xref: /linux/kernel/cgroup/cpuset.c (revision 96a6de1a541c86e9e67b9c310c14db4099bd1cbc)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/sched/mm.h>
48 #include <linux/sched/task.h>
49 #include <linux/seq_file.h>
50 #include <linux/security.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53 #include <linux/stat.h>
54 #include <linux/string.h>
55 #include <linux/time.h>
56 #include <linux/time64.h>
57 #include <linux/backing-dev.h>
58 #include <linux/sort.h>
59 #include <linux/oom.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/uaccess.h>
62 #include <linux/atomic.h>
63 #include <linux/mutex.h>
64 #include <linux/cgroup.h>
65 #include <linux/wait.h>
66 
67 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
68 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
69 
70 /* See "Frequency meter" comments, below. */
71 
72 struct fmeter {
73 	int cnt;		/* unprocessed events count */
74 	int val;		/* most recent output value */
75 	time64_t time;		/* clock (secs) when val computed */
76 	spinlock_t lock;	/* guards read or write of above */
77 };
78 
79 struct cpuset {
80 	struct cgroup_subsys_state css;
81 
82 	unsigned long flags;		/* "unsigned long" so bitops work */
83 
84 	/*
85 	 * On default hierarchy:
86 	 *
87 	 * The user-configured masks can only be changed by writing to
88 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
89 	 * parent masks.
90 	 *
91 	 * The effective masks is the real masks that apply to the tasks
92 	 * in the cpuset. They may be changed if the configured masks are
93 	 * changed or hotplug happens.
94 	 *
95 	 * effective_mask == configured_mask & parent's effective_mask,
96 	 * and if it ends up empty, it will inherit the parent's mask.
97 	 *
98 	 *
99 	 * On legacy hierachy:
100 	 *
101 	 * The user-configured masks are always the same with effective masks.
102 	 */
103 
104 	/* user-configured CPUs and Memory Nodes allow to tasks */
105 	cpumask_var_t cpus_allowed;
106 	nodemask_t mems_allowed;
107 
108 	/* effective CPUs and Memory Nodes allow to tasks */
109 	cpumask_var_t effective_cpus;
110 	nodemask_t effective_mems;
111 
112 	/*
113 	 * CPUs allocated to child sub-partitions (default hierarchy only)
114 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
115 	 * - effective_cpus and subparts_cpus are mutually exclusive.
116 	 *
117 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
118 	 * may have offlined ones.
119 	 */
120 	cpumask_var_t subparts_cpus;
121 
122 	/*
123 	 * This is old Memory Nodes tasks took on.
124 	 *
125 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
126 	 * - A new cpuset's old_mems_allowed is initialized when some
127 	 *   task is moved into it.
128 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
129 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
130 	 *   then old_mems_allowed is updated to mems_allowed.
131 	 */
132 	nodemask_t old_mems_allowed;
133 
134 	struct fmeter fmeter;		/* memory_pressure filter */
135 
136 	/*
137 	 * Tasks are being attached to this cpuset.  Used to prevent
138 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
139 	 */
140 	int attach_in_progress;
141 
142 	/* partition number for rebuild_sched_domains() */
143 	int pn;
144 
145 	/* for custom sched domain */
146 	int relax_domain_level;
147 
148 	/* number of CPUs in subparts_cpus */
149 	int nr_subparts_cpus;
150 
151 	/* partition root state */
152 	int partition_root_state;
153 
154 	/*
155 	 * Default hierarchy only:
156 	 * use_parent_ecpus - set if using parent's effective_cpus
157 	 * child_ecpus_count - # of children with use_parent_ecpus set
158 	 */
159 	int use_parent_ecpus;
160 	int child_ecpus_count;
161 };
162 
163 /*
164  * Partition root states:
165  *
166  *   0 - not a partition root
167  *
168  *   1 - partition root
169  *
170  *  -1 - invalid partition root
171  *       None of the cpus in cpus_allowed can be put into the parent's
172  *       subparts_cpus. In this case, the cpuset is not a real partition
173  *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
174  *       and the cpuset can be restored back to a partition root if the
175  *       parent cpuset can give more CPUs back to this child cpuset.
176  */
177 #define PRS_DISABLED		0
178 #define PRS_ENABLED		1
179 #define PRS_ERROR		-1
180 
181 /*
182  * Temporary cpumasks for working with partitions that are passed among
183  * functions to avoid memory allocation in inner functions.
184  */
185 struct tmpmasks {
186 	cpumask_var_t addmask, delmask;	/* For partition root */
187 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
188 };
189 
190 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
191 {
192 	return css ? container_of(css, struct cpuset, css) : NULL;
193 }
194 
195 /* Retrieve the cpuset for a task */
196 static inline struct cpuset *task_cs(struct task_struct *task)
197 {
198 	return css_cs(task_css(task, cpuset_cgrp_id));
199 }
200 
201 static inline struct cpuset *parent_cs(struct cpuset *cs)
202 {
203 	return css_cs(cs->css.parent);
204 }
205 
206 /* bits in struct cpuset flags field */
207 typedef enum {
208 	CS_ONLINE,
209 	CS_CPU_EXCLUSIVE,
210 	CS_MEM_EXCLUSIVE,
211 	CS_MEM_HARDWALL,
212 	CS_MEMORY_MIGRATE,
213 	CS_SCHED_LOAD_BALANCE,
214 	CS_SPREAD_PAGE,
215 	CS_SPREAD_SLAB,
216 } cpuset_flagbits_t;
217 
218 /* convenient tests for these bits */
219 static inline bool is_cpuset_online(struct cpuset *cs)
220 {
221 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
222 }
223 
224 static inline int is_cpu_exclusive(const struct cpuset *cs)
225 {
226 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
227 }
228 
229 static inline int is_mem_exclusive(const struct cpuset *cs)
230 {
231 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
232 }
233 
234 static inline int is_mem_hardwall(const struct cpuset *cs)
235 {
236 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
237 }
238 
239 static inline int is_sched_load_balance(const struct cpuset *cs)
240 {
241 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
242 }
243 
244 static inline int is_memory_migrate(const struct cpuset *cs)
245 {
246 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
247 }
248 
249 static inline int is_spread_page(const struct cpuset *cs)
250 {
251 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
252 }
253 
254 static inline int is_spread_slab(const struct cpuset *cs)
255 {
256 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
257 }
258 
259 static inline int is_partition_root(const struct cpuset *cs)
260 {
261 	return cs->partition_root_state > 0;
262 }
263 
264 static struct cpuset top_cpuset = {
265 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
266 		  (1 << CS_MEM_EXCLUSIVE)),
267 	.partition_root_state = PRS_ENABLED,
268 };
269 
270 /**
271  * cpuset_for_each_child - traverse online children of a cpuset
272  * @child_cs: loop cursor pointing to the current child
273  * @pos_css: used for iteration
274  * @parent_cs: target cpuset to walk children of
275  *
276  * Walk @child_cs through the online children of @parent_cs.  Must be used
277  * with RCU read locked.
278  */
279 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
280 	css_for_each_child((pos_css), &(parent_cs)->css)		\
281 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
282 
283 /**
284  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
285  * @des_cs: loop cursor pointing to the current descendant
286  * @pos_css: used for iteration
287  * @root_cs: target cpuset to walk ancestor of
288  *
289  * Walk @des_cs through the online descendants of @root_cs.  Must be used
290  * with RCU read locked.  The caller may modify @pos_css by calling
291  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
292  * iteration and the first node to be visited.
293  */
294 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
295 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
296 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
297 
298 /*
299  * There are two global locks guarding cpuset structures - cpuset_mutex and
300  * callback_lock. We also require taking task_lock() when dereferencing a
301  * task's cpuset pointer. See "The task_lock() exception", at the end of this
302  * comment.
303  *
304  * A task must hold both locks to modify cpusets.  If a task holds
305  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
306  * is the only task able to also acquire callback_lock and be able to
307  * modify cpusets.  It can perform various checks on the cpuset structure
308  * first, knowing nothing will change.  It can also allocate memory while
309  * just holding cpuset_mutex.  While it is performing these checks, various
310  * callback routines can briefly acquire callback_lock to query cpusets.
311  * Once it is ready to make the changes, it takes callback_lock, blocking
312  * everyone else.
313  *
314  * Calls to the kernel memory allocator can not be made while holding
315  * callback_lock, as that would risk double tripping on callback_lock
316  * from one of the callbacks into the cpuset code from within
317  * __alloc_pages().
318  *
319  * If a task is only holding callback_lock, then it has read-only
320  * access to cpusets.
321  *
322  * Now, the task_struct fields mems_allowed and mempolicy may be changed
323  * by other task, we use alloc_lock in the task_struct fields to protect
324  * them.
325  *
326  * The cpuset_common_file_read() handlers only hold callback_lock across
327  * small pieces of code, such as when reading out possibly multi-word
328  * cpumasks and nodemasks.
329  *
330  * Accessing a task's cpuset should be done in accordance with the
331  * guidelines for accessing subsystem state in kernel/cgroup.c
332  */
333 
334 static DEFINE_MUTEX(cpuset_mutex);
335 static DEFINE_SPINLOCK(callback_lock);
336 
337 static struct workqueue_struct *cpuset_migrate_mm_wq;
338 
339 /*
340  * CPU / memory hotplug is handled asynchronously.
341  */
342 static void cpuset_hotplug_workfn(struct work_struct *work);
343 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
344 
345 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
346 
347 /*
348  * Cgroup v2 behavior is used when on default hierarchy or the
349  * cgroup_v2_mode flag is set.
350  */
351 static inline bool is_in_v2_mode(void)
352 {
353 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
354 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
355 }
356 
357 /*
358  * This is ugly, but preserves the userspace API for existing cpuset
359  * users. If someone tries to mount the "cpuset" filesystem, we
360  * silently switch it to mount "cgroup" instead
361  */
362 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
363 			 int flags, const char *unused_dev_name, void *data)
364 {
365 	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
366 	struct dentry *ret = ERR_PTR(-ENODEV);
367 	if (cgroup_fs) {
368 		char mountopts[] =
369 			"cpuset,noprefix,"
370 			"release_agent=/sbin/cpuset_release_agent";
371 		ret = cgroup_fs->mount(cgroup_fs, flags,
372 					   unused_dev_name, mountopts);
373 		put_filesystem(cgroup_fs);
374 	}
375 	return ret;
376 }
377 
378 static struct file_system_type cpuset_fs_type = {
379 	.name = "cpuset",
380 	.mount = cpuset_mount,
381 };
382 
383 /*
384  * Return in pmask the portion of a cpusets's cpus_allowed that
385  * are online.  If none are online, walk up the cpuset hierarchy
386  * until we find one that does have some online cpus.
387  *
388  * One way or another, we guarantee to return some non-empty subset
389  * of cpu_online_mask.
390  *
391  * Call with callback_lock or cpuset_mutex held.
392  */
393 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
394 {
395 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
396 		cs = parent_cs(cs);
397 		if (unlikely(!cs)) {
398 			/*
399 			 * The top cpuset doesn't have any online cpu as a
400 			 * consequence of a race between cpuset_hotplug_work
401 			 * and cpu hotplug notifier.  But we know the top
402 			 * cpuset's effective_cpus is on its way to to be
403 			 * identical to cpu_online_mask.
404 			 */
405 			cpumask_copy(pmask, cpu_online_mask);
406 			return;
407 		}
408 	}
409 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
410 }
411 
412 /*
413  * Return in *pmask the portion of a cpusets's mems_allowed that
414  * are online, with memory.  If none are online with memory, walk
415  * up the cpuset hierarchy until we find one that does have some
416  * online mems.  The top cpuset always has some mems online.
417  *
418  * One way or another, we guarantee to return some non-empty subset
419  * of node_states[N_MEMORY].
420  *
421  * Call with callback_lock or cpuset_mutex held.
422  */
423 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
424 {
425 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
426 		cs = parent_cs(cs);
427 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
428 }
429 
430 /*
431  * update task's spread flag if cpuset's page/slab spread flag is set
432  *
433  * Call with callback_lock or cpuset_mutex held.
434  */
435 static void cpuset_update_task_spread_flag(struct cpuset *cs,
436 					struct task_struct *tsk)
437 {
438 	if (is_spread_page(cs))
439 		task_set_spread_page(tsk);
440 	else
441 		task_clear_spread_page(tsk);
442 
443 	if (is_spread_slab(cs))
444 		task_set_spread_slab(tsk);
445 	else
446 		task_clear_spread_slab(tsk);
447 }
448 
449 /*
450  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
451  *
452  * One cpuset is a subset of another if all its allowed CPUs and
453  * Memory Nodes are a subset of the other, and its exclusive flags
454  * are only set if the other's are set.  Call holding cpuset_mutex.
455  */
456 
457 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
458 {
459 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
460 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
461 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
462 		is_mem_exclusive(p) <= is_mem_exclusive(q);
463 }
464 
465 /**
466  * alloc_cpumasks - allocate three cpumasks for cpuset
467  * @cs:  the cpuset that have cpumasks to be allocated.
468  * @tmp: the tmpmasks structure pointer
469  * Return: 0 if successful, -ENOMEM otherwise.
470  *
471  * Only one of the two input arguments should be non-NULL.
472  */
473 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
474 {
475 	cpumask_var_t *pmask1, *pmask2, *pmask3;
476 
477 	if (cs) {
478 		pmask1 = &cs->cpus_allowed;
479 		pmask2 = &cs->effective_cpus;
480 		pmask3 = &cs->subparts_cpus;
481 	} else {
482 		pmask1 = &tmp->new_cpus;
483 		pmask2 = &tmp->addmask;
484 		pmask3 = &tmp->delmask;
485 	}
486 
487 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
488 		return -ENOMEM;
489 
490 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
491 		goto free_one;
492 
493 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
494 		goto free_two;
495 
496 	return 0;
497 
498 free_two:
499 	free_cpumask_var(*pmask2);
500 free_one:
501 	free_cpumask_var(*pmask1);
502 	return -ENOMEM;
503 }
504 
505 /**
506  * free_cpumasks - free cpumasks in a tmpmasks structure
507  * @cs:  the cpuset that have cpumasks to be free.
