xref: /linux/kernel/cgroup/cpuset.c (revision 8ed7cf66f4841bcc8c15a89be0732b933703b51c)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 #include "cgroup-internal.h"
25 #include "cpuset-internal.h"
26 
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/kernel.h>
30 #include <linux/mempolicy.h>
31 #include <linux/mm.h>
32 #include <linux/memory.h>
33 #include <linux/export.h>
34 #include <linux/rcupdate.h>
35 #include <linux/sched.h>
36 #include <linux/sched/deadline.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/task.h>
39 #include <linux/security.h>
40 #include <linux/oom.h>
41 #include <linux/sched/isolation.h>
42 #include <linux/wait.h>
43 #include <linux/workqueue.h>
44 
45 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
46 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
47 
48 /*
49  * There could be abnormal cpuset configurations for cpu or memory
50  * node binding, add this key to provide a quick low-cost judgment
51  * of the situation.
52  */
53 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
54 
55 static const char * const perr_strings[] = {
56 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus.exclusive",
57 	[PERR_INVPARENT] = "Parent is an invalid partition root",
58 	[PERR_NOTPART]   = "Parent is not a partition root",
59 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
60 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
61 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
62 	[PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
63 	[PERR_HKEEPING]  = "partition config conflicts with housekeeping setup",
64 	[PERR_ACCESS]    = "Enable partition not permitted",
65 };
66 
67 /*
68  * Exclusive CPUs distributed out to sub-partitions of top_cpuset
69  */
70 static cpumask_var_t	subpartitions_cpus;
71 
72 /*
73  * Exclusive CPUs in isolated partitions
74  */
75 static cpumask_var_t	isolated_cpus;
76 
77 /*
78  * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot
79  */
80 static cpumask_var_t	boot_hk_cpus;
81 static bool		have_boot_isolcpus;
82 
83 /* List of remote partition root children */
84 static struct list_head remote_children;
85 
86 /*
87  * A flag to force sched domain rebuild at the end of an operation while
88  * inhibiting it in the intermediate stages when set. Currently it is only
89  * set in hotplug code.
90  */
91 static bool force_sd_rebuild;
92 
93 /*
94  * Partition root states:
95  *
96  *   0 - member (not a partition root)
97  *   1 - partition root
98  *   2 - partition root without load balancing (isolated)
99  *  -1 - invalid partition root
100  *  -2 - invalid isolated partition root
101  *
102  *  There are 2 types of partitions - local or remote. Local partitions are
103  *  those whose parents are partition root themselves. Setting of
104  *  cpuset.cpus.exclusive are optional in setting up local partitions.
105  *  Remote partitions are those whose parents are not partition roots. Passing
106  *  down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
107  *  nodes are mandatory in creating a remote partition.
108  *
109  *  For simplicity, a local partition can be created under a local or remote
110  *  partition but a remote partition cannot have any partition root in its
111  *  ancestor chain except the cgroup root.
112  */
113 #define PRS_MEMBER		0
114 #define PRS_ROOT		1
115 #define PRS_ISOLATED		2
116 #define PRS_INVALID_ROOT	-1
117 #define PRS_INVALID_ISOLATED	-2
118 
119 static inline bool is_prs_invalid(int prs_state)
120 {
121 	return prs_state < 0;
122 }
123 
124 /*
125  * Temporary cpumasks for working with partitions that are passed among
126  * functions to avoid memory allocation in inner functions.
127  */
128 struct tmpmasks {
129 	cpumask_var_t addmask, delmask;	/* For partition root */
130 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
131 };
132 
133 void inc_dl_tasks_cs(struct task_struct *p)
134 {
135 	struct cpuset *cs = task_cs(p);
136 
137 	cs->nr_deadline_tasks++;
138 }
139 
140 void dec_dl_tasks_cs(struct task_struct *p)
141 {
142 	struct cpuset *cs = task_cs(p);
143 
144 	cs->nr_deadline_tasks--;
145 }
146 
147 static inline int is_partition_valid(const struct cpuset *cs)
148 {
149 	return cs->partition_root_state > 0;
150 }
151 
152 static inline int is_partition_invalid(const struct cpuset *cs)
153 {
154 	return cs->partition_root_state < 0;
155 }
156 
157 /*
158  * Callers should hold callback_lock to modify partition_root_state.
159  */
160 static inline void make_partition_invalid(struct cpuset *cs)
161 {
162 	if (cs->partition_root_state > 0)
163 		cs->partition_root_state = -cs->partition_root_state;
164 }
165 
166 /*
167  * Send notification event of whenever partition_root_state changes.
168  */
169 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
170 {
171 	if (old_prs == cs->partition_root_state)
172 		return;
173 	cgroup_file_notify(&cs->partition_file);
174 
175 	/* Reset prs_err if not invalid */
176 	if (is_partition_valid(cs))
177 		WRITE_ONCE(cs->prs_err, PERR_NONE);
178 }
179 
180 static struct cpuset top_cpuset = {
181 	.flags = BIT(CS_ONLINE) | BIT(CS_CPU_EXCLUSIVE) |
182 		 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
183 	.partition_root_state = PRS_ROOT,
184 	.relax_domain_level = -1,
185 	.remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling),
186 };
187 
188 /*
189  * There are two global locks guarding cpuset structures - cpuset_mutex and
190  * callback_lock. We also require taking task_lock() when dereferencing a
191  * task's cpuset pointer. See "The task_lock() exception", at the end of this
192  * comment.  The cpuset code uses only cpuset_mutex. Other kernel subsystems
193  * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
194  * structures. Note that cpuset_mutex needs to be a mutex as it is used in
195  * paths that rely on priority inheritance (e.g. scheduler - on RT) for
196  * correctness.
