1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/list.h> 37 #include <linux/mempolicy.h> 38 #include <linux/mm.h> 39 #include <linux/memory.h> 40 #include <linux/export.h> 41 #include <linux/mount.h> 42 #include <linux/namei.h> 43 #include <linux/pagemap.h> 44 #include <linux/proc_fs.h> 45 #include <linux/rcupdate.h> 46 #include <linux/sched.h> 47 #include <linux/sched/mm.h> 48 #include <linux/sched/task.h> 49 #include <linux/seq_file.h> 50 #include <linux/security.h> 51 #include <linux/slab.h> 52 #include <linux/spinlock.h> 53 #include <linux/stat.h> 54 #include <linux/string.h> 55 #include <linux/time.h> 56 #include <linux/time64.h> 57 #include <linux/backing-dev.h> 58 #include <linux/sort.h> 59 #include <linux/oom.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/uaccess.h> 62 #include <linux/atomic.h> 63 #include <linux/mutex.h> 64 #include <linux/cgroup.h> 65 #include <linux/wait.h> 66 67 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 68 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 69 70 /* See "Frequency meter" comments, below. */ 71 72 struct fmeter { 73 int cnt; /* unprocessed events count */ 74 int val; /* most recent output value */ 75 time64_t time; /* clock (secs) when val computed */ 76 spinlock_t lock; /* guards read or write of above */ 77 }; 78 79 struct cpuset { 80 struct cgroup_subsys_state css; 81 82 unsigned long flags; /* "unsigned long" so bitops work */ 83 84 /* 85 * On default hierarchy: 86 * 87 * The user-configured masks can only be changed by writing to 88 * cpuset.cpus and cpuset.mems, and won't be limited by the 89 * parent masks. 90 * 91 * The effective masks is the real masks that apply to the tasks 92 * in the cpuset. They may be changed if the configured masks are 93 * changed or hotplug happens. 94 * 95 * effective_mask == configured_mask & parent's effective_mask, 96 * and if it ends up empty, it will inherit the parent's mask. 97 * 98 * 99 * On legacy hierachy: 100 * 101 * The user-configured masks are always the same with effective masks. 102 */ 103 104 /* user-configured CPUs and Memory Nodes allow to tasks */ 105 cpumask_var_t cpus_allowed; 106 nodemask_t mems_allowed; 107 108 /* effective CPUs and Memory Nodes allow to tasks */ 109 cpumask_var_t effective_cpus; 110 nodemask_t effective_mems; 111 112 /* 113 * This is old Memory Nodes tasks took on. 114 * 115 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 116 * - A new cpuset's old_mems_allowed is initialized when some 117 * task is moved into it. 118 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 119 * cpuset.mems_allowed and have tasks' nodemask updated, and 120 * then old_mems_allowed is updated to mems_allowed. 121 */ 122 nodemask_t old_mems_allowed; 123 124 struct fmeter fmeter; /* memory_pressure filter */ 125 126 /* 127 * Tasks are being attached to this cpuset. Used to prevent 128 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 129 */ 130 int attach_in_progress; 131 132 /* partition number for rebuild_sched_domains() */ 133 int pn; 134 135 /* for custom sched domain */ 136 int relax_domain_level; 137 }; 138 139 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 140 { 141 return css ? container_of(css, struct cpuset, css) : NULL; 142 } 143 144 /* Retrieve the cpuset for a task */ 145 static inline struct cpuset *task_cs(struct task_struct *task) 146 { 147 return css_cs(task_css(task, cpuset_cgrp_id)); 148 } 149 150 static inline struct cpuset *parent_cs(struct cpuset *cs) 151 { 152 return css_cs(cs->css.parent); 153 } 154 155 #ifdef CONFIG_NUMA 156 static inline bool task_has_mempolicy(struct task_struct *task) 157 { 158 return task->mempolicy; 159 } 160 #else 161 static inline bool task_has_mempolicy(struct task_struct *task) 162 { 163 return false; 164 } 165 #endif 166 167 168 /* bits in struct cpuset flags field */ 169 typedef enum { 170 CS_ONLINE, 171 CS_CPU_EXCLUSIVE, 172 CS_MEM_EXCLUSIVE, 173 CS_MEM_HARDWALL, 174 CS_MEMORY_MIGRATE, 175 CS_SCHED_LOAD_BALANCE, 176 CS_SPREAD_PAGE, 177 CS_SPREAD_SLAB, 178 } cpuset_flagbits_t; 179 180 /* convenient tests for these bits */ 181 static inline bool is_cpuset_online(struct cpuset *cs) 182 { 183 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 184 } 185 186 static inline int is_cpu_exclusive(const struct cpuset *cs) 187 { 188 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 189 } 190 191 static inline int is_mem_exclusive(const struct cpuset *cs) 192 { 193 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 194 } 195 196 static inline int is_mem_hardwall(const struct cpuset *cs) 197 { 198 return test_bit(CS_MEM_HARDWALL, &cs->flags); 199 } 200 201 static inline int is_sched_load_balance(const struct cpuset *cs) 202 { 203 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 204 } 205 206 static inline int is_memory_migrate(const struct cpuset *cs) 207 { 208 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 209 } 210 211 static inline int is_spread_page(const struct cpuset *cs) 212 { 213 return test_bit(CS_SPREAD_PAGE, &cs->flags); 214 } 215 216 static inline int is_spread_slab(const struct cpuset *cs) 217 { 218 return test_bit(CS_SPREAD_SLAB, &cs->flags); 219 } 220 221 static struct cpuset top_cpuset = { 222 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 223 (1 << CS_MEM_EXCLUSIVE)), 224 }; 225 226 /** 227 * cpuset_for_each_child - traverse online children of a cpuset 228 * @child_cs: loop cursor pointing to the current child 229 * @pos_css: used for iteration 230 * @parent_cs: target cpuset to walk children of 231 * 232 * Walk @child_cs through the online children of @parent_cs. Must be used 233 * with RCU read locked. 234 */ 235 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 236 css_for_each_child((pos_css), &(parent_cs)->css) \ 237 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 238 239 /** 240 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 241 * @des_cs: loop cursor pointing to the current descendant 242 * @pos_css: used for iteration 243 * @root_cs: target cpuset to walk ancestor of 244 * 245 * Walk @des_cs through the online descendants of @root_cs. Must be used 246 * with RCU read locked. The caller may modify @pos_css by calling 247 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 248 * iteration and the first node to be visited. 249 */ 250 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 251 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 252 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 253 254 /* 255 * There are two global locks guarding cpuset structures - cpuset_mutex and 256 * callback_lock. We also require taking task_lock() when dereferencing a 257 * task's cpuset pointer. See "The task_lock() exception", at the end of this 258 * comment. 259 * 260 * A task must hold both locks to modify cpusets. If a task holds 261 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it 262 * is the only task able to also acquire callback_lock and be able to 263 * modify cpusets. It can perform various checks on the cpuset structure 264 * first, knowing nothing will change. It can also allocate memory while 265 * just holding cpuset_mutex. While it is performing these checks, various 266 * callback routines can briefly acquire callback_lock to query cpusets. 267 * Once it is ready to make the changes, it takes callback_lock, blocking 268 * everyone else. 269 * 270 * Calls to the kernel memory allocator can not be made while holding 271 * callback_lock, as that would risk double tripping on callback_lock 272 * from one of the callbacks into the cpuset code from within 273 * __alloc_pages(). 274 * 275 * If a task is only holding callback_lock, then it has read-only 276 * access to cpusets. 277 * 278 * Now, the task_struct fields mems_allowed and mempolicy may be changed 279 * by other task, we use alloc_lock in the task_struct fields to protect 280 * them. 281 * 282 * The cpuset_common_file_read() handlers only hold callback_lock across 283 * small pieces of code, such as when reading out possibly multi-word 284 * cpumasks and nodemasks. 285 * 286 * Accessing a task's cpuset should be done in accordance with the 287 * guidelines for accessing subsystem state in kernel/cgroup.c 288 */ 289 290 static DEFINE_MUTEX(cpuset_mutex); 291 static DEFINE_SPINLOCK(callback_lock); 292 293 static struct workqueue_struct *cpuset_migrate_mm_wq; 294 295 /* 296 * CPU / memory hotplug is handled asynchronously. 297 */ 298 static void cpuset_hotplug_workfn(struct work_struct *work); 299 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 300 301 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 302 303 /* 304 * Cgroup v2 behavior is used when on default hierarchy or the 305 * cgroup_v2_mode flag is set. 306 */ 307 static inline bool is_in_v2_mode(void) 308 { 309 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 310 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 311 } 312 313 /* 314 * This is ugly, but preserves the userspace API for existing cpuset 315 * users. If someone tries to mount the "cpuset" filesystem, we 316 * silently switch it to mount "cgroup" instead 317 */ 318 static struct dentry *cpuset_mount(struct file_system_type *fs_type, 319 int flags, const char *unused_dev_name, void *data) 320 { 321 struct file_system_type *cgroup_fs = get_fs_type("cgroup"); 322 struct dentry *ret = ERR_PTR(-ENODEV); 323 if (cgroup_fs) { 324 char mountopts[] = 325 "cpuset,noprefix," 326 "release_agent=/sbin/cpuset_release_agent"; 327 ret = cgroup_fs->mount(cgroup_fs, flags, 328 unused_dev_name, mountopts); 329 put_filesystem(cgroup_fs); 330 } 331 return ret; 332 } 333 334 static struct file_system_type cpuset_fs_type = { 335 .name = "cpuset", 336 .mount = cpuset_mount, 337 }; 338 339 /* 340 * Return in pmask the portion of a cpusets's cpus_allowed that 341 * are online. If none are online, walk up the cpuset hierarchy 342 * until we find one that does have some online cpus. 343 * 344 * One way or another, we guarantee to return some non-empty subset 345 * of cpu_online_mask. 346 * 347 * Call with callback_lock or cpuset_mutex held. 348 */ 349 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) 350 { 351 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) { 352 cs = parent_cs(cs); 353 if (unlikely(!cs)) { 354 /* 355 * The top cpuset doesn't have any online cpu as a 356 * consequence of a race between cpuset_hotplug_work 357 * and cpu hotplug notifier. But we know the top 358 * cpuset's effective_cpus is on its way to to be 359 * identical to cpu_online_mask. 360 */ 361 cpumask_copy(pmask, cpu_online_mask); 362 return; 363 } 364 } 365 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); 366 } 367 368 /* 369 * Return in *pmask the portion of a cpusets's mems_allowed that 370 * are online, with memory. If none are online with memory, walk 371 * up the cpuset hierarchy until we find one that does have some 372 * online mems. The top cpuset always has some mems online. 