuset in the child cgroups
3417 	 * will trigger a number of cpuset_attach() calls with no change
3418 	 * in effective cpus and mems. In that case, we can optimize out
3419 	 * by skipping the task iteration and update.
3420 	 */
3421 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3422 	    !cpus_updated && !mems_updated) {
3423 		cpuset_attach_nodemask_to = cs->effective_mems;
3424 		goto out;
3425 	}
3426 
3427 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3428 
3429 	cgroup_taskset_for_each(task, css, tset)
3430 		cpuset_attach_task(cs, task);
3431 
3432 	/*
3433 	 * Change mm for all threadgroup leaders. This is expensive and may
3434 	 * sleep and should be moved outside migration path proper. Skip it
3435 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3436 	 * not set.
3437 	 */
3438 	cpuset_attach_nodemask_to = cs->effective_mems;
3439 	if (!is_memory_migrate(cs) && !mems_updated)
3440 		goto out;
3441 
3442 	cgroup_taskset_for_each_leader(leader, css, tset) {
3443 		struct mm_struct *mm = get_task_mm(leader);
3444 
3445 		if (mm) {
3446 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3447 
3448 			/*
3449 			 * old_mems_allowed is the same with mems_allowed
3450 			 * here, except if this task is being moved
3451 			 * automatically due to hotplug.  In that case
3452 			 * @mems_allowed has been updated and is empty, so
3453 			 * @old_mems_allowed is the right nodesets that we
3454 			 * migrate mm from.
3455 			 */
3456 			if (is_memory_migrate(cs))
3457 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3458 						  &cpuset_attach_nodemask_to);
3459 			else
3460 				mmput(mm);
3461 		}
3462 	}
3463 
3464 out:
3465 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
3466 
3467 	if (cs->nr_migrate_dl_tasks) {
3468 		cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3469 		oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3470 		reset_migrate_dl_data(cs);
3471 	}
3472 
3473 	cs->attach_in_progress--;
3474 	if (!cs->attach_in_progress)
3475 		wake_up(&cpuset_attach_wq);
3476 
3477 	mutex_unlock(&cpuset_mutex);
3478 }
3479 
3480 /* The various types of files and directories in a cpuset file system */
3481 
3482 typedef enum {
3483 	FILE_MEMORY_MIGRATE,
3484 	FILE_CPULIST,
3485 	FILE_MEMLIST,
3486 	FILE_EFFECTIVE_CPULIST,
3487 	FILE_EFFECTIVE_MEMLIST,
3488 	FILE_SUBPARTS_CPULIST,
3489 	FILE_EXCLUSIVE_CPULIST,
3490 	FILE_EFFECTIVE_XCPULIST,
3491 	FILE_ISOLATED_CPULIST,
3492 	FILE_CPU_EXCLUSIVE,
3493 	FILE_MEM_EXCLUSIVE,
3494 	FILE_MEM_HARDWALL,
3495 	FILE_SCHED_LOAD_BALANCE,
3496 	FILE_PARTITION_ROOT,
3497 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
3498 	FILE_MEMORY_PRESSURE_ENABLED,
3499 	FILE_MEMORY_PRESSURE,
3500 	FILE_SPREAD_PAGE,
3501 	FILE_SPREAD_SLAB,
3502 } cpuset_filetype_t;
3503 
3504 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
3505 			    u64 val)
3506 {
3507 	struct cpuset *cs = css_cs(css);
3508 	cpuset_filetype_t type = cft->private;
3509 	int retval = 0;
3510 
3511 	cpus_read_lock();
3512 	mutex_lock(&cpuset_mutex);
3513 	if (!is_cpuset_online(cs)) {
3514 		retval = -ENODEV;
3515 		goto out_unlock;
3516 	}
3517 
3518 	switch (type) {
3519 	case FILE_CPU_EXCLUSIVE:
3520 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
3521 		break;
3522 	case FILE_MEM_EXCLUSIVE:
3523 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
3524 		break;
3525 	case FILE_MEM_HARDWALL:
3526 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
3527 		break;
3528 	case FILE_SCHED_LOAD_BALANCE:
3529 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
3530 		break;
3531 	case FILE_MEMORY_MIGRATE:
3532 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
3533 		break;
3534 	case FILE_MEMORY_PRESSURE_ENABLED:
3535 		cpuset_memory_pressure_enabled = !!val;
3536 		break;
3537 	case FILE_SPREAD_PAGE:
3538 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
3539 		break;
3540 	case FILE_SPREAD_SLAB:
3541 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
3542 		break;
3543 	default:
3544 		retval = -EINVAL;
3545 		break;
3546 	}
3547 out_unlock:
3548 	mutex_unlock(&cpuset_mutex);
3549 	cpus_read_unlock();
3550 	return retval;
3551 }
3552 
3553 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
3554 			    s64 val)
3555 {
3556 	struct cpuset *cs = css_cs(css);
3557 	cpuset_filetype_t type = cft->private;
3558 	int retval = -ENODEV;
3559 
3560 	cpus_read_lock();
3561 	mutex_lock(&cpuset_mutex);
3562 	if (!is_cpuset_online(cs))
3563 		goto out_unlock;
3564 
3565 	switch (type) {
3566 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
3567 		retval = update_relax_domain_level(cs, val);
3568 		break;
3569 	default:
3570 		retval = -EINVAL;
3571 		break;
3572 	}
3573 out_unlock:
3574 	mutex_unlock(&cpuset_mutex);
3575 	cpus_read_unlock();
3576 	return retval;
3577 }
3578 
3579 /*
3580  * Common handling for a write to a "cpus" or "mems" file.
3581  */
3582 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3583 				    char *buf, size_t nbytes, loff_t off)
3584 {
3585 	struct cpuset *cs = css_cs(of_css(of));
3586 	struct cpuset *trialcs;
3587 	int retval = -ENODEV;
3588 
3589 	buf = strstrip(buf);
3590 
3591 	/*
3592 	 * CPU or memory hotunplug may leave @cs w/o any execution
3593 	 * resources, in which case the hotplug code asynchronously updates
3594 	 * configuration and transfers all tasks to the nearest ancestor
3595 	 * which can execute.
3596 	 *
3597 	 * As writes to "cpus" or "mems" may restore @cs's execution
3598 	 * resources, wait for the previously scheduled operations before
3599 	 * proceeding, so that we don't end up keep removing tasks added
3600 	 * after execution capability is restored.
3601 	 *
3602 	 * cpuset_hotplug_work calls back into cgroup core via
3603 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
3604 	 * operation like this one can lead to a deadlock through kernfs
3605 	 * active_ref protection.  Let's break the protection.  Losing the
3606 	 * protection is okay as we check whether @cs is online after
3607 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
3608 	 * hierarchies.
