xref: /linux/kernel/cgroup/cpuset.c (revision b48b89f9c189d24eb5e2b4a0ac067da5a24ee86d)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/seq_file.h>
52 #include <linux/security.h>
53 #include <linux/slab.h>
54 #include <linux/spinlock.h>
55 #include <linux/stat.h>
56 #include <linux/string.h>
57 #include <linux/time.h>
58 #include <linux/time64.h>
59 #include <linux/backing-dev.h>
60 #include <linux/sort.h>
61 #include <linux/oom.h>
62 #include <linux/sched/isolation.h>
63 #include <linux/uaccess.h>
64 #include <linux/atomic.h>
65 #include <linux/mutex.h>
66 #include <linux/cgroup.h>
67 #include <linux/wait.h>
68 
69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
71 
72 /*
73  * There could be abnormal cpuset configurations for cpu or memory
74  * node binding, add this key to provide a quick low-cost judgment
75  * of the situation.
76  */
77 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
78 
79 /* See "Frequency meter" comments, below. */
80 
81 struct fmeter {
82 	int cnt;		/* unprocessed events count */
83 	int val;		/* most recent output value */
84 	time64_t time;		/* clock (secs) when val computed */
85 	spinlock_t lock;	/* guards read or write of above */
86 };
87 
88 struct cpuset {
89 	struct cgroup_subsys_state css;
90 
91 	unsigned long flags;		/* "unsigned long" so bitops work */
92 
93 	/*
94 	 * On default hierarchy:
95 	 *
96 	 * The user-configured masks can only be changed by writing to
97 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
98 	 * parent masks.
99 	 *
100 	 * The effective masks is the real masks that apply to the tasks
101 	 * in the cpuset. They may be changed if the configured masks are
102 	 * changed or hotplug happens.
103 	 *
104 	 * effective_mask == configured_mask & parent's effective_mask,
105 	 * and if it ends up empty, it will inherit the parent's mask.
106 	 *
107 	 *
108 	 * On legacy hierarchy:
109 	 *
110 	 * The user-configured masks are always the same with effective masks.
111 	 */
112 
113 	/* user-configured CPUs and Memory Nodes allow to tasks */
114 	cpumask_var_t cpus_allowed;
115 	nodemask_t mems_allowed;
116 
117 	/* effective CPUs and Memory Nodes allow to tasks */
118 	cpumask_var_t effective_cpus;
119 	nodemask_t effective_mems;
120 
121 	/*
122 	 * CPUs allocated to child sub-partitions (default hierarchy only)
123 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
124 	 * - effective_cpus and subparts_cpus are mutually exclusive.
125 	 *
126 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
127 	 * may have offlined ones.
128 	 */
129 	cpumask_var_t subparts_cpus;
130 
131 	/*
132 	 * This is old Memory Nodes tasks took on.
133 	 *
134 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
135 	 * - A new cpuset's old_mems_allowed is initialized when some
136 	 *   task is moved into it.
137 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
138 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
139 	 *   then old_mems_allowed is updated to mems_allowed.
140 	 */
141 	nodemask_t old_mems_allowed;
142 
143 	struct fmeter fmeter;		/* memory_pressure filter */
144 
145 	/*
146 	 * Tasks are being attached to this cpuset.  Used to prevent
147 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
148 	 */
149 	int attach_in_progress;
150 
151 	/* partition number for rebuild_sched_domains() */
152 	int pn;
153 
154 	/* for custom sched domain */
155 	int relax_domain_level;
156 
157 	/* number of CPUs in subparts_cpus */
158 	int nr_subparts_cpus;
159 
160 	/* partition root state */
161 	int partition_root_state;
162 
163 	/*
164 	 * Default hierarchy only:
165 	 * use_parent_ecpus - set if using parent's effective_cpus
166 	 * child_ecpus_count - # of children with use_parent_ecpus set
167 	 */
168 	int use_parent_ecpus;
169 	int child_ecpus_count;
170 
171 	/* Handle for cpuset.cpus.partition */
172 	struct cgroup_file partition_file;
173 };
174 
175 /*
176  * Partition root states:
177  *
178  *   0 - not a partition root
179  *
180  *   1 - partition root
181  *
182  *  -1 - invalid partition root
183  *       None of the cpus in cpus_allowed can be put into the parent's
184  *       subparts_cpus. In this case, the cpuset is not a real partition
185  *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
186  *       and the cpuset can be restored back to a partition root if the
187  *       parent cpuset can give more CPUs back to this child cpuset.
188  */
189 #define PRS_DISABLED		0
190 #define PRS_ENABLED		1
191 #define PRS_ERROR		-1
192 
193 /*
194  * Temporary cpumasks for working with partitions that are passed among
195  * functions to avoid memory allocation in inner functions.
196  */
197 struct tmpmasks {
198 	cpumask_var_t addmask, delmask;	/* For partition root */
199 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
200 };
201 
202 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
203 {
204 	return css ? container_of(css, struct cpuset, css) : NULL;
205 }
206 
207 /* Retrieve the cpuset for a task */
208 static inline struct cpuset *task_cs(struct task_struct *task)
209 {
210 	return css_cs(task_css(task, cpuset_cgrp_id));
211 }
212 
213 static inline struct cpuset *parent_cs(struct cpuset *cs)
214 {
215 	return css_cs(cs->css.parent);
216 }
217 
218 /* bits in struct cpuset flags field */
219 typedef enum {
220 	CS_ONLINE,
221 	CS_CPU_EXCLUSIVE,
222 	CS_MEM_EXCLUSIVE,
223 	CS_MEM_HARDWALL,
224 	CS_MEMORY_MIGRATE,
225 	CS_SCHED_LOAD_BALANCE,
226 	CS_SPREAD_PAGE,
227 	CS_SPREAD_SLAB,
228 } cpuset_flagbits_t;
229 
230 /* convenient tests for these bits */
231 static inline bool is_cpuset_online(struct cpuset *cs)
232 {
233 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
234 }
235 
236 static inline int is_cpu_exclusive(const struct cpuset *cs)
237 {
238 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
239 }
240 
241 static inline int is_mem_exclusive(const struct cpuset *cs)
242 {
243 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
244 }
245 
246 static inline int is_mem_hardwall(const struct cpuset *cs)
247 {
248 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
249 }
250 
251 static inline int is_sched_load_balance(const struct cpuset *cs)
252 {
253 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
254 }
255 
256 static inline int is_memory_migrate(const struct cpuset *cs)
257 {
258 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
259 }
260 
261 static inline int is_spread_page(const struct cpuset *cs)
262 {
263 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
264 }
265 
266 static inline int is_spread_slab(const struct cpuset *cs)
267 {
268 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
269 }
270 
271 static inline int is_partition_root(const struct cpuset *cs)
272 {
273 	return cs->partition_root_state > 0;
274 }
275 
276 /*
277  * Send notification event of whenever partition_root_state changes.
278  */
279 static inline void notify_partition_change(struct cpuset *cs,
280 					   int old_prs, int new_prs)
281 {
282 	if (old_prs != new_prs)
283 		cgroup_file_notify(&cs->partition_file);
284 }
285 
286 static struct cpuset top_cpuset = {
287 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
288 		  (1 << CS_MEM_EXCLUSIVE)),
289 	.partition_root_state = PRS_ENABLED,
290 };
291 
292 /**
293  * cpuset_for_each_child - traverse online children of a cpuset
294  * @child_cs: loop cursor pointing to the current child
295  * @pos_css: used for iteration
296  * @parent_cs: target cpuset to walk children of
297  *
298  * Walk @child_cs through the online children of @parent_cs.  Must be used
299  * with RCU read locked.
300  */
301 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
302 	css_for_each_child((pos_css), &(parent_cs)->css)		\
303 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
304 
305 /**
306  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
307  * @des_cs: loop cursor pointing to the current descendant
308  * @pos_css: used for iteration
309  * @root_cs: target cpuset to walk ancestor of
310  *
311  * Walk @des_cs through the online descendants of @root_cs.  Must be used
312  * with RCU read locked.  The caller may modify @pos_css by calling
313  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
314  * iteration and the first node to be visited.
315  */
316 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
317 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
318 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
319 
320 /*
321  * There are two global locks guarding cpuset structures - cpuset_rwsem and
322  * callback_lock. We also require taking task_lock() when dereferencing a
323  * task's cpuset pointer. See "The task_lock() exception", at the end of this
324  * comment.  The cpuset code uses only cpuset_rwsem write lock.  Other
325  * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to
326  * prevent change to cpuset structures.
327  *
328  * A task must hold both locks to modify cpusets.  If a task holds
329  * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it
330  * is the only task able to also acquire callback_lock and be able to
331  * modify cpusets.  It can perform various checks on the cpuset structure
332  * first, knowing nothing will change.  It can also allocate memory while
333  * just holding cpuset_rwsem.  While it is performing these checks, various
334  * callback routines can briefly acquire callback_lock to query cpusets.
335  * Once it is ready to make the changes, it takes callback_lock, blocking
336  * everyone else.
337  *
338  * Calls to the kernel memory allocator can not be made while holding
339  * callback_lock, as that would risk double tripping on callback_lock
340  * from one of the callbacks into the cpuset code from within
341  * __alloc_pages().
342  *
343  * If a task is only holding callback_lock, then it has read-only
344  * access to cpusets.
345  *
346  * Now, the task_struct fields mems_allowed and mempolicy may be changed
347  * by other task, we use alloc_lock in the task_struct fields to protect
348  * them.
349  *
350  * The cpuset_common_file_read() handlers only hold callback_lock across
351  * small pieces of code, such as when reading out possibly multi-word
352  * cpumasks and nodemasks.
353  *
354  * Accessing a task's cpuset should be done in accordance with the
355  * guidelines for accessing subsystem state in kernel/cgroup.c
356  */
357 
358 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
359 
360 void cpuset_read_lock(void)
361 {
362 	percpu_down_read(&cpuset_rwsem);
363 }
364 
365 void cpuset_read_unlock(void)
366 {
367 	percpu_up_read(&cpuset_rwsem);
368 }
369 
370 static DEFINE_SPINLOCK(callback_lock);
371 
372 static struct workqueue_struct *cpuset_migrate_mm_wq;
373 
374 /*
375  * CPU / memory hotplug is handled asynchronously.
376  */
377 static void cpuset_hotplug_workfn(struct work_struct *work);
378 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
379 
380 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
381 
382 static inline void check_insane_mems_config(nodemask_t *nodes)
383 {
384 	if (!cpusets_insane_config() &&
385 		movable_only_nodes(nodes)) {
386 		static_branch_enable(&cpusets_insane_config_key);
387 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
388 			"Cpuset allocations might fail even with a lot of memory available.\n",
389 			nodemask_pr_args(nodes));
390 	}
391 }
392 
393 /*
394  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
395  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
396  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
397  * With v2 behavior, "cpus" and "mems" are always what the users have
398  * requested and won't be changed by hotplug events. Only the effective
399  * cpus or mems will be affected.
400  */
401 static inline bool is_in_v2_mode(void)
402 {
403 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
404 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
405 }
406 
407 /*
408  * Return in pmask the portion of a task's cpusets's cpus_allowed that
409  * are online and are capable of running the task.  If none are found,
410  * walk up the cpuset hierarchy until we find one that does have some
411  * appropriate cpus.
412  *
413  * One way or another, we guarantee to return some non-empty subset
414  * of cpu_online_mask.
415  *
416  * Call with callback_lock or cpuset_rwsem held.
417  */
418 static void guarantee_online_cpus(struct task_struct *tsk,
419 				  struct cpumask *pmask)
420 {
421 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
422 	struct cpuset *cs;
423 
424 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
425 		cpumask_copy(pmask, cpu_online_mask);
426 
427 	rcu_read_lock();
428 	cs = task_cs(tsk);
429 
430 	while (!cpumask_intersects(cs->effective_cpus, pmask)) {
431 		cs = parent_cs(cs);
432 		if (unlikely(!cs)) {
433 			/*
434 			 * The top cpuset doesn't have any online cpu as a
435 			 * consequence of a race between cpuset_hotplug_work
436 			 * and cpu hotplug notifier.  But we know the top
437 			 * cpuset's effective_cpus is on its way to be
438 			 * identical to cpu_online_mask.
439 			 */
440 			goto out_unlock;
441 		}
442 	}
443 	cpumask_and(pmask, pmask, cs->effective_cpus);
444 
445 out_unlock:
446 	rcu_read_unlock();
447 }
448 
449 /*
450  * Return in *pmask the portion of a cpusets's mems_allowed that
451  * are online, with memory.  If none are online with memory, walk
452  * up the cpuset hierarchy until we find one that does have some
453  * online mems.  The top cpuset always has some mems online.
454  *
455  * One way or another, we guarantee to return some non-empty subset
456  * of node_states[N_MEMORY].
457  *
458  * Call with callback_lock or cpuset_rwsem held.
459  */
460 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
461 {
462 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
463 		cs = parent_cs(cs);
464 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
465 }
466 
467 /*
468  * update task's spread flag if cpuset's page/slab spread flag is set
469  *
470  * Call with callback_lock or cpuset_rwsem held.
471  */
472 static void cpuset_update_task_spread_flag(struct cpuset *cs,
473 					struct task_struct *tsk)
474 {
475 	if (is_spread_page(cs))
476 		task_set_spread_page(tsk);
477 	else
478 		task_clear_spread_page(tsk);
479 
480 	if (is_spread_slab(cs))
481 		task_set_spread_slab(tsk);
482 	else
483 		task_clear_spread_slab(tsk);
484 }
485 
486 /*
487  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
488  *
489  * One cpuset is a subset of another if all its allowed CPUs and
490  * Memory Nodes are a subset of the other, and its exclusive flags
491  * are only set if the other's are set.  Call holding cpuset_rwsem.
492  */
493 
494 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
495 {
496 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
497 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
498 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
499 		is_mem_exclusive(p) <= is_mem_exclusive(q);
500 }
501 
502 /**
503  * alloc_cpumasks - allocate three cpumasks for cpuset
504  * @cs:  the cpuset that have cpumasks to be allocated.
505  * @tmp: the tmpmasks structure pointer
506  * Return: 0 if successful, -ENOMEM otherwise.
507  *
508  * Only one of the two input arguments should be non-NULL.
509  */
510 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
511 {
512 	cpumask_var_t *pmask1, *pmask2, *pmask3;
513 
514 	if (cs) {
515 		pmask1 = &cs->cpus_allowed;
516 		pmask2 = &cs->effective_cpus;
517 		pmask3 = &cs->subparts_cpus;
518 	} else {
519 		pmask1 = &tmp->new_cpus;
520 		pmask2 = &tmp->addmask;
521 		pmask3 = &tmp->delmask;
522 	}
523 
524 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
525 		return -ENOMEM;
526 
527 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
528 		goto free_one;
529 
530 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
531 		goto free_two;
532 
533 	return 0;
534 
535 free_two:
536 	free_cpumask_var(*pmask2);
537 free_one:
538 	free_cpumask_var(*pmask1);
539 	return -ENOMEM;
540 }
541 
542 /**
543  * free_cpumasks - free cpumasks in a tmpmasks structure
544  * @cs:  the cpuset that have cpumasks to be free.