373 * 374 * One way or another, we guarantee to return some non-empty subset 375 * of node_states[N_MEMORY]. 376 * 377 * Call with callback_lock or cpuset_mutex held. 378 */ 379 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 380 { 381 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 382 cs = parent_cs(cs); 383 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 384 } 385 386 /* 387 * update task's spread flag if cpuset's page/slab spread flag is set 388 * 389 * Call with callback_lock or cpuset_mutex held. 390 */ 391 static void cpuset_update_task_spread_flag(struct cpuset *cs, 392 struct task_struct *tsk) 393 { 394 if (is_spread_page(cs)) 395 task_set_spread_page(tsk); 396 else 397 task_clear_spread_page(tsk); 398 399 if (is_spread_slab(cs)) 400 task_set_spread_slab(tsk); 401 else 402 task_clear_spread_slab(tsk); 403 } 404 405 /* 406 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 407 * 408 * One cpuset is a subset of another if all its allowed CPUs and 409 * Memory Nodes are a subset of the other, and its exclusive flags 410 * are only set if the other's are set. Call holding cpuset_mutex. 411 */ 412 413 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 414 { 415 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 416 nodes_subset(p->mems_allowed, q->mems_allowed) && 417 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 418 is_mem_exclusive(p) <= is_mem_exclusive(q); 419 } 420 421 /** 422 * alloc_trial_cpuset - allocate a trial cpuset 423 * @cs: the cpuset that the trial cpuset duplicates 424 */ 425 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 426 { 427 struct cpuset *trial; 428 429 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 430 if (!trial) 431 return NULL; 432 433 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) 434 goto free_cs; 435 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL)) 436 goto free_cpus; 437 438 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 439 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 440 return trial; 441 442 free_cpus: 443 free_cpumask_var(trial->cpus_allowed); 444 free_cs: 445 kfree(trial); 446 return NULL; 447 } 448 449 /** 450 * free_trial_cpuset - free the trial cpuset 451 * @trial: the trial cpuset to be freed 452 */ 453 static void free_trial_cpuset(struct cpuset *trial) 454 { 455 free_cpumask_var(trial->effective_cpus); 456 free_cpumask_var(trial->cpus_allowed); 457 kfree(trial); 458 } 459 460 /* 461 * validate_change() - Used to validate that any proposed cpuset change 462 * follows the structural rules for cpusets. 463 * 464 * If we replaced the flag and mask values of the current cpuset 465 * (cur) with those values in the trial cpuset (trial), would 466 * our various subset and exclusive rules still be valid? Presumes 467 * cpuset_mutex held. 468 * 469 * 'cur' is the address of an actual, in-use cpuset. Operations 470 * such as list traversal that depend on the actual address of the 471 * cpuset in the list must use cur below, not trial. 472 * 473 * 'trial' is the address of bulk structure copy of cur, with 474 * perhaps one or more of the fields cpus_allowed, mems_allowed, 475 * or flags changed to new, trial values. 476 * 477 * Return 0 if valid, -errno if not. 478 */ 479 480 static int validate_change(struct cpuset *cur, struct cpuset *trial) 481 { 482 struct cgroup_subsys_state *css; 483 struct cpuset *c, *par; 484 int ret; 485 486 rcu_read_lock(); 487 488 /* Each of our child cpusets must be a subset of us */ 489 ret = -EBUSY; 490 cpuset_for_each_child(c, css, cur) 491 if (!is_cpuset_subset(c, trial)) 492 goto out; 493 494 /* Remaining checks don't apply to root cpuset */ 495 ret = 0; 496 if (cur == &top_cpuset) 497 goto out; 498 499 par = parent_cs(cur); 500 501 /* On legacy hiearchy, we must be a subset of our parent cpuset. */ 502 ret = -EACCES; 503 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par)) 504 goto out; 505 506 /* 507 * If either I or some sibling (!= me) is exclusive, we can't 508 * overlap 509 */ 510 ret = -EINVAL; 511 cpuset_for_each_child(c, css, par) { 512 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 513 c != cur && 514 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 515 goto out; 516 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 517 c != cur && 518 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 519 goto out; 520 } 521 522 /* 523 * Cpusets with tasks - existing or newly being attached - can't 524 * be changed to have empty cpus_allowed or mems_allowed. 525 */ 526 ret = -ENOSPC; 527 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 528 if (!cpumask_empty(cur->cpus_allowed) && 529 cpumask_empty(trial->cpus_allowed)) 530 goto out; 531 if (!nodes_empty(cur->mems_allowed) && 532 nodes_empty(trial->mems_allowed)) 533 goto out; 534 } 535 536 /* 537 * We can't shrink if we won't have enough room for SCHED_DEADLINE 538 * tasks. 539 */ 540 ret = -EBUSY; 541 if (is_cpu_exclusive(cur) && 542 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 543 trial->cpus_allowed)) 544 goto out; 545 546 ret = 0; 547 out: 548 rcu_read_unlock(); 549 return ret; 550 } 551 552 #ifdef CONFIG_SMP 553 /* 554 * Helper routine for generate_sched_domains(). 555 * Do cpusets a, b have overlapping effective cpus_allowed masks? 556 */ 557 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 558 { 559 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 560 } 561 562 static void 563 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 564 { 565 if (dattr->relax_domain_level < c->relax_domain_level) 566 dattr->relax_domain_level = c->relax_domain_level; 567 return; 568 } 569 570 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 571 struct cpuset *root_cs) 572 { 573 struct cpuset *cp; 574 struct cgroup_subsys_state *pos_css; 575 576 rcu_read_lock(); 577 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 578 /* skip the whole subtree if @cp doesn't have any CPU */ 579 if (cpumask_empty(cp->cpus_allowed)) { 580 pos_css = css_rightmost_descendant(pos_css); 581 continue; 582 } 583 584 if (is_sched_load_balance(cp)) 585 update_domain_attr(dattr, cp); 586 } 587 rcu_read_unlock(); 588 } 589 590 /* Must be called with cpuset_mutex held. */ 591 static inline int nr_cpusets(void) 592 { 593 /* jump label reference count + the top-level cpuset */ 594 return static_key_count(&cpusets_enabled_key.key) + 1; 595 } 596 597 /* 598 * generate_sched_domains() 599 * 600 * This function builds a partial partition of the systems CPUs 601 * A 'partial partition' is a set of non-overlapping subsets whose 602 * union is a subset of that set. 603 * The output of this function needs to be passed to kernel/sched/core.c 604 * partition_sched_domains() routine, which will rebuild the scheduler's 605 * load balancing domains (sched domains) as specified by that partial 606 * partition. 607 * 608 * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.txt 609 * for a background explanation of this. 610 * 611 * Does not return errors, on the theory that the callers of this 612 * routine would rather not worry about failures to rebuild sched 613 * domains when operating in the severe memory shortage situations 614 * that could cause allocation failures below. 615 * 616 * Must be called with cpuset_mutex held. 617 * 618 * The three key local variables below are: 619 * q - a linked-list queue of cpuset pointers, used to implement a 620 * top-down scan of all cpusets. This scan loads a pointer 621 * to each cpuset marked is_sched_load_balance into the 622 * array 'csa'. For our purposes, rebuilding the schedulers 623 * sched domains, we can ignore !is_sched_load_balance cpusets. 624 * csa - (for CpuSet Array) Array of pointers to all the cpusets 625 * that need to be load balanced, for convenient iterative 626 * access by the subsequent code that finds the best partition, 627 * i.e the set of domains (subsets) of CPUs such that the 628 * cpus_allowed of every cpuset marked is_sched_load_balance 629 * is a subset of one of these domains, while there are as 630 * many such domains as possible, each as small as possible. 631 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 632 * the kernel/sched/core.c routine partition_sched_domains() in a 633 * convenient format, that can be easily compared to the prior 634 * value to determine what partition elements (sched domains) 635 * were changed (added or removed.) 636 * 637 * Finding the best partition (set of domains): 638 * The triple nested loops below over i, j, k scan over the 639 * load balanced cpusets (using the array of cpuset pointers in 640 * csa[]) looking for pairs of cpusets that have overlapping 641 * cpus_allowed, but which don't have the same 'pn' partition 642 * number and gives them in the same partition number. It keeps 643 * looping on the 'restart' label until it can no longer find 644 * any such pairs. 645 * 646 * The union of the cpus_allowed masks from the set of 647 * all cpusets having the same 'pn' value then form the one 648 * element of the partition (one sched domain) to be passed to 649 * partition_sched_domains(). 650 */ 651 static int generate_sched_domains(cpumask_var_t **domains, 652 struct sched_domain_attr **attributes) 653 { 654 struct cpuset *cp; /* scans q */ 655 struct cpuset **csa; /* array of all cpuset ptrs */ 656 int csn; /* how many cpuset ptrs in csa so far */ 657 int i, j, k; /* indices for partition finding loops */ 658 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 659 struct sched_domain_attr *dattr; /* attributes for custom domains */ 660 int ndoms = 0; /* number of sched domains in result */ 661 int nslot; /* next empty doms[] struct cpumask slot */ 662 struct cgroup_subsys_state *pos_css; 663 664 doms = NULL; 665 dattr = NULL; 666 csa = NULL; 667 668 /* Special case for the 99% of systems with one, full, sched domain */ 669 if (is_sched_load_balance(&top_cpuset)) { 670 ndoms = 1; 671 doms = alloc_sched_domains(ndoms); 672 if (!doms) 673 goto done; 674 675 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 676 if (dattr) { 677 *dattr = SD_ATTR_INIT; 678 update_domain_attr_tree(dattr, &top_cpuset); 679 } 680 cpumask_and(doms[0], top_cpuset.effective_cpus, 681 housekeeping_cpumask(HK_FLAG_DOMAIN)); 682 683 goto done; 684 } 685 686 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 687 if (!csa) 688 goto done; 689 csn = 0; 690 691 rcu_read_lock(); 692 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 693 if (cp == &top_cpuset) 694 continue; 695 /* 696 * Continue traversing beyond @cp iff @cp has some CPUs and 697 * isn't load balancing. The former is obvious. The 698 * latter: All child cpusets contain a subset of the 699 * parent's cpus, so just skip them, and then we call 700 * update_domain_attr_tree() to calc relax_domain_level of 701 * the corresponding sched domain. 