508  * @tmp: the tmpmasks structure pointer
509  */
510 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
511 {
512 	if (cs) {
513 		free_cpumask_var(cs->cpus_allowed);
514 		free_cpumask_var(cs->effective_cpus);
515 		free_cpumask_var(cs->subparts_cpus);
516 	}
517 	if (tmp) {
518 		free_cpumask_var(tmp->new_cpus);
519 		free_cpumask_var(tmp->addmask);
520 		free_cpumask_var(tmp->delmask);
521 	}
522 }
523 
524 /**
525  * alloc_trial_cpuset - allocate a trial cpuset
526  * @cs: the cpuset that the trial cpuset duplicates
527  */
528 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
529 {
530 	struct cpuset *trial;
531 
532 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
533 	if (!trial)
534 		return NULL;
535 
536 	if (alloc_cpumasks(trial, NULL)) {
537 		kfree(trial);
538 		return NULL;
539 	}
540 
541 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
542 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
543 	return trial;
544 }
545 
546 /**
547  * free_cpuset - free the cpuset
548  * @cs: the cpuset to be freed
549  */
550 static inline void free_cpuset(struct cpuset *cs)
551 {
552 	free_cpumasks(cs, NULL);
553 	kfree(cs);
554 }
555 
556 /*
557  * validate_change() - Used to validate that any proposed cpuset change
558  *		       follows the structural rules for cpusets.
559  *
560  * If we replaced the flag and mask values of the current cpuset
561  * (cur) with those values in the trial cpuset (trial), would
562  * our various subset and exclusive rules still be valid?  Presumes
563  * cpuset_mutex held.
564  *
565  * 'cur' is the address of an actual, in-use cpuset.  Operations
566  * such as list traversal that depend on the actual address of the
567  * cpuset in the list must use cur below, not trial.
568  *
569  * 'trial' is the address of bulk structure copy of cur, with
570  * perhaps one or more of the fields cpus_allowed, mems_allowed,
571  * or flags changed to new, trial values.
572  *
573  * Return 0 if valid, -errno if not.
574  */
575 
576 static int validate_change(struct cpuset *cur, struct cpuset *trial)
577 {
578 	struct cgroup_subsys_state *css;
579 	struct cpuset *c, *par;
580 	int ret;
581 
582 	rcu_read_lock();
583 
584 	/* Each of our child cpusets must be a subset of us */
585 	ret = -EBUSY;
586 	cpuset_for_each_child(c, css, cur)
587 		if (!is_cpuset_subset(c, trial))
588 			goto out;
589 
590 	/* Remaining checks don't apply to root cpuset */
591 	ret = 0;
592 	if (cur == &top_cpuset)
593 		goto out;
594 
595 	par = parent_cs(cur);
596 
597 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
598 	ret = -EACCES;
599 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
600 		goto out;
601 
602 	/*
603 	 * If either I or some sibling (!= me) is exclusive, we can't
604 	 * overlap
605 	 */
606 	ret = -EINVAL;
607 	cpuset_for_each_child(c, css, par) {
608 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
609 		    c != cur &&
610 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
611 			goto out;
612 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
613 		    c != cur &&
614 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
615 			goto out;
616 	}
617 
618 	/*
619 	 * Cpusets with tasks - existing or newly being attached - can't
620 	 * be changed to have empty cpus_allowed or mems_allowed.
621 	 */
622 	ret = -ENOSPC;
623 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
624 		if (!cpumask_empty(cur->cpus_allowed) &&
625 		    cpumask_empty(trial->cpus_allowed))
626 			goto out;
627 		if (!nodes_empty(cur->mems_allowed) &&
628 		    nodes_empty(trial->mems_allowed))
629 			goto out;
630 	}
631 
632 	/*
633 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
634 	 * tasks.
635 	 */
636 	ret = -EBUSY;
637 	if (is_cpu_exclusive(cur) &&
638 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
639 				       trial->cpus_allowed))
640 		goto out;
641 
642 	ret = 0;
643 out:
644 	rcu_read_unlock();
645 	return ret;
646 }
647 
648 #ifdef CONFIG_SMP
649 /*
650  * Helper routine for generate_sched_domains().
651  * Do cpusets a, b have overlapping effective cpus_allowed masks?
652  */
653 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
654 {
655 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
656 }
657 
658 static void
659 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
660 {
661 	if (dattr->relax_domain_level < c->relax_domain_level)
662 		dattr->relax_domain_level = c->relax_domain_level;
663 	return;
664 }
665 
666 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
667 				    struct cpuset *root_cs)
668 {
669 	struct cpuset *cp;
670 	struct cgroup_subsys_state *pos_css;
671 
672 	rcu_read_lock();
673 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
674 		/* skip the whole subtree if @cp doesn't have any CPU */
675 		if (cpumask_empty(cp->cpus_allowed)) {
676 			pos_css = css_rightmost_descendant(pos_css);
677 			continue;
678 		}
679 
680 		if (is_sched_load_balance(cp))
681 			update_domain_attr(dattr, cp);
682 	}
683 	rcu_read_unlock();
684 }
685 
686 /* Must be called with cpuset_mutex held.  */
687 static inline int nr_cpusets(void)
688 {
689 	/* jump label reference count + the top-level cpuset */
690 	return static_key_count(&cpusets_enabled_key.key) + 1;
691 }
692 
693 /*
694  * generate_sched_domains()
695  *
696  * This function builds a partial partition of the systems CPUs
697  * A 'partial partition' is a set of non-overlapping subsets whose
698  * union is a subset of that set.
699  * The output of this function needs to be passed to kernel/sched/core.c
700  * partition_sched_domains() routine, which will rebuild the scheduler's
701  * load balancing domains (sched domains) as specified by that partial
702  * partition.
703  *
704  * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.txt
705  * for a background explanation of this.
706  *
707  * Does not return errors, on the theory that the callers of this
708  * routine would rather not worry about failures to rebuild sched
709  * domains when operating in the severe memory shortage situations
710  * that could cause allocation failures below.
711  *
712  * Must be called with cpuset_mutex held.
713  *
714  * The three key local variables below are:
715  *    q  - a linked-list queue of cpuset pointers, used to implement a
716  *	   top-down scan of all cpusets.  This scan loads a pointer
717  *	   to each cpuset marked is_sched_load_balance into the
718  *	   array 'csa'.  For our purposes, rebuilding the schedulers
719  *	   sched domains, we can ignore !is_sched_load_balance cpusets.
720  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
721  *	   that need to be load balanced, for convenient iterative
722  *	   access by the subsequent code that finds the best partition,
723  *	   i.e the set of domains (subsets) of CPUs such that the
724  *	   cpus_allowed of every cpuset marked is_sched_load_balance
725  *	   is a subset of one of these domains, while there are as
726  *	   many such domains as possible, each as small as possible.
727  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
728  *	   the kernel/sched/core.c routine partition_sched_domains() in a
729  *	   convenient format, that can be easily compared to the prior
730  *	   value to determine what partition elements (sched domains)
731  *	   were changed (added or removed.)
732  *
733  * Finding the best partition (set of domains):
734  *	The triple nested loops below over i, j, k scan over the
735  *	load balanced cpusets (using the array of cpuset pointers in
736  *	csa[]) looking for pairs of cpusets that have overlapping
737  *	cpus_allowed, but which don't have the same 'pn' partition
738  *	number and gives them in the same partition number.  It keeps
739  *	looping on the 'restart' label until it can no longer find
740  *	any such pairs.
741  *
742  *	The union of the cpus_allowed masks from the set of
743  *	all cpusets having the same 'pn' value then form the one
744  *	element of the partition (one sched domain) to be passed to
745  *	partition_sched_domains().
746  */
747 static int generate_sched_domains(cpumask_var_t **domains,
748 			struct sched_domain_attr **attributes)
749 {
750 	struct cpuset *cp;	/* scans q */
751 	struct cpuset **csa;	/* array of all cpuset ptrs */
752 	int csn;		/* how many cpuset ptrs in csa so far */
753 	int i, j, k;		/* indices for partition finding loops */
754 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
755 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
756 	int ndoms = 0;		/* number of sched domains in result */
757 	int nslot;		/* next empty doms[] struct cpumask slot */
758 	struct cgroup_subsys_state *pos_css;
759 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
760 
761 	doms = NULL;
762 	dattr = NULL;
763 	csa = NULL;
764 
765 	/* Special case for the 99% of systems with one, full, sched domain */
766 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
767 		ndoms = 1;
768 		doms = alloc_sched_domains(ndoms);
769 		if (!doms)
770 			goto done;
771 
772 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
773 		if (dattr) {
774 			*dattr = SD_ATTR_INIT;
775 			update_domain_attr_tree(dattr, &top_cpuset);
776 		}
777 		cpumask_and(doms[0], top_cpuset.effective_cpus,
778 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
779 
780 		goto done;
781 	}
782 
783 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
784 	if (!csa)
785 		goto done;
786 	csn = 0;
787 
788 	rcu_read_lock();
789 	if (root_load_balance)
790 		csa[csn++] = &top_cpuset;
791 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
792 		if (cp == &top_cpuset)
793 			continue;
794 		/*
795 		 * Continue traversing beyond @cp iff @cp has some CPUs and
796 		 * isn't load balancing.  The former is obvious.  The
797 		 * latter: All child cpusets contain a subset of the
798 		 * parent's cpus, so just skip them, and then we call
799 		 * update_domain_attr_tree() to calc relax_domain_level of
800 		 * the corresponding sched domain.
801 		 *
802 		 * If root is load-balancing, we can skip @cp if it
803 		 * is a subset of the root's effective_cpus.
804 		 */
805 		if (!cpumask_empty(cp->cpus_allowed) &&
806 		    !(is_sched_load_balance(cp) &&
807 		      cpumask_intersects(cp->cpus_allowed,
808 					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
809 			continue;
810 
811 		if (root_load_balance &&
812 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
813 			continue;
814 
815 		if (is_sched_load_balance(cp))
816 			csa[csn++] = cp;
817 
818 		/* skip @cp's subtree if not a partition root */
819 		if (!is_partition_root(cp))
820 			pos_css = css_rightmost_descendant(pos_css);
821 	}
822 	rcu_read_unlock();
823 
824 	for (i = 0; i < csn; i++)
825 		csa[i]->pn = i;
826 	ndoms = csn;
827 
828 restart:
829 	/* Find the best partition (set of sched domains) */
830 	for (i = 0; i < csn; i++) {
831 		struct cpuset *a = csa[i];
832 		int apn = a->pn;
833 
834 		for (j = 0; j < csn; j++) {
835 			struct cpuset *b = csa[j];
836 			int bpn = b->pn;
837 
838 			if (apn != bpn && cpusets_overlap(a, b)) {
839 				for (k = 0; k < csn; k++) {
840 					struct cpuset *c = csa[k];
841 
842 					if (c->pn == bpn)
843 						c->pn = apn;
844 				}
845 				ndoms--;	/* one less element */
846 				goto restart;
847 			}
848 		}
849 	}
850 
851 	/*
852 	 * Now we know how many domains to create.
853 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
854 	 */
855 	doms = alloc_sched_domains(ndoms);
856 	if (!doms)
857 		goto done;
858 
859 	/*
860 	 * The rest of the code, including the scheduler, can deal with
861 	 * dattr==NULL case. No need to abort if alloc fails.
862 	 */
863 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
864 			      GFP_KERNEL);
865 
866 	for (nslot = 0, i = 0; i < csn; i++) {
867 		struct cpuset *a = csa[i];
868 		struct cpumask *dp;
869 		int apn = a->pn;
870 
871 		if (apn < 0) {
872 			/* Skip completed partitions */
873 			continue;
874 		}
875 
876 		dp = doms[nslot];
877 
878 		if (nslot == ndoms) {
879 			static int warnings = 10;
880 			if (warnings) {
881 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
882 					nslot, ndoms, csn, i, apn);
883 				warnings--;
884 			}
885 			continue;
886 		}
887 
888 		cpumask_clear(dp);
889 		if (dattr)
890 			*(dattr + nslot) = SD_ATTR_INIT;
891 		for (j = i; j < csn; j++) {
892 			struct cpuset *b = csa[j];
893 
894 			if (apn == b->pn) {
895 				cpumask_or(dp, dp, b->effective_cpus);
896 				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
897 				if (dattr)
898 					update_domain_attr_tree(dattr + nslot, b);
899 
900 				/* Done with this partition */
901 				b->pn = -1;
902 			}
903 		}
904 		nslot++;
905 	}
906 	BUG_ON(nslot != ndoms);
907 
908 done:
909 	kfree(csa);
910 
911 	/*
912 	 * Fallback to the default domain if kmalloc() failed.
913 	 * See comments in partition_sched_domains().
914 	 */
915 	if (doms == NULL)
916 		ndoms = 1;
917 
918 	*domains    = doms;
919 	*attributes = dattr;
920 	return ndoms;
921 }
922 
923 /*
924  * Rebuild scheduler domains.
925  *
926  * If the flag 'sched_load_balance' of any cpuset with non-empty
927  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
928  * which has that flag enabled, or if any cpuset with a non-empty
929  * 'cpus' is removed, then call this routine to rebuild the
930  * scheduler's dynamic sched domains.
931  *
932  * Call with cpuset_mutex held.  Takes get_online_cpus().
933  */
934 static void rebuild_sched_domains_locked(void)
935 {
936 	struct sched_domain_attr *attr;
937 	cpumask_var_t *doms;
938 	int ndoms;
939 
940 	lockdep_assert_held(&cpuset_mutex);
941 	get_online_cpus();
942 
943 	/*
944 	 * We have raced with CPU hotplug. Don't do anything to avoid
945 	 * passing doms with offlined cpu to partition_sched_domains().
946 	 * Anyways, hotplug work item will rebuild sched domains.
947 	 */
948 	if (!top_cpuset.nr_subparts_cpus &&
949 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
950 		goto out;
951 
952 	if (top_cpuset.nr_subparts_cpus &&
953 	   !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask))
954 		goto out;
955 
956 	/* Generate domain masks and attrs */
957 	ndoms = generate_sched_domains(&doms, &attr);
958 
959 	/* Have scheduler rebuild the domains */
960 	partition_sched_domains(ndoms, doms, attr);
961 out:
962 	put_online_cpus();
963 }
964 #else /* !CONFIG_SMP */
965 static void rebuild_sched_domains_locked(void)
966 {
967 }
968 #endif /* CONFIG_SMP */
969 
970 void rebuild_sched_domains(void)
971 {
972 	mutex_lock(&cpuset_mutex);
973 	rebuild_sched_domains_locked();
974 	mutex_unlock(&cpuset_mutex);
975 }
976 
977 /**
978  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
979  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
980  *
981  * Iterate through each task of @cs updating its cpus_allowed to the
982  * effective cpuset's.  As this function is called with cpuset_mutex held,
983  * cpuset membership stays stable.
