1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 #include "cgroup-internal.h" 25 26 #include <linux/cpu.h> 27 #include <linux/cpumask.h> 28 #include <linux/cpuset.h> 29 #include <linux/delay.h> 30 #include <linux/init.h> 31 #include <linux/interrupt.h> 32 #include <linux/kernel.h> 33 #include <linux/mempolicy.h> 34 #include <linux/mm.h> 35 #include <linux/memory.h> 36 #include <linux/export.h> 37 #include <linux/rcupdate.h> 38 #include <linux/sched.h> 39 #include <linux/sched/deadline.h> 40 #include <linux/sched/mm.h> 41 #include <linux/sched/task.h> 42 #include <linux/security.h> 43 #include <linux/spinlock.h> 44 #include <linux/oom.h> 45 #include <linux/sched/isolation.h> 46 #include <linux/cgroup.h> 47 #include <linux/wait.h> 48 #include <linux/workqueue.h> 49 50 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 51 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 52 53 /* 54 * There could be abnormal cpuset configurations for cpu or memory 55 * node binding, add this key to provide a quick low-cost judgment 56 * of the situation. 57 */ 58 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 59 60 /* See "Frequency meter" comments, below. */ 61 62 struct fmeter { 63 int cnt; /* unprocessed events count */ 64 int val; /* most recent output value */ 65 time64_t time; /* clock (secs) when val computed */ 66 spinlock_t lock; /* guards read or write of above */ 67 }; 68 69 /* 70 * Invalid partition error code 71 */ 72 enum prs_errcode { 73 PERR_NONE = 0, 74 PERR_INVCPUS, 75 PERR_INVPARENT, 76 PERR_NOTPART, 77 PERR_NOTEXCL, 78 PERR_NOCPUS, 79 PERR_HOTPLUG, 80 PERR_CPUSEMPTY, 81 PERR_HKEEPING, 82 }; 83 84 static const char * const perr_strings[] = { 85 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive", 86 [PERR_INVPARENT] = "Parent is an invalid partition root", 87 [PERR_NOTPART] = "Parent is not a partition root", 88 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", 89 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", 90 [PERR_HOTPLUG] = "No cpu available due to hotplug", 91 [PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty", 92 [PERR_HKEEPING] = "partition config conflicts with housekeeping setup", 93 }; 94 95 struct cpuset { 96 struct cgroup_subsys_state css; 97 98 unsigned long flags; /* "unsigned long" so bitops work */ 99 100 /* 101 * On default hierarchy: 102 * 103 * The user-configured masks can only be changed by writing to 104 * cpuset.cpus and cpuset.mems, and won't be limited by the 105 * parent masks. 106 * 107 * The effective masks is the real masks that apply to the tasks 108 * in the cpuset. They may be changed if the configured masks are 109 * changed or hotplug happens. 110 * 111 * effective_mask == configured_mask & parent's effective_mask, 112 * and if it ends up empty, it will inherit the parent's mask. 113 * 114 * 115 * On legacy hierarchy: 116 * 117 * The user-configured masks are always the same with effective masks. 118 */ 119 120 /* user-configured CPUs and Memory Nodes allow to tasks */ 121 cpumask_var_t cpus_allowed; 122 nodemask_t mems_allowed; 123 124 /* effective CPUs and Memory Nodes allow to tasks */ 125 cpumask_var_t effective_cpus; 126 nodemask_t effective_mems; 127 128 /* 129 * Exclusive CPUs dedicated to current cgroup (default hierarchy only) 130 * 131 * The effective_cpus of a valid partition root comes solely from its 132 * effective_xcpus and some of the effective_xcpus may be distributed 133 * to sub-partitions below & hence excluded from its effective_cpus. 134 * For a valid partition root, its effective_cpus have no relationship 135 * with cpus_allowed unless its exclusive_cpus isn't set. 136 * 137 * This value will only be set if either exclusive_cpus is set or 138 * when this cpuset becomes a local partition root. 139 */ 140 cpumask_var_t effective_xcpus; 141 142 /* 143 * Exclusive CPUs as requested by the user (default hierarchy only) 144 * 145 * Its value is independent of cpus_allowed and designates the set of 146 * CPUs that can be granted to the current cpuset or its children when 147 * it becomes a valid partition root. The effective set of exclusive 148 * CPUs granted (effective_xcpus) depends on whether those exclusive 149 * CPUs are passed down by its ancestors and not yet taken up by 150 * another sibling partition root along the way. 151 * 152 * If its value isn't set, it defaults to cpus_allowed. 153 */ 154 cpumask_var_t exclusive_cpus; 155 156 /* 157 * This is old Memory Nodes tasks took on. 158 * 159 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 160 * - A new cpuset's old_mems_allowed is initialized when some 161 * task is moved into it. 162 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 163 * cpuset.mems_allowed and have tasks' nodemask updated, and 164 * then old_mems_allowed is updated to mems_allowed. 165 */ 166 nodemask_t old_mems_allowed; 167 168 struct fmeter fmeter; /* memory_pressure filter */ 169 170 /* 171 * Tasks are being attached to this cpuset. Used to prevent 172 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 173 */ 174 int attach_in_progress; 175 176 /* partition number for rebuild_sched_domains() */ 177 int pn; 178 179 /* for custom sched domain */ 180 int relax_domain_level; 181 182 /* number of valid local child partitions */ 183 int nr_subparts; 184 185 /* partition root state */ 186 int partition_root_state; 187 188 /* 189 * Default hierarchy only: 190 * use_parent_ecpus - set if using parent's effective_cpus 191 * child_ecpus_count - # of children with use_parent_ecpus set 192 */ 193 int use_parent_ecpus; 194 int child_ecpus_count; 195 196 /* 197 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we 198 * know when to rebuild associated root domain bandwidth information. 199 */ 200 int nr_deadline_tasks; 201 int nr_migrate_dl_tasks; 202 u64 sum_migrate_dl_bw; 203 204 /* Invalid partition error code, not lock protected */ 205 enum prs_errcode prs_err; 206 207 /* Handle for cpuset.cpus.partition */ 208 struct cgroup_file partition_file; 209 210 /* Remote partition silbling list anchored at remote_children */ 211 struct list_head remote_sibling; 212 }; 213 214 /* 215 * Legacy hierarchy call to cgroup_transfer_tasks() is handled asynchrously 216 */ 217 struct cpuset_remove_tasks_struct { 218 struct work_struct work; 219 struct cpuset *cs; 220 }; 221 222 /* 223 * Exclusive CPUs distributed out to sub-partitions of top_cpuset 224 */ 225 static cpumask_var_t subpartitions_cpus; 226 227 /* 228 * Exclusive CPUs in isolated partitions 229 */ 230 static cpumask_var_t isolated_cpus; 231 232 /* List of remote partition root children */ 233 static struct list_head remote_children; 234 235 /* 236 * Partition root states: 237 * 238 * 0 - member (not a partition root) 239 * 1 - partition root 240 * 2 - partition root without load balancing (isolated) 241 * -1 - invalid partition root 242 * -2 - invalid isolated partition root 243 * 244 * There are 2 types of partitions - local or remote. Local partitions are 245 * those whose parents are partition root themselves. Setting of 246 * cpuset.cpus.exclusive are optional in setting up local partitions. 247 * Remote partitions are those whose parents are not partition roots. Passing 248 * down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor 249 * nodes are mandatory in creating a remote partition. 250 * 251 * For simplicity, a local partition can be created under a local or remote 252 * partition but a remote partition cannot have any partition root in its 253 * ancestor chain except the cgroup root. 254 */ 255 #define PRS_MEMBER 0 256 #define PRS_ROOT 1 257 #define PRS_ISOLATED 2 258 #define PRS_INVALID_ROOT -1 259 #define PRS_INVALID_ISOLATED -2 260 261 static inline bool is_prs_invalid(int prs_state) 262 { 263 return prs_state < 0; 264 } 265 266 /* 267 * Temporary cpumasks for working with partitions that are passed among 268 * functions to avoid memory allocation in inner functions. 269 */ 270 struct tmpmasks { 271 cpumask_var_t addmask, delmask; /* For partition root */ 272 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 273 }; 274 275 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 276 { 277 return css ? container_of(css, struct cpuset, css) : NULL; 278 } 279 280 /* Retrieve the cpuset for a task */ 281 static inline struct cpuset *task_cs(struct task_struct *task) 282 { 283 return css_cs(task_css(task, cpuset_cgrp_id)); 284 } 285 286 static inline struct cpuset *parent_cs(struct cpuset *cs) 287 { 288 return css_cs(cs->css.parent); 289 } 290 291 void inc_dl_tasks_cs(struct task_struct *p) 292 { 293 struct cpuset *cs = task_cs(p); 294 295 cs->nr_deadline_tasks++; 296 } 297 298 void dec_dl_tasks_cs(struct task_struct *p) 299 { 300 struct cpuset *cs = task_cs(p); 301 302 cs->nr_deadline_tasks--; 303 } 304 305 /* bits in struct cpuset flags field */ 306 typedef enum { 307 CS_ONLINE, 308 CS_CPU_EXCLUSIVE, 309 CS_MEM_EXCLUSIVE, 310 CS_MEM_HARDWALL, 311 CS_MEMORY_MIGRATE, 312 CS_SCHED_LOAD_BALANCE, 313 CS_SPREAD_PAGE, 314 CS_SPREAD_SLAB, 315 } cpuset_flagbits_t; 316 317 /* convenient tests for these bits */ 318 static inline bool is_cpuset_online(struct cpuset *cs) 319 { 320 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 321 } 322 323 static inline int is_cpu_exclusive(const struct cpuset *cs) 324 { 325 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 326 } 327 328 static inline int is_mem_exclusive(const struct cpuset *cs) 329 { 330 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 331 } 332 333 static inline int is_mem_hardwall(const struct cpuset *cs) 334 { 335 return test_bit(CS_MEM_HARDWALL, &cs->flags); 336 } 337 338 static inline int is_sched_load_balance(const struct cpuset *cs) 339 { 340 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 341 } 342 343 static inline int is_memory_migrate(const struct cpuset *cs) 344 { 345 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 346 } 347 348 static inline int is_spread_page(const struct cpuset *cs) 349 { 350 return test_bit(CS_SPREAD_PAGE, &cs->flags); 351 } 352 353 static inline int is_spread_slab(const struct cpuset *cs) 354 { 355 return test_bit(CS_SPREAD_SLAB, &cs->flags); 356 } 357 358 static inline int is_partition_valid(const struct cpuset *cs) 359 { 360 return cs->partition_root_state > 0; 361 } 362 363 static inline int is_partition_invalid(const struct cpuset *cs) 364 { 365 return cs->partition_root_state < 0; 366 } 367 368 /* 369 * Callers should hold callback_lock to modify partition_root_state. 370 */ 371 static inline void make_partition_invalid(struct cpuset *cs) 372 { 373 if (cs->partition_root_state > 0) 374 cs->partition_root_state = -cs->partition_root_state; 375 } 376 377 /* 378 * Send notification event of whenever partition_root_state changes. 379 */ 380 static inline void notify_partition_change(struct cpuset *cs, int old_prs) 381 { 382 if (old_prs == cs->partition_root_state) 383 return; 384 cgroup_file_notify(&cs->partition_file); 385 386 /* Reset prs_err if not invalid */ 387 if (is_partition_valid(cs)) 388 WRITE_ONCE(cs->prs_err, PERR_NONE); 389 } 390 391 static struct cpuset top_cpuset = { 392 .flags = BIT(CS_ONLINE) | BIT(CS_CPU_EXCLUSIVE) | 393 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE), 394 .partition_root_state = PRS_ROOT, 395 .relax_domain_level = -1, 396 .remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling), 397 }; 398 399 /** 400 * cpuset_for_each_child - traverse online children of a cpuset 401 * @child_cs: loop cursor pointing to the current child 402 * @pos_css: used for iteration 403 * @parent_cs: target cpuset to walk children of 404 * 405 * Walk @child_cs through the online children of @parent_cs. Must be used 406 * with RCU read locked. 407 */ 408 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 409 css_for_each_child((pos_css), &(parent_cs)->css) \ 410 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 411 412 /** 413 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 414 * @des_cs: loop cursor pointing to the current descendant 415 * @pos_css: used for iteration 416 * @root_cs: target cpuset to walk ancestor of 417 * 418 * Walk @des_cs through the online descendants of @root_cs. Must be used 419 * with RCU read locked. The caller may modify @pos_css by calling 420 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 421 * iteration and the first node to be visited. 422 */ 423 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 424 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 425 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 426 427 /* 428 * There are two global locks guarding cpuset structures - cpuset_mutex and 429 * callback_lock. We also require taking task_lock() when dereferencing a 430 * task's cpuset pointer. See "The task_lock() exception", at the end of this 431 * comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems 432 * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset 433 * structures. Note that cpuset_mutex needs to be a mutex as it is used in 434 * paths that rely on priority inheritance (e.g. scheduler - on RT) for 435 * correctness. 436 * 437 * A task must hold both locks to modify cpusets. If a task holds 438 * cpuset_mutex, it blocks others, ensuring that it is the only task able to 439 * also acquire callback_lock and be able to modify cpusets. It can perform 440 * various checks on the cpuset structure first, knowing nothing will change. 441 * It can also allocate memory while just holding cpuset_mutex. While it is 442 * performing these checks, various callback routines can briefly acquire 443 * callback_lock to query cpusets. Once it is ready to make the changes, it 444 * takes callback_lock, blocking everyone else. 445 * 446 * Calls to the kernel memory allocator can not be made while holding 447 * callback_lock, as that would risk double tripping on callback_lock 448 * from one of the callbacks into the cpuset code from within 449 * __alloc_pages(). 450 * 451 * If a task is only holding callback_lock, then it has read-only 452 * access to cpusets. 453 * 454 * Now, the task_struct fields mems_allowed and mempolicy may be changed 455 * by other task, we use alloc_lock in the task_struct fields to protect 456 * them. 457 * 458 * The cpuset_common_seq_show() handlers only hold callback_lock across 459 * small pieces of code, such as when reading out possibly multi-word 460 * cpumasks and nodemasks. 461 * 462 * Accessing a task's cpuset should be done in accordance with the 463 * guidelines for accessing subsystem state in kernel/cgroup.c 464 */ 465 466 static DEFINE_MUTEX(cpuset_mutex); 467 468 void cpuset_lock(void) 469 { 470 mutex_lock(&cpuset_mutex); 471 } 472 473 void cpuset_unlock(void) 474 { 475 mutex_unlock(&cpuset_mutex); 476 } 477 478 static DEFINE_SPINLOCK(callback_lock); 479 480 static struct workqueue_struct *cpuset_migrate_mm_wq; 481 482 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 483 484 static inline void check_insane_mems_config(nodemask_t *nodes) 485 { 486 if (!cpusets_insane_config() && 487 movable_only_nodes(nodes)) { 488 static_branch_enable(&cpusets_insane_config_key); 489 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 490 "Cpuset allocations might fail even with a lot of memory available.\n", 491 nodemask_pr_args(nodes)); 492 } 493 } 494 495 /* 496 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 497 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 498 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 499 * With v2 behavior, "cpus" and "mems" are always what the users have 500 * requested and won't be changed by hotplug events. Only the effective 501 * cpus or mems will be affected. 502 */ 503 static inline bool is_in_v2_mode(void) 504 { 505 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 506 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 507 } 508 509 /** 510 * partition_is_populated - check if partition has tasks 511 * @cs: partition root to be checked 512 * @excluded_child: a child cpuset to be excluded in task checking 513 * Return: true if there are tasks, false otherwise 514 * 515 * It is assumed that @cs is a valid partition root. @excluded_child should 516 * be non-NULL when this cpuset is going to become a partition itself. 517 */ 518 static inline bool partition_is_populated(struct cpuset *cs, 519 struct cpuset *excluded_child) 520 { 521 struct cgroup_subsys_state *css; 522 struct cpuset *child; 523 524 if (cs->css.cgroup->nr_populated_csets) 525 return true; 526 if (!excluded_child && !cs->nr_subparts) 527 return cgroup_is_populated(cs->css.cgroup); 528 529 rcu_read_lock(); 530 cpuset_for_each_child(child, css, cs) { 531 if (child == excluded_child) 532 continue; 533 if (is_partition_valid(child)) 534 continue; 535 if (cgroup_is_populated(child->css.cgroup)) { 536 rcu_read_unlock(); 537 return true; 538 } 539 } 540 rcu_read_unlock(); 541 return false; 542 } 543 544 /* 545 * Return in pmask the portion of a task's cpusets's cpus_allowed that 546 * are online and are capable of running the task. If none are found, 547 * walk up the cpuset hierarchy until we find one that does have some 548 * appropriate cpus. 549 * 550 * One way or another, we guarantee to return some non-empty subset 551 * of cpu_online_mask. 552 * 553 * Call with callback_lock or cpuset_mutex held. 554 */ 555 static void guarantee_online_cpus(struct task_struct *tsk, 556 struct cpumask *pmask) 557 { 558 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 559 struct cpuset *cs; 560 561 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) 562 cpumask_copy(pmask, cpu_online_mask); 563 564 rcu_read_lock(); 565 cs = task_cs(tsk); 566 567 while (!cpumask_intersects(cs->effective_cpus, pmask)) 568 cs = parent_cs(cs); 569 570 cpumask_and(pmask, pmask, cs->effective_cpus); 571 rcu_read_unlock(); 572 } 573 574 /* 575 * Return in *pmask the portion of a cpusets's mems_allowed that 576 * are online, with memory. If none are online with memory, walk 577 * up the cpuset hierarchy until we find one that does have some 578 * online mems. The top cpuset always has some mems online. 579 * 580 * One way or another, we guarantee to return some non-empty subset 581 * of node_states[N_MEMORY]. 582 * 583 * Call with callback_lock or cpuset_mutex held. 584 */ 585 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 586 { 587 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 588 cs = parent_cs(cs); 589 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 590 } 591 592 /* 593 * update task's spread flag if cpuset's page/slab spread flag is set 594 * 595 * Call with callback_lock or cpuset_mutex held. The check can be skipped 596 * if on default hierarchy. 597 */ 598 static void cpuset_update_task_spread_flags(struct cpuset *cs, 599 struct task_struct *tsk) 600 { 601 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 602 return; 603 604 if (is_spread_page(cs)) 605 task_set_spread_page(tsk); 606 else 607 task_clear_spread_page(tsk); 608 609 if (is_spread_slab(cs)) 610 task_set_spread_slab(tsk); 611 else 612 task_clear_spread_slab(tsk); 613 } 614 615 /* 616 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 617 * 618 * One cpuset is a subset of another if all its allowed CPUs and 619 * Memory Nodes are a subset of the other, and its exclusive flags 620 * are only set if the other's are set. Call holding cpuset_mutex. 621 */ 622 623 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 624 { 625 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 626 nodes_subset(p->mems_allowed, q->mems_allowed) && 627 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 628 is_mem_exclusive(p) <= is_mem_exclusive(q); 629 } 630 631 /** 632 * alloc_cpumasks - allocate three cpumasks for cpuset 633 * @cs: the cpuset that have cpumasks to be allocated. 634 * @tmp: the tmpmasks structure pointer 635 * Return: 0 if successful, -ENOMEM otherwise. 