3609 	 */
3610 	css_get(&cs->css);
3611 	kernfs_break_active_protection(of->kn);
3612 	flush_work(&cpuset_hotplug_work);
3613 
3614 	cpus_read_lock();
3615 	mutex_lock(&cpuset_mutex);
3616 	if (!is_cpuset_online(cs))
3617 		goto out_unlock;
3618 
3619 	trialcs = alloc_trial_cpuset(cs);
3620 	if (!trialcs) {
3621 		retval = -ENOMEM;
3622 		goto out_unlock;
3623 	}
3624 
3625 	switch (of_cft(of)->private) {
3626 	case FILE_CPULIST:
3627 		retval = update_cpumask(cs, trialcs, buf);
3628 		break;
3629 	case FILE_EXCLUSIVE_CPULIST:
3630 		retval = update_exclusive_cpumask(cs, trialcs, buf);
3631 		break;
3632 	case FILE_MEMLIST:
3633 		retval = update_nodemask(cs, trialcs, buf);
3634 		break;
3635 	default:
3636 		retval = -EINVAL;
3637 		break;
3638 	}
3639 
3640 	free_cpuset(trialcs);
3641 out_unlock:
3642 	mutex_unlock(&cpuset_mutex);
3643 	cpus_read_unlock();
3644 	kernfs_unbreak_active_protection(of->kn);
3645 	css_put(&cs->css);
3646 	flush_workqueue(cpuset_migrate_mm_wq);
3647 	return retval ?: nbytes;
3648 }
3649 
3650 /*
3651  * These ascii lists should be read in a single call, by using a user
3652  * buffer large enough to hold the entire map.  If read in smaller
3653  * chunks, there is no guarantee of atomicity.  Since the display format
3654  * used, list of ranges of sequential numbers, is variable length,
3655  * and since these maps can change value dynamically, one could read
3656  * gibberish by doing partial reads while a list was changing.
3657  */
3658 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
3659 {
3660 	struct cpuset *cs = css_cs(seq_css(sf));
3661 	cpuset_filetype_t type = seq_cft(sf)->private;
3662 	int ret = 0;
3663 
3664 	spin_lock_irq(&callback_lock);
3665 
3666 	switch (type) {
3667 	case FILE_CPULIST:
3668 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3669 		break;
3670 	case FILE_MEMLIST:
3671 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3672 		break;
3673 	case FILE_EFFECTIVE_CPULIST:
3674 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3675 		break;
3676 	case FILE_EFFECTIVE_MEMLIST:
3677 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3678 		break;
3679 	case FILE_EXCLUSIVE_CPULIST:
3680 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3681 		break;
3682 	case FILE_EFFECTIVE_XCPULIST:
3683 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3684 		break;
3685 	case FILE_SUBPARTS_CPULIST:
3686 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3687 		break;
3688 	case FILE_ISOLATED_CPULIST:
3689 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
3690 		break;
3691 	default:
3692 		ret = -EINVAL;
3693 	}
3694 
3695 	spin_unlock_irq(&callback_lock);
3696 	return ret;
3697 }
3698 
3699 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
3700 {
3701 	struct cpuset *cs = css_cs(css);
3702 	cpuset_filetype_t type = cft->private;
3703 	switch (type) {
3704 	case FILE_CPU_EXCLUSIVE:
3705 		return is_cpu_exclusive(cs);
3706 	case FILE_MEM_EXCLUSIVE:
3707 		return is_mem_exclusive(cs);
3708 	case FILE_MEM_HARDWALL:
3709 		return is_mem_hardwall(cs);
3710 	case FILE_SCHED_LOAD_BALANCE:
3711 		return is_sched_load_balance(cs);
3712 	case FILE_MEMORY_MIGRATE:
3713 		return is_memory_migrate(cs);
3714 	case FILE_MEMORY_PRESSURE_ENABLED:
3715 		return cpuset_memory_pressure_enabled;
3716 	case FILE_MEMORY_PRESSURE:
3717 		return fmeter_getrate(&cs->fmeter);
3718 	case FILE_SPREAD_PAGE:
3719 		return is_spread_page(cs);
3720 	case FILE_SPREAD_SLAB:
3721 		return is_spread_slab(cs);
3722 	default:
3723 		BUG();
3724 	}
3725 
3726 	/* Unreachable but makes gcc happy */
3727 	return 0;
3728 }
3729 
3730 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
3731 {
3732 	struct cpuset *cs = css_cs(css);
3733 	cpuset_filetype_t type = cft->private;
3734 	switch (type) {
3735 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
3736 		return cs->relax_domain_level;
3737 	default:
3738 		BUG();
3739 	}
3740 
3741 	/* Unreachable but makes gcc happy */
3742 	return 0;
3743 }
3744 
3745 static int sched_partition_show(struct seq_file *seq, void *v)
3746 {
3747 	struct cpuset *cs = css_cs(seq_css(seq));
3748 	const char *err, *type = NULL;
3749 
3750 	switch (cs->partition_root_state) {
3751 	case PRS_ROOT:
3752 		seq_puts(seq, "root\n");
3753 		break;
3754 	case PRS_ISOLATED:
3755 		seq_puts(seq, "isolated\n");
3756 		break;
3757 	case PRS_MEMBER:
3758 		seq_puts(seq, "member\n");
3759 		break;
3760 	case PRS_INVALID_ROOT:
3761 		type = "root";
3762 		fallthrough;
3763 	case PRS_INVALID_ISOLATED:
3764 		if (!type)
3765 			type = "isolated";
3766 		err = perr_strings[READ_ONCE(cs->prs_err)];
3767 		if (err)
3768 			seq_printf(seq, "%s invalid (%s)\n", type, err);
3769 		else
3770 			seq_printf(seq, "%s invalid\n", type);
3771 		break;
3772 	}
3773 	return 0;
3774 }
3775 
3776 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
3777 				     size_t nbytes, loff_t off)
3778 {
3779 	struct cpuset *cs = css_cs(of_css(of));
3780 	int val;
3781 	int retval = -ENODEV;
3782 
3783 	buf = strstrip(buf);
3784 
3785 	/*
3786 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
3787 	 */
3788 	if (!strcmp(buf, "root"))
3789 		val = PRS_ROOT;
3790 	else if (!strcmp(buf, "member"))
3791 		val = PRS_MEMBER;
3792 	else if (!strcmp(buf, "isolated"))
3793 		val = PRS_ISOLATED;
3794 	else
3795 		return -EINVAL;
3796 
3797 	css_get(&cs->css);
3798 	cpus_read_lock();
3799 	mutex_lock(&cpuset_mutex);
3800 	if (!is_cpuset_online(cs))
3801 		goto out_unlock;
3802 
3803 	retval = update_prstate(cs, val);
3804 out_unlock:
3805 	mutex_unlock(&cpuset_mutex);
3806 	cpus_read_unlock();
3807 	css_put(&cs->css);
3808 	return retval ?: nbytes;
3809 }
3810 
3811 /*
3812  * for the common functions, 'private' gives the type of file
3813  */
3814 
3815 static struct cftype legacy_files[] = {
3816 	{
3817 		.name = "cpus",
3818 		.seq_show = cpuset_common_seq_show,
3819 		.write = cpuset_write_resmask,
3820 		.max_write_len = (100U + 6 * NR_CPUS),
3821 		.private = FILE_CPULIST,
3822 	},
3823 
3824 	{
3825 		.name = "mems",
3826 		.seq_show = cpuset_common_seq_show,
3827 		.write = cpuset_write_resmask,
3828 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3829 		.private = FILE_MEMLIST,
3830 	},
3831 
3832 	{
3833 		.name = "effective_cpus",
3834 		.seq_show = cpuset_common_seq_show,
3835 		.private = FILE_EFFECTIVE_CPULIST,
3836 	},
3837 
3838 	{
3839 		.name = "effective_mems",
3840 		.seq_show = cpuset_common_seq_show,
3841 		.private = FILE_EFFECTIVE_MEMLIST,
3842 	},
3843 
3844 	{
3845 		.name = "cpu_exclusive",
3846 		.read_u64 = cpuset_read_u64,
3847 		.write_u64 = cpuset_write_u64,
3848 		.private = FILE_CPU_EXCLUSIVE,