702 */ 703 if (!cpumask_empty(cp->cpus_allowed) && 704 !(is_sched_load_balance(cp) && 705 cpumask_intersects(cp->cpus_allowed, 706 housekeeping_cpumask(HK_FLAG_DOMAIN)))) 707 continue; 708 709 if (is_sched_load_balance(cp)) 710 csa[csn++] = cp; 711 712 /* skip @cp's subtree */ 713 pos_css = css_rightmost_descendant(pos_css); 714 } 715 rcu_read_unlock(); 716 717 for (i = 0; i < csn; i++) 718 csa[i]->pn = i; 719 ndoms = csn; 720 721 restart: 722 /* Find the best partition (set of sched domains) */ 723 for (i = 0; i < csn; i++) { 724 struct cpuset *a = csa[i]; 725 int apn = a->pn; 726 727 for (j = 0; j < csn; j++) { 728 struct cpuset *b = csa[j]; 729 int bpn = b->pn; 730 731 if (apn != bpn && cpusets_overlap(a, b)) { 732 for (k = 0; k < csn; k++) { 733 struct cpuset *c = csa[k]; 734 735 if (c->pn == bpn) 736 c->pn = apn; 737 } 738 ndoms--; /* one less element */ 739 goto restart; 740 } 741 } 742 } 743 744 /* 745 * Now we know how many domains to create. 746 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 747 */ 748 doms = alloc_sched_domains(ndoms); 749 if (!doms) 750 goto done; 751 752 /* 753 * The rest of the code, including the scheduler, can deal with 754 * dattr==NULL case. No need to abort if alloc fails. 755 */ 756 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 757 GFP_KERNEL); 758 759 for (nslot = 0, i = 0; i < csn; i++) { 760 struct cpuset *a = csa[i]; 761 struct cpumask *dp; 762 int apn = a->pn; 763 764 if (apn < 0) { 765 /* Skip completed partitions */ 766 continue; 767 } 768 769 dp = doms[nslot]; 770 771 if (nslot == ndoms) { 772 static int warnings = 10; 773 if (warnings) { 774 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 775 nslot, ndoms, csn, i, apn); 776 warnings--; 777 } 778 continue; 779 } 780 781 cpumask_clear(dp); 782 if (dattr) 783 *(dattr + nslot) = SD_ATTR_INIT; 784 for (j = i; j < csn; j++) { 785 struct cpuset *b = csa[j]; 786 787 if (apn == b->pn) { 788 cpumask_or(dp, dp, b->effective_cpus); 789 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN)); 790 if (dattr) 791 update_domain_attr_tree(dattr + nslot, b); 792 793 /* Done with this partition */ 794 b->pn = -1; 795 } 796 } 797 nslot++; 798 } 799 BUG_ON(nslot != ndoms); 800 801 done: 802 kfree(csa); 803 804 /* 805 * Fallback to the default domain if kmalloc() failed. 806 * See comments in partition_sched_domains(). 807 */ 808 if (doms == NULL) 809 ndoms = 1; 810 811 *domains = doms; 812 *attributes = dattr; 813 return ndoms; 814 } 815 816 /* 817 * Rebuild scheduler domains. 818 * 819 * If the flag 'sched_load_balance' of any cpuset with non-empty 820 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 821 * which has that flag enabled, or if any cpuset with a non-empty 822 * 'cpus' is removed, then call this routine to rebuild the 823 * scheduler's dynamic sched domains. 824 * 825 * Call with cpuset_mutex held. Takes get_online_cpus(). 826 */ 827 static void rebuild_sched_domains_locked(void) 828 { 829 struct sched_domain_attr *attr; 830 cpumask_var_t *doms; 831 int ndoms; 832 833 lockdep_assert_held(&cpuset_mutex); 834 get_online_cpus(); 835 836 /* 837 * We have raced with CPU hotplug. Don't do anything to avoid 838 * passing doms with offlined cpu to partition_sched_domains(). 839 * Anyways, hotplug work item will rebuild sched domains. 840 */ 841 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 842 goto out; 843 844 /* Generate domain masks and attrs */ 845 ndoms = generate_sched_domains(&doms, &attr); 846 847 /* Have scheduler rebuild the domains */ 848 partition_sched_domains(ndoms, doms, attr); 849 out: 850 put_online_cpus(); 851 } 852 #else /* !CONFIG_SMP */ 853 static void rebuild_sched_domains_locked(void) 854 { 855 } 856 #endif /* CONFIG_SMP */ 857 858 void rebuild_sched_domains(void) 859 { 860 mutex_lock(&cpuset_mutex); 861 rebuild_sched_domains_locked(); 862 mutex_unlock(&cpuset_mutex); 863 } 864 865 /** 866 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 867 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 868 * 869 * Iterate through each task of @cs updating its cpus_allowed to the 870 * effective cpuset's. As this function is called with cpuset_mutex held, 871 * cpuset membership stays stable. 872 */ 873 static void update_tasks_cpumask(struct cpuset *cs) 874 { 875 struct css_task_iter it; 876 struct task_struct *task; 877 878 css_task_iter_start(&cs->css, 0, &it); 879 while ((task = css_task_iter_next(&it))) 880 set_cpus_allowed_ptr(task, cs->effective_cpus); 881 css_task_iter_end(&it); 882 } 883 884 /* 885 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 886 * @cs: the cpuset to consider 887 * @new_cpus: temp variable for calculating new effective_cpus 888 * 889 * When congifured cpumask is changed, the effective cpumasks of this cpuset 890 * and all its descendants need to be updated. 891 * 892 * On legacy hierachy, effective_cpus will be the same with cpu_allowed. 893 * 894 * Called with cpuset_mutex held 895 */ 896 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus) 897 { 898 struct cpuset *cp; 899 struct cgroup_subsys_state *pos_css; 900 bool need_rebuild_sched_domains = false; 901 902 rcu_read_lock(); 903 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 904 struct cpuset *parent = parent_cs(cp); 905 906 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus); 907 908 /* 909 * If it becomes empty, inherit the effective mask of the 910 * parent, which is guaranteed to have some CPUs. 911 */ 912 if (is_in_v2_mode() && cpumask_empty(new_cpus)) 913 cpumask_copy(new_cpus, parent->effective_cpus); 914 915 /* Skip the whole subtree if the cpumask remains the same. */ 916 if (cpumask_equal(new_cpus, cp->effective_cpus)) { 917 pos_css = css_rightmost_descendant(pos_css); 918 continue; 919 } 920 921 if (!css_tryget_online(&cp->css)) 922 continue; 923 rcu_read_unlock(); 924 925 spin_lock_irq(&callback_lock); 926 cpumask_copy(cp->effective_cpus, new_cpus); 927 spin_unlock_irq(&callback_lock); 928 929 WARN_ON(!is_in_v2_mode() && 930 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 931 932 update_tasks_cpumask(cp); 933 934 /* 935 * If the effective cpumask of any non-empty cpuset is changed, 936 * we need to rebuild sched domains. 937 */ 938 if (!cpumask_empty(cp->cpus_allowed) && 939 is_sched_load_balance(cp)) 940 need_rebuild_sched_domains = true; 941 942 rcu_read_lock(); 943 css_put(&cp->css); 944 } 945 rcu_read_unlock(); 946 947 if (need_rebuild_sched_domains) 948 rebuild_sched_domains_locked(); 949 } 950 951 /** 952 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 953 * @cs: the cpuset to consider 954 * @trialcs: trial cpuset 955 * @buf: buffer of cpu numbers written to this cpuset 956 */ 957 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 958 const char *buf) 959 { 960 int retval; 961 962 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 963 if (cs == &top_cpuset) 964 return -EACCES; 965 966 /* 967 * An empty cpus_allowed is ok only if the cpuset has no tasks. 968 * Since cpulist_parse() fails on an empty mask, we special case 969 * that parsing. The validate_change() call ensures that cpusets 970 * with tasks have cpus. 971 */ 972 if (!*buf) { 973 cpumask_clear(trialcs->cpus_allowed); 974 } else { 975 retval = cpulist_parse(buf, trialcs->cpus_allowed); 976 if (retval < 0) 977 return retval; 978 979 if (!cpumask_subset(trialcs->cpus_allowed, 980 top_cpuset.cpus_allowed)) 981 return -EINVAL; 982 } 983 984 /* Nothing to do if the cpus didn't change */ 985 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 986 return 0; 987 988 retval = validate_change(cs, trialcs); 989 if (retval < 0) 990 return retval; 991 992 spin_lock_irq(&callback_lock); 993 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 994 spin_unlock_irq(&callback_lock); 995 996 /* use trialcs->cpus_allowed as a temp variable */ 997 update_cpumasks_hier(cs, trialcs->cpus_allowed); 998 return 0; 999 } 1000 1001 /* 1002 * Migrate memory region from one set of nodes to another. This is 1003 * performed asynchronously as it can be called from process migration path 1004 * holding locks involved in process management. All mm migrations are 1005 * performed in the queued order and can be waited for by flushing 1006 * cpuset_migrate_mm_wq. 1007 */ 1008 1009 struct cpuset_migrate_mm_work { 1010 struct work_struct work; 1011 struct mm_struct *mm; 1012 nodemask_t from; 1013 nodemask_t to; 1014 }; 1015 1016 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1017 { 1018 struct cpuset_migrate_mm_work *mwork = 1019 container_of(work, struct cpuset_migrate_mm_work, work); 1020 1021 /* on a wq worker, no need to worry about %current's mems_allowed */ 1022 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1023 mmput(mwork->mm); 1024 kfree(mwork); 1025 } 1026 1027 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1028 const nodemask_t *to) 1029 { 1030 struct cpuset_migrate_mm_work *mwork; 1031 1032 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1033 if (mwork) { 1034 mwork->mm = mm; 1035 mwork->from = *from; 1036 mwork->to = *to; 1037 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1038 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1039 } else { 1040 mmput(mm); 1041 } 1042 } 1043 1044 static void cpuset_post_attach(void) 1045 { 1046 flush_workqueue(cpuset_migrate_mm_wq); 1047 } 1048 1049 /* 1050 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1051 * @tsk: the task to change 1052 * @newmems: new nodes that the task will be set 1053 * 1054 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1055 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1056 * parallel, it might temporarily see an empty intersection, which results in 1057 * a seqlock check and retry before OOM or allocation failure. 