636 * 637 * Only one of the two input arguments should be non-NULL. 638 */ 639 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 640 { 641 cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4; 642 643 if (cs) { 644 pmask1 = &cs->cpus_allowed; 645 pmask2 = &cs->effective_cpus; 646 pmask3 = &cs->effective_xcpus; 647 pmask4 = &cs->exclusive_cpus; 648 } else { 649 pmask1 = &tmp->new_cpus; 650 pmask2 = &tmp->addmask; 651 pmask3 = &tmp->delmask; 652 pmask4 = NULL; 653 } 654 655 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 656 return -ENOMEM; 657 658 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 659 goto free_one; 660 661 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 662 goto free_two; 663 664 if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL)) 665 goto free_three; 666 667 668 return 0; 669 670 free_three: 671 free_cpumask_var(*pmask3); 672 free_two: 673 free_cpumask_var(*pmask2); 674 free_one: 675 free_cpumask_var(*pmask1); 676 return -ENOMEM; 677 } 678 679 /** 680 * free_cpumasks - free cpumasks in a tmpmasks structure 681 * @cs: the cpuset that have cpumasks to be free. 682 * @tmp: the tmpmasks structure pointer 683 */ 684 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 685 { 686 if (cs) { 687 free_cpumask_var(cs->cpus_allowed); 688 free_cpumask_var(cs->effective_cpus); 689 free_cpumask_var(cs->effective_xcpus); 690 free_cpumask_var(cs->exclusive_cpus); 691 } 692 if (tmp) { 693 free_cpumask_var(tmp->new_cpus); 694 free_cpumask_var(tmp->addmask); 695 free_cpumask_var(tmp->delmask); 696 } 697 } 698 699 /** 700 * alloc_trial_cpuset - allocate a trial cpuset 701 * @cs: the cpuset that the trial cpuset duplicates 702 */ 703 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 704 { 705 struct cpuset *trial; 706 707 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 708 if (!trial) 709 return NULL; 710 711 if (alloc_cpumasks(trial, NULL)) { 712 kfree(trial); 713 return NULL; 714 } 715 716 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 717 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 718 cpumask_copy(trial->effective_xcpus, cs->effective_xcpus); 719 cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus); 720 return trial; 721 } 722 723 /** 724 * free_cpuset - free the cpuset 725 * @cs: the cpuset to be freed 726 */ 727 static inline void free_cpuset(struct cpuset *cs) 728 { 729 free_cpumasks(cs, NULL); 730 kfree(cs); 731 } 732 733 /* Return user specified exclusive CPUs */ 734 static inline struct cpumask *user_xcpus(struct cpuset *cs) 735 { 736 return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed 737 : cs->exclusive_cpus; 738 } 739 740 static inline bool xcpus_empty(struct cpuset *cs) 741 { 742 return cpumask_empty(cs->cpus_allowed) && 743 cpumask_empty(cs->exclusive_cpus); 744 } 745 746 static inline struct cpumask *fetch_xcpus(struct cpuset *cs) 747 { 748 return !cpumask_empty(cs->exclusive_cpus) ? cs->exclusive_cpus : 749 cpumask_empty(cs->effective_xcpus) ? cs->cpus_allowed 750 : cs->effective_xcpus; 751 } 752 753 /* 754 * cpusets_are_exclusive() - check if two cpusets are exclusive 755 * 756 * Return true if exclusive, false if not 757 */ 758 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2) 759 { 760 struct cpumask *xcpus1 = fetch_xcpus(cs1); 761 struct cpumask *xcpus2 = fetch_xcpus(cs2); 762 763 if (cpumask_intersects(xcpus1, xcpus2)) 764 return false; 765 return true; 766 } 767 768 /* 769 * validate_change_legacy() - Validate conditions specific to legacy (v1) 770 * behavior. 771 */ 772 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial) 773 { 774 struct cgroup_subsys_state *css; 775 struct cpuset *c, *par; 776 int ret; 777 778 WARN_ON_ONCE(!rcu_read_lock_held()); 779 780 /* Each of our child cpusets must be a subset of us */ 781 ret = -EBUSY; 782 cpuset_for_each_child(c, css, cur) 783 if (!is_cpuset_subset(c, trial)) 784 goto out; 785 786 /* On legacy hierarchy, we must be a subset of our parent cpuset. */ 787 ret = -EACCES; 788 par = parent_cs(cur); 789 if (par && !is_cpuset_subset(trial, par)) 790 goto out; 791 792 ret = 0; 793 out: 794 return ret; 795 } 796 797 /* 798 * validate_change() - Used to validate that any proposed cpuset change 799 * follows the structural rules for cpusets. 800 * 801 * If we replaced the flag and mask values of the current cpuset 802 * (cur) with those values in the trial cpuset (trial), would 803 * our various subset and exclusive rules still be valid? Presumes 804 * cpuset_mutex held. 805 * 806 * 'cur' is the address of an actual, in-use cpuset. Operations 807 * such as list traversal that depend on the actual address of the 808 * cpuset in the list must use cur below, not trial. 809 * 810 * 'trial' is the address of bulk structure copy of cur, with 811 * perhaps one or more of the fields cpus_allowed, mems_allowed, 812 * or flags changed to new, trial values. 813 * 814 * Return 0 if valid, -errno if not. 815 */ 816 817 static int validate_change(struct cpuset *cur, struct cpuset *trial) 818 { 819 struct cgroup_subsys_state *css; 820 struct cpuset *c, *par; 821 int ret = 0; 822 823 rcu_read_lock(); 824 825 if (!is_in_v2_mode()) 826 ret = validate_change_legacy(cur, trial); 827 if (ret) 828 goto out; 829 830 /* Remaining checks don't apply to root cpuset */ 831 if (cur == &top_cpuset) 832 goto out; 833 834 par = parent_cs(cur); 835 836 /* 837 * Cpusets with tasks - existing or newly being attached - can't 838 * be changed to have empty cpus_allowed or mems_allowed. 839 */ 840 ret = -ENOSPC; 841 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 842 if (!cpumask_empty(cur->cpus_allowed) && 843 cpumask_empty(trial->cpus_allowed)) 844 goto out; 845 if (!nodes_empty(cur->mems_allowed) && 846 nodes_empty(trial->mems_allowed)) 847 goto out; 848 } 849 850 /* 851 * We can't shrink if we won't have enough room for SCHED_DEADLINE 852 * tasks. 853 */ 854 ret = -EBUSY; 855 if (is_cpu_exclusive(cur) && 856 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 857 trial->cpus_allowed)) 858 goto out; 859 860 /* 861 * If either I or some sibling (!= me) is exclusive, we can't 862 * overlap. exclusive_cpus cannot overlap with each other if set. 863 */ 864 ret = -EINVAL; 865 cpuset_for_each_child(c, css, par) { 866 bool txset, cxset; /* Are exclusive_cpus set? */ 867 868 if (c == cur) 869 continue; 870 871 txset = !cpumask_empty(trial->exclusive_cpus); 872 cxset = !cpumask_empty(c->exclusive_cpus); 873 if (is_cpu_exclusive(trial) || is_cpu_exclusive(c) || 874 (txset && cxset)) { 875 if (!cpusets_are_exclusive(trial, c)) 876 goto out; 877 } else if (txset || cxset) { 878 struct cpumask *xcpus, *acpus; 879 880 /* 881 * When just one of the exclusive_cpus's is set, 882 * cpus_allowed of the other cpuset, if set, cannot be 883 * a subset of it or none of those CPUs will be 884 * available if these exclusive CPUs are activated. 885 */ 886 if (txset) { 887 xcpus = trial->exclusive_cpus; 888 acpus = c->cpus_allowed; 889 } else { 890 xcpus = c->exclusive_cpus; 891 acpus = trial->cpus_allowed; 892 } 893 if (!cpumask_empty(acpus) && cpumask_subset(acpus, xcpus)) 894 goto out; 895 } 896 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 897 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 898 goto out; 899 } 900 901 ret = 0; 902 out: 903 rcu_read_unlock(); 904 return ret; 905 } 906 907 #ifdef CONFIG_SMP 908 /* 909 * Helper routine for generate_sched_domains(). 910 * Do cpusets a, b have overlapping effective cpus_allowed masks? 911 */ 912 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 913 { 914 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 915 } 916 917 static void 918 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 919 { 920 if (dattr->relax_domain_level < c->relax_domain_level) 921 dattr->relax_domain_level = c->relax_domain_level; 922 return; 923 } 924 925 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 926 struct cpuset *root_cs) 927 { 928 struct cpuset *cp; 929 struct cgroup_subsys_state *pos_css; 930 931 rcu_read_lock(); 932 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 933 /* skip the whole subtree if @cp doesn't have any CPU */ 934 if (cpumask_empty(cp->cpus_allowed)) { 935 pos_css = css_rightmost_descendant(pos_css); 936 continue; 937 } 938 939 if (is_sched_load_balance(cp)) 940 update_domain_attr(dattr, cp); 941 } 942 rcu_read_unlock(); 943 } 944 945 /* Must be called with cpuset_mutex held. */ 946 static inline int nr_cpusets(void) 947 { 948 /* jump label reference count + the top-level cpuset */ 949 return static_key_count(&cpusets_enabled_key.key) + 1; 950 } 951 952 /* 953 * generate_sched_domains() 954 * 955 * This function builds a partial partition of the systems CPUs 956 * A 'partial partition' is a set of non-overlapping subsets whose 957 * union is a subset of that set. 958 * The output of this function needs to be passed to kernel/sched/core.c 959 * partition_sched_domains() routine, which will rebuild the scheduler's 960 * load balancing domains (sched domains) as specified by that partial 961 * partition. 962 * 963 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 964 * for a background explanation of this. 965 * 966 * Does not return errors, on the theory that the callers of this 967 * routine would rather not worry about failures to rebuild sched 968 * domains when operating in the severe memory shortage situations 969 * that could cause allocation failures below. 970 * 971 * Must be called with cpuset_mutex held. 972 * 973 * The three key local variables below are: 974 * cp - cpuset pointer, used (together with pos_css) to perform a 975 * top-down scan of all cpusets. For our purposes, rebuilding 976 * the schedulers sched domains, we can ignore !is_sched_load_ 977 * balance cpusets. 978 * csa - (for CpuSet Array) Array of pointers to all the cpusets 979 * that need to be load balanced, for convenient iterative 980 * access by the subsequent code that finds the best partition, 981 * i.e the set of domains (subsets) of CPUs such that the 982 * cpus_allowed of every cpuset marked is_sched_load_balance 983 * is a subset of one of these domains, while there are as 984 * many such domains as possible, each as small as possible. 985 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 986 * the kernel/sched/core.c routine partition_sched_domains() in a 987 * convenient format, that can be easily compared to the prior 988 * value to determine what partition elements (sched domains) 989 * were changed (added or removed.) 990 * 991 * Finding the best partition (set of domains): 992 * The triple nested loops below over i, j, k scan over the 993 * load balanced cpusets (using the array of cpuset pointers in 994 * csa[]) looking for pairs of cpusets that have overlapping 995 * cpus_allowed, but which don't have the same 'pn' partition 996 * number and gives them in the same partition number. It keeps 997 * looping on the 'restart' label until it can no longer find 998 * any such pairs. 999 * 1000 * The union of the cpus_allowed masks from the set of 1001 * all cpusets having the same 'pn' value then form the one 1002 * element of the partition (one sched domain) to be passed to 1003 * partition_sched_domains(). 1004 */ 1005 static int generate_sched_domains(cpumask_var_t **domains, 1006 struct sched_domain_attr **attributes) 1007 { 1008 struct cpuset *cp; /* top-down scan of cpusets */ 1009 struct cpuset **csa; /* array of all cpuset ptrs */ 1010 int csn; /* how many cpuset ptrs in csa so far */ 1011 int i, j, k; /* indices for partition finding loops */ 1012 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 1013 struct sched_domain_attr *dattr; /* attributes for custom domains */ 1014 int ndoms = 0; /* number of sched domains in result */ 1015 int nslot; /* next empty doms[] struct cpumask slot */ 1016 struct cgroup_subsys_state *pos_css; 1017 bool root_load_balance = is_sched_load_balance(&top_cpuset); 1018 bool cgrpv2 = cgroup_subsys_on_dfl(cpuset_cgrp_subsys); 1019 1020 doms = NULL; 1021 dattr = NULL; 1022 csa = NULL; 1023 1024 /* Special case for the 99% of systems with one, full, sched domain */ 1025 if (root_load_balance && cpumask_empty(subpartitions_cpus)) { 1026 single_root_domain: 1027 ndoms = 1; 1028 doms = alloc_sched_domains(ndoms); 1029 if (!doms) 1030 goto done; 1031 1032 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 1033 if (dattr) { 1034 *dattr = SD_ATTR_INIT; 1035 update_domain_attr_tree(dattr, &top_cpuset); 1036 } 1037 cpumask_and(doms[0], top_cpuset.effective_cpus, 1038 housekeeping_cpumask(HK_TYPE_DOMAIN)); 1039 1040 goto done; 1041 } 1042 1043 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 1044 if (!csa) 1045 goto done; 1046 csn = 0; 1047 1048 rcu_read_lock(); 1049 if (root_load_balance) 1050 csa[csn++] = &top_cpuset; 1051 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 1052 if (cp == &top_cpuset) 1053 continue; 1054 1055 if (cgrpv2) 1056 goto v2; 1057 1058 /* 1059 * v1: 1060 * Continue traversing beyond @cp iff @cp has some CPUs and 1061 * isn't load balancing. The former is obvious. The 1062 * latter: All child cpusets contain a subset of the 1063 * parent's cpus, so just skip them, and then we call 1064 * update_domain_attr_tree() to calc relax_domain_level of 1065 * the corresponding sched domain. 1066 */ 1067 if (!cpumask_empty(cp->cpus_allowed) && 1068 !(is_sched_load_balance(cp) && 1069 cpumask_intersects(cp->cpus_allowed, 1070 housekeeping_cpumask(HK_TYPE_DOMAIN)))) 1071 continue; 1072 1073 if (is_sched_load_balance(cp) && 1074 !cpumask_empty(cp->effective_cpus)) 1075 csa[csn++] = cp; 1076 1077 /* skip @cp's subtree */ 1078 pos_css = css_rightmost_descendant(pos_css); 1079 continue; 1080 1081 v2: 1082 /* 1083 * Only valid partition roots that are not isolated and with 1084 * non-empty effective_cpus will be saved into csn[]. 1085 */ 1086 if ((cp->partition_root_state == PRS_ROOT) && 1087 !cpumask_empty(cp->effective_cpus)) 1088 csa[csn++] = cp; 1089 1090 /* 1091 * Skip @cp's subtree if not a partition root and has no 1092 * exclusive CPUs to be granted to child cpusets. 1093 */ 1094 if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus)) 1095 pos_css = css_rightmost_descendant(pos_css); 1096 } 1097 rcu_read_unlock(); 1098 1099 /* 1100 * If there are only isolated partitions underneath the cgroup root, 1101 * we can optimize out unneeded sched domains scanning. 1102 */ 1103 if (root_load_balance && (csn == 1)) 1104 goto single_root_domain; 1105 1106 for (i = 0; i < csn; i++) 1107 csa[i]->pn = i; 1108 ndoms = csn; 1109 1110 restart: 1111 /* Find the best partition (set of sched domains) */ 1112 for (i = 0; i < csn; i++) { 1113 struct cpuset *a = csa[i]; 1114 int apn = a->pn; 1115 1116 for (j = 0; j < csn; j++) { 1117 struct cpuset *b = csa[j]; 1118 int bpn = b->pn; 1119 1120 if (apn != bpn && cpusets_overlap(a, b)) { 1121 for (k = 0; k < csn; k++) { 1122 struct cpuset *c = csa[k]; 1123 1124 if (c->pn == bpn) 1125 c->pn = apn; 1126 } 1127 ndoms--; /* one less element */ 1128 goto restart; 1129 } 1130 } 1131 } 1132 1133 /* 1134 * Now we know how many domains to create. 1135 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 1136 */ 1137 doms = alloc_sched_domains(ndoms); 1138 if (!doms) 1139 goto done; 1140 1141 /* 1142 * The rest of the code, including the scheduler, can deal with 1143 * dattr==NULL case. No need to abort if alloc fails. 1144 */ 1145 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 1146 GFP_KERNEL); 1147 1148 /* 1149 * Cgroup v2 doesn't support domain attributes, just set all of them 1150 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a 1151 * subset of HK_TYPE_DOMAIN housekeeping CPUs. 1152 */ 1153 if (cgrpv2) { 1154 for (i = 0; i < ndoms; i++) { 1155 cpumask_copy(doms[i], csa[i]->effective_cpus); 1156 if (dattr) 1157 dattr[i] = SD_ATTR_INIT; 1158 } 1159 goto done; 1160 } 1161 1162 for (nslot = 0, i = 0; i < csn; i++) { 1163 struct cpuset *a = csa[i]; 1164 struct cpumask *dp; 1165 int apn = a->pn; 1166 1167 if (apn < 0) { 1168 /* Skip completed partitions */ 1169 continue; 1170 } 1171 1172 dp = doms[nslot]; 1173 1174 if (nslot == ndoms) { 1175 static int warnings = 10; 1176 if (warnings) { 1177 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 1178 nslot, ndoms, csn, i, apn); 1179 warnings--; 1180 } 1181 continue; 1182 } 1183 1184 cpumask_clear(dp); 1185 if (dattr) 1186 *(dattr + nslot) = SD_ATTR_INIT; 1187 for (j = i; j < csn; j++) { 1188 struct cpuset *b = csa[j]; 1189 1190 if (apn == b->pn) { 1191 cpumask_or(dp, dp, b->effective_cpus); 1192 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); 1193 if (dattr) 1194 update_domain_attr_tree(dattr + nslot, b); 1195 1196 /* Done with this partition */ 1197 b->pn = -1; 1198 } 1199 } 1200 nslot++; 1201 } 1202 BUG_ON(nslot != ndoms); 1203 1204 done: 1205 kfree(csa); 1206 1207 /* 1208 * Fallback to the default domain if kmalloc() failed. 1209 * See comments in partition_sched_domains(). 1210 */ 1211 if (doms == NULL) 1212 ndoms = 1; 1213 1214 *domains = doms; 1215 *attributes = dattr; 1216 return ndoms; 1217 } 1218 1219 static void dl_update_tasks_root_domain(struct cpuset *cs) 1220 { 1221 struct css_task_iter it; 1222 struct task_struct *task; 1223 1224 if (cs->nr_deadline_tasks == 0) 1225 return; 1226 1227 css_task_iter_start(&cs->css, 0, &it); 1228 1229 while ((task = css_task_iter_next(&it))) 1230 dl_add_task_root_domain(task); 1231 1232 css_task_iter_end(&it); 1233 } 1234 1235 static void dl_rebuild_rd_accounting(void) 1236 { 1237 struct cpuset *cs = NULL; 1238 struct cgroup_subsys_state *pos_css; 1239 1240 lockdep_assert_held(&cpuset_mutex); 1241 lockdep_assert_cpus_held(); 1242 lockdep_assert_held(&sched_domains_mutex); 1243 1244 rcu_read_lock(); 1245 1246 /* 1247 * Clear default root domain DL accounting, it will be computed again 1248 * if a task belongs to it. 1249 */ 1250 dl_clear_root_domain(&def_root_domain); 1251 1252 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1253 1254 if (cpumask_empty(cs->effective_cpus)) { 1255 pos_css = css_rightmost_descendant(pos_css); 1256 continue; 1257 } 1258 1259 css_get(&cs->css); 1260 1261 rcu_read_unlock(); 1262 1263 dl_update_tasks_root_domain(cs); 1264 1265 rcu_read_lock(); 1266 css_put(&cs->css); 1267 } 1268 rcu_read_unlock(); 1269 } 1270 1271 static void 1272 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1273 struct sched_domain_attr *dattr_new) 1274 { 1275 mutex_lock(&sched_domains_mutex); 1276 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 1277 dl_rebuild_rd_accounting(); 1278 mutex_unlock(&sched_domains_mutex); 1279 } 1280 1281 /* 1282 * Rebuild scheduler domains. 1283 * 1284 * If the flag 'sched_load_balance' of any cpuset with non-empty 1285 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1286 * which has that flag enabled, or if any cpuset with a non-empty 1287 * 'cpus' is removed, then call this routine to rebuild the 1288 * scheduler's dynamic sched domains. 1289 * 1290 * Call with cpuset_mutex held. Takes cpus_read_lock(). 1291 */ 1292 static void rebuild_sched_domains_locked(void) 1293 { 1294 struct cgroup_subsys_state *pos_css; 1295 struct sched_domain_attr *attr; 1296 cpumask_var_t *doms; 1297 struct cpuset *cs; 1298 int ndoms; 1299 1300 lockdep_assert_cpus_held(); 1301 lockdep_assert_held(&cpuset_mutex); 1302 1303 /* 1304 * If we have raced with CPU hotplug, return early to avoid 1305 * passing doms with offlined cpu to partition_sched_domains(). 1306 * Anyways, cpuset_handle_hotplug() will rebuild sched domains. 1307 * 1308 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1309 * should be the same as the active CPUs, so checking only top_cpuset 1310 * is enough to detect racing CPU offlines. 1311 */ 1312 if (cpumask_empty(subpartitions_cpus) && 1313 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1314 return; 1315 1316 /* 1317 * With subpartition CPUs, however, the effective CPUs of a partition 1318 * root should be only a subset of the active CPUs. Since a CPU in any 1319 * partition root could be offlined, all must be checked. 