xref: /linux/kernel/cgroup/cpuset.c (revision b68fc09be48edbc47de1a0f3d42ef8adf6c0ac55)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/sched/mm.h>
48 #include <linux/sched/task.h>
49 #include <linux/seq_file.h>
50 #include <linux/security.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53 #include <linux/stat.h>
54 #include <linux/string.h>
55 #include <linux/time.h>
56 #include <linux/time64.h>
57 #include <linux/backing-dev.h>
58 #include <linux/sort.h>
59 #include <linux/oom.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/uaccess.h>
62 #include <linux/atomic.h>
63 #include <linux/mutex.h>
64 #include <linux/cgroup.h>
65 #include <linux/wait.h>
66 
67 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
68 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
69 
70 /* See "Frequency meter" comments, below. */
71 
72 struct fmeter {
73 	int cnt;		/* unprocessed events count */
74 	int val;		/* most recent output value */
75 	time64_t time;		/* clock (secs) when val computed */
76 	spinlock_t lock;	/* guards read or write of above */
77 };
78 
79 struct cpuset {
80 	struct cgroup_subsys_state css;
81 
82 	unsigned long flags;		/* "unsigned long" so bitops work */
83 
84 	/*
85 	 * On default hierarchy:
86 	 *
87 	 * The user-configured masks can only be changed by writing to
88 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
89 	 * parent masks.
90 	 *
91 	 * The effective masks is the real masks that apply to the tasks
92 	 * in the cpuset. They may be changed if the configured masks are
93 	 * changed or hotplug happens.
94 	 *
95 	 * effective_mask == configured_mask & parent's effective_mask,
96 	 * and if it ends up empty, it will inherit the parent's mask.
97 	 *
98 	 *
99 	 * On legacy hierachy:
100 	 *
101 	 * The user-configured masks are always the same with effective masks.
102 	 */
103 
104 	/* user-configured CPUs and Memory Nodes allow to tasks */
105 	cpumask_var_t cpus_allowed;
106 	nodemask_t mems_allowed;
107 
108 	/* effective CPUs and Memory Nodes allow to tasks */
109 	cpumask_var_t effective_cpus;
110 	nodemask_t effective_mems;
111 
112 	/*
113 	 * This is old Memory Nodes tasks took on.
114 	 *
115 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
116 	 * - A new cpuset's old_mems_allowed is initialized when some
117 	 *   task is moved into it.
118 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
119 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
120 	 *   then old_mems_allowed is updated to mems_allowed.
121 	 */
122 	nodemask_t old_mems_allowed;
123 
124 	struct fmeter fmeter;		/* memory_pressure filter */
125 
126 	/*
127 	 * Tasks are being attached to this cpuset.  Used to prevent
128 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
129 	 */
130 	int attach_in_progress;
131 
132 	/* partition number for rebuild_sched_domains() */
133 	int pn;
134 
135 	/* for custom sched domain */
136 	int relax_domain_level;
137 };
138 
139 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
140 {
141 	return css ? container_of(css, struct cpuset, css) : NULL;
142 }
143 
144 /* Retrieve the cpuset for a task */
145 static inline struct cpuset *task_cs(struct task_struct *task)
146 {
147 	return css_cs(task_css(task, cpuset_cgrp_id));
148 }
149 
150 static inline struct cpuset *parent_cs(struct cpuset *cs)
151 {
152 	return css_cs(cs->css.parent);
153 }
154 
155 #ifdef CONFIG_NUMA
156 static inline bool task_has_mempolicy(struct task_struct *task)
157 {
158 	return task->mempolicy;
159 }
160 #else
161 static inline bool task_has_mempolicy(struct task_struct *task)
162 {
163 	return false;
164 }
165 #endif
166 
167 
168 /* bits in struct cpuset flags field */
169 typedef enum {
170 	CS_ONLINE,
171 	CS_CPU_EXCLUSIVE,
172 	CS_MEM_EXCLUSIVE,
173 	CS_MEM_HARDWALL,
174 	CS_MEMORY_MIGRATE,
175 	CS_SCHED_LOAD_BALANCE,
176 	CS_SPREAD_PAGE,
177 	CS_SPREAD_SLAB,
178 } cpuset_flagbits_t;
179 
180 /* convenient tests for these bits */
181 static inline bool is_cpuset_online(struct cpuset *cs)
182 {
183 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
184 }
185 
186 static inline int is_cpu_exclusive(const struct cpuset *cs)
187 {
188 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
189 }
190 
191 static inline int is_mem_exclusive(const struct cpuset *cs)
192 {
193 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
194 }
195 
196 static inline int is_mem_hardwall(const struct cpuset *cs)
197 {
198 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
199 }
200 
201 static inline int is_sched_load_balance(const struct cpuset *cs)
202 {
203 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
204 }
205 
206 static inline int is_memory_migrate(const struct cpuset *cs)
207 {
208 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
209 }
210 
211 static inline int is_spread_page(const struct cpuset *cs)
212 {
213 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
214 }
215 
216 static inline int is_spread_slab(const struct cpuset *cs)
217 {
218 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
219 }
220 
221 static struct cpuset top_cpuset = {
222 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
223 		  (1 << CS_MEM_EXCLUSIVE)),
224 };
225 
226 /**
227  * cpuset_for_each_child - traverse online children of a cpuset
228  * @child_cs: loop cursor pointing to the current child
229  * @pos_css: used for iteration
230  * @parent_cs: target cpuset to walk children of
231  *
232  * Walk @child_cs through the online children of @parent_cs.  Must be used
233  * with RCU read locked.
234  */
235 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
236 	css_for_each_child((pos_css), &(parent_cs)->css)		\
237 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
238 
239 /**
240  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
241  * @des_cs: loop cursor pointing to the current descendant
242  * @pos_css: used for iteration
243  * @root_cs: target cpuset to walk ancestor of
244  *
245  * Walk @des_cs through the online descendants of @root_cs.  Must be used
246  * with RCU read locked.  The caller may modify @pos_css by calling
247  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
248  * iteration and the first node to be visited.
249  */
250 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
251 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
252 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
253 
254 /*
255  * There are two global locks guarding cpuset structures - cpuset_mutex and
256  * callback_lock. We also require taking task_lock() when dereferencing a
257  * task's cpuset pointer. See "The task_lock() exception", at the end of this
258  * comment.
259  *
260  * A task must hold both locks to modify cpusets.  If a task holds
261  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
262  * is the only task able to also acquire callback_lock and be able to
263  * modify cpusets.  It can perform various checks on the cpuset structure
264  * first, knowing nothing will change.  It can also allocate memory while
265  * just holding cpuset_mutex.  While it is performing these checks, various
266  * callback routines can briefly acquire callback_lock to query cpusets.
267  * Once it is ready to make the changes, it takes callback_lock, blocking
268  * everyone else.
269  *
270  * Calls to the kernel memory allocator can not be made while holding
271  * callback_lock, as that would risk double tripping on callback_lock
272  * from one of the callbacks into the cpuset code from within
273  * __alloc_pages().
274  *
275  * If a task is only holding callback_lock, then it has read-only
276  * access to cpusets.
277  *
278  * Now, the task_struct fields mems_allowed and mempolicy may be changed
279  * by other task, we use alloc_lock in the task_struct fields to protect
280  * them.
281  *
282  * The cpuset_common_file_read() handlers only hold callback_lock across
283  * small pieces of code, such as when reading out possibly multi-word
284  * cpumasks and nodemasks.
285  *
286  * Accessing a task's cpuset should be done in accordance with the
287  * guidelines for accessing subsystem state in kernel/cgroup.c
288  */
289 
290 static DEFINE_MUTEX(cpuset_mutex);
291 static DEFINE_SPINLOCK(callback_lock);
292 
293 static struct workqueue_struct *cpuset_migrate_mm_wq;
294 
295 /*
296  * CPU / memory hotplug is handled asynchronously.
297  */
298 static void cpuset_hotplug_workfn(struct work_struct *work);
299 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
300 
301 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
302 
303 /*
304  * Cgroup v2 behavior is used when on default hierarchy or the
305  * cgroup_v2_mode flag is set.
306  */
307 static inline bool is_in_v2_mode(void)
308 {
309 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
310 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
311 }
312 
313 /*
314  * This is ugly, but preserves the userspace API for existing cpuset
315  * users. If someone tries to mount the "cpuset" filesystem, we
316  * silently switch it to mount "cgroup" instead
317  */
318 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
319 			 int flags, const char *unused_dev_name, void *data)
320 {
321 	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
322 	struct dentry *ret = ERR_PTR(-ENODEV);
323 	if (cgroup_fs) {
324 		char mountopts[] =
325 			"cpuset,noprefix,"
326 			"release_agent=/sbin/cpuset_release_agent";
327 		ret = cgroup_fs->mount(cgroup_fs, flags,
328 					   unused_dev_name, mountopts);
329 		put_filesystem(cgroup_fs);
330 	}
331 	return ret;
332 }
333 
334 static struct file_system_type cpuset_fs_type = {
335 	.name = "cpuset",
336 	.mount = cpuset_mount,
337 };
338 
339 /*
340  * Return in pmask the portion of a cpusets's cpus_allowed that
341  * are online.  If none are online, walk up the cpuset hierarchy
342  * until we find one that does have some online cpus.
343  *
344  * One way or another, we guarantee to return some non-empty subset
345  * of cpu_online_mask.
346  *
347  * Call with callback_lock or cpuset_mutex held.
348  */
349 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
350 {
351 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
352 		cs = parent_cs(cs);
353 		if (unlikely(!cs)) {
354 			/*
355 			 * The top cpuset doesn't have any online cpu as a
356 			 * consequence of a race between cpuset_hotplug_work
357 			 * and cpu hotplug notifier.  But we know the top
358 			 * cpuset's effective_cpus is on its way to to be
359 			 * identical to cpu_online_mask.
360 			 */
361 			cpumask_copy(pmask, cpu_online_mask);
362 			return;
363 		}
364 	}
365 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
366 }
367 
368 /*
369  * Return in *pmask the portion of a cpusets's mems_allowed that
370  * are online, with memory.  If none are online with memory, walk
371  * up the cpuset hierarchy until we find one that does have some
372  * online mems.  The top cpuset always has some mems online.
373  *
374  * One way or another, we guarantee to return some non-empty subset
375  * of node_states[N_MEMORY].
376  *
377  * Call with callback_lock or cpuset_mutex held.
378  */
379 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
380 {
381 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
382 		cs = parent_cs(cs);
383 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
384 }
385 
386 /*
387  * update task's spread flag if cpuset's page/slab spread flag is set
388  *
389  * Call with callback_lock or cpuset_mutex held.