197  *
198  * A task must hold both locks to modify cpusets.  If a task holds
199  * cpuset_mutex, it blocks others, ensuring that it is the only task able to
200  * also acquire callback_lock and be able to modify cpusets.  It can perform
201  * various checks on the cpuset structure first, knowing nothing will change.
202  * It can also allocate memory while just holding cpuset_mutex.  While it is
203  * performing these checks, various callback routines can briefly acquire
204  * callback_lock to query cpusets.  Once it is ready to make the changes, it
205  * takes callback_lock, blocking everyone else.
206  *
207  * Calls to the kernel memory allocator can not be made while holding
208  * callback_lock, as that would risk double tripping on callback_lock
209  * from one of the callbacks into the cpuset code from within
210  * __alloc_pages().
211  *
212  * If a task is only holding callback_lock, then it has read-only
213  * access to cpusets.
214  *
215  * Now, the task_struct fields mems_allowed and mempolicy may be changed
216  * by other task, we use alloc_lock in the task_struct fields to protect
217  * them.
218  *
219  * The cpuset_common_seq_show() handlers only hold callback_lock across
220  * small pieces of code, such as when reading out possibly multi-word
221  * cpumasks and nodemasks.
222  *
223  * Accessing a task's cpuset should be done in accordance with the
224  * guidelines for accessing subsystem state in kernel/cgroup.c
225  */
226 
227 static DEFINE_MUTEX(cpuset_mutex);
228 
229 void cpuset_lock(void)
230 {
231 	mutex_lock(&cpuset_mutex);
232 }
233 
234 void cpuset_unlock(void)
235 {
236 	mutex_unlock(&cpuset_mutex);
237 }
238 
239 static DEFINE_SPINLOCK(callback_lock);
240 
241 void cpuset_callback_lock_irq(void)
242 {
243 	spin_lock_irq(&callback_lock);
244 }
245 
246 void cpuset_callback_unlock_irq(void)
247 {
248 	spin_unlock_irq(&callback_lock);
249 }
250 
251 static struct workqueue_struct *cpuset_migrate_mm_wq;
252 
253 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
254 
255 static inline void check_insane_mems_config(nodemask_t *nodes)
256 {
257 	if (!cpusets_insane_config() &&
258 		movable_only_nodes(nodes)) {
259 		static_branch_enable(&cpusets_insane_config_key);
260 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
261 			"Cpuset allocations might fail even with a lot of memory available.\n",
262 			nodemask_pr_args(nodes));
263 	}
264 }
265 
266 /*
267  * decrease cs->attach_in_progress.
268  * wake_up cpuset_attach_wq if cs->attach_in_progress==0.
269  */
270 static inline void dec_attach_in_progress_locked(struct cpuset *cs)
271 {
272 	lockdep_assert_held(&cpuset_mutex);
273 
274 	cs->attach_in_progress--;
275 	if (!cs->attach_in_progress)
276 		wake_up(&cpuset_attach_wq);
277 }
278 
279 static inline void dec_attach_in_progress(struct cpuset *cs)
280 {
281 	mutex_lock(&cpuset_mutex);
282 	dec_attach_in_progress_locked(cs);
283 	mutex_unlock(&cpuset_mutex);
284 }
285 
286 /*
287  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
288  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
289  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
290  * With v2 behavior, "cpus" and "mems" are always what the users have
291  * requested and won't be changed by hotplug events. Only the effective
292  * cpus or mems will be affected.
293  */
294 static inline bool is_in_v2_mode(void)
295 {
296 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
297 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
298 }
299 
300 /**
301  * partition_is_populated - check if partition has tasks
302  * @cs: partition root to be checked
303  * @excluded_child: a child cpuset to be excluded in task checking
304  * Return: true if there are tasks, false otherwise
305  *
306  * It is assumed that @cs is a valid partition root. @excluded_child should
307  * be non-NULL when this cpuset is going to become a partition itself.
308  */
309 static inline bool partition_is_populated(struct cpuset *cs,
310 					  struct cpuset *excluded_child)
311 {
312 	struct cgroup_subsys_state *css;
313 	struct cpuset *child;
314 
315 	if (cs->css.cgroup->nr_populated_csets)
316 		return true;
317 	if (!excluded_child && !cs->nr_subparts)
318 		return cgroup_is_populated(cs->css.cgroup);
319 
320 	rcu_read_lock();
321 	cpuset_for_each_child(child, css, cs) {
322 		if (child == excluded_child)
323 			continue;
324 		if (is_partition_valid(child))
325 			continue;
326 		if (cgroup_is_populated(child->css.cgroup)) {
327 			rcu_read_unlock();
328 			return true;
329 		}
330 	}
331 	rcu_read_unlock();
332 	return false;
333 }
334 
335 /*
336  * Return in pmask the portion of a task's cpusets's cpus_allowed that
337  * are online and are capable of running the task.  If none are found,
338  * walk up the cpuset hierarchy until we find one that does have some
339  * appropriate cpus.
340  *
341  * One way or another, we guarantee to return some non-empty subset
342  * of cpu_online_mask.
343  *
344  * Call with callback_lock or cpuset_mutex held.