1320 */ 1321 if (!cpumask_empty(subpartitions_cpus)) { 1322 rcu_read_lock(); 1323 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1324 if (!is_partition_valid(cs)) { 1325 pos_css = css_rightmost_descendant(pos_css); 1326 continue; 1327 } 1328 if (!cpumask_subset(cs->effective_cpus, 1329 cpu_active_mask)) { 1330 rcu_read_unlock(); 1331 return; 1332 } 1333 } 1334 rcu_read_unlock(); 1335 } 1336 1337 /* Generate domain masks and attrs */ 1338 ndoms = generate_sched_domains(&doms, &attr); 1339 1340 /* Have scheduler rebuild the domains */ 1341 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1342 } 1343 #else /* !CONFIG_SMP */ 1344 static void rebuild_sched_domains_locked(void) 1345 { 1346 } 1347 #endif /* CONFIG_SMP */ 1348 1349 static void rebuild_sched_domains_cpuslocked(void) 1350 { 1351 mutex_lock(&cpuset_mutex); 1352 rebuild_sched_domains_locked(); 1353 mutex_unlock(&cpuset_mutex); 1354 } 1355 1356 void rebuild_sched_domains(void) 1357 { 1358 cpus_read_lock(); 1359 rebuild_sched_domains_cpuslocked(); 1360 cpus_read_unlock(); 1361 } 1362 1363 /** 1364 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1365 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1366 * @new_cpus: the temp variable for the new effective_cpus mask 1367 * 1368 * Iterate through each task of @cs updating its cpus_allowed to the 1369 * effective cpuset's. As this function is called with cpuset_mutex held, 1370 * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask() 1371 * is used instead of effective_cpus to make sure all offline CPUs are also 1372 * included as hotplug code won't update cpumasks for tasks in top_cpuset. 1373 */ 1374 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) 1375 { 1376 struct css_task_iter it; 1377 struct task_struct *task; 1378 bool top_cs = cs == &top_cpuset; 1379 1380 css_task_iter_start(&cs->css, 0, &it); 1381 while ((task = css_task_iter_next(&it))) { 1382 const struct cpumask *possible_mask = task_cpu_possible_mask(task); 1383 1384 if (top_cs) { 1385 /* 1386 * Percpu kthreads in top_cpuset are ignored 1387 */ 1388 if (kthread_is_per_cpu(task)) 1389 continue; 1390 cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus); 1391 } else { 1392 cpumask_and(new_cpus, possible_mask, cs->effective_cpus); 1393 } 1394 set_cpus_allowed_ptr(task, new_cpus); 1395 } 1396 css_task_iter_end(&it); 1397 } 1398 1399 /** 1400 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1401 * @new_cpus: the temp variable for the new effective_cpus mask 1402 * @cs: the cpuset the need to recompute the new effective_cpus mask 1403 * @parent: the parent cpuset 1404 * 1405 * The result is valid only if the given cpuset isn't a partition root. 1406 */ 1407 static void compute_effective_cpumask(struct cpumask *new_cpus, 1408 struct cpuset *cs, struct cpuset *parent) 1409 { 1410 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1411 } 1412 1413 /* 1414 * Commands for update_parent_effective_cpumask 1415 */ 1416 enum partition_cmd { 1417 partcmd_enable, /* Enable partition root */ 1418 partcmd_enablei, /* Enable isolated partition root */ 1419 partcmd_disable, /* Disable partition root */ 1420 partcmd_update, /* Update parent's effective_cpus */ 1421 partcmd_invalidate, /* Make partition invalid */ 1422 }; 1423 1424 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1425 int turning_on); 1426 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1427 struct tmpmasks *tmp); 1428 1429 /* 1430 * Update partition exclusive flag 1431 * 1432 * Return: 0 if successful, an error code otherwise 1433 */ 1434 static int update_partition_exclusive(struct cpuset *cs, int new_prs) 1435 { 1436 bool exclusive = (new_prs > PRS_MEMBER); 1437 1438 if (exclusive && !is_cpu_exclusive(cs)) { 1439 if (update_flag(CS_CPU_EXCLUSIVE, cs, 1)) 1440 return PERR_NOTEXCL; 1441 } else if (!exclusive && is_cpu_exclusive(cs)) { 1442 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1443 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1444 } 1445 return 0; 1446 } 1447 1448 /* 1449 * Update partition load balance flag and/or rebuild sched domain 1450 * 1451 * Changing load balance flag will automatically call 1452 * rebuild_sched_domains_locked(). 1453 * This function is for cgroup v2 only. 1454 */ 1455 static void update_partition_sd_lb(struct cpuset *cs, int old_prs) 1456 { 1457 int new_prs = cs->partition_root_state; 1458 bool rebuild_domains = (new_prs > 0) || (old_prs > 0); 1459 bool new_lb; 1460 1461 /* 1462 * If cs is not a valid partition root, the load balance state 1463 * will follow its parent. 1464 */ 1465 if (new_prs > 0) { 1466 new_lb = (new_prs != PRS_ISOLATED); 1467 } else { 1468 new_lb = is_sched_load_balance(parent_cs(cs)); 1469 } 1470 if (new_lb != !!is_sched_load_balance(cs)) { 1471 rebuild_domains = true; 1472 if (new_lb) 1473 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1474 else 1475 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1476 } 1477 1478 if (rebuild_domains) 1479 rebuild_sched_domains_locked(); 1480 } 1481 1482 /* 1483 * tasks_nocpu_error - Return true if tasks will have no effective_cpus 1484 */ 1485 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs, 1486 struct cpumask *xcpus) 1487 { 1488 /* 1489 * A populated partition (cs or parent) can't have empty effective_cpus 1490 */ 1491 return (cpumask_subset(parent->effective_cpus, xcpus) && 1492 partition_is_populated(parent, cs)) || 1493 (!cpumask_intersects(xcpus, cpu_active_mask) && 1494 partition_is_populated(cs, NULL)); 1495 } 1496 1497 static void reset_partition_data(struct cpuset *cs) 1498 { 1499 struct cpuset *parent = parent_cs(cs); 1500 1501 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 1502 return; 1503 1504 lockdep_assert_held(&callback_lock); 1505 1506 cs->nr_subparts = 0; 1507 if (cpumask_empty(cs->exclusive_cpus)) { 1508 cpumask_clear(cs->effective_xcpus); 1509 if (is_cpu_exclusive(cs)) 1510 clear_bit(CS_CPU_EXCLUSIVE, &cs->flags); 1511 } 1512 if (!cpumask_and(cs->effective_cpus, 1513 parent->effective_cpus, cs->cpus_allowed)) { 1514 cs->use_parent_ecpus = true; 1515 parent->child_ecpus_count++; 1516 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 1517 } 1518 } 1519 1520 /* 1521 * partition_xcpus_newstate - Exclusive CPUs state change 1522 * @old_prs: old partition_root_state 1523 * @new_prs: new partition_root_state 1524 * @xcpus: exclusive CPUs with state change 1525 */ 1526 static void partition_xcpus_newstate(int old_prs, int new_prs, struct cpumask *xcpus) 1527 { 1528 WARN_ON_ONCE(old_prs == new_prs); 1529 if (new_prs == PRS_ISOLATED) 1530 cpumask_or(isolated_cpus, isolated_cpus, xcpus); 1531 else 1532 cpumask_andnot(isolated_cpus, isolated_cpus, xcpus); 1533 } 1534 1535 /* 1536 * partition_xcpus_add - Add new exclusive CPUs to partition 1537 * @new_prs: new partition_root_state 1538 * @parent: parent cpuset 1539 * @xcpus: exclusive CPUs to be added 1540 * Return: true if isolated_cpus modified, false otherwise 1541 * 1542 * Remote partition if parent == NULL 1543 */ 1544 static bool partition_xcpus_add(int new_prs, struct cpuset *parent, 1545 struct cpumask *xcpus) 1546 { 1547 bool isolcpus_updated; 1548 1549 WARN_ON_ONCE(new_prs < 0); 1550 lockdep_assert_held(&callback_lock); 1551 if (!parent) 1552 parent = &top_cpuset; 1553 1554 1555 if (parent == &top_cpuset) 1556 cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus); 1557 1558 isolcpus_updated = (new_prs != parent->partition_root_state); 1559 if (isolcpus_updated) 1560 partition_xcpus_newstate(parent->partition_root_state, new_prs, 1561 xcpus); 1562 1563 cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus); 1564 return isolcpus_updated; 1565 } 1566 1567 /* 1568 * partition_xcpus_del - Remove exclusive CPUs from partition 1569 * @old_prs: old partition_root_state 1570 * @parent: parent cpuset 1571 * @xcpus: exclusive CPUs to be removed 1572 * Return: true if isolated_cpus modified, false otherwise 1573 * 1574 * Remote partition if parent == NULL 1575 */ 1576 static bool partition_xcpus_del(int old_prs, struct cpuset *parent, 1577 struct cpumask *xcpus) 1578 { 1579 bool isolcpus_updated; 1580 1581 WARN_ON_ONCE(old_prs < 0); 1582 lockdep_assert_held(&callback_lock); 1583 if (!parent) 1584 parent = &top_cpuset; 1585 1586 if (parent == &top_cpuset) 1587 cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus); 1588 1589 isolcpus_updated = (old_prs != parent->partition_root_state); 1590 if (isolcpus_updated) 1591 partition_xcpus_newstate(old_prs, parent->partition_root_state, 1592 xcpus); 1593 1594 cpumask_and(xcpus, xcpus, cpu_active_mask); 1595 cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus); 1596 return isolcpus_updated; 1597 } 1598 1599 static void update_unbound_workqueue_cpumask(bool isolcpus_updated) 1600 { 1601 int ret; 1602 1603 lockdep_assert_cpus_held(); 1604 1605 if (!isolcpus_updated) 1606 return; 1607 1608 ret = workqueue_unbound_exclude_cpumask(isolated_cpus); 1609 WARN_ON_ONCE(ret < 0); 1610 } 1611 1612 /** 1613 * cpuset_cpu_is_isolated - Check if the given CPU is isolated 1614 * @cpu: the CPU number to be checked 1615 * Return: true if CPU is used in an isolated partition, false otherwise 1616 */ 1617 bool cpuset_cpu_is_isolated(int cpu) 1618 { 1619 return cpumask_test_cpu(cpu, isolated_cpus); 1620 } 1621 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated); 1622 1623 /* 1624 * compute_effective_exclusive_cpumask - compute effective exclusive CPUs 1625 * @cs: cpuset 1626 * @xcpus: effective exclusive CPUs value to be set 1627 * Return: true if xcpus is not empty, false otherwise. 1628 * 1629 * Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set), 1630 * it must be a subset of parent's effective_xcpus. 1631 */ 1632 static bool compute_effective_exclusive_cpumask(struct cpuset *cs, 1633 struct cpumask *xcpus) 1634 { 1635 struct cpuset *parent = parent_cs(cs); 1636 1637 if (!xcpus) 1638 xcpus = cs->effective_xcpus; 1639 1640 return cpumask_and(xcpus, user_xcpus(cs), parent->effective_xcpus); 1641 } 1642 1643 static inline bool is_remote_partition(struct cpuset *cs) 1644 { 1645 return !list_empty(&cs->remote_sibling); 1646 } 1647 1648 static inline bool is_local_partition(struct cpuset *cs) 1649 { 1650 return is_partition_valid(cs) && !is_remote_partition(cs); 1651 } 1652 1653 /* 1654 * remote_partition_enable - Enable current cpuset as a remote partition root 1655 * @cs: the cpuset to update 1656 * @new_prs: new partition_root_state 1657 * @tmp: temparary masks 1658 * Return: 1 if successful, 0 if error 1659 * 1660 * Enable the current cpuset to become a remote partition root taking CPUs 1661 * directly from the top cpuset. cpuset_mutex must be held by the caller. 1662 */ 1663 static int remote_partition_enable(struct cpuset *cs, int new_prs, 1664 struct tmpmasks *tmp) 1665 { 1666 bool isolcpus_updated; 1667 1668 /* 1669 * The user must have sysadmin privilege. 1670 */ 1671 if (!capable(CAP_SYS_ADMIN)) 1672 return 0; 1673 1674 /* 1675 * The requested exclusive_cpus must not be allocated to other 1676 * partitions and it can't use up all the root's effective_cpus. 1677 * 1678 * Note that if there is any local partition root above it or 1679 * remote partition root underneath it, its exclusive_cpus must 1680 * have overlapped with subpartitions_cpus. 1681 */ 1682 compute_effective_exclusive_cpumask(cs, tmp->new_cpus); 1683 if (cpumask_empty(tmp->new_cpus) || 1684 cpumask_intersects(tmp->new_cpus, subpartitions_cpus) || 1685 cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus)) 1686 return 0; 1687 1688 spin_lock_irq(&callback_lock); 1689 isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus); 1690 list_add(&cs->remote_sibling, &remote_children); 1691 if (cs->use_parent_ecpus) { 1692 struct cpuset *parent = parent_cs(cs); 1693 1694 cs->use_parent_ecpus = false; 1695 parent->child_ecpus_count--; 1696 } 1697 spin_unlock_irq(&callback_lock); 1698 update_unbound_workqueue_cpumask(isolcpus_updated); 1699 1700 /* 1701 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy. 1702 */ 1703 update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1704 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1705 return 1; 1706 } 1707 1708 /* 1709 * remote_partition_disable - Remove current cpuset from remote partition list 1710 * @cs: the cpuset to update 1711 * @tmp: temparary masks 1712 * 1713 * The effective_cpus is also updated. 1714 * 1715 * cpuset_mutex must be held by the caller. 1716 */ 1717 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp) 1718 { 1719 bool isolcpus_updated; 1720 1721 compute_effective_exclusive_cpumask(cs, tmp->new_cpus); 1722 WARN_ON_ONCE(!is_remote_partition(cs)); 1723 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus)); 1724 1725 spin_lock_irq(&callback_lock); 1726 list_del_init(&cs->remote_sibling); 1727 isolcpus_updated = partition_xcpus_del(cs->partition_root_state, 1728 NULL, tmp->new_cpus); 1729 cs->partition_root_state = -cs->partition_root_state; 1730 if (!cs->prs_err) 1731 cs->prs_err = PERR_INVCPUS; 1732 reset_partition_data(cs); 1733 spin_unlock_irq(&callback_lock); 1734 update_unbound_workqueue_cpumask(isolcpus_updated); 1735 1736 /* 1737 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy. 1738 */ 1739 update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1740 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1741 } 1742 1743 /* 1744 * remote_cpus_update - cpus_exclusive change of remote partition 1745 * @cs: the cpuset to be updated 1746 * @newmask: the new effective_xcpus mask 1747 * @tmp: temparary masks 1748 * 1749 * top_cpuset and subpartitions_cpus will be updated or partition can be 1750 * invalidated. 1751 */ 1752 static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask, 1753 struct tmpmasks *tmp) 1754 { 1755 bool adding, deleting; 1756 int prs = cs->partition_root_state; 1757 int isolcpus_updated = 0; 1758 1759 if (WARN_ON_ONCE(!is_remote_partition(cs))) 1760 return; 1761 1762 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); 1763 1764 if (cpumask_empty(newmask)) 1765 goto invalidate; 1766 1767 adding = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus); 1768 deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask); 1769 1770 /* 1771 * Additions of remote CPUs is only allowed if those CPUs are 1772 * not allocated to other partitions and there are effective_cpus 1773 * left in the top cpuset. 1774 */ 1775 if (adding && (!capable(CAP_SYS_ADMIN) || 1776 cpumask_intersects(tmp->addmask, subpartitions_cpus) || 1777 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))) 1778 goto invalidate; 1779 1780 spin_lock_irq(&callback_lock); 1781 if (adding) 1782 isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask); 1783 if (deleting) 1784 isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask); 1785 spin_unlock_irq(&callback_lock); 1786 update_unbound_workqueue_cpumask(isolcpus_updated); 1787 1788 /* 1789 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy. 1790 */ 1791 update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1792 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1793 return; 1794 1795 invalidate: 1796 remote_partition_disable(cs, tmp); 1797 } 1798 1799 /* 1800 * remote_partition_check - check if a child remote partition needs update 1801 * @cs: the cpuset to be updated 1802 * @newmask: the new effective_xcpus mask 1803 * @delmask: temporary mask for deletion (not in tmp) 1804 * @tmp: temparary masks 1805 * 1806 * This should be called before the given cs has updated its cpus_allowed 1807 * and/or effective_xcpus. 1808 */ 1809 static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask, 1810 struct cpumask *delmask, struct tmpmasks *tmp) 1811 { 1812 struct cpuset *child, *next; 1813 int disable_cnt = 0; 1814 1815 /* 1816 * Compute the effective exclusive CPUs that will be deleted. 1817 */ 1818 if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) || 1819 !cpumask_intersects(delmask, subpartitions_cpus)) 1820 return; /* No deletion of exclusive CPUs in partitions */ 1821 1822 /* 1823 * Searching the remote children list to look for those that will 1824 * be impacted by the deletion of exclusive CPUs. 1825 * 1826 * Since a cpuset must be removed from the remote children list 1827 * before it can go offline and holding cpuset_mutex will prevent 1828 * any change in cpuset status. RCU read lock isn't needed. 1829 */ 1830 lockdep_assert_held(&cpuset_mutex); 1831 list_for_each_entry_safe(child, next, &remote_children, remote_sibling) 1832 if (cpumask_intersects(child->effective_cpus, delmask)) { 1833 remote_partition_disable(child, tmp); 1834 disable_cnt++; 1835 } 1836 if (disable_cnt) 1837 rebuild_sched_domains_locked(); 1838 } 1839 1840 /* 1841 * prstate_housekeeping_conflict - check for partition & housekeeping conflicts 1842 * @prstate: partition root state to be checked 1843 * @new_cpus: cpu mask 1844 * Return: true if there is conflict, false otherwise 1845 * 1846 * CPUs outside of housekeeping_cpumask(HK_TYPE_DOMAIN) can only be used in 1847 * an isolated partition. 1848 */ 1849 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus) 1850 { 1851 const struct cpumask *hk_domain = housekeeping_cpumask(HK_TYPE_DOMAIN); 1852 bool all_in_hk = cpumask_subset(new_cpus, hk_domain); 1853 1854 if (!all_in_hk && (prstate != PRS_ISOLATED)) 1855 return true; 1856 1857 return false; 1858 } 1859 1860 /** 1861 * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset 1862 * @cs: The cpuset that requests change in partition root state 1863 * @cmd: Partition root state change command 1864 * @newmask: Optional new cpumask for partcmd_update 1865 * @tmp: Temporary addmask and delmask 1866 * Return: 0 or a partition root state error code 1867 * 1868 * For partcmd_enable*, the cpuset is being transformed from a non-partition 1869 * root to a partition root. The effective_xcpus (cpus_allowed if 1870 * effective_xcpus not set) mask of the given cpuset will be taken away from 1871 * parent's effective_cpus. The function will return 0 if all the CPUs listed 1872 * in effective_xcpus can be granted or an error code will be returned. 1873 * 1874 * For partcmd_disable, the cpuset is being transformed from a partition 1875 * root back to a non-partition root. Any CPUs in effective_xcpus will be 1876 * given back to parent's effective_cpus. 0 will always be returned. 1877 * 1878 * For partcmd_update, if the optional newmask is specified, the cpu list is 1879 * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is 1880 * assumed to remain the same. The cpuset should either be a valid or invalid 1881 * partition root. The partition root state may change from valid to invalid 1882 * or vice versa. An error code will be returned if transitioning from 1883 * invalid to valid violates the exclusivity rule. 1884 * 1885 * For partcmd_invalidate, the current partition will be made invalid. 1886 * 1887 * The partcmd_enable* and partcmd_disable commands are used by 1888 * update_prstate(). An error code may be returned and the caller will check 1889 * for error. 1890 * 1891 * The partcmd_update command is used by update_cpumasks_hier() with newmask 1892 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used 1893 * by update_cpumask() with NULL newmask. In both cases, the callers won't 1894 * check for error and so partition_root_state and prs_error will be updated 1895 * directly. 1896 */ 1897 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd, 1898 struct cpumask *newmask, 1899 struct tmpmasks *tmp) 1900 { 1901 struct cpuset *parent = parent_cs(cs); 1902 int adding; /* Adding cpus to parent's effective_cpus */ 1903 int deleting; /* Deleting cpus from parent's effective_cpus */ 1904 int old_prs, new_prs; 1905 int part_error = PERR_NONE; /* Partition error? */ 1906 int subparts_delta = 0; 1907 struct cpumask *xcpus; /* cs effective_xcpus */ 1908 int isolcpus_updated = 0; 1909 bool nocpu; 1910 1911 lockdep_assert_held(&cpuset_mutex); 1912 1913 /* 1914 * new_prs will only be changed for the partcmd_update and 1915 * partcmd_invalidate commands. 