390  */
391 static void cpuset_update_task_spread_flag(struct cpuset *cs,
392 					struct task_struct *tsk)
393 {
394 	if (is_spread_page(cs))
395 		task_set_spread_page(tsk);
396 	else
397 		task_clear_spread_page(tsk);
398 
399 	if (is_spread_slab(cs))
400 		task_set_spread_slab(tsk);
401 	else
402 		task_clear_spread_slab(tsk);
403 }
404 
405 /*
406  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
407  *
408  * One cpuset is a subset of another if all its allowed CPUs and
409  * Memory Nodes are a subset of the other, and its exclusive flags
410  * are only set if the other's are set.  Call holding cpuset_mutex.
411  */
412 
413 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
414 {
415 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
416 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
417 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
418 		is_mem_exclusive(p) <= is_mem_exclusive(q);
419 }
420 
421 /**
422  * alloc_trial_cpuset - allocate a trial cpuset
423  * @cs: the cpuset that the trial cpuset duplicates
424  */
425 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
426 {
427 	struct cpuset *trial;
428 
429 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
430 	if (!trial)
431 		return NULL;
432 
433 	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
434 		goto free_cs;
435 	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
436 		goto free_cpus;
437 
438 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
439 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
440 	return trial;
441 
442 free_cpus:
443 	free_cpumask_var(trial->cpus_allowed);
444 free_cs:
445 	kfree(trial);
446 	return NULL;
447 }
448 
449 /**
450  * free_trial_cpuset - free the trial cpuset
451  * @trial: the trial cpuset to be freed
452  */
453 static void free_trial_cpuset(struct cpuset *trial)
454 {
455 	free_cpumask_var(trial->effective_cpus);
456 	free_cpumask_var(trial->cpus_allowed);
457 	kfree(trial);
458 }
459 
460 /*
461  * validate_change() - Used to validate that any proposed cpuset change
462  *		       follows the structural rules for cpusets.
463  *
464  * If we replaced the flag and mask values of the current cpuset
465  * (cur) with those values in the trial cpuset (trial), would
466  * our various subset and exclusive rules still be valid?  Presumes
467  * cpuset_mutex held.
468  *
469  * 'cur' is the address of an actual, in-use cpuset.  Operations
470  * such as list traversal that depend on the actual address of the
471  * cpuset in the list must use cur below, not trial.
472  *
473  * 'trial' is the address of bulk structure copy of cur, with
474  * perhaps one or more of the fields cpus_allowed, mems_allowed,
475  * or flags changed to new, trial values.
476  *
477  * Return 0 if valid, -errno if not.
478  */
479 
480 static int validate_change(struct cpuset *cur, struct cpuset *trial)
481 {
482 	struct cgroup_subsys_state *css;
483 	struct cpuset *c, *par;
484 	int ret;
485 
486 	rcu_read_lock();
487 
488 	/* Each of our child cpusets must be a subset of us */
489 	ret = -EBUSY;
490 	cpuset_for_each_child(c, css, cur)
491 		if (!is_cpuset_subset(c, trial))
492 			goto out;
493 
494 	/* Remaining checks don't apply to root cpuset */
495 	ret = 0;
496 	if (cur == &top_cpuset)
497 		goto out;
498 
499 	par = parent_cs(cur);
500 
501 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
502 	ret = -EACCES;
503 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
504 		goto out;
505 
506 	/*
507 	 * If either I or some sibling (!= me) is exclusive, we can't
508 	 * overlap
509 	 */
510 	ret = -EINVAL;
511 	cpuset_for_each_child(c, css, par) {
512 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
513 		    c != cur &&
514 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
515 			goto out;
516 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
517 		    c != cur &&
518 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
519 			goto out;
520 	}
521 
522 	/*
523 	 * Cpusets with tasks - existing or newly being attached - can't
524 	 * be changed to have empty cpus_allowed or mems_allowed.
525 	 */
526 	ret = -ENOSPC;
527 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
528 		if (!cpumask_empty(cur->cpus_allowed) &&
529 		    cpumask_empty(trial->cpus_allowed))
530 			goto out;
531 		if (!nodes_empty(cur->mems_allowed) &&
532 		    nodes_empty(trial->mems_allowed))
533 			goto out;
534 	}
535 
536 	/*
537 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
538 	 * tasks.
539 	 */
540 	ret = -EBUSY;
541 	if (is_cpu_exclusive(cur) &&
542 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
543 				       trial->cpus_allowed))
544 		goto out;
545 
546 	ret = 0;
547 out:
548 	rcu_read_unlock();
549 	return ret;
550 }
551 
552 #ifdef CONFIG_SMP
553 /*
554  * Helper routine for generate_sched_domains().
555  * Do cpusets a, b have overlapping effective cpus_allowed masks?
556  */
557 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
558 {
559 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
560 }
561 
562 static void
563 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
564 {
565 	if (dattr->relax_domain_level < c->relax_domain_level)
566 		dattr->relax_domain_level = c->relax_domain_level;
567 	return;
568 }
569 
570 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
571 				    struct cpuset *root_cs)
572 {
573 	struct cpuset *cp;
574 	struct cgroup_subsys_state *pos_css;
575 
576 	rcu_read_lock();
577 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
578 		/* skip the whole subtree if @cp doesn't have any CPU */
579 		if (cpumask_empty(cp->cpus_allowed)) {
580 			pos_css = css_rightmost_descendant(pos_css);
581 			continue;
582 		}
583 
584 		if (is_sched_load_balance(cp))
585 			update_domain_attr(dattr, cp);
586 	}
587 	rcu_read_unlock();
588 }
589 
590 /* Must be called with cpuset_mutex held.  */
591 static inline int nr_cpusets(void)
592 {
593 	/* jump label reference count + the top-level cpuset */
594 	return static_key_count(&cpusets_enabled_key.key) + 1;
595 }
596 
597 /*
598  * generate_sched_domains()
599  *
600  * This function builds a partial partition of the systems CPUs
601  * A 'partial partition' is a set of non-overlapping subsets whose
602  * union is a subset of that set.
603  * The output of this function needs to be passed to kernel/sched/core.c
604  * partition_sched_domains() routine, which will rebuild the scheduler's
605  * load balancing domains (sched domains) as specified by that partial
606  * partition.
607  *
608  * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.txt
609  * for a background explanation of this.
610  *
611  * Does not return errors, on the theory that the callers of this
612  * routine would rather not worry about failures to rebuild sched
613  * domains when operating in the severe memory shortage situations
614  * that could cause allocation failures below.
615  *
616  * Must be called with cpuset_mutex held.
617  *
618  * The three key local variables below are:
619  *    q  - a linked-list queue of cpuset pointers, used to implement a
620  *	   top-down scan of all cpusets.  This scan loads a pointer
621  *	   to each cpuset marked is_sched_load_balance into the
622  *	   array 'csa'.  For our purposes, rebuilding the schedulers
623  *	   sched domains, we can ignore !is_sched_load_balance cpusets.
624  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
625  *	   that need to be load balanced, for convenient iterative
626  *	   access by the subsequent code that finds the best partition,
627  *	   i.e the set of domains (subsets) of CPUs such that the
628  *	   cpus_allowed of every cpuset marked is_sched_load_balance
629  *	   is a subset of one of these domains, while there are as
630  *	   many such domains as possible, each as small as possible.
631  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
632  *	   the kernel/sched/core.c routine partition_sched_domains() in a
633  *	   convenient format, that can be easily compared to the prior
634  *	   value to determine what partition elements (sched domains)
635  *	   were changed (added or removed.)
636  *
637  * Finding the best partition (set of domains):
638  *	The triple nested loops below over i, j, k scan over the
639  *	load balanced cpusets (using the array of cpuset pointers in
640  *	csa[]) looking for pairs of cpusets that have overlapping
641  *	cpus_allowed, but which don't have the same 'pn' partition
642  *	number and gives them in the same partition number.  It keeps
643  *	looping on the 'restart' label until it can no longer find
644  *	any such pairs.
645  *
646  *	The union of the cpus_allowed masks from the set of
647  *	all cpusets having the same 'pn' value then form the one
648  *	element of the partition (one sched domain) to be passed to
649  *	partition_sched_domains().
650  */
651 static int generate_sched_domains(cpumask_var_t **domains,
652 			struct sched_domain_attr **attributes)
653 {
654 	struct cpuset *cp;	/* scans q */
655 	struct cpuset **csa;	/* array of all cpuset ptrs */
656 	int csn;		/* how many cpuset ptrs in csa so far */
657 	int i, j, k;		/* indices for partition finding loops */
658 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
659 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
660 	int ndoms = 0;		/* number of sched domains in result */
661 	int nslot;		/* next empty doms[] struct cpumask slot */
662 	struct cgroup_subsys_state *pos_css;
663 
664 	doms = NULL;
665 	dattr = NULL;
666 	csa = NULL;
667 
668 	/* Special case for the 99% of systems with one, full, sched domain */
669 	if (is_sched_load_balance(&top_cpuset)) {
670 		ndoms = 1;
671 		doms = alloc_sched_domains(ndoms);
672 		if (!doms)
673 			goto done;
674 
675 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
676 		if (dattr) {
677 			*dattr = SD_ATTR_INIT;
678 			update_domain_attr_tree(dattr, &top_cpuset);
679 		}
680 		cpumask_and(doms[0], top_cpuset.effective_cpus,
681 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
682 
683 		goto done;
684 	}
685 
686 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
687 	if (!csa)
688 		goto done;
689 	csn = 0;
690 
691 	rcu_read_lock();
692 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
693 		if (cp == &top_cpuset)
694 			continue;
695 		/*
696 		 * Continue traversing beyond @cp iff @cp has some CPUs and
697 		 * isn't load balancing.  The former is obvious.  The
698 		 * latter: All child cpusets contain a subset of the
699 		 * parent's cpus, so just skip them, and then we call
700 		 * update_domain_attr_tree() to calc relax_domain_level of
701 		 * the corresponding sched domain.
702 		 */
703 		if (!cpumask_empty(cp->cpus_allowed) &&
704 		    !(is_sched_load_balance(cp) &&
705 		      cpumask_intersects(cp->cpus_allowed,
706 					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
707 			continue;
708 
709 		if (is_sched_load_balance(cp))
710 			csa[csn++] = cp;
711 
712 		/* skip @cp's subtree */
713 		pos_css = css_rightmost_descendant(pos_css);
714 	}
715 	rcu_read_unlock();
716 
717 	for (i = 0; i < csn; i++)
718 		csa[i]->pn = i;
719 	ndoms = csn;
720 
721 restart:
722 	/* Find the best partition (set of sched domains) */
723 	for (i = 0; i < csn; i++) {
724 		struct cpuset *a = csa[i];
725 		int apn = a->pn;
726 
727 		for (j = 0; j < csn; j++) {
728 			struct cpuset *b = csa[j];
729 			int bpn = b->pn;
730 
731 			if (apn != bpn && cpusets_overlap(a, b)) {
732 				for (k = 0; k < csn; k++) {
733 					struct cpuset *c = csa[k];
734 
735 					if (c->pn == bpn)
736 						c->pn = apn;
737 				}
738 				ndoms--;	/* one less element */
739 				goto restart;
740 			}
741 		}
742 	}
743 
744 	/*
745 	 * Now we know how many domains to create.