3849 	},
3850 
3851 	{
3852 		.name = "mem_exclusive",
3853 		.read_u64 = cpuset_read_u64,
3854 		.write_u64 = cpuset_write_u64,
3855 		.private = FILE_MEM_EXCLUSIVE,
3856 	},
3857 
3858 	{
3859 		.name = "mem_hardwall",
3860 		.read_u64 = cpuset_read_u64,
3861 		.write_u64 = cpuset_write_u64,
3862 		.private = FILE_MEM_HARDWALL,
3863 	},
3864 
3865 	{
3866 		.name = "sched_load_balance",
3867 		.read_u64 = cpuset_read_u64,
3868 		.write_u64 = cpuset_write_u64,
3869 		.private = FILE_SCHED_LOAD_BALANCE,
3870 	},
3871 
3872 	{
3873 		.name = "sched_relax_domain_level",
3874 		.read_s64 = cpuset_read_s64,
3875 		.write_s64 = cpuset_write_s64,
3876 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
3877 	},
3878 
3879 	{
3880 		.name = "memory_migrate",
3881 		.read_u64 = cpuset_read_u64,
3882 		.write_u64 = cpuset_write_u64,
3883 		.private = FILE_MEMORY_MIGRATE,
3884 	},
3885 
3886 	{
3887 		.name = "memory_pressure",
3888 		.read_u64 = cpuset_read_u64,
3889 		.private = FILE_MEMORY_PRESSURE,
3890 	},
3891 
3892 	{
3893 		.name = "memory_spread_page",
3894 		.read_u64 = cpuset_read_u64,
3895 		.write_u64 = cpuset_write_u64,
3896 		.private = FILE_SPREAD_PAGE,
3897 	},
3898 
3899 	{
3900 		/* obsolete, may be removed in the future */
3901 		.name = "memory_spread_slab",
3902 		.read_u64 = cpuset_read_u64,
3903 		.write_u64 = cpuset_write_u64,
3904 		.private = FILE_SPREAD_SLAB,
3905 	},
3906 
3907 	{
3908 		.name = "memory_pressure_enabled",
3909 		.flags = CFTYPE_ONLY_ON_ROOT,
3910 		.read_u64 = cpuset_read_u64,
3911 		.write_u64 = cpuset_write_u64,
3912 		.private = FILE_MEMORY_PRESSURE_ENABLED,
3913 	},
3914 
3915 	{ }	/* terminate */
3916 };
3917 
3918 /*
3919  * This is currently a minimal set for the default hierarchy. It can be
3920  * expanded later on by migrating more features and control files from v1.
3921  */
3922 static struct cftype dfl_files[] = {
3923 	{
3924 		.name = "cpus",
3925 		.seq_show = cpuset_common_seq_show,
3926 		.write = cpuset_write_resmask,
3927 		.max_write_len = (100U + 6 * NR_CPUS),
3928 		.private = FILE_CPULIST,
3929 		.flags = CFTYPE_NOT_ON_ROOT,
3930 	},
3931 
3932 	{
3933 		.name = "mems",
3934 		.seq_show = cpuset_common_seq_show,
3935 		.write = cpuset_write_resmask,
3936 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3937 		.private = FILE_MEMLIST,
3938 		.flags = CFTYPE_NOT_ON_ROOT,
3939 	},
3940 
3941 	{
3942 		.name = "cpus.effective",
3943 		.seq_show = cpuset_common_seq_show,
3944 		.private = FILE_EFFECTIVE_CPULIST,
3945 	},
3946 
3947 	{
3948 		.name = "mems.effective",
3949 		.seq_show = cpuset_common_seq_show,
3950 		.private = FILE_EFFECTIVE_MEMLIST,
3951 	},
3952 
3953 	{
3954 		.name = "cpus.partition",
3955 		.seq_show = sched_partition_show,
3956 		.write = sched_partition_write,
3957 		.private = FILE_PARTITION_ROOT,
3958 		.flags = CFTYPE_NOT_ON_ROOT,
3959 		.file_offset = offsetof(struct cpuset, partition_file),
3960 	},
3961 
3962 	{
3963 		.name = "cpus.exclusive",
3964 		.seq_show = cpuset_common_seq_show,
3965 		.write = cpuset_write_resmask,
3966 		.max_write_len = (100U + 6 * NR_CPUS),
3967 		.private = FILE_EXCLUSIVE_CPULIST,
3968 		.flags = CFTYPE_NOT_ON_ROOT,
3969 	},
3970 
3971 	{
3972 		.name = "cpus.exclusive.effective",
3973 		.seq_show = cpuset_common_seq_show,
3974 		.private = FILE_EFFECTIVE_XCPULIST,
3975 		.flags = CFTYPE_NOT_ON_ROOT,
3976 	},
3977 
3978 	{
3979 		.name = "cpus.subpartitions",
3980 		.seq_show = cpuset_common_seq_show,
3981 		.private = FILE_SUBPARTS_CPULIST,
3982 		.flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
3983 	},
3984 
3985 	{
3986 		.name = "cpus.isolated",
3987 		.seq_show = cpuset_common_seq_show,
3988 		.private = FILE_ISOLATED_CPULIST,
3989 		.flags = CFTYPE_ONLY_ON_ROOT,
3990 	},
3991 
3992 	{ }	/* terminate */
3993 };
3994 
3995 
3996 /**
3997  * cpuset_css_alloc - Allocate a cpuset css
3998  * @parent_css: Parent css of the control group that the new cpuset will be
3999  *              part of
4000  * Return: cpuset css on success, -ENOMEM on failure.
4001  *
4002  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
4003  * top cpuset css otherwise.
4004  */
4005 static struct cgroup_subsys_state *
4006 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
4007 {
4008 	struct cpuset *cs;
4009 
4010 	if (!parent_css)
4011 		return &top_cpuset.css;
4012 
4013 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
4014 	if (!cs)
4015 		return ERR_PTR(-ENOMEM);
4016 
4017 	if (alloc_cpumasks(cs, NULL)) {
4018 		kfree(cs);
4019 		return ERR_PTR(-ENOMEM);
4020 	}
4021 
4022 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
4023 	nodes_clear(cs->mems_allowed);
4024 	nodes_clear(cs->effective_mems);
4025 	fmeter_init(&cs->fmeter);
4026 	cs->relax_domain_level = -1;
4027 	INIT_LIST_HEAD(&cs->remote_sibling);
4028 
4029 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
4030 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
4031 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
4032 
4033 	return &cs->css;
4034 }
4035 
4036 static int cpuset_css_online(struct cgroup_subsys_state *css)
4037 {
4038 	struct cpuset *cs = css_cs(css);
4039 	struct cpuset *parent = parent_cs(cs);
4040 	struct cpuset *tmp_cs;
4041 	struct cgroup_subsys_state *pos_css;
4042 
4043 	if (!parent)
4044 		return 0;
4045 
4046 	cpus_read_lock();
4047 	mutex_lock(&cpuset_mutex);
4048 
4049 	set_bit(CS_ONLINE, &cs->flags);
4050 	if (is_spread_page(parent))
4051 		set_bit(CS_SPREAD_PAGE, &cs->flags);
4052 	if (is_spread_slab(parent))
4053 		set_bit(CS_SPREAD_SLAB, &cs->flags);
4054 
4055 	cpuset_inc();
4056 
4057 	spin_lock_irq(&callback_lock);
4058 	if (is_in_v2_mode()) {
4059 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
4060 		cs->effective_mems = parent->effective_mems;
4061 		cs->use_parent_ecpus = true;
4062 		parent->child_ecpus_count++;
4063 		/*
4064 		 * Clear CS_SCHED_LOAD_BALANCE if parent is isolated
4065 		 */
4066 		if (!is_sched_load_balance(parent))
4067 			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
4068 	}
4069 
4070 	/*
4071 	 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
4072 	 */
4073 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
4074 	    !is_sched_load_balance(parent))
4075 		clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
4076 
4077 	spin_unlock_irq(&callback_lock);
4078 
4079 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
4080 		goto out_unlock;
4081 
4082 	/*
4083 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
4084 	 * set.  This flag handling is implemented in cgroup core for
4085 	 * historical reasons - the flag may be specified during mount.