345  */
346 static void guarantee_online_cpus(struct task_struct *tsk,
347 				  struct cpumask *pmask)
348 {
349 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
350 	struct cpuset *cs;
351 
352 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
353 		cpumask_copy(pmask, cpu_online_mask);
354 
355 	rcu_read_lock();
356 	cs = task_cs(tsk);
357 
358 	while (!cpumask_intersects(cs->effective_cpus, pmask))
359 		cs = parent_cs(cs);
360 
361 	cpumask_and(pmask, pmask, cs->effective_cpus);
362 	rcu_read_unlock();
363 }
364 
365 /*
366  * Return in *pmask the portion of a cpusets's mems_allowed that
367  * are online, with memory.  If none are online with memory, walk
368  * up the cpuset hierarchy until we find one that does have some
369  * online mems.  The top cpuset always has some mems online.
370  *
371  * One way or another, we guarantee to return some non-empty subset
372  * of node_states[N_MEMORY].
373  *
374  * Call with callback_lock or cpuset_mutex held.
375  */
376 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
377 {
378 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
379 		cs = parent_cs(cs);
380 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
381 }
382 
383 /**
384  * alloc_cpumasks - allocate three cpumasks for cpuset
385  * @cs:  the cpuset that have cpumasks to be allocated.
386  * @tmp: the tmpmasks structure pointer
387  * Return: 0 if successful, -ENOMEM otherwise.
388  *
389  * Only one of the two input arguments should be non-NULL.
390  */
391 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
392 {
393 	cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4;
394 
395 	if (cs) {
396 		pmask1 = &cs->cpus_allowed;
397 		pmask2 = &cs->effective_cpus;
398 		pmask3 = &cs->effective_xcpus;
399 		pmask4 = &cs->exclusive_cpus;
400 	} else {
401 		pmask1 = &tmp->new_cpus;
402 		pmask2 = &tmp->addmask;
403 		pmask3 = &tmp->delmask;
404 		pmask4 = NULL;
405 	}
406 
407 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
408 		return -ENOMEM;
409 
410 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
411 		goto free_one;
412 
413 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
414 		goto free_two;
415 
416 	if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL))
417 		goto free_three;
418 
419 
420 	return 0;
421 
422 free_three:
423 	free_cpumask_var(*pmask3);
424 free_two:
425 	free_cpumask_var(*pmask2);
426 free_one:
427 	free_cpumask_var(*pmask1);
428 	return -ENOMEM;
429 }
430 
431 /**
432  * free_cpumasks - free cpumasks in a tmpmasks structure
433  * @cs:  the cpuset that have cpumasks to be free.
434  * @tmp: the tmpmasks structure pointer
435  */
436 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
437 {
438 	if (cs) {
439 		free_cpumask_var(cs->cpus_allowed);
440 		free_cpumask_var(cs->effective_cpus);
441 		free_cpumask_var(cs->effective_xcpus);
442 		free_cpumask_var(cs->exclusive_cpus);
443 	}
444 	if (tmp) {
445 		free_cpumask_var(tmp->new_cpus);
446 		free_cpumask_var(tmp->addmask);
447 		free_cpumask_var(tmp->delmask);
448 	}
449 }
450 
451 /**
452  * alloc_trial_cpuset - allocate a trial cpuset
453  * @cs: the cpuset that the trial cpuset duplicates
454  */
455 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
456 {
457 	struct cpuset *trial;
458 
459 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
460 	if (!trial)
461 		return NULL;
462 
463 	if (alloc_cpumasks(trial, NULL)) {
464 		kfree(trial);
465 		return NULL;
466 	}
467 
468 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
469 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
470 	cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
471 	cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
472 	return trial;
473 }
474 
475 /**
476  * free_cpuset - free the cpuset
477  * @cs: the cpuset to be freed
478  */
479 static inline void free_cpuset(struct cpuset *cs)
480 {
481 	free_cpumasks(cs, NULL);
482 	kfree(cs);
483 }
484 
485 /* Return user specified exclusive CPUs */
486 static inline struct cpumask *user_xcpus(struct cpuset *cs)
487 {
488 	return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
489 						 : cs->exclusive_cpus;
490 }
491 
492 static inline bool xcpus_empty(struct cpuset *cs)
493 {
494 	return cpumask_empty(cs->cpus_allowed) &&
495 	       cpumask_empty(cs->exclusive_cpus);
496 }
497 
498 /*
499  * cpusets_are_exclusive() - check if two cpusets are exclusive
500  *
501  * Return true if exclusive, false if not
502  */
503 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
504 {
505 	struct cpumask *xcpus1 = user_xcpus(cs1);
506 	struct cpumask *xcpus2 = user_xcpus(cs2);
507 
508 	if (cpumask_intersects(xcpus1, xcpus2))
509 		return false;
510 	return true;
511 }
512 
513 /*
514  * validate_change() - Used to validate that any proposed cpuset change
515  *		       follows the structural rules for cpusets.
516  *
517  * If we replaced the flag and mask values of the current cpuset
518  * (cur) with those values in the trial cpuset (trial), would
519  * our various subset and exclusive rules still be valid?  Presumes
520  * cpuset_mutex held.
521  *
522  * 'cur' is the address of an actual, in-use cpuset.  Operations
523  * such as list traversal that depend on the actual address of the
524  * cpuset in the list must use cur below, not trial.
525  *
526  * 'trial' is the address of bulk structure copy of cur, with
527  * perhaps one or more of the fields cpus_allowed, mems_allowed,
528  * or flags changed to new, trial values.
529  *
530  * Return 0 if valid, -errno if not.