1058 */ 1059 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1060 nodemask_t *newmems) 1061 { 1062 task_lock(tsk); 1063 1064 local_irq_disable(); 1065 write_seqcount_begin(&tsk->mems_allowed_seq); 1066 1067 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1068 mpol_rebind_task(tsk, newmems); 1069 tsk->mems_allowed = *newmems; 1070 1071 write_seqcount_end(&tsk->mems_allowed_seq); 1072 local_irq_enable(); 1073 1074 task_unlock(tsk); 1075 } 1076 1077 static void *cpuset_being_rebound; 1078 1079 /** 1080 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1081 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1082 * 1083 * Iterate through each task of @cs updating its mems_allowed to the 1084 * effective cpuset's. As this function is called with cpuset_mutex held, 1085 * cpuset membership stays stable. 1086 */ 1087 static void update_tasks_nodemask(struct cpuset *cs) 1088 { 1089 static nodemask_t newmems; /* protected by cpuset_mutex */ 1090 struct css_task_iter it; 1091 struct task_struct *task; 1092 1093 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1094 1095 guarantee_online_mems(cs, &newmems); 1096 1097 /* 1098 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't 1099 * take while holding tasklist_lock. Forks can happen - the 1100 * mpol_dup() cpuset_being_rebound check will catch such forks, 1101 * and rebind their vma mempolicies too. Because we still hold 1102 * the global cpuset_mutex, we know that no other rebind effort 1103 * will be contending for the global variable cpuset_being_rebound. 1104 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1105 * is idempotent. Also migrate pages in each mm to new nodes. 1106 */ 1107 css_task_iter_start(&cs->css, 0, &it); 1108 while ((task = css_task_iter_next(&it))) { 1109 struct mm_struct *mm; 1110 bool migrate; 1111 1112 cpuset_change_task_nodemask(task, &newmems); 1113 1114 mm = get_task_mm(task); 1115 if (!mm) 1116 continue; 1117 1118 migrate = is_memory_migrate(cs); 1119 1120 mpol_rebind_mm(mm, &cs->mems_allowed); 1121 if (migrate) 1122 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1123 else 1124 mmput(mm); 1125 } 1126 css_task_iter_end(&it); 1127 1128 /* 1129 * All the tasks' nodemasks have been updated, update 1130 * cs->old_mems_allowed. 1131 */ 1132 cs->old_mems_allowed = newmems; 1133 1134 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1135 cpuset_being_rebound = NULL; 1136 } 1137 1138 /* 1139 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 1140 * @cs: the cpuset to consider 1141 * @new_mems: a temp variable for calculating new effective_mems 1142 * 1143 * When configured nodemask is changed, the effective nodemasks of this cpuset 1144 * and all its descendants need to be updated. 1145 * 1146 * On legacy hiearchy, effective_mems will be the same with mems_allowed. 1147 * 1148 * Called with cpuset_mutex held 1149 */ 1150 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 1151 { 1152 struct cpuset *cp; 1153 struct cgroup_subsys_state *pos_css; 1154 1155 rcu_read_lock(); 1156 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1157 struct cpuset *parent = parent_cs(cp); 1158 1159 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 1160 1161 /* 1162 * If it becomes empty, inherit the effective mask of the 1163 * parent, which is guaranteed to have some MEMs. 1164 */ 1165 if (is_in_v2_mode() && nodes_empty(*new_mems)) 1166 *new_mems = parent->effective_mems; 1167 1168 /* Skip the whole subtree if the nodemask remains the same. */ 1169 if (nodes_equal(*new_mems, cp->effective_mems)) { 1170 pos_css = css_rightmost_descendant(pos_css); 1171 continue; 1172 } 1173 1174 if (!css_tryget_online(&cp->css)) 1175 continue; 1176 rcu_read_unlock(); 1177 1178 spin_lock_irq(&callback_lock); 1179 cp->effective_mems = *new_mems; 1180 spin_unlock_irq(&callback_lock); 1181 1182 WARN_ON(!is_in_v2_mode() && 1183 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 1184 1185 update_tasks_nodemask(cp); 1186 1187 rcu_read_lock(); 1188 css_put(&cp->css); 1189 } 1190 rcu_read_unlock(); 1191 } 1192 1193 /* 1194 * Handle user request to change the 'mems' memory placement 1195 * of a cpuset. Needs to validate the request, update the 1196 * cpusets mems_allowed, and for each task in the cpuset, 1197 * update mems_allowed and rebind task's mempolicy and any vma 1198 * mempolicies and if the cpuset is marked 'memory_migrate', 1199 * migrate the tasks pages to the new memory. 1200 * 1201 * Call with cpuset_mutex held. May take callback_lock during call. 1202 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1203 * lock each such tasks mm->mmap_sem, scan its vma's and rebind 1204 * their mempolicies to the cpusets new mems_allowed. 1205 */ 1206 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 1207 const char *buf) 1208 { 1209 int retval; 1210 1211 /* 1212 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 1213 * it's read-only 1214 */ 1215 if (cs == &top_cpuset) { 1216 retval = -EACCES; 1217 goto done; 1218 } 1219 1220 /* 1221 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1222 * Since nodelist_parse() fails on an empty mask, we special case 1223 * that parsing. The validate_change() call ensures that cpusets 1224 * with tasks have memory. 1225 */ 1226 if (!*buf) { 1227 nodes_clear(trialcs->mems_allowed); 1228 } else { 1229 retval = nodelist_parse(buf, trialcs->mems_allowed); 1230 if (retval < 0) 1231 goto done; 1232 1233 if (!nodes_subset(trialcs->mems_allowed, 1234 top_cpuset.mems_allowed)) { 1235 retval = -EINVAL; 1236 goto done; 1237 } 1238 } 1239 1240 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 1241 retval = 0; /* Too easy - nothing to do */ 1242 goto done; 1243 } 1244 retval = validate_change(cs, trialcs); 1245 if (retval < 0) 1246 goto done; 1247 1248 spin_lock_irq(&callback_lock); 1249 cs->mems_allowed = trialcs->mems_allowed; 1250 spin_unlock_irq(&callback_lock); 1251 1252 /* use trialcs->mems_allowed as a temp variable */ 1253 update_nodemasks_hier(cs, &trialcs->mems_allowed); 1254 done: 1255 return retval; 1256 } 1257 1258 bool current_cpuset_is_being_rebound(void) 1259 { 1260 bool ret; 1261 1262 rcu_read_lock(); 1263 ret = task_cs(current) == cpuset_being_rebound; 1264 rcu_read_unlock(); 1265 1266 return ret; 1267 } 1268 1269 static int update_relax_domain_level(struct cpuset *cs, s64 val) 1270 { 1271 #ifdef CONFIG_SMP 1272 if (val < -1 || val >= sched_domain_level_max) 1273 return -EINVAL; 1274 #endif 1275 1276 if (val != cs->relax_domain_level) { 1277 cs->relax_domain_level = val; 1278 if (!cpumask_empty(cs->cpus_allowed) && 1279 is_sched_load_balance(cs)) 1280 rebuild_sched_domains_locked(); 1281 } 1282 1283 return 0; 1284 } 1285 1286 /** 1287 * update_tasks_flags - update the spread flags of tasks in the cpuset. 1288 * @cs: the cpuset in which each task's spread flags needs to be changed 1289 * 1290 * Iterate through each task of @cs updating its spread flags. As this 1291 * function is called with cpuset_mutex held, cpuset membership stays 1292 * stable. 1293 */ 1294 static void update_tasks_flags(struct cpuset *cs) 1295 { 1296 struct css_task_iter it; 1297 struct task_struct *task; 1298 1299 css_task_iter_start(&cs->css, 0, &it); 1300 while ((task = css_task_iter_next(&it))) 1301 cpuset_update_task_spread_flag(cs, task); 1302 css_task_iter_end(&it); 1303 } 1304 1305 /* 1306 * update_flag - read a 0 or a 1 in a file and update associated flag 1307 * bit: the bit to update (see cpuset_flagbits_t) 1308 * cs: the cpuset to update 1309 * turning_on: whether the flag is being set or cleared 1310 * 1311 * Call with cpuset_mutex held. 1312 */ 1313 1314 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1315 int turning_on) 1316 { 1317 struct cpuset *trialcs; 1318 int balance_flag_changed; 1319 int spread_flag_changed; 1320 int err; 1321 1322 trialcs = alloc_trial_cpuset(cs); 1323 if (!trialcs) 1324 return -ENOMEM; 1325 1326 if (turning_on) 1327 set_bit(bit, &trialcs->flags); 1328 else 1329 clear_bit(bit, &trialcs->flags); 1330 1331 err = validate_change(cs, trialcs); 1332 if (err < 0) 1333 goto out; 1334 1335 balance_flag_changed = (is_sched_load_balance(cs) != 1336 is_sched_load_balance(trialcs)); 1337 1338 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 1339 || (is_spread_page(cs) != is_spread_page(trialcs))); 1340 1341 spin_lock_irq(&callback_lock); 1342 cs->flags = trialcs->flags; 1343 spin_unlock_irq(&callback_lock); 1344 1345 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 1346 rebuild_sched_domains_locked(); 1347 1348 if (spread_flag_changed) 1349 update_tasks_flags(cs); 1350 out: 1351 free_trial_cpuset(trialcs); 1352 return err; 1353 } 1354 1355 /* 1356 * Frequency meter - How fast is some event occurring? 1357 * 1358 * These routines manage a digitally filtered, constant time based, 1359 * event frequency meter. There are four routines: 1360 * fmeter_init() - initialize a frequency meter. 1361 * fmeter_markevent() - called each time the event happens. 1362 * fmeter_getrate() - returns the recent rate of such events. 1363 * fmeter_update() - internal routine used to update fmeter. 1364 * 1365 * A common data structure is passed to each of these routines, 1366 * which is used to keep track of the state required to manage the 1367 * frequency meter and its digital filter. 1368 * 1369 * The filter works on the number of events marked per unit time. 1370 * The filter is single-pole low-pass recursive (IIR). The time unit 1371 * is 1 second. Arithmetic is done using 32-bit integers scaled to 1372 * simulate 3 decimal digits of precision (multiplied by 1000). 1373 * 1374 * With an FM_COEF of 933, and a time base of 1 second, the filter 1375 * has a half-life of 10 seconds, meaning that if the events quit 1376 * happening, then the rate returned from the fmeter_getrate() 1377 * will be cut in half each 10 seconds, until it converges to zero. 1378 * 1379 * It is not worth doing a real infinitely recursive filter. If more 1380 * than FM_MAXTICKS ticks have elapsed since the last filter event, 1381 * just compute FM_MAXTICKS ticks worth, by which point the level 1382 * will be stable. 1383 * 1384 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 1385 * arithmetic overflow in the fmeter_update() routine. 1386 * 1387 * Given the simple 32 bit integer arithmetic used, this meter works 1388 * best for reporting rates between one per millisecond (msec) and 1389 * one per 32 (approx) seconds. At constant rates faster than one 1390 * per msec it maxes out at values just under 1,000,000. At constant 1391 * rates between one per msec, and one per second it will stabilize 1392 * to a value N*1000, where N is the rate of events per second. 