4086 	 *
4087 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
4088 	 * refuse to clone the configuration - thereby refusing the task to
4089 	 * be entered, and as a result refusing the sys_unshare() or
4090 	 * clone() which initiated it.  If this becomes a problem for some
4091 	 * users who wish to allow that scenario, then this could be
4092 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
4093 	 * (and likewise for mems) to the new cgroup.
4094 	 */
4095 	rcu_read_lock();
4096 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
4097 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
4098 			rcu_read_unlock();
4099 			goto out_unlock;
4100 		}
4101 	}
4102 	rcu_read_unlock();
4103 
4104 	spin_lock_irq(&callback_lock);
4105 	cs->mems_allowed = parent->mems_allowed;
4106 	cs->effective_mems = parent->mems_allowed;
4107 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
4108 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
4109 	spin_unlock_irq(&callback_lock);
4110 out_unlock:
4111 	mutex_unlock(&cpuset_mutex);
4112 	cpus_read_unlock();
4113 	return 0;
4114 }
4115 
4116 /*
4117  * If the cpuset being removed has its flag 'sched_load_balance'
4118  * enabled, then simulate turning sched_load_balance off, which
4119  * will call rebuild_sched_domains_locked(). That is not needed
4120  * in the default hierarchy where only changes in partition
4121  * will cause repartitioning.
4122  *
4123  * If the cpuset has the 'sched.partition' flag enabled, simulate
4124  * turning 'sched.partition" off.
4125  */
4126 
4127 static void cpuset_css_offline(struct cgroup_subsys_state *css)
4128 {
4129 	struct cpuset *cs = css_cs(css);
4130 
4131 	cpus_read_lock();
4132 	mutex_lock(&cpuset_mutex);
4133 
4134 	if (is_partition_valid(cs))
4135 		update_prstate(cs, 0);
4136 
4137 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
4138 	    is_sched_load_balance(cs))
4139 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
4140 
4141 	if (cs->use_parent_ecpus) {
4142 		struct cpuset *parent = parent_cs(cs);
4143 
4144 		cs->use_parent_ecpus = false;
4145 		parent->child_ecpus_count--;
4146 	}
4147 
4148 	cpuset_dec();
4149 	clear_bit(CS_ONLINE, &cs->flags);
4150 
4151 	mutex_unlock(&cpuset_mutex);
4152 	cpus_read_unlock();
4153 }
4154 
4155 static void cpuset_css_free(struct cgroup_subsys_state *css)
4156 {
4157 	struct cpuset *cs = css_cs(css);
4158 
4159 	free_cpuset(cs);
4160 }
4161 
4162 static void cpuset_bind(struct cgroup_subsys_state *root_css)
4163 {
4164 	mutex_lock(&cpuset_mutex);
4165 	spin_lock_irq(&callback_lock);
4166 
4167 	if (is_in_v2_mode()) {
4168 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
4169 		cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
4170 		top_cpuset.mems_allowed = node_possible_map;
4171 	} else {
4172 		cpumask_copy(top_cpuset.cpus_allowed,
4173 			     top_cpuset.effective_cpus);
4174 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
4175 	}
4176 
4177 	spin_unlock_irq(&callback_lock);
4178 	mutex_unlock(&cpuset_mutex);
4179 }
4180 
4181 /*
4182  * In case the child is cloned into a cpuset different from its parent,
4183  * additional checks are done to see if the move is allowed.
4184  */
4185 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
4186 {
4187 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
4188 	bool same_cs;
4189 	int ret;
4190 
4191 	rcu_read_lock();
4192 	same_cs = (cs == task_cs(current));
4193 	rcu_read_unlock();
4194 
4195 	if (same_cs)
4196 		return 0;
4197 
4198 	lockdep_assert_held(&cgroup_mutex);
4199 	mutex_lock(&cpuset_mutex);
4200 
4201 	/* Check to see if task is allowed in the cpuset */
4202 	ret = cpuset_can_attach_check(cs);
4203 	if (ret)
4204 		goto out_unlock;
4205 
4206 	ret = task_can_attach(task);
4207 	if (ret)
4208 		goto out_unlock;
4209 
4210 	ret = security_task_setscheduler(task);
4211 	if (ret)
4212 		goto out_unlock;
4213 
4214 	/*
4215 	 * Mark attach is in progress.  This makes validate_change() fail
4216 	 * changes which zero cpus/mems_allowed.
4217 	 */
4218 	cs->attach_in_progress++;
4219 out_unlock:
4220 	mutex_unlock(&cpuset_mutex);
4221 	return ret;
4222 }
4223 
4224 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
4225 {
4226 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
4227 	bool same_cs;
4228 
4229 	rcu_read_lock();
4230 	same_cs = (cs == task_cs(current));
4231 	rcu_read_unlock();
4232 
4233 	if (same_cs)
4234 		return;
4235 
4236 	mutex_lock(&cpuset_mutex);
4237 	cs->attach_in_progress--;
4238 	if (!cs->attach_in_progress)
4239 		wake_up(&cpuset_attach_wq);
4240 	mutex_unlock(&cpuset_mutex);
4241 }
4242 
4243 /*
4244  * Make sure the new task conform to the current state of its parent,
4245  * which could have been changed by cpuset just after it inherits the
4246  * state from the parent and before it sits on the cgroup's task list.