984  */
985 static void update_tasks_cpumask(struct cpuset *cs)
986 {
987 	struct css_task_iter it;
988 	struct task_struct *task;
989 
990 	css_task_iter_start(&cs->css, 0, &it);
991 	while ((task = css_task_iter_next(&it)))
992 		set_cpus_allowed_ptr(task, cs->effective_cpus);
993 	css_task_iter_end(&it);
994 }
995 
996 /**
997  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
998  * @new_cpus: the temp variable for the new effective_cpus mask
999  * @cs: the cpuset the need to recompute the new effective_cpus mask
1000  * @parent: the parent cpuset
1001  *
1002  * If the parent has subpartition CPUs, include them in the list of
1003  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1004  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1005  * to mask those out.
1006  */
1007 static void compute_effective_cpumask(struct cpumask *new_cpus,
1008 				      struct cpuset *cs, struct cpuset *parent)
1009 {
1010 	if (parent->nr_subparts_cpus) {
1011 		cpumask_or(new_cpus, parent->effective_cpus,
1012 			   parent->subparts_cpus);
1013 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1014 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1015 	} else {
1016 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1017 	}
1018 }
1019 
1020 /*
1021  * Commands for update_parent_subparts_cpumask
1022  */
1023 enum subparts_cmd {
1024 	partcmd_enable,		/* Enable partition root	 */
1025 	partcmd_disable,	/* Disable partition root	 */
1026 	partcmd_update,		/* Update parent's subparts_cpus */
1027 };
1028 
1029 /**
1030  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1031  * @cpuset:  The cpuset that requests change in partition root state
1032  * @cmd:     Partition root state change command
1033  * @newmask: Optional new cpumask for partcmd_update
1034  * @tmp:     Temporary addmask and delmask
1035  * Return:   0, 1 or an error code
1036  *
1037  * For partcmd_enable, the cpuset is being transformed from a non-partition
1038  * root to a partition root. The cpus_allowed mask of the given cpuset will
1039  * be put into parent's subparts_cpus and taken away from parent's
1040  * effective_cpus. The function will return 0 if all the CPUs listed in
1041  * cpus_allowed can be granted or an error code will be returned.
1042  *
1043  * For partcmd_disable, the cpuset is being transofrmed from a partition
1044  * root back to a non-partition root. any CPUs in cpus_allowed that are in
1045  * parent's subparts_cpus will be taken away from that cpumask and put back
1046  * into parent's effective_cpus. 0 should always be returned.
1047  *
1048  * For partcmd_update, if the optional newmask is specified, the cpu
1049  * list is to be changed from cpus_allowed to newmask. Otherwise,
1050  * cpus_allowed is assumed to remain the same. The cpuset should either
1051  * be a partition root or an invalid partition root. The partition root
1052  * state may change if newmask is NULL and none of the requested CPUs can
1053  * be granted by the parent. The function will return 1 if changes to
1054  * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1055  * Error code should only be returned when newmask is non-NULL.
1056  *
1057  * The partcmd_enable and partcmd_disable commands are used by
1058  * update_prstate(). The partcmd_update command is used by
1059  * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1060  * newmask set.
1061  *
1062  * The checking is more strict when enabling partition root than the
1063  * other two commands.
1064  *
1065  * Because of the implicit cpu exclusive nature of a partition root,
1066  * cpumask changes that violates the cpu exclusivity rule will not be
1067  * permitted when checked by validate_change(). The validate_change()
1068  * function will also prevent any changes to the cpu list if it is not
1069  * a superset of children's cpu lists.
1070  */
1071 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1072 					  struct cpumask *newmask,
1073 					  struct tmpmasks *tmp)
1074 {
1075 	struct cpuset *parent = parent_cs(cpuset);
1076 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1077 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1078 	bool part_error = false;	/* Partition error? */
1079 
1080 	lockdep_assert_held(&cpuset_mutex);
1081 
1082 	/*
1083 	 * The parent must be a partition root.
1084 	 * The new cpumask, if present, or the current cpus_allowed must
1085 	 * not be empty.
1086 	 */
1087 	if (!is_partition_root(parent) ||
1088 	   (newmask && cpumask_empty(newmask)) ||
1089 	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1090 		return -EINVAL;
1091 
1092 	/*
1093 	 * Enabling/disabling partition root is not allowed if there are
1094 	 * online children.
1095 	 */
1096 	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1097 		return -EBUSY;
1098 
1099 	/*
1100 	 * Enabling partition root is not allowed if not all the CPUs
1101 	 * can be granted from parent's effective_cpus or at least one
1102 	 * CPU will be left after that.
1103 	 */
1104 	if ((cmd == partcmd_enable) &&
1105 	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1106 	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1107 		return -EINVAL;
1108 
1109 	/*
1110 	 * A cpumask update cannot make parent's effective_cpus become empty.
1111 	 */
1112 	adding = deleting = false;
1113 	if (cmd == partcmd_enable) {
1114 		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1115 		adding = true;
1116 	} else if (cmd == partcmd_disable) {
1117 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1118 				       parent->subparts_cpus);
1119 	} else if (newmask) {
1120 		/*
1121 		 * partcmd_update with newmask:
1122 		 *
1123 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1124 		 * addmask = newmask & parent->effective_cpus
1125 		 *		     & ~parent->subparts_cpus
1126 		 */
1127 		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1128 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1129 				       parent->subparts_cpus);
1130 
1131 		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1132 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1133 					parent->subparts_cpus);
1134 		/*
1135 		 * Return error if the new effective_cpus could become empty.
1136 		 */
1137 		if (adding &&
1138 		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1139 			if (!deleting)
1140 				return -EINVAL;
1141 			/*
1142 			 * As some of the CPUs in subparts_cpus might have
1143 			 * been offlined, we need to compute the real delmask
1144 			 * to confirm that.
1145 			 */
1146 			if (!cpumask_and(tmp->addmask, tmp->delmask,
1147 					 cpu_active_mask))
1148 				return -EINVAL;
1149 			cpumask_copy(tmp->addmask, parent->effective_cpus);
1150 		}
1151 	} else {
1152 		/*
1153 		 * partcmd_update w/o newmask:
1154 		 *
1155 		 * addmask = cpus_allowed & parent->effectiveb_cpus
1156 		 *
1157 		 * Note that parent's subparts_cpus may have been
1158 		 * pre-shrunk in case there is a change in the cpu list.
1159 		 * So no deletion is needed.
1160 		 */
1161 		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1162 				     parent->effective_cpus);
1163 		part_error = cpumask_equal(tmp->addmask,
1164 					   parent->effective_cpus);
1165 	}
1166 
1167 	if (cmd == partcmd_update) {
1168 		int prev_prs = cpuset->partition_root_state;
1169 
1170 		/*
1171 		 * Check for possible transition between PRS_ENABLED
1172 		 * and PRS_ERROR.
1173 		 */
1174 		switch (cpuset->partition_root_state) {
1175 		case PRS_ENABLED:
1176 			if (part_error)
1177 				cpuset->partition_root_state = PRS_ERROR;
1178 			break;
1179 		case PRS_ERROR:
1180 			if (!part_error)
1181 				cpuset->partition_root_state = PRS_ENABLED;
1182 			break;
1183 		}
1184 		/*
1185 		 * Set part_error if previously in invalid state.
1186 		 */
1187 		part_error = (prev_prs == PRS_ERROR);
1188 	}
1189 
1190 	if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1191 		return 0;	/* Nothing need to be done */
1192 
1193 	if (cpuset->partition_root_state == PRS_ERROR) {
1194 		/*
1195 		 * Remove all its cpus from parent's subparts_cpus.
1196 		 */
1197 		adding = false;
1198 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1199 				       parent->subparts_cpus);
1200 	}
1201 
1202 	if (!adding && !deleting)
1203 		return 0;
1204 
1205 	/*
1206 	 * Change the parent's subparts_cpus.
1207 	 * Newly added CPUs will be removed from effective_cpus and
1208 	 * newly deleted ones will be added back to effective_cpus.
1209 	 */
1210 	spin_lock_irq(&callback_lock);
1211 	if (adding) {
1212 		cpumask_or(parent->subparts_cpus,
1213 			   parent->subparts_cpus, tmp->addmask);
1214 		cpumask_andnot(parent->effective_cpus,
1215 			       parent->effective_cpus, tmp->addmask);
1216 	}
1217 	if (deleting) {
1218 		cpumask_andnot(parent->subparts_cpus,
1219 			       parent->subparts_cpus, tmp->delmask);
1220 		/*
1221 		 * Some of the CPUs in subparts_cpus might have been offlined.
1222 		 */
1223 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1224 		cpumask_or(parent->effective_cpus,
1225 			   parent->effective_cpus, tmp->delmask);
1226 	}
1227 
1228 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1229 	spin_unlock_irq(&callback_lock);
1230 
1231 	return cmd == partcmd_update;
1232 }
1233 
1234 /*
1235  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1236  * @cs:  the cpuset to consider
1237  * @tmp: temp variables for calculating effective_cpus & partition setup
1238  *
1239  * When congifured cpumask is changed, the effective cpumasks of this cpuset
1240  * and all its descendants need to be updated.
1241  *
1242  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1243  *
1244  * Called with cpuset_mutex held
1245  */
1246 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1247 {
1248 	struct cpuset *cp;
1249 	struct cgroup_subsys_state *pos_css;
1250 	bool need_rebuild_sched_domains = false;
1251 
1252 	rcu_read_lock();
1253 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1254 		struct cpuset *parent = parent_cs(cp);
1255 
1256 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1257 
1258 		/*
1259 		 * If it becomes empty, inherit the effective mask of the
1260 		 * parent, which is guaranteed to have some CPUs.
1261 		 */
1262 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1263 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1264 			if (!cp->use_parent_ecpus) {
1265 				cp->use_parent_ecpus = true;
1266 				parent->child_ecpus_count++;
1267 			}
1268 		} else if (cp->use_parent_ecpus) {
1269 			cp->use_parent_ecpus = false;
1270 			WARN_ON_ONCE(!parent->child_ecpus_count);
1271 			parent->child_ecpus_count--;
1272 		}
1273 
1274 		/*
1275 		 * Skip the whole subtree if the cpumask remains the same
1276 		 * and has no partition root state.
1277 		 */
1278 		if (!cp->partition_root_state &&
1279 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1280 			pos_css = css_rightmost_descendant(pos_css);
1281 			continue;
1282 		}
1283 
1284 		/*
1285 		 * update_parent_subparts_cpumask() should have been called
1286 		 * for cs already in update_cpumask(). We should also call
1287 		 * update_tasks_cpumask() again for tasks in the parent
1288 		 * cpuset if the parent's subparts_cpus changes.
1289 		 */
1290 		if ((cp != cs) && cp->partition_root_state) {
1291 			switch (parent->partition_root_state) {
1292 			case PRS_DISABLED:
1293 				/*
1294 				 * If parent is not a partition root or an
1295 				 * invalid partition root, clear the state
1296 				 * state and the CS_CPU_EXCLUSIVE flag.
1297 				 */
1298 				WARN_ON_ONCE(cp->partition_root_state
1299 					     != PRS_ERROR);
1300 				cp->partition_root_state = 0;
1301 
1302 				/*
1303 				 * clear_bit() is an atomic operation and
1304 				 * readers aren't interested in the state
1305 				 * of CS_CPU_EXCLUSIVE anyway. So we can
1306 				 * just update the flag without holding
1307 				 * the callback_lock.
1308 				 */
1309 				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1310 				break;
1311 
1312 			case PRS_ENABLED:
1313 				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1314 					update_tasks_cpumask(parent);
1315 				break;
1316 
1317 			case PRS_ERROR:
1318 				/*
1319 				 * When parent is invalid, it has to be too.
1320 				 */
1321 				cp->partition_root_state = PRS_ERROR;
1322 				if (cp->nr_subparts_cpus) {
1323 					cp->nr_subparts_cpus = 0;
1324 					cpumask_clear(cp->subparts_cpus);
1325 				}
1326 				break;
1327 			}
1328 		}
1329 
1330 		if (!css_tryget_online(&cp->css))
1331 			continue;
1332 		rcu_read_unlock();
1333 
1334 		spin_lock_irq(&callback_lock);
1335 
1336 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1337 		if (cp->nr_subparts_cpus &&
1338 		   (cp->partition_root_state != PRS_ENABLED)) {
1339 			cp->nr_subparts_cpus = 0;
1340 			cpumask_clear(cp->subparts_cpus);
1341 		} else if (cp->nr_subparts_cpus) {
1342 			/*
1343 			 * Make sure that effective_cpus & subparts_cpus
1344 			 * are mutually exclusive.
1345 			 *
1346 			 * In the unlikely event that effective_cpus
1347 			 * becomes empty. we clear cp->nr_subparts_cpus and
1348 			 * let its child partition roots to compete for
1349 			 * CPUs again.
1350 			 */
1351 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1352 				       cp->subparts_cpus);
1353 			if (cpumask_empty(cp->effective_cpus)) {
1354 				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1355 				cpumask_clear(cp->subparts_cpus);
1356 				cp->nr_subparts_cpus = 0;
1357 			} else if (!cpumask_subset(cp->subparts_cpus,
1358 						   tmp->new_cpus)) {
1359 				cpumask_andnot(cp->subparts_cpus,
1360 					cp->subparts_cpus, tmp->new_cpus);
1361 				cp->nr_subparts_cpus
1362 					= cpumask_weight(cp->subparts_cpus);
1363 			}
1364 		}
1365 		spin_unlock_irq(&callback_lock);
1366 
1367 		WARN_ON(!is_in_v2_mode() &&
1368 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1369 
1370 		update_tasks_cpumask(cp);
1371 
1372 		/*
1373 		 * On legacy hierarchy, if the effective cpumask of any non-
1374 		 * empty cpuset is changed, we need to rebuild sched domains.
