1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/list.h> 37 #include <linux/mempolicy.h> 38 #include <linux/mm.h> 39 #include <linux/memory.h> 40 #include <linux/export.h> 41 #include <linux/mount.h> 42 #include <linux/fs_context.h> 43 #include <linux/namei.h> 44 #include <linux/pagemap.h> 45 #include <linux/proc_fs.h> 46 #include <linux/rcupdate.h> 47 #include <linux/sched.h> 48 #include <linux/sched/mm.h> 49 #include <linux/sched/task.h> 50 #include <linux/seq_file.h> 51 #include <linux/security.h> 52 #include <linux/slab.h> 53 #include <linux/spinlock.h> 54 #include <linux/stat.h> 55 #include <linux/string.h> 56 #include <linux/time.h> 57 #include <linux/time64.h> 58 #include <linux/backing-dev.h> 59 #include <linux/sort.h> 60 #include <linux/oom.h> 61 #include <linux/sched/isolation.h> 62 #include <linux/uaccess.h> 63 #include <linux/atomic.h> 64 #include <linux/mutex.h> 65 #include <linux/cgroup.h> 66 #include <linux/wait.h> 67 68 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 69 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 70 71 /* See "Frequency meter" comments, below. */ 72 73 struct fmeter { 74 int cnt; /* unprocessed events count */ 75 int val; /* most recent output value */ 76 time64_t time; /* clock (secs) when val computed */ 77 spinlock_t lock; /* guards read or write of above */ 78 }; 79 80 struct cpuset { 81 struct cgroup_subsys_state css; 82 83 unsigned long flags; /* "unsigned long" so bitops work */ 84 85 /* 86 * On default hierarchy: 87 * 88 * The user-configured masks can only be changed by writing to 89 * cpuset.cpus and cpuset.mems, and won't be limited by the 90 * parent masks. 91 * 92 * The effective masks is the real masks that apply to the tasks 93 * in the cpuset. They may be changed if the configured masks are 94 * changed or hotplug happens. 95 * 96 * effective_mask == configured_mask & parent's effective_mask, 97 * and if it ends up empty, it will inherit the parent's mask. 98 * 99 * 100 * On legacy hierachy: 101 * 102 * The user-configured masks are always the same with effective masks. 103 */ 104 105 /* user-configured CPUs and Memory Nodes allow to tasks */ 106 cpumask_var_t cpus_allowed; 107 nodemask_t mems_allowed; 108 109 /* effective CPUs and Memory Nodes allow to tasks */ 110 cpumask_var_t effective_cpus; 111 nodemask_t effective_mems; 112 113 /* 114 * CPUs allocated to child sub-partitions (default hierarchy only) 115 * - CPUs granted by the parent = effective_cpus U subparts_cpus 116 * - effective_cpus and subparts_cpus are mutually exclusive. 117 * 118 * effective_cpus contains only onlined CPUs, but subparts_cpus 119 * may have offlined ones. 120 */ 121 cpumask_var_t subparts_cpus; 122 123 /* 124 * This is old Memory Nodes tasks took on. 125 * 126 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 127 * - A new cpuset's old_mems_allowed is initialized when some 128 * task is moved into it. 129 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 130 * cpuset.mems_allowed and have tasks' nodemask updated, and 131 * then old_mems_allowed is updated to mems_allowed. 132 */ 133 nodemask_t old_mems_allowed; 134 135 struct fmeter fmeter; /* memory_pressure filter */ 136 137 /* 138 * Tasks are being attached to this cpuset. Used to prevent 139 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 140 */ 141 int attach_in_progress; 142 143 /* partition number for rebuild_sched_domains() */ 144 int pn; 145 146 /* for custom sched domain */ 147 int relax_domain_level; 148 149 /* number of CPUs in subparts_cpus */ 150 int nr_subparts_cpus; 151 152 /* partition root state */ 153 int partition_root_state; 154 155 /* 156 * Default hierarchy only: 157 * use_parent_ecpus - set if using parent's effective_cpus 158 * child_ecpus_count - # of children with use_parent_ecpus set 159 */ 160 int use_parent_ecpus; 161 int child_ecpus_count; 162 }; 163 164 /* 165 * Partition root states: 166 * 167 * 0 - not a partition root 168 * 169 * 1 - partition root 170 * 171 * -1 - invalid partition root 172 * None of the cpus in cpus_allowed can be put into the parent's 173 * subparts_cpus. In this case, the cpuset is not a real partition 174 * root anymore. However, the CPU_EXCLUSIVE bit will still be set 175 * and the cpuset can be restored back to a partition root if the 176 * parent cpuset can give more CPUs back to this child cpuset. 177 */ 178 #define PRS_DISABLED 0 179 #define PRS_ENABLED 1 180 #define PRS_ERROR -1 181 182 /* 183 * Temporary cpumasks for working with partitions that are passed among 184 * functions to avoid memory allocation in inner functions. 185 */ 186 struct tmpmasks { 187 cpumask_var_t addmask, delmask; /* For partition root */ 188 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 189 }; 190 191 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 192 { 193 return css ? container_of(css, struct cpuset, css) : NULL; 194 } 195 196 /* Retrieve the cpuset for a task */ 197 static inline struct cpuset *task_cs(struct task_struct *task) 198 { 199 return css_cs(task_css(task, cpuset_cgrp_id)); 200 } 201 202 static inline struct cpuset *parent_cs(struct cpuset *cs) 203 { 204 return css_cs(cs->css.parent); 205 } 206 207 /* bits in struct cpuset flags field */ 208 typedef enum { 209 CS_ONLINE, 210 CS_CPU_EXCLUSIVE, 211 CS_MEM_EXCLUSIVE, 212 CS_MEM_HARDWALL, 213 CS_MEMORY_MIGRATE, 214 CS_SCHED_LOAD_BALANCE, 215 CS_SPREAD_PAGE, 216 CS_SPREAD_SLAB, 217 } cpuset_flagbits_t; 218 219 /* convenient tests for these bits */ 220 static inline bool is_cpuset_online(struct cpuset *cs) 221 { 222 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 223 } 224 225 static inline int is_cpu_exclusive(const struct cpuset *cs) 226 { 227 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 228 } 229 230 static inline int is_mem_exclusive(const struct cpuset *cs) 231 { 232 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 233 } 234 235 static inline int is_mem_hardwall(const struct cpuset *cs) 236 { 237 return test_bit(CS_MEM_HARDWALL, &cs->flags); 238 } 239 240 static inline int is_sched_load_balance(const struct cpuset *cs) 241 { 242 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 243 } 244 245 static inline int is_memory_migrate(const struct cpuset *cs) 246 { 247 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 248 } 249 250 static inline int is_spread_page(const struct cpuset *cs) 251 { 252 return test_bit(CS_SPREAD_PAGE, &cs->flags); 253 } 254 255 static inline int is_spread_slab(const struct cpuset *cs) 256 { 257 return test_bit(CS_SPREAD_SLAB, &cs->flags); 258 } 259 260 static inline int is_partition_root(const struct cpuset *cs) 261 { 262 return cs->partition_root_state > 0; 263 } 264 265 static struct cpuset top_cpuset = { 266 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 267 (1 << CS_MEM_EXCLUSIVE)), 268 .partition_root_state = PRS_ENABLED, 269 }; 270 271 /** 272 * cpuset_for_each_child - traverse online children of a cpuset 273 * @child_cs: loop cursor pointing to the current child 274 * @pos_css: used for iteration 275 * @parent_cs: target cpuset to walk children of 276 * 277 * Walk @child_cs through the online children of @parent_cs. Must be used 278 * with RCU read locked. 279 */ 280 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 281 css_for_each_child((pos_css), &(parent_cs)->css) \ 282 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 283 284 /** 285 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 286 * @des_cs: loop cursor pointing to the current descendant 287 * @pos_css: used for iteration 288 * @root_cs: target cpuset to walk ancestor of 289 * 290 * Walk @des_cs through the online descendants of @root_cs. Must be used 291 * with RCU read locked. The caller may modify @pos_css by calling 292 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 293 * iteration and the first node to be visited. 294 */ 295 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 296 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 297 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 298 299 /* 300 * There are two global locks guarding cpuset structures - cpuset_mutex and 301 * callback_lock. We also require taking task_lock() when dereferencing a 302 * task's cpuset pointer. See "The task_lock() exception", at the end of this 303 * comment. 304 * 305 * A task must hold both locks to modify cpusets. If a task holds 306 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it 307 * is the only task able to also acquire callback_lock and be able to 308 * modify cpusets. It can perform various checks on the cpuset structure 309 * first, knowing nothing will change. It can also allocate memory while 310 * just holding cpuset_mutex. While it is performing these checks, various 311 * callback routines can briefly acquire callback_lock to query cpusets. 312 * Once it is ready to make the changes, it takes callback_lock, blocking 313 * everyone else. 314 * 315 * Calls to the kernel memory allocator can not be made while holding 316 * callback_lock, as that would risk double tripping on callback_lock 317 * from one of the callbacks into the cpuset code from within 318 * __alloc_pages(). 319 * 320 * If a task is only holding callback_lock, then it has read-only 321 * access to cpusets. 322 * 323 * Now, the task_struct fields mems_allowed and mempolicy may be changed 324 * by other task, we use alloc_lock in the task_struct fields to protect 325 * them. 326 * 327 * The cpuset_common_file_read() handlers only hold callback_lock across 328 * small pieces of code, such as when reading out possibly multi-word 329 * cpumasks and nodemasks. 330 * 331 * Accessing a task's cpuset should be done in accordance with the 332 * guidelines for accessing subsystem state in kernel/cgroup.c 333 */ 334 335 static DEFINE_MUTEX(cpuset_mutex); 336 static DEFINE_SPINLOCK(callback_lock); 337 338 static struct workqueue_struct *cpuset_migrate_mm_wq; 339 340 /* 341 * CPU / memory hotplug is handled asynchronously. 342 */ 343 static void cpuset_hotplug_workfn(struct work_struct *work); 344 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 345 346 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 347 348 /* 349 * Cgroup v2 behavior is used when on default hierarchy or the 350 * cgroup_v2_mode flag is set. 351 */ 352 static inline bool is_in_v2_mode(void) 353 { 354 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 355 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 356 } 357 358 /* 359 * This is ugly, but preserves the userspace API for existing cpuset 360 * users. If someone tries to mount the "cpuset" filesystem, we 361 * silently switch it to mount "cgroup" instead 362 */ 363 static int cpuset_get_tree(struct fs_context *fc) 364 { 365 struct file_system_type *cgroup_fs; 366 struct fs_context *new_fc; 367 int ret; 368 369 cgroup_fs = get_fs_type("cgroup"); 370 if (!cgroup_fs) 371 return -ENODEV; 372 373 new_fc = fs_context_for_mount(cgroup_fs, fc->sb_flags); 374 if (IS_ERR(new_fc)) { 375 ret = PTR_ERR(new_fc); 376 } else { 377 static const char agent_path[] = "/sbin/cpuset_release_agent"; 378 ret = vfs_parse_fs_string(new_fc, "cpuset", NULL, 0); 379 if (!ret) 380 ret = vfs_parse_fs_string(new_fc, "noprefix", NULL, 0); 381 if (!ret) 382 ret = vfs_parse_fs_string(new_fc, "release_agent", 383 agent_path, sizeof(agent_path) - 1); 384 if (!ret) 385 ret = vfs_get_tree(new_fc); 386 if (!ret) { /* steal the result */ 387 fc->root = new_fc->root; 388 new_fc->root = NULL; 389 } 390 put_fs_context(new_fc); 391 } 392 put_filesystem(cgroup_fs); 393 return ret; 394 } 395 396 static const struct fs_context_operations cpuset_fs_context_ops = { 397 .get_tree = cpuset_get_tree, 398 }; 399 400 static int cpuset_init_fs_context(struct fs_context *fc) 401 { 402 fc->ops = &cpuset_fs_context_ops; 403 return 0; 404 } 405 406 static struct file_system_type cpuset_fs_type = { 407 .name = "cpuset", 408 .init_fs_context = cpuset_init_fs_context, 409 }; 410 411 /* 412 * Return in pmask the portion of a cpusets's cpus_allowed that 413 * are online. If none are online, walk up the cpuset hierarchy 414 * until we find one that does have some online cpus. 415 * 416 * One way or another, we guarantee to return some non-empty subset 417 * of cpu_online_mask. 418 * 419 * Call with callback_lock or cpuset_mutex held. 420 */ 421 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) 422 { 423 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) { 424 cs = parent_cs(cs); 425 if (unlikely(!cs)) { 426 /* 427 * The top cpuset doesn't have any online cpu as a 428 * consequence of a race between cpuset_hotplug_work 429 * and cpu hotplug notifier. But we know the top 430 * cpuset's effective_cpus is on its way to to be 431 * identical to cpu_online_mask. 432 */ 433 cpumask_copy(pmask, cpu_online_mask); 434 return; 435 } 436 } 437 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); 438 } 439 440 /* 441 * Return in *pmask the portion of a cpusets's mems_allowed that 442 * are online, with memory. If none are online with memory, walk 443 * up the cpuset hierarchy until we find one that does have some 444 * online mems. The top cpuset always has some mems online. 445 * 446 * One way or another, we guarantee to return some non-empty subset 447 * of node_states[N_MEMORY]. 