4247  */
4248 static void cpuset_fork(struct task_struct *task)
4249 {
4250 	struct cpuset *cs;
4251 	bool same_cs;
4252 
4253 	rcu_read_lock();
4254 	cs = task_cs(task);
4255 	same_cs = (cs == task_cs(current));
4256 	rcu_read_unlock();
4257 
4258 	if (same_cs) {
4259 		if (cs == &top_cpuset)
4260 			return;
4261 
4262 		set_cpus_allowed_ptr(task, current->cpus_ptr);
4263 		task->mems_allowed = current->mems_allowed;
4264 		return;
4265 	}
4266 
4267 	/* CLONE_INTO_CGROUP */
4268 	mutex_lock(&cpuset_mutex);
4269 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
4270 	cpuset_attach_task(cs, task);
4271 
4272 	cs->attach_in_progress--;
4273 	if (!cs->attach_in_progress)
4274 		wake_up(&cpuset_attach_wq);
4275 
4276 	mutex_unlock(&cpuset_mutex);
4277 }
4278 
4279 struct cgroup_subsys cpuset_cgrp_subsys = {
4280 	.css_alloc	= cpuset_css_alloc,
4281 	.css_online	= cpuset_css_online,
4282 	.css_offline	= cpuset_css_offline,
4283 	.css_free	= cpuset_css_free,
4284 	.can_attach	= cpuset_can_attach,
4285 	.cancel_attach	= cpuset_cancel_attach,
4286 	.attach		= cpuset_attach,
4287 	.post_attach	= cpuset_post_attach,
4288 	.bind		= cpuset_bind,
4289 	.can_fork	= cpuset_can_fork,
4290 	.cancel_fork	= cpuset_cancel_fork,
4291 	.fork		= cpuset_fork,
4292 	.legacy_cftypes	= legacy_files,
4293 	.dfl_cftypes	= dfl_files,
4294 	.early_init	= true,
4295 	.threaded	= true,
4296 };
4297 
4298 /**
4299  * cpuset_init - initialize cpusets at system boot
4300  *
4301  * Description: Initialize top_cpuset
4302  **/
4303 
4304 int __init cpuset_init(void)
4305 {
4306 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
4307 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
4308 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
4309 	BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
4310 	BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
4311 	BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
4312 
4313 	cpumask_setall(top_cpuset.cpus_allowed);
4314 	nodes_setall(top_cpuset.mems_allowed);
4315 	cpumask_setall(top_cpuset.effective_cpus);
4316 	cpumask_setall(top_cpuset.effective_xcpus);
4317 	cpumask_setall(top_cpuset.exclusive_cpus);
4318 	nodes_setall(top_cpuset.effective_mems);
4319 
4320 	fmeter_init(&top_cpuset.fmeter);
4321 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
4322 	top_cpuset.relax_domain_level = -1;
4323 	INIT_LIST_HEAD(&remote_children);
4324 
4325 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
4326 
4327 	return 0;
4328 }
4329 
4330 /*
4331  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
4332  * or memory nodes, we need to walk over the cpuset hierarchy,
4333  * removing that CPU or node from all cpusets.  If this removes the
4334  * last CPU or node from a cpuset, then move the tasks in the empty
4335  * cpuset to its next-highest non-empty parent.
4336  */
4337 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
4338 {
4339 	struct cpuset *parent;
4340 
4341 	/*
4342 	 * Find its next-highest non-empty parent, (top cpuset
4343 	 * has online cpus, so can't be empty).
4344 	 */
4345 	parent = parent_cs(cs);
4346 	while (cpumask_empty(parent->cpus_allowed) ||
4347 			nodes_empty(parent->mems_allowed))
4348 		parent = parent_cs(parent);
4349 
4350 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
4351 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
4352 		pr_cont_cgroup_name(cs->css.cgroup);
4353 		pr_cont("\n");
4354 	}
4355 }
4356 
4357 static void
4358 hotplug_update_tasks_legacy(struct cpuset *cs,
4359 			    struct cpumask *new_cpus, nodemask_t *new_mems,
4360 			    bool cpus_updated, bool mems_updated)
4361 {
4362 	bool is_empty;
4363 
4364 	spin_lock_irq(&callback_lock);
4365 	cpumask_copy(cs->cpus_allowed, new_cpus);
4366 	cpumask_copy(cs->effective_cpus, new_cpus);
4367 	cs->mems_allowed = *new_mems;
4368 	cs->effective_mems = *new_mems;
4369 	spin_unlock_irq(&callback_lock);
4370 
4371 	/*
4372 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
4373 	 * as the tasks will be migrated to an ancestor.
4374 	 */
4375 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
4376 		update_tasks_cpumask(cs, new_cpus);
4377 	if (mems_updated && !nodes_empty(cs->mems_allowed))
4378 		update_tasks_nodemask(cs);
4379 
4380 	is_empty = cpumask_empty(cs->cpus_allowed) ||
4381 		   nodes_empty(cs->mems_allowed);
4382 
4383 	/*
4384 	 * Move tasks to the nearest ancestor with execution resources,
4385 	 * This is full cgroup operation which will also call back into
4386 	 * cpuset. Should be done outside any lock.
4387 	 */
4388 	if (is_empty) {
4389 		mutex_unlock(&cpuset_mutex);
4390 		remove_tasks_in_empty_cpuset(cs);
4391 		mutex_lock(&cpuset_mutex);
4392 	}
4393 }
4394 
4395 static void
4396 hotplug_update_tasks(struct cpuset *cs,
4397 		     struct cpumask *new_cpus, nodemask_t *new_mems,
4398 		     bool cpus_updated, bool mems_updated)
4399 {
4400 	/* A partition root is allowed to have empty effective cpus */
4401 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
4402 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
4403 	if (nodes_empty(*new_mems))
4404 		*new_mems = parent_cs(cs)->effective_mems;
4405 
4406 	spin_lock_irq(&callback_lock);
4407 	cpumask_copy(cs->effective_cpus, new_cpus);
4408 	cs->effective_mems = *new_mems;
4409 	spin_unlock_irq(&callback_lock);
4410 
4411 	if (cpus_updated)
4412 		update_tasks_cpumask(cs, new_cpus);
4413 	if (mems_updated)
4414 		update_tasks_nodemask(cs);
4415 }
4416 
4417 static bool force_rebuild;
4418 
4419 void cpuset_force_rebuild(void)
4420 {
4421 	force_rebuild = true;
4422 }
4423 
4424 /*
4425  * Attempt to acquire a cpus_read_lock while a hotplug operation may be in
4426  * progress.
4427  * Return: true if successful, false otherwise
4428  *
4429  * To avoid circular lock dependency between cpuset_mutex and cpus_read_lock,
4430  * cpus_read_trylock() is used here to acquire the lock.
4431  */
4432 static bool cpuset_hotplug_cpus_read_trylock(void)
4433 {
4434 	int retries = 0;
4435 
4436 	while (!cpus_read_trylock()) {
4437 		/*
4438 		 * CPU hotplug still in progress. Retry 5 times
4439 		 * with a 10ms wait before bailing out.
4440 		 */
4441 		if (++retries > 5)
4442 			return false;
4443 		msleep(10);
4444 	}
4445 	return true;
4446 }
4447 
4448 /**
4449  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
4450  * @cs: cpuset in interest
4451  * @tmp: the tmpmasks structure pointer
4452  *
4453  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
4454  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
4455  * all its tasks are moved to the nearest ancestor with both resources.
4456  */
4457 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
4458 {
4459 	static cpumask_t new_cpus;
4460 	static nodemask_t new_mems;
4461 	bool cpus_updated;
4462 	bool mems_updated;
4463 	bool remote;
4464 	int partcmd = -1;
4465 	struct cpuset *parent;
4466 retry:
4467 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
4468 
4469 	mutex_lock(&cpuset_mutex);
4470 
4471 	/*
4472 	 * We have raced with task attaching. We wait until attaching
4473 	 * is finished, so we won't attach a task to an empty cpuset.
4474 	 */
4475 	if (cs->attach_in_progress) {
4476 		mutex_unlock(&cpuset_mutex);
4477 		goto retry;
4478 	}
4479 
4480 	parent = parent_cs(cs);
4481 	compute_effective_cpumask(&new_cpus, cs, parent);
4482 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
4483 
4484 	if (!tmp || !cs->partition_root_state)
4485 		goto update_tasks;
4486 
4487 	/*
4488 	 * Compute effective_cpus for valid partition root, may invalidate
4489 	 * child partition roots if necessary.