1375 		 * On default hierarchy, the cpuset needs to be a partition
1376 		 * root as well.
1377 		 */
1378 		if (!cpumask_empty(cp->cpus_allowed) &&
1379 		    is_sched_load_balance(cp) &&
1380 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1381 		    is_partition_root(cp)))
1382 			need_rebuild_sched_domains = true;
1383 
1384 		rcu_read_lock();
1385 		css_put(&cp->css);
1386 	}
1387 	rcu_read_unlock();
1388 
1389 	if (need_rebuild_sched_domains)
1390 		rebuild_sched_domains_locked();
1391 }
1392 
1393 /**
1394  * update_sibling_cpumasks - Update siblings cpumasks
1395  * @parent:  Parent cpuset
1396  * @cs:      Current cpuset
1397  * @tmp:     Temp variables
1398  */
1399 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1400 				    struct tmpmasks *tmp)
1401 {
1402 	struct cpuset *sibling;
1403 	struct cgroup_subsys_state *pos_css;
1404 
1405 	/*
1406 	 * Check all its siblings and call update_cpumasks_hier()
1407 	 * if their use_parent_ecpus flag is set in order for them
1408 	 * to use the right effective_cpus value.
1409 	 */
1410 	rcu_read_lock();
1411 	cpuset_for_each_child(sibling, pos_css, parent) {
1412 		if (sibling == cs)
1413 			continue;
1414 		if (!sibling->use_parent_ecpus)
1415 			continue;
1416 
1417 		update_cpumasks_hier(sibling, tmp);
1418 	}
1419 	rcu_read_unlock();
1420 }
1421 
1422 /**
1423  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1424  * @cs: the cpuset to consider
1425  * @trialcs: trial cpuset
1426  * @buf: buffer of cpu numbers written to this cpuset
1427  */
1428 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1429 			  const char *buf)
1430 {
1431 	int retval;
1432 	struct tmpmasks tmp;
1433 
1434 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1435 	if (cs == &top_cpuset)
1436 		return -EACCES;
1437 
1438 	/*
1439 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1440 	 * Since cpulist_parse() fails on an empty mask, we special case
1441 	 * that parsing.  The validate_change() call ensures that cpusets
1442 	 * with tasks have cpus.
1443 	 */
1444 	if (!*buf) {
1445 		cpumask_clear(trialcs->cpus_allowed);
1446 	} else {
1447 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1448 		if (retval < 0)
1449 			return retval;
1450 
1451 		if (!cpumask_subset(trialcs->cpus_allowed,
1452 				    top_cpuset.cpus_allowed))
1453 			return -EINVAL;
1454 	}
1455 
1456 	/* Nothing to do if the cpus didn't change */
1457 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1458 		return 0;
1459 
1460 	retval = validate_change(cs, trialcs);
1461 	if (retval < 0)
1462 		return retval;
1463 
1464 #ifdef CONFIG_CPUMASK_OFFSTACK
1465 	/*
1466 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1467 	 * to allocated cpumasks.
1468 	 */
1469 	tmp.addmask  = trialcs->subparts_cpus;
1470 	tmp.delmask  = trialcs->effective_cpus;
1471 	tmp.new_cpus = trialcs->cpus_allowed;
1472 #endif
1473 
1474 	if (cs->partition_root_state) {
1475 		/* Cpumask of a partition root cannot be empty */
1476 		if (cpumask_empty(trialcs->cpus_allowed))
1477 			return -EINVAL;
1478 		if (update_parent_subparts_cpumask(cs, partcmd_update,
1479 					trialcs->cpus_allowed, &tmp) < 0)
1480 			return -EINVAL;
1481 	}
1482 
1483 	spin_lock_irq(&callback_lock);
1484 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1485 
1486 	/*
1487 	 * Make sure that subparts_cpus is a subset of cpus_allowed.
1488 	 */
1489 	if (cs->nr_subparts_cpus) {
1490 		cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1491 			       cs->cpus_allowed);
1492 		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1493 	}
1494 	spin_unlock_irq(&callback_lock);
1495 
1496 	update_cpumasks_hier(cs, &tmp);
1497 
1498 	if (cs->partition_root_state) {
1499 		struct cpuset *parent = parent_cs(cs);
1500 
1501 		/*
1502 		 * For partition root, update the cpumasks of sibling
1503 		 * cpusets if they use parent's effective_cpus.
1504 		 */
1505 		if (parent->child_ecpus_count)
1506 			update_sibling_cpumasks(parent, cs, &tmp);
1507 	}
1508 	return 0;
1509 }
1510 
1511 /*
1512  * Migrate memory region from one set of nodes to another.  This is
1513  * performed asynchronously as it can be called from process migration path
1514  * holding locks involved in process management.  All mm migrations are
1515  * performed in the queued order and can be waited for by flushing
1516  * cpuset_migrate_mm_wq.
1517  */
1518 
1519 struct cpuset_migrate_mm_work {
1520 	struct work_struct	work;
1521 	struct mm_struct	*mm;
1522 	nodemask_t		from;
1523 	nodemask_t		to;
1524 };
1525 
1526 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1527 {
1528 	struct cpuset_migrate_mm_work *mwork =
1529 		container_of(work, struct cpuset_migrate_mm_work, work);
1530 
1531 	/* on a wq worker, no need to worry about %current's mems_allowed */
1532 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1533 	mmput(mwork->mm);
1534 	kfree(mwork);
1535 }
1536 
1537 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1538 							const nodemask_t *to)
1539 {
1540 	struct cpuset_migrate_mm_work *mwork;
1541 
1542 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1543 	if (mwork) {
1544 		mwork->mm = mm;
1545 		mwork->from = *from;
1546 		mwork->to = *to;
1547 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1548 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1549 	} else {
1550 		mmput(mm);
1551 	}
1552 }
1553 
1554 static void cpuset_post_attach(void)
1555 {
1556 	flush_workqueue(cpuset_migrate_mm_wq);
1557 }
1558 
1559 /*
1560  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1561  * @tsk: the task to change
1562  * @newmems: new nodes that the task will be set
1563  *
1564  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1565  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1566  * parallel, it might temporarily see an empty intersection, which results in
1567  * a seqlock check and retry before OOM or allocation failure.
1568  */
1569 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1570 					nodemask_t *newmems)
1571 {
1572 	task_lock(tsk);
1573 
1574 	local_irq_disable();
1575 	write_seqcount_begin(&tsk->mems_allowed_seq);
1576 
1577 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1578 	mpol_rebind_task(tsk, newmems);
1579 	tsk->mems_allowed = *newmems;
1580 
1581 	write_seqcount_end(&tsk->mems_allowed_seq);
1582 	local_irq_enable();
1583 
1584 	task_unlock(tsk);
1585 }
1586 
1587 static void *cpuset_being_rebound;
1588 
1589 /**
1590  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1591  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1592  *
1593  * Iterate through each task of @cs updating its mems_allowed to the
1594  * effective cpuset's.  As this function is called with cpuset_mutex held,
1595  * cpuset membership stays stable.
1596  */
1597 static void update_tasks_nodemask(struct cpuset *cs)
1598 {
1599 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1600 	struct css_task_iter it;
1601 	struct task_struct *task;
1602 
1603 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1604 
1605 	guarantee_online_mems(cs, &newmems);
1606 
1607 	/*
1608 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1609 	 * take while holding tasklist_lock.  Forks can happen - the
1610 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1611 	 * and rebind their vma mempolicies too.  Because we still hold
1612 	 * the global cpuset_mutex, we know that no other rebind effort
1613 	 * will be contending for the global variable cpuset_being_rebound.
1614 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1615 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1616 	 */
1617 	css_task_iter_start(&cs->css, 0, &it);
1618 	while ((task = css_task_iter_next(&it))) {
1619 		struct mm_struct *mm;
1620 		bool migrate;
1621 
1622 		cpuset_change_task_nodemask(task, &newmems);
1623 
1624 		mm = get_task_mm(task);
1625 		if (!mm)
1626 			continue;
1627 
1628 		migrate = is_memory_migrate(cs);
1629 
1630 		mpol_rebind_mm(mm, &cs->mems_allowed);
1631 		if (migrate)
1632 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1633 		else
1634 			mmput(mm);
1635 	}
1636 	css_task_iter_end(&it);
1637 
1638 	/*
1639 	 * All the tasks' nodemasks have been updated, update
1640 	 * cs->old_mems_allowed.
1641 	 */
1642 	cs->old_mems_allowed = newmems;
1643 
1644 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1645 	cpuset_being_rebound = NULL;
1646 }
1647 
1648 /*
1649  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1650  * @cs: the cpuset to consider
1651  * @new_mems: a temp variable for calculating new effective_mems
1652  *
1653  * When configured nodemask is changed, the effective nodemasks of this cpuset
1654  * and all its descendants need to be updated.
1655  *
1656  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1657  *
1658  * Called with cpuset_mutex held
1659  */
1660 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1661 {
1662 	struct cpuset *cp;
1663 	struct cgroup_subsys_state *pos_css;
1664 
1665 	rcu_read_lock();
1666 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1667 		struct cpuset *parent = parent_cs(cp);
1668 
1669 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1670 
1671 		/*
1672 		 * If it becomes empty, inherit the effective mask of the
1673 		 * parent, which is guaranteed to have some MEMs.
1674 		 */
1675 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1676 			*new_mems = parent->effective_mems;
1677 
1678 		/* Skip the whole subtree if the nodemask remains the same. */
1679 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1680 			pos_css = css_rightmost_descendant(pos_css);
1681 			continue;
1682 		}
1683 
1684 		if (!css_tryget_online(&cp->css))
1685 			continue;
1686 		rcu_read_unlock();
1687 
1688 		spin_lock_irq(&callback_lock);
1689 		cp->effective_mems = *new_mems;
1690 		spin_unlock_irq(&callback_lock);
1691 
1692 		WARN_ON(!is_in_v2_mode() &&
1693 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1694 
1695 		update_tasks_nodemask(cp);
1696 
1697 		rcu_read_lock();
1698 		css_put(&cp->css);
1699 	}
1700 	rcu_read_unlock();
1701 }
1702 
1703 /*
1704  * Handle user request to change the 'mems' memory placement
1705  * of a cpuset.  Needs to validate the request, update the
1706  * cpusets mems_allowed, and for each task in the cpuset,
1707  * update mems_allowed and rebind task's mempolicy and any vma
1708  * mempolicies and if the cpuset is marked 'memory_migrate',
1709  * migrate the tasks pages to the new memory.
1710  *
1711  * Call with cpuset_mutex held. May take callback_lock during call.
1712  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1713  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1714  * their mempolicies to the cpusets new mems_allowed.
1715  */
1716 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1717 			   const char *buf)
1718 {
1719 	int retval;
1720 
1721 	/*
1722 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1723 	 * it's read-only
1724 	 */
1725 	if (cs == &top_cpuset) {
1726 		retval = -EACCES;
1727 		goto done;
1728 	}
1729 
1730 	/*
1731 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1732 	 * Since nodelist_parse() fails on an empty mask, we special case
1733 	 * that parsing.  The validate_change() call ensures that cpusets
1734 	 * with tasks have memory.
1735 	 */
1736 	if (!*buf) {
1737 		nodes_clear(trialcs->mems_allowed);
1738 	} else {
1739 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1740 		if (retval < 0)
1741 			goto done;
1742 
1743 		if (!nodes_subset(trialcs->mems_allowed,
1744 				  top_cpuset.mems_allowed)) {
1745 			retval = -EINVAL;
1746 			goto done;
1747 		}
1748 	}
1749 
1750 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1751 		retval = 0;		/* Too easy - nothing to do */
1752 		goto done;
1753 	}
1754 	retval = validate_change(cs, trialcs);
1755 	if (retval < 0)
1756 		goto done;
1757 
1758 	spin_lock_irq(&callback_lock);
1759 	cs->mems_allowed = trialcs->mems_allowed;
1760 	spin_unlock_irq(&callback_lock);
1761 
1762 	/* use trialcs->mems_allowed as a temp variable */
1763 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1764 done:
1765 	return retval;
1766 }
1767 
1768 bool current_cpuset_is_being_rebound(void)
1769 {
1770 	bool ret;
1771 
1772 	rcu_read_lock();
1773 	ret = task_cs(current) == cpuset_being_rebound;
1774 	rcu_read_unlock();
1775 
1776 	return ret;
1777 }
1778 
1779 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1780 {
1781 #ifdef CONFIG_SMP
1782 	if (val < -1 || val >= sched_domain_level_max)
1783 		return -EINVAL;
1784 #endif
1785 
1786 	if (val != cs->relax_domain_level) {
1787 		cs->relax_domain_level = val;
1788 		if (!cpumask_empty(cs->cpus_allowed) &&
1789 		    is_sched_load_balance(cs))
1790 			rebuild_sched_domains_locked();
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 /**
1797  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1798  * @cs: the cpuset in which each task's spread flags needs to be changed
1799  *
1800  * Iterate through each task of @cs updating its spread flags.  As this
1801  * function is called with cpuset_mutex held, cpuset membership stays
1802  * stable.
1803  */
1804 static void update_tasks_flags(struct cpuset *cs)
1805 {
1806 	struct css_task_iter it;
1807 	struct task_struct *task;
1808 
1809 	css_task_iter_start(&cs->css, 0, &it);
1810 	while ((task = css_task_iter_next(&it)))
1811 		cpuset_update_task_spread_flag(cs, task);
1812 	css_task_iter_end(&it);
1813 }
1814 
1815 /*
1816  * update_flag - read a 0 or a 1 in a file and update associated flag
1817  * bit:		the bit to update (see cpuset_flagbits_t)
1818  * cs:		the cpuset to update
1819  * turning_on: 	whether the flag is being set or cleared
1820  *
1821  * Call with cpuset_mutex held.