448 * 449 * Call with callback_lock or cpuset_mutex held. 450 */ 451 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 452 { 453 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 454 cs = parent_cs(cs); 455 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 456 } 457 458 /* 459 * update task's spread flag if cpuset's page/slab spread flag is set 460 * 461 * Call with callback_lock or cpuset_mutex held. 462 */ 463 static void cpuset_update_task_spread_flag(struct cpuset *cs, 464 struct task_struct *tsk) 465 { 466 if (is_spread_page(cs)) 467 task_set_spread_page(tsk); 468 else 469 task_clear_spread_page(tsk); 470 471 if (is_spread_slab(cs)) 472 task_set_spread_slab(tsk); 473 else 474 task_clear_spread_slab(tsk); 475 } 476 477 /* 478 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 479 * 480 * One cpuset is a subset of another if all its allowed CPUs and 481 * Memory Nodes are a subset of the other, and its exclusive flags 482 * are only set if the other's are set. Call holding cpuset_mutex. 483 */ 484 485 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 486 { 487 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 488 nodes_subset(p->mems_allowed, q->mems_allowed) && 489 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 490 is_mem_exclusive(p) <= is_mem_exclusive(q); 491 } 492 493 /** 494 * alloc_cpumasks - allocate three cpumasks for cpuset 495 * @cs: the cpuset that have cpumasks to be allocated. 496 * @tmp: the tmpmasks structure pointer 497 * Return: 0 if successful, -ENOMEM otherwise. 498 * 499 * Only one of the two input arguments should be non-NULL. 500 */ 501 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 502 { 503 cpumask_var_t *pmask1, *pmask2, *pmask3; 504 505 if (cs) { 506 pmask1 = &cs->cpus_allowed; 507 pmask2 = &cs->effective_cpus; 508 pmask3 = &cs->subparts_cpus; 509 } else { 510 pmask1 = &tmp->new_cpus; 511 pmask2 = &tmp->addmask; 512 pmask3 = &tmp->delmask; 513 } 514 515 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 516 return -ENOMEM; 517 518 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 519 goto free_one; 520 521 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 522 goto free_two; 523 524 return 0; 525 526 free_two: 527 free_cpumask_var(*pmask2); 528 free_one: 529 free_cpumask_var(*pmask1); 530 return -ENOMEM; 531 } 532 533 /** 534 * free_cpumasks - free cpumasks in a tmpmasks structure 535 * @cs: the cpuset that have cpumasks to be free. 536 * @tmp: the tmpmasks structure pointer 537 */ 538 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 539 { 540 if (cs) { 541 free_cpumask_var(cs->cpus_allowed); 542 free_cpumask_var(cs->effective_cpus); 543 free_cpumask_var(cs->subparts_cpus); 544 } 545 if (tmp) { 546 free_cpumask_var(tmp->new_cpus); 547 free_cpumask_var(tmp->addmask); 548 free_cpumask_var(tmp->delmask); 549 } 550 } 551 552 /** 553 * alloc_trial_cpuset - allocate a trial cpuset 554 * @cs: the cpuset that the trial cpuset duplicates 555 */ 556 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 557 { 558 struct cpuset *trial; 559 560 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 561 if (!trial) 562 return NULL; 563 564 if (alloc_cpumasks(trial, NULL)) { 565 kfree(trial); 566 return NULL; 567 } 568 569 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 570 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 571 return trial; 572 } 573 574 /** 575 * free_cpuset - free the cpuset 576 * @cs: the cpuset to be freed 577 */ 578 static inline void free_cpuset(struct cpuset *cs) 579 { 580 free_cpumasks(cs, NULL); 581 kfree(cs); 582 } 583 584 /* 585 * validate_change() - Used to validate that any proposed cpuset change 586 * follows the structural rules for cpusets. 587 * 588 * If we replaced the flag and mask values of the current cpuset 589 * (cur) with those values in the trial cpuset (trial), would 590 * our various subset and exclusive rules still be valid? Presumes 591 * cpuset_mutex held. 592 * 593 * 'cur' is the address of an actual, in-use cpuset. Operations 594 * such as list traversal that depend on the actual address of the 595 * cpuset in the list must use cur below, not trial. 596 * 597 * 'trial' is the address of bulk structure copy of cur, with 598 * perhaps one or more of the fields cpus_allowed, mems_allowed, 599 * or flags changed to new, trial values. 600 * 601 * Return 0 if valid, -errno if not. 602 */ 603 604 static int validate_change(struct cpuset *cur, struct cpuset *trial) 605 { 606 struct cgroup_subsys_state *css; 607 struct cpuset *c, *par; 608 int ret; 609 610 rcu_read_lock(); 611 612 /* Each of our child cpusets must be a subset of us */ 613 ret = -EBUSY; 614 cpuset_for_each_child(c, css, cur) 615 if (!is_cpuset_subset(c, trial)) 616 goto out; 617 618 /* Remaining checks don't apply to root cpuset */ 619 ret = 0; 620 if (cur == &top_cpuset) 621 goto out; 622 623 par = parent_cs(cur); 624 625 /* On legacy hiearchy, we must be a subset of our parent cpuset. */ 626 ret = -EACCES; 627 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par)) 628 goto out; 629 630 /* 631 * If either I or some sibling (!= me) is exclusive, we can't 632 * overlap 633 */ 634 ret = -EINVAL; 635 cpuset_for_each_child(c, css, par) { 636 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 637 c != cur && 638 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 639 goto out; 640 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 641 c != cur && 642 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 643 goto out; 644 } 645 646 /* 647 * Cpusets with tasks - existing or newly being attached - can't 648 * be changed to have empty cpus_allowed or mems_allowed. 649 */ 650 ret = -ENOSPC; 651 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 652 if (!cpumask_empty(cur->cpus_allowed) && 653 cpumask_empty(trial->cpus_allowed)) 654 goto out; 655 if (!nodes_empty(cur->mems_allowed) && 656 nodes_empty(trial->mems_allowed)) 657 goto out; 658 } 659 660 /* 661 * We can't shrink if we won't have enough room for SCHED_DEADLINE 662 * tasks. 663 */ 664 ret = -EBUSY; 665 if (is_cpu_exclusive(cur) && 666 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 667 trial->cpus_allowed)) 668 goto out; 669 670 ret = 0; 671 out: 672 rcu_read_unlock(); 673 return ret; 674 } 675 676 #ifdef CONFIG_SMP 677 /* 678 * Helper routine for generate_sched_domains(). 679 * Do cpusets a, b have overlapping effective cpus_allowed masks? 680 */ 681 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 682 { 683 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 684 } 685 686 static void 687 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 688 { 689 if (dattr->relax_domain_level < c->relax_domain_level) 690 dattr->relax_domain_level = c->relax_domain_level; 691 return; 692 } 693 694 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 695 struct cpuset *root_cs) 696 { 697 struct cpuset *cp; 698 struct cgroup_subsys_state *pos_css; 699 700 rcu_read_lock(); 701 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 702 /* skip the whole subtree if @cp doesn't have any CPU */ 703 if (cpumask_empty(cp->cpus_allowed)) { 704 pos_css = css_rightmost_descendant(pos_css); 705 continue; 706 } 707 708 if (is_sched_load_balance(cp)) 709 update_domain_attr(dattr, cp); 710 } 711 rcu_read_unlock(); 712 } 713 714 /* Must be called with cpuset_mutex held. */ 715 static inline int nr_cpusets(void) 716 { 717 /* jump label reference count + the top-level cpuset */ 718 return static_key_count(&cpusets_enabled_key.key) + 1; 719 } 720 721 /* 722 * generate_sched_domains() 723 * 724 * This function builds a partial partition of the systems CPUs 725 * A 'partial partition' is a set of non-overlapping subsets whose 726 * union is a subset of that set. 727 * The output of this function needs to be passed to kernel/sched/core.c 728 * partition_sched_domains() routine, which will rebuild the scheduler's 729 * load balancing domains (sched domains) as specified by that partial 730 * partition. 731 * 732 * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.rst 733 * for a background explanation of this. 734 * 735 * Does not return errors, on the theory that the callers of this 736 * routine would rather not worry about failures to rebuild sched 737 * domains when operating in the severe memory shortage situations 738 * that could cause allocation failures below. 739 * 740 * Must be called with cpuset_mutex held. 741 * 742 * The three key local variables below are: 743 * cp - cpuset pointer, used (together with pos_css) to perform a 744 * top-down scan of all cpusets. For our purposes, rebuilding 745 * the schedulers sched domains, we can ignore !is_sched_load_ 746 * balance cpusets. 747 * csa - (for CpuSet Array) Array of pointers to all the cpusets 748 * that need to be load balanced, for convenient iterative 749 * access by the subsequent code that finds the best partition, 750 * i.e the set of domains (subsets) of CPUs such that the 751 * cpus_allowed of every cpuset marked is_sched_load_balance 752 * is a subset of one of these domains, while there are as 753 * many such domains as possible, each as small as possible. 754 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 755 * the kernel/sched/core.c routine partition_sched_domains() in a 756 * convenient format, that can be easily compared to the prior 757 * value to determine what partition elements (sched domains) 758 * were changed (added or removed.) 759 * 760 * Finding the best partition (set of domains): 761 * The triple nested loops below over i, j, k scan over the 762 * load balanced cpusets (using the array of cpuset pointers in 763 * csa[]) looking for pairs of cpusets that have overlapping 764 * cpus_allowed, but which don't have the same 'pn' partition 765 * number and gives them in the same partition number. It keeps 766 * looping on the 'restart' label until it can no longer find 767 * any such pairs. 768 * 769 * The union of the cpus_allowed masks from the set of 770 * all cpusets having the same 'pn' value then form the one 771 * element of the partition (one sched domain) to be passed to 772 * partition_sched_domains(). 773 */ 774 static int generate_sched_domains(cpumask_var_t **domains, 775 struct sched_domain_attr **attributes) 776 { 777 struct cpuset *cp; /* top-down scan of cpusets */ 778 struct cpuset **csa; /* array of all cpuset ptrs */ 779 int csn; /* how many cpuset ptrs in csa so far */ 780 int i, j, k; /* indices for partition finding loops */ 781 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 782 struct sched_domain_attr *dattr; /* attributes for custom domains */ 783 int ndoms = 0; /* number of sched domains in result */ 784 int nslot; /* next empty doms[] struct cpumask slot */ 785 struct cgroup_subsys_state *pos_css; 786 bool root_load_balance = is_sched_load_balance(&top_cpuset); 787 788 doms = NULL; 789 dattr = NULL; 790 csa = NULL; 791 792 /* Special case for the 99% of systems with one, full, sched domain */ 793 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 794 ndoms = 1; 795 doms = alloc_sched_domains(ndoms); 796 if (!doms) 797 goto done; 798 799 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 800 if (dattr) { 801 *dattr = SD_ATTR_INIT; 802 update_domain_attr_tree(dattr, &top_cpuset); 803 } 804 cpumask_and(doms[0], top_cpuset.effective_cpus, 805 housekeeping_cpumask(HK_FLAG_DOMAIN)); 806 807 goto done; 808 } 809 810 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 811 if (!csa) 812 goto done; 813 csn = 0; 814 815 rcu_read_lock(); 816 if (root_load_balance) 817 csa[csn++] = &top_cpuset; 818 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 819 if (cp == &top_cpuset) 820 continue; 821 /* 822 * Continue traversing beyond @cp iff @cp has some CPUs and 823 * isn't load balancing. The former is obvious. The 824 * latter: All child cpusets contain a subset of the 825 * parent's cpus, so just skip them, and then we call 826 * update_domain_attr_tree() to calc relax_domain_level of 827 * the corresponding sched domain. 828 * 829 * If root is load-balancing, we can skip @cp if it 830 * is a subset of the root's effective_cpus. 831 */ 832 if (!cpumask_empty(cp->cpus_allowed) && 833 !(is_sched_load_balance(cp) && 834 cpumask_intersects(cp->cpus_allowed, 835 housekeeping_cpumask(HK_FLAG_DOMAIN)))) 836 continue; 837 838 if (root_load_balance && 839 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 840 continue; 841 842 if (is_sched_load_balance(cp)) 843 csa[csn++] = cp; 844 845 /* skip @cp's subtree if not a partition root */ 846 if (!is_partition_root(cp)) 847 pos_css = css_rightmost_descendant(pos_css); 848 } 849 rcu_read_unlock(); 850 851 for (i = 0; i < csn; i++) 852 csa[i]->pn = i; 853 ndoms = csn; 854 855 restart: 856 /* Find the best partition (set of sched domains) */ 857 for (i = 0; i < csn; i++) { 858 struct cpuset *a = csa[i]; 859 int apn = a->pn; 860 861 for (j = 0; j < csn; j++) { 862 struct cpuset *b = csa[j]; 863 int bpn = b->pn; 864 865 if (apn != bpn && cpusets_overlap(a, b)) { 866 for (k = 0; k < csn; k++) { 867 struct cpuset *c = csa[k]; 868 869 if (c->pn == bpn) 870 c->pn = apn; 871 } 872 ndoms--; /* one less element */ 873 goto restart; 874 } 875 } 876 } 877 878 /* 879 * Now we know how many domains to create. 880 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 881 */ 882 doms = alloc_sched_domains(ndoms); 883 if (!doms) 884 goto done; 885 886 /* 887 * The rest of the code, including the scheduler, can deal with 888 * dattr==NULL case. No need to abort if alloc fails. 889 */ 890 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 891 GFP_KERNEL); 892 893 for (nslot = 0, i = 0; i < csn; i++) { 894 struct cpuset *a = csa[i]; 895 struct cpumask *dp; 896 int apn = a->pn; 897 898 if (apn < 0) { 899 /* Skip completed partitions */ 900 continue; 901 } 902 903 dp = doms[nslot]; 904 905 if (nslot == ndoms) { 906 static int warnings = 10; 907 if (warnings) { 908 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 909 nslot, ndoms, csn, i, apn); 910 warnings--; 911 } 912 continue; 913 } 914 915 cpumask_clear(dp); 916 if (dattr) 917 *(dattr + nslot) = SD_ATTR_INIT; 918 for (j = i; j < csn; j++) { 919 struct cpuset *b = csa[j]; 920 921 if (apn == b->pn) { 922 cpumask_or(dp, dp, b->effective_cpus); 923 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN)); 924 if (dattr) 925 update_domain_attr_tree(dattr + nslot, b); 926 927 /* Done with this partition */ 928 b->pn = -1; 929 } 930 } 931 nslot++; 932 } 933 BUG_ON(nslot != ndoms); 934 935 done: 936 kfree(csa); 937 938 /* 939 * Fallback to the default domain if kmalloc() failed. 