4490 	 */
4491 	remote = is_remote_partition(cs);
4492 	if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
4493 		compute_partition_effective_cpumask(cs, &new_cpus);
4494 
4495 	if (remote && cpumask_empty(&new_cpus) &&
4496 	    partition_is_populated(cs, NULL) &&
4497 	    cpuset_hotplug_cpus_read_trylock()) {
4498 		remote_partition_disable(cs, tmp);
4499 		compute_effective_cpumask(&new_cpus, cs, parent);
4500 		remote = false;
4501 		cpuset_force_rebuild();
4502 		cpus_read_unlock();
4503 	}
4504 
4505 	/*
4506 	 * Force the partition to become invalid if either one of
4507 	 * the following conditions hold:
4508 	 * 1) empty effective cpus but not valid empty partition.
4509 	 * 2) parent is invalid or doesn't grant any cpus to child
4510 	 *    partitions.
4511 	 */
4512 	if (is_local_partition(cs) && (!is_partition_valid(parent) ||
4513 				tasks_nocpu_error(parent, cs, &new_cpus)))
4514 		partcmd = partcmd_invalidate;
4515 	/*
4516 	 * On the other hand, an invalid partition root may be transitioned
4517 	 * back to a regular one.
4518 	 */
4519 	else if (is_partition_valid(parent) && is_partition_invalid(cs))
4520 		partcmd = partcmd_update;
4521 
4522 	/*
4523 	 * cpus_read_lock needs to be held before calling
4524 	 * update_parent_effective_cpumask(). To avoid circular lock
4525 	 * dependency between cpuset_mutex and cpus_read_lock,
4526 	 * cpus_read_trylock() is used here to acquire the lock.
4527 	 */
4528 	if (partcmd >= 0) {
4529 		if (!cpuset_hotplug_cpus_read_trylock())
4530 			goto update_tasks;
4531 
4532 		update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
4533 		cpus_read_unlock();
4534 		if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
4535 			compute_partition_effective_cpumask(cs, &new_cpus);
4536 			cpuset_force_rebuild();
4537 		}
4538 	}
4539 
4540 update_tasks:
4541 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
4542 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
4543 	if (!cpus_updated && !mems_updated)
4544 		goto unlock;	/* Hotplug doesn't affect this cpuset */
4545 
4546 	if (mems_updated)
4547 		check_insane_mems_config(&new_mems);
4548 
4549 	if (is_in_v2_mode())
4550 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
4551 				     cpus_updated, mems_updated);
4552 	else
4553 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
4554 					    cpus_updated, mems_updated);
4555 
4556 unlock:
4557 	mutex_unlock(&cpuset_mutex);
4558 }
4559 
4560 /**
4561  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
4562  * @work: unused
4563  *
4564  * This function is called after either CPU or memory configuration has
4565  * changed and updates cpuset accordingly.  The top_cpuset is always
4566  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
4567  * order to make cpusets transparent (of no affect) on systems that are
4568  * actively using CPU hotplug but making no active use of cpusets.
4569  *
4570  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
4571  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
4572  * all descendants.
4573  *
4574  * Note that CPU offlining during suspend is ignored.  We don't modify
4575  * cpusets across suspend/resume cycles at all.
4576  */
4577 static void cpuset_hotplug_workfn(struct work_struct *work)
4578 {
4579 	static cpumask_t new_cpus;
4580 	static nodemask_t new_mems;
4581 	bool cpus_updated, mems_updated;
4582 	bool on_dfl = is_in_v2_mode();
4583 	struct tmpmasks tmp, *ptmp = NULL;
4584 
4585 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
4586 		ptmp = &tmp;
4587 
4588 	mutex_lock(&cpuset_mutex);
4589 
4590 	/* fetch the available cpus/mems and find out which changed how */
4591 	cpumask_copy(&new_cpus, cpu_active_mask);
4592 	new_mems = node_states[N_MEMORY];
4593 
4594 	/*
4595 	 * If subpartitions_cpus is populated, it is likely that the check
4596 	 * below will produce a false positive on cpus_updated when the cpu
4597 	 * list isn't changed. It is extra work, but it is better to be safe.
4598 	 */
4599 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
4600 		       !cpumask_empty(subpartitions_cpus);
4601 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
4602 
4603 	/*
4604 	 * In the rare case that hotplug removes all the cpus in
4605 	 * subpartitions_cpus, we assumed that cpus are updated.
4606 	 */
4607 	if (!cpus_updated && top_cpuset.nr_subparts)
4608 		cpus_updated = true;
4609 
4610 	/* For v1, synchronize cpus_allowed to cpu_active_mask */
4611 	if (cpus_updated) {
4612 		spin_lock_irq(&callback_lock);
4613 		if (!on_dfl)
4614 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
4615 		/*
4616 		 * Make sure that CPUs allocated to child partitions
4617 		 * do not show up in effective_cpus. If no CPU is left,
4618 		 * we clear the subpartitions_cpus & let the child partitions
4619 		 * fight for the CPUs again.
4620 		 */
4621 		if (!cpumask_empty(subpartitions_cpus)) {
4622 			if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
4623 				top_cpuset.nr_subparts = 0;
4624 				cpumask_clear(subpartitions_cpus);
4625 			} else {
4626 				cpumask_andnot(&new_cpus, &new_cpus,
4627 					       subpartitions_cpus);
4628 			}
4629 		}
4630 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
4631 		spin_unlock_irq(&callback_lock);
4632 		/* we don't mess with cpumasks of tasks in top_cpuset */
4633 	}
4634 
4635 	/* synchronize mems_allowed to N_MEMORY */
4636 	if (mems_updated) {
4637 		spin_lock_irq(&callback_lock);
4638 		if (!on_dfl)
4639 			top_cpuset.mems_allowed = new_mems;
4640 		top_cpuset.effective_mems = new_mems;
4641 		spin_unlock_irq(&callback_lock);
4642 		update_tasks_nodemask(&top_cpuset);
4643 	}
4644 
4645 	mutex_unlock(&cpuset_mutex);
4646 
4647 	/* if cpus or mems changed, we need to propagate to descendants */
4648 	if (cpus_updated || mems_updated) {
4649 		struct cpuset *cs;
4650 		struct cgroup_subsys_state *pos_css;
4651 
4652 		rcu_read_lock();
4653 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
4654 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
4655 				continue;
4656 			rcu_read_unlock();
4657 
4658 			cpuset_hotplug_update_tasks(cs, ptmp);
4659 
4660 			rcu_read_lock();
4661 			css_put(&cs->css);
4662 		}
4663 		rcu_read_unlock();
4664 	}
4665 
4666 	/* rebuild sched domains if cpus_allowed has changed */
4667 	if (cpus_updated || force_rebuild) {
4668 		force_rebuild = false;
4669 		rebuild_sched_domains();
4670 	}
4671 
4672 	free_cpumasks(NULL, ptmp);
4673 }
4674 
4675 void cpuset_update_active_cpus(void)
4676 {
4677 	/*
4678 	 * We're inside cpu hotplug critical region which usually nests
4679 	 * inside cgroup synchronization.  Bounce actual hotplug processing
4680 	 * to a work item to avoid reverse locking order.