746 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
747 	 */
748 	doms = alloc_sched_domains(ndoms);
749 	if (!doms)
750 		goto done;
751 
752 	/*
753 	 * The rest of the code, including the scheduler, can deal with
754 	 * dattr==NULL case. No need to abort if alloc fails.
755 	 */
756 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
757 			      GFP_KERNEL);
758 
759 	for (nslot = 0, i = 0; i < csn; i++) {
760 		struct cpuset *a = csa[i];
761 		struct cpumask *dp;
762 		int apn = a->pn;
763 
764 		if (apn < 0) {
765 			/* Skip completed partitions */
766 			continue;
767 		}
768 
769 		dp = doms[nslot];
770 
771 		if (nslot == ndoms) {
772 			static int warnings = 10;
773 			if (warnings) {
774 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
775 					nslot, ndoms, csn, i, apn);
776 				warnings--;
777 			}
778 			continue;
779 		}
780 
781 		cpumask_clear(dp);
782 		if (dattr)
783 			*(dattr + nslot) = SD_ATTR_INIT;
784 		for (j = i; j < csn; j++) {
785 			struct cpuset *b = csa[j];
786 
787 			if (apn == b->pn) {
788 				cpumask_or(dp, dp, b->effective_cpus);
789 				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
790 				if (dattr)
791 					update_domain_attr_tree(dattr + nslot, b);
792 
793 				/* Done with this partition */
794 				b->pn = -1;
795 			}
796 		}
797 		nslot++;
798 	}
799 	BUG_ON(nslot != ndoms);
800 
801 done:
802 	kfree(csa);
803 
804 	/*
805 	 * Fallback to the default domain if kmalloc() failed.
806 	 * See comments in partition_sched_domains().
807 	 */
808 	if (doms == NULL)
809 		ndoms = 1;
810 
811 	*domains    = doms;
812 	*attributes = dattr;
813 	return ndoms;
814 }
815 
816 /*
817  * Rebuild scheduler domains.
818  *
819  * If the flag 'sched_load_balance' of any cpuset with non-empty
820  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
821  * which has that flag enabled, or if any cpuset with a non-empty
822  * 'cpus' is removed, then call this routine to rebuild the
823  * scheduler's dynamic sched domains.
824  *
825  * Call with cpuset_mutex held.  Takes get_online_cpus().
826  */
827 static void rebuild_sched_domains_locked(void)
828 {
829 	struct sched_domain_attr *attr;
830 	cpumask_var_t *doms;
831 	int ndoms;
832 
833 	lockdep_assert_held(&cpuset_mutex);
834 	get_online_cpus();
835 
836 	/*
837 	 * We have raced with CPU hotplug. Don't do anything to avoid
838 	 * passing doms with offlined cpu to partition_sched_domains().
839 	 * Anyways, hotplug work item will rebuild sched domains.
840 	 */
841 	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
842 		goto out;
843 
844 	/* Generate domain masks and attrs */
845 	ndoms = generate_sched_domains(&doms, &attr);
846 
847 	/* Have scheduler rebuild the domains */
848 	partition_sched_domains(ndoms, doms, attr);
849 out:
850 	put_online_cpus();
851 }
852 #else /* !CONFIG_SMP */
853 static void rebuild_sched_domains_locked(void)
854 {
855 }
856 #endif /* CONFIG_SMP */
857 
858 void rebuild_sched_domains(void)
859 {
860 	mutex_lock(&cpuset_mutex);
861 	rebuild_sched_domains_locked();
862 	mutex_unlock(&cpuset_mutex);
863 }
864 
865 /**
866  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
867  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
868  *
869  * Iterate through each task of @cs updating its cpus_allowed to the
870  * effective cpuset's.  As this function is called with cpuset_mutex held,
871  * cpuset membership stays stable.
872  */
873 static void update_tasks_cpumask(struct cpuset *cs)
874 {
875 	struct css_task_iter it;
876 	struct task_struct *task;
877 
878 	css_task_iter_start(&cs->css, 0, &it);
879 	while ((task = css_task_iter_next(&it)))
880 		set_cpus_allowed_ptr(task, cs->effective_cpus);
881 	css_task_iter_end(&it);
882 }
883 
884 /*
885  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
886  * @cs: the cpuset to consider
887  * @new_cpus: temp variable for calculating new effective_cpus
888  *
889  * When congifured cpumask is changed, the effective cpumasks of this cpuset
890  * and all its descendants need to be updated.
891  *
892  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
893  *
894  * Called with cpuset_mutex held
895  */
896 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
897 {
898 	struct cpuset *cp;
899 	struct cgroup_subsys_state *pos_css;
900 	bool need_rebuild_sched_domains = false;
901 
902 	rcu_read_lock();
903 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
904 		struct cpuset *parent = parent_cs(cp);
905 
906 		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
907 
908 		/*
909 		 * If it becomes empty, inherit the effective mask of the
910 		 * parent, which is guaranteed to have some CPUs.
911 		 */
912 		if (is_in_v2_mode() && cpumask_empty(new_cpus))
913 			cpumask_copy(new_cpus, parent->effective_cpus);
914 
915 		/* Skip the whole subtree if the cpumask remains the same. */
916 		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
917 			pos_css = css_rightmost_descendant(pos_css);
918 			continue;
919 		}
920 
921 		if (!css_tryget_online(&cp->css))
922 			continue;
923 		rcu_read_unlock();
924 
925 		spin_lock_irq(&callback_lock);
926 		cpumask_copy(cp->effective_cpus, new_cpus);
927 		spin_unlock_irq(&callback_lock);
928 
929 		WARN_ON(!is_in_v2_mode() &&
930 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
931 
932 		update_tasks_cpumask(cp);
933 
934 		/*
935 		 * If the effective cpumask of any non-empty cpuset is changed,
936 		 * we need to rebuild sched domains.
937 		 */
938 		if (!cpumask_empty(cp->cpus_allowed) &&
939 		    is_sched_load_balance(cp))
940 			need_rebuild_sched_domains = true;
941 
942 		rcu_read_lock();
943 		css_put(&cp->css);
944 	}
945 	rcu_read_unlock();
946 
947 	if (need_rebuild_sched_domains)
948 		rebuild_sched_domains_locked();
949 }
950 
951 /**
952  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
953  * @cs: the cpuset to consider
954  * @trialcs: trial cpuset
955  * @buf: buffer of cpu numbers written to this cpuset
956  */
957 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
958 			  const char *buf)
959 {
960 	int retval;
961 
962 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
963 	if (cs == &top_cpuset)
964 		return -EACCES;
965 
966 	/*
967 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
968 	 * Since cpulist_parse() fails on an empty mask, we special case
969 	 * that parsing.  The validate_change() call ensures that cpusets
970 	 * with tasks have cpus.
971 	 */
972 	if (!*buf) {
973 		cpumask_clear(trialcs->cpus_allowed);
974 	} else {
975 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
976 		if (retval < 0)
977 			return retval;
978 
979 		if (!cpumask_subset(trialcs->cpus_allowed,
980 				    top_cpuset.cpus_allowed))
981 			return -EINVAL;
982 	}
983 
984 	/* Nothing to do if the cpus didn't change */
985 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
986 		return 0;
987 
988 	retval = validate_change(cs, trialcs);
989 	if (retval < 0)
990 		return retval;
991 
992 	spin_lock_irq(&callback_lock);
993 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
994 	spin_unlock_irq(&callback_lock);
995 
996 	/* use trialcs->cpus_allowed as a temp variable */
997 	update_cpumasks_hier(cs, trialcs->cpus_allowed);
998 	return 0;
999 }
1000 
1001 /*
1002  * Migrate memory region from one set of nodes to another.  This is
1003  * performed asynchronously as it can be called from process migration path
1004  * holding locks involved in process management.  All mm migrations are
1005  * performed in the queued order and can be waited for by flushing
1006  * cpuset_migrate_mm_wq.
1007  */
1008 
1009 struct cpuset_migrate_mm_work {
1010 	struct work_struct	work;
1011 	struct mm_struct	*mm;
1012 	nodemask_t		from;
1013 	nodemask_t		to;
1014 };
1015 
1016 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1017 {
1018 	struct cpuset_migrate_mm_work *mwork =
1019 		container_of(work, struct cpuset_migrate_mm_work, work);
1020 
1021 	/* on a wq worker, no need to worry about %current's mems_allowed */
1022 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1023 	mmput(mwork->mm);
1024 	kfree(mwork);
1025 }
1026 
1027 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1028 							const nodemask_t *to)
1029 {
1030 	struct cpuset_migrate_mm_work *mwork;
1031 
1032 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1033 	if (mwork) {
1034 		mwork->mm = mm;
1035 		mwork->from = *from;
1036 		mwork->to = *to;
1037 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1038 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1039 	} else {
1040 		mmput(mm);
1041 	}
1042 }
1043 
1044 static void cpuset_post_attach(void)
1045 {
1046 	flush_workqueue(cpuset_migrate_mm_wq);
1047 }
1048 
1049 /*
1050  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1051  * @tsk: the task to change
1052  * @newmems: new nodes that the task will be set
1053  *
1054  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1055  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1056  * parallel, it might temporarily see an empty intersection, which results in
1057  * a seqlock check and retry before OOM or allocation failure.
1058  */
1059 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1060 					nodemask_t *newmems)
1061 {
1062 	task_lock(tsk);
1063 
1064 	local_irq_disable();
1065 	write_seqcount_begin(&tsk->mems_allowed_seq);
1066 
1067 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1068 	mpol_rebind_task(tsk, newmems);
1069 	tsk->mems_allowed = *newmems;
1070 
1071 	write_seqcount_end(&tsk->mems_allowed_seq);
1072 	local_irq_enable();
1073 
1074 	task_unlock(tsk);
1075 }
1076 
1077 static void *cpuset_being_rebound;
1078 
1079 /**
1080  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1081  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1082  *
1083  * Iterate through each task of @cs updating its mems_allowed to the
1084  * effective cpuset's.  As this function is called with cpuset_mutex held,
1085  * cpuset membership stays stable.
1086  */
1087 static void update_tasks_nodemask(struct cpuset *cs)
1088 {
1089 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1090 	struct css_task_iter it;
1091 	struct task_struct *task;
1092 
1093 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1094 
1095 	guarantee_online_mems(cs, &newmems);
1096 
1097 	/*
1098 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1099 	 * take while holding tasklist_lock.  Forks can happen - the
1100 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1101 	 * and rebind their vma mempolicies too.  Because we still hold
1102 	 * the global cpuset_mutex, we know that no other rebind effort
1103 	 * will be contending for the global variable cpuset_being_rebound.