940 * See comments in partition_sched_domains(). 941 */ 942 if (doms == NULL) 943 ndoms = 1; 944 945 *domains = doms; 946 *attributes = dattr; 947 return ndoms; 948 } 949 950 /* 951 * Rebuild scheduler domains. 952 * 953 * If the flag 'sched_load_balance' of any cpuset with non-empty 954 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 955 * which has that flag enabled, or if any cpuset with a non-empty 956 * 'cpus' is removed, then call this routine to rebuild the 957 * scheduler's dynamic sched domains. 958 * 959 * Call with cpuset_mutex held. Takes get_online_cpus(). 960 */ 961 static void rebuild_sched_domains_locked(void) 962 { 963 struct sched_domain_attr *attr; 964 cpumask_var_t *doms; 965 int ndoms; 966 967 lockdep_assert_held(&cpuset_mutex); 968 get_online_cpus(); 969 970 /* 971 * We have raced with CPU hotplug. Don't do anything to avoid 972 * passing doms with offlined cpu to partition_sched_domains(). 973 * Anyways, hotplug work item will rebuild sched domains. 974 */ 975 if (!top_cpuset.nr_subparts_cpus && 976 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 977 goto out; 978 979 if (top_cpuset.nr_subparts_cpus && 980 !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask)) 981 goto out; 982 983 /* Generate domain masks and attrs */ 984 ndoms = generate_sched_domains(&doms, &attr); 985 986 /* Have scheduler rebuild the domains */ 987 partition_sched_domains(ndoms, doms, attr); 988 out: 989 put_online_cpus(); 990 } 991 #else /* !CONFIG_SMP */ 992 static void rebuild_sched_domains_locked(void) 993 { 994 } 995 #endif /* CONFIG_SMP */ 996 997 void rebuild_sched_domains(void) 998 { 999 mutex_lock(&cpuset_mutex); 1000 rebuild_sched_domains_locked(); 1001 mutex_unlock(&cpuset_mutex); 1002 } 1003 1004 /** 1005 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1006 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1007 * 1008 * Iterate through each task of @cs updating its cpus_allowed to the 1009 * effective cpuset's. As this function is called with cpuset_mutex held, 1010 * cpuset membership stays stable. 1011 */ 1012 static void update_tasks_cpumask(struct cpuset *cs) 1013 { 1014 struct css_task_iter it; 1015 struct task_struct *task; 1016 1017 css_task_iter_start(&cs->css, 0, &it); 1018 while ((task = css_task_iter_next(&it))) 1019 set_cpus_allowed_ptr(task, cs->effective_cpus); 1020 css_task_iter_end(&it); 1021 } 1022 1023 /** 1024 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1025 * @new_cpus: the temp variable for the new effective_cpus mask 1026 * @cs: the cpuset the need to recompute the new effective_cpus mask 1027 * @parent: the parent cpuset 1028 * 1029 * If the parent has subpartition CPUs, include them in the list of 1030 * allowable CPUs in computing the new effective_cpus mask. Since offlined 1031 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 1032 * to mask those out. 1033 */ 1034 static void compute_effective_cpumask(struct cpumask *new_cpus, 1035 struct cpuset *cs, struct cpuset *parent) 1036 { 1037 if (parent->nr_subparts_cpus) { 1038 cpumask_or(new_cpus, parent->effective_cpus, 1039 parent->subparts_cpus); 1040 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 1041 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 1042 } else { 1043 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1044 } 1045 } 1046 1047 /* 1048 * Commands for update_parent_subparts_cpumask 1049 */ 1050 enum subparts_cmd { 1051 partcmd_enable, /* Enable partition root */ 1052 partcmd_disable, /* Disable partition root */ 1053 partcmd_update, /* Update parent's subparts_cpus */ 1054 }; 1055 1056 /** 1057 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1058 * @cpuset: The cpuset that requests change in partition root state 1059 * @cmd: Partition root state change command 1060 * @newmask: Optional new cpumask for partcmd_update 1061 * @tmp: Temporary addmask and delmask 1062 * Return: 0, 1 or an error code 1063 * 1064 * For partcmd_enable, the cpuset is being transformed from a non-partition 1065 * root to a partition root. The cpus_allowed mask of the given cpuset will 1066 * be put into parent's subparts_cpus and taken away from parent's 1067 * effective_cpus. The function will return 0 if all the CPUs listed in 1068 * cpus_allowed can be granted or an error code will be returned. 1069 * 1070 * For partcmd_disable, the cpuset is being transofrmed from a partition 1071 * root back to a non-partition root. any CPUs in cpus_allowed that are in 1072 * parent's subparts_cpus will be taken away from that cpumask and put back 1073 * into parent's effective_cpus. 0 should always be returned. 1074 * 1075 * For partcmd_update, if the optional newmask is specified, the cpu 1076 * list is to be changed from cpus_allowed to newmask. Otherwise, 1077 * cpus_allowed is assumed to remain the same. The cpuset should either 1078 * be a partition root or an invalid partition root. The partition root 1079 * state may change if newmask is NULL and none of the requested CPUs can 1080 * be granted by the parent. The function will return 1 if changes to 1081 * parent's subparts_cpus and effective_cpus happen or 0 otherwise. 1082 * Error code should only be returned when newmask is non-NULL. 1083 * 1084 * The partcmd_enable and partcmd_disable commands are used by 1085 * update_prstate(). The partcmd_update command is used by 1086 * update_cpumasks_hier() with newmask NULL and update_cpumask() with 1087 * newmask set. 1088 * 1089 * The checking is more strict when enabling partition root than the 1090 * other two commands. 1091 * 1092 * Because of the implicit cpu exclusive nature of a partition root, 1093 * cpumask changes that violates the cpu exclusivity rule will not be 1094 * permitted when checked by validate_change(). The validate_change() 1095 * function will also prevent any changes to the cpu list if it is not 1096 * a superset of children's cpu lists. 1097 */ 1098 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, 1099 struct cpumask *newmask, 1100 struct tmpmasks *tmp) 1101 { 1102 struct cpuset *parent = parent_cs(cpuset); 1103 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1104 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1105 bool part_error = false; /* Partition error? */ 1106 1107 lockdep_assert_held(&cpuset_mutex); 1108 1109 /* 1110 * The parent must be a partition root. 1111 * The new cpumask, if present, or the current cpus_allowed must 1112 * not be empty. 1113 */ 1114 if (!is_partition_root(parent) || 1115 (newmask && cpumask_empty(newmask)) || 1116 (!newmask && cpumask_empty(cpuset->cpus_allowed))) 1117 return -EINVAL; 1118 1119 /* 1120 * Enabling/disabling partition root is not allowed if there are 1121 * online children. 1122 */ 1123 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css)) 1124 return -EBUSY; 1125 1126 /* 1127 * Enabling partition root is not allowed if not all the CPUs 1128 * can be granted from parent's effective_cpus or at least one 1129 * CPU will be left after that. 1130 */ 1131 if ((cmd == partcmd_enable) && 1132 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) || 1133 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus))) 1134 return -EINVAL; 1135 1136 /* 1137 * A cpumask update cannot make parent's effective_cpus become empty. 1138 */ 1139 adding = deleting = false; 1140 if (cmd == partcmd_enable) { 1141 cpumask_copy(tmp->addmask, cpuset->cpus_allowed); 1142 adding = true; 1143 } else if (cmd == partcmd_disable) { 1144 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1145 parent->subparts_cpus); 1146 } else if (newmask) { 1147 /* 1148 * partcmd_update with newmask: 1149 * 1150 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1151 * addmask = newmask & parent->effective_cpus 1152 * & ~parent->subparts_cpus 1153 */ 1154 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask); 1155 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1156 parent->subparts_cpus); 1157 1158 cpumask_and(tmp->addmask, newmask, parent->effective_cpus); 1159 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1160 parent->subparts_cpus); 1161 /* 1162 * Return error if the new effective_cpus could become empty. 1163 */ 1164 if (adding && 1165 cpumask_equal(parent->effective_cpus, tmp->addmask)) { 1166 if (!deleting) 1167 return -EINVAL; 1168 /* 1169 * As some of the CPUs in subparts_cpus might have 1170 * been offlined, we need to compute the real delmask 1171 * to confirm that. 1172 */ 1173 if (!cpumask_and(tmp->addmask, tmp->delmask, 1174 cpu_active_mask)) 1175 return -EINVAL; 1176 cpumask_copy(tmp->addmask, parent->effective_cpus); 1177 } 1178 } else { 1179 /* 1180 * partcmd_update w/o newmask: 1181 * 1182 * addmask = cpus_allowed & parent->effectiveb_cpus 1183 * 1184 * Note that parent's subparts_cpus may have been 1185 * pre-shrunk in case there is a change in the cpu list. 1186 * So no deletion is needed. 1187 */ 1188 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed, 1189 parent->effective_cpus); 1190 part_error = cpumask_equal(tmp->addmask, 1191 parent->effective_cpus); 1192 } 1193 1194 if (cmd == partcmd_update) { 1195 int prev_prs = cpuset->partition_root_state; 1196 1197 /* 1198 * Check for possible transition between PRS_ENABLED 1199 * and PRS_ERROR. 1200 */ 1201 switch (cpuset->partition_root_state) { 1202 case PRS_ENABLED: 1203 if (part_error) 1204 cpuset->partition_root_state = PRS_ERROR; 1205 break; 1206 case PRS_ERROR: 1207 if (!part_error) 1208 cpuset->partition_root_state = PRS_ENABLED; 1209 break; 1210 } 1211 /* 1212 * Set part_error if previously in invalid state. 1213 */ 1214 part_error = (prev_prs == PRS_ERROR); 1215 } 1216 1217 if (!part_error && (cpuset->partition_root_state == PRS_ERROR)) 1218 return 0; /* Nothing need to be done */ 1219 1220 if (cpuset->partition_root_state == PRS_ERROR) { 1221 /* 1222 * Remove all its cpus from parent's subparts_cpus. 1223 */ 1224 adding = false; 1225 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1226 parent->subparts_cpus); 1227 } 1228 1229 if (!adding && !deleting) 1230 return 0; 1231 1232 /* 1233 * Change the parent's subparts_cpus. 1234 * Newly added CPUs will be removed from effective_cpus and 1235 * newly deleted ones will be added back to effective_cpus. 1236 */ 1237 spin_lock_irq(&callback_lock); 1238 if (adding) { 1239 cpumask_or(parent->subparts_cpus, 1240 parent->subparts_cpus, tmp->addmask); 1241 cpumask_andnot(parent->effective_cpus, 1242 parent->effective_cpus, tmp->addmask); 1243 } 1244 if (deleting) { 1245 cpumask_andnot(parent->subparts_cpus, 1246 parent->subparts_cpus, tmp->delmask); 1247 /* 1248 * Some of the CPUs in subparts_cpus might have been offlined. 1249 */ 1250 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1251 cpumask_or(parent->effective_cpus, 1252 parent->effective_cpus, tmp->delmask); 1253 } 1254 1255 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1256 spin_unlock_irq(&callback_lock); 1257 1258 return cmd == partcmd_update; 1259 } 1260 1261 /* 1262 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1263 * @cs: the cpuset to consider 1264 * @tmp: temp variables for calculating effective_cpus & partition setup 1265 * 1266 * When congifured cpumask is changed, the effective cpumasks of this cpuset 1267 * and all its descendants need to be updated. 1268 * 1269 * On legacy hierachy, effective_cpus will be the same with cpu_allowed. 1270 * 1271 * Called with cpuset_mutex held 1272 */ 1273 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp) 1274 { 1275 struct cpuset *cp; 1276 struct cgroup_subsys_state *pos_css; 1277 bool need_rebuild_sched_domains = false; 1278 1279 rcu_read_lock(); 1280 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1281 struct cpuset *parent = parent_cs(cp); 1282 1283 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1284 1285 /* 1286 * If it becomes empty, inherit the effective mask of the 1287 * parent, which is guaranteed to have some CPUs. 1288 */ 1289 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1290 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1291 if (!cp->use_parent_ecpus) { 1292 cp->use_parent_ecpus = true; 1293 parent->child_ecpus_count++; 1294 } 1295 } else if (cp->use_parent_ecpus) { 1296 cp->use_parent_ecpus = false; 1297 WARN_ON_ONCE(!parent->child_ecpus_count); 1298 parent->child_ecpus_count--; 1299 } 1300 1301 /* 1302 * Skip the whole subtree if the cpumask remains the same 1303 * and has no partition root state. 1304 */ 1305 if (!cp->partition_root_state && 1306 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { 1307 pos_css = css_rightmost_descendant(pos_css); 1308 continue; 1309 } 1310 1311 /* 1312 * update_parent_subparts_cpumask() should have been called 1313 * for cs already in update_cpumask(). We should also call 1314 * update_tasks_cpumask() again for tasks in the parent 1315 * cpuset if the parent's subparts_cpus changes. 