1822  */
1823 
1824 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1825 		       int turning_on)
1826 {
1827 	struct cpuset *trialcs;
1828 	int balance_flag_changed;
1829 	int spread_flag_changed;
1830 	int err;
1831 
1832 	trialcs = alloc_trial_cpuset(cs);
1833 	if (!trialcs)
1834 		return -ENOMEM;
1835 
1836 	if (turning_on)
1837 		set_bit(bit, &trialcs->flags);
1838 	else
1839 		clear_bit(bit, &trialcs->flags);
1840 
1841 	err = validate_change(cs, trialcs);
1842 	if (err < 0)
1843 		goto out;
1844 
1845 	balance_flag_changed = (is_sched_load_balance(cs) !=
1846 				is_sched_load_balance(trialcs));
1847 
1848 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1849 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1850 
1851 	spin_lock_irq(&callback_lock);
1852 	cs->flags = trialcs->flags;
1853 	spin_unlock_irq(&callback_lock);
1854 
1855 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1856 		rebuild_sched_domains_locked();
1857 
1858 	if (spread_flag_changed)
1859 		update_tasks_flags(cs);
1860 out:
1861 	free_cpuset(trialcs);
1862 	return err;
1863 }
1864 
1865 /*
1866  * update_prstate - update partititon_root_state
1867  * cs:	the cpuset to update
1868  * val: 0 - disabled, 1 - enabled
1869  *
1870  * Call with cpuset_mutex held.
1871  */
1872 static int update_prstate(struct cpuset *cs, int val)
1873 {
1874 	int err;
1875 	struct cpuset *parent = parent_cs(cs);
1876 	struct tmpmasks tmp;
1877 
1878 	if ((val != 0) && (val != 1))
1879 		return -EINVAL;
1880 	if (val == cs->partition_root_state)
1881 		return 0;
1882 
1883 	/*
1884 	 * Cannot force a partial or invalid partition root to a full
1885 	 * partition root.
1886 	 */
1887 	if (val && cs->partition_root_state)
1888 		return -EINVAL;
1889 
1890 	if (alloc_cpumasks(NULL, &tmp))
1891 		return -ENOMEM;
1892 
1893 	err = -EINVAL;
1894 	if (!cs->partition_root_state) {
1895 		/*
1896 		 * Turning on partition root requires setting the
1897 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1898 		 * cannot be NULL.
1899 		 */
1900 		if (cpumask_empty(cs->cpus_allowed))
1901 			goto out;
1902 
1903 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1904 		if (err)
1905 			goto out;
1906 
1907 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
1908 						     NULL, &tmp);
1909 		if (err) {
1910 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1911 			goto out;
1912 		}
1913 		cs->partition_root_state = PRS_ENABLED;
1914 	} else {
1915 		/*
1916 		 * Turning off partition root will clear the
1917 		 * CS_CPU_EXCLUSIVE bit.
1918 		 */
1919 		if (cs->partition_root_state == PRS_ERROR) {
1920 			cs->partition_root_state = 0;
1921 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1922 			err = 0;
1923 			goto out;
1924 		}
1925 
1926 		err = update_parent_subparts_cpumask(cs, partcmd_disable,
1927 						     NULL, &tmp);
1928 		if (err)
1929 			goto out;
1930 
1931 		cs->partition_root_state = 0;
1932 
1933 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1934 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1935 	}
1936 
1937 	/*
1938 	 * Update cpumask of parent's tasks except when it is the top
1939 	 * cpuset as some system daemons cannot be mapped to other CPUs.
1940 	 */
1941 	if (parent != &top_cpuset)
1942 		update_tasks_cpumask(parent);
1943 
1944 	if (parent->child_ecpus_count)
1945 		update_sibling_cpumasks(parent, cs, &tmp);
1946 
1947 	rebuild_sched_domains_locked();
1948 out:
1949 	free_cpumasks(NULL, &tmp);
1950 	return err;
1951 }
1952 
1953 /*
1954  * Frequency meter - How fast is some event occurring?
1955  *
1956  * These routines manage a digitally filtered, constant time based,
1957  * event frequency meter.  There are four routines:
1958  *   fmeter_init() - initialize a frequency meter.
1959  *   fmeter_markevent() - called each time the event happens.
1960  *   fmeter_getrate() - returns the recent rate of such events.
1961  *   fmeter_update() - internal routine used to update fmeter.
1962  *
1963  * A common data structure is passed to each of these routines,
1964  * which is used to keep track of the state required to manage the
1965  * frequency meter and its digital filter.
1966  *
1967  * The filter works on the number of events marked per unit time.
1968  * The filter is single-pole low-pass recursive (IIR).  The time unit
1969  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1970  * simulate 3 decimal digits of precision (multiplied by 1000).
1971  *
1972  * With an FM_COEF of 933, and a time base of 1 second, the filter
1973  * has a half-life of 10 seconds, meaning that if the events quit
1974  * happening, then the rate returned from the fmeter_getrate()
1975  * will be cut in half each 10 seconds, until it converges to zero.
1976  *
1977  * It is not worth doing a real infinitely recursive filter.  If more
1978  * than FM_MAXTICKS ticks have elapsed since the last filter event,
1979  * just compute FM_MAXTICKS ticks worth, by which point the level
1980  * will be stable.
1981  *
1982  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1983  * arithmetic overflow in the fmeter_update() routine.
1984  *
1985  * Given the simple 32 bit integer arithmetic used, this meter works
1986  * best for reporting rates between one per millisecond (msec) and
1987  * one per 32 (approx) seconds.  At constant rates faster than one
1988  * per msec it maxes out at values just under 1,000,000.  At constant
1989  * rates between one per msec, and one per second it will stabilize
1990  * to a value N*1000, where N is the rate of events per second.
1991  * At constant rates between one per second and one per 32 seconds,
1992  * it will be choppy, moving up on the seconds that have an event,
1993  * and then decaying until the next event.  At rates slower than
1994  * about one in 32 seconds, it decays all the way back to zero between
1995  * each event.
1996  */
1997 
1998 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
1999 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2000 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2001 #define FM_SCALE 1000		/* faux fixed point scale */
2002 
2003 /* Initialize a frequency meter */
2004 static void fmeter_init(struct fmeter *fmp)
2005 {
2006 	fmp->cnt = 0;
2007 	fmp->val = 0;
2008 	fmp->time = 0;
2009 	spin_lock_init(&fmp->lock);
2010 }
2011 
2012 /* Internal meter update - process cnt events and update value */
2013 static void fmeter_update(struct fmeter *fmp)
2014 {
2015 	time64_t now;
2016 	u32 ticks;
2017 
2018 	now = ktime_get_seconds();
2019 	ticks = now - fmp->time;
2020 
2021 	if (ticks == 0)
2022 		return;
2023 
2024 	ticks = min(FM_MAXTICKS, ticks);
2025 	while (ticks-- > 0)
2026 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2027 	fmp->time = now;
2028 
2029 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2030 	fmp->cnt = 0;
2031 }
2032 
2033 /* Process any previous ticks, then bump cnt by one (times scale). */
2034 static void fmeter_markevent(struct fmeter *fmp)
2035 {
2036 	spin_lock(&fmp->lock);
2037 	fmeter_update(fmp);
2038 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2039 	spin_unlock(&fmp->lock);
2040 }
2041 
2042 /* Process any previous ticks, then return current value. */
2043 static int fmeter_getrate(struct fmeter *fmp)
2044 {
2045 	int val;
2046 
2047 	spin_lock(&fmp->lock);
2048 	fmeter_update(fmp);
2049 	val = fmp->val;
2050 	spin_unlock(&fmp->lock);
2051 	return val;
2052 }
2053 
2054 static struct cpuset *cpuset_attach_old_cs;
2055 
2056 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2057 static int cpuset_can_attach(struct cgroup_taskset *tset)
2058 {
2059 	struct cgroup_subsys_state *css;
2060 	struct cpuset *cs;
2061 	struct task_struct *task;
2062 	int ret;
2063 
2064 	/* used later by cpuset_attach() */
2065 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2066 	cs = css_cs(css);
2067 
2068 	mutex_lock(&cpuset_mutex);
2069 
2070 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2071 	ret = -ENOSPC;
2072 	if (!is_in_v2_mode() &&
2073 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2074 		goto out_unlock;
2075 
2076 	cgroup_taskset_for_each(task, css, tset) {
2077 		ret = task_can_attach(task, cs->cpus_allowed);
2078 		if (ret)
2079 			goto out_unlock;
2080 		ret = security_task_setscheduler(task);
2081 		if (ret)
2082 			goto out_unlock;
2083 	}
2084 
2085 	/*
2086 	 * Mark attach is in progress.  This makes validate_change() fail
2087 	 * changes which zero cpus/mems_allowed.
2088 	 */
2089 	cs->attach_in_progress++;
2090 	ret = 0;
2091 out_unlock:
2092 	mutex_unlock(&cpuset_mutex);
2093 	return ret;
2094 }
2095 
2096 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2097 {
2098 	struct cgroup_subsys_state *css;
2099 
2100 	cgroup_taskset_first(tset, &css);
2101 
2102 	mutex_lock(&cpuset_mutex);
2103 	css_cs(css)->attach_in_progress--;
2104 	mutex_unlock(&cpuset_mutex);
2105 }
2106 
2107 /*
2108  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
2109  * but we can't allocate it dynamically there.  Define it global and
2110  * allocate from cpuset_init().
2111  */
2112 static cpumask_var_t cpus_attach;
2113 
2114 static void cpuset_attach(struct cgroup_taskset *tset)
2115 {
2116 	/* static buf protected by cpuset_mutex */
2117 	static nodemask_t cpuset_attach_nodemask_to;
2118 	struct task_struct *task;
2119 	struct task_struct *leader;
2120 	struct cgroup_subsys_state *css;
2121 	struct cpuset *cs;
2122 	struct cpuset *oldcs = cpuset_attach_old_cs;
2123 
2124 	cgroup_taskset_first(tset, &css);
2125 	cs = css_cs(css);
2126 
2127 	mutex_lock(&cpuset_mutex);
2128 
2129 	/* prepare for attach */
2130 	if (cs == &top_cpuset)
2131 		cpumask_copy(cpus_attach, cpu_possible_mask);
2132 	else
2133 		guarantee_online_cpus(cs, cpus_attach);
2134 
2135 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2136 
2137 	cgroup_taskset_for_each(task, css, tset) {
2138 		/*
2139 		 * can_attach beforehand should guarantee that this doesn't
2140 		 * fail.  TODO: have a better way to handle failure here
2141 		 */
2142 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2143 
2144 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2145 		cpuset_update_task_spread_flag(cs, task);
2146 	}
2147 
2148 	/*
2149 	 * Change mm for all threadgroup leaders. This is expensive and may
2150 	 * sleep and should be moved outside migration path proper.
2151 	 */
2152 	cpuset_attach_nodemask_to = cs->effective_mems;
2153 	cgroup_taskset_for_each_leader(leader, css, tset) {
2154 		struct mm_struct *mm = get_task_mm(leader);
2155 
2156 		if (mm) {
2157 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2158 
2159 			/*
2160 			 * old_mems_allowed is the same with mems_allowed
2161 			 * here, except if this task is being moved
2162 			 * automatically due to hotplug.  In that case
2163 			 * @mems_allowed has been updated and is empty, so
2164 			 * @old_mems_allowed is the right nodesets that we
2165 			 * migrate mm from.
2166 			 */
2167 			if (is_memory_migrate(cs))
2168 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2169 						  &cpuset_attach_nodemask_to);
2170 			else
2171 				mmput(mm);
2172 		}
2173 	}
2174 
2175 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2176 
2177 	cs->attach_in_progress--;
2178 	if (!cs->attach_in_progress)
2179 		wake_up(&cpuset_attach_wq);
2180 
2181 	mutex_unlock(&cpuset_mutex);
2182 }
2183 
2184 /* The various types of files and directories in a cpuset file system */
2185 
2186 typedef enum {
2187 	FILE_MEMORY_MIGRATE,
2188 	FILE_CPULIST,
2189 	FILE_MEMLIST,
2190 	FILE_EFFECTIVE_CPULIST,
2191 	FILE_EFFECTIVE_MEMLIST,
2192 	FILE_SUBPARTS_CPULIST,
2193 	FILE_CPU_EXCLUSIVE,
2194 	FILE_MEM_EXCLUSIVE,
2195 	FILE_MEM_HARDWALL,
2196 	FILE_SCHED_LOAD_BALANCE,
2197 	FILE_PARTITION_ROOT,
2198 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2199 	FILE_MEMORY_PRESSURE_ENABLED,
2200 	FILE_MEMORY_PRESSURE,
2201 	FILE_SPREAD_PAGE,
2202 	FILE_SPREAD_SLAB,
2203 } cpuset_filetype_t;
2204 
2205 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2206 			    u64 val)
2207 {
2208 	struct cpuset *cs = css_cs(css);
2209 	cpuset_filetype_t type = cft->private;
2210 	int retval = 0;
2211 
2212 	mutex_lock(&cpuset_mutex);
2213 	if (!is_cpuset_online(cs)) {
2214 		retval = -ENODEV;
2215 		goto out_unlock;
2216 	}
2217 
2218 	switch (type) {
2219 	case FILE_CPU_EXCLUSIVE:
2220 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2221 		break;
2222 	case FILE_MEM_EXCLUSIVE:
2223 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2224 		break;
2225 	case FILE_MEM_HARDWALL:
2226 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2227 		break;
2228 	case FILE_SCHED_LOAD_BALANCE:
2229 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2230 		break;
2231 	case FILE_MEMORY_MIGRATE:
2232 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2233 		break;
2234 	case FILE_MEMORY_PRESSURE_ENABLED:
2235 		cpuset_memory_pressure_enabled = !!val;
2236 		break;
2237 	case FILE_SPREAD_PAGE:
2238 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2239 		break;
2240 	case FILE_SPREAD_SLAB:
2241 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2242 		break;
2243 	default:
2244 		retval = -EINVAL;
2245 		break;
2246 	}
2247 out_unlock:
2248 	mutex_unlock(&cpuset_mutex);
2249 	return retval;
2250 }
2251 
2252 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2253 			    s64 val)
2254 {
2255 	struct cpuset *cs = css_cs(css);
2256 	cpuset_filetype_t type = cft->private;
2257 	int retval = -ENODEV;
2258 
2259 	mutex_lock(&cpuset_mutex);
2260 	if (!is_cpuset_online(cs))
2261 		goto out_unlock;
2262 
2263 	switch (type) {
2264 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2265 		retval = update_relax_domain_level(cs, val);
2266 		break;
2267 	default:
2268 		retval = -EINVAL;
2269 		break;
2270 	}
2271 out_unlock:
2272 	mutex_unlock(&cpuset_mutex);
2273 	return retval;
2274 }
2275 
2276 /*
2277  * Common handling for a write to a "cpus" or "mems" file.