1916 */ 1917 adding = deleting = false; 1918 old_prs = new_prs = cs->partition_root_state; 1919 xcpus = user_xcpus(cs); 1920 1921 if (cmd == partcmd_invalidate) { 1922 if (is_prs_invalid(old_prs)) 1923 return 0; 1924 1925 /* 1926 * Make the current partition invalid. 1927 */ 1928 if (is_partition_valid(parent)) 1929 adding = cpumask_and(tmp->addmask, 1930 xcpus, parent->effective_xcpus); 1931 if (old_prs > 0) { 1932 new_prs = -old_prs; 1933 subparts_delta--; 1934 } 1935 goto write_error; 1936 } 1937 1938 /* 1939 * The parent must be a partition root. 1940 * The new cpumask, if present, or the current cpus_allowed must 1941 * not be empty. 1942 */ 1943 if (!is_partition_valid(parent)) { 1944 return is_partition_invalid(parent) 1945 ? PERR_INVPARENT : PERR_NOTPART; 1946 } 1947 if (!newmask && xcpus_empty(cs)) 1948 return PERR_CPUSEMPTY; 1949 1950 nocpu = tasks_nocpu_error(parent, cs, xcpus); 1951 1952 if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) { 1953 /* 1954 * Enabling partition root is not allowed if its 1955 * effective_xcpus is empty or doesn't overlap with 1956 * parent's effective_xcpus. 1957 */ 1958 if (cpumask_empty(xcpus) || 1959 !cpumask_intersects(xcpus, parent->effective_xcpus)) 1960 return PERR_INVCPUS; 1961 1962 if (prstate_housekeeping_conflict(new_prs, xcpus)) 1963 return PERR_HKEEPING; 1964 1965 /* 1966 * A parent can be left with no CPU as long as there is no 1967 * task directly associated with the parent partition. 1968 */ 1969 if (nocpu) 1970 return PERR_NOCPUS; 1971 1972 cpumask_copy(tmp->delmask, xcpus); 1973 deleting = true; 1974 subparts_delta++; 1975 new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED; 1976 } else if (cmd == partcmd_disable) { 1977 /* 1978 * May need to add cpus to parent's effective_cpus for 1979 * valid partition root. 1980 */ 1981 adding = !is_prs_invalid(old_prs) && 1982 cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus); 1983 if (adding) 1984 subparts_delta--; 1985 new_prs = PRS_MEMBER; 1986 } else if (newmask) { 1987 /* 1988 * Empty cpumask is not allowed 1989 */ 1990 if (cpumask_empty(newmask)) { 1991 part_error = PERR_CPUSEMPTY; 1992 goto write_error; 1993 } 1994 1995 /* 1996 * partcmd_update with newmask: 1997 * 1998 * Compute add/delete mask to/from effective_cpus 1999 * 2000 * For valid partition: 2001 * addmask = exclusive_cpus & ~newmask 2002 * & parent->effective_xcpus 2003 * delmask = newmask & ~exclusive_cpus 2004 * & parent->effective_xcpus 2005 * 2006 * For invalid partition: 2007 * delmask = newmask & parent->effective_xcpus 2008 */ 2009 if (is_prs_invalid(old_prs)) { 2010 adding = false; 2011 deleting = cpumask_and(tmp->delmask, 2012 newmask, parent->effective_xcpus); 2013 } else { 2014 cpumask_andnot(tmp->addmask, xcpus, newmask); 2015 adding = cpumask_and(tmp->addmask, tmp->addmask, 2016 parent->effective_xcpus); 2017 2018 cpumask_andnot(tmp->delmask, newmask, xcpus); 2019 deleting = cpumask_and(tmp->delmask, tmp->delmask, 2020 parent->effective_xcpus); 2021 } 2022 /* 2023 * Make partition invalid if parent's effective_cpus could 2024 * become empty and there are tasks in the parent. 2025 */ 2026 if (nocpu && (!adding || 2027 !cpumask_intersects(tmp->addmask, cpu_active_mask))) { 2028 part_error = PERR_NOCPUS; 2029 deleting = false; 2030 adding = cpumask_and(tmp->addmask, 2031 xcpus, parent->effective_xcpus); 2032 } 2033 } else { 2034 /* 2035 * partcmd_update w/o newmask 2036 * 2037 * delmask = effective_xcpus & parent->effective_cpus 2038 * 2039 * This can be called from: 2040 * 1) update_cpumasks_hier() 2041 * 2) cpuset_hotplug_update_tasks() 2042 * 2043 * Check to see if it can be transitioned from valid to 2044 * invalid partition or vice versa. 2045 * 2046 * A partition error happens when parent has tasks and all 2047 * its effective CPUs will have to be distributed out. 2048 */ 2049 WARN_ON_ONCE(!is_partition_valid(parent)); 2050 if (nocpu) { 2051 part_error = PERR_NOCPUS; 2052 if (is_partition_valid(cs)) 2053 adding = cpumask_and(tmp->addmask, 2054 xcpus, parent->effective_xcpus); 2055 } else if (is_partition_invalid(cs) && 2056 cpumask_subset(xcpus, parent->effective_xcpus)) { 2057 struct cgroup_subsys_state *css; 2058 struct cpuset *child; 2059 bool exclusive = true; 2060 2061 /* 2062 * Convert invalid partition to valid has to 2063 * pass the cpu exclusivity test. 2064 */ 2065 rcu_read_lock(); 2066 cpuset_for_each_child(child, css, parent) { 2067 if (child == cs) 2068 continue; 2069 if (!cpusets_are_exclusive(cs, child)) { 2070 exclusive = false; 2071 break; 2072 } 2073 } 2074 rcu_read_unlock(); 2075 if (exclusive) 2076 deleting = cpumask_and(tmp->delmask, 2077 xcpus, parent->effective_cpus); 2078 else 2079 part_error = PERR_NOTEXCL; 2080 } 2081 } 2082 2083 write_error: 2084 if (part_error) 2085 WRITE_ONCE(cs->prs_err, part_error); 2086 2087 if (cmd == partcmd_update) { 2088 /* 2089 * Check for possible transition between valid and invalid 2090 * partition root. 2091 */ 2092 switch (cs->partition_root_state) { 2093 case PRS_ROOT: 2094 case PRS_ISOLATED: 2095 if (part_error) { 2096 new_prs = -old_prs; 2097 subparts_delta--; 2098 } 2099 break; 2100 case PRS_INVALID_ROOT: 2101 case PRS_INVALID_ISOLATED: 2102 if (!part_error) { 2103 new_prs = -old_prs; 2104 subparts_delta++; 2105 } 2106 break; 2107 } 2108 } 2109 2110 if (!adding && !deleting && (new_prs == old_prs)) 2111 return 0; 2112 2113 /* 2114 * Transitioning between invalid to valid or vice versa may require 2115 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update, 2116 * validate_change() has already been successfully called and 2117 * CPU lists in cs haven't been updated yet. So defer it to later. 2118 */ 2119 if ((old_prs != new_prs) && (cmd != partcmd_update)) { 2120 int err = update_partition_exclusive(cs, new_prs); 2121 2122 if (err) 2123 return err; 2124 } 2125 2126 /* 2127 * Change the parent's effective_cpus & effective_xcpus (top cpuset 2128 * only). 2129 * 2130 * Newly added CPUs will be removed from effective_cpus and 2131 * newly deleted ones will be added back to effective_cpus. 2132 */ 2133 spin_lock_irq(&callback_lock); 2134 if (old_prs != new_prs) { 2135 cs->partition_root_state = new_prs; 2136 if (new_prs <= 0) 2137 cs->nr_subparts = 0; 2138 } 2139 /* 2140 * Adding to parent's effective_cpus means deletion CPUs from cs 2141 * and vice versa. 2142 */ 2143 if (adding) 2144 isolcpus_updated += partition_xcpus_del(old_prs, parent, 2145 tmp->addmask); 2146 if (deleting) 2147 isolcpus_updated += partition_xcpus_add(new_prs, parent, 2148 tmp->delmask); 2149 2150 if (is_partition_valid(parent)) { 2151 parent->nr_subparts += subparts_delta; 2152 WARN_ON_ONCE(parent->nr_subparts < 0); 2153 } 2154 spin_unlock_irq(&callback_lock); 2155 update_unbound_workqueue_cpumask(isolcpus_updated); 2156 2157 if ((old_prs != new_prs) && (cmd == partcmd_update)) 2158 update_partition_exclusive(cs, new_prs); 2159 2160 if (adding || deleting) { 2161 update_tasks_cpumask(parent, tmp->addmask); 2162 update_sibling_cpumasks(parent, cs, tmp); 2163 } 2164 2165 /* 2166 * For partcmd_update without newmask, it is being called from 2167 * cpuset_handle_hotplug(). Update the load balance flag and 2168 * scheduling domain accordingly. 2169 */ 2170 if ((cmd == partcmd_update) && !newmask) 2171 update_partition_sd_lb(cs, old_prs); 2172 2173 notify_partition_change(cs, old_prs); 2174 return 0; 2175 } 2176 2177 /** 2178 * compute_partition_effective_cpumask - compute effective_cpus for partition 2179 * @cs: partition root cpuset 2180 * @new_ecpus: previously computed effective_cpus to be updated 2181 * 2182 * Compute the effective_cpus of a partition root by scanning effective_xcpus 2183 * of child partition roots and excluding their effective_xcpus. 2184 * 2185 * This has the side effect of invalidating valid child partition roots, 2186 * if necessary. Since it is called from either cpuset_hotplug_update_tasks() 2187 * or update_cpumasks_hier() where parent and children are modified 2188 * successively, we don't need to call update_parent_effective_cpumask() 2189 * and the child's effective_cpus will be updated in later iterations. 2190 * 2191 * Note that rcu_read_lock() is assumed to be held. 2192 */ 2193 static void compute_partition_effective_cpumask(struct cpuset *cs, 2194 struct cpumask *new_ecpus) 2195 { 2196 struct cgroup_subsys_state *css; 2197 struct cpuset *child; 2198 bool populated = partition_is_populated(cs, NULL); 2199 2200 /* 2201 * Check child partition roots to see if they should be 2202 * invalidated when 2203 * 1) child effective_xcpus not a subset of new 2204 * excluisve_cpus 2205 * 2) All the effective_cpus will be used up and cp 2206 * has tasks 2207 */ 2208 compute_effective_exclusive_cpumask(cs, new_ecpus); 2209 cpumask_and(new_ecpus, new_ecpus, cpu_active_mask); 2210 2211 rcu_read_lock(); 2212 cpuset_for_each_child(child, css, cs) { 2213 if (!is_partition_valid(child)) 2214 continue; 2215 2216 child->prs_err = 0; 2217 if (!cpumask_subset(child->effective_xcpus, 2218 cs->effective_xcpus)) 2219 child->prs_err = PERR_INVCPUS; 2220 else if (populated && 2221 cpumask_subset(new_ecpus, child->effective_xcpus)) 2222 child->prs_err = PERR_NOCPUS; 2223 2224 if (child->prs_err) { 2225 int old_prs = child->partition_root_state; 2226 2227 /* 2228 * Invalidate child partition 2229 */ 2230 spin_lock_irq(&callback_lock); 2231 make_partition_invalid(child); 2232 cs->nr_subparts--; 2233 child->nr_subparts = 0; 2234 spin_unlock_irq(&callback_lock); 2235 notify_partition_change(child, old_prs); 2236 continue; 2237 } 2238 cpumask_andnot(new_ecpus, new_ecpus, 2239 child->effective_xcpus); 2240 } 2241 rcu_read_unlock(); 2242 } 2243 2244 /* 2245 * update_cpumasks_hier() flags 2246 */ 2247 #define HIER_CHECKALL 0x01 /* Check all cpusets with no skipping */ 2248 #define HIER_NO_SD_REBUILD 0x02 /* Don't rebuild sched domains */ 2249 2250 /* 2251 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 2252 * @cs: the cpuset to consider 2253 * @tmp: temp variables for calculating effective_cpus & partition setup 2254 * @force: don't skip any descendant cpusets if set 2255 * 2256 * When configured cpumask is changed, the effective cpumasks of this cpuset 2257 * and all its descendants need to be updated. 2258 * 2259 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 2260 * 2261 * Called with cpuset_mutex held 2262 */ 2263 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, 2264 int flags) 2265 { 2266 struct cpuset *cp; 2267 struct cgroup_subsys_state *pos_css; 2268 bool need_rebuild_sched_domains = false; 2269 int old_prs, new_prs; 2270 2271 rcu_read_lock(); 2272 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2273 struct cpuset *parent = parent_cs(cp); 2274 bool remote = is_remote_partition(cp); 2275 bool update_parent = false; 2276 2277 /* 2278 * Skip descendent remote partition that acquires CPUs 2279 * directly from top cpuset unless it is cs. 2280 */ 2281 if (remote && (cp != cs)) { 2282 pos_css = css_rightmost_descendant(pos_css); 2283 continue; 2284 } 2285 2286 /* 2287 * Update effective_xcpus if exclusive_cpus set. 2288 * The case when exclusive_cpus isn't set is handled later. 2289 */ 2290 if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) { 2291 spin_lock_irq(&callback_lock); 2292 compute_effective_exclusive_cpumask(cp, NULL); 2293 spin_unlock_irq(&callback_lock); 2294 } 2295 2296 old_prs = new_prs = cp->partition_root_state; 2297 if (remote || (is_partition_valid(parent) && 2298 is_partition_valid(cp))) 2299 compute_partition_effective_cpumask(cp, tmp->new_cpus); 2300 else 2301 compute_effective_cpumask(tmp->new_cpus, cp, parent); 2302 2303 /* 2304 * A partition with no effective_cpus is allowed as long as 2305 * there is no task associated with it. Call 2306 * update_parent_effective_cpumask() to check it. 2307 */ 2308 if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) { 2309 update_parent = true; 2310 goto update_parent_effective; 2311 } 2312 2313 /* 2314 * If it becomes empty, inherit the effective mask of the 2315 * parent, which is guaranteed to have some CPUs unless 2316 * it is a partition root that has explicitly distributed 2317 * out all its CPUs. 2318 */ 2319 if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) { 2320 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 2321 if (!cp->use_parent_ecpus) { 2322 cp->use_parent_ecpus = true; 2323 parent->child_ecpus_count++; 2324 } 2325 } else if (cp->use_parent_ecpus) { 2326 cp->use_parent_ecpus = false; 2327 WARN_ON_ONCE(!parent->child_ecpus_count); 2328 parent->child_ecpus_count--; 2329 } 2330 2331 if (remote) 2332 goto get_css; 2333 2334 /* 2335 * Skip the whole subtree if 2336 * 1) the cpumask remains the same, 2337 * 2) has no partition root state, 2338 * 3) HIER_CHECKALL flag not set, and 2339 * 4) for v2 load balance state same as its parent. 2340 */ 2341 if (!cp->partition_root_state && !(flags & HIER_CHECKALL) && 2342 cpumask_equal(tmp->new_cpus, cp->effective_cpus) && 2343 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 2344 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { 2345 pos_css = css_rightmost_descendant(pos_css); 2346 continue; 2347 } 2348 2349 update_parent_effective: 2350 /* 2351 * update_parent_effective_cpumask() should have been called 2352 * for cs already in update_cpumask(). We should also call 2353 * update_tasks_cpumask() again for tasks in the parent 2354 * cpuset if the parent's effective_cpus changes. 2355 */ 2356 if ((cp != cs) && old_prs) { 2357 switch (parent->partition_root_state) { 2358 case PRS_ROOT: 2359 case PRS_ISOLATED: 2360 update_parent = true; 2361 break; 2362 2363 default: 2364 /* 2365 * When parent is not a partition root or is 2366 * invalid, child partition roots become 2367 * invalid too. 2368 */ 2369 if (is_partition_valid(cp)) 2370 new_prs = -cp->partition_root_state; 2371 WRITE_ONCE(cp->prs_err, 2372 is_partition_invalid(parent) 2373 ? PERR_INVPARENT : PERR_NOTPART); 2374 break; 2375 } 2376 } 2377 get_css: 2378 if (!css_tryget_online(&cp->css)) 2379 continue; 2380 rcu_read_unlock(); 2381 2382 if (update_parent) { 2383 update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp); 2384 /* 2385 * The cpuset partition_root_state may become 2386 * invalid. Capture it. 2387 */ 2388 new_prs = cp->partition_root_state; 2389 } 2390 2391 spin_lock_irq(&callback_lock); 2392 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 2393 cp->partition_root_state = new_prs; 2394 /* 2395 * Make sure effective_xcpus is properly set for a valid 2396 * partition root. 2397 */ 2398 if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus)) 2399 cpumask_and(cp->effective_xcpus, 2400 cp->cpus_allowed, parent->effective_xcpus); 2401 else if (new_prs < 0) 2402 reset_partition_data(cp); 2403 spin_unlock_irq(&callback_lock); 2404 2405 notify_partition_change(cp, old_prs); 2406 2407 WARN_ON(!is_in_v2_mode() && 2408 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 2409 2410 update_tasks_cpumask(cp, cp->effective_cpus); 2411 2412 /* 2413 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE 2414 * from parent if current cpuset isn't a valid partition root 2415 * and their load balance states differ. 2416 */ 2417 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2418 !is_partition_valid(cp) && 2419 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { 2420 if (is_sched_load_balance(parent)) 2421 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2422 else 2423 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2424 } 2425 2426 /* 2427 * On legacy hierarchy, if the effective cpumask of any non- 2428 * empty cpuset is changed, we need to rebuild sched domains. 2429 * On default hierarchy, the cpuset needs to be a partition 2430 * root as well. 2431 */ 2432 if (!cpumask_empty(cp->cpus_allowed) && 2433 is_sched_load_balance(cp) && 2434 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 2435 is_partition_valid(cp))) 2436 need_rebuild_sched_domains = true; 2437 2438 rcu_read_lock(); 2439 css_put(&cp->css); 2440 } 2441 rcu_read_unlock(); 2442 2443 if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD)) 2444 rebuild_sched_domains_locked(); 2445 } 2446 2447 /** 2448 * update_sibling_cpumasks - Update siblings cpumasks 2449 * @parent: Parent cpuset 2450 * @cs: Current cpuset 2451 * @tmp: Temp variables 2452 */ 2453 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 2454 struct tmpmasks *tmp) 2455 { 2456 struct cpuset *sibling; 2457 struct cgroup_subsys_state *pos_css; 2458 2459 lockdep_assert_held(&cpuset_mutex); 2460 2461 /* 2462 * Check all its siblings and call update_cpumasks_hier() 2463 * if their effective_cpus will need to be changed. 2464 * 2465 * With the addition of effective_xcpus which is a subset of 2466 * cpus_allowed. It is possible a change in parent's effective_cpus 2467 * due to a change in a child partition's effective_xcpus will impact 2468 * its siblings even if they do not inherit parent's effective_cpus 2469 * directly. 2470 * 2471 * The update_cpumasks_hier() function may sleep. So we have to 2472 * release the RCU read lock before calling it. HIER_NO_SD_REBUILD 2473 * flag is used to suppress rebuild of sched domains as the callers 2474 * will take care of that. 2475 */ 2476 rcu_read_lock(); 2477 cpuset_for_each_child(sibling, pos_css, parent) { 2478 if (sibling == cs) 2479 continue; 2480 if (!sibling->use_parent_ecpus && 2481 !is_partition_valid(sibling)) { 2482 compute_effective_cpumask(tmp->new_cpus, sibling, 2483 parent); 2484 if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus)) 2485 continue; 2486 } 2487 if (!css_tryget_online(&sibling->css)) 2488 continue; 2489 2490 rcu_read_unlock(); 2491 update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD); 2492 rcu_read_lock(); 2493 css_put(&sibling->css); 2494 } 2495 rcu_read_unlock(); 2496 } 2497 2498 /** 2499 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 2500 * @cs: the cpuset to consider 2501 * @trialcs: trial cpuset 2502 * @buf: buffer of cpu numbers written to this cpuset 2503 */ 2504 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2505 const char *buf) 2506 { 2507 int retval; 2508 struct tmpmasks tmp; 2509 struct cpuset *parent = parent_cs(cs); 2510 bool invalidate = false; 2511 int hier_flags = 0; 2512 int old_prs = cs->partition_root_state; 2513 2514 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 2515 if (cs == &top_cpuset) 2516 return -EACCES; 2517 2518 /* 2519 * An empty cpus_allowed is ok only if the cpuset has no tasks. 2520 * Since cpulist_parse() fails on an empty mask, we special case 2521 * that parsing. The validate_change() call ensures that cpusets 2522 * with tasks have cpus. 2523 */ 2524 if (!*buf) { 2525 cpumask_clear(trialcs->cpus_allowed); 2526 cpumask_clear(trialcs->effective_xcpus); 2527 } else { 2528 retval = cpulist_parse(buf, trialcs->cpus_allowed); 2529 if (retval < 0) 2530 return retval; 2531 2532 if (!cpumask_subset(trialcs->cpus_allowed, 2533 top_cpuset.cpus_allowed)) 2534 return -EINVAL; 2535 2536 /* 2537 * When exclusive_cpus isn't explicitly set, it is constrainted 2538 * by cpus_allowed and parent's effective_xcpus. Otherwise, 2539 * trialcs->effective_xcpus is used as a temporary cpumask 2540 * for checking validity of the partition root. 2541 */ 2542 if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs)) 2543 compute_effective_exclusive_cpumask(trialcs, NULL); 2544 } 2545 2546 /* Nothing to do if the cpus didn't change */ 2547 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 2548 return 0; 2549 2550 if (alloc_cpumasks(NULL, &tmp)) 2551 return -ENOMEM; 2552 2553 if (old_prs) { 2554 if (is_partition_valid(cs) && 2555 cpumask_empty(trialcs->effective_xcpus)) { 2556 invalidate = true; 2557 cs->prs_err = PERR_INVCPUS; 2558 } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) { 2559 invalidate = true; 2560 cs->prs_err = PERR_HKEEPING; 2561 } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) { 2562 invalidate = true; 2563 cs->prs_err = PERR_NOCPUS; 2564 } 2565 } 2566 2567 /* 2568 * Check all the descendants in update_cpumasks_hier() if 2569 * effective_xcpus is to be changed. 