4681 	 */
4682 	schedule_work(&cpuset_hotplug_work);
4683 }
4684 
4685 void cpuset_wait_for_hotplug(void)
4686 {
4687 	flush_work(&cpuset_hotplug_work);
4688 }
4689 
4690 /*
4691  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
4692  * Call this routine anytime after node_states[N_MEMORY] changes.
4693  * See cpuset_update_active_cpus() for CPU hotplug handling.
4694  */
4695 static int cpuset_track_online_nodes(struct notifier_block *self,
4696 				unsigned long action, void *arg)
4697 {
4698 	schedule_work(&cpuset_hotplug_work);
4699 	return NOTIFY_OK;
4700 }
4701 
4702 /**
4703  * cpuset_init_smp - initialize cpus_allowed
4704  *
4705  * Description: Finish top cpuset after cpu, node maps are initialized
4706  */
4707 void __init cpuset_init_smp(void)
4708 {
4709 	/*
4710 	 * cpus_allowd/mems_allowed set to v2 values in the initial
4711 	 * cpuset_bind() call will be reset to v1 values in another
4712 	 * cpuset_bind() call when v1 cpuset is mounted.
4713 	 */
4714 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4715 
4716 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
4717 	top_cpuset.effective_mems = node_states[N_MEMORY];
4718 
4719 	hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
4720 
4721 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
4722 	BUG_ON(!cpuset_migrate_mm_wq);
4723 }
4724 
4725 /**
4726  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
4727  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4728  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4729  *
4730  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
4731  * attached to the specified @tsk.  Guaranteed to return some non-empty
4732  * subset of cpu_online_mask, even if this means going outside the
4733  * tasks cpuset, except when the task is in the top cpuset.
4734  **/
4735 
4736 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
4737 {
4738 	unsigned long flags;
4739 	struct cpuset *cs;
4740 
4741 	spin_lock_irqsave(&callback_lock, flags);
4742 	rcu_read_lock();
4743 
4744 	cs = task_cs(tsk);
4745 	if (cs != &top_cpuset)
4746 		guarantee_online_cpus(tsk, pmask);
4747 	/*
4748 	 * Tasks in the top cpuset won't get update to their cpumasks
4749 	 * when a hotplug online/offline event happens. So we include all
4750 	 * offline cpus in the allowed cpu list.
4751 	 */
4752 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
4753 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4754 
4755 		/*
4756 		 * We first exclude cpus allocated to partitions. If there is no
4757 		 * allowable online cpu left, we fall back to all possible cpus.
4758 		 */
4759 		cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
4760 		if (!cpumask_intersects(pmask, cpu_online_mask))
4761 			cpumask_copy(pmask, possible_mask);
4762 	}
4763 
4764 	rcu_read_unlock();
4765 	spin_unlock_irqrestore(&callback_lock, flags);
4766 }
4767 
4768 /**
4769  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
4770  * @tsk: pointer to task_struct with which the scheduler is struggling
4771  *
4772  * Description: In the case that the scheduler cannot find an allowed cpu in
4773  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
4774  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
4775  * which will not contain a sane cpumask during cases such as cpu hotplugging.
4776  * This is the absolute last resort for the scheduler and it is only used if
4777  * _every_ other avenue has been traveled.
4778  *
4779  * Returns true if the affinity of @tsk was changed, false otherwise.
4780  **/
4781 
4782 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4783 {
4784 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4785 	const struct cpumask *cs_mask;
4786 	bool changed = false;
4787 
4788 	rcu_read_lock();
4789 	cs_mask = task_cs(tsk)->cpus_allowed;
4790 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4791 		do_set_cpus_allowed(tsk, cs_mask);
4792 		changed = true;
4793 	}
4794 	rcu_read_unlock();
4795 
4796 	/*
4797 	 * We own tsk->cpus_allowed, nobody can change it under us.
4798 	 *
4799 	 * But we used cs && cs->cpus_allowed lockless and thus can
4800 	 * race with cgroup_attach_task() or update_cpumask() and get
4801 	 * the wrong tsk->cpus_allowed. However, both cases imply the
4802 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4803 	 * which takes task_rq_lock().
4804 	 *
4805 	 * If we are called after it dropped the lock we must see all
4806 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4807 	 * set any mask even if it is not right from task_cs() pov,
4808 	 * the pending set_cpus_allowed_ptr() will fix things.
4809 	 *
4810 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4811 	 * if required.
4812 	 */
4813 	return changed;
4814 }
4815 
4816 void __init cpuset_init_current_mems_allowed(void)
4817 {
4818 	nodes_setall(current->mems_allowed);
4819 }
4820 
4821 /**
4822  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4823  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4824  *
4825  * Description: Returns the nodemask_t mems_allowed of the cpuset
4826  * attached to the specified @tsk.  Guaranteed to return some non-empty
4827  * subset of node_states[N_MEMORY], even if this means going outside the
4828  * tasks cpuset.
4829  **/
4830 
4831 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4832 {
4833 	nodemask_t mask;
4834 	unsigned long flags;
4835 
4836 	spin_lock_irqsave(&callback_lock, flags);
4837 	rcu_read_lock();
4838 	guarantee_online_mems(task_cs(tsk), &mask);
4839 	rcu_read_unlock();
4840 	spin_unlock_irqrestore(&callback_lock, flags);
4841 
4842 	return mask;
4843 }
4844 
4845 /**
4846  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4847  * @nodemask: the nodemask to be checked
4848  *
4849  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4850  */
4851 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4852 {
4853 	return nodes_intersects(*nodemask, current->mems_allowed);
4854 }
4855 
4856 /*
4857  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4858  * mem_hardwall ancestor to the specified cpuset.  Call holding
4859  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
4860  * (an unusual configuration), then returns the root cpuset.
4861  */
4862 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4863 {
4864 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4865 		cs = parent_cs(cs);
4866 	return cs;
4867 }
4868 
4869 /*
4870  * cpuset_node_allowed - Can we allocate on a memory node?
4871  * @node: is this an allowed node?
4872  * @gfp_mask: memory allocation flags
4873  *
4874  * If we're in interrupt, yes, we can always allocate.  If @node is set in
4875  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
4876  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4877  * yes.  If current has access to memory reserves as an oom victim, yes.
4878  * Otherwise, no.
4879  *
4880  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4881  * and do not allow allocations outside the current tasks cpuset
4882  * unless the task has been OOM killed.
4883  * GFP_KERNEL allocations are not so marked, so can escape to the
4884  * nearest enclosing hardwalled ancestor cpuset.
4885  *
4886  * Scanning up parent cpusets requires callback_lock.  The
4887  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4888  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4889  * current tasks mems_allowed came up empty on the first pass over
4890  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
4891  * cpuset are short of memory, might require taking the callback_lock.
4892  *
4893  * The first call here from mm/page_alloc:get_page_from_freelist()
4894  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4895  * so no allocation on a node outside the cpuset is allowed (unless
4896  * in interrupt, of course).
4897  *
4898  * The second pass through get_page_from_freelist() doesn't even call
4899  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
4900  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4901  * in alloc_flags.  That logic and the checks below have the combined
4902  * affect that:
4903  *	in_interrupt - any node ok (current task context irrelevant)
4904  *	GFP_ATOMIC   - any node ok
4905  *	tsk_is_oom_victim   - any node ok
4906  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
4907  *	GFP_USER     - only nodes in current tasks mems allowed ok.