531  */
532 
533 static int validate_change(struct cpuset *cur, struct cpuset *trial)
534 {
535 	struct cgroup_subsys_state *css;
536 	struct cpuset *c, *par;
537 	int ret = 0;
538 
539 	rcu_read_lock();
540 
541 	if (!is_in_v2_mode())
542 		ret = cpuset1_validate_change(cur, trial);
543 	if (ret)
544 		goto out;
545 
546 	/* Remaining checks don't apply to root cpuset */
547 	if (cur == &top_cpuset)
548 		goto out;
549 
550 	par = parent_cs(cur);
551 
552 	/*
553 	 * Cpusets with tasks - existing or newly being attached - can't
554 	 * be changed to have empty cpus_allowed or mems_allowed.
555 	 */
556 	ret = -ENOSPC;
557 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
558 		if (!cpumask_empty(cur->cpus_allowed) &&
559 		    cpumask_empty(trial->cpus_allowed))
560 			goto out;
561 		if (!nodes_empty(cur->mems_allowed) &&
562 		    nodes_empty(trial->mems_allowed))
563 			goto out;
564 	}
565 
566 	/*
567 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
568 	 * tasks.
569 	 */
570 	ret = -EBUSY;
571 	if (is_cpu_exclusive(cur) &&
572 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
573 				       trial->cpus_allowed))
574 		goto out;
575 
576 	/*
577 	 * If either I or some sibling (!= me) is exclusive, we can't
578 	 * overlap. exclusive_cpus cannot overlap with each other if set.
579 	 */
580 	ret = -EINVAL;
581 	cpuset_for_each_child(c, css, par) {
582 		bool txset, cxset;	/* Are exclusive_cpus set? */
583 
584 		if (c == cur)
585 			continue;
586 
587 		txset = !cpumask_empty(trial->exclusive_cpus);
588 		cxset = !cpumask_empty(c->exclusive_cpus);
589 		if (is_cpu_exclusive(trial) || is_cpu_exclusive(c) ||
590 		    (txset && cxset)) {
591 			if (!cpusets_are_exclusive(trial, c))
592 				goto out;
593 		} else if (txset || cxset) {
594 			struct cpumask *xcpus, *acpus;
595 
596 			/*
597 			 * When just one of the exclusive_cpus's is set,
598 			 * cpus_allowed of the other cpuset, if set, cannot be
599 			 * a subset of it or none of those CPUs will be
600 			 * available if these exclusive CPUs are activated.
601 			 */
602 			if (txset) {
603 				xcpus = trial->exclusive_cpus;
604 				acpus = c->cpus_allowed;
605 			} else {
606 				xcpus = c->exclusive_cpus;
607 				acpus = trial->cpus_allowed;
608 			}
609 			if (!cpumask_empty(acpus) && cpumask_subset(acpus, xcpus))
610 				goto out;
611 		}
612 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
613 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
614 			goto out;
615 	}
616 
617 	ret = 0;
618 out:
619 	rcu_read_unlock();
620 	return ret;
621 }
622 
623 #ifdef CONFIG_SMP
624 /*
625  * Helper routine for generate_sched_domains().
626  * Do cpusets a, b have overlapping effective cpus_allowed masks?
627  */
628 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
629 {
630 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
631 }
632 
633 static void
634 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
635 {
636 	if (dattr->relax_domain_level < c->relax_domain_level)
637 		dattr->relax_domain_level = c->relax_domain_level;
638 	return;
639 }
640 
641 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
642 				    struct cpuset *root_cs)
643 {
644 	struct cpuset *cp;
645 	struct cgroup_subsys_state *pos_css;
646 
647 	rcu_read_lock();
648 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
649 		/* skip the whole subtree if @cp doesn't have any CPU */
650 		if (cpumask_empty(cp->cpus_allowed)) {
651 			pos_css = css_rightmost_descendant(pos_css);
652 			continue;
653 		}
654 
655 		if (is_sched_load_balance(cp))
656 			update_domain_attr(dattr, cp);
657 	}
658 	rcu_read_unlock();
659 }
660 
661 /* Must be called with cpuset_mutex held.  */
662 static inline int nr_cpusets(void)
663 {
664 	/* jump label reference count + the top-level cpuset */
665 	return static_key_count(&cpusets_enabled_key.key) + 1;
666 }
667 
668 /*
669  * generate_sched_domains()
670  *
671  * This function builds a partial partition of the systems CPUs
672  * A 'partial partition' is a set of non-overlapping subsets whose
673  * union is a subset of that set.
674  * The output of this function needs to be passed to kernel/sched/core.c
675  * partition_sched_domains() routine, which will rebuild the scheduler's
676  * load balancing domains (sched domains) as specified by that partial
677  * partition.
678  *
679  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
680  * for a background explanation of this.
681  *
682  * Does not return errors, on the theory that the callers of this
683  * routine would rather not worry about failures to rebuild sched
684  * domains when operating in the severe memory shortage situations
685  * that could cause allocation failures below.
686  *
687  * Must be called with cpuset_mutex held.
688  *
689  * The three key local variables below are:
690  *    cp - cpuset pointer, used (together with pos_css) to perform a
691  *	   top-down scan of all cpusets. For our purposes, rebuilding
692  *	   the schedulers sched domains, we can ignore !is_sched_load_
693  *	   balance cpusets.
694  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
695  *	   that need to be load balanced, for convenient iterative
696  *	   access by the subsequent code that finds the best partition,
697  *	   i.e the set of domains (subsets) of CPUs such that the
698  *	   cpus_allowed of every cpuset marked is_sched_load_balance
699  *	   is a subset of one of these domains, while there are as
700  *	   many such domains as possible, each as small as possible.
701  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
702  *	   the kernel/sched/core.c routine partition_sched_domains() in a
703  *	   convenient format, that can be easily compared to the prior
704  *	   value to determine what partition elements (sched domains)
705  *	   were changed (added or removed.)