2570 */ 2571 if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus)) 2572 hier_flags = HIER_CHECKALL; 2573 2574 retval = validate_change(cs, trialcs); 2575 2576 if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { 2577 struct cgroup_subsys_state *css; 2578 struct cpuset *cp; 2579 2580 /* 2581 * The -EINVAL error code indicates that partition sibling 2582 * CPU exclusivity rule has been violated. We still allow 2583 * the cpumask change to proceed while invalidating the 2584 * partition. However, any conflicting sibling partitions 2585 * have to be marked as invalid too. 2586 */ 2587 invalidate = true; 2588 rcu_read_lock(); 2589 cpuset_for_each_child(cp, css, parent) { 2590 struct cpumask *xcpus = fetch_xcpus(trialcs); 2591 2592 if (is_partition_valid(cp) && 2593 cpumask_intersects(xcpus, cp->effective_xcpus)) { 2594 rcu_read_unlock(); 2595 update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp); 2596 rcu_read_lock(); 2597 } 2598 } 2599 rcu_read_unlock(); 2600 retval = 0; 2601 } 2602 2603 if (retval < 0) 2604 goto out_free; 2605 2606 if (is_partition_valid(cs) || 2607 (is_partition_invalid(cs) && !invalidate)) { 2608 struct cpumask *xcpus = trialcs->effective_xcpus; 2609 2610 if (cpumask_empty(xcpus) && is_partition_invalid(cs)) 2611 xcpus = trialcs->cpus_allowed; 2612 2613 /* 2614 * Call remote_cpus_update() to handle valid remote partition 2615 */ 2616 if (is_remote_partition(cs)) 2617 remote_cpus_update(cs, xcpus, &tmp); 2618 else if (invalidate) 2619 update_parent_effective_cpumask(cs, partcmd_invalidate, 2620 NULL, &tmp); 2621 else 2622 update_parent_effective_cpumask(cs, partcmd_update, 2623 xcpus, &tmp); 2624 } else if (!cpumask_empty(cs->exclusive_cpus)) { 2625 /* 2626 * Use trialcs->effective_cpus as a temp cpumask 2627 */ 2628 remote_partition_check(cs, trialcs->effective_xcpus, 2629 trialcs->effective_cpus, &tmp); 2630 } 2631 2632 spin_lock_irq(&callback_lock); 2633 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 2634 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2635 if ((old_prs > 0) && !is_partition_valid(cs)) 2636 reset_partition_data(cs); 2637 spin_unlock_irq(&callback_lock); 2638 2639 /* effective_cpus/effective_xcpus will be updated here */ 2640 update_cpumasks_hier(cs, &tmp, hier_flags); 2641 2642 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2643 if (cs->partition_root_state) 2644 update_partition_sd_lb(cs, old_prs); 2645 out_free: 2646 free_cpumasks(NULL, &tmp); 2647 return retval; 2648 } 2649 2650 /** 2651 * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset 2652 * @cs: the cpuset to consider 2653 * @trialcs: trial cpuset 2654 * @buf: buffer of cpu numbers written to this cpuset 2655 * 2656 * The tasks' cpumask will be updated if cs is a valid partition root. 2657 */ 2658 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2659 const char *buf) 2660 { 2661 int retval; 2662 struct tmpmasks tmp; 2663 struct cpuset *parent = parent_cs(cs); 2664 bool invalidate = false; 2665 int hier_flags = 0; 2666 int old_prs = cs->partition_root_state; 2667 2668 if (!*buf) { 2669 cpumask_clear(trialcs->exclusive_cpus); 2670 cpumask_clear(trialcs->effective_xcpus); 2671 } else { 2672 retval = cpulist_parse(buf, trialcs->exclusive_cpus); 2673 if (retval < 0) 2674 return retval; 2675 } 2676 2677 /* Nothing to do if the CPUs didn't change */ 2678 if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus)) 2679 return 0; 2680 2681 if (*buf) 2682 compute_effective_exclusive_cpumask(trialcs, NULL); 2683 2684 /* 2685 * Check all the descendants in update_cpumasks_hier() if 2686 * effective_xcpus is to be changed. 2687 */ 2688 if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus)) 2689 hier_flags = HIER_CHECKALL; 2690 2691 retval = validate_change(cs, trialcs); 2692 if (retval) 2693 return retval; 2694 2695 if (alloc_cpumasks(NULL, &tmp)) 2696 return -ENOMEM; 2697 2698 if (old_prs) { 2699 if (cpumask_empty(trialcs->effective_xcpus)) { 2700 invalidate = true; 2701 cs->prs_err = PERR_INVCPUS; 2702 } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) { 2703 invalidate = true; 2704 cs->prs_err = PERR_HKEEPING; 2705 } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) { 2706 invalidate = true; 2707 cs->prs_err = PERR_NOCPUS; 2708 } 2709 2710 if (is_remote_partition(cs)) { 2711 if (invalidate) 2712 remote_partition_disable(cs, &tmp); 2713 else 2714 remote_cpus_update(cs, trialcs->effective_xcpus, 2715 &tmp); 2716 } else if (invalidate) { 2717 update_parent_effective_cpumask(cs, partcmd_invalidate, 2718 NULL, &tmp); 2719 } else { 2720 update_parent_effective_cpumask(cs, partcmd_update, 2721 trialcs->effective_xcpus, &tmp); 2722 } 2723 } else if (!cpumask_empty(trialcs->exclusive_cpus)) { 2724 /* 2725 * Use trialcs->effective_cpus as a temp cpumask 2726 */ 2727 remote_partition_check(cs, trialcs->effective_xcpus, 2728 trialcs->effective_cpus, &tmp); 2729 } 2730 spin_lock_irq(&callback_lock); 2731 cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus); 2732 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2733 if ((old_prs > 0) && !is_partition_valid(cs)) 2734 reset_partition_data(cs); 2735 spin_unlock_irq(&callback_lock); 2736 2737 /* 2738 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus 2739 * of the subtree when it is a valid partition root or effective_xcpus 2740 * is updated. 2741 */ 2742 if (is_partition_valid(cs) || hier_flags) 2743 update_cpumasks_hier(cs, &tmp, hier_flags); 2744 2745 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2746 if (cs->partition_root_state) 2747 update_partition_sd_lb(cs, old_prs); 2748 2749 free_cpumasks(NULL, &tmp); 2750 return 0; 2751 } 2752 2753 /* 2754 * Migrate memory region from one set of nodes to another. This is 2755 * performed asynchronously as it can be called from process migration path 2756 * holding locks involved in process management. All mm migrations are 2757 * performed in the queued order and can be waited for by flushing 2758 * cpuset_migrate_mm_wq. 2759 */ 2760 2761 struct cpuset_migrate_mm_work { 2762 struct work_struct work; 2763 struct mm_struct *mm; 2764 nodemask_t from; 2765 nodemask_t to; 2766 }; 2767 2768 static void cpuset_migrate_mm_workfn(struct work_struct *work) 2769 { 2770 struct cpuset_migrate_mm_work *mwork = 2771 container_of(work, struct cpuset_migrate_mm_work, work); 2772 2773 /* on a wq worker, no need to worry about %current's mems_allowed */ 2774 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 2775 mmput(mwork->mm); 2776 kfree(mwork); 2777 } 2778 2779 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 2780 const nodemask_t *to) 2781 { 2782 struct cpuset_migrate_mm_work *mwork; 2783 2784 if (nodes_equal(*from, *to)) { 2785 mmput(mm); 2786 return; 2787 } 2788 2789 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 2790 if (mwork) { 2791 mwork->mm = mm; 2792 mwork->from = *from; 2793 mwork->to = *to; 2794 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 2795 queue_work(cpuset_migrate_mm_wq, &mwork->work); 2796 } else { 2797 mmput(mm); 2798 } 2799 } 2800 2801 static void cpuset_post_attach(void) 2802 { 2803 flush_workqueue(cpuset_migrate_mm_wq); 2804 } 2805 2806 /* 2807 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 2808 * @tsk: the task to change 2809 * @newmems: new nodes that the task will be set 2810 * 2811 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 2812 * and rebind an eventual tasks' mempolicy. If the task is allocating in 2813 * parallel, it might temporarily see an empty intersection, which results in 2814 * a seqlock check and retry before OOM or allocation failure. 2815 */ 2816 static void cpuset_change_task_nodemask(struct task_struct *tsk, 2817 nodemask_t *newmems) 2818 { 2819 task_lock(tsk); 2820 2821 local_irq_disable(); 2822 write_seqcount_begin(&tsk->mems_allowed_seq); 2823 2824 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 2825 mpol_rebind_task(tsk, newmems); 2826 tsk->mems_allowed = *newmems; 2827 2828 write_seqcount_end(&tsk->mems_allowed_seq); 2829 local_irq_enable(); 2830 2831 task_unlock(tsk); 2832 } 2833 2834 static void *cpuset_being_rebound; 2835 2836 /** 2837 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 2838 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 2839 * 2840 * Iterate through each task of @cs updating its mems_allowed to the 2841 * effective cpuset's. As this function is called with cpuset_mutex held, 2842 * cpuset membership stays stable. 2843 */ 2844 static void update_tasks_nodemask(struct cpuset *cs) 2845 { 2846 static nodemask_t newmems; /* protected by cpuset_mutex */ 2847 struct css_task_iter it; 2848 struct task_struct *task; 2849 2850 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 2851 2852 guarantee_online_mems(cs, &newmems); 2853 2854 /* 2855 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 2856 * take while holding tasklist_lock. Forks can happen - the 2857 * mpol_dup() cpuset_being_rebound check will catch such forks, 2858 * and rebind their vma mempolicies too. Because we still hold 2859 * the global cpuset_mutex, we know that no other rebind effort 2860 * will be contending for the global variable cpuset_being_rebound. 2861 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 2862 * is idempotent. Also migrate pages in each mm to new nodes. 2863 */ 2864 css_task_iter_start(&cs->css, 0, &it); 2865 while ((task = css_task_iter_next(&it))) { 2866 struct mm_struct *mm; 2867 bool migrate; 2868 2869 cpuset_change_task_nodemask(task, &newmems); 2870 2871 mm = get_task_mm(task); 2872 if (!mm) 2873 continue; 2874 2875 migrate = is_memory_migrate(cs); 2876 2877 mpol_rebind_mm(mm, &cs->mems_allowed); 2878 if (migrate) 2879 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 2880 else 2881 mmput(mm); 2882 } 2883 css_task_iter_end(&it); 2884 2885 /* 2886 * All the tasks' nodemasks have been updated, update 2887 * cs->old_mems_allowed. 2888 */ 2889 cs->old_mems_allowed = newmems; 2890 2891 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 2892 cpuset_being_rebound = NULL; 2893 } 2894 2895 /* 2896 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 2897 * @cs: the cpuset to consider 2898 * @new_mems: a temp variable for calculating new effective_mems 2899 * 2900 * When configured nodemask is changed, the effective nodemasks of this cpuset 2901 * and all its descendants need to be updated. 2902 * 2903 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 2904 * 2905 * Called with cpuset_mutex held 2906 */ 2907 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 2908 { 2909 struct cpuset *cp; 2910 struct cgroup_subsys_state *pos_css; 2911 2912 rcu_read_lock(); 2913 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2914 struct cpuset *parent = parent_cs(cp); 2915 2916 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 2917 2918 /* 2919 * If it becomes empty, inherit the effective mask of the 2920 * parent, which is guaranteed to have some MEMs. 2921 */ 2922 if (is_in_v2_mode() && nodes_empty(*new_mems)) 2923 *new_mems = parent->effective_mems; 2924 2925 /* Skip the whole subtree if the nodemask remains the same. */ 2926 if (nodes_equal(*new_mems, cp->effective_mems)) { 2927 pos_css = css_rightmost_descendant(pos_css); 2928 continue; 2929 } 2930 2931 if (!css_tryget_online(&cp->css)) 2932 continue; 2933 rcu_read_unlock(); 2934 2935 spin_lock_irq(&callback_lock); 2936 cp->effective_mems = *new_mems; 2937 spin_unlock_irq(&callback_lock); 2938 2939 WARN_ON(!is_in_v2_mode() && 2940 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 2941 2942 update_tasks_nodemask(cp); 2943 2944 rcu_read_lock(); 2945 css_put(&cp->css); 2946 } 2947 rcu_read_unlock(); 2948 } 2949 2950 /* 2951 * Handle user request to change the 'mems' memory placement 2952 * of a cpuset. Needs to validate the request, update the 2953 * cpusets mems_allowed, and for each task in the cpuset, 2954 * update mems_allowed and rebind task's mempolicy and any vma 2955 * mempolicies and if the cpuset is marked 'memory_migrate', 2956 * migrate the tasks pages to the new memory. 2957 * 2958 * Call with cpuset_mutex held. May take callback_lock during call. 2959 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 2960 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 2961 * their mempolicies to the cpusets new mems_allowed. 2962 */ 2963 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 2964 const char *buf) 2965 { 2966 int retval; 2967 2968 /* 2969 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 2970 * it's read-only 2971 */ 2972 if (cs == &top_cpuset) { 2973 retval = -EACCES; 2974 goto done; 2975 } 2976 2977 /* 2978 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 2979 * Since nodelist_parse() fails on an empty mask, we special case 2980 * that parsing. The validate_change() call ensures that cpusets 2981 * with tasks have memory. 2982 */ 2983 if (!*buf) { 2984 nodes_clear(trialcs->mems_allowed); 2985 } else { 2986 retval = nodelist_parse(buf, trialcs->mems_allowed); 2987 if (retval < 0) 2988 goto done; 2989 2990 if (!nodes_subset(trialcs->mems_allowed, 2991 top_cpuset.mems_allowed)) { 2992 retval = -EINVAL; 2993 goto done; 2994 } 2995 } 2996 2997 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 2998 retval = 0; /* Too easy - nothing to do */ 2999 goto done; 3000 } 3001 retval = validate_change(cs, trialcs); 3002 if (retval < 0) 3003 goto done; 3004 3005 check_insane_mems_config(&trialcs->mems_allowed); 3006 3007 spin_lock_irq(&callback_lock); 3008 cs->mems_allowed = trialcs->mems_allowed; 3009 spin_unlock_irq(&callback_lock); 3010 3011 /* use trialcs->mems_allowed as a temp variable */ 3012 update_nodemasks_hier(cs, &trialcs->mems_allowed); 3013 done: 3014 return retval; 3015 } 3016 3017 bool current_cpuset_is_being_rebound(void) 3018 { 3019 bool ret; 3020 3021 rcu_read_lock(); 3022 ret = task_cs(current) == cpuset_being_rebound; 3023 rcu_read_unlock(); 3024 3025 return ret; 3026 } 3027 3028 static int update_relax_domain_level(struct cpuset *cs, s64 val) 3029 { 3030 #ifdef CONFIG_SMP 3031 if (val < -1 || val > sched_domain_level_max + 1) 3032 return -EINVAL; 3033 #endif 3034 3035 if (val != cs->relax_domain_level) { 3036 cs->relax_domain_level = val; 3037 if (!cpumask_empty(cs->cpus_allowed) && 3038 is_sched_load_balance(cs)) 3039 rebuild_sched_domains_locked(); 3040 } 3041 3042 return 0; 3043 } 3044 3045 /** 3046 * update_tasks_flags - update the spread flags of tasks in the cpuset. 3047 * @cs: the cpuset in which each task's spread flags needs to be changed 3048 * 3049 * Iterate through each task of @cs updating its spread flags. As this 3050 * function is called with cpuset_mutex held, cpuset membership stays 3051 * stable. 3052 */ 3053 static void update_tasks_flags(struct cpuset *cs) 3054 { 3055 struct css_task_iter it; 3056 struct task_struct *task; 3057 3058 css_task_iter_start(&cs->css, 0, &it); 3059 while ((task = css_task_iter_next(&it))) 3060 cpuset_update_task_spread_flags(cs, task); 3061 css_task_iter_end(&it); 3062 } 3063 3064 /* 3065 * update_flag - read a 0 or a 1 in a file and update associated flag 3066 * bit: the bit to update (see cpuset_flagbits_t) 3067 * cs: the cpuset to update 3068 * turning_on: whether the flag is being set or cleared 3069 * 3070 * Call with cpuset_mutex held. 3071 */ 3072 3073 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 3074 int turning_on) 3075 { 3076 struct cpuset *trialcs; 3077 int balance_flag_changed; 3078 int spread_flag_changed; 3079 int err; 3080 3081 trialcs = alloc_trial_cpuset(cs); 3082 if (!trialcs) 3083 return -ENOMEM; 3084 3085 if (turning_on) 3086 set_bit(bit, &trialcs->flags); 3087 else 3088 clear_bit(bit, &trialcs->flags); 3089 3090 err = validate_change(cs, trialcs); 3091 if (err < 0) 3092 goto out; 3093 3094 balance_flag_changed = (is_sched_load_balance(cs) != 3095 is_sched_load_balance(trialcs)); 3096 3097 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 3098 || (is_spread_page(cs) != is_spread_page(trialcs))); 3099 3100 spin_lock_irq(&callback_lock); 3101 cs->flags = trialcs->flags; 3102 spin_unlock_irq(&callback_lock); 3103 3104 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 3105 rebuild_sched_domains_locked(); 3106 3107 if (spread_flag_changed) 3108 update_tasks_flags(cs); 3109 out: 3110 free_cpuset(trialcs); 3111 return err; 3112 } 3113 3114 /** 3115 * update_prstate - update partition_root_state 3116 * @cs: the cpuset to update 3117 * @new_prs: new partition root state 3118 * Return: 0 if successful, != 0 if error 3119 * 3120 * Call with cpuset_mutex held. 3121 */ 3122 static int update_prstate(struct cpuset *cs, int new_prs) 3123 { 3124 int err = PERR_NONE, old_prs = cs->partition_root_state; 3125 struct cpuset *parent = parent_cs(cs); 3126 struct tmpmasks tmpmask; 3127 bool new_xcpus_state = false; 3128 3129 if (old_prs == new_prs) 3130 return 0; 3131 3132 /* 3133 * Treat a previously invalid partition root as if it is a "member". 3134 */ 3135 if (new_prs && is_prs_invalid(old_prs)) 3136 old_prs = PRS_MEMBER; 3137 3138 if (alloc_cpumasks(NULL, &tmpmask)) 3139 return -ENOMEM; 3140 3141 /* 3142 * Setup effective_xcpus if not properly set yet, it will be cleared 3143 * later if partition becomes invalid. 3144 */ 3145 if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) { 3146 spin_lock_irq(&callback_lock); 3147 cpumask_and(cs->effective_xcpus, 3148 cs->cpus_allowed, parent->effective_xcpus); 3149 spin_unlock_irq(&callback_lock); 3150 } 3151 3152 err = update_partition_exclusive(cs, new_prs); 3153 if (err) 3154 goto out; 3155 3156 if (!old_prs) { 3157 enum partition_cmd cmd = (new_prs == PRS_ROOT) 3158 ? partcmd_enable : partcmd_enablei; 3159 3160 /* 3161 * cpus_allowed and exclusive_cpus cannot be both empty. 3162 */ 3163 if (xcpus_empty(cs)) { 3164 err = PERR_CPUSEMPTY; 3165 goto out; 3166 } 3167 3168 err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask); 3169 /* 3170 * If an attempt to become local partition root fails, 3171 * try to become a remote partition root instead. 3172 */ 3173 if (err && remote_partition_enable(cs, new_prs, &tmpmask)) 3174 err = 0; 3175 } else if (old_prs && new_prs) { 3176 /* 3177 * A change in load balance state only, no change in cpumasks. 3178 */ 3179 new_xcpus_state = true; 3180 } else { 3181 /* 3182 * Switching back to member is always allowed even if it 3183 * disables child partitions. 3184 */ 3185 if (is_remote_partition(cs)) 3186 remote_partition_disable(cs, &tmpmask); 3187 else 3188 update_parent_effective_cpumask(cs, partcmd_disable, 3189 NULL, &tmpmask); 3190 3191 /* 3192 * Invalidation of child partitions will be done in 3193 * update_cpumasks_hier(). 3194 */ 3195 } 3196 out: 3197 /* 3198 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error 3199 * happens. 3200 */ 3201 if (err) { 3202 new_prs = -new_prs; 3203 update_partition_exclusive(cs, new_prs); 3204 } 3205 3206 spin_lock_irq(&callback_lock); 3207 cs->partition_root_state = new_prs; 3208 WRITE_ONCE(cs->prs_err, err); 3209 if (!is_partition_valid(cs)) 3210 reset_partition_data(cs); 3211 else if (new_xcpus_state) 3212 partition_xcpus_newstate(old_prs, new_prs, cs->effective_xcpus); 3213 spin_unlock_irq(&callback_lock); 3214 update_unbound_workqueue_cpumask(new_xcpus_state); 3215 3216 /* Force update if switching back to member */ 3217 update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0); 3218 3219 /* Update sched domains and load balance flag */ 3220 update_partition_sd_lb(cs, old_prs); 3221 3222 notify_partition_change(cs, old_prs); 3223 free_cpumasks(NULL, &tmpmask); 3224 return 0; 3225 } 3226 3227 /* 3228 * Frequency meter - How fast is some event occurring? 3229 * 3230 * These routines manage a digitally filtered, constant time based, 3231 * event frequency meter. There are four routines: 3232 * fmeter_init() - initialize a frequency meter. 3233 * fmeter_markevent() - called each time the event happens. 