2278  */
2279 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2280 				    char *buf, size_t nbytes, loff_t off)
2281 {
2282 	struct cpuset *cs = css_cs(of_css(of));
2283 	struct cpuset *trialcs;
2284 	int retval = -ENODEV;
2285 
2286 	buf = strstrip(buf);
2287 
2288 	/*
2289 	 * CPU or memory hotunplug may leave @cs w/o any execution
2290 	 * resources, in which case the hotplug code asynchronously updates
2291 	 * configuration and transfers all tasks to the nearest ancestor
2292 	 * which can execute.
2293 	 *
2294 	 * As writes to "cpus" or "mems" may restore @cs's execution
2295 	 * resources, wait for the previously scheduled operations before
2296 	 * proceeding, so that we don't end up keep removing tasks added
2297 	 * after execution capability is restored.
2298 	 *
2299 	 * cpuset_hotplug_work calls back into cgroup core via
2300 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2301 	 * operation like this one can lead to a deadlock through kernfs
2302 	 * active_ref protection.  Let's break the protection.  Losing the
2303 	 * protection is okay as we check whether @cs is online after
2304 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
2305 	 * hierarchies.
2306 	 */
2307 	css_get(&cs->css);
2308 	kernfs_break_active_protection(of->kn);
2309 	flush_work(&cpuset_hotplug_work);
2310 
2311 	mutex_lock(&cpuset_mutex);
2312 	if (!is_cpuset_online(cs))
2313 		goto out_unlock;
2314 
2315 	trialcs = alloc_trial_cpuset(cs);
2316 	if (!trialcs) {
2317 		retval = -ENOMEM;
2318 		goto out_unlock;
2319 	}
2320 
2321 	switch (of_cft(of)->private) {
2322 	case FILE_CPULIST:
2323 		retval = update_cpumask(cs, trialcs, buf);
2324 		break;
2325 	case FILE_MEMLIST:
2326 		retval = update_nodemask(cs, trialcs, buf);
2327 		break;
2328 	default:
2329 		retval = -EINVAL;
2330 		break;
2331 	}
2332 
2333 	free_cpuset(trialcs);
2334 out_unlock:
2335 	mutex_unlock(&cpuset_mutex);
2336 	kernfs_unbreak_active_protection(of->kn);
2337 	css_put(&cs->css);
2338 	flush_workqueue(cpuset_migrate_mm_wq);
2339 	return retval ?: nbytes;
2340 }
2341 
2342 /*
2343  * These ascii lists should be read in a single call, by using a user
2344  * buffer large enough to hold the entire map.  If read in smaller
2345  * chunks, there is no guarantee of atomicity.  Since the display format
2346  * used, list of ranges of sequential numbers, is variable length,
2347  * and since these maps can change value dynamically, one could read
2348  * gibberish by doing partial reads while a list was changing.
2349  */
2350 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2351 {
2352 	struct cpuset *cs = css_cs(seq_css(sf));
2353 	cpuset_filetype_t type = seq_cft(sf)->private;
2354 	int ret = 0;
2355 
2356 	spin_lock_irq(&callback_lock);
2357 
2358 	switch (type) {
2359 	case FILE_CPULIST:
2360 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2361 		break;
2362 	case FILE_MEMLIST:
2363 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2364 		break;
2365 	case FILE_EFFECTIVE_CPULIST:
2366 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2367 		break;
2368 	case FILE_EFFECTIVE_MEMLIST:
2369 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2370 		break;
2371 	case FILE_SUBPARTS_CPULIST:
2372 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2373 		break;
2374 	default:
2375 		ret = -EINVAL;
2376 	}
2377 
2378 	spin_unlock_irq(&callback_lock);
2379 	return ret;
2380 }
2381 
2382 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2383 {
2384 	struct cpuset *cs = css_cs(css);
2385 	cpuset_filetype_t type = cft->private;
2386 	switch (type) {
2387 	case FILE_CPU_EXCLUSIVE:
2388 		return is_cpu_exclusive(cs);
2389 	case FILE_MEM_EXCLUSIVE:
2390 		return is_mem_exclusive(cs);
2391 	case FILE_MEM_HARDWALL:
2392 		return is_mem_hardwall(cs);
2393 	case FILE_SCHED_LOAD_BALANCE:
2394 		return is_sched_load_balance(cs);
2395 	case FILE_MEMORY_MIGRATE:
2396 		return is_memory_migrate(cs);
2397 	case FILE_MEMORY_PRESSURE_ENABLED:
2398 		return cpuset_memory_pressure_enabled;
2399 	case FILE_MEMORY_PRESSURE:
2400 		return fmeter_getrate(&cs->fmeter);
2401 	case FILE_SPREAD_PAGE:
2402 		return is_spread_page(cs);
2403 	case FILE_SPREAD_SLAB:
2404 		return is_spread_slab(cs);
2405 	default:
2406 		BUG();
2407 	}
2408 
2409 	/* Unreachable but makes gcc happy */
2410 	return 0;
2411 }
2412 
2413 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2414 {
2415 	struct cpuset *cs = css_cs(css);
2416 	cpuset_filetype_t type = cft->private;
2417 	switch (type) {
2418 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2419 		return cs->relax_domain_level;
2420 	default:
2421 		BUG();
2422 	}
2423 
2424 	/* Unrechable but makes gcc happy */
2425 	return 0;
2426 }
2427 
2428 static int sched_partition_show(struct seq_file *seq, void *v)
2429 {
2430 	struct cpuset *cs = css_cs(seq_css(seq));
2431 
2432 	switch (cs->partition_root_state) {
2433 	case PRS_ENABLED:
2434 		seq_puts(seq, "root\n");
2435 		break;
2436 	case PRS_DISABLED:
2437 		seq_puts(seq, "member\n");
2438 		break;
2439 	case PRS_ERROR:
2440 		seq_puts(seq, "root invalid\n");
2441 		break;
2442 	}
2443 	return 0;
2444 }
2445 
2446 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2447 				     size_t nbytes, loff_t off)
2448 {
2449 	struct cpuset *cs = css_cs(of_css(of));
2450 	int val;
2451 	int retval = -ENODEV;
2452 
2453 	buf = strstrip(buf);
2454 
2455 	/*
2456 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2457 	 */
2458 	if (!strcmp(buf, "root"))
2459 		val = PRS_ENABLED;
2460 	else if (!strcmp(buf, "member"))
2461 		val = PRS_DISABLED;
2462 	else
2463 		return -EINVAL;
2464 
2465 	css_get(&cs->css);
2466 	mutex_lock(&cpuset_mutex);
2467 	if (!is_cpuset_online(cs))
2468 		goto out_unlock;
2469 
2470 	retval = update_prstate(cs, val);
2471 out_unlock:
2472 	mutex_unlock(&cpuset_mutex);
2473 	css_put(&cs->css);
2474 	return retval ?: nbytes;
2475 }
2476 
2477 /*
2478  * for the common functions, 'private' gives the type of file
2479  */
2480 
2481 static struct cftype legacy_files[] = {
2482 	{
2483 		.name = "cpus",
2484 		.seq_show = cpuset_common_seq_show,
2485 		.write = cpuset_write_resmask,
2486 		.max_write_len = (100U + 6 * NR_CPUS),
2487 		.private = FILE_CPULIST,
2488 	},
2489 
2490 	{
2491 		.name = "mems",
2492 		.seq_show = cpuset_common_seq_show,
2493 		.write = cpuset_write_resmask,
2494 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2495 		.private = FILE_MEMLIST,
2496 	},
2497 
2498 	{
2499 		.name = "effective_cpus",
2500 		.seq_show = cpuset_common_seq_show,
2501 		.private = FILE_EFFECTIVE_CPULIST,
2502 	},
2503 
2504 	{
2505 		.name = "effective_mems",
2506 		.seq_show = cpuset_common_seq_show,
2507 		.private = FILE_EFFECTIVE_MEMLIST,
2508 	},
2509 
2510 	{
2511 		.name = "cpu_exclusive",
2512 		.read_u64 = cpuset_read_u64,
2513 		.write_u64 = cpuset_write_u64,
2514 		.private = FILE_CPU_EXCLUSIVE,
2515 	},
2516 
2517 	{
2518 		.name = "mem_exclusive",
2519 		.read_u64 = cpuset_read_u64,
2520 		.write_u64 = cpuset_write_u64,
2521 		.private = FILE_MEM_EXCLUSIVE,
2522 	},
2523 
2524 	{
2525 		.name = "mem_hardwall",
2526 		.read_u64 = cpuset_read_u64,
2527 		.write_u64 = cpuset_write_u64,
2528 		.private = FILE_MEM_HARDWALL,
2529 	},
2530 
2531 	{
2532 		.name = "sched_load_balance",
2533 		.read_u64 = cpuset_read_u64,
2534 		.write_u64 = cpuset_write_u64,
2535 		.private = FILE_SCHED_LOAD_BALANCE,
2536 	},
2537 
2538 	{
2539 		.name = "sched_relax_domain_level",
2540 		.read_s64 = cpuset_read_s64,
2541 		.write_s64 = cpuset_write_s64,
2542 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2543 	},
2544 
2545 	{
2546 		.name = "memory_migrate",
2547 		.read_u64 = cpuset_read_u64,
2548 		.write_u64 = cpuset_write_u64,
2549 		.private = FILE_MEMORY_MIGRATE,
2550 	},
2551 
2552 	{
2553 		.name = "memory_pressure",
2554 		.read_u64 = cpuset_read_u64,
2555 		.private = FILE_MEMORY_PRESSURE,
2556 	},
2557 
2558 	{
2559 		.name = "memory_spread_page",
2560 		.read_u64 = cpuset_read_u64,
2561 		.write_u64 = cpuset_write_u64,
2562 		.private = FILE_SPREAD_PAGE,
2563 	},
2564 
2565 	{
2566 		.name = "memory_spread_slab",
2567 		.read_u64 = cpuset_read_u64,
2568 		.write_u64 = cpuset_write_u64,
2569 		.private = FILE_SPREAD_SLAB,
2570 	},
2571 
2572 	{
2573 		.name = "memory_pressure_enabled",
2574 		.flags = CFTYPE_ONLY_ON_ROOT,
2575 		.read_u64 = cpuset_read_u64,
2576 		.write_u64 = cpuset_write_u64,
2577 		.private = FILE_MEMORY_PRESSURE_ENABLED,
2578 	},
2579 
2580 	{ }	/* terminate */
2581 };
2582 
2583 /*
2584  * This is currently a minimal set for the default hierarchy. It can be
2585  * expanded later on by migrating more features and control files from v1.
2586  */
2587 static struct cftype dfl_files[] = {
2588 	{
2589 		.name = "cpus",
2590 		.seq_show = cpuset_common_seq_show,
2591 		.write = cpuset_write_resmask,
2592 		.max_write_len = (100U + 6 * NR_CPUS),
2593 		.private = FILE_CPULIST,
2594 		.flags = CFTYPE_NOT_ON_ROOT,
2595 	},
2596 
2597 	{
2598 		.name = "mems",
2599 		.seq_show = cpuset_common_seq_show,
2600 		.write = cpuset_write_resmask,
2601 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2602 		.private = FILE_MEMLIST,
2603 		.flags = CFTYPE_NOT_ON_ROOT,
2604 	},
2605 
2606 	{
2607 		.name = "cpus.effective",
2608 		.seq_show = cpuset_common_seq_show,
2609 		.private = FILE_EFFECTIVE_CPULIST,
2610 	},
2611 
2612 	{
2613 		.name = "mems.effective",
2614 		.seq_show = cpuset_common_seq_show,
2615 		.private = FILE_EFFECTIVE_MEMLIST,
2616 	},
2617 
2618 	{
2619 		.name = "cpus.partition",
2620 		.seq_show = sched_partition_show,
2621 		.write = sched_partition_write,
2622 		.private = FILE_PARTITION_ROOT,
2623 		.flags = CFTYPE_NOT_ON_ROOT,
2624 	},
2625 
2626 	{
2627 		.name = "cpus.subpartitions",
2628 		.seq_show = cpuset_common_seq_show,
2629 		.private = FILE_SUBPARTS_CPULIST,
2630 		.flags = CFTYPE_DEBUG,
2631 	},
2632 
2633 	{ }	/* terminate */
2634 };
2635 
2636 
2637 /*
2638  *	cpuset_css_alloc - allocate a cpuset css
2639  *	cgrp:	control group that the new cpuset will be part of
2640  */
2641 
2642 static struct cgroup_subsys_state *
2643 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2644 {
2645 	struct cpuset *cs;
2646 
2647 	if (!parent_css)
2648 		return &top_cpuset.css;
2649 
2650 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2651 	if (!cs)
2652 		return ERR_PTR(-ENOMEM);
2653 
2654 	if (alloc_cpumasks(cs, NULL)) {
2655 		kfree(cs);
2656 		return ERR_PTR(-ENOMEM);
2657 	}
2658 
2659 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2660 	nodes_clear(cs->mems_allowed);
2661 	nodes_clear(cs->effective_mems);
2662 	fmeter_init(&cs->fmeter);
2663 	cs->relax_domain_level = -1;
2664 
2665 	return &cs->css;
2666 }
2667 
2668 static int cpuset_css_online(struct cgroup_subsys_state *css)
2669 {
2670 	struct cpuset *cs = css_cs(css);
2671 	struct cpuset *parent = parent_cs(cs);
2672 	struct cpuset *tmp_cs;
2673 	struct cgroup_subsys_state *pos_css;
2674 
2675 	if (!parent)
2676 		return 0;
2677 
2678 	mutex_lock(&cpuset_mutex);
2679 
2680 	set_bit(CS_ONLINE, &cs->flags);
2681 	if (is_spread_page(parent))
2682 		set_bit(CS_SPREAD_PAGE, &cs->flags);
2683 	if (is_spread_slab(parent))
2684 		set_bit(CS_SPREAD_SLAB, &cs->flags);
2685 
2686 	cpuset_inc();
2687 
2688 	spin_lock_irq(&callback_lock);
2689 	if (is_in_v2_mode()) {
2690 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2691 		cs->effective_mems = parent->effective_mems;
2692 		cs->use_parent_ecpus = true;
2693 		parent->child_ecpus_count++;
2694 	}
2695 	spin_unlock_irq(&callback_lock);
2696 
2697 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2698 		goto out_unlock;
2699 
2700 	/*
2701 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2702 	 * set.  This flag handling is implemented in cgroup core for
2703 	 * histrical reasons - the flag may be specified during mount.