545  * @tmp: the tmpmasks structure pointer
546  */
547 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
548 {
549 	if (cs) {
550 		free_cpumask_var(cs->cpus_allowed);
551 		free_cpumask_var(cs->effective_cpus);
552 		free_cpumask_var(cs->subparts_cpus);
553 	}
554 	if (tmp) {
555 		free_cpumask_var(tmp->new_cpus);
556 		free_cpumask_var(tmp->addmask);
557 		free_cpumask_var(tmp->delmask);
558 	}
559 }
560 
561 /**
562  * alloc_trial_cpuset - allocate a trial cpuset
563  * @cs: the cpuset that the trial cpuset duplicates
564  */
565 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
566 {
567 	struct cpuset *trial;
568 
569 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
570 	if (!trial)
571 		return NULL;
572 
573 	if (alloc_cpumasks(trial, NULL)) {
574 		kfree(trial);
575 		return NULL;
576 	}
577 
578 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
579 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
580 	return trial;
581 }
582 
583 /**
584  * free_cpuset - free the cpuset
585  * @cs: the cpuset to be freed
586  */
587 static inline void free_cpuset(struct cpuset *cs)
588 {
589 	free_cpumasks(cs, NULL);
590 	kfree(cs);
591 }
592 
593 /*
594  * validate_change_legacy() - Validate conditions specific to legacy (v1)
595  *                            behavior.
596  */
597 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
598 {
599 	struct cgroup_subsys_state *css;
600 	struct cpuset *c, *par;
601 	int ret;
602 
603 	WARN_ON_ONCE(!rcu_read_lock_held());
604 
605 	/* Each of our child cpusets must be a subset of us */
606 	ret = -EBUSY;
607 	cpuset_for_each_child(c, css, cur)
608 		if (!is_cpuset_subset(c, trial))
609 			goto out;
610 
611 	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
612 	ret = -EACCES;
613 	par = parent_cs(cur);
614 	if (par && !is_cpuset_subset(trial, par))
615 		goto out;
616 
617 	ret = 0;
618 out:
619 	return ret;
620 }
621 
622 /*
623  * validate_change() - Used to validate that any proposed cpuset change
624  *		       follows the structural rules for cpusets.
625  *
626  * If we replaced the flag and mask values of the current cpuset
627  * (cur) with those values in the trial cpuset (trial), would
628  * our various subset and exclusive rules still be valid?  Presumes
629  * cpuset_rwsem held.
630  *
631  * 'cur' is the address of an actual, in-use cpuset.  Operations
632  * such as list traversal that depend on the actual address of the
633  * cpuset in the list must use cur below, not trial.
634  *
635  * 'trial' is the address of bulk structure copy of cur, with
636  * perhaps one or more of the fields cpus_allowed, mems_allowed,
637  * or flags changed to new, trial values.
638  *
639  * Return 0 if valid, -errno if not.
640  */
641 
642 static int validate_change(struct cpuset *cur, struct cpuset *trial)
643 {
644 	struct cgroup_subsys_state *css;
645 	struct cpuset *c, *par;
646 	int ret = 0;
647 
648 	rcu_read_lock();
649 
650 	if (!is_in_v2_mode())
651 		ret = validate_change_legacy(cur, trial);
652 	if (ret)
653 		goto out;
654 
655 	/* Remaining checks don't apply to root cpuset */
656 	if (cur == &top_cpuset)
657 		goto out;
658 
659 	par = parent_cs(cur);
660 
661 	/*
662 	 * If either I or some sibling (!= me) is exclusive, we can't
663 	 * overlap
664 	 */
665 	ret = -EINVAL;
666 	cpuset_for_each_child(c, css, par) {
667 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
668 		    c != cur &&
669 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
670 			goto out;
671 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
672 		    c != cur &&
673 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
674 			goto out;
675 	}
676 
677 	/*
678 	 * Cpusets with tasks - existing or newly being attached - can't
679 	 * be changed to have empty cpus_allowed or mems_allowed.
680 	 */
681 	ret = -ENOSPC;
682 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
683 		if (!cpumask_empty(cur->cpus_allowed) &&
684 		    cpumask_empty(trial->cpus_allowed))
685 			goto out;
686 		if (!nodes_empty(cur->mems_allowed) &&
687 		    nodes_empty(trial->mems_allowed))
688 			goto out;
689 	}
690 
691 	/*
692 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
693 	 * tasks.
694 	 */
695 	ret = -EBUSY;
696 	if (is_cpu_exclusive(cur) &&
697 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
698 				       trial->cpus_allowed))
699 		goto out;
700 
701 	ret = 0;
702 out:
703 	rcu_read_unlock();
704 	return ret;
705 }
706 
707 #ifdef CONFIG_SMP
708 /*
709  * Helper routine for generate_sched_domains().
710  * Do cpusets a, b have overlapping effective cpus_allowed masks?
711  */
712 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
713 {
714 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
715 }
716 
717 static void
718 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
719 {
720 	if (dattr->relax_domain_level < c->relax_domain_level)
721 		dattr->relax_domain_level = c->relax_domain_level;
722 	return;
723 }
724 
725 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
726 				    struct cpuset *root_cs)
727 {
728 	struct cpuset *cp;
729 	struct cgroup_subsys_state *pos_css;
730 
731 	rcu_read_lock();
732 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
733 		/* skip the whole subtree if @cp doesn't have any CPU */
734 		if (cpumask_empty(cp->cpus_allowed)) {
735 			pos_css = css_rightmost_descendant(pos_css);
736 			continue;
737 		}
738 
739 		if (is_sched_load_balance(cp))
740 			update_domain_attr(dattr, cp);
741 	}
742 	rcu_read_unlock();
743 }
744 
745 /* Must be called with cpuset_rwsem held.  */
746 static inline int nr_cpusets(void)
747 {
748 	/* jump label reference count + the top-level cpuset */
749 	return static_key_count(&cpusets_enabled_key.key) + 1;
750 }
751 
752 /*
753  * generate_sched_domains()
754  *
755  * This function builds a partial partition of the systems CPUs
756  * A 'partial partition' is a set of non-overlapping subsets whose
757  * union is a subset of that set.
758  * The output of this function needs to be passed to kernel/sched/core.c
759  * partition_sched_domains() routine, which will rebuild the scheduler's
760  * load balancing domains (sched domains) as specified by that partial
761  * partition.
762  *
763  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
764  * for a background explanation of this.
765  *
766  * Does not return errors, on the theory that the callers of this
767  * routine would rather not worry about failures to rebuild sched
768  * domains when operating in the severe memory shortage situations
769  * that could cause allocation failures below.
770  *
771  * Must be called with cpuset_rwsem held.
772  *
773  * The three key local variables below are:
774  *    cp - cpuset pointer, used (together with pos_css) to perform a
775  *	   top-down scan of all cpusets. For our purposes, rebuilding
776  *	   the schedulers sched domains, we can ignore !is_sched_load_
777  *	   balance cpusets.
778  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
779  *	   that need to be load balanced, for convenient iterative
780  *	   access by the subsequent code that finds the best partition,
781  *	   i.e the set of domains (subsets) of CPUs such that the
782  *	   cpus_allowed of every cpuset marked is_sched_load_balance
783  *	   is a subset of one of these domains, while there are as
784  *	   many such domains as possible, each as small as possible.
785  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
786  *	   the kernel/sched/core.c routine partition_sched_domains() in a
787  *	   convenient format, that can be easily compared to the prior
788  *	   value to determine what partition elements (sched domains)
789  *	   were changed (added or removed.)
790  *
791  * Finding the best partition (set of domains):
792  *	The triple nested loops below over i, j, k scan over the
793  *	load balanced cpusets (using the array of cpuset pointers in
794  *	csa[]) looking for pairs of cpusets that have overlapping
795  *	cpus_allowed, but which don't have the same 'pn' partition
796  *	number and gives them in the same partition number.  It keeps
797  *	looping on the 'restart' label until it can no longer find
798  *	any such pairs.
799  *
800  *	The union of the cpus_allowed masks from the set of
801  *	all cpusets having the same 'pn' value then form the one
802  *	element of the partition (one sched domain) to be passed to
803  *	partition_sched_domains().
804  */
805 static int generate_sched_domains(cpumask_var_t **domains,
806 			struct sched_domain_attr **attributes)
807 {
808 	struct cpuset *cp;	/* top-down scan of cpusets */
809 	struct cpuset **csa;	/* array of all cpuset ptrs */
810 	int csn;		/* how many cpuset ptrs in csa so far */
811 	int i, j, k;		/* indices for partition finding loops */
812 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
813 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
814 	int ndoms = 0;		/* number of sched domains in result */
815 	int nslot;		/* next empty doms[] struct cpumask slot */
816 	struct cgroup_subsys_state *pos_css;
817 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
818 
819 	doms = NULL;
820 	dattr = NULL;
821 	csa = NULL;
822 
823 	/* Special case for the 99% of systems with one, full, sched domain */
824 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
825 		ndoms = 1;
826 		doms = alloc_sched_domains(ndoms);
827 		if (!doms)
828 			goto done;
829 
830 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
831 		if (dattr) {
832 			*dattr = SD_ATTR_INIT;
833 			update_domain_attr_tree(dattr, &top_cpuset);
834 		}
835 		cpumask_and(doms[0], top_cpuset.effective_cpus,
836 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
837 
838 		goto done;
839 	}
840 
841 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
842 	if (!csa)
843 		goto done;
844 	csn = 0;
845 
846 	rcu_read_lock();
847 	if (root_load_balance)
848 		csa[csn++] = &top_cpuset;
849 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
850 		if (cp == &top_cpuset)
851 			continue;
852 		/*
853 		 * Continue traversing beyond @cp iff @cp has some CPUs and
854 		 * isn't load balancing.  The former is obvious.  The
855 		 * latter: All child cpusets contain a subset of the
856 		 * parent's cpus, so just skip them, and then we call
857 		 * update_domain_attr_tree() to calc relax_domain_level of
858 		 * the corresponding sched domain.
859 		 *
860 		 * If root is load-balancing, we can skip @cp if it
861 		 * is a subset of the root's effective_cpus.
862 		 */
863 		if (!cpumask_empty(cp->cpus_allowed) &&
864 		    !(is_sched_load_balance(cp) &&
865 		      cpumask_intersects(cp->cpus_allowed,
866 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
867 			continue;
868 
869 		if (root_load_balance &&
870 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
871 			continue;
872 
873 		if (is_sched_load_balance(cp) &&
874 		    !cpumask_empty(cp->effective_cpus))
875 			csa[csn++] = cp;
876 
877 		/* skip @cp's subtree if not a partition root */
878 		if (!is_partition_root(cp))
879 			pos_css = css_rightmost_descendant(pos_css);
880 	}
881 	rcu_read_unlock();
882 
883 	for (i = 0; i < csn; i++)
884 		csa[i]->pn = i;
885 	ndoms = csn;
886 
887 restart:
888 	/* Find the best partition (set of sched domains) */
889 	for (i = 0; i < csn; i++) {
890 		struct cpuset *a = csa[i];
891 		int apn = a->pn;
892 
893 		for (j = 0; j < csn; j++) {
894 			struct cpuset *b = csa[j];
895 			int bpn = b->pn;
896 
897 			if (apn != bpn && cpusets_overlap(a, b)) {
898 				for (k = 0; k < csn; k++) {
899 					struct cpuset *c = csa[k];
900 
901 					if (c->pn == bpn)
902 						c->pn = apn;
903 				}
904 				ndoms--;	/* one less element */
905 				goto restart;
906 			}
907 		}
908 	}
909 
910 	/*
911 	 * Now we know how many domains to create.
912 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
913 	 */
914 	doms = alloc_sched_domains(ndoms);
915 	if (!doms)
916 		goto done;
917 
918 	/*
919 	 * The rest of the code, including the scheduler, can deal with
920 	 * dattr==NULL case. No need to abort if alloc fails.
921 	 */
922 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
923 			      GFP_KERNEL);
924 
925 	for (nslot = 0, i = 0; i < csn; i++) {
926 		struct cpuset *a = csa[i];
927 		struct cpumask *dp;
928 		int apn = a->pn;
929 
930 		if (apn < 0) {
931 			/* Skip completed partitions */
932 			continue;
933 		}
934 
935 		dp = doms[nslot];
936 
937 		if (nslot == ndoms) {
938 			static int warnings = 10;
939 			if (warnings) {
940 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
941 					nslot, ndoms, csn, i, apn);
942 				warnings--;
943 			}
944 			continue;
945 		}
946 
947 		cpumask_clear(dp);
948 		if (dattr)
949 			*(dattr + nslot) = SD_ATTR_INIT;
950 		for (j = i; j < csn; j++) {
951 			struct cpuset *b = csa[j];
952 
953 			if (apn == b->pn) {
954 				cpumask_or(dp, dp, b->effective_cpus);
955 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
956 				if (dattr)
957 					update_domain_attr_tree(dattr + nslot, b);
958 
959 				/* Done with this partition */
960 				b->pn = -1;
961 			}
962 		}
963 		nslot++;
964 	}
965 	BUG_ON(nslot != ndoms);
966 
967 done:
968 	kfree(csa);
969 
970 	/*
971 	 * Fallback to the default domain if kmalloc() failed.
972 	 * See comments in partition_sched_domains().
973 	 */
974 	if (doms == NULL)
975 		ndoms = 1;
976 
977 	*domains    = doms;
978 	*attributes = dattr;
979 	return ndoms;
980 }
981 
982 static void update_tasks_root_domain(struct cpuset *cs)
983 {
984 	struct css_task_iter it;
985 	struct task_struct *task;
986 
987 	css_task_iter_start(&cs->css, 0, &it);
988 
989 	while ((task = css_task_iter_next(&it)))
990 		dl_add_task_root_domain(task);
991 
992 	css_task_iter_end(&it);
993 }
994 
995 static void rebuild_root_domains(void)
996 {
997 	struct cpuset *cs = NULL;
998 	struct cgroup_subsys_state *pos_css;
999 
1000 	percpu_rwsem_assert_held(&cpuset_rwsem);
1001 	lockdep_assert_cpus_held();
1002 	lockdep_assert_held(&sched_domains_mutex);
1003 
1004 	rcu_read_lock();
1005 
1006 	/*
1007 	 * Clear default root domain DL accounting, it will be computed again
1008 	 * if a task belongs to it.
1009 	 */
1010 	dl_clear_root_domain(&def_root_domain);
1011 
1012 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1013 
1014 		if (cpumask_empty(cs->effective_cpus)) {
1015 			pos_css = css_rightmost_descendant(pos_css);
1016 			continue;
1017 		}
1018 
1019 		css_get(&cs->css);
1020 
1021 		rcu_read_unlock();
1022 
1023 		update_tasks_root_domain(cs);
1024 
1025 		rcu_read_lock();
1026 		css_put(&cs->css);
1027 	}
1028 	rcu_read_unlock();
1029 }
1030 
1031 static void
1032 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1033 				    struct sched_domain_attr *dattr_new)
1034 {
1035 	mutex_lock(&sched_domains_mutex);
1036 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1037 	rebuild_root_domains();
1038 	mutex_unlock(&sched_domains_mutex);
1039 }
1040 
1041 /*
1042  * Rebuild scheduler domains.