1104 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1105 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1106 	 */
1107 	css_task_iter_start(&cs->css, 0, &it);
1108 	while ((task = css_task_iter_next(&it))) {
1109 		struct mm_struct *mm;
1110 		bool migrate;
1111 
1112 		cpuset_change_task_nodemask(task, &newmems);
1113 
1114 		mm = get_task_mm(task);
1115 		if (!mm)
1116 			continue;
1117 
1118 		migrate = is_memory_migrate(cs);
1119 
1120 		mpol_rebind_mm(mm, &cs->mems_allowed);
1121 		if (migrate)
1122 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1123 		else
1124 			mmput(mm);
1125 	}
1126 	css_task_iter_end(&it);
1127 
1128 	/*
1129 	 * All the tasks' nodemasks have been updated, update
1130 	 * cs->old_mems_allowed.
1131 	 */
1132 	cs->old_mems_allowed = newmems;
1133 
1134 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1135 	cpuset_being_rebound = NULL;
1136 }
1137 
1138 /*
1139  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1140  * @cs: the cpuset to consider
1141  * @new_mems: a temp variable for calculating new effective_mems
1142  *
1143  * When configured nodemask is changed, the effective nodemasks of this cpuset
1144  * and all its descendants need to be updated.
1145  *
1146  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1147  *
1148  * Called with cpuset_mutex held
1149  */
1150 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1151 {
1152 	struct cpuset *cp;
1153 	struct cgroup_subsys_state *pos_css;
1154 
1155 	rcu_read_lock();
1156 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1157 		struct cpuset *parent = parent_cs(cp);
1158 
1159 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1160 
1161 		/*
1162 		 * If it becomes empty, inherit the effective mask of the
1163 		 * parent, which is guaranteed to have some MEMs.
1164 		 */
1165 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1166 			*new_mems = parent->effective_mems;
1167 
1168 		/* Skip the whole subtree if the nodemask remains the same. */
1169 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1170 			pos_css = css_rightmost_descendant(pos_css);
1171 			continue;
1172 		}
1173 
1174 		if (!css_tryget_online(&cp->css))
1175 			continue;
1176 		rcu_read_unlock();
1177 
1178 		spin_lock_irq(&callback_lock);
1179 		cp->effective_mems = *new_mems;
1180 		spin_unlock_irq(&callback_lock);
1181 
1182 		WARN_ON(!is_in_v2_mode() &&
1183 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1184 
1185 		update_tasks_nodemask(cp);
1186 
1187 		rcu_read_lock();
1188 		css_put(&cp->css);
1189 	}
1190 	rcu_read_unlock();
1191 }
1192 
1193 /*
1194  * Handle user request to change the 'mems' memory placement
1195  * of a cpuset.  Needs to validate the request, update the
1196  * cpusets mems_allowed, and for each task in the cpuset,
1197  * update mems_allowed and rebind task's mempolicy and any vma
1198  * mempolicies and if the cpuset is marked 'memory_migrate',
1199  * migrate the tasks pages to the new memory.
1200  *
1201  * Call with cpuset_mutex held. May take callback_lock during call.
1202  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1203  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1204  * their mempolicies to the cpusets new mems_allowed.
1205  */
1206 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1207 			   const char *buf)
1208 {
1209 	int retval;
1210 
1211 	/*
1212 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1213 	 * it's read-only
1214 	 */
1215 	if (cs == &top_cpuset) {
1216 		retval = -EACCES;
1217 		goto done;
1218 	}
1219 
1220 	/*
1221 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1222 	 * Since nodelist_parse() fails on an empty mask, we special case
1223 	 * that parsing.  The validate_change() call ensures that cpusets
1224 	 * with tasks have memory.
1225 	 */
1226 	if (!*buf) {
1227 		nodes_clear(trialcs->mems_allowed);
1228 	} else {
1229 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1230 		if (retval < 0)
1231 			goto done;
1232 
1233 		if (!nodes_subset(trialcs->mems_allowed,
1234 				  top_cpuset.mems_allowed)) {
1235 			retval = -EINVAL;
1236 			goto done;
1237 		}
1238 	}
1239 
1240 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1241 		retval = 0;		/* Too easy - nothing to do */
1242 		goto done;
1243 	}
1244 	retval = validate_change(cs, trialcs);
1245 	if (retval < 0)
1246 		goto done;
1247 
1248 	spin_lock_irq(&callback_lock);
1249 	cs->mems_allowed = trialcs->mems_allowed;
1250 	spin_unlock_irq(&callback_lock);
1251 
1252 	/* use trialcs->mems_allowed as a temp variable */
1253 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1254 done:
1255 	return retval;
1256 }
1257 
1258 bool current_cpuset_is_being_rebound(void)
1259 {
1260 	bool ret;
1261 
1262 	rcu_read_lock();
1263 	ret = task_cs(current) == cpuset_being_rebound;
1264 	rcu_read_unlock();
1265 
1266 	return ret;
1267 }
1268 
1269 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1270 {
1271 #ifdef CONFIG_SMP
1272 	if (val < -1 || val >= sched_domain_level_max)
1273 		return -EINVAL;
1274 #endif
1275 
1276 	if (val != cs->relax_domain_level) {
1277 		cs->relax_domain_level = val;
1278 		if (!cpumask_empty(cs->cpus_allowed) &&
1279 		    is_sched_load_balance(cs))
1280 			rebuild_sched_domains_locked();
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 /**
1287  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1288  * @cs: the cpuset in which each task's spread flags needs to be changed
1289  *
1290  * Iterate through each task of @cs updating its spread flags.  As this
1291  * function is called with cpuset_mutex held, cpuset membership stays
1292  * stable.
1293  */
1294 static void update_tasks_flags(struct cpuset *cs)
1295 {
1296 	struct css_task_iter it;
1297 	struct task_struct *task;
1298 
1299 	css_task_iter_start(&cs->css, 0, &it);
1300 	while ((task = css_task_iter_next(&it)))
1301 		cpuset_update_task_spread_flag(cs, task);
1302 	css_task_iter_end(&it);
1303 }
1304 
1305 /*
1306  * update_flag - read a 0 or a 1 in a file and update associated flag
1307  * bit:		the bit to update (see cpuset_flagbits_t)
1308  * cs:		the cpuset to update
1309  * turning_on: 	whether the flag is being set or cleared
1310  *
1311  * Call with cpuset_mutex held.
1312  */
1313 
1314 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1315 		       int turning_on)
1316 {
1317 	struct cpuset *trialcs;
1318 	int balance_flag_changed;
1319 	int spread_flag_changed;
1320 	int err;
1321 
1322 	trialcs = alloc_trial_cpuset(cs);
1323 	if (!trialcs)
1324 		return -ENOMEM;
1325 
1326 	if (turning_on)
1327 		set_bit(bit, &trialcs->flags);
1328 	else
1329 		clear_bit(bit, &trialcs->flags);
1330 
1331 	err = validate_change(cs, trialcs);
1332 	if (err < 0)
1333 		goto out;
1334 
1335 	balance_flag_changed = (is_sched_load_balance(cs) !=
1336 				is_sched_load_balance(trialcs));
1337 
1338 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1339 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1340 
1341 	spin_lock_irq(&callback_lock);
1342 	cs->flags = trialcs->flags;
1343 	spin_unlock_irq(&callback_lock);
1344 
1345 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1346 		rebuild_sched_domains_locked();
1347 
1348 	if (spread_flag_changed)
1349 		update_tasks_flags(cs);
1350 out:
1351 	free_trial_cpuset(trialcs);
1352 	return err;
1353 }
1354 
1355 /*
1356  * Frequency meter - How fast is some event occurring?
1357  *
1358  * These routines manage a digitally filtered, constant time based,
1359  * event frequency meter.  There are four routines:
1360  *   fmeter_init() - initialize a frequency meter.
1361  *   fmeter_markevent() - called each time the event happens.
1362  *   fmeter_getrate() - returns the recent rate of such events.
1363  *   fmeter_update() - internal routine used to update fmeter.
1364  *
1365  * A common data structure is passed to each of these routines,
1366  * which is used to keep track of the state required to manage the
1367  * frequency meter and its digital filter.
1368  *
1369  * The filter works on the number of events marked per unit time.
1370  * The filter is single-pole low-pass recursive (IIR).  The time unit
1371  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1372  * simulate 3 decimal digits of precision (multiplied by 1000).
1373  *
1374  * With an FM_COEF of 933, and a time base of 1 second, the filter
1375  * has a half-life of 10 seconds, meaning that if the events quit
1376  * happening, then the rate returned from the fmeter_getrate()
1377  * will be cut in half each 10 seconds, until it converges to zero.
1378  *
1379  * It is not worth doing a real infinitely recursive filter.  If more
1380  * than FM_MAXTICKS ticks have elapsed since the last filter event,
1381  * just compute FM_MAXTICKS ticks worth, by which point the level
1382  * will be stable.
1383  *
1384  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1385  * arithmetic overflow in the fmeter_update() routine.
1386  *
1387  * Given the simple 32 bit integer arithmetic used, this meter works
1388  * best for reporting rates between one per millisecond (msec) and
1389  * one per 32 (approx) seconds.  At constant rates faster than one
1390  * per msec it maxes out at values just under 1,000,000.  At constant
1391  * rates between one per msec, and one per second it will stabilize
1392  * to a value N*1000, where N is the rate of events per second.
1393  * At constant rates between one per second and one per 32 seconds,
1394  * it will be choppy, moving up on the seconds that have an event,
1395  * and then decaying until the next event.  At rates slower than
1396  * about one in 32 seconds, it decays all the way back to zero between
1397  * each event.
1398  */
1399 
1400 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
1401 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1402 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
1403 #define FM_SCALE 1000		/* faux fixed point scale */
1404 
1405 /* Initialize a frequency meter */
1406 static void fmeter_init(struct fmeter *fmp)
1407 {
1408 	fmp->cnt = 0;
1409 	fmp->val = 0;
1410 	fmp->time = 0;
1411 	spin_lock_init(&fmp->lock);
1412 }
1413 
1414 /* Internal meter update - process cnt events and update value */
1415 static void fmeter_update(struct fmeter *fmp)
1416 {
1417 	time64_t now;
1418 	u32 ticks;
1419 
1420 	now = ktime_get_seconds();
1421 	ticks = now - fmp->time;
1422 
1423 	if (ticks == 0)
1424 		return;
1425 
1426 	ticks = min(FM_MAXTICKS, ticks);
1427 	while (ticks-- > 0)
1428 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1429 	fmp->time = now;
1430 
1431 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1432 	fmp->cnt = 0;
1433 }
1434 
1435 /* Process any previous ticks, then bump cnt by one (times scale). */
1436 static void fmeter_markevent(struct fmeter *fmp)
1437 {
1438 	spin_lock(&fmp->lock);
1439 	fmeter_update(fmp);
1440 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1441 	spin_unlock(&fmp->lock);
1442 }
1443 
1444 /* Process any previous ticks, then return current value. */
1445 static int fmeter_getrate(struct fmeter *fmp)
1446 {
1447 	int val;
1448 
1449 	spin_lock(&fmp->lock);
1450 	fmeter_update(fmp);
1451 	val = fmp->val;
1452 	spin_unlock(&fmp->lock);
1453 	return val;
1454 }
1455 
1456 static struct cpuset *cpuset_attach_old_cs;
1457 
1458 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1459 static int cpuset_can_attach(struct cgroup_taskset *tset)
1460 {
1461 	struct cgroup_subsys_state *css;
1462 	struct cpuset *cs;
1463 	struct task_struct *task;
1464 	int ret;
1465 
1466 	/* used later by cpuset_attach() */
1467 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1468 	cs = css_cs(css);
1469 
1470 	mutex_lock(&cpuset_mutex);
1471 
1472 	/* allow moving tasks into an empty cpuset if on default hierarchy */
1473 	ret = -ENOSPC;
1474 	if (!is_in_v2_mode() &&
1475 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1476 		goto out_unlock;
1477 
1478 	cgroup_taskset_for_each(task, css, tset) {
1479 		ret = task_can_attach(task, cs->cpus_allowed);
1480 		if (ret)
1481 			goto out_unlock;
1482 		ret = security_task_setscheduler(task);
1483 		if (ret)
1484 			goto out_unlock;
1485 	}
1486 
1487 	/*
1488 	 * Mark attach is in progress.  This makes validate_change() fail
1489 	 * changes which zero cpus/mems_allowed.