2704 	 *
2705 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2706 	 * refuse to clone the configuration - thereby refusing the task to
2707 	 * be entered, and as a result refusing the sys_unshare() or
2708 	 * clone() which initiated it.  If this becomes a problem for some
2709 	 * users who wish to allow that scenario, then this could be
2710 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2711 	 * (and likewise for mems) to the new cgroup.
2712 	 */
2713 	rcu_read_lock();
2714 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2715 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2716 			rcu_read_unlock();
2717 			goto out_unlock;
2718 		}
2719 	}
2720 	rcu_read_unlock();
2721 
2722 	spin_lock_irq(&callback_lock);
2723 	cs->mems_allowed = parent->mems_allowed;
2724 	cs->effective_mems = parent->mems_allowed;
2725 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2726 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2727 	spin_unlock_irq(&callback_lock);
2728 out_unlock:
2729 	mutex_unlock(&cpuset_mutex);
2730 	return 0;
2731 }
2732 
2733 /*
2734  * If the cpuset being removed has its flag 'sched_load_balance'
2735  * enabled, then simulate turning sched_load_balance off, which
2736  * will call rebuild_sched_domains_locked(). That is not needed
2737  * in the default hierarchy where only changes in partition
2738  * will cause repartitioning.
2739  *
2740  * If the cpuset has the 'sched.partition' flag enabled, simulate
2741  * turning 'sched.partition" off.
2742  */
2743 
2744 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2745 {
2746 	struct cpuset *cs = css_cs(css);
2747 
2748 	mutex_lock(&cpuset_mutex);
2749 
2750 	if (is_partition_root(cs))
2751 		update_prstate(cs, 0);
2752 
2753 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2754 	    is_sched_load_balance(cs))
2755 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2756 
2757 	if (cs->use_parent_ecpus) {
2758 		struct cpuset *parent = parent_cs(cs);
2759 
2760 		cs->use_parent_ecpus = false;
2761 		parent->child_ecpus_count--;
2762 	}
2763 
2764 	cpuset_dec();
2765 	clear_bit(CS_ONLINE, &cs->flags);
2766 
2767 	mutex_unlock(&cpuset_mutex);
2768 }
2769 
2770 static void cpuset_css_free(struct cgroup_subsys_state *css)
2771 {
2772 	struct cpuset *cs = css_cs(css);
2773 
2774 	free_cpuset(cs);
2775 }
2776 
2777 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2778 {
2779 	mutex_lock(&cpuset_mutex);
2780 	spin_lock_irq(&callback_lock);
2781 
2782 	if (is_in_v2_mode()) {
2783 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2784 		top_cpuset.mems_allowed = node_possible_map;
2785 	} else {
2786 		cpumask_copy(top_cpuset.cpus_allowed,
2787 			     top_cpuset.effective_cpus);
2788 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2789 	}
2790 
2791 	spin_unlock_irq(&callback_lock);
2792 	mutex_unlock(&cpuset_mutex);
2793 }
2794 
2795 /*
2796  * Make sure the new task conform to the current state of its parent,
2797  * which could have been changed by cpuset just after it inherits the
2798  * state from the parent and before it sits on the cgroup's task list.
2799  */
2800 static void cpuset_fork(struct task_struct *task)
2801 {
2802 	if (task_css_is_root(task, cpuset_cgrp_id))
2803 		return;
2804 
2805 	set_cpus_allowed_ptr(task, &current->cpus_allowed);
2806 	task->mems_allowed = current->mems_allowed;
2807 }
2808 
2809 struct cgroup_subsys cpuset_cgrp_subsys = {
2810 	.css_alloc	= cpuset_css_alloc,
2811 	.css_online	= cpuset_css_online,
2812 	.css_offline	= cpuset_css_offline,
2813 	.css_free	= cpuset_css_free,
2814 	.can_attach	= cpuset_can_attach,
2815 	.cancel_attach	= cpuset_cancel_attach,
2816 	.attach		= cpuset_attach,
2817 	.post_attach	= cpuset_post_attach,
2818 	.bind		= cpuset_bind,
2819 	.fork		= cpuset_fork,
2820 	.legacy_cftypes	= legacy_files,
2821 	.dfl_cftypes	= dfl_files,
2822 	.early_init	= true,
2823 	.threaded	= true,
2824 };
2825 
2826 /**
2827  * cpuset_init - initialize cpusets at system boot
2828  *
2829  * Description: Initialize top_cpuset and the cpuset internal file system,
2830  **/
2831 
2832 int __init cpuset_init(void)
2833 {
2834 	int err = 0;
2835 
2836 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2837 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2838 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2839 
2840 	cpumask_setall(top_cpuset.cpus_allowed);
2841 	nodes_setall(top_cpuset.mems_allowed);
2842 	cpumask_setall(top_cpuset.effective_cpus);
2843 	nodes_setall(top_cpuset.effective_mems);
2844 
2845 	fmeter_init(&top_cpuset.fmeter);
2846 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2847 	top_cpuset.relax_domain_level = -1;
2848 
2849 	err = register_filesystem(&cpuset_fs_type);
2850 	if (err < 0)
2851 		return err;
2852 
2853 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2854 
2855 	return 0;
2856 }
2857 
2858 /*
2859  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2860  * or memory nodes, we need to walk over the cpuset hierarchy,
2861  * removing that CPU or node from all cpusets.  If this removes the
2862  * last CPU or node from a cpuset, then move the tasks in the empty
2863  * cpuset to its next-highest non-empty parent.
2864  */
2865 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2866 {
2867 	struct cpuset *parent;
2868 
2869 	/*
2870 	 * Find its next-highest non-empty parent, (top cpuset
2871 	 * has online cpus, so can't be empty).
2872 	 */
2873 	parent = parent_cs(cs);
2874 	while (cpumask_empty(parent->cpus_allowed) ||
2875 			nodes_empty(parent->mems_allowed))
2876 		parent = parent_cs(parent);
2877 
2878 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2879 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2880 		pr_cont_cgroup_name(cs->css.cgroup);
2881 		pr_cont("\n");
2882 	}
2883 }
2884 
2885 static void
2886 hotplug_update_tasks_legacy(struct cpuset *cs,
2887 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2888 			    bool cpus_updated, bool mems_updated)
2889 {
2890 	bool is_empty;
2891 
2892 	spin_lock_irq(&callback_lock);
2893 	cpumask_copy(cs->cpus_allowed, new_cpus);
2894 	cpumask_copy(cs->effective_cpus, new_cpus);
2895 	cs->mems_allowed = *new_mems;
2896 	cs->effective_mems = *new_mems;
2897 	spin_unlock_irq(&callback_lock);
2898 
2899 	/*
2900 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2901 	 * as the tasks will be migratecd to an ancestor.
2902 	 */
2903 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2904 		update_tasks_cpumask(cs);
2905 	if (mems_updated && !nodes_empty(cs->mems_allowed))
2906 		update_tasks_nodemask(cs);
2907 
2908 	is_empty = cpumask_empty(cs->cpus_allowed) ||
2909 		   nodes_empty(cs->mems_allowed);
2910 
2911 	mutex_unlock(&cpuset_mutex);
2912 
2913 	/*
2914 	 * Move tasks to the nearest ancestor with execution resources,
2915 	 * This is full cgroup operation which will also call back into
2916 	 * cpuset. Should be done outside any lock.
2917 	 */
2918 	if (is_empty)
2919 		remove_tasks_in_empty_cpuset(cs);
2920 
2921 	mutex_lock(&cpuset_mutex);
2922 }
2923 
2924 static void
2925 hotplug_update_tasks(struct cpuset *cs,
2926 		     struct cpumask *new_cpus, nodemask_t *new_mems,
2927 		     bool cpus_updated, bool mems_updated)
2928 {
2929 	if (cpumask_empty(new_cpus))
2930 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2931 	if (nodes_empty(*new_mems))
2932 		*new_mems = parent_cs(cs)->effective_mems;
2933 
2934 	spin_lock_irq(&callback_lock);
2935 	cpumask_copy(cs->effective_cpus, new_cpus);
2936 	cs->effective_mems = *new_mems;
2937 	spin_unlock_irq(&callback_lock);
2938 
2939 	if (cpus_updated)
2940 		update_tasks_cpumask(cs);
2941 	if (mems_updated)
2942 		update_tasks_nodemask(cs);
2943 }
2944 
2945 static bool force_rebuild;
2946 
2947 void cpuset_force_rebuild(void)
2948 {
2949 	force_rebuild = true;
2950 }
2951 
2952 /**
2953  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2954  * @cs: cpuset in interest
2955  * @tmp: the tmpmasks structure pointer
2956  *
2957  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2958  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2959  * all its tasks are moved to the nearest ancestor with both resources.
2960  */
2961 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
2962 {
2963 	static cpumask_t new_cpus;
2964 	static nodemask_t new_mems;
2965 	bool cpus_updated;
2966 	bool mems_updated;
2967 	struct cpuset *parent;
2968 retry:
2969 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2970 
2971 	mutex_lock(&cpuset_mutex);
2972 
2973 	/*
2974 	 * We have raced with task attaching. We wait until attaching
2975 	 * is finished, so we won't attach a task to an empty cpuset.
2976 	 */
2977 	if (cs->attach_in_progress) {
2978 		mutex_unlock(&cpuset_mutex);
2979 		goto retry;
2980 	}
2981 
2982 	parent =  parent_cs(cs);
2983 	compute_effective_cpumask(&new_cpus, cs, parent);
2984 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
2985 
2986 	if (cs->nr_subparts_cpus)
2987 		/*
2988 		 * Make sure that CPUs allocated to child partitions
2989 		 * do not show up in effective_cpus.
2990 		 */
2991 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
2992 
2993 	if (!tmp || !cs->partition_root_state)
2994 		goto update_tasks;
2995 
2996 	/*
2997 	 * In the unlikely event that a partition root has empty
2998 	 * effective_cpus or its parent becomes erroneous, we have to
2999 	 * transition it to the erroneous state.
3000 	 */
3001 	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3002 	   (parent->partition_root_state == PRS_ERROR))) {
3003 		if (cs->nr_subparts_cpus) {
3004 			cs->nr_subparts_cpus = 0;
3005 			cpumask_clear(cs->subparts_cpus);
3006 			compute_effective_cpumask(&new_cpus, cs, parent);
3007 		}
3008 
3009 		/*
3010 		 * If the effective_cpus is empty because the child
3011 		 * partitions take away all the CPUs, we can keep
3012 		 * the current partition and let the child partitions
3013 		 * fight for available CPUs.
3014 		 */
3015 		if ((parent->partition_root_state == PRS_ERROR) ||
3016 		     cpumask_empty(&new_cpus)) {
3017 			update_parent_subparts_cpumask(cs, partcmd_disable,
3018 						       NULL, tmp);
3019 			cs->partition_root_state = PRS_ERROR;
3020 		}
3021 		cpuset_force_rebuild();
3022 	}
3023 
3024 	/*
3025 	 * On the other hand, an erroneous partition root may be transitioned
3026 	 * back to a regular one or a partition root with no CPU allocated
3027 	 * from the parent may change to erroneous.
3028 	 */
3029 	if (is_partition_root(parent) &&
3030 	   ((cs->partition_root_state == PRS_ERROR) ||
3031 	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3032 	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3033 		cpuset_force_rebuild();
3034 
3035 update_tasks:
3036 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3037 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3038 
3039 	if (is_in_v2_mode())
3040 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3041 				     cpus_updated, mems_updated);
3042 	else
3043 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3044 					    cpus_updated, mems_updated);
3045 
3046 	mutex_unlock(&cpuset_mutex);
3047 }
3048 
3049 /**
3050  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3051  *
3052  * This function is called after either CPU or memory configuration has
3053  * changed and updates cpuset accordingly.  The top_cpuset is always
3054  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3055  * order to make cpusets transparent (of no affect) on systems that are
3056  * actively using CPU hotplug but making no active use of cpusets.
3057  *
3058  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3059  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3060  * all descendants.
3061  *
3062  * Note that CPU offlining during suspend is ignored.  We don't modify
3063  * cpusets across suspend/resume cycles at all.
3064  */
3065 static void cpuset_hotplug_workfn(struct work_struct *work)
3066 {
3067 	static cpumask_t new_cpus;
3068 	static nodemask_t new_mems;
3069 	bool cpus_updated, mems_updated;
3070 	bool on_dfl = is_in_v2_mode();
3071 	struct tmpmasks tmp, *ptmp = NULL;
3072 
3073 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3074 		ptmp = &tmp;
3075 
3076 	mutex_lock(&cpuset_mutex);
3077 
3078 	/* fetch the available cpus/mems and find out which changed how */
3079 	cpumask_copy(&new_cpus, cpu_active_mask);
3080 	new_mems = node_states[N_MEMORY];
3081 
3082 	/*
3083 	 * If subparts_cpus is populated, it is likely that the check below
3084 	 * will produce a false positive on cpus_updated when the cpu list
3085 	 * isn't changed. It is extra work, but it is better to be safe.
3086 	 */
3087 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3088 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3089 
3090 	/* synchronize cpus_allowed to cpu_active_mask */
3091 	if (cpus_updated) {
3092 		spin_lock_irq(&callback_lock);
3093 		if (!on_dfl)
3094 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3095 		/*
3096 		 * Make sure that CPUs allocated to child partitions
3097 		 * do not show up in effective_cpus. If no CPU is left,
3098 		 * we clear the subparts_cpus & let the child partitions
3099 		 * fight for the CPUs again.