1043  *
1044  * If the flag 'sched_load_balance' of any cpuset with non-empty
1045  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1046  * which has that flag enabled, or if any cpuset with a non-empty
1047  * 'cpus' is removed, then call this routine to rebuild the
1048  * scheduler's dynamic sched domains.
1049  *
1050  * Call with cpuset_rwsem held.  Takes cpus_read_lock().
1051  */
1052 static void rebuild_sched_domains_locked(void)
1053 {
1054 	struct cgroup_subsys_state *pos_css;
1055 	struct sched_domain_attr *attr;
1056 	cpumask_var_t *doms;
1057 	struct cpuset *cs;
1058 	int ndoms;
1059 
1060 	lockdep_assert_cpus_held();
1061 	percpu_rwsem_assert_held(&cpuset_rwsem);
1062 
1063 	/*
1064 	 * If we have raced with CPU hotplug, return early to avoid
1065 	 * passing doms with offlined cpu to partition_sched_domains().
1066 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1067 	 *
1068 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1069 	 * should be the same as the active CPUs, so checking only top_cpuset
1070 	 * is enough to detect racing CPU offlines.
1071 	 */
1072 	if (!top_cpuset.nr_subparts_cpus &&
1073 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1074 		return;
1075 
1076 	/*
1077 	 * With subpartition CPUs, however, the effective CPUs of a partition
1078 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1079 	 * partition root could be offlined, all must be checked.
1080 	 */
1081 	if (top_cpuset.nr_subparts_cpus) {
1082 		rcu_read_lock();
1083 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1084 			if (!is_partition_root(cs)) {
1085 				pos_css = css_rightmost_descendant(pos_css);
1086 				continue;
1087 			}
1088 			if (!cpumask_subset(cs->effective_cpus,
1089 					    cpu_active_mask)) {
1090 				rcu_read_unlock();
1091 				return;
1092 			}
1093 		}
1094 		rcu_read_unlock();
1095 	}
1096 
1097 	/* Generate domain masks and attrs */
1098 	ndoms = generate_sched_domains(&doms, &attr);
1099 
1100 	/* Have scheduler rebuild the domains */
1101 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1102 }
1103 #else /* !CONFIG_SMP */
1104 static void rebuild_sched_domains_locked(void)
1105 {
1106 }
1107 #endif /* CONFIG_SMP */
1108 
1109 void rebuild_sched_domains(void)
1110 {
1111 	cpus_read_lock();
1112 	percpu_down_write(&cpuset_rwsem);
1113 	rebuild_sched_domains_locked();
1114 	percpu_up_write(&cpuset_rwsem);
1115 	cpus_read_unlock();
1116 }
1117 
1118 /**
1119  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1120  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1121  *
1122  * Iterate through each task of @cs updating its cpus_allowed to the
1123  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1124  * cpuset membership stays stable.
1125  */
1126 static void update_tasks_cpumask(struct cpuset *cs)
1127 {
1128 	struct css_task_iter it;
1129 	struct task_struct *task;
1130 
1131 	css_task_iter_start(&cs->css, 0, &it);
1132 	while ((task = css_task_iter_next(&it)))
1133 		set_cpus_allowed_ptr(task, cs->effective_cpus);
1134 	css_task_iter_end(&it);
1135 }
1136 
1137 /**
1138  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1139  * @new_cpus: the temp variable for the new effective_cpus mask
1140  * @cs: the cpuset the need to recompute the new effective_cpus mask
1141  * @parent: the parent cpuset
1142  *
1143  * If the parent has subpartition CPUs, include them in the list of
1144  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1145  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1146  * to mask those out.
1147  */
1148 static void compute_effective_cpumask(struct cpumask *new_cpus,
1149 				      struct cpuset *cs, struct cpuset *parent)
1150 {
1151 	if (parent->nr_subparts_cpus) {
1152 		cpumask_or(new_cpus, parent->effective_cpus,
1153 			   parent->subparts_cpus);
1154 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1155 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1156 	} else {
1157 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1158 	}
1159 }
1160 
1161 /*
1162  * Commands for update_parent_subparts_cpumask
1163  */
1164 enum subparts_cmd {
1165 	partcmd_enable,		/* Enable partition root	 */
1166 	partcmd_disable,	/* Disable partition root	 */
1167 	partcmd_update,		/* Update parent's subparts_cpus */
1168 };
1169 
1170 /**
1171  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1172  * @cpuset:  The cpuset that requests change in partition root state
1173  * @cmd:     Partition root state change command
1174  * @newmask: Optional new cpumask for partcmd_update
1175  * @tmp:     Temporary addmask and delmask
1176  * Return:   0, 1 or an error code
1177  *
1178  * For partcmd_enable, the cpuset is being transformed from a non-partition
1179  * root to a partition root. The cpus_allowed mask of the given cpuset will
1180  * be put into parent's subparts_cpus and taken away from parent's
1181  * effective_cpus. The function will return 0 if all the CPUs listed in
1182  * cpus_allowed can be granted or an error code will be returned.
1183  *
1184  * For partcmd_disable, the cpuset is being transformed from a partition
1185  * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1186  * parent's subparts_cpus will be taken away from that cpumask and put back
1187  * into parent's effective_cpus. 0 should always be returned.
1188  *
1189  * For partcmd_update, if the optional newmask is specified, the cpu
1190  * list is to be changed from cpus_allowed to newmask. Otherwise,
1191  * cpus_allowed is assumed to remain the same. The cpuset should either
1192  * be a partition root or an invalid partition root. The partition root
1193  * state may change if newmask is NULL and none of the requested CPUs can
1194  * be granted by the parent. The function will return 1 if changes to
1195  * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1196  * Error code should only be returned when newmask is non-NULL.
1197  *
1198  * The partcmd_enable and partcmd_disable commands are used by
1199  * update_prstate(). The partcmd_update command is used by
1200  * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1201  * newmask set.
1202  *
1203  * The checking is more strict when enabling partition root than the
1204  * other two commands.
1205  *
1206  * Because of the implicit cpu exclusive nature of a partition root,
1207  * cpumask changes that violates the cpu exclusivity rule will not be
1208  * permitted when checked by validate_change().
1209  */
1210 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1211 					  struct cpumask *newmask,
1212 					  struct tmpmasks *tmp)
1213 {
1214 	struct cpuset *parent = parent_cs(cpuset);
1215 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1216 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1217 	int old_prs, new_prs;
1218 	bool part_error = false;	/* Partition error? */
1219 
1220 	percpu_rwsem_assert_held(&cpuset_rwsem);
1221 
1222 	/*
1223 	 * The parent must be a partition root.
1224 	 * The new cpumask, if present, or the current cpus_allowed must
1225 	 * not be empty.
1226 	 */
1227 	if (!is_partition_root(parent) ||
1228 	   (newmask && cpumask_empty(newmask)) ||
1229 	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1230 		return -EINVAL;
1231 
1232 	/*
1233 	 * Enabling/disabling partition root is not allowed if there are
1234 	 * online children.
1235 	 */
1236 	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1237 		return -EBUSY;
1238 
1239 	/*
1240 	 * Enabling partition root is not allowed if not all the CPUs
1241 	 * can be granted from parent's effective_cpus or at least one
1242 	 * CPU will be left after that.
1243 	 */
1244 	if ((cmd == partcmd_enable) &&
1245 	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1246 	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1247 		return -EINVAL;
1248 
1249 	/*
1250 	 * A cpumask update cannot make parent's effective_cpus become empty.
1251 	 */
1252 	adding = deleting = false;
1253 	old_prs = new_prs = cpuset->partition_root_state;
1254 	if (cmd == partcmd_enable) {
1255 		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1256 		adding = true;
1257 	} else if (cmd == partcmd_disable) {
1258 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1259 				       parent->subparts_cpus);
1260 	} else if (newmask) {
1261 		/*
1262 		 * partcmd_update with newmask:
1263 		 *
1264 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1265 		 * addmask = newmask & parent->effective_cpus
1266 		 *		     & ~parent->subparts_cpus
1267 		 */
1268 		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1269 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1270 				       parent->subparts_cpus);
1271 
1272 		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1273 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1274 					parent->subparts_cpus);
1275 		/*
1276 		 * Return error if the new effective_cpus could become empty.
1277 		 */
1278 		if (adding &&
1279 		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1280 			if (!deleting)
1281 				return -EINVAL;
1282 			/*
1283 			 * As some of the CPUs in subparts_cpus might have
1284 			 * been offlined, we need to compute the real delmask
1285 			 * to confirm that.
1286 			 */
1287 			if (!cpumask_and(tmp->addmask, tmp->delmask,
1288 					 cpu_active_mask))
1289 				return -EINVAL;
1290 			cpumask_copy(tmp->addmask, parent->effective_cpus);
1291 		}
1292 	} else {
1293 		/*
1294 		 * partcmd_update w/o newmask:
1295 		 *
1296 		 * addmask = cpus_allowed & parent->effective_cpus
1297 		 *
1298 		 * Note that parent's subparts_cpus may have been
1299 		 * pre-shrunk in case there is a change in the cpu list.
1300 		 * So no deletion is needed.
1301 		 */
1302 		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1303 				     parent->effective_cpus);
1304 		part_error = cpumask_equal(tmp->addmask,
1305 					   parent->effective_cpus);
1306 	}
1307 
1308 	if (cmd == partcmd_update) {
1309 		int prev_prs = cpuset->partition_root_state;
1310 
1311 		/*
1312 		 * Check for possible transition between PRS_ENABLED
1313 		 * and PRS_ERROR.
1314 		 */
1315 		switch (cpuset->partition_root_state) {
1316 		case PRS_ENABLED:
1317 			if (part_error)
1318 				new_prs = PRS_ERROR;
1319 			break;
1320 		case PRS_ERROR:
1321 			if (!part_error)
1322 				new_prs = PRS_ENABLED;
1323 			break;
1324 		}
1325 		/*
1326 		 * Set part_error if previously in invalid state.
1327 		 */
1328 		part_error = (prev_prs == PRS_ERROR);
1329 	}
1330 
1331 	if (!part_error && (new_prs == PRS_ERROR))
1332 		return 0;	/* Nothing need to be done */
1333 
1334 	if (new_prs == PRS_ERROR) {
1335 		/*
1336 		 * Remove all its cpus from parent's subparts_cpus.
1337 		 */
1338 		adding = false;
1339 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1340 				       parent->subparts_cpus);
1341 	}
1342 
1343 	if (!adding && !deleting && (new_prs == old_prs))
1344 		return 0;
1345 
1346 	/*
1347 	 * Change the parent's subparts_cpus.
1348 	 * Newly added CPUs will be removed from effective_cpus and
1349 	 * newly deleted ones will be added back to effective_cpus.
1350 	 */
1351 	spin_lock_irq(&callback_lock);
1352 	if (adding) {
1353 		cpumask_or(parent->subparts_cpus,
1354 			   parent->subparts_cpus, tmp->addmask);
1355 		cpumask_andnot(parent->effective_cpus,
1356 			       parent->effective_cpus, tmp->addmask);
1357 	}
1358 	if (deleting) {
1359 		cpumask_andnot(parent->subparts_cpus,
1360 			       parent->subparts_cpus, tmp->delmask);
1361 		/*
1362 		 * Some of the CPUs in subparts_cpus might have been offlined.
1363 		 */
1364 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1365 		cpumask_or(parent->effective_cpus,
1366 			   parent->effective_cpus, tmp->delmask);
1367 	}
1368 
1369 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1370 
1371 	if (old_prs != new_prs)
1372 		cpuset->partition_root_state = new_prs;
1373 
1374 	spin_unlock_irq(&callback_lock);
1375 	notify_partition_change(cpuset, old_prs, new_prs);
1376 
1377 	return cmd == partcmd_update;
1378 }
1379 
1380 /*
1381  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1382  * @cs:  the cpuset to consider
1383  * @tmp: temp variables for calculating effective_cpus & partition setup
1384  *
1385  * When configured cpumask is changed, the effective cpumasks of this cpuset
1386  * and all its descendants need to be updated.
1387  *
1388  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1389  *
1390  * Called with cpuset_rwsem held
1391  */
1392 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1393 {
1394 	struct cpuset *cp;
1395 	struct cgroup_subsys_state *pos_css;
1396 	bool need_rebuild_sched_domains = false;
1397 	int old_prs, new_prs;
1398 
1399 	rcu_read_lock();
1400 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1401 		struct cpuset *parent = parent_cs(cp);
1402 
1403 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1404 
1405 		/*
1406 		 * If it becomes empty, inherit the effective mask of the
1407 		 * parent, which is guaranteed to have some CPUs.
1408 		 */
1409 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1410 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1411 			if (!cp->use_parent_ecpus) {
1412 				cp->use_parent_ecpus = true;
1413 				parent->child_ecpus_count++;
1414 			}
1415 		} else if (cp->use_parent_ecpus) {
1416 			cp->use_parent_ecpus = false;
1417 			WARN_ON_ONCE(!parent->child_ecpus_count);
1418 			parent->child_ecpus_count--;
1419 		}
1420 
1421 		/*
1422 		 * Skip the whole subtree if the cpumask remains the same
1423 		 * and has no partition root state.
1424 		 */
1425 		if (!cp->partition_root_state &&
1426 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1427 			pos_css = css_rightmost_descendant(pos_css);
1428 			continue;
1429 		}
1430 
1431 		/*
1432 		 * update_parent_subparts_cpumask() should have been called
1433 		 * for cs already in update_cpumask(). We should also call
1434 		 * update_tasks_cpumask() again for tasks in the parent
1435 		 * cpuset if the parent's subparts_cpus changes.
1436 		 */
1437 		old_prs = new_prs = cp->partition_root_state;
1438 		if ((cp != cs) && old_prs) {
1439 			switch (parent->partition_root_state) {
1440 			case PRS_DISABLED:
1441 				/*
1442 				 * If parent is not a partition root or an
1443 				 * invalid partition root, clear its state
1444 				 * and its CS_CPU_EXCLUSIVE flag.
1445 				 */
1446 				WARN_ON_ONCE(cp->partition_root_state
1447 					     != PRS_ERROR);
1448 				new_prs = PRS_DISABLED;
1449 
1450 				/*
1451 				 * clear_bit() is an atomic operation and
1452 				 * readers aren't interested in the state
1453 				 * of CS_CPU_EXCLUSIVE anyway. So we can
1454 				 * just update the flag without holding
1455 				 * the callback_lock.
1456 				 */
1457 				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1458 				break;
1459 
1460 			case PRS_ENABLED:
1461 				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1462 					update_tasks_cpumask(parent);
1463 				break;
1464 
1465 			case PRS_ERROR:
1466 				/*
1467 				 * When parent is invalid, it has to be too.