706  *
707  * Finding the best partition (set of domains):
708  *	The double nested loops below over i, j scan over the load
709  *	balanced cpusets (using the array of cpuset pointers in csa[])
710  *	looking for pairs of cpusets that have overlapping cpus_allowed
711  *	and merging them using a union-find algorithm.
712  *
713  *	The union of the cpus_allowed masks from the set of all cpusets
714  *	having the same root then form the one element of the partition
715  *	(one sched domain) to be passed to partition_sched_domains().
716  *
717  */
718 static int generate_sched_domains(cpumask_var_t **domains,
719 			struct sched_domain_attr **attributes)
720 {
721 	struct cpuset *cp;	/* top-down scan of cpusets */
722 	struct cpuset **csa;	/* array of all cpuset ptrs */
723 	int csn;		/* how many cpuset ptrs in csa so far */
724 	int i, j;		/* indices for partition finding loops */
725 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
726 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
727 	int ndoms = 0;		/* number of sched domains in result */
728 	int nslot;		/* next empty doms[] struct cpumask slot */
729 	struct cgroup_subsys_state *pos_css;
730 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
731 	bool cgrpv2 = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
732 	int nslot_update;
733 
734 	doms = NULL;
735 	dattr = NULL;
736 	csa = NULL;
737 
738 	/* Special case for the 99% of systems with one, full, sched domain */
739 	if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
740 single_root_domain:
741 		ndoms = 1;
742 		doms = alloc_sched_domains(ndoms);
743 		if (!doms)
744 			goto done;
745 
746 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
747 		if (dattr) {
748 			*dattr = SD_ATTR_INIT;
749 			update_domain_attr_tree(dattr, &top_cpuset);
750 		}
751 		cpumask_and(doms[0], top_cpuset.effective_cpus,
752 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
753 
754 		goto done;
755 	}
756 
757 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
758 	if (!csa)
759 		goto done;
760 	csn = 0;
761 
762 	rcu_read_lock();
763 	if (root_load_balance)
764 		csa[csn++] = &top_cpuset;
765 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
766 		if (cp == &top_cpuset)
767 			continue;
768 
769 		if (cgrpv2)
770 			goto v2;
771 
772 		/*
773 		 * v1:
774 		 * Continue traversing beyond @cp iff @cp has some CPUs and
775 		 * isn't load balancing.  The former is obvious.  The
776 		 * latter: All child cpusets contain a subset of the
777 		 * parent's cpus, so just skip them, and then we call
778 		 * update_domain_attr_tree() to calc relax_domain_level of
779 		 * the corresponding sched domain.
780 		 */
781 		if (!cpumask_empty(cp->cpus_allowed) &&
782 		    !(is_sched_load_balance(cp) &&
783 		      cpumask_intersects(cp->cpus_allowed,
784 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
785 			continue;
786 
787 		if (is_sched_load_balance(cp) &&
788 		    !cpumask_empty(cp->effective_cpus))
789 			csa[csn++] = cp;
790 
791 		/* skip @cp's subtree */
792 		pos_css = css_rightmost_descendant(pos_css);
793 		continue;
794 
795 v2:
796 		/*
797 		 * Only valid partition roots that are not isolated and with
798 		 * non-empty effective_cpus will be saved into csn[].
799 		 */
800 		if ((cp->partition_root_state == PRS_ROOT) &&
801 		    !cpumask_empty(cp->effective_cpus))
802 			csa[csn++] = cp;
803 
804 		/*
805 		 * Skip @cp's subtree if not a partition root and has no
806 		 * exclusive CPUs to be granted to child cpusets.
807 		 */
808 		if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
809 			pos_css = css_rightmost_descendant(pos_css);
810 	}
811 	rcu_read_unlock();
812 
813 	/*
814 	 * If there are only isolated partitions underneath the cgroup root,
815 	 * we can optimize out unneeded sched domains scanning.
816 	 */
817 	if (root_load_balance && (csn == 1))
818 		goto single_root_domain;
819 
820 	for (i = 0; i < csn; i++)
821 		uf_node_init(&csa[i]->node);
822 
823 	/* Merge overlapping cpusets */
824 	for (i = 0; i < csn; i++) {
825 		for (j = i + 1; j < csn; j++) {
826 			if (cpusets_overlap(csa[i], csa[j])) {
827 				/*
828 				 * Cgroup v2 shouldn't pass down overlapping
829 				 * partition root cpusets.
830 				 */
831 				WARN_ON_ONCE(cgrpv2);
832 				uf_union(&csa[i]->node, &csa[j]->node);
833 			}
834 		}
835 	}
836 
837 	/* Count the total number of domains */
838 	for (i = 0; i < csn; i++) {
839 		if (uf_find(&csa[i]->node) == &csa[i]->node)
840 			ndoms++;
841 	}
842 
843 	/*
844 	 * Now we know how many domains to create.
845 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
846 	 */
847 	doms = alloc_sched_domains(ndoms);
848 	if (!doms)
849 		goto done;
850 
851 	/*
852 	 * The rest of the code, including the scheduler, can deal with
853 	 * dattr==NULL case. No need to abort if alloc fails.
854 	 */
855 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
856 			      GFP_KERNEL);
857 
858 	/*
859 	 * Cgroup v2 doesn't support domain attributes, just set all of them
860 	 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
861 	 * subset of HK_TYPE_DOMAIN housekeeping CPUs.