1393 * At constant rates between one per second and one per 32 seconds, 1394 * it will be choppy, moving up on the seconds that have an event, 1395 * and then decaying until the next event. At rates slower than 1396 * about one in 32 seconds, it decays all the way back to zero between 1397 * each event. 1398 */ 1399 1400 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 1401 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 1402 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 1403 #define FM_SCALE 1000 /* faux fixed point scale */ 1404 1405 /* Initialize a frequency meter */ 1406 static void fmeter_init(struct fmeter *fmp) 1407 { 1408 fmp->cnt = 0; 1409 fmp->val = 0; 1410 fmp->time = 0; 1411 spin_lock_init(&fmp->lock); 1412 } 1413 1414 /* Internal meter update - process cnt events and update value */ 1415 static void fmeter_update(struct fmeter *fmp) 1416 { 1417 time64_t now; 1418 u32 ticks; 1419 1420 now = ktime_get_seconds(); 1421 ticks = now - fmp->time; 1422 1423 if (ticks == 0) 1424 return; 1425 1426 ticks = min(FM_MAXTICKS, ticks); 1427 while (ticks-- > 0) 1428 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 1429 fmp->time = now; 1430 1431 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 1432 fmp->cnt = 0; 1433 } 1434 1435 /* Process any previous ticks, then bump cnt by one (times scale). */ 1436 static void fmeter_markevent(struct fmeter *fmp) 1437 { 1438 spin_lock(&fmp->lock); 1439 fmeter_update(fmp); 1440 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 1441 spin_unlock(&fmp->lock); 1442 } 1443 1444 /* Process any previous ticks, then return current value. */ 1445 static int fmeter_getrate(struct fmeter *fmp) 1446 { 1447 int val; 1448 1449 spin_lock(&fmp->lock); 1450 fmeter_update(fmp); 1451 val = fmp->val; 1452 spin_unlock(&fmp->lock); 1453 return val; 1454 } 1455 1456 static struct cpuset *cpuset_attach_old_cs; 1457 1458 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 1459 static int cpuset_can_attach(struct cgroup_taskset *tset) 1460 { 1461 struct cgroup_subsys_state *css; 1462 struct cpuset *cs; 1463 struct task_struct *task; 1464 int ret; 1465 1466 /* used later by cpuset_attach() */ 1467 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 1468 cs = css_cs(css); 1469 1470 mutex_lock(&cpuset_mutex); 1471 1472 /* allow moving tasks into an empty cpuset if on default hierarchy */ 1473 ret = -ENOSPC; 1474 if (!is_in_v2_mode() && 1475 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 1476 goto out_unlock; 1477 1478 cgroup_taskset_for_each(task, css, tset) { 1479 ret = task_can_attach(task, cs->cpus_allowed); 1480 if (ret) 1481 goto out_unlock; 1482 ret = security_task_setscheduler(task); 1483 if (ret) 1484 goto out_unlock; 1485 } 1486 1487 /* 1488 * Mark attach is in progress. This makes validate_change() fail 1489 * changes which zero cpus/mems_allowed. 1490 */ 1491 cs->attach_in_progress++; 1492 ret = 0; 1493 out_unlock: 1494 mutex_unlock(&cpuset_mutex); 1495 return ret; 1496 } 1497 1498 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 1499 { 1500 struct cgroup_subsys_state *css; 1501 struct cpuset *cs; 1502 1503 cgroup_taskset_first(tset, &css); 1504 cs = css_cs(css); 1505 1506 mutex_lock(&cpuset_mutex); 1507 css_cs(css)->attach_in_progress--; 1508 mutex_unlock(&cpuset_mutex); 1509 } 1510 1511 /* 1512 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() 1513 * but we can't allocate it dynamically there. Define it global and 1514 * allocate from cpuset_init(). 1515 */ 1516 static cpumask_var_t cpus_attach; 1517 1518 static void cpuset_attach(struct cgroup_taskset *tset) 1519 { 1520 /* static buf protected by cpuset_mutex */ 1521 static nodemask_t cpuset_attach_nodemask_to; 1522 struct task_struct *task; 1523 struct task_struct *leader; 1524 struct cgroup_subsys_state *css; 1525 struct cpuset *cs; 1526 struct cpuset *oldcs = cpuset_attach_old_cs; 1527 1528 cgroup_taskset_first(tset, &css); 1529 cs = css_cs(css); 1530 1531 mutex_lock(&cpuset_mutex); 1532 1533 /* prepare for attach */ 1534 if (cs == &top_cpuset) 1535 cpumask_copy(cpus_attach, cpu_possible_mask); 1536 else 1537 guarantee_online_cpus(cs, cpus_attach); 1538 1539 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 1540 1541 cgroup_taskset_for_each(task, css, tset) { 1542 /* 1543 * can_attach beforehand should guarantee that this doesn't 1544 * fail. TODO: have a better way to handle failure here 1545 */ 1546 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 1547 1548 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 1549 cpuset_update_task_spread_flag(cs, task); 1550 } 1551 1552 /* 1553 * Change mm for all threadgroup leaders. This is expensive and may 1554 * sleep and should be moved outside migration path proper. 1555 */ 1556 cpuset_attach_nodemask_to = cs->effective_mems; 1557 cgroup_taskset_for_each_leader(leader, css, tset) { 1558 struct mm_struct *mm = get_task_mm(leader); 1559 1560 if (mm) { 1561 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 1562 1563 /* 1564 * old_mems_allowed is the same with mems_allowed 1565 * here, except if this task is being moved 1566 * automatically due to hotplug. In that case 1567 * @mems_allowed has been updated and is empty, so 1568 * @old_mems_allowed is the right nodesets that we 1569 * migrate mm from. 1570 */ 1571 if (is_memory_migrate(cs)) 1572 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 1573 &cpuset_attach_nodemask_to); 1574 else 1575 mmput(mm); 1576 } 1577 } 1578 1579 cs->old_mems_allowed = cpuset_attach_nodemask_to; 1580 1581 cs->attach_in_progress--; 1582 if (!cs->attach_in_progress) 1583 wake_up(&cpuset_attach_wq); 1584 1585 mutex_unlock(&cpuset_mutex); 1586 } 1587 1588 /* The various types of files and directories in a cpuset file system */ 1589 1590 typedef enum { 1591 FILE_MEMORY_MIGRATE, 1592 FILE_CPULIST, 1593 FILE_MEMLIST, 1594 FILE_EFFECTIVE_CPULIST, 1595 FILE_EFFECTIVE_MEMLIST, 1596 FILE_CPU_EXCLUSIVE, 1597 FILE_MEM_EXCLUSIVE, 1598 FILE_MEM_HARDWALL, 1599 FILE_SCHED_LOAD_BALANCE, 1600 FILE_SCHED_RELAX_DOMAIN_LEVEL, 1601 FILE_MEMORY_PRESSURE_ENABLED, 1602 FILE_MEMORY_PRESSURE, 1603 FILE_SPREAD_PAGE, 1604 FILE_SPREAD_SLAB, 1605 } cpuset_filetype_t; 1606 1607 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 1608 u64 val) 1609 { 1610 struct cpuset *cs = css_cs(css); 1611 cpuset_filetype_t type = cft->private; 1612 int retval = 0; 1613 1614 mutex_lock(&cpuset_mutex); 1615 if (!is_cpuset_online(cs)) { 1616 retval = -ENODEV; 1617 goto out_unlock; 1618 } 1619 1620 switch (type) { 1621 case FILE_CPU_EXCLUSIVE: 1622 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 1623 break; 1624 case FILE_MEM_EXCLUSIVE: 1625 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 1626 break; 1627 case FILE_MEM_HARDWALL: 1628 retval = update_flag(CS_MEM_HARDWALL, cs, val); 1629 break; 1630 case FILE_SCHED_LOAD_BALANCE: 1631 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 1632 break; 1633 case FILE_MEMORY_MIGRATE: 1634 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 1635 break; 1636 case FILE_MEMORY_PRESSURE_ENABLED: 1637 cpuset_memory_pressure_enabled = !!val; 1638 break; 1639 case FILE_SPREAD_PAGE: 1640 retval = update_flag(CS_SPREAD_PAGE, cs, val); 1641 break; 1642 case FILE_SPREAD_SLAB: 1643 retval = update_flag(CS_SPREAD_SLAB, cs, val); 1644 break; 1645 default: 1646 retval = -EINVAL; 1647 break; 1648 } 1649 out_unlock: 1650 mutex_unlock(&cpuset_mutex); 1651 return retval; 1652 } 1653 1654 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 1655 s64 val) 1656 { 1657 struct cpuset *cs = css_cs(css); 1658 cpuset_filetype_t type = cft->private; 1659 int retval = -ENODEV; 1660 1661 mutex_lock(&cpuset_mutex); 1662 if (!is_cpuset_online(cs)) 1663 goto out_unlock; 1664 1665 switch (type) { 1666 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 1667 retval = update_relax_domain_level(cs, val); 1668 break; 1669 default: 1670 retval = -EINVAL; 1671 break; 1672 } 1673 out_unlock: 1674 mutex_unlock(&cpuset_mutex); 1675 return retval; 1676 } 1677 1678 /* 1679 * Common handling for a write to a "cpus" or "mems" file. 1680 */ 1681 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 1682 char *buf, size_t nbytes, loff_t off) 1683 { 1684 struct cpuset *cs = css_cs(of_css(of)); 1685 struct cpuset *trialcs; 1686 int retval = -ENODEV; 1687 1688 buf = strstrip(buf); 1689 1690 /* 1691 * CPU or memory hotunplug may leave @cs w/o any execution 1692 * resources, in which case the hotplug code asynchronously updates 1693 * configuration and transfers all tasks to the nearest ancestor 1694 * which can execute. 1695 * 1696 * As writes to "cpus" or "mems" may restore @cs's execution 1697 * resources, wait for the previously scheduled operations before 1698 * proceeding, so that we don't end up keep removing tasks added 1699 * after execution capability is restored. 1700 * 1701 * cpuset_hotplug_work calls back into cgroup core via 1702 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 1703 * operation like this one can lead to a deadlock through kernfs 1704 * active_ref protection. Let's break the protection. Losing the 1705 * protection is okay as we check whether @cs is online after 1706 * grabbing cpuset_mutex anyway. This only happens on the legacy 1707 * hierarchies. 1708 */ 1709 css_get(&cs->css); 1710 kernfs_break_active_protection(of->kn); 1711 flush_work(&cpuset_hotplug_work); 1712 1713 mutex_lock(&cpuset_mutex); 1714 if (!is_cpuset_online(cs)) 1715 goto out_unlock; 1716 1717 trialcs = alloc_trial_cpuset(cs); 1718 if (!trialcs) { 1719 retval = -ENOMEM; 1720 goto out_unlock; 1721 } 1722 1723 switch (of_cft(of)->private) { 1724 case FILE_CPULIST: 1725 retval = update_cpumask(cs, trialcs, buf); 1726 break; 1727 case FILE_MEMLIST: 1728 retval = update_nodemask(cs, trialcs, buf); 1729 break; 1730 default: 1731 retval = -EINVAL; 1732 break; 1733 } 1734 1735 free_trial_cpuset(trialcs); 1736 out_unlock: 1737 mutex_unlock(&cpuset_mutex); 1738 kernfs_unbreak_active_protection(of->kn); 1739 css_put(&cs->css); 1740 flush_workqueue(cpuset_migrate_mm_wq); 1741 return retval ?: nbytes; 1742 } 1743 1744 /* 1745 * These ascii lists should be read in a single call, by using a user 1746 * buffer large enough to hold the entire map. If read in smaller 1747 * chunks, there is no guarantee of atomicity. Since the display format 1748 * used, list of ranges of sequential numbers, is variable length, 1749 * and since these maps can change value dynamically, one could read 1750 * gibberish by doing partial reads while a list was changing. 