1316 */ 1317 if ((cp != cs) && cp->partition_root_state) { 1318 switch (parent->partition_root_state) { 1319 case PRS_DISABLED: 1320 /* 1321 * If parent is not a partition root or an 1322 * invalid partition root, clear the state 1323 * state and the CS_CPU_EXCLUSIVE flag. 1324 */ 1325 WARN_ON_ONCE(cp->partition_root_state 1326 != PRS_ERROR); 1327 cp->partition_root_state = 0; 1328 1329 /* 1330 * clear_bit() is an atomic operation and 1331 * readers aren't interested in the state 1332 * of CS_CPU_EXCLUSIVE anyway. So we can 1333 * just update the flag without holding 1334 * the callback_lock. 1335 */ 1336 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags); 1337 break; 1338 1339 case PRS_ENABLED: 1340 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp)) 1341 update_tasks_cpumask(parent); 1342 break; 1343 1344 case PRS_ERROR: 1345 /* 1346 * When parent is invalid, it has to be too. 1347 */ 1348 cp->partition_root_state = PRS_ERROR; 1349 if (cp->nr_subparts_cpus) { 1350 cp->nr_subparts_cpus = 0; 1351 cpumask_clear(cp->subparts_cpus); 1352 } 1353 break; 1354 } 1355 } 1356 1357 if (!css_tryget_online(&cp->css)) 1358 continue; 1359 rcu_read_unlock(); 1360 1361 spin_lock_irq(&callback_lock); 1362 1363 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1364 if (cp->nr_subparts_cpus && 1365 (cp->partition_root_state != PRS_ENABLED)) { 1366 cp->nr_subparts_cpus = 0; 1367 cpumask_clear(cp->subparts_cpus); 1368 } else if (cp->nr_subparts_cpus) { 1369 /* 1370 * Make sure that effective_cpus & subparts_cpus 1371 * are mutually exclusive. 1372 * 1373 * In the unlikely event that effective_cpus 1374 * becomes empty. we clear cp->nr_subparts_cpus and 1375 * let its child partition roots to compete for 1376 * CPUs again. 1377 */ 1378 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1379 cp->subparts_cpus); 1380 if (cpumask_empty(cp->effective_cpus)) { 1381 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1382 cpumask_clear(cp->subparts_cpus); 1383 cp->nr_subparts_cpus = 0; 1384 } else if (!cpumask_subset(cp->subparts_cpus, 1385 tmp->new_cpus)) { 1386 cpumask_andnot(cp->subparts_cpus, 1387 cp->subparts_cpus, tmp->new_cpus); 1388 cp->nr_subparts_cpus 1389 = cpumask_weight(cp->subparts_cpus); 1390 } 1391 } 1392 spin_unlock_irq(&callback_lock); 1393 1394 WARN_ON(!is_in_v2_mode() && 1395 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1396 1397 update_tasks_cpumask(cp); 1398 1399 /* 1400 * On legacy hierarchy, if the effective cpumask of any non- 1401 * empty cpuset is changed, we need to rebuild sched domains. 1402 * On default hierarchy, the cpuset needs to be a partition 1403 * root as well. 1404 */ 1405 if (!cpumask_empty(cp->cpus_allowed) && 1406 is_sched_load_balance(cp) && 1407 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1408 is_partition_root(cp))) 1409 need_rebuild_sched_domains = true; 1410 1411 rcu_read_lock(); 1412 css_put(&cp->css); 1413 } 1414 rcu_read_unlock(); 1415 1416 if (need_rebuild_sched_domains) 1417 rebuild_sched_domains_locked(); 1418 } 1419 1420 /** 1421 * update_sibling_cpumasks - Update siblings cpumasks 1422 * @parent: Parent cpuset 1423 * @cs: Current cpuset 1424 * @tmp: Temp variables 1425 */ 1426 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1427 struct tmpmasks *tmp) 1428 { 1429 struct cpuset *sibling; 1430 struct cgroup_subsys_state *pos_css; 1431 1432 /* 1433 * Check all its siblings and call update_cpumasks_hier() 1434 * if their use_parent_ecpus flag is set in order for them 1435 * to use the right effective_cpus value. 1436 */ 1437 rcu_read_lock(); 1438 cpuset_for_each_child(sibling, pos_css, parent) { 1439 if (sibling == cs) 1440 continue; 1441 if (!sibling->use_parent_ecpus) 1442 continue; 1443 1444 update_cpumasks_hier(sibling, tmp); 1445 } 1446 rcu_read_unlock(); 1447 } 1448 1449 /** 1450 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1451 * @cs: the cpuset to consider 1452 * @trialcs: trial cpuset 1453 * @buf: buffer of cpu numbers written to this cpuset 1454 */ 1455 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1456 const char *buf) 1457 { 1458 int retval; 1459 struct tmpmasks tmp; 1460 1461 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1462 if (cs == &top_cpuset) 1463 return -EACCES; 1464 1465 /* 1466 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1467 * Since cpulist_parse() fails on an empty mask, we special case 1468 * that parsing. The validate_change() call ensures that cpusets 1469 * with tasks have cpus. 1470 */ 1471 if (!*buf) { 1472 cpumask_clear(trialcs->cpus_allowed); 1473 } else { 1474 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1475 if (retval < 0) 1476 return retval; 1477 1478 if (!cpumask_subset(trialcs->cpus_allowed, 1479 top_cpuset.cpus_allowed)) 1480 return -EINVAL; 1481 } 1482 1483 /* Nothing to do if the cpus didn't change */ 1484 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1485 return 0; 1486 1487 retval = validate_change(cs, trialcs); 1488 if (retval < 0) 1489 return retval; 1490 1491 #ifdef CONFIG_CPUMASK_OFFSTACK 1492 /* 1493 * Use the cpumasks in trialcs for tmpmasks when they are pointers 1494 * to allocated cpumasks. 1495 */ 1496 tmp.addmask = trialcs->subparts_cpus; 1497 tmp.delmask = trialcs->effective_cpus; 1498 tmp.new_cpus = trialcs->cpus_allowed; 1499 #endif 1500 1501 if (cs->partition_root_state) { 1502 /* Cpumask of a partition root cannot be empty */ 1503 if (cpumask_empty(trialcs->cpus_allowed)) 1504 return -EINVAL; 1505 if (update_parent_subparts_cpumask(cs, partcmd_update, 1506 trialcs->cpus_allowed, &tmp) < 0) 1507 return -EINVAL; 1508 } 1509 1510 spin_lock_irq(&callback_lock); 1511 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1512 1513 /* 1514 * Make sure that subparts_cpus is a subset of cpus_allowed. 1515 */ 1516 if (cs->nr_subparts_cpus) { 1517 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus, 1518 cs->cpus_allowed); 1519 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1520 } 1521 spin_unlock_irq(&callback_lock); 1522 1523 update_cpumasks_hier(cs, &tmp); 1524 1525 if (cs->partition_root_state) { 1526 struct cpuset *parent = parent_cs(cs); 1527 1528 /* 1529 * For partition root, update the cpumasks of sibling 1530 * cpusets if they use parent's effective_cpus. 1531 */ 1532 if (parent->child_ecpus_count) 1533 update_sibling_cpumasks(parent, cs, &tmp); 1534 } 1535 return 0; 1536 } 1537 1538 /* 1539 * Migrate memory region from one set of nodes to another. This is 1540 * performed asynchronously as it can be called from process migration path 1541 * holding locks involved in process management. All mm migrations are 1542 * performed in the queued order and can be waited for by flushing 1543 * cpuset_migrate_mm_wq. 1544 */ 1545 1546 struct cpuset_migrate_mm_work { 1547 struct work_struct work; 1548 struct mm_struct *mm; 1549 nodemask_t from; 1550 nodemask_t to; 1551 }; 1552 1553 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1554 { 1555 struct cpuset_migrate_mm_work *mwork = 1556 container_of(work, struct cpuset_migrate_mm_work, work); 1557 1558 /* on a wq worker, no need to worry about %current's mems_allowed */ 1559 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1560 mmput(mwork->mm); 1561 kfree(mwork); 1562 } 1563 1564 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1565 const nodemask_t *to) 1566 { 1567 struct cpuset_migrate_mm_work *mwork; 1568 1569 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1570 if (mwork) { 1571 mwork->mm = mm; 1572 mwork->from = *from; 1573 mwork->to = *to; 1574 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1575 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1576 } else { 1577 mmput(mm); 1578 } 1579 } 1580 1581 static void cpuset_post_attach(void) 1582 { 1583 flush_workqueue(cpuset_migrate_mm_wq); 1584 } 1585 1586 /* 1587 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1588 * @tsk: the task to change 1589 * @newmems: new nodes that the task will be set 1590 * 1591 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1592 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1593 * parallel, it might temporarily see an empty intersection, which results in 1594 * a seqlock check and retry before OOM or allocation failure. 1595 */ 1596 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1597 nodemask_t *newmems) 1598 { 1599 task_lock(tsk); 1600 1601 local_irq_disable(); 1602 write_seqcount_begin(&tsk->mems_allowed_seq); 1603 1604 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1605 mpol_rebind_task(tsk, newmems); 1606 tsk->mems_allowed = *newmems; 1607 1608 write_seqcount_end(&tsk->mems_allowed_seq); 1609 local_irq_enable(); 1610 1611 task_unlock(tsk); 1612 } 1613 1614 static void *cpuset_being_rebound; 1615 1616 /** 1617 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1618 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1619 * 1620 * Iterate through each task of @cs updating its mems_allowed to the 1621 * effective cpuset's. As this function is called with cpuset_mutex held, 1622 * cpuset membership stays stable. 1623 */ 1624 static void update_tasks_nodemask(struct cpuset *cs) 1625 { 1626 static nodemask_t newmems; /* protected by cpuset_mutex */ 1627 struct css_task_iter it; 1628 struct task_struct *task; 1629 1630 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1631 1632 guarantee_online_mems(cs, &newmems); 1633 1634 /* 1635 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't 1636 * take while holding tasklist_lock. Forks can happen - the 1637 * mpol_dup() cpuset_being_rebound check will catch such forks, 1638 * and rebind their vma mempolicies too. Because we still hold 1639 * the global cpuset_mutex, we know that no other rebind effort 1640 * will be contending for the global variable cpuset_being_rebound. 1641 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1642 * is idempotent. Also migrate pages in each mm to new nodes. 1643 */ 1644 css_task_iter_start(&cs->css, 0, &it); 1645 while ((task = css_task_iter_next(&it))) { 1646 struct mm_struct *mm; 1647 bool migrate; 1648 1649 cpuset_change_task_nodemask(task, &newmems); 1650 1651 mm = get_task_mm(task); 1652 if (!mm) 1653 continue; 1654 1655 migrate = is_memory_migrate(cs); 1656 1657 mpol_rebind_mm(mm, &cs->mems_allowed); 1658 if (migrate) 1659 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1660 else 1661 mmput(mm); 1662 } 1663 css_task_iter_end(&it); 1664 1665 /* 1666 * All the tasks' nodemasks have been updated, update 1667 * cs->old_mems_allowed. 1668 */ 1669 cs->old_mems_allowed = newmems; 1670 1671 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1672 cpuset_being_rebound = NULL; 1673 } 1674 1675 /* 1676 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 1677 * @cs: the cpuset to consider 1678 * @new_mems: a temp variable for calculating new effective_mems 1679 * 1680 * When configured nodemask is changed, the effective nodemasks of this cpuset 1681 * and all its descendants need to be updated. 1682 * 1683 * On legacy hiearchy, effective_mems will be the same with mems_allowed. 1684 * 1685 * Called with cpuset_mutex held 1686 */ 1687 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 1688 { 1689 struct cpuset *cp; 1690 struct cgroup_subsys_state *pos_css; 1691 1692 rcu_read_lock(); 1693 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1694 struct cpuset *parent = parent_cs(cp); 1695 1696 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 1697 1698 /* 1699 * If it becomes empty, inherit the effective mask of the 1700 * parent, which is guaranteed to have some MEMs. 1701 */ 1702 if (is_in_v2_mode() && nodes_empty(*new_mems)) 1703 *new_mems = parent->effective_mems; 1704 1705 /* Skip the whole subtree if the nodemask remains the same. */ 1706 if (nodes_equal(*new_mems, cp->effective_mems)) { 1707 pos_css = css_rightmost_descendant(pos_css); 1708 continue; 1709 } 1710 1711 if (!css_tryget_online(&cp->css)) 1712 continue; 1713 rcu_read_unlock(); 1714 1715 spin_lock_irq(&callback_lock); 1716 cp->effective_mems = *new_mems; 1717 spin_unlock_irq(&callback_lock); 1718 1719 WARN_ON(!is_in_v2_mode() && 1720 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 1721 1722 update_tasks_nodemask(cp); 1723 1724 rcu_read_lock(); 1725 css_put(&cp->css); 1726 } 1727 rcu_read_unlock(); 1728 } 1729 1730 /* 1731 * Handle user request to change the 'mems' memory placement 1732 * of a cpuset. Needs to validate the request, update the 1733 * cpusets mems_allowed, and for each task in the cpuset, 1734 * update mems_allowed and rebind task's mempolicy and any vma 1735 * mempolicies and if the cpuset is marked 'memory_migrate', 1736 * migrate the tasks pages to the new memory. 1737 * 1738 * Call with cpuset_mutex held. May take callback_lock during call. 1739 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1740 * lock each such tasks mm->mmap_sem, scan its vma's and rebind 1741 * their mempolicies to the cpusets new mems_allowed. 1742 */ 1743 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 1744 const char *buf) 1745 { 1746 int retval; 1747 1748 /* 1749 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 1750 * it's read-only 1751 */ 1752 if (cs == &top_cpuset) { 1753 retval = -EACCES; 1754 goto done; 1755 } 1756 1757 /* 1758 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1759 * Since nodelist_parse() fails on an empty mask, we special case 1760 * that parsing. The validate_change() call ensures that cpusets 1761 * with tasks have memory. 1762 */ 1763 if (!