862 	 */
863 	if (cgrpv2) {
864 		for (i = 0; i < ndoms; i++) {
865 			cpumask_copy(doms[i], csa[i]->effective_cpus);
866 			if (dattr)
867 				dattr[i] = SD_ATTR_INIT;
868 		}
869 		goto done;
870 	}
871 
872 	for (nslot = 0, i = 0; i < csn; i++) {
873 		nslot_update = 0;
874 		for (j = i; j < csn; j++) {
875 			if (uf_find(&csa[j]->node) == &csa[i]->node) {
876 				struct cpumask *dp = doms[nslot];
877 
878 				if (i == j) {
879 					nslot_update = 1;
880 					cpumask_clear(dp);
881 					if (dattr)
882 						*(dattr + nslot) = SD_ATTR_INIT;
883 				}
884 				cpumask_or(dp, dp, csa[j]->effective_cpus);
885 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
886 				if (dattr)
887 					update_domain_attr_tree(dattr + nslot, csa[j]);
888 			}
889 		}
890 		if (nslot_update)
891 			nslot++;
892 	}
893 	BUG_ON(nslot != ndoms);
894 
895 done:
896 	kfree(csa);
897 
898 	/*
899 	 * Fallback to the default domain if kmalloc() failed.
900 	 * See comments in partition_sched_domains().
901 	 */
902 	if (doms == NULL)
903 		ndoms = 1;
904 
905 	*domains    = doms;
906 	*attributes = dattr;
907 	return ndoms;
908 }
909 
910 static void dl_update_tasks_root_domain(struct cpuset *cs)
911 {
912 	struct css_task_iter it;
913 	struct task_struct *task;
914 
915 	if (cs->nr_deadline_tasks == 0)
916 		return;
917 
918 	css_task_iter_start(&cs->css, 0, &it);
919 
920 	while ((task = css_task_iter_next(&it)))
921 		dl_add_task_root_domain(task);
922 
923 	css_task_iter_end(&it);
924 }
925 
926 static void dl_rebuild_rd_accounting(void)
927 {
928 	struct cpuset *cs = NULL;
929 	struct cgroup_subsys_state *pos_css;
930 
931 	lockdep_assert_held(&cpuset_mutex);
932 	lockdep_assert_cpus_held();
933 	lockdep_assert_held(&sched_domains_mutex);
934 
935 	rcu_read_lock();
936 
937 	/*
938 	 * Clear default root domain DL accounting, it will be computed again
939 	 * if a task belongs to it.
940 	 */
941 	dl_clear_root_domain(&def_root_domain);
942 
943 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
944 
945 		if (cpumask_empty(cs->effective_cpus)) {
946 			pos_css = css_rightmost_descendant(pos_css);
947 			continue;
948 		}
949 
950 		css_get(&cs->css);
951 
952 		rcu_read_unlock();
953 
954 		dl_update_tasks_root_domain(cs);
955 
956 		rcu_read_lock();
957 		css_put(&cs->css);
958 	}
959 	rcu_read_unlock();
960 }
961 
962 static void
963 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
964 				    struct sched_domain_attr *dattr_new)
965 {
966 	mutex_lock(&sched_domains_mutex);
967 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
968 	dl_rebuild_rd_accounting();
969 	mutex_unlock(&sched_domains_mutex);
970 }
971 
972 /*
973  * Rebuild scheduler domains.
974  *
975  * If the flag 'sched_load_balance' of any cpuset with non-empty
976  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
977  * which has that flag enabled, or if any cpuset with a non-empty
978  * 'cpus' is removed, then call this routine to rebuild the
979  * scheduler's dynamic sched domains.
980  *
981  * Call with cpuset_mutex held.  Takes cpus_read_lock().
982  */
983 void rebuild_sched_domains_locked(void)
984 {
985 	struct cgroup_subsys_state *pos_css;
986 	struct sched_domain_attr *attr;
987 	cpumask_var_t *doms;
988 	struct cpuset *cs;
989 	int ndoms;
990 
991 	lockdep_assert_cpus_held();
992 	lockdep_assert_held(&cpuset_mutex);
993 
994 	/*
995 	 * If we have raced with CPU hotplug, return early to avoid
996 	 * passing doms with offlined cpu to partition_sched_domains().
997 	 * Anyways, cpuset_handle_hotplug() will rebuild sched domains.
998 	 *
999 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1000 	 * should be the same as the active CPUs, so checking only top_cpuset
1001 	 * is enough to detect racing CPU offlines.
1002 	 */
1003 	if (cpumask_empty(subpartitions_cpus) &&
1004 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1005 		return;
1006 
1007 	/*
1008 	 * With subpartition CPUs, however, the effective CPUs of a partition
1009 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1010 	 * partition root could be offlined, all must be checked.
1011 	 */
1012 	if (!cpumask_empty(subpartitions_cpus)) {
1013 		rcu_read_lock();
1014 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1015 			if (!is_partition_valid(cs)) {
1016 				pos_css = css_rightmost_descendant(pos_css);
1017 				continue;
1018 			}
1019 			if (!cpumask_subset(cs->effective_cpus,
1020 					    cpu_active_mask)) {
1021 				rcu_read_unlock();
1022 				return;
1023 			}
1024 		}
1025 		rcu_read_unlock();
1026 	}
1027 
1028 	/* Generate domain masks and attrs */
1029 	ndoms = generate_sched_domains(&doms, &attr);
1030 
1031 	/* Have scheduler rebuild the domains */
1032 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1033 }
1034 #else /* !CONFIG_SMP */
1035 void rebuild_sched_domains_locked(void)
1036 {
1037 }
1038 #endif /* CONFIG_SMP */
1039 
1040 static void rebuild_sched_domains_cpuslocked(void)
1041 {
1042 	mutex_lock(&cpuset_mutex);
1043 	rebuild_sched_domains_locked();
1044 	mutex_unlock(&cpuset_mutex);
1045 }
1046 
1047 void rebuild_sched_domains(void)
1048 {
1049 	cpus_read_lock();
1050 	rebuild_sched_domains_cpuslocked();
1051 	cpus_read_unlock();
1052 }
1053 
1054 /**
1055  * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1056  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1057  * @new_cpus: the temp variable for the new effective_cpus mask
1058  *
1059  * Iterate through each task of @cs updating its cpus_allowed to the
1060  * effective cpuset's.  As this function is called with cpuset_mutex held,
1061  * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
1062  * is used instead of effective_cpus to make sure all offline CPUs are also
1063  * included as hotplug code won't update cpumasks for tasks in top_cpuset.