1751 */ 1752 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 1753 { 1754 struct cpuset *cs = css_cs(seq_css(sf)); 1755 cpuset_filetype_t type = seq_cft(sf)->private; 1756 int ret = 0; 1757 1758 spin_lock_irq(&callback_lock); 1759 1760 switch (type) { 1761 case FILE_CPULIST: 1762 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 1763 break; 1764 case FILE_MEMLIST: 1765 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 1766 break; 1767 case FILE_EFFECTIVE_CPULIST: 1768 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 1769 break; 1770 case FILE_EFFECTIVE_MEMLIST: 1771 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 1772 break; 1773 default: 1774 ret = -EINVAL; 1775 } 1776 1777 spin_unlock_irq(&callback_lock); 1778 return ret; 1779 } 1780 1781 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 1782 { 1783 struct cpuset *cs = css_cs(css); 1784 cpuset_filetype_t type = cft->private; 1785 switch (type) { 1786 case FILE_CPU_EXCLUSIVE: 1787 return is_cpu_exclusive(cs); 1788 case FILE_MEM_EXCLUSIVE: 1789 return is_mem_exclusive(cs); 1790 case FILE_MEM_HARDWALL: 1791 return is_mem_hardwall(cs); 1792 case FILE_SCHED_LOAD_BALANCE: 1793 return is_sched_load_balance(cs); 1794 case FILE_MEMORY_MIGRATE: 1795 return is_memory_migrate(cs); 1796 case FILE_MEMORY_PRESSURE_ENABLED: 1797 return cpuset_memory_pressure_enabled; 1798 case FILE_MEMORY_PRESSURE: 1799 return fmeter_getrate(&cs->fmeter); 1800 case FILE_SPREAD_PAGE: 1801 return is_spread_page(cs); 1802 case FILE_SPREAD_SLAB: 1803 return is_spread_slab(cs); 1804 default: 1805 BUG(); 1806 } 1807 1808 /* Unreachable but makes gcc happy */ 1809 return 0; 1810 } 1811 1812 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 1813 { 1814 struct cpuset *cs = css_cs(css); 1815 cpuset_filetype_t type = cft->private; 1816 switch (type) { 1817 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 1818 return cs->relax_domain_level; 1819 default: 1820 BUG(); 1821 } 1822 1823 /* Unrechable but makes gcc happy */ 1824 return 0; 1825 } 1826 1827 1828 /* 1829 * for the common functions, 'private' gives the type of file 1830 */ 1831 1832 static struct cftype files[] = { 1833 { 1834 .name = "cpus", 1835 .seq_show = cpuset_common_seq_show, 1836 .write = cpuset_write_resmask, 1837 .max_write_len = (100U + 6 * NR_CPUS), 1838 .private = FILE_CPULIST, 1839 }, 1840 1841 { 1842 .name = "mems", 1843 .seq_show = cpuset_common_seq_show, 1844 .write = cpuset_write_resmask, 1845 .max_write_len = (100U + 6 * MAX_NUMNODES), 1846 .private = FILE_MEMLIST, 1847 }, 1848 1849 { 1850 .name = "effective_cpus", 1851 .seq_show = cpuset_common_seq_show, 1852 .private = FILE_EFFECTIVE_CPULIST, 1853 }, 1854 1855 { 1856 .name = "effective_mems", 1857 .seq_show = cpuset_common_seq_show, 1858 .private = FILE_EFFECTIVE_MEMLIST, 1859 }, 1860 1861 { 1862 .name = "cpu_exclusive", 1863 .read_u64 = cpuset_read_u64, 1864 .write_u64 = cpuset_write_u64, 1865 .private = FILE_CPU_EXCLUSIVE, 1866 }, 1867 1868 { 1869 .name = "mem_exclusive", 1870 .read_u64 = cpuset_read_u64, 1871 .write_u64 = cpuset_write_u64, 1872 .private = FILE_MEM_EXCLUSIVE, 1873 }, 1874 1875 { 1876 .name = "mem_hardwall", 1877 .read_u64 = cpuset_read_u64, 1878 .write_u64 = cpuset_write_u64, 1879 .private = FILE_MEM_HARDWALL, 1880 }, 1881 1882 { 1883 .name = "sched_load_balance", 1884 .read_u64 = cpuset_read_u64, 1885 .write_u64 = cpuset_write_u64, 1886 .private = FILE_SCHED_LOAD_BALANCE, 1887 }, 1888 1889 { 1890 .name = "sched_relax_domain_level", 1891 .read_s64 = cpuset_read_s64, 1892 .write_s64 = cpuset_write_s64, 1893 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 1894 }, 1895 1896 { 1897 .name = "memory_migrate", 1898 .read_u64 = cpuset_read_u64, 1899 .write_u64 = cpuset_write_u64, 1900 .private = FILE_MEMORY_MIGRATE, 1901 }, 1902 1903 { 1904 .name = "memory_pressure", 1905 .read_u64 = cpuset_read_u64, 1906 .private = FILE_MEMORY_PRESSURE, 1907 }, 1908 1909 { 1910 .name = "memory_spread_page", 1911 .read_u64 = cpuset_read_u64, 1912 .write_u64 = cpuset_write_u64, 1913 .private = FILE_SPREAD_PAGE, 1914 }, 1915 1916 { 1917 .name = "memory_spread_slab", 1918 .read_u64 = cpuset_read_u64, 1919 .write_u64 = cpuset_write_u64, 1920 .private = FILE_SPREAD_SLAB, 1921 }, 1922 1923 { 1924 .name = "memory_pressure_enabled", 1925 .flags = CFTYPE_ONLY_ON_ROOT, 1926 .read_u64 = cpuset_read_u64, 1927 .write_u64 = cpuset_write_u64, 1928 .private = FILE_MEMORY_PRESSURE_ENABLED, 1929 }, 1930 1931 { } /* terminate */ 1932 }; 1933 1934 /* 1935 * cpuset_css_alloc - allocate a cpuset css 1936 * cgrp: control group that the new cpuset will be part of 1937 */ 1938 1939 static struct cgroup_subsys_state * 1940 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 1941 { 1942 struct cpuset *cs; 1943 1944 if (!parent_css) 1945 return &top_cpuset.css; 1946 1947 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 1948 if (!cs) 1949 return ERR_PTR(-ENOMEM); 1950 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) 1951 goto free_cs; 1952 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL)) 1953 goto free_cpus; 1954 1955 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1956 cpumask_clear(cs->cpus_allowed); 1957 nodes_clear(cs->mems_allowed); 1958 cpumask_clear(cs->effective_cpus); 1959 nodes_clear(cs->effective_mems); 1960 fmeter_init(&cs->fmeter); 1961 cs->relax_domain_level = -1; 1962 1963 return &cs->css; 1964 1965 free_cpus: 1966 free_cpumask_var(cs->cpus_allowed); 1967 free_cs: 1968 kfree(cs); 1969 return ERR_PTR(-ENOMEM); 1970 } 1971 1972 static int cpuset_css_online(struct cgroup_subsys_state *css) 1973 { 1974 struct cpuset *cs = css_cs(css); 1975 struct cpuset *parent = parent_cs(cs); 1976 struct cpuset *tmp_cs; 1977 struct cgroup_subsys_state *pos_css; 1978 1979 if (!parent) 1980 return 0; 1981 1982 mutex_lock(&cpuset_mutex); 1983 1984 set_bit(CS_ONLINE, &cs->flags); 1985 if (is_spread_page(parent)) 1986 set_bit(CS_SPREAD_PAGE, &cs->flags); 1987 if (is_spread_slab(parent)) 1988 set_bit(CS_SPREAD_SLAB, &cs->flags); 1989 1990 cpuset_inc(); 1991 1992 spin_lock_irq(&callback_lock); 1993 if (is_in_v2_mode()) { 1994 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 1995 cs->effective_mems = parent->effective_mems; 1996 } 1997 spin_unlock_irq(&callback_lock); 1998 1999 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 2000 goto out_unlock; 2001 2002 /* 2003 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 2004 * set. This flag handling is implemented in cgroup core for 2005 * histrical reasons - the flag may be specified during mount. 2006 * 2007 * Currently, if any sibling cpusets have exclusive cpus or mem, we 2008 * refuse to clone the configuration - thereby refusing the task to 2009 * be entered, and as a result refusing the sys_unshare() or 2010 * clone() which initiated it. If this becomes a problem for some 2011 * users who wish to allow that scenario, then this could be 2012 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 2013 * (and likewise for mems) to the new cgroup. 2014 */ 2015 rcu_read_lock(); 2016 cpuset_for_each_child(tmp_cs, pos_css, parent) { 2017 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 2018 rcu_read_unlock(); 2019 goto out_unlock; 2020 } 2021 } 2022 rcu_read_unlock(); 2023 2024 spin_lock_irq(&callback_lock); 2025 cs->mems_allowed = parent->mems_allowed; 2026 cs->effective_mems = parent->mems_allowed; 2027 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 2028 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 2029 spin_unlock_irq(&callback_lock); 2030 out_unlock: 2031 mutex_unlock(&cpuset_mutex); 2032 return 0; 2033 } 2034 2035 /* 2036 * If the cpuset being removed has its flag 'sched_load_balance' 2037 * enabled, then simulate turning sched_load_balance off, which 2038 * will call rebuild_sched_domains_locked(). 2039 */ 2040 2041 static void cpuset_css_offline(struct cgroup_subsys_state *css) 2042 { 2043 struct cpuset *cs = css_cs(css); 2044 2045 mutex_lock(&cpuset_mutex); 2046 2047 if (is_sched_load_balance(cs)) 2048 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2049 2050 cpuset_dec(); 2051 clear_bit(CS_ONLINE, &cs->flags); 2052 2053 mutex_unlock(&cpuset_mutex); 2054 } 2055 2056 static void cpuset_css_free(struct cgroup_subsys_state *css) 2057 { 2058 struct cpuset *cs = css_cs(css); 2059 2060 free_cpumask_var(cs->effective_cpus); 2061 free_cpumask_var(cs->cpus_allowed); 2062 kfree(cs); 2063 } 2064 2065 static void cpuset_bind(struct cgroup_subsys_state *root_css) 2066 { 2067 mutex_lock(&cpuset_mutex); 2068 spin_lock_irq(&callback_lock); 2069 2070 if (is_in_v2_mode()) { 2071 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 2072 top_cpuset.mems_allowed = node_possible_map; 2073 } else { 2074 cpumask_copy(top_cpuset.cpus_allowed, 2075 top_cpuset.effective_cpus); 2076 top_cpuset.mems_allowed = top_cpuset.effective_mems; 2077 } 2078 2079 spin_unlock_irq(&callback_lock); 2080 mutex_unlock(&cpuset_mutex); 2081 } 2082 2083 /* 2084 * Make sure the new task conform to the current state of its parent, 2085 * which could have been changed by cpuset just after it inherits the 2086 * state from the parent and before it sits on the cgroup's task list. 2087 */ 2088 static void cpuset_fork(struct task_struct *task) 2089 { 2090 if (task_css_is_root(task, cpuset_cgrp_id)) 2091 return; 2092 2093 set_cpus_allowed_ptr(task, ¤t->cpus_allowed); 2094 task->mems_allowed = current->mems_allowed; 2095 } 2096 2097 struct cgroup_subsys cpuset_cgrp_subsys = { 2098 .css_alloc = cpuset_css_alloc, 2099 .css_online = cpuset_css_online, 2100 .css_offline = cpuset_css_offline, 2101 .css_free = cpuset_css_free, 2102 .can_attach = cpuset_can_attach, 2103 .cancel_attach = cpuset_cancel_attach, 2104 .attach = cpuset_attach, 2105 .post_attach = cpuset_post_attach, 2106 .bind = cpuset_bind, 2107 .fork = cpuset_fork, 2108 .legacy_cftypes = files, 2109 .early_init = true, 2110 }; 2111 2112 /** 2113 * cpuset_init - initialize cpusets at system boot 2114 * 2115 * Description: Initialize top_cpuset and the cpuset internal file system, 2116 **/ 2117 2118 int __init cpuset_init(void) 2119 { 2120 int err = 0; 2121 2122 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 2123 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 2124 2125 cpumask_setall(top_cpuset.cpus_allowed); 2126 nodes_setall(top_cpuset.mems_allowed); 2127 cpumask_setall(top_cpuset.effective_cpus); 2128 nodes_setall(top_cpuset.effective_mems); 2129 2130 fmeter_init(&top_cpuset.fmeter); 2131 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 2132 top_cpuset.relax_domain_level = -1; 2133 2134 err = register_filesystem(&cpuset_fs_type); 2135 if (err < 0) 2136 return err; 2137 2138 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 2139 2140 return 0; 2141 } 2142 2143 /* 2144 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 2145 * or memory nodes, we need to walk over the cpuset hierarchy, 2146 * removing that CPU or node from all cpusets. If this removes the 2147 * last CPU or node from a cpuset, then move the tasks in the empty 2148 * cpuset to its next-highest non-empty parent. 