3234 * fmeter_getrate() - returns the recent rate of such events. 3235 * fmeter_update() - internal routine used to update fmeter. 3236 * 3237 * A common data structure is passed to each of these routines, 3238 * which is used to keep track of the state required to manage the 3239 * frequency meter and its digital filter. 3240 * 3241 * The filter works on the number of events marked per unit time. 3242 * The filter is single-pole low-pass recursive (IIR). The time unit 3243 * is 1 second. Arithmetic is done using 32-bit integers scaled to 3244 * simulate 3 decimal digits of precision (multiplied by 1000). 3245 * 3246 * With an FM_COEF of 933, and a time base of 1 second, the filter 3247 * has a half-life of 10 seconds, meaning that if the events quit 3248 * happening, then the rate returned from the fmeter_getrate() 3249 * will be cut in half each 10 seconds, until it converges to zero. 3250 * 3251 * It is not worth doing a real infinitely recursive filter. If more 3252 * than FM_MAXTICKS ticks have elapsed since the last filter event, 3253 * just compute FM_MAXTICKS ticks worth, by which point the level 3254 * will be stable. 3255 * 3256 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 3257 * arithmetic overflow in the fmeter_update() routine. 3258 * 3259 * Given the simple 32 bit integer arithmetic used, this meter works 3260 * best for reporting rates between one per millisecond (msec) and 3261 * one per 32 (approx) seconds. At constant rates faster than one 3262 * per msec it maxes out at values just under 1,000,000. At constant 3263 * rates between one per msec, and one per second it will stabilize 3264 * to a value N*1000, where N is the rate of events per second. 3265 * At constant rates between one per second and one per 32 seconds, 3266 * it will be choppy, moving up on the seconds that have an event, 3267 * and then decaying until the next event. At rates slower than 3268 * about one in 32 seconds, it decays all the way back to zero between 3269 * each event. 3270 */ 3271 3272 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 3273 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 3274 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 3275 #define FM_SCALE 1000 /* faux fixed point scale */ 3276 3277 /* Initialize a frequency meter */ 3278 static void fmeter_init(struct fmeter *fmp) 3279 { 3280 fmp->cnt = 0; 3281 fmp->val = 0; 3282 fmp->time = 0; 3283 spin_lock_init(&fmp->lock); 3284 } 3285 3286 /* Internal meter update - process cnt events and update value */ 3287 static void fmeter_update(struct fmeter *fmp) 3288 { 3289 time64_t now; 3290 u32 ticks; 3291 3292 now = ktime_get_seconds(); 3293 ticks = now - fmp->time; 3294 3295 if (ticks == 0) 3296 return; 3297 3298 ticks = min(FM_MAXTICKS, ticks); 3299 while (ticks-- > 0) 3300 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 3301 fmp->time = now; 3302 3303 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 3304 fmp->cnt = 0; 3305 } 3306 3307 /* Process any previous ticks, then bump cnt by one (times scale). */ 3308 static void fmeter_markevent(struct fmeter *fmp) 3309 { 3310 spin_lock(&fmp->lock); 3311 fmeter_update(fmp); 3312 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 3313 spin_unlock(&fmp->lock); 3314 } 3315 3316 /* Process any previous ticks, then return current value. */ 3317 static int fmeter_getrate(struct fmeter *fmp) 3318 { 3319 int val; 3320 3321 spin_lock(&fmp->lock); 3322 fmeter_update(fmp); 3323 val = fmp->val; 3324 spin_unlock(&fmp->lock); 3325 return val; 3326 } 3327 3328 static struct cpuset *cpuset_attach_old_cs; 3329 3330 /* 3331 * Check to see if a cpuset can accept a new task 3332 * For v1, cpus_allowed and mems_allowed can't be empty. 3333 * For v2, effective_cpus can't be empty. 3334 * Note that in v1, effective_cpus = cpus_allowed. 3335 */ 3336 static int cpuset_can_attach_check(struct cpuset *cs) 3337 { 3338 if (cpumask_empty(cs->effective_cpus) || 3339 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) 3340 return -ENOSPC; 3341 return 0; 3342 } 3343 3344 static void reset_migrate_dl_data(struct cpuset *cs) 3345 { 3346 cs->nr_migrate_dl_tasks = 0; 3347 cs->sum_migrate_dl_bw = 0; 3348 } 3349 3350 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 3351 static int cpuset_can_attach(struct cgroup_taskset *tset) 3352 { 3353 struct cgroup_subsys_state *css; 3354 struct cpuset *cs, *oldcs; 3355 struct task_struct *task; 3356 bool cpus_updated, mems_updated; 3357 int ret; 3358 3359 /* used later by cpuset_attach() */ 3360 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 3361 oldcs = cpuset_attach_old_cs; 3362 cs = css_cs(css); 3363 3364 mutex_lock(&cpuset_mutex); 3365 3366 /* Check to see if task is allowed in the cpuset */ 3367 ret = cpuset_can_attach_check(cs); 3368 if (ret) 3369 goto out_unlock; 3370 3371 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); 3372 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 3373 3374 cgroup_taskset_for_each(task, css, tset) { 3375 ret = task_can_attach(task); 3376 if (ret) 3377 goto out_unlock; 3378 3379 /* 3380 * Skip rights over task check in v2 when nothing changes, 3381 * migration permission derives from hierarchy ownership in 3382 * cgroup_procs_write_permission()). 3383 */ 3384 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 3385 (cpus_updated || mems_updated)) { 3386 ret = security_task_setscheduler(task); 3387 if (ret) 3388 goto out_unlock; 3389 } 3390 3391 if (dl_task(task)) { 3392 cs->nr_migrate_dl_tasks++; 3393 cs->sum_migrate_dl_bw += task->dl.dl_bw; 3394 } 3395 } 3396 3397 if (!cs->nr_migrate_dl_tasks) 3398 goto out_success; 3399 3400 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { 3401 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); 3402 3403 if (unlikely(cpu >= nr_cpu_ids)) { 3404 reset_migrate_dl_data(cs); 3405 ret = -EINVAL; 3406 goto out_unlock; 3407 } 3408 3409 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); 3410 if (ret) { 3411 reset_migrate_dl_data(cs); 3412 goto out_unlock; 3413 } 3414 } 3415 3416 out_success: 3417 /* 3418 * Mark attach is in progress. This makes validate_change() fail 3419 * changes which zero cpus/mems_allowed. 3420 */ 3421 cs->attach_in_progress++; 3422 out_unlock: 3423 mutex_unlock(&cpuset_mutex); 3424 return ret; 3425 } 3426 3427 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 3428 { 3429 struct cgroup_subsys_state *css; 3430 struct cpuset *cs; 3431 3432 cgroup_taskset_first(tset, &css); 3433 cs = css_cs(css); 3434 3435 mutex_lock(&cpuset_mutex); 3436 cs->attach_in_progress--; 3437 if (!cs->attach_in_progress) 3438 wake_up(&cpuset_attach_wq); 3439 3440 if (cs->nr_migrate_dl_tasks) { 3441 int cpu = cpumask_any(cs->effective_cpus); 3442 3443 dl_bw_free(cpu, cs->sum_migrate_dl_bw); 3444 reset_migrate_dl_data(cs); 3445 } 3446 3447 mutex_unlock(&cpuset_mutex); 3448 } 3449 3450 /* 3451 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() 3452 * but we can't allocate it dynamically there. Define it global and 3453 * allocate from cpuset_init(). 3454 */ 3455 static cpumask_var_t cpus_attach; 3456 static nodemask_t cpuset_attach_nodemask_to; 3457 3458 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) 3459 { 3460 lockdep_assert_held(&cpuset_mutex); 3461 3462 if (cs != &top_cpuset) 3463 guarantee_online_cpus(task, cpus_attach); 3464 else 3465 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), 3466 subpartitions_cpus); 3467 /* 3468 * can_attach beforehand should guarantee that this doesn't 3469 * fail. TODO: have a better way to handle failure here 3470 */ 3471 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 3472 3473 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 3474 cpuset_update_task_spread_flags(cs, task); 3475 } 3476 3477 static void cpuset_attach(struct cgroup_taskset *tset) 3478 { 3479 struct task_struct *task; 3480 struct task_struct *leader; 3481 struct cgroup_subsys_state *css; 3482 struct cpuset *cs; 3483 struct cpuset *oldcs = cpuset_attach_old_cs; 3484 bool cpus_updated, mems_updated; 3485 3486 cgroup_taskset_first(tset, &css); 3487 cs = css_cs(css); 3488 3489 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ 3490 mutex_lock(&cpuset_mutex); 3491 cpus_updated = !cpumask_equal(cs->effective_cpus, 3492 oldcs->effective_cpus); 3493 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 3494 3495 /* 3496 * In the default hierarchy, enabling cpuset in the child cgroups 3497 * will trigger a number of cpuset_attach() calls with no change 3498 * in effective cpus and mems. In that case, we can optimize out 3499 * by skipping the task iteration and update. 3500 */ 3501 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 3502 !cpus_updated && !mems_updated) { 3503 cpuset_attach_nodemask_to = cs->effective_mems; 3504 goto out; 3505 } 3506 3507 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3508 3509 cgroup_taskset_for_each(task, css, tset) 3510 cpuset_attach_task(cs, task); 3511 3512 /* 3513 * Change mm for all threadgroup leaders. This is expensive and may 3514 * sleep and should be moved outside migration path proper. Skip it 3515 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is 3516 * not set. 3517 */ 3518 cpuset_attach_nodemask_to = cs->effective_mems; 3519 if (!is_memory_migrate(cs) && !mems_updated) 3520 goto out; 3521 3522 cgroup_taskset_for_each_leader(leader, css, tset) { 3523 struct mm_struct *mm = get_task_mm(leader); 3524 3525 if (mm) { 3526 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 3527 3528 /* 3529 * old_mems_allowed is the same with mems_allowed 3530 * here, except if this task is being moved 3531 * automatically due to hotplug. In that case 3532 * @mems_allowed has been updated and is empty, so 3533 * @old_mems_allowed is the right nodesets that we 3534 * migrate mm from. 3535 */ 3536 if (is_memory_migrate(cs)) 3537 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 3538 &cpuset_attach_nodemask_to); 3539 else 3540 mmput(mm); 3541 } 3542 } 3543 3544 out: 3545 cs->old_mems_allowed = cpuset_attach_nodemask_to; 3546 3547 if (cs->nr_migrate_dl_tasks) { 3548 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; 3549 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; 3550 reset_migrate_dl_data(cs); 3551 } 3552 3553 cs->attach_in_progress--; 3554 if (!cs->attach_in_progress) 3555 wake_up(&cpuset_attach_wq); 3556 3557 mutex_unlock(&cpuset_mutex); 3558 } 3559 3560 /* The various types of files and directories in a cpuset file system */ 3561 3562 typedef enum { 3563 FILE_MEMORY_MIGRATE, 3564 FILE_CPULIST, 3565 FILE_MEMLIST, 3566 FILE_EFFECTIVE_CPULIST, 3567 FILE_EFFECTIVE_MEMLIST, 3568 FILE_SUBPARTS_CPULIST, 3569 FILE_EXCLUSIVE_CPULIST, 3570 FILE_EFFECTIVE_XCPULIST, 3571 FILE_ISOLATED_CPULIST, 3572 FILE_CPU_EXCLUSIVE, 3573 FILE_MEM_EXCLUSIVE, 3574 FILE_MEM_HARDWALL, 3575 FILE_SCHED_LOAD_BALANCE, 3576 FILE_PARTITION_ROOT, 3577 FILE_SCHED_RELAX_DOMAIN_LEVEL, 3578 FILE_MEMORY_PRESSURE_ENABLED, 3579 FILE_MEMORY_PRESSURE, 3580 FILE_SPREAD_PAGE, 3581 FILE_SPREAD_SLAB, 3582 } cpuset_filetype_t; 3583 3584 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 3585 u64 val) 3586 { 3587 struct cpuset *cs = css_cs(css); 3588 cpuset_filetype_t type = cft->private; 3589 int retval = 0; 3590 3591 cpus_read_lock(); 3592 mutex_lock(&cpuset_mutex); 3593 if (!is_cpuset_online(cs)) { 3594 retval = -ENODEV; 3595 goto out_unlock; 3596 } 3597 3598 switch (type) { 3599 case FILE_CPU_EXCLUSIVE: 3600 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 3601 break; 3602 case FILE_MEM_EXCLUSIVE: 3603 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 3604 break; 3605 case FILE_MEM_HARDWALL: 3606 retval = update_flag(CS_MEM_HARDWALL, cs, val); 3607 break; 3608 case FILE_SCHED_LOAD_BALANCE: 3609 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 3610 break; 3611 case FILE_MEMORY_MIGRATE: 3612 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 3613 break; 3614 case FILE_MEMORY_PRESSURE_ENABLED: 3615 cpuset_memory_pressure_enabled = !!val; 3616 break; 3617 case FILE_SPREAD_PAGE: 3618 retval = update_flag(CS_SPREAD_PAGE, cs, val); 3619 break; 3620 case FILE_SPREAD_SLAB: 3621 retval = update_flag(CS_SPREAD_SLAB, cs, val); 3622 break; 3623 default: 3624 retval = -EINVAL; 3625 break; 3626 } 3627 out_unlock: 3628 mutex_unlock(&cpuset_mutex); 3629 cpus_read_unlock(); 3630 return retval; 3631 } 3632 3633 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 3634 s64 val) 3635 { 3636 struct cpuset *cs = css_cs(css); 3637 cpuset_filetype_t type = cft->private; 3638 int retval = -ENODEV; 3639 3640 cpus_read_lock(); 3641 mutex_lock(&cpuset_mutex); 3642 if (!is_cpuset_online(cs)) 3643 goto out_unlock; 3644 3645 switch (type) { 3646 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 3647 retval = update_relax_domain_level(cs, val); 3648 break; 3649 default: 3650 retval = -EINVAL; 3651 break; 3652 } 3653 out_unlock: 3654 mutex_unlock(&cpuset_mutex); 3655 cpus_read_unlock(); 3656 return retval; 3657 } 3658 3659 /* 3660 * Common handling for a write to a "cpus" or "mems" file. 3661 */ 3662 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 3663 char *buf, size_t nbytes, loff_t off) 3664 { 3665 struct cpuset *cs = css_cs(of_css(of)); 3666 struct cpuset *trialcs; 3667 int retval = -ENODEV; 3668 3669 buf = strstrip(buf); 3670 3671 /* 3672 * CPU or memory hotunplug may leave @cs w/o any execution 3673 * resources, in which case the hotplug code asynchronously updates 3674 * configuration and transfers all tasks to the nearest ancestor 3675 * which can execute. 3676 * 3677 * As writes to "cpus" or "mems" may restore @cs's execution 3678 * resources, wait for the previously scheduled operations before 3679 * proceeding, so that we don't end up keep removing tasks added 3680 * after execution capability is restored. 3681 * 3682 * cpuset_handle_hotplug may call back into cgroup core asynchronously 3683 * via cgroup_transfer_tasks() and waiting for it from a cgroupfs 3684 * operation like this one can lead to a deadlock through kernfs 3685 * active_ref protection. Let's break the protection. Losing the 3686 * protection is okay as we check whether @cs is online after 3687 * grabbing cpuset_mutex anyway. This only happens on the legacy 3688 * hierarchies. 3689 */ 3690 css_get(&cs->css); 3691 kernfs_break_active_protection(of->kn); 3692 3693 cpus_read_lock(); 3694 mutex_lock(&cpuset_mutex); 3695 if (!is_cpuset_online(cs)) 3696 goto out_unlock; 3697 3698 trialcs = alloc_trial_cpuset(cs); 3699 if (!trialcs) { 3700 retval = -ENOMEM; 3701 goto out_unlock; 3702 } 3703 3704 switch (of_cft(of)->private) { 3705 case FILE_CPULIST: 3706 retval = update_cpumask(cs, trialcs, buf); 3707 break; 3708 case FILE_EXCLUSIVE_CPULIST: 3709 retval = update_exclusive_cpumask(cs, trialcs, buf); 3710 break; 3711 case FILE_MEMLIST: 3712 retval = update_nodemask(cs, trialcs, buf); 3713 break; 3714 default: 3715 retval = -EINVAL; 3716 break; 3717 } 3718 3719 free_cpuset(trialcs); 3720 out_unlock: 3721 mutex_unlock(&cpuset_mutex); 3722 cpus_read_unlock(); 3723 kernfs_unbreak_active_protection(of->kn); 3724 css_put(&cs->css); 3725 flush_workqueue(cpuset_migrate_mm_wq); 3726 return retval ?: nbytes; 3727 } 3728 3729 /* 3730 * These ascii lists should be read in a single call, by using a user 3731 * buffer large enough to hold the entire map. If read in smaller 3732 * chunks, there is no guarantee of atomicity. Since the display format 3733 * used, list of ranges of sequential numbers, is variable length, 3734 * and since these maps can change value dynamically, one could read 3735 * gibberish by doing partial reads while a list was changing. 3736 */ 3737 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 3738 { 3739 struct cpuset *cs = css_cs(seq_css(sf)); 3740 cpuset_filetype_t type = seq_cft(sf)->private; 3741 int ret = 0; 3742 3743 spin_lock_irq(&callback_lock); 3744 3745 switch (type) { 3746 case FILE_CPULIST: 3747 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 3748 break; 3749 case FILE_MEMLIST: 3750 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 3751 break; 3752 case FILE_EFFECTIVE_CPULIST: 3753 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 3754 break; 3755 case FILE_EFFECTIVE_MEMLIST: 3756 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 3757 break; 3758 case FILE_EXCLUSIVE_CPULIST: 3759 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus)); 3760 break; 3761 case FILE_EFFECTIVE_XCPULIST: 3762 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus)); 3763 break; 3764 case FILE_SUBPARTS_CPULIST: 3765 seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus)); 3766 break; 3767 case FILE_ISOLATED_CPULIST: 3768 seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus)); 3769 break; 3770 default: 3771 ret = -EINVAL; 3772 } 3773 3774 spin_unlock_irq(&callback_lock); 3775 return ret; 3776 } 3777 3778 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 3779 { 3780 struct cpuset *cs = css_cs(css); 3781 cpuset_filetype_t type = cft->private; 3782 switch (type) { 3783 case FILE_CPU_EXCLUSIVE: 3784 return is_cpu_exclusive(cs); 3785 case FILE_MEM_EXCLUSIVE: 3786 return is_mem_exclusive(cs); 3787 case FILE_MEM_HARDWALL: 3788 return is_mem_hardwall(cs); 3789 case FILE_SCHED_LOAD_BALANCE: 3790 return is_sched_load_balance(cs); 3791 case FILE_MEMORY_MIGRATE: 3792 return is_memory_migrate(cs); 3793 case FILE_MEMORY_PRESSURE_ENABLED: 3794 return cpuset_memory_pressure_enabled; 3795 case FILE_MEMORY_PRESSURE: 3796 return fmeter_getrate(&cs->fmeter); 3797 case FILE_SPREAD_PAGE: 3798 return is_spread_page(cs); 3799 case FILE_SPREAD_SLAB: 3800 return is_spread_slab(cs); 3801 default: 3802 BUG(); 3803 } 3804 3805 /* Unreachable but makes gcc happy */ 3806 return 0; 3807 } 3808 3809 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 3810 { 3811 struct cpuset *cs = css_cs(css); 3812 cpuset_filetype_t type = cft->private; 3813 switch (type) { 3814 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 3815 return cs->relax_domain_level; 3816 default: 3817 BUG(); 3818 } 3819 3820 /* Unreachable but makes gcc happy */ 3821 return 0; 3822 } 3823 3824 static int sched_partition_show(struct seq_file *seq, void *v) 3825 { 3826 struct cpuset *cs = css_cs(seq_css(seq)); 3827 const char *err, *type = NULL; 3828 3829 switch (cs->partition_root_state) { 3830 case PRS_ROOT: 3831 seq_puts(seq, "root\n"); 3832 break; 3833 case PRS_ISOLATED: 3834 seq_puts(seq, "isolated\n"); 3835 break; 3836 case PRS_MEMBER: 3837 seq_puts(seq, "member\n"); 3838 break; 3839 case PRS_INVALID_ROOT: 3840 type = "root"; 3841 fallthrough; 3842 case PRS_INVALID_ISOLATED: 3843 if (!type) 3844 type = "isolated"; 3845 err = perr_strings[READ_ONCE(cs->prs_err)]; 3846 if (err) 3847 seq_printf(seq, "%s invalid (%s)\n", type, err); 3848 else 3849 seq_printf(seq, "%s invalid\n", type); 3850 break; 3851 } 3852 return 0; 3853 } 3854 3855 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 3856 size_t nbytes, loff_t off) 3857 { 3858 struct cpuset *cs = css_cs(of_css(of)); 3859 int val; 3860 int retval = -ENODEV; 3861 3862 buf = strstrip(buf); 3863 3864 if (!strcmp(buf, "root")) 3865 val = PRS_ROOT; 3866 else if (!strcmp(buf, "member")) 3867 val = PRS_MEMBER; 3868 else if (!strcmp(buf, "isolated")) 3869 val = PRS_ISOLATED; 3870 else 3871 return -EINVAL; 3872 3873 css_get(&cs->css); 3874 cpus_read_lock(); 3875 mutex_lock(&cpuset_mutex); 3876 if (!is_cpuset_online(cs)) 3877 goto out_unlock; 3878 3879 retval = update_prstate(cs, val); 3880 out_unlock: 3881 mutex_unlock(&cpuset_mutex); 3882 cpus_read_unlock(); 3883 css_put(&cs->css); 3884 return retval ?: nbytes; 3885 } 3886 3887 /* 3888 * for the common functions, 'private' gives the type of file 3889 */ 3890 3891 static struct cftype legacy_files[] = { 3892 { 3893 .name = "cpus", 3894 .seq_show = cpuset_common_seq_show, 3895 .write = cpuset_write_resmask, 3896 .max_write_len = (100U + 6 * NR_CPUS), 3897 .private = FILE_CPULIST, 3898 }, 3899 3900 { 3901 .name = "mems", 3902 .seq_show = cpuset_common_seq_show, 3903 .write = cpuset_write_resmask, 3904 .max_write_len = (100U + 6 * MAX_NUMNODES), 3905 .private = FILE_MEMLIST, 3906 }, 3907 3908 { 3909 .name = "effective_cpus", 3910 .seq_show = cpuset_common_seq_show, 3911 .private = FILE_EFFECTIVE_CPULIST, 3912 }, 3913 3914 { 3915 .name = "effective_mems", 3916 .seq_show = cpuset_common_seq_show, 3917 .private = FILE_EFFECTIVE_MEMLIST, 3918 }, 3919 3920 { 3921 .name = "cpu_exclusive", 3922 .read_u64 = cpuset_read_u64, 3923 .write_u64 = cpuset_write_u64, 3924 .private = FILE_CPU_EXCLUSIVE, 3925 }, 3926 3927 { 3928 .name = "mem_exclusive", 3929 .read_u64 = cpuset_read_u64, 3930 .write_u64 = cpuset_write_u64, 3931 .private = FILE_MEM_EXCLUSIVE, 3932 }, 3933 3934 { 3935 .name = "mem_hardwall", 3936 .read_u64 = cpuset_read_u64, 3937 .write_u64 = cpuset_write_u64, 3938 .private = FILE_MEM_HARDWALL, 3939 }, 3940 3941 { 3942 .name = "sched_load_balance", 3943 .read_u64 = cpuset_read_u64, 3944 .write_u64 = cpuset_write_u64, 3945 .private = FILE_SCHED_LOAD_BALANCE, 3946 }, 3947 3948 { 3949 .name = "sched_relax_domain_level", 3950 .read_s64 = cpuset_read_s64, 3951 .write_s64 = cpuset_write_s64, 3952 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 3953 }, 3954 3955 { 3956 .name = "memory_migrate", 3957 .read_u64 = cpuset_read_u64, 3958 .write_u64 = cpuset_write_u64, 3959 .private = FILE_MEMORY_MIGRATE, 3960 }, 3961 3962 { 3963 .name = "memory_pressure", 3964 .read_u64 = cpuset_read_u64, 3965 .private = FILE_MEMORY_PRESSURE, 3966 }, 3967 3968 { 3969 .name = "memory_spread_page", 3970 .read_u64 = cpuset_read_u64, 3971 .write_u64 = cpuset_write_u64, 3972 .private = FILE_SPREAD_PAGE, 3973 }, 3974 3975 { 3976 /* obsolete, may be removed in the future */ 3977 .name = "memory_spread_slab", 3978 .read_u64 = cpuset_read_u64, 3979 .write_u64 = cpuset_write_u64, 3980 .private = FILE_SPREAD_SLAB, 3981 }, 3982 3983 { 3984 .name = "memory_pressure_enabled", 3985 .flags = CFTYPE_ONLY_ON_ROOT, 3986 .read_u64 = cpuset_read_u64, 3987 .write_u64 = cpuset_write_u64, 3988 .private = FILE_MEMORY_PRESSURE_ENABLED, 3989 }, 3990 3991 { } /* terminate */ 3992 }; 3993 3994 /* 3995 * This is currently a minimal set for the default hierarchy. It can be 3996 * expanded later on by migrating more features and control files from v1. 