1064  */
1065 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1066 {
1067 	struct css_task_iter it;
1068 	struct task_struct *task;
1069 	bool top_cs = cs == &top_cpuset;
1070 
1071 	css_task_iter_start(&cs->css, 0, &it);
1072 	while ((task = css_task_iter_next(&it))) {
1073 		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1074 
1075 		if (top_cs) {
1076 			/*
1077 			 * Percpu kthreads in top_cpuset are ignored
1078 			 */
1079 			if (kthread_is_per_cpu(task))
1080 				continue;
1081 			cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1082 		} else {
1083 			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1084 		}
1085 		set_cpus_allowed_ptr(task, new_cpus);
1086 	}
1087 	css_task_iter_end(&it);
1088 }
1089 
1090 /**
1091  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1092  * @new_cpus: the temp variable for the new effective_cpus mask
1093  * @cs: the cpuset the need to recompute the new effective_cpus mask
1094  * @parent: the parent cpuset
1095  *
1096  * The result is valid only if the given cpuset isn't a partition root.
1097  */
1098 static void compute_effective_cpumask(struct cpumask *new_cpus,
1099 				      struct cpuset *cs, struct cpuset *parent)
1100 {
1101 	cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1102 }
1103 
1104 /*
1105  * Commands for update_parent_effective_cpumask
1106  */
1107 enum partition_cmd {
1108 	partcmd_enable,		/* Enable partition root	  */
1109 	partcmd_enablei,	/* Enable isolated partition root */
1110 	partcmd_disable,	/* Disable partition root	  */
1111 	partcmd_update,		/* Update parent's effective_cpus */
1112 	partcmd_invalidate,	/* Make partition invalid	  */
1113 };
1114 
1115 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1116 				    struct tmpmasks *tmp);
1117 
1118 /*
1119  * Update partition exclusive flag
1120  *
1121  * Return: 0 if successful, an error code otherwise
1122  */
1123 static int update_partition_exclusive(struct cpuset *cs, int new_prs)
1124 {
1125 	bool exclusive = (new_prs > PRS_MEMBER);
1126 
1127 	if (exclusive && !is_cpu_exclusive(cs)) {
1128 		if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1129 			return PERR_NOTEXCL;
1130 	} else if (!exclusive && is_cpu_exclusive(cs)) {
1131 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1132 		cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1133 	}
1134 	return 0;
1135 }
1136 
1137 /*
1138  * Update partition load balance flag and/or rebuild sched domain
1139  *
1140  * Changing load balance flag will automatically call
1141  * rebuild_sched_domains_locked().
1142  * This function is for cgroup v2 only.
1143  */
1144 static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1145 {
1146 	int new_prs = cs->partition_root_state;
1147 	bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1148 	bool new_lb;
1149 
1150 	/*
1151 	 * If cs is not a valid partition root, the load balance state
1152 	 * will follow its parent.
1153 	 */
1154 	if (new_prs > 0) {
1155 		new_lb = (new_prs != PRS_ISOLATED);
1156 	} else {
1157 		new_lb = is_sched_load_balance(parent_cs(cs));
1158 	}
1159 	if (new_lb != !!is_sched_load_balance(cs)) {
1160 		rebuild_domains = true;
1161 		if (new_lb)
1162 			set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1163 		else
1164 			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1165 	}
1166 
1167 	if (rebuild_domains && !force_sd_rebuild)
1168 		rebuild_sched_domains_locked();
1169 }
1170 
1171 /*
1172  * tasks_nocpu_error - Return true if tasks will have no effective_cpus
1173  */
1174 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1175 			      struct cpumask *xcpus)
1176 {
1177 	/*
1178 	 * A populated partition (cs or parent) can't have empty effective_cpus
1179 	 */
1180 	return (cpumask_subset(parent->effective_cpus, xcpus) &&
1181 		partition_is_populated(parent, cs)) ||
1182 	       (!cpumask_intersects(xcpus, cpu_active_mask) &&
1183 		partition_is_populated(cs, NULL));
1184 }
1185 
1186 static void reset_partition_data(struct cpuset *cs)
1187 {
1188 	struct cpuset *parent = parent_cs(cs);
1189 
1190 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
1191 		return;
1192 
1193 	lockdep_assert_held(&callback_lock);
1194 
1195 	cs->nr_subparts = 0;
1196 	if (cpumask_empty(cs->exclusive_cpus)) {
1197 		cpumask_clear(cs->effective_xcpus);
1198 		if (is_cpu_exclusive(cs))
1199 			clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1200 	}
1201 	if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed))
1202 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1203 }
1204 
1205 /*
1206  * partition_xcpus_newstate - Exclusive CPUs state change
1207  * @old_prs: old partition_root_state
1208  * @new_prs: new partition_root_state
1209  * @xcpus: exclusive CPUs with state change
1210  */