2149 */ 2150 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 2151 { 2152 struct cpuset *parent; 2153 2154 /* 2155 * Find its next-highest non-empty parent, (top cpuset 2156 * has online cpus, so can't be empty). 2157 */ 2158 parent = parent_cs(cs); 2159 while (cpumask_empty(parent->cpus_allowed) || 2160 nodes_empty(parent->mems_allowed)) 2161 parent = parent_cs(parent); 2162 2163 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 2164 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 2165 pr_cont_cgroup_name(cs->css.cgroup); 2166 pr_cont("\n"); 2167 } 2168 } 2169 2170 static void 2171 hotplug_update_tasks_legacy(struct cpuset *cs, 2172 struct cpumask *new_cpus, nodemask_t *new_mems, 2173 bool cpus_updated, bool mems_updated) 2174 { 2175 bool is_empty; 2176 2177 spin_lock_irq(&callback_lock); 2178 cpumask_copy(cs->cpus_allowed, new_cpus); 2179 cpumask_copy(cs->effective_cpus, new_cpus); 2180 cs->mems_allowed = *new_mems; 2181 cs->effective_mems = *new_mems; 2182 spin_unlock_irq(&callback_lock); 2183 2184 /* 2185 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 2186 * as the tasks will be migratecd to an ancestor. 2187 */ 2188 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 2189 update_tasks_cpumask(cs); 2190 if (mems_updated && !nodes_empty(cs->mems_allowed)) 2191 update_tasks_nodemask(cs); 2192 2193 is_empty = cpumask_empty(cs->cpus_allowed) || 2194 nodes_empty(cs->mems_allowed); 2195 2196 mutex_unlock(&cpuset_mutex); 2197 2198 /* 2199 * Move tasks to the nearest ancestor with execution resources, 2200 * This is full cgroup operation which will also call back into 2201 * cpuset. Should be done outside any lock. 2202 */ 2203 if (is_empty) 2204 remove_tasks_in_empty_cpuset(cs); 2205 2206 mutex_lock(&cpuset_mutex); 2207 } 2208 2209 static void 2210 hotplug_update_tasks(struct cpuset *cs, 2211 struct cpumask *new_cpus, nodemask_t *new_mems, 2212 bool cpus_updated, bool mems_updated) 2213 { 2214 if (cpumask_empty(new_cpus)) 2215 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 2216 if (nodes_empty(*new_mems)) 2217 *new_mems = parent_cs(cs)->effective_mems; 2218 2219 spin_lock_irq(&callback_lock); 2220 cpumask_copy(cs->effective_cpus, new_cpus); 2221 cs->effective_mems = *new_mems; 2222 spin_unlock_irq(&callback_lock); 2223 2224 if (cpus_updated) 2225 update_tasks_cpumask(cs); 2226 if (mems_updated) 2227 update_tasks_nodemask(cs); 2228 } 2229 2230 /** 2231 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 2232 * @cs: cpuset in interest 2233 * 2234 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 2235 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 2236 * all its tasks are moved to the nearest ancestor with both resources. 2237 */ 2238 static void cpuset_hotplug_update_tasks(struct cpuset *cs) 2239 { 2240 static cpumask_t new_cpus; 2241 static nodemask_t new_mems; 2242 bool cpus_updated; 2243 bool mems_updated; 2244 retry: 2245 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 2246 2247 mutex_lock(&cpuset_mutex); 2248 2249 /* 2250 * We have raced with task attaching. We wait until attaching 2251 * is finished, so we won't attach a task to an empty cpuset. 2252 */ 2253 if (cs->attach_in_progress) { 2254 mutex_unlock(&cpuset_mutex); 2255 goto retry; 2256 } 2257 2258 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus); 2259 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems); 2260 2261 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 2262 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 2263 2264 if (is_in_v2_mode()) 2265 hotplug_update_tasks(cs, &new_cpus, &new_mems, 2266 cpus_updated, mems_updated); 2267 else 2268 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 2269 cpus_updated, mems_updated); 2270 2271 mutex_unlock(&cpuset_mutex); 2272 } 2273 2274 static bool force_rebuild; 2275 2276 void cpuset_force_rebuild(void) 2277 { 2278 force_rebuild = true; 2279 } 2280 2281 /** 2282 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 2283 * 2284 * This function is called after either CPU or memory configuration has 2285 * changed and updates cpuset accordingly. The top_cpuset is always 2286 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 2287 * order to make cpusets transparent (of no affect) on systems that are 2288 * actively using CPU hotplug but making no active use of cpusets. 2289 * 2290 * Non-root cpusets are only affected by offlining. If any CPUs or memory 2291 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 2292 * all descendants. 2293 * 2294 * Note that CPU offlining during suspend is ignored. We don't modify 2295 * cpusets across suspend/resume cycles at all. 2296 */ 2297 static void cpuset_hotplug_workfn(struct work_struct *work) 2298 { 2299 static cpumask_t new_cpus; 2300 static nodemask_t new_mems; 2301 bool cpus_updated, mems_updated; 2302 bool on_dfl = is_in_v2_mode(); 2303 2304 mutex_lock(&cpuset_mutex); 2305 2306 /* fetch the available cpus/mems and find out which changed how */ 2307 cpumask_copy(&new_cpus, cpu_active_mask); 2308 new_mems = node_states[N_MEMORY]; 2309 2310 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 2311 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 2312 2313 /* synchronize cpus_allowed to cpu_active_mask */ 2314 if (cpus_updated) { 2315 spin_lock_irq(&callback_lock); 2316 if (!on_dfl) 2317 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 2318 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 2319 spin_unlock_irq(&callback_lock); 2320 /* we don't mess with cpumasks of tasks in top_cpuset */ 2321 } 2322 2323 /* synchronize mems_allowed to N_MEMORY */ 2324 if (mems_updated) { 2325 spin_lock_irq(&callback_lock); 2326 if (!on_dfl) 2327 top_cpuset.mems_allowed = new_mems; 2328 top_cpuset.effective_mems = new_mems; 2329 spin_unlock_irq(&callback_lock); 2330 update_tasks_nodemask(&top_cpuset); 2331 } 2332 2333 mutex_unlock(&cpuset_mutex); 2334 2335 /* if cpus or mems changed, we need to propagate to descendants */ 2336 if (cpus_updated || mems_updated) { 2337 struct cpuset *cs; 2338 struct cgroup_subsys_state *pos_css; 2339 2340 rcu_read_lock(); 2341 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 2342 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 2343 continue; 2344 rcu_read_unlock(); 2345 2346 cpuset_hotplug_update_tasks(cs); 2347 2348 rcu_read_lock(); 2349 css_put(&cs->css); 2350 } 2351 rcu_read_unlock(); 2352 } 2353 2354 /* rebuild sched domains if cpus_allowed has changed */ 2355 if (cpus_updated || force_rebuild) { 2356 force_rebuild = false; 2357 rebuild_sched_domains(); 2358 } 2359 } 2360 2361 void cpuset_update_active_cpus(void) 2362 { 2363 /* 2364 * We're inside cpu hotplug critical region which usually nests 2365 * inside cgroup synchronization. Bounce actual hotplug processing 2366 * to a work item to avoid reverse locking order. 2367 */ 2368 schedule_work(&cpuset_hotplug_work); 2369 } 2370 2371 void cpuset_wait_for_hotplug(void) 2372 { 2373 flush_work(&cpuset_hotplug_work); 2374 } 2375 2376 /* 2377 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 2378 * Call this routine anytime after node_states[N_MEMORY] changes. 2379 * See cpuset_update_active_cpus() for CPU hotplug handling. 2380 */ 2381 static int cpuset_track_online_nodes(struct notifier_block *self, 2382 unsigned long action, void *arg) 2383 { 2384 schedule_work(&cpuset_hotplug_work); 2385 return NOTIFY_OK; 2386 } 2387 2388 static struct notifier_block cpuset_track_online_nodes_nb = { 2389 .notifier_call = cpuset_track_online_nodes, 2390 .priority = 10, /* ??! */ 2391 }; 2392 2393 /** 2394 * cpuset_init_smp - initialize cpus_allowed 2395 * 2396 * Description: Finish top cpuset after cpu, node maps are initialized 2397 */ 2398 void __init cpuset_init_smp(void) 2399 { 2400 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 2401 top_cpuset.mems_allowed = node_states[N_MEMORY]; 2402 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 2403 2404 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 2405 top_cpuset.effective_mems = node_states[N_MEMORY]; 2406 2407 register_hotmemory_notifier(&cpuset_track_online_nodes_nb); 2408 2409 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 2410 BUG_ON(!cpuset_migrate_mm_wq); 2411 } 2412 2413 /** 2414 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 2415 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 2416 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 2417 * 2418 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 2419 * attached to the specified @tsk. Guaranteed to return some non-empty 2420 * subset of cpu_online_mask, even if this means going outside the 2421 * tasks cpuset. 2422 **/ 2423 2424 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 2425 { 2426 unsigned long flags; 2427 2428 spin_lock_irqsave(&callback_lock, flags); 2429 rcu_read_lock(); 2430 guarantee_online_cpus(task_cs(tsk), pmask); 2431 rcu_read_unlock(); 2432 spin_unlock_irqrestore(&callback_lock, flags); 2433 } 2434 2435 void cpuset_cpus_allowed_fallback(struct task_struct *tsk) 2436 { 2437 rcu_read_lock(); 2438 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus); 2439 rcu_read_unlock(); 2440 2441 /* 2442 * We own tsk->cpus_allowed, nobody can change it under us. 2443 * 2444 * But we used cs && cs->cpus_allowed lockless and thus can 2445 * race with cgroup_attach_task() or update_cpumask() and get 2446 * the wrong tsk->cpus_allowed. However, both cases imply the 2447 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 2448 * which takes task_rq_lock(). 2449 * 2450 * If we are called after it dropped the lock we must see all 2451 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 2452 * set any mask even if it is not right from task_cs() pov, 2453 * the pending set_cpus_allowed_ptr() will fix things. 2454 * 2455 * select_fallback_rq() will fix things ups and set cpu_possible_mask 2456 * if required. 