1490 	 */
1491 	cs->attach_in_progress++;
1492 	ret = 0;
1493 out_unlock:
1494 	mutex_unlock(&cpuset_mutex);
1495 	return ret;
1496 }
1497 
1498 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1499 {
1500 	struct cgroup_subsys_state *css;
1501 	struct cpuset *cs;
1502 
1503 	cgroup_taskset_first(tset, &css);
1504 	cs = css_cs(css);
1505 
1506 	mutex_lock(&cpuset_mutex);
1507 	css_cs(css)->attach_in_progress--;
1508 	mutex_unlock(&cpuset_mutex);
1509 }
1510 
1511 /*
1512  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1513  * but we can't allocate it dynamically there.  Define it global and
1514  * allocate from cpuset_init().
1515  */
1516 static cpumask_var_t cpus_attach;
1517 
1518 static void cpuset_attach(struct cgroup_taskset *tset)
1519 {
1520 	/* static buf protected by cpuset_mutex */
1521 	static nodemask_t cpuset_attach_nodemask_to;
1522 	struct task_struct *task;
1523 	struct task_struct *leader;
1524 	struct cgroup_subsys_state *css;
1525 	struct cpuset *cs;
1526 	struct cpuset *oldcs = cpuset_attach_old_cs;
1527 
1528 	cgroup_taskset_first(tset, &css);
1529 	cs = css_cs(css);
1530 
1531 	mutex_lock(&cpuset_mutex);
1532 
1533 	/* prepare for attach */
1534 	if (cs == &top_cpuset)
1535 		cpumask_copy(cpus_attach, cpu_possible_mask);
1536 	else
1537 		guarantee_online_cpus(cs, cpus_attach);
1538 
1539 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1540 
1541 	cgroup_taskset_for_each(task, css, tset) {
1542 		/*
1543 		 * can_attach beforehand should guarantee that this doesn't
1544 		 * fail.  TODO: have a better way to handle failure here
1545 		 */
1546 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1547 
1548 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1549 		cpuset_update_task_spread_flag(cs, task);
1550 	}
1551 
1552 	/*
1553 	 * Change mm for all threadgroup leaders. This is expensive and may
1554 	 * sleep and should be moved outside migration path proper.
1555 	 */
1556 	cpuset_attach_nodemask_to = cs->effective_mems;
1557 	cgroup_taskset_for_each_leader(leader, css, tset) {
1558 		struct mm_struct *mm = get_task_mm(leader);
1559 
1560 		if (mm) {
1561 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1562 
1563 			/*
1564 			 * old_mems_allowed is the same with mems_allowed
1565 			 * here, except if this task is being moved
1566 			 * automatically due to hotplug.  In that case
1567 			 * @mems_allowed has been updated and is empty, so
1568 			 * @old_mems_allowed is the right nodesets that we
1569 			 * migrate mm from.
1570 			 */
1571 			if (is_memory_migrate(cs))
1572 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1573 						  &cpuset_attach_nodemask_to);
1574 			else
1575 				mmput(mm);
1576 		}
1577 	}
1578 
1579 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1580 
1581 	cs->attach_in_progress--;
1582 	if (!cs->attach_in_progress)
1583 		wake_up(&cpuset_attach_wq);
1584 
1585 	mutex_unlock(&cpuset_mutex);
1586 }
1587 
1588 /* The various types of files and directories in a cpuset file system */
1589 
1590 typedef enum {
1591 	FILE_MEMORY_MIGRATE,
1592 	FILE_CPULIST,
1593 	FILE_MEMLIST,
1594 	FILE_EFFECTIVE_CPULIST,
1595 	FILE_EFFECTIVE_MEMLIST,
1596 	FILE_CPU_EXCLUSIVE,
1597 	FILE_MEM_EXCLUSIVE,
1598 	FILE_MEM_HARDWALL,
1599 	FILE_SCHED_LOAD_BALANCE,
1600 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1601 	FILE_MEMORY_PRESSURE_ENABLED,
1602 	FILE_MEMORY_PRESSURE,
1603 	FILE_SPREAD_PAGE,
1604 	FILE_SPREAD_SLAB,
1605 } cpuset_filetype_t;
1606 
1607 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1608 			    u64 val)
1609 {
1610 	struct cpuset *cs = css_cs(css);
1611 	cpuset_filetype_t type = cft->private;
1612 	int retval = 0;
1613 
1614 	mutex_lock(&cpuset_mutex);
1615 	if (!is_cpuset_online(cs)) {
1616 		retval = -ENODEV;
1617 		goto out_unlock;
1618 	}
1619 
1620 	switch (type) {
1621 	case FILE_CPU_EXCLUSIVE:
1622 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1623 		break;
1624 	case FILE_MEM_EXCLUSIVE:
1625 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1626 		break;
1627 	case FILE_MEM_HARDWALL:
1628 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
1629 		break;
1630 	case FILE_SCHED_LOAD_BALANCE:
1631 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1632 		break;
1633 	case FILE_MEMORY_MIGRATE:
1634 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1635 		break;
1636 	case FILE_MEMORY_PRESSURE_ENABLED:
1637 		cpuset_memory_pressure_enabled = !!val;
1638 		break;
1639 	case FILE_SPREAD_PAGE:
1640 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1641 		break;
1642 	case FILE_SPREAD_SLAB:
1643 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1644 		break;
1645 	default:
1646 		retval = -EINVAL;
1647 		break;
1648 	}
1649 out_unlock:
1650 	mutex_unlock(&cpuset_mutex);
1651 	return retval;
1652 }
1653 
1654 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1655 			    s64 val)
1656 {
1657 	struct cpuset *cs = css_cs(css);
1658 	cpuset_filetype_t type = cft->private;
1659 	int retval = -ENODEV;
1660 
1661 	mutex_lock(&cpuset_mutex);
1662 	if (!is_cpuset_online(cs))
1663 		goto out_unlock;
1664 
1665 	switch (type) {
1666 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1667 		retval = update_relax_domain_level(cs, val);
1668 		break;
1669 	default:
1670 		retval = -EINVAL;
1671 		break;
1672 	}
1673 out_unlock:
1674 	mutex_unlock(&cpuset_mutex);
1675 	return retval;
1676 }
1677 
1678 /*
1679  * Common handling for a write to a "cpus" or "mems" file.
1680  */
1681 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1682 				    char *buf, size_t nbytes, loff_t off)
1683 {
1684 	struct cpuset *cs = css_cs(of_css(of));
1685 	struct cpuset *trialcs;
1686 	int retval = -ENODEV;
1687 
1688 	buf = strstrip(buf);
1689 
1690 	/*
1691 	 * CPU or memory hotunplug may leave @cs w/o any execution
1692 	 * resources, in which case the hotplug code asynchronously updates
1693 	 * configuration and transfers all tasks to the nearest ancestor
1694 	 * which can execute.
1695 	 *
1696 	 * As writes to "cpus" or "mems" may restore @cs's execution
1697 	 * resources, wait for the previously scheduled operations before
1698 	 * proceeding, so that we don't end up keep removing tasks added
1699 	 * after execution capability is restored.
1700 	 *
1701 	 * cpuset_hotplug_work calls back into cgroup core via
1702 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1703 	 * operation like this one can lead to a deadlock through kernfs
1704 	 * active_ref protection.  Let's break the protection.  Losing the
1705 	 * protection is okay as we check whether @cs is online after
1706 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
1707 	 * hierarchies.
1708 	 */
1709 	css_get(&cs->css);
1710 	kernfs_break_active_protection(of->kn);
1711 	flush_work(&cpuset_hotplug_work);
1712 
1713 	mutex_lock(&cpuset_mutex);
1714 	if (!is_cpuset_online(cs))
1715 		goto out_unlock;
1716 
1717 	trialcs = alloc_trial_cpuset(cs);
1718 	if (!trialcs) {
1719 		retval = -ENOMEM;
1720 		goto out_unlock;
1721 	}
1722 
1723 	switch (of_cft(of)->private) {
1724 	case FILE_CPULIST:
1725 		retval = update_cpumask(cs, trialcs, buf);
1726 		break;
1727 	case FILE_MEMLIST:
1728 		retval = update_nodemask(cs, trialcs, buf);
1729 		break;
1730 	default:
1731 		retval = -EINVAL;
1732 		break;
1733 	}
1734 
1735 	free_trial_cpuset(trialcs);
1736 out_unlock:
1737 	mutex_unlock(&cpuset_mutex);
1738 	kernfs_unbreak_active_protection(of->kn);
1739 	css_put(&cs->css);
1740 	flush_workqueue(cpuset_migrate_mm_wq);
1741 	return retval ?: nbytes;
1742 }
1743 
1744 /*
1745  * These ascii lists should be read in a single call, by using a user
1746  * buffer large enough to hold the entire map.  If read in smaller
1747  * chunks, there is no guarantee of atomicity.  Since the display format
1748  * used, list of ranges of sequential numbers, is variable length,
1749  * and since these maps can change value dynamically, one could read
1750  * gibberish by doing partial reads while a list was changing.