1468 				 */
1469 				new_prs = PRS_ERROR;
1470 				break;
1471 			}
1472 		}
1473 
1474 		if (!css_tryget_online(&cp->css))
1475 			continue;
1476 		rcu_read_unlock();
1477 
1478 		spin_lock_irq(&callback_lock);
1479 
1480 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1481 		if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
1482 			cp->nr_subparts_cpus = 0;
1483 			cpumask_clear(cp->subparts_cpus);
1484 		} else if (cp->nr_subparts_cpus) {
1485 			/*
1486 			 * Make sure that effective_cpus & subparts_cpus
1487 			 * are mutually exclusive.
1488 			 *
1489 			 * In the unlikely event that effective_cpus
1490 			 * becomes empty. we clear cp->nr_subparts_cpus and
1491 			 * let its child partition roots to compete for
1492 			 * CPUs again.
1493 			 */
1494 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1495 				       cp->subparts_cpus);
1496 			if (cpumask_empty(cp->effective_cpus)) {
1497 				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1498 				cpumask_clear(cp->subparts_cpus);
1499 				cp->nr_subparts_cpus = 0;
1500 			} else if (!cpumask_subset(cp->subparts_cpus,
1501 						   tmp->new_cpus)) {
1502 				cpumask_andnot(cp->subparts_cpus,
1503 					cp->subparts_cpus, tmp->new_cpus);
1504 				cp->nr_subparts_cpus
1505 					= cpumask_weight(cp->subparts_cpus);
1506 			}
1507 		}
1508 
1509 		if (new_prs != old_prs)
1510 			cp->partition_root_state = new_prs;
1511 
1512 		spin_unlock_irq(&callback_lock);
1513 		notify_partition_change(cp, old_prs, new_prs);
1514 
1515 		WARN_ON(!is_in_v2_mode() &&
1516 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1517 
1518 		update_tasks_cpumask(cp);
1519 
1520 		/*
1521 		 * On legacy hierarchy, if the effective cpumask of any non-
1522 		 * empty cpuset is changed, we need to rebuild sched domains.
1523 		 * On default hierarchy, the cpuset needs to be a partition
1524 		 * root as well.
1525 		 */
1526 		if (!cpumask_empty(cp->cpus_allowed) &&
1527 		    is_sched_load_balance(cp) &&
1528 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1529 		    is_partition_root(cp)))
1530 			need_rebuild_sched_domains = true;
1531 
1532 		rcu_read_lock();
1533 		css_put(&cp->css);
1534 	}
1535 	rcu_read_unlock();
1536 
1537 	if (need_rebuild_sched_domains)
1538 		rebuild_sched_domains_locked();
1539 }
1540 
1541 /**
1542  * update_sibling_cpumasks - Update siblings cpumasks
1543  * @parent:  Parent cpuset
1544  * @cs:      Current cpuset
1545  * @tmp:     Temp variables
1546  */
1547 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1548 				    struct tmpmasks *tmp)
1549 {
1550 	struct cpuset *sibling;
1551 	struct cgroup_subsys_state *pos_css;
1552 
1553 	percpu_rwsem_assert_held(&cpuset_rwsem);
1554 
1555 	/*
1556 	 * Check all its siblings and call update_cpumasks_hier()
1557 	 * if their use_parent_ecpus flag is set in order for them
1558 	 * to use the right effective_cpus value.
1559 	 *
1560 	 * The update_cpumasks_hier() function may sleep. So we have to
1561 	 * release the RCU read lock before calling it.
1562 	 */
1563 	rcu_read_lock();
1564 	cpuset_for_each_child(sibling, pos_css, parent) {
1565 		if (sibling == cs)
1566 			continue;
1567 		if (!sibling->use_parent_ecpus)
1568 			continue;
1569 		if (!css_tryget_online(&sibling->css))
1570 			continue;
1571 
1572 		rcu_read_unlock();
1573 		update_cpumasks_hier(sibling, tmp);
1574 		rcu_read_lock();
1575 		css_put(&sibling->css);
1576 	}
1577 	rcu_read_unlock();
1578 }
1579 
1580 /**
1581  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1582  * @cs: the cpuset to consider
1583  * @trialcs: trial cpuset
1584  * @buf: buffer of cpu numbers written to this cpuset
1585  */
1586 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1587 			  const char *buf)
1588 {
1589 	int retval;
1590 	struct tmpmasks tmp;
1591 
1592 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1593 	if (cs == &top_cpuset)
1594 		return -EACCES;
1595 
1596 	/*
1597 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1598 	 * Since cpulist_parse() fails on an empty mask, we special case
1599 	 * that parsing.  The validate_change() call ensures that cpusets
1600 	 * with tasks have cpus.
1601 	 */
1602 	if (!*buf) {
1603 		cpumask_clear(trialcs->cpus_allowed);
1604 	} else {
1605 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1606 		if (retval < 0)
1607 			return retval;
1608 
1609 		if (!cpumask_subset(trialcs->cpus_allowed,
1610 				    top_cpuset.cpus_allowed))
1611 			return -EINVAL;
1612 	}
1613 
1614 	/* Nothing to do if the cpus didn't change */
1615 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1616 		return 0;
1617 
1618 	retval = validate_change(cs, trialcs);
1619 	if (retval < 0)
1620 		return retval;
1621 
1622 #ifdef CONFIG_CPUMASK_OFFSTACK
1623 	/*
1624 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1625 	 * to allocated cpumasks.
1626 	 */
1627 	tmp.addmask  = trialcs->subparts_cpus;
1628 	tmp.delmask  = trialcs->effective_cpus;
1629 	tmp.new_cpus = trialcs->cpus_allowed;
1630 #endif
1631 
1632 	if (cs->partition_root_state) {
1633 		/* Cpumask of a partition root cannot be empty */
1634 		if (cpumask_empty(trialcs->cpus_allowed))
1635 			return -EINVAL;
1636 		if (update_parent_subparts_cpumask(cs, partcmd_update,
1637 					trialcs->cpus_allowed, &tmp) < 0)
1638 			return -EINVAL;
1639 	}
1640 
1641 	spin_lock_irq(&callback_lock);
1642 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1643 
1644 	/*
1645 	 * Make sure that subparts_cpus is a subset of cpus_allowed.
1646 	 */
1647 	if (cs->nr_subparts_cpus) {
1648 		cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed);
1649 		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1650 	}
1651 	spin_unlock_irq(&callback_lock);
1652 
1653 	update_cpumasks_hier(cs, &tmp);
1654 
1655 	if (cs->partition_root_state) {
1656 		struct cpuset *parent = parent_cs(cs);
1657 
1658 		/*
1659 		 * For partition root, update the cpumasks of sibling
1660 		 * cpusets if they use parent's effective_cpus.
1661 		 */
1662 		if (parent->child_ecpus_count)
1663 			update_sibling_cpumasks(parent, cs, &tmp);
1664 	}
1665 	return 0;
1666 }
1667 
1668 /*
1669  * Migrate memory region from one set of nodes to another.  This is
1670  * performed asynchronously as it can be called from process migration path
1671  * holding locks involved in process management.  All mm migrations are
1672  * performed in the queued order and can be waited for by flushing
1673  * cpuset_migrate_mm_wq.
1674  */
1675 
1676 struct cpuset_migrate_mm_work {
1677 	struct work_struct	work;
1678 	struct mm_struct	*mm;
1679 	nodemask_t		from;
1680 	nodemask_t		to;
1681 };
1682 
1683 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1684 {
1685 	struct cpuset_migrate_mm_work *mwork =
1686 		container_of(work, struct cpuset_migrate_mm_work, work);
1687 
1688 	/* on a wq worker, no need to worry about %current's mems_allowed */
1689 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1690 	mmput(mwork->mm);
1691 	kfree(mwork);
1692 }
1693 
1694 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1695 							const nodemask_t *to)
1696 {
1697 	struct cpuset_migrate_mm_work *mwork;
1698 
1699 	if (nodes_equal(*from, *to)) {
1700 		mmput(mm);
1701 		return;
1702 	}
1703 
1704 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1705 	if (mwork) {
1706 		mwork->mm = mm;
1707 		mwork->from = *from;
1708 		mwork->to = *to;
1709 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1710 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1711 	} else {
1712 		mmput(mm);
1713 	}
1714 }
1715 
1716 static void cpuset_post_attach(void)
1717 {
1718 	flush_workqueue(cpuset_migrate_mm_wq);
1719 }
1720 
1721 /*
1722  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1723  * @tsk: the task to change
1724  * @newmems: new nodes that the task will be set
1725  *
1726  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1727  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1728  * parallel, it might temporarily see an empty intersection, which results in
1729  * a seqlock check and retry before OOM or allocation failure.
1730  */
1731 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1732 					nodemask_t *newmems)
1733 {
1734 	task_lock(tsk);
1735 
1736 	local_irq_disable();
1737 	write_seqcount_begin(&tsk->mems_allowed_seq);
1738 
1739 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1740 	mpol_rebind_task(tsk, newmems);
1741 	tsk->mems_allowed = *newmems;
1742 
1743 	write_seqcount_end(&tsk->mems_allowed_seq);
1744 	local_irq_enable();
1745 
1746 	task_unlock(tsk);
1747 }
1748 
1749 static void *cpuset_being_rebound;
1750 
1751 /**
1752  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1753  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1754  *
1755  * Iterate through each task of @cs updating its mems_allowed to the
1756  * effective cpuset's.  As this function is called with cpuset_rwsem held,
1757  * cpuset membership stays stable.
1758  */
1759 static void update_tasks_nodemask(struct cpuset *cs)
1760 {
1761 	static nodemask_t newmems;	/* protected by cpuset_rwsem */
1762 	struct css_task_iter it;
1763 	struct task_struct *task;
1764 
1765 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1766 
1767 	guarantee_online_mems(cs, &newmems);
1768 
1769 	/*
1770 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1771 	 * take while holding tasklist_lock.  Forks can happen - the
1772 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1773 	 * and rebind their vma mempolicies too.  Because we still hold
1774 	 * the global cpuset_rwsem, we know that no other rebind effort
1775 	 * will be contending for the global variable cpuset_being_rebound.
1776 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1777 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1778 	 */
1779 	css_task_iter_start(&cs->css, 0, &it);
1780 	while ((task = css_task_iter_next(&it))) {
1781 		struct mm_struct *mm;
1782 		bool migrate;
1783 
1784 		cpuset_change_task_nodemask(task, &newmems);
1785 
1786 		mm = get_task_mm(task);
1787 		if (!mm)
1788 			continue;
1789 
1790 		migrate = is_memory_migrate(cs);
1791 
1792 		mpol_rebind_mm(mm, &cs->mems_allowed);
1793 		if (migrate)
1794 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1795 		else
1796 			mmput(mm);
1797 	}
1798 	css_task_iter_end(&it);
1799 
1800 	/*
1801 	 * All the tasks' nodemasks have been updated, update
1802 	 * cs->old_mems_allowed.
1803 	 */
1804 	cs->old_mems_allowed = newmems;
1805 
1806 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1807 	cpuset_being_rebound = NULL;
1808 }
1809 
1810 /*
1811  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1812  * @cs: the cpuset to consider
1813  * @new_mems: a temp variable for calculating new effective_mems
1814  *
1815  * When configured nodemask is changed, the effective nodemasks of this cpuset
1816  * and all its descendants need to be updated.
1817  *
1818  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
1819  *
1820  * Called with cpuset_rwsem held
1821  */
1822 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1823 {
1824 	struct cpuset *cp;
1825 	struct cgroup_subsys_state *pos_css;
1826 
1827 	rcu_read_lock();
1828 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1829 		struct cpuset *parent = parent_cs(cp);
1830 
1831 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1832 
1833 		/*
1834 		 * If it becomes empty, inherit the effective mask of the
1835 		 * parent, which is guaranteed to have some MEMs.
1836 		 */
1837 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1838 			*new_mems = parent->effective_mems;
1839 
1840 		/* Skip the whole subtree if the nodemask remains the same. */
1841 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1842 			pos_css = css_rightmost_descendant(pos_css);
1843 			continue;
1844 		}
1845 
1846 		if (!css_tryget_online(&cp->css))
1847 			continue;
1848 		rcu_read_unlock();
1849 
1850 		spin_lock_irq(&callback_lock);
1851 		cp->effective_mems = *new_mems;
1852 		spin_unlock_irq(&callback_lock);
1853 
1854 		WARN_ON(!is_in_v2_mode() &&
1855 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1856 
1857 		update_tasks_nodemask(cp);
1858 
1859 		rcu_read_lock();
1860 		css_put(&cp->css);
1861 	}
1862 	rcu_read_unlock();
1863 }
1864 
1865 /*
1866  * Handle user request to change the 'mems' memory placement
1867  * of a cpuset.  Needs to validate the request, update the
1868  * cpusets mems_allowed, and for each task in the cpuset,
1869  * update mems_allowed and rebind task's mempolicy and any vma
1870  * mempolicies and if the cpuset is marked 'memory_migrate',
1871  * migrate the tasks pages to the new memory.
1872  *
1873  * Call with cpuset_rwsem held. May take callback_lock during call.
1874  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1875  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1876  * their mempolicies to the cpusets new mems_allowed.
1877  */
1878 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1879 			   const char *buf)
1880 {
1881 	int retval;
1882 
1883 	/*
1884 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1885 	 * it's read-only
1886 	 */
1887 	if (cs == &top_cpuset) {
1888 		retval = -EACCES;
1889 		goto done;
1890 	}
1891 
1892 	/*
1893 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1894 	 * Since nodelist_parse() fails on an empty mask, we special case
1895 	 * that parsing.  The validate_change() call ensures that cpusets
1896 	 * with tasks have memory.
1897 	 */
1898 	if (!*buf) {
1899 		nodes_clear(trialcs->mems_allowed);
1900 	} else {
1901 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1902 		if (retval < 0)
1903 			goto done;
1904 
1905 		if (!nodes_subset(trialcs->mems_allowed,
1906 				  top_cpuset.mems_allowed)) {
1907 			retval = -EINVAL;
1908 			goto done;
1909 		}
1910 	}
1911 
1912 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1913 		retval = 0;		/* Too easy - nothing to do */
1914 		goto done;
1915 	}
1916 	retval = validate_change(cs, trialcs);
1917 	if (retval < 0)
1918 		goto done;
1919 
1920 	check_insane_mems_config(&trialcs->mems_allowed);
1921 
1922 	spin_lock_irq(&callback_lock);
1923 	cs->mems_allowed = trialcs->mems_allowed;
1924 	spin_unlock_irq(&callback_lock);
1925 
1926 	/* use trialcs->mems_allowed as a temp variable */
1927 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1928 done:
1929 	return retval;
1930 }
1931 
1932 bool current_cpuset_is_being_rebound(void)
1933 {
1934 	bool ret;
1935 
1936 	rcu_read_lock();
1937 	ret = task_cs(current) == cpuset_being_rebound;
1938 	rcu_read_unlock();
1939 
1940 	return ret;
1941 }
1942 
1943 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1944 {
1945 #ifdef CONFIG_SMP
1946 	if (val < -1 || val >= sched_domain_level_max)
1947 		return -EINVAL;
1948 #endif
1949 
1950 	if (val != cs->relax_domain_level) {
1951 		cs->relax_domain_level = val;
1952 		if (!cpumask_empty(cs->cpus_allowed) &&
1953 		    is_sched_load_balance(cs))
1954 			rebuild_sched_domains_locked();
1955 	}
1956 
1957 	return 0;
1958 }
1959 
1960 /**
1961  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1962  * @cs: the cpuset in which each task's spread flags needs to be changed
1963  *
1964  * Iterate through each task of @cs updating its spread flags.  As this
1965  * function is called with cpuset_rwsem held, cpuset membership stays
1966  * stable.