3997 */ 3998 static struct cftype dfl_files[] = { 3999 { 4000 .name = "cpus", 4001 .seq_show = cpuset_common_seq_show, 4002 .write = cpuset_write_resmask, 4003 .max_write_len = (100U + 6 * NR_CPUS), 4004 .private = FILE_CPULIST, 4005 .flags = CFTYPE_NOT_ON_ROOT, 4006 }, 4007 4008 { 4009 .name = "mems", 4010 .seq_show = cpuset_common_seq_show, 4011 .write = cpuset_write_resmask, 4012 .max_write_len = (100U + 6 * MAX_NUMNODES), 4013 .private = FILE_MEMLIST, 4014 .flags = CFTYPE_NOT_ON_ROOT, 4015 }, 4016 4017 { 4018 .name = "cpus.effective", 4019 .seq_show = cpuset_common_seq_show, 4020 .private = FILE_EFFECTIVE_CPULIST, 4021 }, 4022 4023 { 4024 .name = "mems.effective", 4025 .seq_show = cpuset_common_seq_show, 4026 .private = FILE_EFFECTIVE_MEMLIST, 4027 }, 4028 4029 { 4030 .name = "cpus.partition", 4031 .seq_show = sched_partition_show, 4032 .write = sched_partition_write, 4033 .private = FILE_PARTITION_ROOT, 4034 .flags = CFTYPE_NOT_ON_ROOT, 4035 .file_offset = offsetof(struct cpuset, partition_file), 4036 }, 4037 4038 { 4039 .name = "cpus.exclusive", 4040 .seq_show = cpuset_common_seq_show, 4041 .write = cpuset_write_resmask, 4042 .max_write_len = (100U + 6 * NR_CPUS), 4043 .private = FILE_EXCLUSIVE_CPULIST, 4044 .flags = CFTYPE_NOT_ON_ROOT, 4045 }, 4046 4047 { 4048 .name = "cpus.exclusive.effective", 4049 .seq_show = cpuset_common_seq_show, 4050 .private = FILE_EFFECTIVE_XCPULIST, 4051 .flags = CFTYPE_NOT_ON_ROOT, 4052 }, 4053 4054 { 4055 .name = "cpus.subpartitions", 4056 .seq_show = cpuset_common_seq_show, 4057 .private = FILE_SUBPARTS_CPULIST, 4058 .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG, 4059 }, 4060 4061 { 4062 .name = "cpus.isolated", 4063 .seq_show = cpuset_common_seq_show, 4064 .private = FILE_ISOLATED_CPULIST, 4065 .flags = CFTYPE_ONLY_ON_ROOT, 4066 }, 4067 4068 { } /* terminate */ 4069 }; 4070 4071 4072 /** 4073 * cpuset_css_alloc - Allocate a cpuset css 4074 * @parent_css: Parent css of the control group that the new cpuset will be 4075 * part of 4076 * Return: cpuset css on success, -ENOMEM on failure. 4077 * 4078 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return 4079 * top cpuset css otherwise. 4080 */ 4081 static struct cgroup_subsys_state * 4082 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 4083 { 4084 struct cpuset *cs; 4085 4086 if (!parent_css) 4087 return &top_cpuset.css; 4088 4089 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 4090 if (!cs) 4091 return ERR_PTR(-ENOMEM); 4092 4093 if (alloc_cpumasks(cs, NULL)) { 4094 kfree(cs); 4095 return ERR_PTR(-ENOMEM); 4096 } 4097 4098 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 4099 fmeter_init(&cs->fmeter); 4100 cs->relax_domain_level = -1; 4101 INIT_LIST_HEAD(&cs->remote_sibling); 4102 4103 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 4104 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 4105 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 4106 4107 return &cs->css; 4108 } 4109 4110 static int cpuset_css_online(struct cgroup_subsys_state *css) 4111 { 4112 struct cpuset *cs = css_cs(css); 4113 struct cpuset *parent = parent_cs(cs); 4114 struct cpuset *tmp_cs; 4115 struct cgroup_subsys_state *pos_css; 4116 4117 if (!parent) 4118 return 0; 4119 4120 cpus_read_lock(); 4121 mutex_lock(&cpuset_mutex); 4122 4123 set_bit(CS_ONLINE, &cs->flags); 4124 if (is_spread_page(parent)) 4125 set_bit(CS_SPREAD_PAGE, &cs->flags); 4126 if (is_spread_slab(parent)) 4127 set_bit(CS_SPREAD_SLAB, &cs->flags); 4128 /* 4129 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated 4130 */ 4131 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 4132 !is_sched_load_balance(parent)) 4133 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 4134 4135 cpuset_inc(); 4136 4137 spin_lock_irq(&callback_lock); 4138 if (is_in_v2_mode()) { 4139 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 4140 cs->effective_mems = parent->effective_mems; 4141 cs->use_parent_ecpus = true; 4142 parent->child_ecpus_count++; 4143 } 4144 spin_unlock_irq(&callback_lock); 4145 4146 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 4147 goto out_unlock; 4148 4149 /* 4150 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 4151 * set. This flag handling is implemented in cgroup core for 4152 * historical reasons - the flag may be specified during mount. 4153 * 4154 * Currently, if any sibling cpusets have exclusive cpus or mem, we 4155 * refuse to clone the configuration - thereby refusing the task to 4156 * be entered, and as a result refusing the sys_unshare() or 4157 * clone() which initiated it. If this becomes a problem for some 4158 * users who wish to allow that scenario, then this could be 4159 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 4160 * (and likewise for mems) to the new cgroup. 4161 */ 4162 rcu_read_lock(); 4163 cpuset_for_each_child(tmp_cs, pos_css, parent) { 4164 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 4165 rcu_read_unlock(); 4166 goto out_unlock; 4167 } 4168 } 4169 rcu_read_unlock(); 4170 4171 spin_lock_irq(&callback_lock); 4172 cs->mems_allowed = parent->mems_allowed; 4173 cs->effective_mems = parent->mems_allowed; 4174 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 4175 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 4176 spin_unlock_irq(&callback_lock); 4177 out_unlock: 4178 mutex_unlock(&cpuset_mutex); 4179 cpus_read_unlock(); 4180 return 0; 4181 } 4182 4183 /* 4184 * If the cpuset being removed has its flag 'sched_load_balance' 4185 * enabled, then simulate turning sched_load_balance off, which 4186 * will call rebuild_sched_domains_locked(). That is not needed 4187 * in the default hierarchy where only changes in partition 4188 * will cause repartitioning. 4189 * 4190 * If the cpuset has the 'sched.partition' flag enabled, simulate 4191 * turning 'sched.partition" off. 4192 */ 4193 4194 static void cpuset_css_offline(struct cgroup_subsys_state *css) 4195 { 4196 struct cpuset *cs = css_cs(css); 4197 4198 cpus_read_lock(); 4199 mutex_lock(&cpuset_mutex); 4200 4201 if (is_partition_valid(cs)) 4202 update_prstate(cs, 0); 4203 4204 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 4205 is_sched_load_balance(cs)) 4206 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 4207 4208 if (cs->use_parent_ecpus) { 4209 struct cpuset *parent = parent_cs(cs); 4210 4211 cs->use_parent_ecpus = false; 4212 parent->child_ecpus_count--; 4213 } 4214 4215 cpuset_dec(); 4216 clear_bit(CS_ONLINE, &cs->flags); 4217 4218 mutex_unlock(&cpuset_mutex); 4219 cpus_read_unlock(); 4220 } 4221 4222 static void cpuset_css_free(struct cgroup_subsys_state *css) 4223 { 4224 struct cpuset *cs = css_cs(css); 4225 4226 free_cpuset(cs); 4227 } 4228 4229 static void cpuset_bind(struct cgroup_subsys_state *root_css) 4230 { 4231 mutex_lock(&cpuset_mutex); 4232 spin_lock_irq(&callback_lock); 4233 4234 if (is_in_v2_mode()) { 4235 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 4236 cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask); 4237 top_cpuset.mems_allowed = node_possible_map; 4238 } else { 4239 cpumask_copy(top_cpuset.cpus_allowed, 4240 top_cpuset.effective_cpus); 4241 top_cpuset.mems_allowed = top_cpuset.effective_mems; 4242 } 4243 4244 spin_unlock_irq(&callback_lock); 4245 mutex_unlock(&cpuset_mutex); 4246 } 4247 4248 /* 4249 * In case the child is cloned into a cpuset different from its parent, 4250 * additional checks are done to see if the move is allowed. 4251 */ 4252 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) 4253 { 4254 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 4255 bool same_cs; 4256 int ret; 4257 4258 rcu_read_lock(); 4259 same_cs = (cs == task_cs(current)); 4260 rcu_read_unlock(); 4261 4262 if (same_cs) 4263 return 0; 4264 4265 lockdep_assert_held(&cgroup_mutex); 4266 mutex_lock(&cpuset_mutex); 4267 4268 /* Check to see if task is allowed in the cpuset */ 4269 ret = cpuset_can_attach_check(cs); 4270 if (ret) 4271 goto out_unlock; 4272 4273 ret = task_can_attach(task); 4274 if (ret) 4275 goto out_unlock; 4276 4277 ret = security_task_setscheduler(task); 4278 if (ret) 4279 goto out_unlock; 4280 4281 /* 4282 * Mark attach is in progress. This makes validate_change() fail 4283 * changes which zero cpus/mems_allowed. 4284 */ 4285 cs->attach_in_progress++; 4286 out_unlock: 4287 mutex_unlock(&cpuset_mutex); 4288 return ret; 4289 } 4290 4291 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) 4292 { 4293 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 4294 bool same_cs; 4295 4296 rcu_read_lock(); 4297 same_cs = (cs == task_cs(current)); 4298 rcu_read_unlock(); 4299 4300 if (same_cs) 4301 return; 4302 4303 mutex_lock(&cpuset_mutex); 4304 cs->attach_in_progress--; 4305 if (!cs->attach_in_progress) 4306 wake_up(&cpuset_attach_wq); 4307 mutex_unlock(&cpuset_mutex); 4308 } 4309 4310 /* 4311 * Make sure the new task conform to the current state of its parent, 4312 * which could have been changed by cpuset just after it inherits the 4313 * state from the parent and before it sits on the cgroup's task list. 4314 */ 4315 static void cpuset_fork(struct task_struct *task) 4316 { 4317 struct cpuset *cs; 4318 bool same_cs; 4319 4320 rcu_read_lock(); 4321 cs = task_cs(task); 4322 same_cs = (cs == task_cs(current)); 4323 rcu_read_unlock(); 4324 4325 if (same_cs) { 4326 if (cs == &top_cpuset) 4327 return; 4328 4329 set_cpus_allowed_ptr(task, current->cpus_ptr); 4330 task->mems_allowed = current->mems_allowed; 4331 return; 4332 } 4333 4334 /* CLONE_INTO_CGROUP */ 4335 mutex_lock(&cpuset_mutex); 4336 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 4337 cpuset_attach_task(cs, task); 4338 4339 cs->attach_in_progress--; 4340 if (!cs->attach_in_progress) 4341 wake_up(&cpuset_attach_wq); 4342 4343 mutex_unlock(&cpuset_mutex); 4344 } 4345 4346 struct cgroup_subsys cpuset_cgrp_subsys = { 4347 .css_alloc = cpuset_css_alloc, 4348 .css_online = cpuset_css_online, 4349 .css_offline = cpuset_css_offline, 4350 .css_free = cpuset_css_free, 4351 .can_attach = cpuset_can_attach, 4352 .cancel_attach = cpuset_cancel_attach, 4353 .attach = cpuset_attach, 4354 .post_attach = cpuset_post_attach, 4355 .bind = cpuset_bind, 4356 .can_fork = cpuset_can_fork, 4357 .cancel_fork = cpuset_cancel_fork, 4358 .fork = cpuset_fork, 4359 .legacy_cftypes = legacy_files, 4360 .dfl_cftypes = dfl_files, 4361 .early_init = true, 4362 .threaded = true, 4363 }; 4364 4365 /** 4366 * cpuset_init - initialize cpusets at system boot 4367 * 4368 * Description: Initialize top_cpuset 4369 **/ 4370 4371 int __init cpuset_init(void) 4372 { 4373 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 4374 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 4375 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL)); 4376 BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL)); 4377 BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL)); 4378 BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL)); 4379 4380 cpumask_setall(top_cpuset.cpus_allowed); 4381 nodes_setall(top_cpuset.mems_allowed); 4382 cpumask_setall(top_cpuset.effective_cpus); 4383 cpumask_setall(top_cpuset.effective_xcpus); 4384 cpumask_setall(top_cpuset.exclusive_cpus); 4385 nodes_setall(top_cpuset.effective_mems); 4386 4387 fmeter_init(&top_cpuset.fmeter); 4388 INIT_LIST_HEAD(&remote_children); 4389 4390 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 4391 4392 return 0; 4393 } 4394 4395 /* 4396 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 4397 * or memory nodes, we need to walk over the cpuset hierarchy, 4398 * removing that CPU or node from all cpusets. If this removes the 4399 * last CPU or node from a cpuset, then move the tasks in the empty 4400 * cpuset to its next-highest non-empty parent. 4401 */ 4402 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 4403 { 4404 struct cpuset *parent; 4405 4406 /* 4407 * Find its next-highest non-empty parent, (top cpuset 4408 * has online cpus, so can't be empty). 4409 */ 4410 parent = parent_cs(cs); 4411 while (cpumask_empty(parent->cpus_allowed) || 4412 nodes_empty(parent->mems_allowed)) 4413 parent = parent_cs(parent); 4414 4415 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 4416 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 4417 pr_cont_cgroup_name(cs->css.cgroup); 4418 pr_cont("\n"); 4419 } 4420 } 4421 4422 static void cpuset_migrate_tasks_workfn(struct work_struct *work) 4423 { 4424 struct cpuset_remove_tasks_struct *s; 4425 4426 s = container_of(work, struct cpuset_remove_tasks_struct, work); 4427 remove_tasks_in_empty_cpuset(s->cs); 4428 css_put(&s->cs->css); 4429 kfree(s); 4430 } 4431 4432 static void 4433 hotplug_update_tasks_legacy(struct cpuset *cs, 4434 struct cpumask *new_cpus, nodemask_t *new_mems, 4435 bool cpus_updated, bool mems_updated) 4436 { 4437 bool is_empty; 4438 4439 spin_lock_irq(&callback_lock); 4440 cpumask_copy(cs->cpus_allowed, new_cpus); 4441 cpumask_copy(cs->effective_cpus, new_cpus); 4442 cs->mems_allowed = *new_mems; 4443 cs->effective_mems = *new_mems; 4444 spin_unlock_irq(&callback_lock); 4445 4446 /* 4447 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 4448 * as the tasks will be migrated to an ancestor. 4449 */ 4450 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 4451 update_tasks_cpumask(cs, new_cpus); 4452 if (mems_updated && !nodes_empty(cs->mems_allowed)) 4453 update_tasks_nodemask(cs); 4454 4455 is_empty = cpumask_empty(cs->cpus_allowed) || 4456 nodes_empty(cs->mems_allowed); 4457 4458 /* 4459 * Move tasks to the nearest ancestor with execution resources, 4460 * This is full cgroup operation which will also call back into 4461 * cpuset. Execute it asynchronously using workqueue. 4462 */ 4463 if (is_empty && cs->css.cgroup->nr_populated_csets && 4464 css_tryget_online(&cs->css)) { 4465 struct cpuset_remove_tasks_struct *s; 4466 4467 s = kzalloc(sizeof(*s), GFP_KERNEL); 4468 if (WARN_ON_ONCE(!s)) { 4469 css_put(&cs->css); 4470 return; 4471 } 4472 4473 s->cs = cs; 4474 INIT_WORK(&s->work, cpuset_migrate_tasks_workfn); 4475 schedule_work(&s->work); 4476 } 4477 } 4478 4479 static void 4480 hotplug_update_tasks(struct cpuset *cs, 4481 struct cpumask *new_cpus, nodemask_t *new_mems, 4482 bool cpus_updated, bool mems_updated) 4483 { 4484 /* A partition root is allowed to have empty effective cpus */ 4485 if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) 4486 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 4487 if (nodes_empty(*new_mems)) 4488 *new_mems = parent_cs(cs)->effective_mems; 4489 4490 spin_lock_irq(&callback_lock); 4491 cpumask_copy(cs->effective_cpus, new_cpus); 4492 cs->effective_mems = *new_mems; 4493 spin_unlock_irq(&callback_lock); 4494 4495 if (cpus_updated) 4496 update_tasks_cpumask(cs, new_cpus); 4497 if (mems_updated) 4498 update_tasks_nodemask(cs); 4499 } 4500 4501 static bool force_rebuild; 4502 4503 void cpuset_force_rebuild(void) 4504 { 4505 force_rebuild = true; 4506 } 4507 4508 /** 4509 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 4510 * @cs: cpuset in interest 4511 * @tmp: the tmpmasks structure pointer 4512 * 4513 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 4514 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 4515 * all its tasks are moved to the nearest ancestor with both resources. 4516 */ 4517 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 4518 { 4519 static cpumask_t new_cpus; 4520 static nodemask_t new_mems; 4521 bool cpus_updated; 4522 bool mems_updated; 4523 bool remote; 4524 int partcmd = -1; 4525 struct cpuset *parent; 4526 retry: 4527 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 4528 4529 mutex_lock(&cpuset_mutex); 4530 4531 /* 4532 * We have raced with task attaching. We wait until attaching 4533 * is finished, so we won't attach a task to an empty cpuset. 4534 */ 4535 if (cs->attach_in_progress) { 4536 mutex_unlock(&cpuset_mutex); 4537 goto retry; 4538 } 4539 4540 parent = parent_cs(cs); 4541 compute_effective_cpumask(&new_cpus, cs, parent); 4542 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 4543 4544 if (!tmp || !cs->partition_root_state) 4545 goto update_tasks; 4546 4547 /* 4548 * Compute effective_cpus for valid partition root, may invalidate 4549 * child partition roots if necessary. 4550 */ 4551 remote = is_remote_partition(cs); 4552 if (remote || (is_partition_valid(cs) && is_partition_valid(parent))) 4553 compute_partition_effective_cpumask(cs, &new_cpus); 4554 4555 if (remote && cpumask_empty(&new_cpus) && 4556 partition_is_populated(cs, NULL)) { 4557 remote_partition_disable(cs, tmp); 4558 compute_effective_cpumask(&new_cpus, cs, parent); 4559 remote = false; 4560 cpuset_force_rebuild(); 4561 } 4562 4563 /* 4564 * Force the partition to become invalid if either one of 4565 * the following conditions hold: 4566 * 1) empty effective cpus but not valid empty partition. 4567 * 2) parent is invalid or doesn't grant any cpus to child 4568 * partitions. 