1751  */
1752 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1753 {
1754 	struct cpuset *cs = css_cs(seq_css(sf));
1755 	cpuset_filetype_t type = seq_cft(sf)->private;
1756 	int ret = 0;
1757 
1758 	spin_lock_irq(&callback_lock);
1759 
1760 	switch (type) {
1761 	case FILE_CPULIST:
1762 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1763 		break;
1764 	case FILE_MEMLIST:
1765 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1766 		break;
1767 	case FILE_EFFECTIVE_CPULIST:
1768 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1769 		break;
1770 	case FILE_EFFECTIVE_MEMLIST:
1771 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1772 		break;
1773 	default:
1774 		ret = -EINVAL;
1775 	}
1776 
1777 	spin_unlock_irq(&callback_lock);
1778 	return ret;
1779 }
1780 
1781 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1782 {
1783 	struct cpuset *cs = css_cs(css);
1784 	cpuset_filetype_t type = cft->private;
1785 	switch (type) {
1786 	case FILE_CPU_EXCLUSIVE:
1787 		return is_cpu_exclusive(cs);
1788 	case FILE_MEM_EXCLUSIVE:
1789 		return is_mem_exclusive(cs);
1790 	case FILE_MEM_HARDWALL:
1791 		return is_mem_hardwall(cs);
1792 	case FILE_SCHED_LOAD_BALANCE:
1793 		return is_sched_load_balance(cs);
1794 	case FILE_MEMORY_MIGRATE:
1795 		return is_memory_migrate(cs);
1796 	case FILE_MEMORY_PRESSURE_ENABLED:
1797 		return cpuset_memory_pressure_enabled;
1798 	case FILE_MEMORY_PRESSURE:
1799 		return fmeter_getrate(&cs->fmeter);
1800 	case FILE_SPREAD_PAGE:
1801 		return is_spread_page(cs);
1802 	case FILE_SPREAD_SLAB:
1803 		return is_spread_slab(cs);
1804 	default:
1805 		BUG();
1806 	}
1807 
1808 	/* Unreachable but makes gcc happy */
1809 	return 0;
1810 }
1811 
1812 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1813 {
1814 	struct cpuset *cs = css_cs(css);
1815 	cpuset_filetype_t type = cft->private;
1816 	switch (type) {
1817 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1818 		return cs->relax_domain_level;
1819 	default:
1820 		BUG();
1821 	}
1822 
1823 	/* Unrechable but makes gcc happy */
1824 	return 0;
1825 }
1826 
1827 
1828 /*
1829  * for the common functions, 'private' gives the type of file
1830  */
1831 
1832 static struct cftype files[] = {
1833 	{
1834 		.name = "cpus",
1835 		.seq_show = cpuset_common_seq_show,
1836 		.write = cpuset_write_resmask,
1837 		.max_write_len = (100U + 6 * NR_CPUS),
1838 		.private = FILE_CPULIST,
1839 	},
1840 
1841 	{
1842 		.name = "mems",
1843 		.seq_show = cpuset_common_seq_show,
1844 		.write = cpuset_write_resmask,
1845 		.max_write_len = (100U + 6 * MAX_NUMNODES),
1846 		.private = FILE_MEMLIST,
1847 	},
1848 
1849 	{
1850 		.name = "effective_cpus",
1851 		.seq_show = cpuset_common_seq_show,
1852 		.private = FILE_EFFECTIVE_CPULIST,
1853 	},
1854 
1855 	{
1856 		.name = "effective_mems",
1857 		.seq_show = cpuset_common_seq_show,
1858 		.private = FILE_EFFECTIVE_MEMLIST,
1859 	},
1860 
1861 	{
1862 		.name = "cpu_exclusive",
1863 		.read_u64 = cpuset_read_u64,
1864 		.write_u64 = cpuset_write_u64,
1865 		.private = FILE_CPU_EXCLUSIVE,
1866 	},
1867 
1868 	{
1869 		.name = "mem_exclusive",
1870 		.read_u64 = cpuset_read_u64,
1871 		.write_u64 = cpuset_write_u64,
1872 		.private = FILE_MEM_EXCLUSIVE,
1873 	},
1874 
1875 	{
1876 		.name = "mem_hardwall",
1877 		.read_u64 = cpuset_read_u64,
1878 		.write_u64 = cpuset_write_u64,
1879 		.private = FILE_MEM_HARDWALL,
1880 	},
1881 
1882 	{
1883 		.name = "sched_load_balance",
1884 		.read_u64 = cpuset_read_u64,
1885 		.write_u64 = cpuset_write_u64,
1886 		.private = FILE_SCHED_LOAD_BALANCE,
1887 	},
1888 
1889 	{
1890 		.name = "sched_relax_domain_level",
1891 		.read_s64 = cpuset_read_s64,
1892 		.write_s64 = cpuset_write_s64,
1893 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1894 	},
1895 
1896 	{
1897 		.name = "memory_migrate",
1898 		.read_u64 = cpuset_read_u64,
1899 		.write_u64 = cpuset_write_u64,
1900 		.private = FILE_MEMORY_MIGRATE,
1901 	},
1902 
1903 	{
1904 		.name = "memory_pressure",
1905 		.read_u64 = cpuset_read_u64,
1906 		.private = FILE_MEMORY_PRESSURE,
1907 	},
1908 
1909 	{
1910 		.name = "memory_spread_page",
1911 		.read_u64 = cpuset_read_u64,
1912 		.write_u64 = cpuset_write_u64,
1913 		.private = FILE_SPREAD_PAGE,
1914 	},
1915 
1916 	{
1917 		.name = "memory_spread_slab",
1918 		.read_u64 = cpuset_read_u64,
1919 		.write_u64 = cpuset_write_u64,
1920 		.private = FILE_SPREAD_SLAB,
1921 	},
1922 
1923 	{
1924 		.name = "memory_pressure_enabled",
1925 		.flags = CFTYPE_ONLY_ON_ROOT,
1926 		.read_u64 = cpuset_read_u64,
1927 		.write_u64 = cpuset_write_u64,
1928 		.private = FILE_MEMORY_PRESSURE_ENABLED,
1929 	},
1930 
1931 	{ }	/* terminate */
1932 };
1933 
1934 /*
1935  *	cpuset_css_alloc - allocate a cpuset css
1936  *	cgrp:	control group that the new cpuset will be part of
1937  */
1938 
1939 static struct cgroup_subsys_state *
1940 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1941 {
1942 	struct cpuset *cs;
1943 
1944 	if (!parent_css)
1945 		return &top_cpuset.css;
1946 
1947 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1948 	if (!cs)
1949 		return ERR_PTR(-ENOMEM);
1950 	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1951 		goto free_cs;
1952 	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1953 		goto free_cpus;
1954 
1955 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1956 	cpumask_clear(cs->cpus_allowed);
1957 	nodes_clear(cs->mems_allowed);
1958 	cpumask_clear(cs->effective_cpus);
1959 	nodes_clear(cs->effective_mems);
1960 	fmeter_init(&cs->fmeter);
1961 	cs->relax_domain_level = -1;
1962 
1963 	return &cs->css;
1964 
1965 free_cpus:
1966 	free_cpumask_var(cs->cpus_allowed);
1967 free_cs:
1968 	kfree(cs);
1969 	return ERR_PTR(-ENOMEM);
1970 }
1971 
1972 static int cpuset_css_online(struct cgroup_subsys_state *css)
1973 {
1974 	struct cpuset *cs = css_cs(css);
1975 	struct cpuset *parent = parent_cs(cs);
1976 	struct cpuset *tmp_cs;
1977 	struct cgroup_subsys_state *pos_css;
1978 
1979 	if (!parent)
1980 		return 0;
1981 
1982 	mutex_lock(&cpuset_mutex);
1983 
1984 	set_bit(CS_ONLINE, &cs->flags);
1985 	if (is_spread_page(parent))
1986 		set_bit(CS_SPREAD_PAGE, &cs->flags);
1987 	if (is_spread_slab(parent))
1988 		set_bit(CS_SPREAD_SLAB, &cs->flags);
1989 
1990 	cpuset_inc();
1991 
1992 	spin_lock_irq(&callback_lock);
1993 	if (is_in_v2_mode()) {
1994 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1995 		cs->effective_mems = parent->effective_mems;
1996 	}
1997 	spin_unlock_irq(&callback_lock);
1998 
1999 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2000 		goto out_unlock;
2001 
2002 	/*
2003 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2004 	 * set.  This flag handling is implemented in cgroup core for
2005 	 * histrical reasons - the flag may be specified during mount.
2006 	 *
2007 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2008 	 * refuse to clone the configuration - thereby refusing the task to
2009 	 * be entered, and as a result refusing the sys_unshare() or
2010 	 * clone() which initiated it.  If this becomes a problem for some
2011 	 * users who wish to allow that scenario, then this could be
2012 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2013 	 * (and likewise for mems) to the new cgroup.
2014 	 */
2015 	rcu_read_lock();
2016 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2017 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2018 			rcu_read_unlock();
2019 			goto out_unlock;
2020 		}
2021 	}
2022 	rcu_read_unlock();
2023 
2024 	spin_lock_irq(&callback_lock);
2025 	cs->mems_allowed = parent->mems_allowed;
2026 	cs->effective_mems = parent->mems_allowed;
2027 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2028 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2029 	spin_unlock_irq(&callback_lock);
2030 out_unlock:
2031 	mutex_unlock(&cpuset_mutex);
2032 	return 0;
2033 }
2034 
2035 /*
2036  * If the cpuset being removed has its flag 'sched_load_balance'
2037  * enabled, then simulate turning sched_load_balance off, which
2038  * will call rebuild_sched_domains_locked().
2039  */
2040 
2041 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2042 {
2043 	struct cpuset *cs = css_cs(css);
2044 
2045 	mutex_lock(&cpuset_mutex);
2046 
2047 	if (is_sched_load_balance(cs))
2048 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2049 
2050 	cpuset_dec();
2051 	clear_bit(CS_ONLINE, &cs->flags);
2052 
2053 	mutex_unlock(&cpuset_mutex);
2054 }
2055 
2056 static void cpuset_css_free(struct cgroup_subsys_state *css)
2057 {
2058 	struct cpuset *cs = css_cs(css);
2059 
2060 	free_cpumask_var(cs->effective_cpus);
2061 	free_cpumask_var(cs->cpus_allowed);
2062 	kfree(cs);
2063 }
2064 
2065 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2066 {
2067 	mutex_lock(&cpuset_mutex);
2068 	spin_lock_irq(&callback_lock);
2069 
2070 	if (is_in_v2_mode()) {
2071 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2072 		top_cpuset.mems_allowed = node_possible_map;
2073 	} else {
2074 		cpumask_copy(top_cpuset.cpus_allowed,
2075 			     top_cpuset.effective_cpus);
2076 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2077 	}
2078 
2079 	spin_unlock_irq(&callback_lock);
2080 	mutex_unlock(&cpuset_mutex);
2081 }
2082 
2083 /*
2084  * Make sure the new task conform to the current state of its parent,
2085  * which could have been changed by cpuset just after it inherits the
2086  * state from the parent and before it sits on the cgroup's task list.