1967  */
1968 static void update_tasks_flags(struct cpuset *cs)
1969 {
1970 	struct css_task_iter it;
1971 	struct task_struct *task;
1972 
1973 	css_task_iter_start(&cs->css, 0, &it);
1974 	while ((task = css_task_iter_next(&it)))
1975 		cpuset_update_task_spread_flag(cs, task);
1976 	css_task_iter_end(&it);
1977 }
1978 
1979 /*
1980  * update_flag - read a 0 or a 1 in a file and update associated flag
1981  * bit:		the bit to update (see cpuset_flagbits_t)
1982  * cs:		the cpuset to update
1983  * turning_on: 	whether the flag is being set or cleared
1984  *
1985  * Call with cpuset_rwsem held.
1986  */
1987 
1988 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1989 		       int turning_on)
1990 {
1991 	struct cpuset *trialcs;
1992 	int balance_flag_changed;
1993 	int spread_flag_changed;
1994 	int err;
1995 
1996 	trialcs = alloc_trial_cpuset(cs);
1997 	if (!trialcs)
1998 		return -ENOMEM;
1999 
2000 	if (turning_on)
2001 		set_bit(bit, &trialcs->flags);
2002 	else
2003 		clear_bit(bit, &trialcs->flags);
2004 
2005 	err = validate_change(cs, trialcs);
2006 	if (err < 0)
2007 		goto out;
2008 
2009 	balance_flag_changed = (is_sched_load_balance(cs) !=
2010 				is_sched_load_balance(trialcs));
2011 
2012 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2013 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2014 
2015 	spin_lock_irq(&callback_lock);
2016 	cs->flags = trialcs->flags;
2017 	spin_unlock_irq(&callback_lock);
2018 
2019 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2020 		rebuild_sched_domains_locked();
2021 
2022 	if (spread_flag_changed)
2023 		update_tasks_flags(cs);
2024 out:
2025 	free_cpuset(trialcs);
2026 	return err;
2027 }
2028 
2029 /*
2030  * update_prstate - update partition_root_state
2031  * cs: the cpuset to update
2032  * new_prs: new partition root state
2033  *
2034  * Call with cpuset_rwsem held.
2035  */
2036 static int update_prstate(struct cpuset *cs, int new_prs)
2037 {
2038 	int err, old_prs = cs->partition_root_state;
2039 	struct cpuset *parent = parent_cs(cs);
2040 	struct tmpmasks tmpmask;
2041 
2042 	if (old_prs == new_prs)
2043 		return 0;
2044 
2045 	/*
2046 	 * Cannot force a partial or invalid partition root to a full
2047 	 * partition root.
2048 	 */
2049 	if (new_prs && (old_prs == PRS_ERROR))
2050 		return -EINVAL;
2051 
2052 	if (alloc_cpumasks(NULL, &tmpmask))
2053 		return -ENOMEM;
2054 
2055 	err = -EINVAL;
2056 	if (!old_prs) {
2057 		/*
2058 		 * Turning on partition root requires setting the
2059 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2060 		 * cannot be NULL.
2061 		 */
2062 		if (cpumask_empty(cs->cpus_allowed))
2063 			goto out;
2064 
2065 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2066 		if (err)
2067 			goto out;
2068 
2069 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
2070 						     NULL, &tmpmask);
2071 		if (err) {
2072 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2073 			goto out;
2074 		}
2075 	} else {
2076 		/*
2077 		 * Turning off partition root will clear the
2078 		 * CS_CPU_EXCLUSIVE bit.
2079 		 */
2080 		if (old_prs == PRS_ERROR) {
2081 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2082 			err = 0;
2083 			goto out;
2084 		}
2085 
2086 		err = update_parent_subparts_cpumask(cs, partcmd_disable,
2087 						     NULL, &tmpmask);
2088 		if (err)
2089 			goto out;
2090 
2091 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
2092 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2093 	}
2094 
2095 	/*
2096 	 * Update cpumask of parent's tasks except when it is the top
2097 	 * cpuset as some system daemons cannot be mapped to other CPUs.
2098 	 */
2099 	if (parent != &top_cpuset)
2100 		update_tasks_cpumask(parent);
2101 
2102 	if (parent->child_ecpus_count)
2103 		update_sibling_cpumasks(parent, cs, &tmpmask);
2104 
2105 	rebuild_sched_domains_locked();
2106 out:
2107 	if (!err) {
2108 		spin_lock_irq(&callback_lock);
2109 		cs->partition_root_state = new_prs;
2110 		spin_unlock_irq(&callback_lock);
2111 		notify_partition_change(cs, old_prs, new_prs);
2112 	}
2113 
2114 	free_cpumasks(NULL, &tmpmask);
2115 	return err;
2116 }
2117 
2118 /*
2119  * Frequency meter - How fast is some event occurring?
2120  *
2121  * These routines manage a digitally filtered, constant time based,
2122  * event frequency meter.  There are four routines:
2123  *   fmeter_init() - initialize a frequency meter.
2124  *   fmeter_markevent() - called each time the event happens.
2125  *   fmeter_getrate() - returns the recent rate of such events.
2126  *   fmeter_update() - internal routine used to update fmeter.
2127  *
2128  * A common data structure is passed to each of these routines,
2129  * which is used to keep track of the state required to manage the
2130  * frequency meter and its digital filter.
2131  *
2132  * The filter works on the number of events marked per unit time.
2133  * The filter is single-pole low-pass recursive (IIR).  The time unit
2134  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2135  * simulate 3 decimal digits of precision (multiplied by 1000).
2136  *
2137  * With an FM_COEF of 933, and a time base of 1 second, the filter
2138  * has a half-life of 10 seconds, meaning that if the events quit
2139  * happening, then the rate returned from the fmeter_getrate()
2140  * will be cut in half each 10 seconds, until it converges to zero.
2141  *
2142  * It is not worth doing a real infinitely recursive filter.  If more
2143  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2144  * just compute FM_MAXTICKS ticks worth, by which point the level
2145  * will be stable.
2146  *
2147  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2148  * arithmetic overflow in the fmeter_update() routine.
2149  *
2150  * Given the simple 32 bit integer arithmetic used, this meter works
2151  * best for reporting rates between one per millisecond (msec) and
2152  * one per 32 (approx) seconds.  At constant rates faster than one
2153  * per msec it maxes out at values just under 1,000,000.  At constant
2154  * rates between one per msec, and one per second it will stabilize
2155  * to a value N*1000, where N is the rate of events per second.
2156  * At constant rates between one per second and one per 32 seconds,
2157  * it will be choppy, moving up on the seconds that have an event,
2158  * and then decaying until the next event.  At rates slower than
2159  * about one in 32 seconds, it decays all the way back to zero between
2160  * each event.
2161  */
2162 
2163 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2164 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2165 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2166 #define FM_SCALE 1000		/* faux fixed point scale */
2167 
2168 /* Initialize a frequency meter */
2169 static void fmeter_init(struct fmeter *fmp)
2170 {
2171 	fmp->cnt = 0;
2172 	fmp->val = 0;
2173 	fmp->time = 0;
2174 	spin_lock_init(&fmp->lock);
2175 }
2176 
2177 /* Internal meter update - process cnt events and update value */
2178 static void fmeter_update(struct fmeter *fmp)
2179 {
2180 	time64_t now;
2181 	u32 ticks;
2182 
2183 	now = ktime_get_seconds();
2184 	ticks = now - fmp->time;
2185 
2186 	if (ticks == 0)
2187 		return;
2188 
2189 	ticks = min(FM_MAXTICKS, ticks);
2190 	while (ticks-- > 0)
2191 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2192 	fmp->time = now;
2193 
2194 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2195 	fmp->cnt = 0;
2196 }
2197 
2198 /* Process any previous ticks, then bump cnt by one (times scale). */
2199 static void fmeter_markevent(struct fmeter *fmp)
2200 {
2201 	spin_lock(&fmp->lock);
2202 	fmeter_update(fmp);
2203 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2204 	spin_unlock(&fmp->lock);
2205 }
2206 
2207 /* Process any previous ticks, then return current value. */
2208 static int fmeter_getrate(struct fmeter *fmp)
2209 {
2210 	int val;
2211 
2212 	spin_lock(&fmp->lock);
2213 	fmeter_update(fmp);
2214 	val = fmp->val;
2215 	spin_unlock(&fmp->lock);
2216 	return val;
2217 }
2218 
2219 static struct cpuset *cpuset_attach_old_cs;
2220 
2221 /* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */
2222 static int cpuset_can_attach(struct cgroup_taskset *tset)
2223 {
2224 	struct cgroup_subsys_state *css;
2225 	struct cpuset *cs;
2226 	struct task_struct *task;
2227 	int ret;
2228 
2229 	/* used later by cpuset_attach() */
2230 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2231 	cs = css_cs(css);
2232 
2233 	percpu_down_write(&cpuset_rwsem);
2234 
2235 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2236 	ret = -ENOSPC;
2237 	if (!is_in_v2_mode() &&
2238 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2239 		goto out_unlock;
2240 
2241 	cgroup_taskset_for_each(task, css, tset) {
2242 		ret = task_can_attach(task, cs->effective_cpus);
2243 		if (ret)
2244 			goto out_unlock;
2245 		ret = security_task_setscheduler(task);
2246 		if (ret)
2247 			goto out_unlock;
2248 	}
2249 
2250 	/*
2251 	 * Mark attach is in progress.  This makes validate_change() fail
2252 	 * changes which zero cpus/mems_allowed.
2253 	 */
2254 	cs->attach_in_progress++;
2255 	ret = 0;
2256 out_unlock:
2257 	percpu_up_write(&cpuset_rwsem);
2258 	return ret;
2259 }
2260 
2261 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2262 {
2263 	struct cgroup_subsys_state *css;
2264 
2265 	cgroup_taskset_first(tset, &css);
2266 
2267 	percpu_down_write(&cpuset_rwsem);
2268 	css_cs(css)->attach_in_progress--;
2269 	percpu_up_write(&cpuset_rwsem);
2270 }
2271 
2272 /*
2273  * Protected by cpuset_rwsem.  cpus_attach is used only by cpuset_attach()
2274  * but we can't allocate it dynamically there.  Define it global and
2275  * allocate from cpuset_init().
2276  */
2277 static cpumask_var_t cpus_attach;
2278 
2279 static void cpuset_attach(struct cgroup_taskset *tset)
2280 {
2281 	/* static buf protected by cpuset_rwsem */
2282 	static nodemask_t cpuset_attach_nodemask_to;
2283 	struct task_struct *task;
2284 	struct task_struct *leader;
2285 	struct cgroup_subsys_state *css;
2286 	struct cpuset *cs;
2287 	struct cpuset *oldcs = cpuset_attach_old_cs;
2288 
2289 	cgroup_taskset_first(tset, &css);
2290 	cs = css_cs(css);
2291 
2292 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
2293 	percpu_down_write(&cpuset_rwsem);
2294 
2295 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2296 
2297 	cgroup_taskset_for_each(task, css, tset) {
2298 		if (cs != &top_cpuset)
2299 			guarantee_online_cpus(task, cpus_attach);
2300 		else
2301 			cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
2302 		/*
2303 		 * can_attach beforehand should guarantee that this doesn't
2304 		 * fail.  TODO: have a better way to handle failure here
2305 		 */
2306 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2307 
2308 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2309 		cpuset_update_task_spread_flag(cs, task);
2310 	}
2311 
2312 	/*
2313 	 * Change mm for all threadgroup leaders. This is expensive and may
2314 	 * sleep and should be moved outside migration path proper.
2315 	 */
2316 	cpuset_attach_nodemask_to = cs->effective_mems;
2317 	cgroup_taskset_for_each_leader(leader, css, tset) {
2318 		struct mm_struct *mm = get_task_mm(leader);
2319 
2320 		if (mm) {
2321 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2322 
2323 			/*
2324 			 * old_mems_allowed is the same with mems_allowed
2325 			 * here, except if this task is being moved
2326 			 * automatically due to hotplug.  In that case
2327 			 * @mems_allowed has been updated and is empty, so
2328 			 * @old_mems_allowed is the right nodesets that we
2329 			 * migrate mm from.
2330 			 */
2331 			if (is_memory_migrate(cs))
2332 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2333 						  &cpuset_attach_nodemask_to);
2334 			else
2335 				mmput(mm);
2336 		}
2337 	}
2338 
2339 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2340 
2341 	cs->attach_in_progress--;
2342 	if (!cs->attach_in_progress)
2343 		wake_up(&cpuset_attach_wq);
2344 
2345 	percpu_up_write(&cpuset_rwsem);
2346 }
2347 
2348 /* The various types of files and directories in a cpuset file system */
2349 
2350 typedef enum {
2351 	FILE_MEMORY_MIGRATE,
2352 	FILE_CPULIST,
2353 	FILE_MEMLIST,
2354 	FILE_EFFECTIVE_CPULIST,
2355 	FILE_EFFECTIVE_MEMLIST,
2356 	FILE_SUBPARTS_CPULIST,
2357 	FILE_CPU_EXCLUSIVE,
2358 	FILE_MEM_EXCLUSIVE,
2359 	FILE_MEM_HARDWALL,
2360 	FILE_SCHED_LOAD_BALANCE,
2361 	FILE_PARTITION_ROOT,
2362 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2363 	FILE_MEMORY_PRESSURE_ENABLED,
2364 	FILE_MEMORY_PRESSURE,
2365 	FILE_SPREAD_PAGE,
2366 	FILE_SPREAD_SLAB,
2367 } cpuset_filetype_t;
2368 
2369 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2370 			    u64 val)
2371 {
2372 	struct cpuset *cs = css_cs(css);
2373 	cpuset_filetype_t type = cft->private;
2374 	int retval = 0;
2375 
2376 	cpus_read_lock();
2377 	percpu_down_write(&cpuset_rwsem);
2378 	if (!is_cpuset_online(cs)) {
2379 		retval = -ENODEV;
2380 		goto out_unlock;
2381 	}
2382 
2383 	switch (type) {
2384 	case FILE_CPU_EXCLUSIVE:
2385 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2386 		break;
2387 	case FILE_MEM_EXCLUSIVE:
2388 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2389 		break;
2390 	case FILE_MEM_HARDWALL:
2391 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2392 		break;
2393 	case FILE_SCHED_LOAD_BALANCE:
2394 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2395 		break;
2396 	case FILE_MEMORY_MIGRATE:
2397 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2398 		break;
2399 	case FILE_MEMORY_PRESSURE_ENABLED:
2400 		cpuset_memory_pressure_enabled = !!val;
2401 		break;
2402 	case FILE_SPREAD_PAGE:
2403 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2404 		break;
2405 	case FILE_SPREAD_SLAB:
2406 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2407 		break;
2408 	default:
2409 		retval = -EINVAL;
2410 		break;
2411 	}
2412 out_unlock:
2413 	percpu_up_write(&cpuset_rwsem);
2414 	cpus_read_unlock();
2415 	return retval;
2416 }
2417 
2418 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2419 			    s64 val)
2420 {
2421 	struct cpuset *cs = css_cs(css);
2422 	cpuset_filetype_t type = cft->private;
2423 	int retval = -ENODEV;
2424 
2425 	cpus_read_lock();
2426 	percpu_down_write(&cpuset_rwsem);
2427 	if (!is_cpuset_online(cs))
2428 		goto out_unlock;
2429 
2430 	switch (type) {
2431 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2432 		retval = update_relax_domain_level(cs, val);
2433 		break;
2434 	default:
2435 		retval = -EINVAL;
2436 		break;
2437 	}
2438 out_unlock:
2439 	percpu_up_write(&cpuset_rwsem);
2440 	cpus_read_unlock();
2441 	return retval;
2442 }
2443 
2444 /*
2445  * Common handling for a write to a "cpus" or "mems" file.