*buf) { 1764 nodes_clear(trialcs->mems_allowed); 1765 } else { 1766 retval = nodelist_parse(buf, trialcs->mems_allowed); 1767 if (retval < 0) 1768 goto done; 1769 1770 if (!nodes_subset(trialcs->mems_allowed, 1771 top_cpuset.mems_allowed)) { 1772 retval = -EINVAL; 1773 goto done; 1774 } 1775 } 1776 1777 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 1778 retval = 0; /* Too easy - nothing to do */ 1779 goto done; 1780 } 1781 retval = validate_change(cs, trialcs); 1782 if (retval < 0) 1783 goto done; 1784 1785 spin_lock_irq(&callback_lock); 1786 cs->mems_allowed = trialcs->mems_allowed; 1787 spin_unlock_irq(&callback_lock); 1788 1789 /* use trialcs->mems_allowed as a temp variable */ 1790 update_nodemasks_hier(cs, &trialcs->mems_allowed); 1791 done: 1792 return retval; 1793 } 1794 1795 bool current_cpuset_is_being_rebound(void) 1796 { 1797 bool ret; 1798 1799 rcu_read_lock(); 1800 ret = task_cs(current) == cpuset_being_rebound; 1801 rcu_read_unlock(); 1802 1803 return ret; 1804 } 1805 1806 static int update_relax_domain_level(struct cpuset *cs, s64 val) 1807 { 1808 #ifdef CONFIG_SMP 1809 if (val < -1 || val >= sched_domain_level_max) 1810 return -EINVAL; 1811 #endif 1812 1813 if (val != cs->relax_domain_level) { 1814 cs->relax_domain_level = val; 1815 if (!cpumask_empty(cs->cpus_allowed) && 1816 is_sched_load_balance(cs)) 1817 rebuild_sched_domains_locked(); 1818 } 1819 1820 return 0; 1821 } 1822 1823 /** 1824 * update_tasks_flags - update the spread flags of tasks in the cpuset. 1825 * @cs: the cpuset in which each task's spread flags needs to be changed 1826 * 1827 * Iterate through each task of @cs updating its spread flags. As this 1828 * function is called with cpuset_mutex held, cpuset membership stays 1829 * stable. 1830 */ 1831 static void update_tasks_flags(struct cpuset *cs) 1832 { 1833 struct css_task_iter it; 1834 struct task_struct *task; 1835 1836 css_task_iter_start(&cs->css, 0, &it); 1837 while ((task = css_task_iter_next(&it))) 1838 cpuset_update_task_spread_flag(cs, task); 1839 css_task_iter_end(&it); 1840 } 1841 1842 /* 1843 * update_flag - read a 0 or a 1 in a file and update associated flag 1844 * bit: the bit to update (see cpuset_flagbits_t) 1845 * cs: the cpuset to update 1846 * turning_on: whether the flag is being set or cleared 1847 * 1848 * Call with cpuset_mutex held. 1849 */ 1850 1851 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1852 int turning_on) 1853 { 1854 struct cpuset *trialcs; 1855 int balance_flag_changed; 1856 int spread_flag_changed; 1857 int err; 1858 1859 trialcs = alloc_trial_cpuset(cs); 1860 if (!trialcs) 1861 return -ENOMEM; 1862 1863 if (turning_on) 1864 set_bit(bit, &trialcs->flags); 1865 else 1866 clear_bit(bit, &trialcs->flags); 1867 1868 err = validate_change(cs, trialcs); 1869 if (err < 0) 1870 goto out; 1871 1872 balance_flag_changed = (is_sched_load_balance(cs) != 1873 is_sched_load_balance(trialcs)); 1874 1875 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 1876 || (is_spread_page(cs) != is_spread_page(trialcs))); 1877 1878 spin_lock_irq(&callback_lock); 1879 cs->flags = trialcs->flags; 1880 spin_unlock_irq(&callback_lock); 1881 1882 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 1883 rebuild_sched_domains_locked(); 1884 1885 if (spread_flag_changed) 1886 update_tasks_flags(cs); 1887 out: 1888 free_cpuset(trialcs); 1889 return err; 1890 } 1891 1892 /* 1893 * update_prstate - update partititon_root_state 1894 * cs: the cpuset to update 1895 * val: 0 - disabled, 1 - enabled 1896 * 1897 * Call with cpuset_mutex held. 1898 */ 1899 static int update_prstate(struct cpuset *cs, int val) 1900 { 1901 int err; 1902 struct cpuset *parent = parent_cs(cs); 1903 struct tmpmasks tmp; 1904 1905 if ((val != 0) && (val != 1)) 1906 return -EINVAL; 1907 if (val == cs->partition_root_state) 1908 return 0; 1909 1910 /* 1911 * Cannot force a partial or invalid partition root to a full 1912 * partition root. 1913 */ 1914 if (val && cs->partition_root_state) 1915 return -EINVAL; 1916 1917 if (alloc_cpumasks(NULL, &tmp)) 1918 return -ENOMEM; 1919 1920 err = -EINVAL; 1921 if (!cs->partition_root_state) { 1922 /* 1923 * Turning on partition root requires setting the 1924 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed 1925 * cannot be NULL. 1926 */ 1927 if (cpumask_empty(cs->cpus_allowed)) 1928 goto out; 1929 1930 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); 1931 if (err) 1932 goto out; 1933 1934 err = update_parent_subparts_cpumask(cs, partcmd_enable, 1935 NULL, &tmp); 1936 if (err) { 1937 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1938 goto out; 1939 } 1940 cs->partition_root_state = PRS_ENABLED; 1941 } else { 1942 /* 1943 * Turning off partition root will clear the 1944 * CS_CPU_EXCLUSIVE bit. 1945 */ 1946 if (cs->partition_root_state == PRS_ERROR) { 1947 cs->partition_root_state = 0; 1948 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1949 err = 0; 1950 goto out; 1951 } 1952 1953 err = update_parent_subparts_cpumask(cs, partcmd_disable, 1954 NULL, &tmp); 1955 if (err) 1956 goto out; 1957 1958 cs->partition_root_state = 0; 1959 1960 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1961 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1962 } 1963 1964 /* 1965 * Update cpumask of parent's tasks except when it is the top 1966 * cpuset as some system daemons cannot be mapped to other CPUs. 1967 */ 1968 if (parent != &top_cpuset) 1969 update_tasks_cpumask(parent); 1970 1971 if (parent->child_ecpus_count) 1972 update_sibling_cpumasks(parent, cs, &tmp); 1973 1974 rebuild_sched_domains_locked(); 1975 out: 1976 free_cpumasks(NULL, &tmp); 1977 return err; 1978 } 1979 1980 /* 1981 * Frequency meter - How fast is some event occurring? 1982 * 1983 * These routines manage a digitally filtered, constant time based, 1984 * event frequency meter. There are four routines: 1985 * fmeter_init() - initialize a frequency meter. 1986 * fmeter_markevent() - called each time the event happens. 1987 * fmeter_getrate() - returns the recent rate of such events. 1988 * fmeter_update() - internal routine used to update fmeter. 1989 * 1990 * A common data structure is passed to each of these routines, 1991 * which is used to keep track of the state required to manage the 1992 * frequency meter and its digital filter. 1993 * 1994 * The filter works on the number of events marked per unit time. 1995 * The filter is single-pole low-pass recursive (IIR). The time unit 1996 * is 1 second. Arithmetic is done using 32-bit integers scaled to 1997 * simulate 3 decimal digits of precision (multiplied by 1000). 1998 * 1999 * With an FM_COEF of 933, and a time base of 1 second, the filter 2000 * has a half-life of 10 seconds, meaning that if the events quit 2001 * happening, then the rate returned from the fmeter_getrate() 2002 * will be cut in half each 10 seconds, until it converges to zero. 2003 * 2004 * It is not worth doing a real infinitely recursive filter. If more 2005 * than FM_MAXTICKS ticks have elapsed since the last filter event, 2006 * just compute FM_MAXTICKS ticks worth, by which point the level 2007 * will be stable. 2008 * 2009 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 2010 * arithmetic overflow in the fmeter_update() routine. 2011 * 2012 * Given the simple 32 bit integer arithmetic used, this meter works 2013 * best for reporting rates between one per millisecond (msec) and 2014 * one per 32 (approx) seconds. At constant rates faster than one 2015 * per msec it maxes out at values just under 1,000,000. At constant 2016 * rates between one per msec, and one per second it will stabilize 2017 * to a value N*1000, where N is the rate of events per second. 2018 * At constant rates between one per second and one per 32 seconds, 2019 * it will be choppy, moving up on the seconds that have an event, 2020 * and then decaying until the next event. At rates slower than 2021 * about one in 32 seconds, it decays all the way back to zero between 2022 * each event. 2023 */ 2024 2025 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 2026 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 2027 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 2028 #define FM_SCALE 1000 /* faux fixed point scale */ 2029 2030 /* Initialize a frequency meter */ 2031 static void fmeter_init(struct fmeter *fmp) 2032 { 2033 fmp->cnt = 0; 2034 fmp->val = 0; 2035 fmp->time = 0; 2036 spin_lock_init(&fmp->lock); 2037 } 2038 2039 /* Internal meter update - process cnt events and update value */ 2040 static void fmeter_update(struct fmeter *fmp) 2041 { 2042 time64_t now; 2043 u32 ticks; 2044 2045 now = ktime_get_seconds(); 2046 ticks = now - fmp->time; 2047 2048 if (ticks == 0) 2049 return; 2050 2051 ticks = min(FM_MAXTICKS, ticks); 2052 while (ticks-- > 0) 2053 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2054 fmp->time = now; 2055 2056 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2057 fmp->cnt = 0; 2058 } 2059 2060 /* Process any previous ticks, then bump cnt by one (times scale). */ 2061 static void fmeter_markevent(struct fmeter *fmp) 2062 { 2063 spin_lock(&fmp->lock); 2064 fmeter_update(fmp); 2065 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2066 spin_unlock(&fmp->lock); 2067 } 2068 2069 /* Process any previous ticks, then return current value. */ 2070 static int fmeter_getrate(struct fmeter *fmp) 2071 { 2072 int val; 2073 2074 spin_lock(&fmp->lock); 2075 fmeter_update(fmp); 2076 val = fmp->val; 2077 spin_unlock(&fmp->lock); 2078 return val; 2079 } 2080 2081 static struct cpuset *cpuset_attach_old_cs; 2082 2083 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 2084 static int cpuset_can_attach(struct cgroup_taskset *tset) 2085 { 2086 struct cgroup_subsys_state *css; 2087 struct cpuset *cs; 2088 struct task_struct *task; 2089 int ret; 2090 2091 /* used later by cpuset_attach() */ 2092 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2093 cs = css_cs(css); 2094 2095 mutex_lock(&cpuset_mutex); 2096 2097 /* allow moving tasks into an empty cpuset if on default hierarchy */ 2098 ret = -ENOSPC; 2099 if (!is_in_v2_mode() && 2100 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 2101 goto out_unlock; 2102 2103 cgroup_taskset_for_each(task, css, tset) { 2104 ret = task_can_attach(task, cs->cpus_allowed); 2105 if (ret) 2106 goto out_unlock; 2107 ret = security_task_setscheduler(task); 2108 if (ret) 2109 goto out_unlock; 2110 } 2111 2112 /* 2113 * Mark attach is in progress. This makes validate_change() fail 2114 * changes which zero cpus/mems_allowed. 2115 */ 2116 cs->attach_in_progress++; 2117 ret = 0; 2118 out_unlock: 2119 mutex_unlock(&cpuset_mutex); 2120 return ret; 2121 } 2122 2123 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2124 { 2125 struct cgroup_subsys_state *css; 2126 2127 cgroup_taskset_first(tset, &css); 2128 2129 mutex_lock(&cpuset_mutex); 2130 css_cs(css)->attach_in_progress--; 2131 mutex_unlock(&cpuset_mutex); 2132 } 2133 2134 /* 2135 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() 2136 * but we can't allocate it dynamically there. Define it global and 2137 * allocate from cpuset_init(). 2138 */ 2139 static cpumask_var_t cpus_attach; 2140 2141 static void cpuset_attach(struct cgroup_taskset *tset) 2142 { 2143 /* static buf protected by cpuset_mutex */ 2144 static nodemask_t cpuset_attach_nodemask_to; 2145 struct task_struct *task; 2146 struct task_struct *leader; 2147 struct cgroup_subsys_state *css; 2148 struct cpuset *cs; 2149 struct cpuset *oldcs = cpuset_attach_old_cs; 2150 2151 cgroup_taskset_first(tset, &css); 2152 cs = css_cs(css); 2153 2154 mutex_lock(&cpuset_mutex); 2155 2156 /* prepare for attach */ 2157 if (cs == &top_cpuset) 2158 cpumask_copy(cpus_attach, cpu_possible_mask); 2159 else 2160 guarantee_online_cpus(cs, cpus_attach); 2161 2162 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2163 2164 cgroup_taskset_for_each(task, css, tset) { 2165 /* 2166 * can_attach beforehand should guarantee that this doesn't 2167 * fail. TODO: have a better way to handle failure here 2168 */ 2169 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2170 2171 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2172 cpuset_update_task_spread_flag(cs, task); 2173 } 2174 2175 /* 2176 * Change mm for all threadgroup leaders. This is expensive and may 2177 * sleep and should be moved outside migration path proper. 