3100 		 */
3101 		if (top_cpuset.nr_subparts_cpus) {
3102 			if (cpumask_subset(&new_cpus,
3103 					   top_cpuset.subparts_cpus)) {
3104 				top_cpuset.nr_subparts_cpus = 0;
3105 				cpumask_clear(top_cpuset.subparts_cpus);
3106 			} else {
3107 				cpumask_andnot(&new_cpus, &new_cpus,
3108 					       top_cpuset.subparts_cpus);
3109 			}
3110 		}
3111 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3112 		spin_unlock_irq(&callback_lock);
3113 		/* we don't mess with cpumasks of tasks in top_cpuset */
3114 	}
3115 
3116 	/* synchronize mems_allowed to N_MEMORY */
3117 	if (mems_updated) {
3118 		spin_lock_irq(&callback_lock);
3119 		if (!on_dfl)
3120 			top_cpuset.mems_allowed = new_mems;
3121 		top_cpuset.effective_mems = new_mems;
3122 		spin_unlock_irq(&callback_lock);
3123 		update_tasks_nodemask(&top_cpuset);
3124 	}
3125 
3126 	mutex_unlock(&cpuset_mutex);
3127 
3128 	/* if cpus or mems changed, we need to propagate to descendants */
3129 	if (cpus_updated || mems_updated) {
3130 		struct cpuset *cs;
3131 		struct cgroup_subsys_state *pos_css;
3132 
3133 		rcu_read_lock();
3134 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3135 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3136 				continue;
3137 			rcu_read_unlock();
3138 
3139 			cpuset_hotplug_update_tasks(cs, ptmp);
3140 
3141 			rcu_read_lock();
3142 			css_put(&cs->css);
3143 		}
3144 		rcu_read_unlock();
3145 	}
3146 
3147 	/* rebuild sched domains if cpus_allowed has changed */
3148 	if (cpus_updated || force_rebuild) {
3149 		force_rebuild = false;
3150 		rebuild_sched_domains();
3151 	}
3152 
3153 	free_cpumasks(NULL, ptmp);
3154 }
3155 
3156 void cpuset_update_active_cpus(void)
3157 {
3158 	/*
3159 	 * We're inside cpu hotplug critical region which usually nests
3160 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3161 	 * to a work item to avoid reverse locking order.
3162 	 */
3163 	schedule_work(&cpuset_hotplug_work);
3164 }
3165 
3166 void cpuset_wait_for_hotplug(void)
3167 {
3168 	flush_work(&cpuset_hotplug_work);
3169 }
3170 
3171 /*
3172  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3173  * Call this routine anytime after node_states[N_MEMORY] changes.
3174  * See cpuset_update_active_cpus() for CPU hotplug handling.
3175  */
3176 static int cpuset_track_online_nodes(struct notifier_block *self,
3177 				unsigned long action, void *arg)
3178 {
3179 	schedule_work(&cpuset_hotplug_work);
3180 	return NOTIFY_OK;
3181 }
3182 
3183 static struct notifier_block cpuset_track_online_nodes_nb = {
3184 	.notifier_call = cpuset_track_online_nodes,
3185 	.priority = 10,		/* ??! */
3186 };
3187 
3188 /**
3189  * cpuset_init_smp - initialize cpus_allowed
3190  *
3191  * Description: Finish top cpuset after cpu, node maps are initialized
3192  */
3193 void __init cpuset_init_smp(void)
3194 {
3195 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3196 	top_cpuset.mems_allowed = node_states[N_MEMORY];
3197 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3198 
3199 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3200 	top_cpuset.effective_mems = node_states[N_MEMORY];
3201 
3202 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3203 
3204 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3205 	BUG_ON(!cpuset_migrate_mm_wq);
3206 }
3207 
3208 /**
3209  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3210  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3211  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3212  *
3213  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3214  * attached to the specified @tsk.  Guaranteed to return some non-empty
3215  * subset of cpu_online_mask, even if this means going outside the
3216  * tasks cpuset.
3217  **/
3218 
3219 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3220 {
3221 	unsigned long flags;
3222 
3223 	spin_lock_irqsave(&callback_lock, flags);
3224 	rcu_read_lock();
3225 	guarantee_online_cpus(task_cs(tsk), pmask);
3226 	rcu_read_unlock();
3227 	spin_unlock_irqrestore(&callback_lock, flags);
3228 }
3229 
3230 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3231 {
3232 	rcu_read_lock();
3233 	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
3234 	rcu_read_unlock();
3235 
3236 	/*
3237 	 * We own tsk->cpus_allowed, nobody can change it under us.
3238 	 *
3239 	 * But we used cs && cs->cpus_allowed lockless and thus can
3240 	 * race with cgroup_attach_task() or update_cpumask() and get
3241 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3242 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3243 	 * which takes task_rq_lock().
3244 	 *
3245 	 * If we are called after it dropped the lock we must see all
3246 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3247 	 * set any mask even if it is not right from task_cs() pov,
3248 	 * the pending set_cpus_allowed_ptr() will fix things.
3249 	 *
3250 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3251 	 * if required.
3252 	 */
3253 }
3254 
3255 void __init cpuset_init_current_mems_allowed(void)
3256 {
3257 	nodes_setall(current->mems_allowed);
3258 }
3259 
3260 /**
3261  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3262  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3263  *
3264  * Description: Returns the nodemask_t mems_allowed of the cpuset
3265  * attached to the specified @tsk.  Guaranteed to return some non-empty
3266  * subset of node_states[N_MEMORY], even if this means going outside the
3267  * tasks cpuset.
3268  **/
3269 
3270 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3271 {
3272 	nodemask_t mask;
3273 	unsigned long flags;
3274 
3275 	spin_lock_irqsave(&callback_lock, flags);
3276 	rcu_read_lock();
3277 	guarantee_online_mems(task_cs(tsk), &mask);
3278 	rcu_read_unlock();
3279 	spin_unlock_irqrestore(&callback_lock, flags);
3280 
3281 	return mask;
3282 }
3283 
3284 /**
3285  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3286  * @nodemask: the nodemask to be checked
3287  *
3288  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3289  */
3290 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3291 {
3292 	return nodes_intersects(*nodemask, current->mems_allowed);
3293 }
3294 
3295 /*
3296  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3297  * mem_hardwall ancestor to the specified cpuset.  Call holding
3298  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3299  * (an unusual configuration), then returns the root cpuset.
3300  */
3301 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3302 {
3303 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3304 		cs = parent_cs(cs);
3305 	return cs;
3306 }
3307 
3308 /**
3309  * cpuset_node_allowed - Can we allocate on a memory node?
3310  * @node: is this an allowed node?
3311  * @gfp_mask: memory allocation flags
3312  *
3313  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3314  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3315  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3316  * yes.  If current has access to memory reserves as an oom victim, yes.
3317  * Otherwise, no.
3318  *
3319  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3320  * and do not allow allocations outside the current tasks cpuset
3321  * unless the task has been OOM killed.
3322  * GFP_KERNEL allocations are not so marked, so can escape to the
3323  * nearest enclosing hardwalled ancestor cpuset.
3324  *
3325  * Scanning up parent cpusets requires callback_lock.  The
3326  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3327  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3328  * current tasks mems_allowed came up empty on the first pass over
3329  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3330  * cpuset are short of memory, might require taking the callback_lock.
3331  *
3332  * The first call here from mm/page_alloc:get_page_from_freelist()
3333  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3334  * so no allocation on a node outside the cpuset is allowed (unless
3335  * in interrupt, of course).
3336  *
3337  * The second pass through get_page_from_freelist() doesn't even call
3338  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3339  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3340  * in alloc_flags.  That logic and the checks below have the combined
3341  * affect that:
3342  *	in_interrupt - any node ok (current task context irrelevant)
3343  *	GFP_ATOMIC   - any node ok
3344  *	tsk_is_oom_victim   - any node ok
3345  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3346  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3347  */
3348 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3349 {
3350 	struct cpuset *cs;		/* current cpuset ancestors */
3351 	int allowed;			/* is allocation in zone z allowed? */
3352 	unsigned long flags;
3353 
3354 	if (in_interrupt())
3355 		return true;
3356 	if (node_isset(node, current->mems_allowed))
3357 		return true;
3358 	/*
3359 	 * Allow tasks that have access to memory reserves because they have
3360 	 * been OOM killed to get memory anywhere.
3361 	 */
3362 	if (unlikely(tsk_is_oom_victim(current)))
3363 		return true;
3364 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3365 		return false;
3366 
3367 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3368 		return true;
3369 
3370 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3371 	spin_lock_irqsave(&callback_lock, flags);
3372 
3373 	rcu_read_lock();
3374 	cs = nearest_hardwall_ancestor(task_cs(current));
3375 	allowed = node_isset(node, cs->mems_allowed);
3376 	rcu_read_unlock();
3377 
3378 	spin_unlock_irqrestore(&callback_lock, flags);
3379 	return allowed;
3380 }
3381 
3382 /**
3383  * cpuset_mem_spread_node() - On which node to begin search for a file page
3384  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3385  *
3386  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3387  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3388  * and if the memory allocation used cpuset_mem_spread_node()
3389  * to determine on which node to start looking, as it will for
3390  * certain page cache or slab cache pages such as used for file
3391  * system buffers and inode caches, then instead of starting on the
3392  * local node to look for a free page, rather spread the starting
3393  * node around the tasks mems_allowed nodes.
3394  *
3395  * We don't have to worry about the returned node being offline
3396  * because "it can't happen", and even if it did, it would be ok.
3397  *
3398  * The routines calling guarantee_online_mems() are careful to
3399  * only set nodes in task->mems_allowed that are online.  So it
3400  * should not be possible for the following code to return an
3401  * offline node.  But if it did, that would be ok, as this routine
3402  * is not returning the node where the allocation must be, only
3403  * the node where the search should start.  The zonelist passed to
3404  * __alloc_pages() will include all nodes.  If the slab allocator
3405  * is passed an offline node, it will fall back to the local node.
3406  * See kmem_cache_alloc_node().
3407  */
3408 
3409 static int cpuset_spread_node(int *rotor)
3410 {
3411 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3412 }
3413 
3414 int cpuset_mem_spread_node(void)
3415 {
3416 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3417 		current->cpuset_mem_spread_rotor =
3418 			node_random(&current->mems_allowed);
3419 
3420 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3421 }
3422 
3423 int cpuset_slab_spread_node(void)
3424 {
3425 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3426 		current->cpuset_slab_spread_rotor =
3427 			node_random(&current->mems_allowed);
3428 
3429 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3430 }
3431 
3432 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3433 
3434 /**
3435  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3436  * @tsk1: pointer to task_struct of some task.
3437  * @tsk2: pointer to task_struct of some other task.
3438  *
3439  * Description: Return true if @tsk1's mems_allowed intersects the
3440  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3441  * one of the task's memory usage might impact the memory available
3442  * to the other.
3443  **/
3444 
3445 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3446 				   const struct task_struct *tsk2)
3447 {
3448 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3449 }
3450 
3451 /**
3452  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3453  *
3454  * Description: Prints current's name, cpuset name, and cached copy of its
3455  * mems_allowed to the kernel log.
3456  */
3457 void cpuset_print_current_mems_allowed(void)
3458 {
3459 	struct cgroup *cgrp;
3460 
3461 	rcu_read_lock();
3462 
3463 	cgrp = task_cs(current)->css.cgroup;
3464 	pr_cont(",cpuset=");
3465 	pr_cont_cgroup_name(cgrp);
3466 	pr_cont(",mems_allowed=%*pbl",
3467 		nodemask_pr_args(&current->mems_allowed));
3468 
3469 	rcu_read_unlock();
3470 }
3471 
3472 /*
3473  * Collection of memory_pressure is suppressed unless
3474  * this flag is enabled by writing "1" to the special
3475  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3476  */
3477 
3478 int cpuset_memory_pressure_enabled __read_mostly;
3479 
3480 /**
3481  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3482  *
3483  * Keep a running average of the rate of synchronous (direct)
3484  * page reclaim efforts initiated by tasks in each cpuset.
3485  *
3486  * This represents the rate at which some task in the cpuset
3487  * ran low on memory on all nodes it was allowed to use, and
3488  * had to enter the kernels page reclaim code in an effort to
3489  * create more free memory by tossing clean pages or swapping
3490  * or writing dirty pages.
3491  *
3492  * Display to user space in the per-cpuset read-only file
3493  * "memory_pressure".  Value displayed is an integer
3494  * representing the recent rate of entry into the synchronous
3495  * (direct) page reclaim by any task attached to the cpuset.
3496  **/
3497 
3498 void __cpuset_memory_pressure_bump(void)
3499 {
3500 	rcu_read_lock();
3501 	fmeter_markevent(&task_cs(current)->fmeter);
3502 	rcu_read_unlock();
3503 }
3504 
3505 #ifdef CONFIG_PROC_PID_CPUSET
3506 /*
3507  * proc_cpuset_show()
3508  *  - Print tasks cpuset path into seq_file.
3509  *  - Used for /proc/<pid>/cpuset.
3510  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3511  *    doesn't really matter if tsk->cpuset changes after we read it,
3512  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
3513  *    anyway.
3514  */
3515 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3516 		     struct pid *pid, struct task_struct *tsk)
3517 {
3518 	char *buf;
3519 	struct cgroup_subsys_state *css;
3520 	int retval;
3521 
3522 	retval = -ENOMEM;
3523 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3524 	if (!buf)
3525 		goto out;
3526 
3527 	css = task_get_css(tsk, cpuset_cgrp_id);
3528 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3529 				current->nsproxy->cgroup_ns);
3530 	css_put(css);
3531 	if (retval >= PATH_MAX)
3532 		retval = -ENAMETOOLONG;
3533 	if (retval < 0)
3534 		goto out_free;
3535 	seq_puts(m, buf);
3536 	seq_putc(m, '\n');
3537 	retval = 0;
3538 out_free:
3539 	kfree(buf);
3540 out:
3541 	return retval;
3542 }
3543 #endif /* CONFIG_PROC_PID_CPUSET */
3544 
3545 /* Display task mems_allowed in /proc/<pid>/status file. */
3546 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3547 {
3548 	seq_printf(m, "Mems_allowed:\t%*pb\n",
3549 		   nodemask_pr_args(&task->mems_allowed));
3550 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3551 		   nodemask_pr_args(&task->mems_allowed));
3552 }
3553