4569 */ 4570 if (is_local_partition(cs) && (!is_partition_valid(parent) || 4571 tasks_nocpu_error(parent, cs, &new_cpus))) 4572 partcmd = partcmd_invalidate; 4573 /* 4574 * On the other hand, an invalid partition root may be transitioned 4575 * back to a regular one. 4576 */ 4577 else if (is_partition_valid(parent) && is_partition_invalid(cs)) 4578 partcmd = partcmd_update; 4579 4580 if (partcmd >= 0) { 4581 update_parent_effective_cpumask(cs, partcmd, NULL, tmp); 4582 if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) { 4583 compute_partition_effective_cpumask(cs, &new_cpus); 4584 cpuset_force_rebuild(); 4585 } 4586 } 4587 4588 update_tasks: 4589 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 4590 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 4591 if (!cpus_updated && !mems_updated) 4592 goto unlock; /* Hotplug doesn't affect this cpuset */ 4593 4594 if (mems_updated) 4595 check_insane_mems_config(&new_mems); 4596 4597 if (is_in_v2_mode()) 4598 hotplug_update_tasks(cs, &new_cpus, &new_mems, 4599 cpus_updated, mems_updated); 4600 else 4601 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 4602 cpus_updated, mems_updated); 4603 4604 unlock: 4605 mutex_unlock(&cpuset_mutex); 4606 } 4607 4608 /** 4609 * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset 4610 * 4611 * This function is called after either CPU or memory configuration has 4612 * changed and updates cpuset accordingly. The top_cpuset is always 4613 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 4614 * order to make cpusets transparent (of no affect) on systems that are 4615 * actively using CPU hotplug but making no active use of cpusets. 4616 * 4617 * Non-root cpusets are only affected by offlining. If any CPUs or memory 4618 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 4619 * all descendants. 4620 * 4621 * Note that CPU offlining during suspend is ignored. We don't modify 4622 * cpusets across suspend/resume cycles at all. 4623 * 4624 * CPU / memory hotplug is handled synchronously. 4625 */ 4626 static void cpuset_handle_hotplug(void) 4627 { 4628 static cpumask_t new_cpus; 4629 static nodemask_t new_mems; 4630 bool cpus_updated, mems_updated; 4631 bool on_dfl = is_in_v2_mode(); 4632 struct tmpmasks tmp, *ptmp = NULL; 4633 4634 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 4635 ptmp = &tmp; 4636 4637 lockdep_assert_cpus_held(); 4638 mutex_lock(&cpuset_mutex); 4639 4640 /* fetch the available cpus/mems and find out which changed how */ 4641 cpumask_copy(&new_cpus, cpu_active_mask); 4642 new_mems = node_states[N_MEMORY]; 4643 4644 /* 4645 * If subpartitions_cpus is populated, it is likely that the check 4646 * below will produce a false positive on cpus_updated when the cpu 4647 * list isn't changed. It is extra work, but it is better to be safe. 4648 */ 4649 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) || 4650 !cpumask_empty(subpartitions_cpus); 4651 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 4652 4653 /* 4654 * In the rare case that hotplug removes all the cpus in 4655 * subpartitions_cpus, we assumed that cpus are updated. 4656 */ 4657 if (!cpus_updated && !cpumask_empty(subpartitions_cpus)) 4658 cpus_updated = true; 4659 4660 /* For v1, synchronize cpus_allowed to cpu_active_mask */ 4661 if (cpus_updated) { 4662 spin_lock_irq(&callback_lock); 4663 if (!on_dfl) 4664 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 4665 /* 4666 * Make sure that CPUs allocated to child partitions 4667 * do not show up in effective_cpus. If no CPU is left, 4668 * we clear the subpartitions_cpus & let the child partitions 4669 * fight for the CPUs again. 4670 */ 4671 if (!cpumask_empty(subpartitions_cpus)) { 4672 if (cpumask_subset(&new_cpus, subpartitions_cpus)) { 4673 top_cpuset.nr_subparts = 0; 4674 cpumask_clear(subpartitions_cpus); 4675 } else { 4676 cpumask_andnot(&new_cpus, &new_cpus, 4677 subpartitions_cpus); 4678 } 4679 } 4680 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 4681 spin_unlock_irq(&callback_lock); 4682 /* we don't mess with cpumasks of tasks in top_cpuset */ 4683 } 4684 4685 /* synchronize mems_allowed to N_MEMORY */ 4686 if (mems_updated) { 4687 spin_lock_irq(&callback_lock); 4688 if (!on_dfl) 4689 top_cpuset.mems_allowed = new_mems; 4690 top_cpuset.effective_mems = new_mems; 4691 spin_unlock_irq(&callback_lock); 4692 update_tasks_nodemask(&top_cpuset); 4693 } 4694 4695 mutex_unlock(&cpuset_mutex); 4696 4697 /* if cpus or mems changed, we need to propagate to descendants */ 4698 if (cpus_updated || mems_updated) { 4699 struct cpuset *cs; 4700 struct cgroup_subsys_state *pos_css; 4701 4702 rcu_read_lock(); 4703 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 4704 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 4705 continue; 4706 rcu_read_unlock(); 4707 4708 cpuset_hotplug_update_tasks(cs, ptmp); 4709 4710 rcu_read_lock(); 4711 css_put(&cs->css); 4712 } 4713 rcu_read_unlock(); 4714 } 4715 4716 /* rebuild sched domains if cpus_allowed has changed */ 4717 if (cpus_updated || force_rebuild) { 4718 force_rebuild = false; 4719 rebuild_sched_domains_cpuslocked(); 4720 } 4721 4722 free_cpumasks(NULL, ptmp); 4723 } 4724 4725 void cpuset_update_active_cpus(void) 4726 { 4727 /* 4728 * We're inside cpu hotplug critical region which usually nests 4729 * inside cgroup synchronization. Bounce actual hotplug processing 4730 * to a work item to avoid reverse locking order. 4731 */ 4732 cpuset_handle_hotplug(); 4733 } 4734 4735 /* 4736 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 4737 * Call this routine anytime after node_states[N_MEMORY] changes. 4738 * See cpuset_update_active_cpus() for CPU hotplug handling. 4739 */ 4740 static int cpuset_track_online_nodes(struct notifier_block *self, 4741 unsigned long action, void *arg) 4742 { 4743 cpuset_handle_hotplug(); 4744 return NOTIFY_OK; 4745 } 4746 4747 /** 4748 * cpuset_init_smp - initialize cpus_allowed 4749 * 4750 * Description: Finish top cpuset after cpu, node maps are initialized 4751 */ 4752 void __init cpuset_init_smp(void) 4753 { 4754 /* 4755 * cpus_allowd/mems_allowed set to v2 values in the initial 4756 * cpuset_bind() call will be reset to v1 values in another 4757 * cpuset_bind() call when v1 cpuset is mounted. 4758 */ 4759 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 4760 4761 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 4762 top_cpuset.effective_mems = node_states[N_MEMORY]; 4763 4764 hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); 4765 4766 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 4767 BUG_ON(!cpuset_migrate_mm_wq); 4768 } 4769 4770 /** 4771 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 4772 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 4773 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 4774 * 4775 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 4776 * attached to the specified @tsk. Guaranteed to return some non-empty 4777 * subset of cpu_online_mask, even if this means going outside the 4778 * tasks cpuset, except when the task is in the top cpuset. 4779 **/ 4780 4781 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 4782 { 4783 unsigned long flags; 4784 struct cpuset *cs; 4785 4786 spin_lock_irqsave(&callback_lock, flags); 4787 rcu_read_lock(); 4788 4789 cs = task_cs(tsk); 4790 if (cs != &top_cpuset) 4791 guarantee_online_cpus(tsk, pmask); 4792 /* 4793 * Tasks in the top cpuset won't get update to their cpumasks 4794 * when a hotplug online/offline event happens. So we include all 4795 * offline cpus in the allowed cpu list. 4796 */ 4797 if ((cs == &top_cpuset) || cpumask_empty(pmask)) { 4798 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 4799 4800 /* 4801 * We first exclude cpus allocated to partitions. If there is no 4802 * allowable online cpu left, we fall back to all possible cpus. 4803 */ 4804 cpumask_andnot(pmask, possible_mask, subpartitions_cpus); 4805 if (!cpumask_intersects(pmask, cpu_online_mask)) 4806 cpumask_copy(pmask, possible_mask); 4807 } 4808 4809 rcu_read_unlock(); 4810 spin_unlock_irqrestore(&callback_lock, flags); 4811 } 4812 4813 /** 4814 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 4815 * @tsk: pointer to task_struct with which the scheduler is struggling 4816 * 4817 * Description: In the case that the scheduler cannot find an allowed cpu in 4818 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 4819 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 4820 * which will not contain a sane cpumask during cases such as cpu hotplugging. 4821 * This is the absolute last resort for the scheduler and it is only used if 4822 * _every_ other avenue has been traveled. 4823 * 4824 * Returns true if the affinity of @tsk was changed, false otherwise. 4825 **/ 4826 4827 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 4828 { 4829 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 4830 const struct cpumask *cs_mask; 4831 bool changed = false; 4832 4833 rcu_read_lock(); 4834 cs_mask = task_cs(tsk)->cpus_allowed; 4835 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 4836 do_set_cpus_allowed(tsk, cs_mask); 4837 changed = true; 4838 } 4839 rcu_read_unlock(); 4840 4841 /* 4842 * We own tsk->cpus_allowed, nobody can change it under us. 4843 * 4844 * But we used cs && cs->cpus_allowed lockless and thus can 4845 * race with cgroup_attach_task() or update_cpumask() and get 4846 * the wrong tsk->cpus_allowed. However, both cases imply the 4847 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 4848 * which takes task_rq_lock(). 4849 * 4850 * If we are called after it dropped the lock we must see all 4851 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 4852 * set any mask even if it is not right from task_cs() pov, 4853 * the pending set_cpus_allowed_ptr() will fix things. 4854 * 4855 * select_fallback_rq() will fix things ups and set cpu_possible_mask 4856 * if required. 4857 */ 4858 return changed; 4859 } 4860 4861 void __init cpuset_init_current_mems_allowed(void) 4862 { 4863 nodes_setall(current->mems_allowed); 4864 } 4865 4866 /** 4867 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 4868 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 4869 * 4870 * Description: Returns the nodemask_t mems_allowed of the cpuset 4871 * attached to the specified @tsk. Guaranteed to return some non-empty 4872 * subset of node_states[N_MEMORY], even if this means going outside the 4873 * tasks cpuset. 4874 **/ 4875 4876 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 4877 { 4878 nodemask_t mask; 4879 unsigned long flags; 4880 4881 spin_lock_irqsave(&callback_lock, flags); 4882 rcu_read_lock(); 4883 guarantee_online_mems(task_cs(tsk), &mask); 4884 rcu_read_unlock(); 4885 spin_unlock_irqrestore(&callback_lock, flags); 4886 4887 return mask; 4888 } 4889 4890 /** 4891 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 4892 * @nodemask: the nodemask to be checked 4893 * 4894 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 4895 */ 4896 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 4897 { 4898 return nodes_intersects(*nodemask, current->mems_allowed); 4899 } 4900 4901 /* 4902 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 4903 * mem_hardwall ancestor to the specified cpuset. Call holding 4904 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 4905 * (an unusual configuration), then returns the root cpuset. 4906 */ 4907 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 4908 { 4909 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 4910 cs = parent_cs(cs); 4911 return cs; 4912 } 4913 4914 /* 4915 * cpuset_node_allowed - Can we allocate on a memory node? 4916 * @node: is this an allowed node? 4917 * @gfp_mask: memory allocation flags 4918 * 4919 * If we're in interrupt, yes, we can always allocate. If @node is set in 4920 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 4921 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 4922 * yes. If current has access to memory reserves as an oom victim, yes. 4923 * Otherwise, no. 4924 * 4925 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 4926 * and do not allow allocations outside the current tasks cpuset 4927 * unless the task has been OOM killed. 4928 * GFP_KERNEL allocations are not so marked, so can escape to the 4929 * nearest enclosing hardwalled ancestor cpuset. 4930 * 4931 * Scanning up parent cpusets requires callback_lock. The 4932 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 4933 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 4934 * current tasks mems_allowed came up empty on the first pass over 4935 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 4936 * cpuset are short of memory, might require taking the callback_lock. 4937 * 4938 * The first call here from mm/page_alloc:get_page_from_freelist() 4939 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 4940 * so no allocation on a node outside the cpuset is allowed (unless 4941 * in interrupt, of course). 4942 * 4943 * The second pass through get_page_from_freelist() doesn't even call 4944 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 4945 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 4946 * in alloc_flags. That logic and the checks below have the combined 4947 * affect that: 4948 * in_interrupt - any node ok (current task context irrelevant) 4949 * GFP_ATOMIC - any node ok 4950 * tsk_is_oom_victim - any node ok 4951 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 4952 * GFP_USER - only nodes in current tasks mems allowed ok. 4953 */ 4954 bool cpuset_node_allowed(int node, gfp_t gfp_mask) 4955 { 4956 struct cpuset *cs; /* current cpuset ancestors */ 4957 bool allowed; /* is allocation in zone z allowed? */ 4958 unsigned long flags; 4959 4960 if (in_interrupt()) 4961 return true; 4962 if (node_isset(node, current->mems_allowed)) 4963 return true; 4964 /* 4965 * Allow tasks that have access to memory reserves because they have 4966 * been OOM killed to get memory anywhere. 4967 */ 4968 if (unlikely(tsk_is_oom_victim(current))) 4969 return true; 4970 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 4971 return false; 4972 4973 if (current->flags & PF_EXITING) /* Let dying task have memory */ 4974 return true; 4975 4976 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 4977 spin_lock_irqsave(&callback_lock, flags); 4978 4979 rcu_read_lock(); 4980 cs = nearest_hardwall_ancestor(task_cs(current)); 4981 allowed = node_isset(node, cs->mems_allowed); 4982 rcu_read_unlock(); 4983 4984 spin_unlock_irqrestore(&callback_lock, flags); 4985 return allowed; 4986 } 4987 4988 /** 4989 * cpuset_spread_node() - On which node to begin search for a page 4990 * @rotor: round robin rotor 4991 * 4992 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 4993 * tasks in a cpuset with is_spread_page or is_spread_slab set), 4994 * and if the memory allocation used cpuset_mem_spread_node() 4995 * to determine on which node to start looking, as it will for 4996 * certain page cache or slab cache pages such as used for file 4997 * system buffers and inode caches, then instead of starting on the 4998 * local node to look for a free page, rather spread the starting 4999 * node around the tasks mems_allowed nodes. 5000 * 5001 * We don't have to worry about the returned node being offline 5002 * because "it can't happen", and even if it did, it would be ok. 5003 * 5004 * The routines calling guarantee_online_mems() are careful to 5005 * only set nodes in task->mems_allowed that are online. So it 5006 * should not be possible for the following code to return an 5007 * offline node. But if it did, that would be ok, as this routine 5008 * is not returning the node where the allocation must be, only 5009 * the node where the search should start. The zonelist passed to 5010 * __alloc_pages() will include all nodes. If the slab allocator 5011 * is passed an offline node, it will fall back to the local node. 5012 * See kmem_cache_alloc_node(). 5013 */ 5014 static int cpuset_spread_node(int *rotor) 5015 { 5016 return *rotor = next_node_in(*rotor, current->mems_allowed); 5017 } 5018 5019 /** 5020 * cpuset_mem_spread_node() - On which node to begin search for a file page 5021 */ 5022 int cpuset_mem_spread_node(void) 5023 { 5024 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 5025 current->cpuset_mem_spread_rotor = 5026 node_random(¤t->mems_allowed); 5027 5028 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 5029 } 5030 5031 /** 5032 * cpuset_slab_spread_node() - On which node to begin search for a slab page 5033 */ 5034 int cpuset_slab_spread_node(void) 5035 { 5036 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 5037 current->cpuset_slab_spread_rotor = 5038 node_random(¤t->mems_allowed); 5039 5040 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 5041 } 5042 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 5043 5044 /** 5045 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 5046 * @tsk1: pointer to task_struct of some task. 5047 * @tsk2: pointer to task_struct of some other task. 5048 * 5049 * Description: Return true if @tsk1's mems_allowed intersects the 5050 * mems_allowed of @tsk2. Used by the OOM killer to determine if 5051 * one of the task's memory usage might impact the memory available 5052 * to the other. 5053 **/ 5054 5055 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 5056 const struct task_struct *tsk2) 5057 { 5058 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 5059 } 5060 5061 /** 5062 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 5063 * 5064 * Description: Prints current's name, cpuset name, and cached copy of its 5065 * mems_allowed to the kernel log. 5066 */ 5067 void cpuset_print_current_mems_allowed(void) 5068 { 5069 struct cgroup *cgrp; 5070 5071 rcu_read_lock(); 5072 5073 cgrp = task_cs(current)->css.cgroup; 5074 pr_cont(",cpuset="); 5075 pr_cont_cgroup_name(cgrp); 5076 pr_cont(",mems_allowed=%*pbl", 5077 nodemask_pr_args(¤t->mems_allowed)); 5078 5079 rcu_read_unlock(); 5080 } 5081 5082 /* 5083 * Collection of memory_pressure is suppressed unless 5084 * this flag is enabled by writing "1" to the special 5085 * cpuset file 'memory_pressure_enabled' in the root cpuset. 5086 */ 5087 5088 int cpuset_memory_pressure_enabled __read_mostly; 5089 5090 /* 5091 * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 5092 * 5093 * Keep a running average of the rate of synchronous (direct) 5094 * page reclaim efforts initiated by tasks in each cpuset. 5095 * 5096 * This represents the rate at which some task in the cpuset 5097 * ran low on memory on all nodes it was allowed to use, and 5098 * had to enter the kernels page reclaim code in an effort to 5099 * create more free memory by tossing clean pages or swapping 5100 * or writing dirty pages. 5101 * 5102 * Display to user space in the per-cpuset read-only file 5103 * "memory_pressure". Value displayed is an integer 5104 * representing the recent rate of entry into the synchronous 5105 * (direct) page reclaim by any task attached to the cpuset. 5106 */ 5107 5108 void __cpuset_memory_pressure_bump(void) 5109 { 5110 rcu_read_lock(); 5111 fmeter_markevent(&task_cs(current)->fmeter); 5112 rcu_read_unlock(); 5113 } 5114 5115 #ifdef CONFIG_PROC_PID_CPUSET 5116 /* 5117 * proc_cpuset_show() 5118 * - Print tasks cpuset path into seq_file. 5119 * - Used for /proc/<pid>/cpuset. 5120 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 5121 * doesn't really matter if tsk->cpuset changes after we read it, 5122 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 5123 * anyway. 5124 */ 5125 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 5126 struct pid *pid, struct task_struct *tsk) 5127 { 5128 char *buf; 5129 struct cgroup_subsys_state *css; 5130 int retval; 5131 5132 retval = -ENOMEM; 5133 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5134 if (!buf) 5135 goto out; 5136 5137 rcu_read_lock(); 5138 spin_lock_irq(&css_set_lock); 5139 css = task_css(tsk, cpuset_cgrp_id); 5140 retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX, 5141 current->nsproxy->cgroup_ns); 5142 spin_unlock_irq(&css_set_lock); 5143 rcu_read_unlock(); 5144 5145 if (retval == -E2BIG) 5146 retval = -ENAMETOOLONG; 5147 if (retval < 0) 5148 goto out_free; 5149 seq_puts(m, buf); 5150 seq_putc(m, '\n'); 5151 retval = 0; 5152 out_free: 5153 kfree(buf); 5154 out: 5155 return retval; 5156 } 5157 #endif /* CONFIG_PROC_PID_CPUSET */ 5158 5159 /* Display task mems_allowed in /proc/<pid>/status file. */ 5160 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 5161 { 5162 seq_printf(m, "Mems_allowed:\t%*pb\n", 5163 nodemask_pr_args(&task->mems_allowed)); 5164 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 5165 nodemask_pr_args(&task->mems_allowed)); 5166 } 5167