2178 */ 2179 cpuset_attach_nodemask_to = cs->effective_mems; 2180 cgroup_taskset_for_each_leader(leader, css, tset) { 2181 struct mm_struct *mm = get_task_mm(leader); 2182 2183 if (mm) { 2184 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2185 2186 /* 2187 * old_mems_allowed is the same with mems_allowed 2188 * here, except if this task is being moved 2189 * automatically due to hotplug. In that case 2190 * @mems_allowed has been updated and is empty, so 2191 * @old_mems_allowed is the right nodesets that we 2192 * migrate mm from. 2193 */ 2194 if (is_memory_migrate(cs)) 2195 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2196 &cpuset_attach_nodemask_to); 2197 else 2198 mmput(mm); 2199 } 2200 } 2201 2202 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2203 2204 cs->attach_in_progress--; 2205 if (!cs->attach_in_progress) 2206 wake_up(&cpuset_attach_wq); 2207 2208 mutex_unlock(&cpuset_mutex); 2209 } 2210 2211 /* The various types of files and directories in a cpuset file system */ 2212 2213 typedef enum { 2214 FILE_MEMORY_MIGRATE, 2215 FILE_CPULIST, 2216 FILE_MEMLIST, 2217 FILE_EFFECTIVE_CPULIST, 2218 FILE_EFFECTIVE_MEMLIST, 2219 FILE_SUBPARTS_CPULIST, 2220 FILE_CPU_EXCLUSIVE, 2221 FILE_MEM_EXCLUSIVE, 2222 FILE_MEM_HARDWALL, 2223 FILE_SCHED_LOAD_BALANCE, 2224 FILE_PARTITION_ROOT, 2225 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2226 FILE_MEMORY_PRESSURE_ENABLED, 2227 FILE_MEMORY_PRESSURE, 2228 FILE_SPREAD_PAGE, 2229 FILE_SPREAD_SLAB, 2230 } cpuset_filetype_t; 2231 2232 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2233 u64 val) 2234 { 2235 struct cpuset *cs = css_cs(css); 2236 cpuset_filetype_t type = cft->private; 2237 int retval = 0; 2238 2239 mutex_lock(&cpuset_mutex); 2240 if (!is_cpuset_online(cs)) { 2241 retval = -ENODEV; 2242 goto out_unlock; 2243 } 2244 2245 switch (type) { 2246 case FILE_CPU_EXCLUSIVE: 2247 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2248 break; 2249 case FILE_MEM_EXCLUSIVE: 2250 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2251 break; 2252 case FILE_MEM_HARDWALL: 2253 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2254 break; 2255 case FILE_SCHED_LOAD_BALANCE: 2256 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2257 break; 2258 case FILE_MEMORY_MIGRATE: 2259 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2260 break; 2261 case FILE_MEMORY_PRESSURE_ENABLED: 2262 cpuset_memory_pressure_enabled = !!val; 2263 break; 2264 case FILE_SPREAD_PAGE: 2265 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2266 break; 2267 case FILE_SPREAD_SLAB: 2268 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2269 break; 2270 default: 2271 retval = -EINVAL; 2272 break; 2273 } 2274 out_unlock: 2275 mutex_unlock(&cpuset_mutex); 2276 return retval; 2277 } 2278 2279 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2280 s64 val) 2281 { 2282 struct cpuset *cs = css_cs(css); 2283 cpuset_filetype_t type = cft->private; 2284 int retval = -ENODEV; 2285 2286 mutex_lock(&cpuset_mutex); 2287 if (!is_cpuset_online(cs)) 2288 goto out_unlock; 2289 2290 switch (type) { 2291 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2292 retval = update_relax_domain_level(cs, val); 2293 break; 2294 default: 2295 retval = -EINVAL; 2296 break; 2297 } 2298 out_unlock: 2299 mutex_unlock(&cpuset_mutex); 2300 return retval; 2301 } 2302 2303 /* 2304 * Common handling for a write to a "cpus" or "mems" file. 2305 */ 2306 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2307 char *buf, size_t nbytes, loff_t off) 2308 { 2309 struct cpuset *cs = css_cs(of_css(of)); 2310 struct cpuset *trialcs; 2311 int retval = -ENODEV; 2312 2313 buf = strstrip(buf); 2314 2315 /* 2316 * CPU or memory hotunplug may leave @cs w/o any execution 2317 * resources, in which case the hotplug code asynchronously updates 2318 * configuration and transfers all tasks to the nearest ancestor 2319 * which can execute. 2320 * 2321 * As writes to "cpus" or "mems" may restore @cs's execution 2322 * resources, wait for the previously scheduled operations before 2323 * proceeding, so that we don't end up keep removing tasks added 2324 * after execution capability is restored. 2325 * 2326 * cpuset_hotplug_work calls back into cgroup core via 2327 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2328 * operation like this one can lead to a deadlock through kernfs 2329 * active_ref protection. Let's break the protection. Losing the 2330 * protection is okay as we check whether @cs is online after 2331 * grabbing cpuset_mutex anyway. This only happens on the legacy 2332 * hierarchies. 2333 */ 2334 css_get(&cs->css); 2335 kernfs_break_active_protection(of->kn); 2336 flush_work(&cpuset_hotplug_work); 2337 2338 mutex_lock(&cpuset_mutex); 2339 if (!is_cpuset_online(cs)) 2340 goto out_unlock; 2341 2342 trialcs = alloc_trial_cpuset(cs); 2343 if (!trialcs) { 2344 retval = -ENOMEM; 2345 goto out_unlock; 2346 } 2347 2348 switch (of_cft(of)->private) { 2349 case FILE_CPULIST: 2350 retval = update_cpumask(cs, trialcs, buf); 2351 break; 2352 case FILE_MEMLIST: 2353 retval = update_nodemask(cs, trialcs, buf); 2354 break; 2355 default: 2356 retval = -EINVAL; 2357 break; 2358 } 2359 2360 free_cpuset(trialcs); 2361 out_unlock: 2362 mutex_unlock(&cpuset_mutex); 2363 kernfs_unbreak_active_protection(of->kn); 2364 css_put(&cs->css); 2365 flush_workqueue(cpuset_migrate_mm_wq); 2366 return retval ?: nbytes; 2367 } 2368 2369 /* 2370 * These ascii lists should be read in a single call, by using a user 2371 * buffer large enough to hold the entire map. If read in smaller 2372 * chunks, there is no guarantee of atomicity. Since the display format 2373 * used, list of ranges of sequential numbers, is variable length, 2374 * and since these maps can change value dynamically, one could read 2375 * gibberish by doing partial reads while a list was changing. 2376 */ 2377 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2378 { 2379 struct cpuset *cs = css_cs(seq_css(sf)); 2380 cpuset_filetype_t type = seq_cft(sf)->private; 2381 int ret = 0; 2382 2383 spin_lock_irq(&callback_lock); 2384 2385 switch (type) { 2386 case FILE_CPULIST: 2387 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2388 break; 2389 case FILE_MEMLIST: 2390 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2391 break; 2392 case FILE_EFFECTIVE_CPULIST: 2393 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2394 break; 2395 case FILE_EFFECTIVE_MEMLIST: 2396 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2397 break; 2398 case FILE_SUBPARTS_CPULIST: 2399 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2400 break; 2401 default: 2402 ret = -EINVAL; 2403 } 2404 2405 spin_unlock_irq(&callback_lock); 2406 return ret; 2407 } 2408 2409 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2410 { 2411 struct cpuset *cs = css_cs(css); 2412 cpuset_filetype_t type = cft->private; 2413 switch (type) { 2414 case FILE_CPU_EXCLUSIVE: 2415 return is_cpu_exclusive(cs); 2416 case FILE_MEM_EXCLUSIVE: 2417 return is_mem_exclusive(cs); 2418 case FILE_MEM_HARDWALL: 2419 return is_mem_hardwall(cs); 2420 case FILE_SCHED_LOAD_BALANCE: 2421 return is_sched_load_balance(cs); 2422 case FILE_MEMORY_MIGRATE: 2423 return is_memory_migrate(cs); 2424 case FILE_MEMORY_PRESSURE_ENABLED: 2425 return cpuset_memory_pressure_enabled; 2426 case FILE_MEMORY_PRESSURE: 2427 return fmeter_getrate(&cs->fmeter); 2428 case FILE_SPREAD_PAGE: 2429 return is_spread_page(cs); 2430 case FILE_SPREAD_SLAB: 2431 return is_spread_slab(cs); 2432 default: 2433 BUG(); 2434 } 2435 2436 /* Unreachable but makes gcc happy */ 2437 return 0; 2438 } 2439 2440 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2441 { 2442 struct cpuset *cs = css_cs(css); 2443 cpuset_filetype_t type = cft->private; 2444 switch (type) { 2445 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2446 return cs->relax_domain_level; 2447 default: 2448 BUG(); 2449 } 2450 2451 /* Unrechable but makes gcc happy */ 2452 return 0; 2453 } 2454 2455 static int sched_partition_show(struct seq_file *seq, void *v) 2456 { 2457 struct cpuset *cs = css_cs(seq_css(seq)); 2458 2459 switch (cs->partition_root_state) { 2460 case PRS_ENABLED: 2461 seq_puts(seq, "root\n"); 2462 break; 2463 case PRS_DISABLED: 2464 seq_puts(seq, "member\n"); 2465 break; 2466 case PRS_ERROR: 2467 seq_puts(seq, "root invalid\n"); 2468 break; 2469 } 2470 return 0; 2471 } 2472 2473 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 2474 size_t nbytes, loff_t off) 2475 { 2476 struct cpuset *cs = css_cs(of_css(of)); 2477 int val; 2478 int retval = -ENODEV; 2479 2480 buf = strstrip(buf); 2481 2482 /* 2483 * Convert "root" to ENABLED, and convert "member" to DISABLED. 2484 */ 2485 if (!strcmp(buf, "root")) 2486 val = PRS_ENABLED; 2487 else if (!strcmp(buf, "member")) 2488 val = PRS_DISABLED; 2489 else 2490 return -EINVAL; 2491 2492 css_get(&cs->css); 2493 mutex_lock(&cpuset_mutex); 2494 if (!is_cpuset_online(cs)) 2495 goto out_unlock; 2496 2497 retval = update_prstate(cs, val); 2498 out_unlock: 2499 mutex_unlock(&cpuset_mutex); 2500 css_put(&cs->css); 2501 return retval ?: nbytes; 2502 } 2503 2504 /* 2505 * for the common functions, 'private' gives the type of file 2506 */ 2507 2508 static struct cftype legacy_files[] = { 2509 { 2510 .name = "cpus", 2511 .seq_show = cpuset_common_seq_show, 2512 .write = cpuset_write_resmask, 2513 .max_write_len = (100U + 6 * NR_CPUS), 2514 .private = FILE_CPULIST, 2515 }, 2516 2517 { 2518 .name = "mems", 2519 .seq_show = cpuset_common_seq_show, 2520 .write = cpuset_write_resmask, 2521 .max_write_len = (100U + 6 * MAX_NUMNODES), 2522 .private = FILE_MEMLIST, 2523 }, 2524 2525 { 2526 .name = "effective_cpus", 2527 .seq_show = cpuset_common_seq_show, 2528 .private = FILE_EFFECTIVE_CPULIST, 2529 }, 2530 2531 { 2532 .name = "effective_mems", 2533 .seq_show = cpuset_common_seq_show, 2534 .private = FILE_EFFECTIVE_MEMLIST, 2535 }, 2536 2537 { 2538 .name = "cpu_exclusive", 2539 .read_u64 = cpuset_read_u64, 2540 .write_u64 = cpuset_write_u64, 2541 .private = FILE_CPU_EXCLUSIVE, 2542 }, 2543 2544 { 2545 .name = "mem_exclusive", 2546 .read_u64 = cpuset_read_u64, 2547 .write_u64 = cpuset_write_u64, 2548 .private = FILE_MEM_EXCLUSIVE, 2549 }, 2550 2551 { 2552 .name = "mem_hardwall", 2553 .read_u64 = cpuset_read_u64, 2554 .write_u64 = cpuset_write_u64, 2555 .private = FILE_MEM_HARDWALL, 2556 }, 2557 2558 { 2559 .name = "sched_load_balance", 2560 .read_u64 = cpuset_read_u64, 2561 .write_u64 = cpuset_write_u64, 2562 .private = FILE_SCHED_LOAD_BALANCE, 2563 }, 2564 2565 { 2566 .name = "sched_relax_domain_level", 2567 .read_s64 = cpuset_read_s64, 2568 .write_s64 = cpuset_write_s64, 2569 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 2570 }, 2571 2572 { 2573 .name = "memory_migrate", 2574 .read_u64 = cpuset_read_u64, 2575 .write_u64 = cpuset_write_u64, 2576 .private = FILE_MEMORY_MIGRATE, 2577 }, 2578 2579 { 2580 .name = "memory_pressure", 2581 .read_u64 = cpuset_read_u64, 2582 .private = FILE_MEMORY_PRESSURE, 2583 }, 2584 2585 { 2586 .name = "memory_spread_page", 2587 .read_u64 = cpuset_read_u64, 2588 .write_u64 = cpuset_write_u64, 2589 .private = FILE_SPREAD_PAGE, 2590 }, 2591 2592 { 2593 .name = "memory_spread_slab", 2594 .read_u64 = cpuset_read_u64, 2595 .write_u64 = cpuset_write_u64, 2596 .private = FILE_SPREAD_SLAB, 2597 }, 2598 2599 { 2600 .name = "memory_pressure_enabled", 2601 .flags = CFTYPE_ONLY_ON_ROOT, 2602 .read_u64 = cpuset_read_u64, 2603 .write_u64 = cpuset_write_u64, 2604 .private = FILE_MEMORY_PRESSURE_ENABLED, 2605 }, 2606 2607 { } /* terminate */ 2608 }; 2609 2610 /* 2611 * This is currently a minimal set for the default hierarchy. It can be 2612 * expanded later on by migrating more features and control files from v1. 2613 */ 2614 static struct cftype dfl_files[] = { 2615 { 2616 .name = "cpus", 2617 .seq_show = cpuset_common_seq_show, 2618 .write = cpuset_write_resmask, 2619 .max_write_len = (100U + 6 * NR_CPUS), 2620 .private = FILE_CPULIST, 2621 .flags = CFTYPE_NOT_ON_ROOT, 2622 }, 2623 2624 { 2625 .name = "mems", 2626 .seq_show = cpuset_common_seq_show, 2627 .write = cpuset_write_resmask, 2628 .max_write_len = (100U + 6 * MAX_NUMNODES), 2629 .private = FILE_MEMLIST, 2630 .flags = CFTYPE_NOT_ON_ROOT, 2631 }, 2632 2633 { 2634 .name = "cpus.effective", 2635 .seq_show = cpuset_common_seq_show, 2636 .private = FILE_EFFECTIVE_CPULIST, 2637 }, 2638 2639 { 2640 .name = "mems.effective", 2641 .seq_show = cpuset_common_seq_show, 2642 .private = FILE_EFFECTIVE_MEMLIST, 2643 }, 2644 2645 { 2646 .name = "cpus.partition", 2647 .seq_show = sched_partition_show, 2648 .write = sched_partition_write, 2649 .private = FILE_PARTITION_ROOT, 2650 .flags = CFTYPE_NOT_ON_ROOT, 2651 }, 2652 2653 { 2654 .name = "cpus.subpartitions", 2655 .seq_show = cpuset_common_seq_show, 2656 .private = FILE_SUBPARTS_CPULIST, 2657 .flags = CFTYPE_DEBUG, 2658 }, 2659 2660 { } /* terminate */ 2661 }; 2662 2663 2664 /* 2665 * cpuset_css_alloc - allocate a cpuset css 2666 * cgrp: control group that the new cpuset will be part of 2667 */ 2668 2669 static struct cgroup_subsys_state * 2670 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 2671 { 2672 struct cpuset *cs; 2673 2674 if (!parent_css) 2675 return &top_cpuset.css; 2676 2677 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 2678 if (!cs) 2679 return ERR_PTR(-ENOMEM); 2680 2681 if (alloc_cpumasks(cs, NULL)) { 2682 kfree(cs); 2683 return ERR_PTR(-ENOMEM); 2684 } 2685 2686 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 2687 nodes_clear(cs->mems_allowed); 2688 nodes_clear(cs->effective_mems); 2689 fmeter_init(&cs->fmeter); 2690 cs->relax_domain_level = -1; 2691 2692 return &cs->css; 2693 } 2694 2695 static int cpuset_css_online(struct cgroup_subsys_state *css) 2696 { 2697 struct cpuset *cs = css_cs(css); 2698 struct cpuset *parent = parent_cs(cs); 2699 struct cpuset *tmp_cs; 2700 struct cgroup_subsys_state *pos_css; 2701 2702 if (!parent) 2703 return 0; 2704 2705 mutex_lock(&cpuset_mutex); 2706 2707 set_bit(CS_ONLINE, &cs->flags); 2708 if (is_spread_page(parent)) 2709 set_bit(CS_SPREAD_PAGE, &cs->flags); 2710 if (is_spread_slab(parent)) 2711 set_bit(CS_SPREAD_SLAB, &cs->flags); 2712 2713 cpuset_inc(); 2714 2715 spin_lock_irq(&callback_lock); 2716 if (is_in_v2_mode()) { 2717 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 2718 cs->effective_mems = parent->effective_mems; 2719 cs->use_parent_ecpus = true; 2720 parent->child_ecpus_count++; 2721 } 2722 spin_unlock_irq(&callback_lock); 2723 2724 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 2725 goto out_unlock; 2726 2727 /* 2728 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 2729 * set. This flag handling is implemented in cgroup core for 2730 * histrical reasons - the flag may be specified during mount. 2731 * 2732 * Currently, if any sibling cpusets have exclusive cpus or mem, we 2733 * refuse to clone the configuration - thereby refusing the task to 2734 * be entered, and as a result refusing the sys_unshare() or 2735 * clone() which initiated it. If this becomes a problem for some 2736 * users who wish to allow that scenario, then this could be 2737 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 2738 * (and likewise for mems) to the new cgroup. 