2446  */
2447 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2448 				    char *buf, size_t nbytes, loff_t off)
2449 {
2450 	struct cpuset *cs = css_cs(of_css(of));
2451 	struct cpuset *trialcs;
2452 	int retval = -ENODEV;
2453 
2454 	buf = strstrip(buf);
2455 
2456 	/*
2457 	 * CPU or memory hotunplug may leave @cs w/o any execution
2458 	 * resources, in which case the hotplug code asynchronously updates
2459 	 * configuration and transfers all tasks to the nearest ancestor
2460 	 * which can execute.
2461 	 *
2462 	 * As writes to "cpus" or "mems" may restore @cs's execution
2463 	 * resources, wait for the previously scheduled operations before
2464 	 * proceeding, so that we don't end up keep removing tasks added
2465 	 * after execution capability is restored.
2466 	 *
2467 	 * cpuset_hotplug_work calls back into cgroup core via
2468 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2469 	 * operation like this one can lead to a deadlock through kernfs
2470 	 * active_ref protection.  Let's break the protection.  Losing the
2471 	 * protection is okay as we check whether @cs is online after
2472 	 * grabbing cpuset_rwsem anyway.  This only happens on the legacy
2473 	 * hierarchies.
2474 	 */
2475 	css_get(&cs->css);
2476 	kernfs_break_active_protection(of->kn);
2477 	flush_work(&cpuset_hotplug_work);
2478 
2479 	cpus_read_lock();
2480 	percpu_down_write(&cpuset_rwsem);
2481 	if (!is_cpuset_online(cs))
2482 		goto out_unlock;
2483 
2484 	trialcs = alloc_trial_cpuset(cs);
2485 	if (!trialcs) {
2486 		retval = -ENOMEM;
2487 		goto out_unlock;
2488 	}
2489 
2490 	switch (of_cft(of)->private) {
2491 	case FILE_CPULIST:
2492 		retval = update_cpumask(cs, trialcs, buf);
2493 		break;
2494 	case FILE_MEMLIST:
2495 		retval = update_nodemask(cs, trialcs, buf);
2496 		break;
2497 	default:
2498 		retval = -EINVAL;
2499 		break;
2500 	}
2501 
2502 	free_cpuset(trialcs);
2503 out_unlock:
2504 	percpu_up_write(&cpuset_rwsem);
2505 	cpus_read_unlock();
2506 	kernfs_unbreak_active_protection(of->kn);
2507 	css_put(&cs->css);
2508 	flush_workqueue(cpuset_migrate_mm_wq);
2509 	return retval ?: nbytes;
2510 }
2511 
2512 /*
2513  * These ascii lists should be read in a single call, by using a user
2514  * buffer large enough to hold the entire map.  If read in smaller
2515  * chunks, there is no guarantee of atomicity.  Since the display format
2516  * used, list of ranges of sequential numbers, is variable length,
2517  * and since these maps can change value dynamically, one could read
2518  * gibberish by doing partial reads while a list was changing.
2519  */
2520 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2521 {
2522 	struct cpuset *cs = css_cs(seq_css(sf));
2523 	cpuset_filetype_t type = seq_cft(sf)->private;
2524 	int ret = 0;
2525 
2526 	spin_lock_irq(&callback_lock);
2527 
2528 	switch (type) {
2529 	case FILE_CPULIST:
2530 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2531 		break;
2532 	case FILE_MEMLIST:
2533 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2534 		break;
2535 	case FILE_EFFECTIVE_CPULIST:
2536 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2537 		break;
2538 	case FILE_EFFECTIVE_MEMLIST:
2539 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2540 		break;
2541 	case FILE_SUBPARTS_CPULIST:
2542 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2543 		break;
2544 	default:
2545 		ret = -EINVAL;
2546 	}
2547 
2548 	spin_unlock_irq(&callback_lock);
2549 	return ret;
2550 }
2551 
2552 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2553 {
2554 	struct cpuset *cs = css_cs(css);
2555 	cpuset_filetype_t type = cft->private;
2556 	switch (type) {
2557 	case FILE_CPU_EXCLUSIVE:
2558 		return is_cpu_exclusive(cs);
2559 	case FILE_MEM_EXCLUSIVE:
2560 		return is_mem_exclusive(cs);
2561 	case FILE_MEM_HARDWALL:
2562 		return is_mem_hardwall(cs);
2563 	case FILE_SCHED_LOAD_BALANCE:
2564 		return is_sched_load_balance(cs);
2565 	case FILE_MEMORY_MIGRATE:
2566 		return is_memory_migrate(cs);
2567 	case FILE_MEMORY_PRESSURE_ENABLED:
2568 		return cpuset_memory_pressure_enabled;
2569 	case FILE_MEMORY_PRESSURE:
2570 		return fmeter_getrate(&cs->fmeter);
2571 	case FILE_SPREAD_PAGE:
2572 		return is_spread_page(cs);
2573 	case FILE_SPREAD_SLAB:
2574 		return is_spread_slab(cs);
2575 	default:
2576 		BUG();
2577 	}
2578 
2579 	/* Unreachable but makes gcc happy */
2580 	return 0;
2581 }
2582 
2583 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2584 {
2585 	struct cpuset *cs = css_cs(css);
2586 	cpuset_filetype_t type = cft->private;
2587 	switch (type) {
2588 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2589 		return cs->relax_domain_level;
2590 	default:
2591 		BUG();
2592 	}
2593 
2594 	/* Unreachable but makes gcc happy */
2595 	return 0;
2596 }
2597 
2598 static int sched_partition_show(struct seq_file *seq, void *v)
2599 {
2600 	struct cpuset *cs = css_cs(seq_css(seq));
2601 
2602 	switch (cs->partition_root_state) {
2603 	case PRS_ENABLED:
2604 		seq_puts(seq, "root\n");
2605 		break;
2606 	case PRS_DISABLED:
2607 		seq_puts(seq, "member\n");
2608 		break;
2609 	case PRS_ERROR:
2610 		seq_puts(seq, "root invalid\n");
2611 		break;
2612 	}
2613 	return 0;
2614 }
2615 
2616 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2617 				     size_t nbytes, loff_t off)
2618 {
2619 	struct cpuset *cs = css_cs(of_css(of));
2620 	int val;
2621 	int retval = -ENODEV;
2622 
2623 	buf = strstrip(buf);
2624 
2625 	/*
2626 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2627 	 */
2628 	if (!strcmp(buf, "root"))
2629 		val = PRS_ENABLED;
2630 	else if (!strcmp(buf, "member"))
2631 		val = PRS_DISABLED;
2632 	else
2633 		return -EINVAL;
2634 
2635 	css_get(&cs->css);
2636 	cpus_read_lock();
2637 	percpu_down_write(&cpuset_rwsem);
2638 	if (!is_cpuset_online(cs))
2639 		goto out_unlock;
2640 
2641 	retval = update_prstate(cs, val);
2642 out_unlock:
2643 	percpu_up_write(&cpuset_rwsem);
2644 	cpus_read_unlock();
2645 	css_put(&cs->css);
2646 	return retval ?: nbytes;
2647 }
2648 
2649 /*
2650  * for the common functions, 'private' gives the type of file
2651  */
2652 
2653 static struct cftype legacy_files[] = {
2654 	{
2655 		.name = "cpus",
2656 		.seq_show = cpuset_common_seq_show,
2657 		.write = cpuset_write_resmask,
2658 		.max_write_len = (100U + 6 * NR_CPUS),
2659 		.private = FILE_CPULIST,
2660 	},
2661 
2662 	{
2663 		.name = "mems",
2664 		.seq_show = cpuset_common_seq_show,
2665 		.write = cpuset_write_resmask,
2666 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2667 		.private = FILE_MEMLIST,
2668 	},
2669 
2670 	{
2671 		.name = "effective_cpus",
2672 		.seq_show = cpuset_common_seq_show,
2673 		.private = FILE_EFFECTIVE_CPULIST,
2674 	},
2675 
2676 	{
2677 		.name = "effective_mems",
2678 		.seq_show = cpuset_common_seq_show,
2679 		.private = FILE_EFFECTIVE_MEMLIST,
2680 	},
2681 
2682 	{
2683 		.name = "cpu_exclusive",
2684 		.read_u64 = cpuset_read_u64,
2685 		.write_u64 = cpuset_write_u64,
2686 		.private = FILE_CPU_EXCLUSIVE,
2687 	},
2688 
2689 	{
2690 		.name = "mem_exclusive",
2691 		.read_u64 = cpuset_read_u64,
2692 		.write_u64 = cpuset_write_u64,
2693 		.private = FILE_MEM_EXCLUSIVE,
2694 	},
2695 
2696 	{
2697 		.name = "mem_hardwall",
2698 		.read_u64 = cpuset_read_u64,
2699 		.write_u64 = cpuset_write_u64,
2700 		.private = FILE_MEM_HARDWALL,
2701 	},
2702 
2703 	{
2704 		.name = "sched_load_balance",
2705 		.read_u64 = cpuset_read_u64,
2706 		.write_u64 = cpuset_write_u64,
2707 		.private = FILE_SCHED_LOAD_BALANCE,
2708 	},
2709 
2710 	{
2711 		.name = "sched_relax_domain_level",
2712 		.read_s64 = cpuset_read_s64,
2713 		.write_s64 = cpuset_write_s64,
2714 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2715 	},
2716 
2717 	{
2718 		.name = "memory_migrate",
2719 		.read_u64 = cpuset_read_u64,
2720 		.write_u64 = cpuset_write_u64,
2721 		.private = FILE_MEMORY_MIGRATE,
2722 	},
2723 
2724 	{
2725 		.name = "memory_pressure",
2726 		.read_u64 = cpuset_read_u64,
2727 		.private = FILE_MEMORY_PRESSURE,
2728 	},
2729 
2730 	{
2731 		.name = "memory_spread_page",
2732 		.read_u64 = cpuset_read_u64,
2733 		.write_u64 = cpuset_write_u64,
2734 		.private = FILE_SPREAD_PAGE,
2735 	},
2736 
2737 	{
2738 		.name = "memory_spread_slab",
2739 		.read_u64 = cpuset_read_u64,
2740 		.write_u64 = cpuset_write_u64,
2741 		.private = FILE_SPREAD_SLAB,
2742 	},
2743 
2744 	{
2745 		.name = "memory_pressure_enabled",
2746 		.flags = CFTYPE_ONLY_ON_ROOT,
2747 		.read_u64 = cpuset_read_u64,
2748 		.write_u64 = cpuset_write_u64,
2749 		.private = FILE_MEMORY_PRESSURE_ENABLED,
2750 	},
2751 
2752 	{ }	/* terminate */
2753 };
2754 
2755 /*
2756  * This is currently a minimal set for the default hierarchy. It can be
2757  * expanded later on by migrating more features and control files from v1.
2758  */
2759 static struct cftype dfl_files[] = {
2760 	{
2761 		.name = "cpus",
2762 		.seq_show = cpuset_common_seq_show,
2763 		.write = cpuset_write_resmask,
2764 		.max_write_len = (100U + 6 * NR_CPUS),
2765 		.private = FILE_CPULIST,
2766 		.flags = CFTYPE_NOT_ON_ROOT,
2767 	},
2768 
2769 	{
2770 		.name = "mems",
2771 		.seq_show = cpuset_common_seq_show,
2772 		.write = cpuset_write_resmask,
2773 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2774 		.private = FILE_MEMLIST,
2775 		.flags = CFTYPE_NOT_ON_ROOT,
2776 	},
2777 
2778 	{
2779 		.name = "cpus.effective",
2780 		.seq_show = cpuset_common_seq_show,
2781 		.private = FILE_EFFECTIVE_CPULIST,
2782 	},
2783 
2784 	{
2785 		.name = "mems.effective",
2786 		.seq_show = cpuset_common_seq_show,
2787 		.private = FILE_EFFECTIVE_MEMLIST,
2788 	},
2789 
2790 	{
2791 		.name = "cpus.partition",
2792 		.seq_show = sched_partition_show,
2793 		.write = sched_partition_write,
2794 		.private = FILE_PARTITION_ROOT,
2795 		.flags = CFTYPE_NOT_ON_ROOT,
2796 		.file_offset = offsetof(struct cpuset, partition_file),
2797 	},
2798 
2799 	{
2800 		.name = "cpus.subpartitions",
2801 		.seq_show = cpuset_common_seq_show,
2802 		.private = FILE_SUBPARTS_CPULIST,
2803 		.flags = CFTYPE_DEBUG,
2804 	},
2805 
2806 	{ }	/* terminate */
2807 };
2808 
2809 
2810 /*
2811  *	cpuset_css_alloc - allocate a cpuset css
2812  *	cgrp:	control group that the new cpuset will be part of
2813  */
2814 
2815 static struct cgroup_subsys_state *
2816 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2817 {
2818 	struct cpuset *cs;
2819 
2820 	if (!parent_css)
2821 		return &top_cpuset.css;
2822 
2823 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2824 	if (!cs)
2825 		return ERR_PTR(-ENOMEM);
2826 
2827 	if (alloc_cpumasks(cs, NULL)) {
2828 		kfree(cs);
2829 		return ERR_PTR(-ENOMEM);
2830 	}
2831 
2832 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2833 	nodes_clear(cs->mems_allowed);
2834 	nodes_clear(cs->effective_mems);
2835 	fmeter_init(&cs->fmeter);
2836 	cs->relax_domain_level = -1;
2837 
2838 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
2839 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2840 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
2841 
2842 	return &cs->css;
2843 }
2844 
2845 static int cpuset_css_online(struct cgroup_subsys_state *css)
2846 {
2847 	struct cpuset *cs = css_cs(css);
2848 	struct cpuset *parent = parent_cs(cs);
2849 	struct cpuset *tmp_cs;
2850 	struct cgroup_subsys_state *pos_css;
2851 
2852 	if (!parent)
2853 		return 0;
2854 
2855 	cpus_read_lock();
2856 	percpu_down_write(&cpuset_rwsem);
2857 
2858 	set_bit(CS_ONLINE, &cs->flags);
2859 	if (is_spread_page(parent))
2860 		set_bit(CS_SPREAD_PAGE, &cs->flags);
2861 	if (is_spread_slab(parent))
2862 		set_bit(CS_SPREAD_SLAB, &cs->flags);
2863 
2864 	cpuset_inc();
2865 
2866 	spin_lock_irq(&callback_lock);
2867 	if (is_in_v2_mode()) {
2868 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2869 		cs->effective_mems = parent->effective_mems;
2870 		cs->use_parent_ecpus = true;
2871 		parent->child_ecpus_count++;
2872 	}
2873 	spin_unlock_irq(&callback_lock);
2874 
2875 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2876 		goto out_unlock;
2877 
2878 	/*
2879 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2880 	 * set.  This flag handling is implemented in cgroup core for
2881 	 * historical reasons - the flag may be specified during mount.