2087  */
2088 static void cpuset_fork(struct task_struct *task)
2089 {
2090 	if (task_css_is_root(task, cpuset_cgrp_id))
2091 		return;
2092 
2093 	set_cpus_allowed_ptr(task, &current->cpus_allowed);
2094 	task->mems_allowed = current->mems_allowed;
2095 }
2096 
2097 struct cgroup_subsys cpuset_cgrp_subsys = {
2098 	.css_alloc	= cpuset_css_alloc,
2099 	.css_online	= cpuset_css_online,
2100 	.css_offline	= cpuset_css_offline,
2101 	.css_free	= cpuset_css_free,
2102 	.can_attach	= cpuset_can_attach,
2103 	.cancel_attach	= cpuset_cancel_attach,
2104 	.attach		= cpuset_attach,
2105 	.post_attach	= cpuset_post_attach,
2106 	.bind		= cpuset_bind,
2107 	.fork		= cpuset_fork,
2108 	.legacy_cftypes	= files,
2109 	.early_init	= true,
2110 };
2111 
2112 /**
2113  * cpuset_init - initialize cpusets at system boot
2114  *
2115  * Description: Initialize top_cpuset and the cpuset internal file system,
2116  **/
2117 
2118 int __init cpuset_init(void)
2119 {
2120 	int err = 0;
2121 
2122 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2123 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2124 
2125 	cpumask_setall(top_cpuset.cpus_allowed);
2126 	nodes_setall(top_cpuset.mems_allowed);
2127 	cpumask_setall(top_cpuset.effective_cpus);
2128 	nodes_setall(top_cpuset.effective_mems);
2129 
2130 	fmeter_init(&top_cpuset.fmeter);
2131 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2132 	top_cpuset.relax_domain_level = -1;
2133 
2134 	err = register_filesystem(&cpuset_fs_type);
2135 	if (err < 0)
2136 		return err;
2137 
2138 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2139 
2140 	return 0;
2141 }
2142 
2143 /*
2144  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2145  * or memory nodes, we need to walk over the cpuset hierarchy,
2146  * removing that CPU or node from all cpusets.  If this removes the
2147  * last CPU or node from a cpuset, then move the tasks in the empty
2148  * cpuset to its next-highest non-empty parent.
2149  */
2150 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2151 {
2152 	struct cpuset *parent;
2153 
2154 	/*
2155 	 * Find its next-highest non-empty parent, (top cpuset
2156 	 * has online cpus, so can't be empty).
2157 	 */
2158 	parent = parent_cs(cs);
2159 	while (cpumask_empty(parent->cpus_allowed) ||
2160 			nodes_empty(parent->mems_allowed))
2161 		parent = parent_cs(parent);
2162 
2163 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2164 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2165 		pr_cont_cgroup_name(cs->css.cgroup);
2166 		pr_cont("\n");
2167 	}
2168 }
2169 
2170 static void
2171 hotplug_update_tasks_legacy(struct cpuset *cs,
2172 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2173 			    bool cpus_updated, bool mems_updated)
2174 {
2175 	bool is_empty;
2176 
2177 	spin_lock_irq(&callback_lock);
2178 	cpumask_copy(cs->cpus_allowed, new_cpus);
2179 	cpumask_copy(cs->effective_cpus, new_cpus);
2180 	cs->mems_allowed = *new_mems;
2181 	cs->effective_mems = *new_mems;
2182 	spin_unlock_irq(&callback_lock);
2183 
2184 	/*
2185 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2186 	 * as the tasks will be migratecd to an ancestor.
2187 	 */
2188 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2189 		update_tasks_cpumask(cs);
2190 	if (mems_updated && !nodes_empty(cs->mems_allowed))
2191 		update_tasks_nodemask(cs);
2192 
2193 	is_empty = cpumask_empty(cs->cpus_allowed) ||
2194 		   nodes_empty(cs->mems_allowed);
2195 
2196 	mutex_unlock(&cpuset_mutex);
2197 
2198 	/*
2199 	 * Move tasks to the nearest ancestor with execution resources,
2200 	 * This is full cgroup operation which will also call back into
2201 	 * cpuset. Should be done outside any lock.
2202 	 */
2203 	if (is_empty)
2204 		remove_tasks_in_empty_cpuset(cs);
2205 
2206 	mutex_lock(&cpuset_mutex);
2207 }
2208 
2209 static void
2210 hotplug_update_tasks(struct cpuset *cs,
2211 		     struct cpumask *new_cpus, nodemask_t *new_mems,
2212 		     bool cpus_updated, bool mems_updated)
2213 {
2214 	if (cpumask_empty(new_cpus))
2215 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2216 	if (nodes_empty(*new_mems))
2217 		*new_mems = parent_cs(cs)->effective_mems;
2218 
2219 	spin_lock_irq(&callback_lock);
2220 	cpumask_copy(cs->effective_cpus, new_cpus);
2221 	cs->effective_mems = *new_mems;
2222 	spin_unlock_irq(&callback_lock);
2223 
2224 	if (cpus_updated)
2225 		update_tasks_cpumask(cs);
2226 	if (mems_updated)
2227 		update_tasks_nodemask(cs);
2228 }
2229 
2230 /**
2231  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2232  * @cs: cpuset in interest
2233  *
2234  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2235  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2236  * all its tasks are moved to the nearest ancestor with both resources.
2237  */
2238 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2239 {
2240 	static cpumask_t new_cpus;
2241 	static nodemask_t new_mems;
2242 	bool cpus_updated;
2243 	bool mems_updated;
2244 retry:
2245 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2246 
2247 	mutex_lock(&cpuset_mutex);
2248 
2249 	/*
2250 	 * We have raced with task attaching. We wait until attaching
2251 	 * is finished, so we won't attach a task to an empty cpuset.
2252 	 */
2253 	if (cs->attach_in_progress) {
2254 		mutex_unlock(&cpuset_mutex);
2255 		goto retry;
2256 	}
2257 
2258 	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2259 	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2260 
2261 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2262 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2263 
2264 	if (is_in_v2_mode())
2265 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
2266 				     cpus_updated, mems_updated);
2267 	else
2268 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2269 					    cpus_updated, mems_updated);
2270 
2271 	mutex_unlock(&cpuset_mutex);
2272 }
2273 
2274 static bool force_rebuild;
2275 
2276 void cpuset_force_rebuild(void)
2277 {
2278 	force_rebuild = true;
2279 }
2280 
2281 /**
2282  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2283  *
2284  * This function is called after either CPU or memory configuration has
2285  * changed and updates cpuset accordingly.  The top_cpuset is always
2286  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2287  * order to make cpusets transparent (of no affect) on systems that are
2288  * actively using CPU hotplug but making no active use of cpusets.
2289  *
2290  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2291  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2292  * all descendants.
2293  *
2294  * Note that CPU offlining during suspend is ignored.  We don't modify
2295  * cpusets across suspend/resume cycles at all.
2296  */
2297 static void cpuset_hotplug_workfn(struct work_struct *work)
2298 {
2299 	static cpumask_t new_cpus;
2300 	static nodemask_t new_mems;
2301 	bool cpus_updated, mems_updated;
2302 	bool on_dfl = is_in_v2_mode();
2303 
2304 	mutex_lock(&cpuset_mutex);
2305 
2306 	/* fetch the available cpus/mems and find out which changed how */
2307 	cpumask_copy(&new_cpus, cpu_active_mask);
2308 	new_mems = node_states[N_MEMORY];
2309 
2310 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2311 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2312 
2313 	/* synchronize cpus_allowed to cpu_active_mask */
2314 	if (cpus_updated) {
2315 		spin_lock_irq(&callback_lock);
2316 		if (!on_dfl)
2317 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2318 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2319 		spin_unlock_irq(&callback_lock);
2320 		/* we don't mess with cpumasks of tasks in top_cpuset */
2321 	}
2322 
2323 	/* synchronize mems_allowed to N_MEMORY */
2324 	if (mems_updated) {
2325 		spin_lock_irq(&callback_lock);
2326 		if (!on_dfl)
2327 			top_cpuset.mems_allowed = new_mems;
2328 		top_cpuset.effective_mems = new_mems;
2329 		spin_unlock_irq(&callback_lock);
2330 		update_tasks_nodemask(&top_cpuset);
2331 	}
2332 
2333 	mutex_unlock(&cpuset_mutex);
2334 
2335 	/* if cpus or mems changed, we need to propagate to descendants */
2336 	if (cpus_updated || mems_updated) {
2337 		struct cpuset *cs;
2338 		struct cgroup_subsys_state *pos_css;
2339 
2340 		rcu_read_lock();
2341 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2342 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2343 				continue;
2344 			rcu_read_unlock();
2345 
2346 			cpuset_hotplug_update_tasks(cs);
2347 
2348 			rcu_read_lock();
2349 			css_put(&cs->css);
2350 		}
2351 		rcu_read_unlock();
2352 	}
2353 
2354 	/* rebuild sched domains if cpus_allowed has changed */
2355 	if (cpus_updated || force_rebuild) {
2356 		force_rebuild = false;
2357 		rebuild_sched_domains();
2358 	}
2359 }
2360 
2361 void cpuset_update_active_cpus(void)
2362 {
2363 	/*
2364 	 * We're inside cpu hotplug critical region which usually nests
2365 	 * inside cgroup synchronization.  Bounce actual hotplug processing
2366 	 * to a work item to avoid reverse locking order.
2367 	 */
2368 	schedule_work(&cpuset_hotplug_work);
2369 }
2370 
2371 void cpuset_wait_for_hotplug(void)
2372 {
2373 	flush_work(&cpuset_hotplug_work);
2374 }
2375 
2376 /*
2377  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2378  * Call this routine anytime after node_states[N_MEMORY] changes.
2379  * See cpuset_update_active_cpus() for CPU hotplug handling.
2380  */
2381 static int cpuset_track_online_nodes(struct notifier_block *self,
2382 				unsigned long action, void *arg)
2383 {
2384 	schedule_work(&cpuset_hotplug_work);
2385 	return NOTIFY_OK;
2386 }
2387 
2388 static struct notifier_block cpuset_track_online_nodes_nb = {
2389 	.notifier_call = cpuset_track_online_nodes,
2390 	.priority = 10,		/* ??! */
2391 };
2392 
2393 /**
2394  * cpuset_init_smp - initialize cpus_allowed
2395  *
2396  * Description: Finish top cpuset after cpu, node maps are initialized
2397  */
2398 void __init cpuset_init_smp(void)
2399 {
2400 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2401 	top_cpuset.mems_allowed = node_states[N_MEMORY];
2402 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2403 
2404 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2405 	top_cpuset.effective_mems = node_states[N_MEMORY];
2406 
2407 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2408 
2409 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2410 	BUG_ON(!cpuset_migrate_mm_wq);
2411 }
2412 
2413 /**
2414  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2415  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2416  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2417  *
2418  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2419  * attached to the specified @tsk.  Guaranteed to return some non-empty
2420  * subset of cpu_online_mask, even if this means going outside the
2421  * tasks cpuset.