2739 */ 2740 rcu_read_lock(); 2741 cpuset_for_each_child(tmp_cs, pos_css, parent) { 2742 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 2743 rcu_read_unlock(); 2744 goto out_unlock; 2745 } 2746 } 2747 rcu_read_unlock(); 2748 2749 spin_lock_irq(&callback_lock); 2750 cs->mems_allowed = parent->mems_allowed; 2751 cs->effective_mems = parent->mems_allowed; 2752 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 2753 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 2754 spin_unlock_irq(&callback_lock); 2755 out_unlock: 2756 mutex_unlock(&cpuset_mutex); 2757 return 0; 2758 } 2759 2760 /* 2761 * If the cpuset being removed has its flag 'sched_load_balance' 2762 * enabled, then simulate turning sched_load_balance off, which 2763 * will call rebuild_sched_domains_locked(). That is not needed 2764 * in the default hierarchy where only changes in partition 2765 * will cause repartitioning. 2766 * 2767 * If the cpuset has the 'sched.partition' flag enabled, simulate 2768 * turning 'sched.partition" off. 2769 */ 2770 2771 static void cpuset_css_offline(struct cgroup_subsys_state *css) 2772 { 2773 struct cpuset *cs = css_cs(css); 2774 2775 mutex_lock(&cpuset_mutex); 2776 2777 if (is_partition_root(cs)) 2778 update_prstate(cs, 0); 2779 2780 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2781 is_sched_load_balance(cs)) 2782 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2783 2784 if (cs->use_parent_ecpus) { 2785 struct cpuset *parent = parent_cs(cs); 2786 2787 cs->use_parent_ecpus = false; 2788 parent->child_ecpus_count--; 2789 } 2790 2791 cpuset_dec(); 2792 clear_bit(CS_ONLINE, &cs->flags); 2793 2794 mutex_unlock(&cpuset_mutex); 2795 } 2796 2797 static void cpuset_css_free(struct cgroup_subsys_state *css) 2798 { 2799 struct cpuset *cs = css_cs(css); 2800 2801 free_cpuset(cs); 2802 } 2803 2804 static void cpuset_bind(struct cgroup_subsys_state *root_css) 2805 { 2806 mutex_lock(&cpuset_mutex); 2807 spin_lock_irq(&callback_lock); 2808 2809 if (is_in_v2_mode()) { 2810 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 2811 top_cpuset.mems_allowed = node_possible_map; 2812 } else { 2813 cpumask_copy(top_cpuset.cpus_allowed, 2814 top_cpuset.effective_cpus); 2815 top_cpuset.mems_allowed = top_cpuset.effective_mems; 2816 } 2817 2818 spin_unlock_irq(&callback_lock); 2819 mutex_unlock(&cpuset_mutex); 2820 } 2821 2822 /* 2823 * Make sure the new task conform to the current state of its parent, 2824 * which could have been changed by cpuset just after it inherits the 2825 * state from the parent and before it sits on the cgroup's task list. 2826 */ 2827 static void cpuset_fork(struct task_struct *task) 2828 { 2829 if (task_css_is_root(task, cpuset_cgrp_id)) 2830 return; 2831 2832 set_cpus_allowed_ptr(task, ¤t->cpus_allowed); 2833 task->mems_allowed = current->mems_allowed; 2834 } 2835 2836 struct cgroup_subsys cpuset_cgrp_subsys = { 2837 .css_alloc = cpuset_css_alloc, 2838 .css_online = cpuset_css_online, 2839 .css_offline = cpuset_css_offline, 2840 .css_free = cpuset_css_free, 2841 .can_attach = cpuset_can_attach, 2842 .cancel_attach = cpuset_cancel_attach, 2843 .attach = cpuset_attach, 2844 .post_attach = cpuset_post_attach, 2845 .bind = cpuset_bind, 2846 .fork = cpuset_fork, 2847 .legacy_cftypes = legacy_files, 2848 .dfl_cftypes = dfl_files, 2849 .early_init = true, 2850 .threaded = true, 2851 }; 2852 2853 /** 2854 * cpuset_init - initialize cpusets at system boot 2855 * 2856 * Description: Initialize top_cpuset and the cpuset internal file system, 2857 **/ 2858 2859 int __init cpuset_init(void) 2860 { 2861 int err = 0; 2862 2863 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 2864 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 2865 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 2866 2867 cpumask_setall(top_cpuset.cpus_allowed); 2868 nodes_setall(top_cpuset.mems_allowed); 2869 cpumask_setall(top_cpuset.effective_cpus); 2870 nodes_setall(top_cpuset.effective_mems); 2871 2872 fmeter_init(&top_cpuset.fmeter); 2873 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 2874 top_cpuset.relax_domain_level = -1; 2875 2876 err = register_filesystem(&cpuset_fs_type); 2877 if (err < 0) 2878 return err; 2879 2880 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 2881 2882 return 0; 2883 } 2884 2885 /* 2886 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 2887 * or memory nodes, we need to walk over the cpuset hierarchy, 2888 * removing that CPU or node from all cpusets. If this removes the 2889 * last CPU or node from a cpuset, then move the tasks in the empty 2890 * cpuset to its next-highest non-empty parent. 2891 */ 2892 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 2893 { 2894 struct cpuset *parent; 2895 2896 /* 2897 * Find its next-highest non-empty parent, (top cpuset 2898 * has online cpus, so can't be empty). 2899 */ 2900 parent = parent_cs(cs); 2901 while (cpumask_empty(parent->cpus_allowed) || 2902 nodes_empty(parent->mems_allowed)) 2903 parent = parent_cs(parent); 2904 2905 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 2906 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 2907 pr_cont_cgroup_name(cs->css.cgroup); 2908 pr_cont("\n"); 2909 } 2910 } 2911 2912 static void 2913 hotplug_update_tasks_legacy(struct cpuset *cs, 2914 struct cpumask *new_cpus, nodemask_t *new_mems, 2915 bool cpus_updated, bool mems_updated) 2916 { 2917 bool is_empty; 2918 2919 spin_lock_irq(&callback_lock); 2920 cpumask_copy(cs->cpus_allowed, new_cpus); 2921 cpumask_copy(cs->effective_cpus, new_cpus); 2922 cs->mems_allowed = *new_mems; 2923 cs->effective_mems = *new_mems; 2924 spin_unlock_irq(&callback_lock); 2925 2926 /* 2927 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 2928 * as the tasks will be migratecd to an ancestor. 2929 */ 2930 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 2931 update_tasks_cpumask(cs); 2932 if (mems_updated && !nodes_empty(cs->mems_allowed)) 2933 update_tasks_nodemask(cs); 2934 2935 is_empty = cpumask_empty(cs->cpus_allowed) || 2936 nodes_empty(cs->mems_allowed); 2937 2938 mutex_unlock(&cpuset_mutex); 2939 2940 /* 2941 * Move tasks to the nearest ancestor with execution resources, 2942 * This is full cgroup operation which will also call back into 2943 * cpuset. Should be done outside any lock. 2944 */ 2945 if (is_empty) 2946 remove_tasks_in_empty_cpuset(cs); 2947 2948 mutex_lock(&cpuset_mutex); 2949 } 2950 2951 static void 2952 hotplug_update_tasks(struct cpuset *cs, 2953 struct cpumask *new_cpus, nodemask_t *new_mems, 2954 bool cpus_updated, bool mems_updated) 2955 { 2956 if (cpumask_empty(new_cpus)) 2957 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 2958 if (nodes_empty(*new_mems)) 2959 *new_mems = parent_cs(cs)->effective_mems; 2960 2961 spin_lock_irq(&callback_lock); 2962 cpumask_copy(cs->effective_cpus, new_cpus); 2963 cs->effective_mems = *new_mems; 2964 spin_unlock_irq(&callback_lock); 2965 2966 if (cpus_updated) 2967 update_tasks_cpumask(cs); 2968 if (mems_updated) 2969 update_tasks_nodemask(cs); 2970 } 2971 2972 static bool force_rebuild; 2973 2974 void cpuset_force_rebuild(void) 2975 { 2976 force_rebuild = true; 2977 } 2978 2979 /** 2980 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 2981 * @cs: cpuset in interest 2982 * @tmp: the tmpmasks structure pointer 2983 * 2984 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 2985 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 2986 * all its tasks are moved to the nearest ancestor with both resources. 2987 */ 2988 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 2989 { 2990 static cpumask_t new_cpus; 2991 static nodemask_t new_mems; 2992 bool cpus_updated; 2993 bool mems_updated; 2994 struct cpuset *parent; 2995 retry: 2996 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 2997 2998 mutex_lock(&cpuset_mutex); 2999 3000 /* 3001 * We have raced with task attaching. We wait until attaching 3002 * is finished, so we won't attach a task to an empty cpuset. 3003 */ 3004 if (cs->attach_in_progress) { 3005 mutex_unlock(&cpuset_mutex); 3006 goto retry; 3007 } 3008 3009 parent = parent_cs(cs); 3010 compute_effective_cpumask(&new_cpus, cs, parent); 3011 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3012 3013 if (cs->nr_subparts_cpus) 3014 /* 3015 * Make sure that CPUs allocated to child partitions 3016 * do not show up in effective_cpus. 3017 */ 3018 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 3019 3020 if (!tmp || !cs->partition_root_state) 3021 goto update_tasks; 3022 3023 /* 3024 * In the unlikely event that a partition root has empty 3025 * effective_cpus or its parent becomes erroneous, we have to 3026 * transition it to the erroneous state. 3027 */ 3028 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) || 3029 (parent->partition_root_state == PRS_ERROR))) { 3030 if (cs->nr_subparts_cpus) { 3031 cs->nr_subparts_cpus = 0; 3032 cpumask_clear(cs->subparts_cpus); 3033 compute_effective_cpumask(&new_cpus, cs, parent); 3034 } 3035 3036 /* 3037 * If the effective_cpus is empty because the child 3038 * partitions take away all the CPUs, we can keep 3039 * the current partition and let the child partitions 3040 * fight for available CPUs. 3041 */ 3042 if ((parent->partition_root_state == PRS_ERROR) || 3043 cpumask_empty(&new_cpus)) { 3044 update_parent_subparts_cpumask(cs, partcmd_disable, 3045 NULL, tmp); 3046 cs->partition_root_state = PRS_ERROR; 3047 } 3048 cpuset_force_rebuild(); 3049 } 3050 3051 /* 3052 * On the other hand, an erroneous partition root may be transitioned 3053 * back to a regular one or a partition root with no CPU allocated 3054 * from the parent may change to erroneous. 3055 */ 3056 if (is_partition_root(parent) && 3057 ((cs->partition_root_state == PRS_ERROR) || 3058 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) && 3059 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp)) 3060 cpuset_force_rebuild(); 3061 3062 update_tasks: 3063 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3064 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3065 3066 if (is_in_v2_mode()) 3067 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3068 cpus_updated, mems_updated); 3069 else 3070 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3071 cpus_updated, mems_updated); 3072 3073 mutex_unlock(&cpuset_mutex); 3074 } 3075 3076 /** 3077 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3078 * 3079 * This function is called after either CPU or memory configuration has 3080 * changed and updates cpuset accordingly. The top_cpuset is always 3081 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3082 * order to make cpusets transparent (of no affect) on systems that are 3083 * actively using CPU hotplug but making no active use of cpusets. 3084 * 3085 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3086 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3087 * all descendants. 3088 * 3089 * Note that CPU offlining during suspend is ignored. We don't modify 3090 * cpusets across suspend/resume cycles at all. 3091 */ 3092 static void cpuset_hotplug_workfn(struct work_struct *work) 3093 { 3094 static cpumask_t new_cpus; 3095 static nodemask_t new_mems; 3096 bool cpus_updated, mems_updated; 3097 bool on_dfl = is_in_v2_mode(); 3098 struct tmpmasks tmp, *ptmp = NULL; 3099 3100 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3101 ptmp = &tmp; 3102 3103 mutex_lock(&cpuset_mutex); 3104 3105 /* fetch the available cpus/mems and find out which changed how */ 3106 cpumask_copy(&new_cpus, cpu_active_mask); 3107 new_mems = node_states[N_MEMORY]; 3108 3109 /* 3110 * If subparts_cpus is populated, it is likely that the check below 3111 * will produce a false positive on cpus_updated when the cpu list 3112 * isn't changed. It is extra work, but it is better to be safe. 3113 */ 3114 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3115 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3116 3117 /* synchronize cpus_allowed to cpu_active_mask */ 3118 if (cpus_updated) { 3119 spin_lock_irq(&callback_lock); 3120 if (!on_dfl) 3121 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3122 /* 3123 * Make sure that CPUs allocated to child partitions 3124 * do not show up in effective_cpus. If no CPU is left, 3125 * we clear the subparts_cpus & let the child partitions 3126 * fight for the CPUs again. 3127 */ 3128 if (top_cpuset.nr_subparts_cpus) { 3129 if (cpumask_subset(&new_cpus, 3130 top_cpuset.subparts_cpus)) { 3131 top_cpuset.nr_subparts_cpus = 0; 3132 cpumask_clear(top_cpuset.subparts_cpus); 3133 } else { 3134 cpumask_andnot(&new_cpus, &new_cpus, 3135 top_cpuset.subparts_cpus); 3136 } 3137 } 3138 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3139 spin_unlock_irq(&callback_lock); 3140 /* we don't mess with cpumasks of tasks in top_cpuset */ 3141 } 3142 3143 /* synchronize mems_allowed to N_MEMORY */ 3144 if (mems_updated) { 3145 spin_lock_irq(&callback_lock); 3146 if (!on_dfl) 3147 top_cpuset.mems_allowed = new_mems; 3148 top_cpuset.effective_mems = new_mems; 3149 spin_unlock_irq(&callback_lock); 3150 update_tasks_nodemask(&top_cpuset); 3151 } 3152 3153 mutex_unlock(&cpuset_mutex); 3154 3155 /* if cpus or mems changed, we need to propagate to descendants */ 3156 if (cpus_updated || mems_updated) { 3157 struct cpuset *cs; 3158 struct cgroup_subsys_state *pos_css; 3159 3160 rcu_read_lock(); 3161 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3162 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3163 continue; 3164 rcu_read_unlock(); 3165 3166 cpuset_hotplug_update_tasks(cs, ptmp); 3167 3168 rcu_read_lock(); 3169 css_put(&cs->css); 3170 } 3171 rcu_read_unlock(); 3172 } 3173 3174 /* rebuild sched domains if cpus_allowed has changed */ 3175 if (cpus_updated || force_rebuild) { 3176 force_rebuild = false; 3177 rebuild_sched_domains(); 3178 } 3179 3180 free_cpumasks(NULL, ptmp); 3181 } 3182 3183 void cpuset_update_active_cpus(void) 3184 { 3185 /* 3186 * We're inside cpu hotplug critical region which usually nests 3187 * inside cgroup synchronization. Bounce actual hotplug processing 3188 * to a work item to avoid reverse locking order. 