2882 	 *
2883 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2884 	 * refuse to clone the configuration - thereby refusing the task to
2885 	 * be entered, and as a result refusing the sys_unshare() or
2886 	 * clone() which initiated it.  If this becomes a problem for some
2887 	 * users who wish to allow that scenario, then this could be
2888 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2889 	 * (and likewise for mems) to the new cgroup.
2890 	 */
2891 	rcu_read_lock();
2892 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2893 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2894 			rcu_read_unlock();
2895 			goto out_unlock;
2896 		}
2897 	}
2898 	rcu_read_unlock();
2899 
2900 	spin_lock_irq(&callback_lock);
2901 	cs->mems_allowed = parent->mems_allowed;
2902 	cs->effective_mems = parent->mems_allowed;
2903 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2904 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2905 	spin_unlock_irq(&callback_lock);
2906 out_unlock:
2907 	percpu_up_write(&cpuset_rwsem);
2908 	cpus_read_unlock();
2909 	return 0;
2910 }
2911 
2912 /*
2913  * If the cpuset being removed has its flag 'sched_load_balance'
2914  * enabled, then simulate turning sched_load_balance off, which
2915  * will call rebuild_sched_domains_locked(). That is not needed
2916  * in the default hierarchy where only changes in partition
2917  * will cause repartitioning.
2918  *
2919  * If the cpuset has the 'sched.partition' flag enabled, simulate
2920  * turning 'sched.partition" off.
2921  */
2922 
2923 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2924 {
2925 	struct cpuset *cs = css_cs(css);
2926 
2927 	cpus_read_lock();
2928 	percpu_down_write(&cpuset_rwsem);
2929 
2930 	if (is_partition_root(cs))
2931 		update_prstate(cs, 0);
2932 
2933 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2934 	    is_sched_load_balance(cs))
2935 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2936 
2937 	if (cs->use_parent_ecpus) {
2938 		struct cpuset *parent = parent_cs(cs);
2939 
2940 		cs->use_parent_ecpus = false;
2941 		parent->child_ecpus_count--;
2942 	}
2943 
2944 	cpuset_dec();
2945 	clear_bit(CS_ONLINE, &cs->flags);
2946 
2947 	percpu_up_write(&cpuset_rwsem);
2948 	cpus_read_unlock();
2949 }
2950 
2951 static void cpuset_css_free(struct cgroup_subsys_state *css)
2952 {
2953 	struct cpuset *cs = css_cs(css);
2954 
2955 	free_cpuset(cs);
2956 }
2957 
2958 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2959 {
2960 	percpu_down_write(&cpuset_rwsem);
2961 	spin_lock_irq(&callback_lock);
2962 
2963 	if (is_in_v2_mode()) {
2964 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2965 		top_cpuset.mems_allowed = node_possible_map;
2966 	} else {
2967 		cpumask_copy(top_cpuset.cpus_allowed,
2968 			     top_cpuset.effective_cpus);
2969 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2970 	}
2971 
2972 	spin_unlock_irq(&callback_lock);
2973 	percpu_up_write(&cpuset_rwsem);
2974 }
2975 
2976 /*
2977  * Make sure the new task conform to the current state of its parent,
2978  * which could have been changed by cpuset just after it inherits the
2979  * state from the parent and before it sits on the cgroup's task list.
2980  */
2981 static void cpuset_fork(struct task_struct *task)
2982 {
2983 	if (task_css_is_root(task, cpuset_cgrp_id))
2984 		return;
2985 
2986 	set_cpus_allowed_ptr(task, current->cpus_ptr);
2987 	task->mems_allowed = current->mems_allowed;
2988 }
2989 
2990 struct cgroup_subsys cpuset_cgrp_subsys = {
2991 	.css_alloc	= cpuset_css_alloc,
2992 	.css_online	= cpuset_css_online,
2993 	.css_offline	= cpuset_css_offline,
2994 	.css_free	= cpuset_css_free,
2995 	.can_attach	= cpuset_can_attach,
2996 	.cancel_attach	= cpuset_cancel_attach,
2997 	.attach		= cpuset_attach,
2998 	.post_attach	= cpuset_post_attach,
2999 	.bind		= cpuset_bind,
3000 	.fork		= cpuset_fork,
3001 	.legacy_cftypes	= legacy_files,
3002 	.dfl_cftypes	= dfl_files,
3003 	.early_init	= true,
3004 	.threaded	= true,
3005 };
3006 
3007 /**
3008  * cpuset_init - initialize cpusets at system boot
3009  *
3010  * Description: Initialize top_cpuset
3011  **/
3012 
3013 int __init cpuset_init(void)
3014 {
3015 	BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
3016 
3017 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3018 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3019 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3020 
3021 	cpumask_setall(top_cpuset.cpus_allowed);
3022 	nodes_setall(top_cpuset.mems_allowed);
3023 	cpumask_setall(top_cpuset.effective_cpus);
3024 	nodes_setall(top_cpuset.effective_mems);
3025 
3026 	fmeter_init(&top_cpuset.fmeter);
3027 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3028 	top_cpuset.relax_domain_level = -1;
3029 
3030 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3031 
3032 	return 0;
3033 }
3034 
3035 /*
3036  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3037  * or memory nodes, we need to walk over the cpuset hierarchy,
3038  * removing that CPU or node from all cpusets.  If this removes the
3039  * last CPU or node from a cpuset, then move the tasks in the empty
3040  * cpuset to its next-highest non-empty parent.
3041  */
3042 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3043 {
3044 	struct cpuset *parent;
3045 
3046 	/*
3047 	 * Find its next-highest non-empty parent, (top cpuset
3048 	 * has online cpus, so can't be empty).
3049 	 */
3050 	parent = parent_cs(cs);
3051 	while (cpumask_empty(parent->cpus_allowed) ||
3052 			nodes_empty(parent->mems_allowed))
3053 		parent = parent_cs(parent);
3054 
3055 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3056 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3057 		pr_cont_cgroup_name(cs->css.cgroup);
3058 		pr_cont("\n");
3059 	}
3060 }
3061 
3062 static void
3063 hotplug_update_tasks_legacy(struct cpuset *cs,
3064 			    struct cpumask *new_cpus, nodemask_t *new_mems,
3065 			    bool cpus_updated, bool mems_updated)
3066 {
3067 	bool is_empty;
3068 
3069 	spin_lock_irq(&callback_lock);
3070 	cpumask_copy(cs->cpus_allowed, new_cpus);
3071 	cpumask_copy(cs->effective_cpus, new_cpus);
3072 	cs->mems_allowed = *new_mems;
3073 	cs->effective_mems = *new_mems;
3074 	spin_unlock_irq(&callback_lock);
3075 
3076 	/*
3077 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3078 	 * as the tasks will be migrated to an ancestor.
3079 	 */
3080 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3081 		update_tasks_cpumask(cs);
3082 	if (mems_updated && !nodes_empty(cs->mems_allowed))
3083 		update_tasks_nodemask(cs);
3084 
3085 	is_empty = cpumask_empty(cs->cpus_allowed) ||
3086 		   nodes_empty(cs->mems_allowed);
3087 
3088 	percpu_up_write(&cpuset_rwsem);
3089 
3090 	/*
3091 	 * Move tasks to the nearest ancestor with execution resources,
3092 	 * This is full cgroup operation which will also call back into
3093 	 * cpuset. Should be done outside any lock.
3094 	 */
3095 	if (is_empty)
3096 		remove_tasks_in_empty_cpuset(cs);
3097 
3098 	percpu_down_write(&cpuset_rwsem);
3099 }
3100 
3101 static void
3102 hotplug_update_tasks(struct cpuset *cs,
3103 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3104 		     bool cpus_updated, bool mems_updated)
3105 {
3106 	if (cpumask_empty(new_cpus))
3107 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3108 	if (nodes_empty(*new_mems))
3109 		*new_mems = parent_cs(cs)->effective_mems;
3110 
3111 	spin_lock_irq(&callback_lock);
3112 	cpumask_copy(cs->effective_cpus, new_cpus);
3113 	cs->effective_mems = *new_mems;
3114 	spin_unlock_irq(&callback_lock);
3115 
3116 	if (cpus_updated)
3117 		update_tasks_cpumask(cs);
3118 	if (mems_updated)
3119 		update_tasks_nodemask(cs);
3120 }
3121 
3122 static bool force_rebuild;
3123 
3124 void cpuset_force_rebuild(void)
3125 {
3126 	force_rebuild = true;
3127 }
3128 
3129 /**
3130  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3131  * @cs: cpuset in interest
3132  * @tmp: the tmpmasks structure pointer
3133  *
3134  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3135  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3136  * all its tasks are moved to the nearest ancestor with both resources.
3137  */
3138 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3139 {
3140 	static cpumask_t new_cpus;
3141 	static nodemask_t new_mems;
3142 	bool cpus_updated;
3143 	bool mems_updated;
3144 	struct cpuset *parent;
3145 retry:
3146 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3147 
3148 	percpu_down_write(&cpuset_rwsem);
3149 
3150 	/*
3151 	 * We have raced with task attaching. We wait until attaching
3152 	 * is finished, so we won't attach a task to an empty cpuset.
3153 	 */
3154 	if (cs->attach_in_progress) {
3155 		percpu_up_write(&cpuset_rwsem);
3156 		goto retry;
3157 	}
3158 
3159 	parent = parent_cs(cs);
3160 	compute_effective_cpumask(&new_cpus, cs, parent);
3161 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3162 
3163 	if (cs->nr_subparts_cpus)
3164 		/*
3165 		 * Make sure that CPUs allocated to child partitions
3166 		 * do not show up in effective_cpus.
3167 		 */
3168 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3169 
3170 	if (!tmp || !cs->partition_root_state)
3171 		goto update_tasks;
3172 
3173 	/*
3174 	 * In the unlikely event that a partition root has empty
3175 	 * effective_cpus or its parent becomes erroneous, we have to
3176 	 * transition it to the erroneous state.
3177 	 */
3178 	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3179 	   (parent->partition_root_state == PRS_ERROR))) {
3180 		if (cs->nr_subparts_cpus) {
3181 			spin_lock_irq(&callback_lock);
3182 			cs->nr_subparts_cpus = 0;
3183 			cpumask_clear(cs->subparts_cpus);
3184 			spin_unlock_irq(&callback_lock);
3185 			compute_effective_cpumask(&new_cpus, cs, parent);
3186 		}
3187 
3188 		/*
3189 		 * If the effective_cpus is empty because the child
3190 		 * partitions take away all the CPUs, we can keep
3191 		 * the current partition and let the child partitions
3192 		 * fight for available CPUs.
3193 		 */
3194 		if ((parent->partition_root_state == PRS_ERROR) ||
3195 		     cpumask_empty(&new_cpus)) {
3196 			int old_prs;
3197 
3198 			update_parent_subparts_cpumask(cs, partcmd_disable,
3199 						       NULL, tmp);
3200 			old_prs = cs->partition_root_state;
3201 			if (old_prs != PRS_ERROR) {
3202 				spin_lock_irq(&callback_lock);
3203 				cs->partition_root_state = PRS_ERROR;
3204 				spin_unlock_irq(&callback_lock);
3205 				notify_partition_change(cs, old_prs, PRS_ERROR);
3206 			}
3207 		}
3208 		cpuset_force_rebuild();
3209 	}
3210 
3211 	/*
3212 	 * On the other hand, an erroneous partition root may be transitioned
3213 	 * back to a regular one or a partition root with no CPU allocated
3214 	 * from the parent may change to erroneous.
3215 	 */
3216 	if (is_partition_root(parent) &&
3217 	   ((cs->partition_root_state == PRS_ERROR) ||
3218 	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3219 	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3220 		cpuset_force_rebuild();
3221 
3222 update_tasks:
3223 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3224 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3225 
3226 	if (mems_updated)
3227 		check_insane_mems_config(&new_mems);
3228 
3229 	if (is_in_v2_mode())
3230 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3231 				     cpus_updated, mems_updated);
3232 	else
3233 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3234 					    cpus_updated, mems_updated);
3235 
3236 	percpu_up_write(&cpuset_rwsem);
3237 }
3238 
3239 /**
3240  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3241  *
3242  * This function is called after either CPU or memory configuration has
3243  * changed and updates cpuset accordingly.  The top_cpuset is always
3244  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3245  * order to make cpusets transparent (of no affect) on systems that are
3246  * actively using CPU hotplug but making no active use of cpusets.
3247  *
3248  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3249  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3250  * all descendants.
3251  *
3252  * Note that CPU offlining during suspend is ignored.  We don't modify
3253  * cpusets across suspend/resume cycles at all.
3254  */
3255 static void cpuset_hotplug_workfn(struct work_struct *work)
3256 {
3257 	static cpumask_t new_cpus;
3258 	static nodemask_t new_mems;
3259 	bool cpus_updated, mems_updated;
3260 	bool on_dfl = is_in_v2_mode();
3261 	struct tmpmasks tmp, *ptmp = NULL;
3262 
3263 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3264 		ptmp = &tmp;
3265 
3266 	percpu_down_write(&cpuset_rwsem);
3267 
3268 	/* fetch the available cpus/mems and find out which changed how */
3269 	cpumask_copy(&new_cpus, cpu_active_mask);
3270 	new_mems = node_states[N_MEMORY];
3271 
3272 	/*
3273 	 * If subparts_cpus is populated, it is likely that the check below
3274 	 * will produce a false positive on cpus_updated when the cpu list
3275 	 * isn't changed. It is extra work, but it is better to be safe.
3276 	 */
3277 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3278 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3279 
3280 	/*
3281 	 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3282 	 * we assumed that cpus are updated.
3283 	 */
3284 	if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3285 		cpus_updated = true;
3286 
3287 	/* synchronize cpus_allowed to cpu_active_mask */
3288 	if (cpus_updated) {
3289 		spin_lock_irq(&callback_lock);
3290 		if (!on_dfl)
3291 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3292 		/*
3293 		 * Make sure that CPUs allocated to child partitions
3294 		 * do not show up in effective_cpus. If no CPU is left,
3295 		 * we clear the subparts_cpus & let the child partitions
3296 		 * fight for the CPUs again.