2457 */ 2458 } 2459 2460 void __init cpuset_init_current_mems_allowed(void) 2461 { 2462 nodes_setall(current->mems_allowed); 2463 } 2464 2465 /** 2466 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 2467 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 2468 * 2469 * Description: Returns the nodemask_t mems_allowed of the cpuset 2470 * attached to the specified @tsk. Guaranteed to return some non-empty 2471 * subset of node_states[N_MEMORY], even if this means going outside the 2472 * tasks cpuset. 2473 **/ 2474 2475 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 2476 { 2477 nodemask_t mask; 2478 unsigned long flags; 2479 2480 spin_lock_irqsave(&callback_lock, flags); 2481 rcu_read_lock(); 2482 guarantee_online_mems(task_cs(tsk), &mask); 2483 rcu_read_unlock(); 2484 spin_unlock_irqrestore(&callback_lock, flags); 2485 2486 return mask; 2487 } 2488 2489 /** 2490 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed 2491 * @nodemask: the nodemask to be checked 2492 * 2493 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 2494 */ 2495 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 2496 { 2497 return nodes_intersects(*nodemask, current->mems_allowed); 2498 } 2499 2500 /* 2501 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 2502 * mem_hardwall ancestor to the specified cpuset. Call holding 2503 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 2504 * (an unusual configuration), then returns the root cpuset. 2505 */ 2506 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 2507 { 2508 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 2509 cs = parent_cs(cs); 2510 return cs; 2511 } 2512 2513 /** 2514 * cpuset_node_allowed - Can we allocate on a memory node? 2515 * @node: is this an allowed node? 2516 * @gfp_mask: memory allocation flags 2517 * 2518 * If we're in interrupt, yes, we can always allocate. If @node is set in 2519 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 2520 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 2521 * yes. If current has access to memory reserves as an oom victim, yes. 2522 * Otherwise, no. 2523 * 2524 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 2525 * and do not allow allocations outside the current tasks cpuset 2526 * unless the task has been OOM killed. 2527 * GFP_KERNEL allocations are not so marked, so can escape to the 2528 * nearest enclosing hardwalled ancestor cpuset. 2529 * 2530 * Scanning up parent cpusets requires callback_lock. The 2531 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 2532 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 2533 * current tasks mems_allowed came up empty on the first pass over 2534 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 2535 * cpuset are short of memory, might require taking the callback_lock. 2536 * 2537 * The first call here from mm/page_alloc:get_page_from_freelist() 2538 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 2539 * so no allocation on a node outside the cpuset is allowed (unless 2540 * in interrupt, of course). 2541 * 2542 * The second pass through get_page_from_freelist() doesn't even call 2543 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 2544 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 2545 * in alloc_flags. That logic and the checks below have the combined 2546 * affect that: 2547 * in_interrupt - any node ok (current task context irrelevant) 2548 * GFP_ATOMIC - any node ok 2549 * tsk_is_oom_victim - any node ok 2550 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 2551 * GFP_USER - only nodes in current tasks mems allowed ok. 2552 */ 2553 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 2554 { 2555 struct cpuset *cs; /* current cpuset ancestors */ 2556 int allowed; /* is allocation in zone z allowed? */ 2557 unsigned long flags; 2558 2559 if (in_interrupt()) 2560 return true; 2561 if (node_isset(node, current->mems_allowed)) 2562 return true; 2563 /* 2564 * Allow tasks that have access to memory reserves because they have 2565 * been OOM killed to get memory anywhere. 2566 */ 2567 if (unlikely(tsk_is_oom_victim(current))) 2568 return true; 2569 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 2570 return false; 2571 2572 if (current->flags & PF_EXITING) /* Let dying task have memory */ 2573 return true; 2574 2575 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 2576 spin_lock_irqsave(&callback_lock, flags); 2577 2578 rcu_read_lock(); 2579 cs = nearest_hardwall_ancestor(task_cs(current)); 2580 allowed = node_isset(node, cs->mems_allowed); 2581 rcu_read_unlock(); 2582 2583 spin_unlock_irqrestore(&callback_lock, flags); 2584 return allowed; 2585 } 2586 2587 /** 2588 * cpuset_mem_spread_node() - On which node to begin search for a file page 2589 * cpuset_slab_spread_node() - On which node to begin search for a slab page 2590 * 2591 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 2592 * tasks in a cpuset with is_spread_page or is_spread_slab set), 2593 * and if the memory allocation used cpuset_mem_spread_node() 2594 * to determine on which node to start looking, as it will for 2595 * certain page cache or slab cache pages such as used for file 2596 * system buffers and inode caches, then instead of starting on the 2597 * local node to look for a free page, rather spread the starting 2598 * node around the tasks mems_allowed nodes. 2599 * 2600 * We don't have to worry about the returned node being offline 2601 * because "it can't happen", and even if it did, it would be ok. 2602 * 2603 * The routines calling guarantee_online_mems() are careful to 2604 * only set nodes in task->mems_allowed that are online. So it 2605 * should not be possible for the following code to return an 2606 * offline node. But if it did, that would be ok, as this routine 2607 * is not returning the node where the allocation must be, only 2608 * the node where the search should start. The zonelist passed to 2609 * __alloc_pages() will include all nodes. If the slab allocator 2610 * is passed an offline node, it will fall back to the local node. 2611 * See kmem_cache_alloc_node(). 2612 */ 2613 2614 static int cpuset_spread_node(int *rotor) 2615 { 2616 return *rotor = next_node_in(*rotor, current->mems_allowed); 2617 } 2618 2619 int cpuset_mem_spread_node(void) 2620 { 2621 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 2622 current->cpuset_mem_spread_rotor = 2623 node_random(¤t->mems_allowed); 2624 2625 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 2626 } 2627 2628 int cpuset_slab_spread_node(void) 2629 { 2630 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 2631 current->cpuset_slab_spread_rotor = 2632 node_random(¤t->mems_allowed); 2633 2634 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 2635 } 2636 2637 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 2638 2639 /** 2640 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 2641 * @tsk1: pointer to task_struct of some task. 2642 * @tsk2: pointer to task_struct of some other task. 2643 * 2644 * Description: Return true if @tsk1's mems_allowed intersects the 2645 * mems_allowed of @tsk2. Used by the OOM killer to determine if 2646 * one of the task's memory usage might impact the memory available 2647 * to the other. 2648 **/ 2649 2650 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 2651 const struct task_struct *tsk2) 2652 { 2653 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 2654 } 2655 2656 /** 2657 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 2658 * 2659 * Description: Prints current's name, cpuset name, and cached copy of its 2660 * mems_allowed to the kernel log. 2661 */ 2662 void cpuset_print_current_mems_allowed(void) 2663 { 2664 struct cgroup *cgrp; 2665 2666 rcu_read_lock(); 2667 2668 cgrp = task_cs(current)->css.cgroup; 2669 pr_info("%s cpuset=", current->comm); 2670 pr_cont_cgroup_name(cgrp); 2671 pr_cont(" mems_allowed=%*pbl\n", 2672 nodemask_pr_args(¤t->mems_allowed)); 2673 2674 rcu_read_unlock(); 2675 } 2676 2677 /* 2678 * Collection of memory_pressure is suppressed unless 2679 * this flag is enabled by writing "1" to the special 2680 * cpuset file 'memory_pressure_enabled' in the root cpuset. 2681 */ 2682 2683 int cpuset_memory_pressure_enabled __read_mostly; 2684 2685 /** 2686 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 2687 * 2688 * Keep a running average of the rate of synchronous (direct) 2689 * page reclaim efforts initiated by tasks in each cpuset. 2690 * 2691 * This represents the rate at which some task in the cpuset 2692 * ran low on memory on all nodes it was allowed to use, and 2693 * had to enter the kernels page reclaim code in an effort to 2694 * create more free memory by tossing clean pages or swapping 2695 * or writing dirty pages. 2696 * 2697 * Display to user space in the per-cpuset read-only file 2698 * "memory_pressure". Value displayed is an integer 2699 * representing the recent rate of entry into the synchronous 2700 * (direct) page reclaim by any task attached to the cpuset. 2701 **/ 2702 2703 void __cpuset_memory_pressure_bump(void) 2704 { 2705 rcu_read_lock(); 2706 fmeter_markevent(&task_cs(current)->fmeter); 2707 rcu_read_unlock(); 2708 } 2709 2710 #ifdef CONFIG_PROC_PID_CPUSET 2711 /* 2712 * proc_cpuset_show() 2713 * - Print tasks cpuset path into seq_file. 2714 * - Used for /proc/<pid>/cpuset. 2715 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 2716 * doesn't really matter if tsk->cpuset changes after we read it, 2717 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 2718 * anyway. 2719 */ 2720 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 2721 struct pid *pid, struct task_struct *tsk) 2722 { 2723 char *buf; 2724 struct cgroup_subsys_state *css; 2725 int retval; 2726 2727 retval = -ENOMEM; 2728 buf = kmalloc(PATH_MAX, GFP_KERNEL); 2729 if (!buf) 2730 goto out; 2731 2732 css = task_get_css(tsk, cpuset_cgrp_id); 2733 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 2734 current->nsproxy->cgroup_ns); 2735 css_put(css); 2736 if (retval >= PATH_MAX) 2737 retval = -ENAMETOOLONG; 2738 if (retval < 0) 2739 goto out_free; 2740 seq_puts(m, buf); 2741 seq_putc(m, '\n'); 2742 retval = 0; 2743 out_free: 2744 kfree(buf); 2745 out: 2746 return retval; 2747 } 2748 #endif /* CONFIG_PROC_PID_CPUSET */ 2749 2750 /* Display task mems_allowed in /proc/<pid>/status file. */ 2751 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 2752 { 2753 seq_printf(m, "Mems_allowed:\t%*pb\n", 2754 nodemask_pr_args(&task->mems_allowed)); 2755 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 2756 nodemask_pr_args(&task->mems_allowed)); 2757 } 2758