3189 */ 3190 schedule_work(&cpuset_hotplug_work); 3191 } 3192 3193 void cpuset_wait_for_hotplug(void) 3194 { 3195 flush_work(&cpuset_hotplug_work); 3196 } 3197 3198 /* 3199 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3200 * Call this routine anytime after node_states[N_MEMORY] changes. 3201 * See cpuset_update_active_cpus() for CPU hotplug handling. 3202 */ 3203 static int cpuset_track_online_nodes(struct notifier_block *self, 3204 unsigned long action, void *arg) 3205 { 3206 schedule_work(&cpuset_hotplug_work); 3207 return NOTIFY_OK; 3208 } 3209 3210 static struct notifier_block cpuset_track_online_nodes_nb = { 3211 .notifier_call = cpuset_track_online_nodes, 3212 .priority = 10, /* ??! */ 3213 }; 3214 3215 /** 3216 * cpuset_init_smp - initialize cpus_allowed 3217 * 3218 * Description: Finish top cpuset after cpu, node maps are initialized 3219 */ 3220 void __init cpuset_init_smp(void) 3221 { 3222 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 3223 top_cpuset.mems_allowed = node_states[N_MEMORY]; 3224 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3225 3226 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3227 top_cpuset.effective_mems = node_states[N_MEMORY]; 3228 3229 register_hotmemory_notifier(&cpuset_track_online_nodes_nb); 3230 3231 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3232 BUG_ON(!cpuset_migrate_mm_wq); 3233 } 3234 3235 /** 3236 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3237 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3238 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3239 * 3240 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3241 * attached to the specified @tsk. Guaranteed to return some non-empty 3242 * subset of cpu_online_mask, even if this means going outside the 3243 * tasks cpuset. 3244 **/ 3245 3246 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3247 { 3248 unsigned long flags; 3249 3250 spin_lock_irqsave(&callback_lock, flags); 3251 rcu_read_lock(); 3252 guarantee_online_cpus(task_cs(tsk), pmask); 3253 rcu_read_unlock(); 3254 spin_unlock_irqrestore(&callback_lock, flags); 3255 } 3256 3257 void cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3258 { 3259 rcu_read_lock(); 3260 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus); 3261 rcu_read_unlock(); 3262 3263 /* 3264 * We own tsk->cpus_allowed, nobody can change it under us. 3265 * 3266 * But we used cs && cs->cpus_allowed lockless and thus can 3267 * race with cgroup_attach_task() or update_cpumask() and get 3268 * the wrong tsk->cpus_allowed. However, both cases imply the 3269 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 3270 * which takes task_rq_lock(). 3271 * 3272 * If we are called after it dropped the lock we must see all 3273 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 3274 * set any mask even if it is not right from task_cs() pov, 3275 * the pending set_cpus_allowed_ptr() will fix things. 3276 * 3277 * select_fallback_rq() will fix things ups and set cpu_possible_mask 3278 * if required. 3279 */ 3280 } 3281 3282 void __init cpuset_init_current_mems_allowed(void) 3283 { 3284 nodes_setall(current->mems_allowed); 3285 } 3286 3287 /** 3288 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 3289 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 3290 * 3291 * Description: Returns the nodemask_t mems_allowed of the cpuset 3292 * attached to the specified @tsk. Guaranteed to return some non-empty 3293 * subset of node_states[N_MEMORY], even if this means going outside the 3294 * tasks cpuset. 3295 **/ 3296 3297 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 3298 { 3299 nodemask_t mask; 3300 unsigned long flags; 3301 3302 spin_lock_irqsave(&callback_lock, flags); 3303 rcu_read_lock(); 3304 guarantee_online_mems(task_cs(tsk), &mask); 3305 rcu_read_unlock(); 3306 spin_unlock_irqrestore(&callback_lock, flags); 3307 3308 return mask; 3309 } 3310 3311 /** 3312 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed 3313 * @nodemask: the nodemask to be checked 3314 * 3315 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 3316 */ 3317 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 3318 { 3319 return nodes_intersects(*nodemask, current->mems_allowed); 3320 } 3321 3322 /* 3323 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 3324 * mem_hardwall ancestor to the specified cpuset. Call holding 3325 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 3326 * (an unusual configuration), then returns the root cpuset. 3327 */ 3328 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 3329 { 3330 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 3331 cs = parent_cs(cs); 3332 return cs; 3333 } 3334 3335 /** 3336 * cpuset_node_allowed - Can we allocate on a memory node? 3337 * @node: is this an allowed node? 3338 * @gfp_mask: memory allocation flags 3339 * 3340 * If we're in interrupt, yes, we can always allocate. If @node is set in 3341 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 3342 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 3343 * yes. If current has access to memory reserves as an oom victim, yes. 3344 * Otherwise, no. 3345 * 3346 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 3347 * and do not allow allocations outside the current tasks cpuset 3348 * unless the task has been OOM killed. 3349 * GFP_KERNEL allocations are not so marked, so can escape to the 3350 * nearest enclosing hardwalled ancestor cpuset. 3351 * 3352 * Scanning up parent cpusets requires callback_lock. The 3353 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 3354 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 3355 * current tasks mems_allowed came up empty on the first pass over 3356 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 3357 * cpuset are short of memory, might require taking the callback_lock. 3358 * 3359 * The first call here from mm/page_alloc:get_page_from_freelist() 3360 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 3361 * so no allocation on a node outside the cpuset is allowed (unless 3362 * in interrupt, of course). 3363 * 3364 * The second pass through get_page_from_freelist() doesn't even call 3365 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 3366 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 3367 * in alloc_flags. That logic and the checks below have the combined 3368 * affect that: 3369 * in_interrupt - any node ok (current task context irrelevant) 3370 * GFP_ATOMIC - any node ok 3371 * tsk_is_oom_victim - any node ok 3372 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 3373 * GFP_USER - only nodes in current tasks mems allowed ok. 3374 */ 3375 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 3376 { 3377 struct cpuset *cs; /* current cpuset ancestors */ 3378 int allowed; /* is allocation in zone z allowed? */ 3379 unsigned long flags; 3380 3381 if (in_interrupt()) 3382 return true; 3383 if (node_isset(node, current->mems_allowed)) 3384 return true; 3385 /* 3386 * Allow tasks that have access to memory reserves because they have 3387 * been OOM killed to get memory anywhere. 3388 */ 3389 if (unlikely(tsk_is_oom_victim(current))) 3390 return true; 3391 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 3392 return false; 3393 3394 if (current->flags & PF_EXITING) /* Let dying task have memory */ 3395 return true; 3396 3397 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 3398 spin_lock_irqsave(&callback_lock, flags); 3399 3400 rcu_read_lock(); 3401 cs = nearest_hardwall_ancestor(task_cs(current)); 3402 allowed = node_isset(node, cs->mems_allowed); 3403 rcu_read_unlock(); 3404 3405 spin_unlock_irqrestore(&callback_lock, flags); 3406 return allowed; 3407 } 3408 3409 /** 3410 * cpuset_mem_spread_node() - On which node to begin search for a file page 3411 * cpuset_slab_spread_node() - On which node to begin search for a slab page 3412 * 3413 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 3414 * tasks in a cpuset with is_spread_page or is_spread_slab set), 3415 * and if the memory allocation used cpuset_mem_spread_node() 3416 * to determine on which node to start looking, as it will for 3417 * certain page cache or slab cache pages such as used for file 3418 * system buffers and inode caches, then instead of starting on the 3419 * local node to look for a free page, rather spread the starting 3420 * node around the tasks mems_allowed nodes. 3421 * 3422 * We don't have to worry about the returned node being offline 3423 * because "it can't happen", and even if it did, it would be ok. 3424 * 3425 * The routines calling guarantee_online_mems() are careful to 3426 * only set nodes in task->mems_allowed that are online. So it 3427 * should not be possible for the following code to return an 3428 * offline node. But if it did, that would be ok, as this routine 3429 * is not returning the node where the allocation must be, only 3430 * the node where the search should start. The zonelist passed to 3431 * __alloc_pages() will include all nodes. If the slab allocator 3432 * is passed an offline node, it will fall back to the local node. 3433 * See kmem_cache_alloc_node(). 3434 */ 3435 3436 static int cpuset_spread_node(int *rotor) 3437 { 3438 return *rotor = next_node_in(*rotor, current->mems_allowed); 3439 } 3440 3441 int cpuset_mem_spread_node(void) 3442 { 3443 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 3444 current->cpuset_mem_spread_rotor = 3445 node_random(¤t->mems_allowed); 3446 3447 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 3448 } 3449 3450 int cpuset_slab_spread_node(void) 3451 { 3452 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 3453 current->cpuset_slab_spread_rotor = 3454 node_random(¤t->mems_allowed); 3455 3456 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 3457 } 3458 3459 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 3460 3461 /** 3462 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 3463 * @tsk1: pointer to task_struct of some task. 3464 * @tsk2: pointer to task_struct of some other task. 3465 * 3466 * Description: Return true if @tsk1's mems_allowed intersects the 3467 * mems_allowed of @tsk2. Used by the OOM killer to determine if 3468 * one of the task's memory usage might impact the memory available 3469 * to the other. 3470 **/ 3471 3472 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 3473 const struct task_struct *tsk2) 3474 { 3475 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 3476 } 3477 3478 /** 3479 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 3480 * 3481 * Description: Prints current's name, cpuset name, and cached copy of its 3482 * mems_allowed to the kernel log. 3483 */ 3484 void cpuset_print_current_mems_allowed(void) 3485 { 3486 struct cgroup *cgrp; 3487 3488 rcu_read_lock(); 3489 3490 cgrp = task_cs(current)->css.cgroup; 3491 pr_cont(",cpuset="); 3492 pr_cont_cgroup_name(cgrp); 3493 pr_cont(",mems_allowed=%*pbl", 3494 nodemask_pr_args(¤t->mems_allowed)); 3495 3496 rcu_read_unlock(); 3497 } 3498 3499 /* 3500 * Collection of memory_pressure is suppressed unless 3501 * this flag is enabled by writing "1" to the special 3502 * cpuset file 'memory_pressure_enabled' in the root cpuset. 3503 */ 3504 3505 int cpuset_memory_pressure_enabled __read_mostly; 3506 3507 /** 3508 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 3509 * 3510 * Keep a running average of the rate of synchronous (direct) 3511 * page reclaim efforts initiated by tasks in each cpuset. 3512 * 3513 * This represents the rate at which some task in the cpuset 3514 * ran low on memory on all nodes it was allowed to use, and 3515 * had to enter the kernels page reclaim code in an effort to 3516 * create more free memory by tossing clean pages or swapping 3517 * or writing dirty pages. 3518 * 3519 * Display to user space in the per-cpuset read-only file 3520 * "memory_pressure". Value displayed is an integer 3521 * representing the recent rate of entry into the synchronous 3522 * (direct) page reclaim by any task attached to the cpuset. 3523 **/ 3524 3525 void __cpuset_memory_pressure_bump(void) 3526 { 3527 rcu_read_lock(); 3528 fmeter_markevent(&task_cs(current)->fmeter); 3529 rcu_read_unlock(); 3530 } 3531 3532 #ifdef CONFIG_PROC_PID_CPUSET 3533 /* 3534 * proc_cpuset_show() 3535 * - Print tasks cpuset path into seq_file. 3536 * - Used for /proc/<pid>/cpuset. 3537 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 3538 * doesn't really matter if tsk->cpuset changes after we read it, 3539 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 3540 * anyway. 3541 */ 3542 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 3543 struct pid *pid, struct task_struct *tsk) 3544 { 3545 char *buf; 3546 struct cgroup_subsys_state *css; 3547 int retval; 3548 3549 retval = -ENOMEM; 3550 buf = kmalloc(PATH_MAX, GFP_KERNEL); 3551 if (!buf) 3552 goto out; 3553 3554 css = task_get_css(tsk, cpuset_cgrp_id); 3555 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 3556 current->nsproxy->cgroup_ns); 3557 css_put(css); 3558 if (retval >= PATH_MAX) 3559 retval = -ENAMETOOLONG; 3560 if (retval < 0) 3561 goto out_free; 3562 seq_puts(m, buf); 3563 seq_putc(m, '\n'); 3564 retval = 0; 3565 out_free: 3566 kfree(buf); 3567 out: 3568 return retval; 3569 } 3570 #endif /* CONFIG_PROC_PID_CPUSET */ 3571 3572 /* Display task mems_allowed in /proc/<pid>/status file. */ 3573 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 3574 { 3575 seq_printf(m, "Mems_allowed:\t%*pb\n", 3576 nodemask_pr_args(&task->mems_allowed)); 3577 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 3578 nodemask_pr_args(&task->mems_allowed)); 3579 } 3580