2422  **/
2423 
2424 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2425 {
2426 	unsigned long flags;
2427 
2428 	spin_lock_irqsave(&callback_lock, flags);
2429 	rcu_read_lock();
2430 	guarantee_online_cpus(task_cs(tsk), pmask);
2431 	rcu_read_unlock();
2432 	spin_unlock_irqrestore(&callback_lock, flags);
2433 }
2434 
2435 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2436 {
2437 	rcu_read_lock();
2438 	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2439 	rcu_read_unlock();
2440 
2441 	/*
2442 	 * We own tsk->cpus_allowed, nobody can change it under us.
2443 	 *
2444 	 * But we used cs && cs->cpus_allowed lockless and thus can
2445 	 * race with cgroup_attach_task() or update_cpumask() and get
2446 	 * the wrong tsk->cpus_allowed. However, both cases imply the
2447 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2448 	 * which takes task_rq_lock().
2449 	 *
2450 	 * If we are called after it dropped the lock we must see all
2451 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2452 	 * set any mask even if it is not right from task_cs() pov,
2453 	 * the pending set_cpus_allowed_ptr() will fix things.
2454 	 *
2455 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2456 	 * if required.
2457 	 */
2458 }
2459 
2460 void __init cpuset_init_current_mems_allowed(void)
2461 {
2462 	nodes_setall(current->mems_allowed);
2463 }
2464 
2465 /**
2466  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2467  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2468  *
2469  * Description: Returns the nodemask_t mems_allowed of the cpuset
2470  * attached to the specified @tsk.  Guaranteed to return some non-empty
2471  * subset of node_states[N_MEMORY], even if this means going outside the
2472  * tasks cpuset.
2473  **/
2474 
2475 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2476 {
2477 	nodemask_t mask;
2478 	unsigned long flags;
2479 
2480 	spin_lock_irqsave(&callback_lock, flags);
2481 	rcu_read_lock();
2482 	guarantee_online_mems(task_cs(tsk), &mask);
2483 	rcu_read_unlock();
2484 	spin_unlock_irqrestore(&callback_lock, flags);
2485 
2486 	return mask;
2487 }
2488 
2489 /**
2490  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2491  * @nodemask: the nodemask to be checked
2492  *
2493  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2494  */
2495 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2496 {
2497 	return nodes_intersects(*nodemask, current->mems_allowed);
2498 }
2499 
2500 /*
2501  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2502  * mem_hardwall ancestor to the specified cpuset.  Call holding
2503  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2504  * (an unusual configuration), then returns the root cpuset.
2505  */
2506 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2507 {
2508 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2509 		cs = parent_cs(cs);
2510 	return cs;
2511 }
2512 
2513 /**
2514  * cpuset_node_allowed - Can we allocate on a memory node?
2515  * @node: is this an allowed node?
2516  * @gfp_mask: memory allocation flags
2517  *
2518  * If we're in interrupt, yes, we can always allocate.  If @node is set in
2519  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
2520  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2521  * yes.  If current has access to memory reserves as an oom victim, yes.
2522  * Otherwise, no.
2523  *
2524  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2525  * and do not allow allocations outside the current tasks cpuset
2526  * unless the task has been OOM killed.
2527  * GFP_KERNEL allocations are not so marked, so can escape to the
2528  * nearest enclosing hardwalled ancestor cpuset.
2529  *
2530  * Scanning up parent cpusets requires callback_lock.  The
2531  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2532  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2533  * current tasks mems_allowed came up empty on the first pass over
2534  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2535  * cpuset are short of memory, might require taking the callback_lock.
2536  *
2537  * The first call here from mm/page_alloc:get_page_from_freelist()
2538  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2539  * so no allocation on a node outside the cpuset is allowed (unless
2540  * in interrupt, of course).
2541  *
2542  * The second pass through get_page_from_freelist() doesn't even call
2543  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2544  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2545  * in alloc_flags.  That logic and the checks below have the combined
2546  * affect that:
2547  *	in_interrupt - any node ok (current task context irrelevant)
2548  *	GFP_ATOMIC   - any node ok
2549  *	tsk_is_oom_victim   - any node ok
2550  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2551  *	GFP_USER     - only nodes in current tasks mems allowed ok.
2552  */
2553 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
2554 {
2555 	struct cpuset *cs;		/* current cpuset ancestors */
2556 	int allowed;			/* is allocation in zone z allowed? */
2557 	unsigned long flags;
2558 
2559 	if (in_interrupt())
2560 		return true;
2561 	if (node_isset(node, current->mems_allowed))
2562 		return true;
2563 	/*
2564 	 * Allow tasks that have access to memory reserves because they have
2565 	 * been OOM killed to get memory anywhere.
2566 	 */
2567 	if (unlikely(tsk_is_oom_victim(current)))
2568 		return true;
2569 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2570 		return false;
2571 
2572 	if (current->flags & PF_EXITING) /* Let dying task have memory */
2573 		return true;
2574 
2575 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2576 	spin_lock_irqsave(&callback_lock, flags);
2577 
2578 	rcu_read_lock();
2579 	cs = nearest_hardwall_ancestor(task_cs(current));
2580 	allowed = node_isset(node, cs->mems_allowed);
2581 	rcu_read_unlock();
2582 
2583 	spin_unlock_irqrestore(&callback_lock, flags);
2584 	return allowed;
2585 }
2586 
2587 /**
2588  * cpuset_mem_spread_node() - On which node to begin search for a file page
2589  * cpuset_slab_spread_node() - On which node to begin search for a slab page
2590  *
2591  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2592  * tasks in a cpuset with is_spread_page or is_spread_slab set),
2593  * and if the memory allocation used cpuset_mem_spread_node()
2594  * to determine on which node to start looking, as it will for
2595  * certain page cache or slab cache pages such as used for file
2596  * system buffers and inode caches, then instead of starting on the
2597  * local node to look for a free page, rather spread the starting
2598  * node around the tasks mems_allowed nodes.
2599  *
2600  * We don't have to worry about the returned node being offline
2601  * because "it can't happen", and even if it did, it would be ok.
2602  *
2603  * The routines calling guarantee_online_mems() are careful to
2604  * only set nodes in task->mems_allowed that are online.  So it
2605  * should not be possible for the following code to return an
2606  * offline node.  But if it did, that would be ok, as this routine
2607  * is not returning the node where the allocation must be, only
2608  * the node where the search should start.  The zonelist passed to
2609  * __alloc_pages() will include all nodes.  If the slab allocator
2610  * is passed an offline node, it will fall back to the local node.
2611  * See kmem_cache_alloc_node().
2612  */
2613 
2614 static int cpuset_spread_node(int *rotor)
2615 {
2616 	return *rotor = next_node_in(*rotor, current->mems_allowed);
2617 }
2618 
2619 int cpuset_mem_spread_node(void)
2620 {
2621 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2622 		current->cpuset_mem_spread_rotor =
2623 			node_random(&current->mems_allowed);
2624 
2625 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2626 }
2627 
2628 int cpuset_slab_spread_node(void)
2629 {
2630 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2631 		current->cpuset_slab_spread_rotor =
2632 			node_random(&current->mems_allowed);
2633 
2634 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2635 }
2636 
2637 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2638 
2639 /**
2640  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2641  * @tsk1: pointer to task_struct of some task.
2642  * @tsk2: pointer to task_struct of some other task.
2643  *
2644  * Description: Return true if @tsk1's mems_allowed intersects the
2645  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2646  * one of the task's memory usage might impact the memory available
2647  * to the other.
2648  **/
2649 
2650 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2651 				   const struct task_struct *tsk2)
2652 {
2653 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2654 }
2655 
2656 /**
2657  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2658  *
2659  * Description: Prints current's name, cpuset name, and cached copy of its
2660  * mems_allowed to the kernel log.
2661  */
2662 void cpuset_print_current_mems_allowed(void)
2663 {
2664 	struct cgroup *cgrp;
2665 
2666 	rcu_read_lock();
2667 
2668 	cgrp = task_cs(current)->css.cgroup;
2669 	pr_info("%s cpuset=", current->comm);
2670 	pr_cont_cgroup_name(cgrp);
2671 	pr_cont(" mems_allowed=%*pbl\n",
2672 		nodemask_pr_args(&current->mems_allowed));
2673 
2674 	rcu_read_unlock();
2675 }
2676 
2677 /*
2678  * Collection of memory_pressure is suppressed unless
2679  * this flag is enabled by writing "1" to the special
2680  * cpuset file 'memory_pressure_enabled' in the root cpuset.
2681  */
2682 
2683 int cpuset_memory_pressure_enabled __read_mostly;
2684 
2685 /**
2686  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2687  *
2688  * Keep a running average of the rate of synchronous (direct)
2689  * page reclaim efforts initiated by tasks in each cpuset.
2690  *
2691  * This represents the rate at which some task in the cpuset
2692  * ran low on memory on all nodes it was allowed to use, and
2693  * had to enter the kernels page reclaim code in an effort to
2694  * create more free memory by tossing clean pages or swapping
2695  * or writing dirty pages.
2696  *
2697  * Display to user space in the per-cpuset read-only file
2698  * "memory_pressure".  Value displayed is an integer
2699  * representing the recent rate of entry into the synchronous
2700  * (direct) page reclaim by any task attached to the cpuset.
2701  **/
2702 
2703 void __cpuset_memory_pressure_bump(void)
2704 {
2705 	rcu_read_lock();
2706 	fmeter_markevent(&task_cs(current)->fmeter);
2707 	rcu_read_unlock();
2708 }
2709 
2710 #ifdef CONFIG_PROC_PID_CPUSET
2711 /*
2712  * proc_cpuset_show()
2713  *  - Print tasks cpuset path into seq_file.
2714  *  - Used for /proc/<pid>/cpuset.
2715  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2716  *    doesn't really matter if tsk->cpuset changes after we read it,
2717  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2718  *    anyway.
2719  */
2720 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2721 		     struct pid *pid, struct task_struct *tsk)
2722 {
2723 	char *buf;
2724 	struct cgroup_subsys_state *css;
2725 	int retval;
2726 
2727 	retval = -ENOMEM;
2728 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
2729 	if (!buf)
2730 		goto out;
2731 
2732 	css = task_get_css(tsk, cpuset_cgrp_id);
2733 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2734 				current->nsproxy->cgroup_ns);
2735 	css_put(css);
2736 	if (retval >= PATH_MAX)
2737 		retval = -ENAMETOOLONG;
2738 	if (retval < 0)
2739 		goto out_free;
2740 	seq_puts(m, buf);
2741 	seq_putc(m, '\n');
2742 	retval = 0;
2743 out_free:
2744 	kfree(buf);
2745 out:
2746 	return retval;
2747 }
2748 #endif /* CONFIG_PROC_PID_CPUSET */
2749 
2750 /* Display task mems_allowed in /proc/<pid>/status file. */
2751 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2752 {
2753 	seq_printf(m, "Mems_allowed:\t%*pb\n",
2754 		   nodemask_pr_args(&task->mems_allowed));
2755 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2756 		   nodemask_pr_args(&task->mems_allowed));
2757 }
2758