3297 		 */
3298 		if (top_cpuset.nr_subparts_cpus) {
3299 			if (cpumask_subset(&new_cpus,
3300 					   top_cpuset.subparts_cpus)) {
3301 				top_cpuset.nr_subparts_cpus = 0;
3302 				cpumask_clear(top_cpuset.subparts_cpus);
3303 			} else {
3304 				cpumask_andnot(&new_cpus, &new_cpus,
3305 					       top_cpuset.subparts_cpus);
3306 			}
3307 		}
3308 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3309 		spin_unlock_irq(&callback_lock);
3310 		/* we don't mess with cpumasks of tasks in top_cpuset */
3311 	}
3312 
3313 	/* synchronize mems_allowed to N_MEMORY */
3314 	if (mems_updated) {
3315 		spin_lock_irq(&callback_lock);
3316 		if (!on_dfl)
3317 			top_cpuset.mems_allowed = new_mems;
3318 		top_cpuset.effective_mems = new_mems;
3319 		spin_unlock_irq(&callback_lock);
3320 		update_tasks_nodemask(&top_cpuset);
3321 	}
3322 
3323 	percpu_up_write(&cpuset_rwsem);
3324 
3325 	/* if cpus or mems changed, we need to propagate to descendants */
3326 	if (cpus_updated || mems_updated) {
3327 		struct cpuset *cs;
3328 		struct cgroup_subsys_state *pos_css;
3329 
3330 		rcu_read_lock();
3331 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3332 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3333 				continue;
3334 			rcu_read_unlock();
3335 
3336 			cpuset_hotplug_update_tasks(cs, ptmp);
3337 
3338 			rcu_read_lock();
3339 			css_put(&cs->css);
3340 		}
3341 		rcu_read_unlock();
3342 	}
3343 
3344 	/* rebuild sched domains if cpus_allowed has changed */
3345 	if (cpus_updated || force_rebuild) {
3346 		force_rebuild = false;
3347 		rebuild_sched_domains();
3348 	}
3349 
3350 	free_cpumasks(NULL, ptmp);
3351 }
3352 
3353 void cpuset_update_active_cpus(void)
3354 {
3355 	/*
3356 	 * We're inside cpu hotplug critical region which usually nests
3357 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3358 	 * to a work item to avoid reverse locking order.
3359 	 */
3360 	schedule_work(&cpuset_hotplug_work);
3361 }
3362 
3363 void cpuset_wait_for_hotplug(void)
3364 {
3365 	flush_work(&cpuset_hotplug_work);
3366 }
3367 
3368 /*
3369  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3370  * Call this routine anytime after node_states[N_MEMORY] changes.
3371  * See cpuset_update_active_cpus() for CPU hotplug handling.
3372  */
3373 static int cpuset_track_online_nodes(struct notifier_block *self,
3374 				unsigned long action, void *arg)
3375 {
3376 	schedule_work(&cpuset_hotplug_work);
3377 	return NOTIFY_OK;
3378 }
3379 
3380 static struct notifier_block cpuset_track_online_nodes_nb = {
3381 	.notifier_call = cpuset_track_online_nodes,
3382 	.priority = 10,		/* ??! */
3383 };
3384 
3385 /**
3386  * cpuset_init_smp - initialize cpus_allowed
3387  *
3388  * Description: Finish top cpuset after cpu, node maps are initialized
3389  */
3390 void __init cpuset_init_smp(void)
3391 {
3392 	/*
3393 	 * cpus_allowd/mems_allowed set to v2 values in the initial
3394 	 * cpuset_bind() call will be reset to v1 values in another
3395 	 * cpuset_bind() call when v1 cpuset is mounted.
3396 	 */
3397 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3398 
3399 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3400 	top_cpuset.effective_mems = node_states[N_MEMORY];
3401 
3402 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3403 
3404 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3405 	BUG_ON(!cpuset_migrate_mm_wq);
3406 }
3407 
3408 /**
3409  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3410  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3411  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3412  *
3413  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3414  * attached to the specified @tsk.  Guaranteed to return some non-empty
3415  * subset of cpu_online_mask, even if this means going outside the
3416  * tasks cpuset.
3417  **/
3418 
3419 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3420 {
3421 	unsigned long flags;
3422 
3423 	spin_lock_irqsave(&callback_lock, flags);
3424 	guarantee_online_cpus(tsk, pmask);
3425 	spin_unlock_irqrestore(&callback_lock, flags);
3426 }
3427 
3428 /**
3429  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3430  * @tsk: pointer to task_struct with which the scheduler is struggling
3431  *
3432  * Description: In the case that the scheduler cannot find an allowed cpu in
3433  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3434  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3435  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3436  * This is the absolute last resort for the scheduler and it is only used if
3437  * _every_ other avenue has been traveled.
3438  *
3439  * Returns true if the affinity of @tsk was changed, false otherwise.
3440  **/
3441 
3442 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3443 {
3444 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3445 	const struct cpumask *cs_mask;
3446 	bool changed = false;
3447 
3448 	rcu_read_lock();
3449 	cs_mask = task_cs(tsk)->cpus_allowed;
3450 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3451 		do_set_cpus_allowed(tsk, cs_mask);
3452 		changed = true;
3453 	}
3454 	rcu_read_unlock();
3455 
3456 	/*
3457 	 * We own tsk->cpus_allowed, nobody can change it under us.
3458 	 *
3459 	 * But we used cs && cs->cpus_allowed lockless and thus can
3460 	 * race with cgroup_attach_task() or update_cpumask() and get
3461 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3462 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3463 	 * which takes task_rq_lock().
3464 	 *
3465 	 * If we are called after it dropped the lock we must see all
3466 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3467 	 * set any mask even if it is not right from task_cs() pov,
3468 	 * the pending set_cpus_allowed_ptr() will fix things.
3469 	 *
3470 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3471 	 * if required.
3472 	 */
3473 	return changed;
3474 }
3475 
3476 void __init cpuset_init_current_mems_allowed(void)
3477 {
3478 	nodes_setall(current->mems_allowed);
3479 }
3480 
3481 /**
3482  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3483  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3484  *
3485  * Description: Returns the nodemask_t mems_allowed of the cpuset
3486  * attached to the specified @tsk.  Guaranteed to return some non-empty
3487  * subset of node_states[N_MEMORY], even if this means going outside the
3488  * tasks cpuset.
3489  **/
3490 
3491 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3492 {
3493 	nodemask_t mask;
3494 	unsigned long flags;
3495 
3496 	spin_lock_irqsave(&callback_lock, flags);
3497 	rcu_read_lock();
3498 	guarantee_online_mems(task_cs(tsk), &mask);
3499 	rcu_read_unlock();
3500 	spin_unlock_irqrestore(&callback_lock, flags);
3501 
3502 	return mask;
3503 }
3504 
3505 /**
3506  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3507  * @nodemask: the nodemask to be checked
3508  *
3509  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3510  */
3511 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3512 {
3513 	return nodes_intersects(*nodemask, current->mems_allowed);
3514 }
3515 
3516 /*
3517  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3518  * mem_hardwall ancestor to the specified cpuset.  Call holding
3519  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3520  * (an unusual configuration), then returns the root cpuset.
3521  */
3522 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3523 {
3524 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3525 		cs = parent_cs(cs);
3526 	return cs;
3527 }
3528 
3529 /*
3530  * __cpuset_node_allowed - Can we allocate on a memory node?
3531  * @node: is this an allowed node?
3532  * @gfp_mask: memory allocation flags
3533  *
3534  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3535  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3536  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3537  * yes.  If current has access to memory reserves as an oom victim, yes.
3538  * Otherwise, no.
3539  *
3540  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3541  * and do not allow allocations outside the current tasks cpuset
3542  * unless the task has been OOM killed.
3543  * GFP_KERNEL allocations are not so marked, so can escape to the
3544  * nearest enclosing hardwalled ancestor cpuset.
3545  *
3546  * Scanning up parent cpusets requires callback_lock.  The
3547  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3548  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3549  * current tasks mems_allowed came up empty on the first pass over
3550  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3551  * cpuset are short of memory, might require taking the callback_lock.
3552  *
3553  * The first call here from mm/page_alloc:get_page_from_freelist()
3554  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3555  * so no allocation on a node outside the cpuset is allowed (unless
3556  * in interrupt, of course).
3557  *
3558  * The second pass through get_page_from_freelist() doesn't even call
3559  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3560  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3561  * in alloc_flags.  That logic and the checks below have the combined
3562  * affect that:
3563  *	in_interrupt - any node ok (current task context irrelevant)
3564  *	GFP_ATOMIC   - any node ok
3565  *	tsk_is_oom_victim   - any node ok
3566  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3567  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3568  */
3569 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3570 {
3571 	struct cpuset *cs;		/* current cpuset ancestors */
3572 	bool allowed;			/* is allocation in zone z allowed? */
3573 	unsigned long flags;
3574 
3575 	if (in_interrupt())
3576 		return true;
3577 	if (node_isset(node, current->mems_allowed))
3578 		return true;
3579 	/*
3580 	 * Allow tasks that have access to memory reserves because they have
3581 	 * been OOM killed to get memory anywhere.
3582 	 */
3583 	if (unlikely(tsk_is_oom_victim(current)))
3584 		return true;
3585 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3586 		return false;
3587 
3588 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3589 		return true;
3590 
3591 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3592 	spin_lock_irqsave(&callback_lock, flags);
3593 
3594 	rcu_read_lock();
3595 	cs = nearest_hardwall_ancestor(task_cs(current));
3596 	allowed = node_isset(node, cs->mems_allowed);
3597 	rcu_read_unlock();
3598 
3599 	spin_unlock_irqrestore(&callback_lock, flags);
3600 	return allowed;
3601 }
3602 
3603 /**
3604  * cpuset_mem_spread_node() - On which node to begin search for a file page
3605  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3606  *
3607  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3608  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3609  * and if the memory allocation used cpuset_mem_spread_node()
3610  * to determine on which node to start looking, as it will for
3611  * certain page cache or slab cache pages such as used for file
3612  * system buffers and inode caches, then instead of starting on the
3613  * local node to look for a free page, rather spread the starting
3614  * node around the tasks mems_allowed nodes.
3615  *
3616  * We don't have to worry about the returned node being offline
3617  * because "it can't happen", and even if it did, it would be ok.
3618  *
3619  * The routines calling guarantee_online_mems() are careful to
3620  * only set nodes in task->mems_allowed that are online.  So it
3621  * should not be possible for the following code to return an
3622  * offline node.  But if it did, that would be ok, as this routine
3623  * is not returning the node where the allocation must be, only
3624  * the node where the search should start.  The zonelist passed to
3625  * __alloc_pages() will include all nodes.  If the slab allocator
3626  * is passed an offline node, it will fall back to the local node.
3627  * See kmem_cache_alloc_node().
3628  */
3629 
3630 static int cpuset_spread_node(int *rotor)
3631 {
3632 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3633 }
3634 
3635 int cpuset_mem_spread_node(void)
3636 {
3637 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3638 		current->cpuset_mem_spread_rotor =
3639 			node_random(&current->mems_allowed);
3640 
3641 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3642 }
3643 
3644 int cpuset_slab_spread_node(void)
3645 {
3646 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3647 		current->cpuset_slab_spread_rotor =
3648 			node_random(&current->mems_allowed);
3649 
3650 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3651 }
3652 
3653 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3654 
3655 /**
3656  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3657  * @tsk1: pointer to task_struct of some task.
3658  * @tsk2: pointer to task_struct of some other task.
3659  *
3660  * Description: Return true if @tsk1's mems_allowed intersects the
3661  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3662  * one of the task's memory usage might impact the memory available
3663  * to the other.
3664  **/
3665 
3666 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3667 				   const struct task_struct *tsk2)
3668 {
3669 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3670 }
3671 
3672 /**
3673  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3674  *
3675  * Description: Prints current's name, cpuset name, and cached copy of its
3676  * mems_allowed to the kernel log.
3677  */
3678 void cpuset_print_current_mems_allowed(void)
3679 {
3680 	struct cgroup *cgrp;
3681 
3682 	rcu_read_lock();
3683 
3684 	cgrp = task_cs(current)->css.cgroup;
3685 	pr_cont(",cpuset=");
3686 	pr_cont_cgroup_name(cgrp);
3687 	pr_cont(",mems_allowed=%*pbl",
3688 		nodemask_pr_args(&current->mems_allowed));
3689 
3690 	rcu_read_unlock();
3691 }
3692 
3693 /*
3694  * Collection of memory_pressure is suppressed unless
3695  * this flag is enabled by writing "1" to the special
3696  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3697  */
3698 
3699 int cpuset_memory_pressure_enabled __read_mostly;
3700 
3701 /*
3702  * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3703  *
3704  * Keep a running average of the rate of synchronous (direct)
3705  * page reclaim efforts initiated by tasks in each cpuset.
3706  *
3707  * This represents the rate at which some task in the cpuset
3708  * ran low on memory on all nodes it was allowed to use, and
3709  * had to enter the kernels page reclaim code in an effort to
3710  * create more free memory by tossing clean pages or swapping
3711  * or writing dirty pages.
3712  *
3713  * Display to user space in the per-cpuset read-only file
3714  * "memory_pressure".  Value displayed is an integer
3715  * representing the recent rate of entry into the synchronous
3716  * (direct) page reclaim by any task attached to the cpuset.
3717  */
3718 
3719 void __cpuset_memory_pressure_bump(void)
3720 {
3721 	rcu_read_lock();
3722 	fmeter_markevent(&task_cs(current)->fmeter);
3723 	rcu_read_unlock();
3724 }
3725 
3726 #ifdef CONFIG_PROC_PID_CPUSET
3727 /*
3728  * proc_cpuset_show()
3729  *  - Print tasks cpuset path into seq_file.
3730  *  - Used for /proc/<pid>/cpuset.
3731  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3732  *    doesn't really matter if tsk->cpuset changes after we read it,
3733  *    and we take cpuset_rwsem, keeping cpuset_attach() from changing it
3734  *    anyway.
3735  */
3736 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3737 		     struct pid *pid, struct task_struct *tsk)
3738 {
3739 	char *buf;
3740 	struct cgroup_subsys_state *css;
3741 	int retval;
3742 
3743 	retval = -ENOMEM;
3744 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3745 	if (!buf)
3746 		goto out;
3747 
3748 	css = task_get_css(tsk, cpuset_cgrp_id);
3749 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3750 				current->nsproxy->cgroup_ns);
3751 	css_put(css);
3752 	if (retval >= PATH_MAX)
3753 		retval = -ENAMETOOLONG;
3754 	if (retval < 0)
3755 		goto out_free;
3756 	seq_puts(m, buf);
3757 	seq_putc(m, '\n');
3758 	retval = 0;
3759 out_free:
3760 	kfree(buf);
3761 out:
3762 	return retval;
3763 }
3764 #endif /* CONFIG_PROC_PID_CPUSET */
3765 
3766 /* Display task mems_allowed in /proc/<pid>/status file. */
3767 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3768 {
3769 	seq_printf(m, "Mems_allowed:\t%*pb\n",
3770 		   nodemask_pr_args(&task->mems_allowed));
3771 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3772 		   nodemask_pr_args(&task->mems_allowed));
3773 }
3774