4908  */
4909 bool cpuset_node_allowed(int node, gfp_t gfp_mask)
4910 {
4911 	struct cpuset *cs;		/* current cpuset ancestors */
4912 	bool allowed;			/* is allocation in zone z allowed? */
4913 	unsigned long flags;
4914 
4915 	if (in_interrupt())
4916 		return true;
4917 	if (node_isset(node, current->mems_allowed))
4918 		return true;
4919 	/*
4920 	 * Allow tasks that have access to memory reserves because they have
4921 	 * been OOM killed to get memory anywhere.
4922 	 */
4923 	if (unlikely(tsk_is_oom_victim(current)))
4924 		return true;
4925 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4926 		return false;
4927 
4928 	if (current->flags & PF_EXITING) /* Let dying task have memory */
4929 		return true;
4930 
4931 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4932 	spin_lock_irqsave(&callback_lock, flags);
4933 
4934 	rcu_read_lock();
4935 	cs = nearest_hardwall_ancestor(task_cs(current));
4936 	allowed = node_isset(node, cs->mems_allowed);
4937 	rcu_read_unlock();
4938 
4939 	spin_unlock_irqrestore(&callback_lock, flags);
4940 	return allowed;
4941 }
4942 
4943 /**
4944  * cpuset_spread_node() - On which node to begin search for a page
4945  * @rotor: round robin rotor
4946  *
4947  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4948  * tasks in a cpuset with is_spread_page or is_spread_slab set),
4949  * and if the memory allocation used cpuset_mem_spread_node()
4950  * to determine on which node to start looking, as it will for
4951  * certain page cache or slab cache pages such as used for file
4952  * system buffers and inode caches, then instead of starting on the
4953  * local node to look for a free page, rather spread the starting
4954  * node around the tasks mems_allowed nodes.
4955  *
4956  * We don't have to worry about the returned node being offline
4957  * because "it can't happen", and even if it did, it would be ok.
4958  *
4959  * The routines calling guarantee_online_mems() are careful to
4960  * only set nodes in task->mems_allowed that are online.  So it
4961  * should not be possible for the following code to return an
4962  * offline node.  But if it did, that would be ok, as this routine
4963  * is not returning the node where the allocation must be, only
4964  * the node where the search should start.  The zonelist passed to
4965  * __alloc_pages() will include all nodes.  If the slab allocator
4966  * is passed an offline node, it will fall back to the local node.
4967  * See kmem_cache_alloc_node().
4968  */
4969 static int cpuset_spread_node(int *rotor)
4970 {
4971 	return *rotor = next_node_in(*rotor, current->mems_allowed);
4972 }
4973 
4974 /**
4975  * cpuset_mem_spread_node() - On which node to begin search for a file page
4976  */
4977 int cpuset_mem_spread_node(void)
4978 {
4979 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4980 		current->cpuset_mem_spread_rotor =
4981 			node_random(&current->mems_allowed);
4982 
4983 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4984 }
4985 
4986 /**
4987  * cpuset_slab_spread_node() - On which node to begin search for a slab page
4988  */
4989 int cpuset_slab_spread_node(void)
4990 {
4991 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
4992 		current->cpuset_slab_spread_rotor =
4993 			node_random(&current->mems_allowed);
4994 
4995 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
4996 }
4997 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
4998 
4999 /**
5000  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
5001  * @tsk1: pointer to task_struct of some task.
5002  * @tsk2: pointer to task_struct of some other task.
5003  *
5004  * Description: Return true if @tsk1's mems_allowed intersects the
5005  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
5006  * one of the task's memory usage might impact the memory available
5007  * to the other.
5008  **/
5009 
5010 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
5011 				   const struct task_struct *tsk2)
5012 {
5013 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
5014 }
5015 
5016 /**
5017  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
5018  *
5019  * Description: Prints current's name, cpuset name, and cached copy of its
5020  * mems_allowed to the kernel log.
5021  */
5022 void cpuset_print_current_mems_allowed(void)
5023 {
5024 	struct cgroup *cgrp;
5025 
5026 	rcu_read_lock();
5027 
5028 	cgrp = task_cs(current)->css.cgroup;
5029 	pr_cont(",cpuset=");
5030 	pr_cont_cgroup_name(cgrp);
5031 	pr_cont(",mems_allowed=%*pbl",
5032 		nodemask_pr_args(&current->mems_allowed));
5033 
5034 	rcu_read_unlock();
5035 }
5036 
5037 /*
5038  * Collection of memory_pressure is suppressed unless
5039  * this flag is enabled by writing "1" to the special
5040  * cpuset file 'memory_pressure_enabled' in the root cpuset.
5041  */
5042 
5043 int cpuset_memory_pressure_enabled __read_mostly;
5044 
5045 /*
5046  * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
5047  *
5048  * Keep a running average of the rate of synchronous (direct)
5049  * page reclaim efforts initiated by tasks in each cpuset.
5050  *
5051  * This represents the rate at which some task in the cpuset
5052  * ran low on memory on all nodes it was allowed to use, and
5053  * had to enter the kernels page reclaim code in an effort to
5054  * create more free memory by tossing clean pages or swapping
5055  * or writing dirty pages.
5056  *
5057  * Display to user space in the per-cpuset read-only file
5058  * "memory_pressure".  Value displayed is an integer
5059  * representing the recent rate of entry into the synchronous
5060  * (direct) page reclaim by any task attached to the cpuset.
5061  */
5062 
5063 void __cpuset_memory_pressure_bump(void)
5064 {
5065 	rcu_read_lock();
5066 	fmeter_markevent(&task_cs(current)->fmeter);
5067 	rcu_read_unlock();
5068 }
5069 
5070 #ifdef CONFIG_PROC_PID_CPUSET
5071 /*
5072  * proc_cpuset_show()
5073  *  - Print tasks cpuset path into seq_file.
5074  *  - Used for /proc/<pid>/cpuset.
5075  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
5076  *    doesn't really matter if tsk->cpuset changes after we read it,
5077  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
5078  *    anyway.
5079  */
5080 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
5081 		     struct pid *pid, struct task_struct *tsk)
5082 {
5083 	char *buf;
5084 	struct cgroup_subsys_state *css;
5085 	int retval;
5086 
5087 	retval = -ENOMEM;
5088 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5089 	if (!buf)
5090 		goto out;
5091 
5092 	css = task_get_css(tsk, cpuset_cgrp_id);
5093 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
5094 				current->nsproxy->cgroup_ns);
5095 	css_put(css);
5096 	if (retval == -E2BIG)
5097 		retval = -ENAMETOOLONG;
5098 	if (retval < 0)
5099 		goto out_free;
5100 	seq_puts(m, buf);
5101 	seq_putc(m, '\n');
5102 	retval = 0;
5103 out_free:
5104 	kfree(buf);
5105 out:
5106 	return retval;
5107 }
5108 #endif /* CONFIG_PROC_PID_CPUSET */
5109 
5110 /* Display task mems_allowed in /proc/<pid>/status file. */
5111 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
5112 {
5113 	seq_printf(m, "Mems_allowed:\t%*pb\n",
5114 		   nodemask_pr_args(&task->mems_allowed));
5115 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
5116 		   nodemask_pr_args(&task->mems_allowed));
5117 }
5118