1211 static void partition_xcpus_newstate(int old_prs, int new_prs, struct cpumask *xcpus)
1212 {
1213 	WARN_ON_ONCE(old_prs == new_prs);
1214 	if (new_prs == PRS_ISOLATED)
1215 		cpumask_or(isolated_cpus, isolated_cpus, xcpus);
1216 	else
1217 		cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
1218 }
1219 
1220 /*
1221  * partition_xcpus_add - Add new exclusive CPUs to partition
1222  * @new_prs: new partition_root_state
1223  * @parent: parent cpuset
1224  * @xcpus: exclusive CPUs to be added
1225  * Return: true if isolated_cpus modified, false otherwise
1226  *
1227  * Remote partition if parent == NULL
1228  */
1229 static bool partition_xcpus_add(int new_prs, struct cpuset *parent,
1230 				struct cpumask *xcpus)
1231 {
1232 	bool isolcpus_updated;
1233 
1234 	WARN_ON_ONCE(new_prs < 0);
1235 	lockdep_assert_held(&callback_lock);
1236 	if (!parent)
1237 		parent = &top_cpuset;
1238 
1239 
1240 	if (parent == &top_cpuset)
1241 		cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
1242 
1243 	isolcpus_updated = (new_prs != parent->partition_root_state);
1244 	if (isolcpus_updated)
1245 		partition_xcpus_newstate(parent->partition_root_state, new_prs,
1246 					 xcpus);
1247 
1248 	cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
1249 	return isolcpus_updated;
1250 }
1251 
1252 /*
1253  * partition_xcpus_del - Remove exclusive CPUs from partition
1254  * @old_prs: old partition_root_state
1255  * @parent: parent cpuset
1256  * @xcpus: exclusive CPUs to be removed
1257  * Return: true if isolated_cpus modified, false otherwise
1258  *
1259  * Remote partition if parent == NULL
1260  */
1261 static bool partition_xcpus_del(int old_prs, struct cpuset *parent,
1262 				struct cpumask *xcpus)
1263 {
1264 	bool isolcpus_updated;
1265 
1266 	WARN_ON_ONCE(old_prs < 0);
1267 	lockdep_assert_held(&callback_lock);
1268 	if (!parent)
1269 		parent = &top_cpuset;
1270 
1271 	if (parent == &top_cpuset)
1272 		cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
1273 
1274 	isolcpus_updated = (old_prs != parent->partition_root_state);
1275 	if (isolcpus_updated)
1276 		partition_xcpus_newstate(old_prs, parent->partition_root_state,
1277 					 xcpus);
1278 
1279 	cpumask_and(xcpus, xcpus, cpu_active_mask);
1280 	cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
1281 	return isolcpus_updated;
1282 }
1283 
1284 static void update_unbound_workqueue_cpumask(bool isolcpus_updated)
1285 {
1286 	int ret;
1287 
1288 	lockdep_assert_cpus_held();
1289 
1290 	if (!isolcpus_updated)
1291 		return;
1292 
1293 	ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
1294 	WARN_ON_ONCE(ret < 0);
1295 }
1296 
1297 /**
1298  * cpuset_cpu_is_isolated - Check if the given CPU is isolated
1299  * @cpu: the CPU number to be checked
1300  * Return: true if CPU is used in an isolated partition, false otherwise
1301  */
1302 bool cpuset_cpu_is_isolated(int cpu)
1303 {
1304 	return cpumask_test_cpu(cpu, isolated_cpus);
1305 }
1306 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
1307 
1308 /*
1309  * compute_effective_exclusive_cpumask - compute effective exclusive CPUs
1310  * @cs: cpuset
1311  * @xcpus: effective exclusive CPUs value to be set
1312  * Return: true if xcpus is not empty, false otherwise.
1313  *
1314  * Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set),
1315  * it must be a subset of parent's effective_xcpus.
1316  */
1317 static bool compute_effective_exclusive_cpumask(struct cpuset *cs,
1318 						struct cpumask *xcpus)
1319 {
1320 	struct cpuset *parent = parent_cs(cs);
1321 
1322 	if (!xcpus)
1323 		xcpus = cs->effective_xcpus;
1324 
1325 	return cpumask_and(xcpus, user_xcpus(cs), parent->effective_xcpus);
1326 }
1327 
1328 static inline bool is_remote_partition(struct cpuset *cs)
1329 {
1330 	return !list_empty(&cs->remote_sibling);
1331 }
1332 
1333 static inline bool is_local_partition(struct cpuset *cs)
1334 {
1335 	return is_partition_valid(cs) && !is_remote_partition(cs);
1336 }
1337 
1338 /*
1339  * remote_partition_enable - Enable current cpuset as a remote partition root
1340  * @cs: the cpuset to update
1341  * @new_prs: new partition_root_state
1342  * @tmp: temparary masks
1343  * Return: 0 if successful, errcode if error
1344  *
1345  * Enable the current cpuset to become a remote partition root taking CPUs
1346  * directly from the top cpuset. cpuset_mutex must be held by the caller.
1347  */
1348 static int remote_partition_enable(struct cpuset *cs, int new_prs,
1349 				   struct tmpmasks *tmp)
1350 {
1351 	bool isolcpus_updated;
1352 
1353 	/*
1354 	 * The user must have sysadmin privilege.
1355 	 */
1356 	if (!capable(CAP_SYS_ADMIN))
1357 		return PERR_ACCESS;
1358 
1359 	/*
1360 	 * The requested exclusive_cpus must not be allocated to other
1361 	 * partitions and it can't use up all the root's effective_cpus.
1362 	 *
1363 	 * Note that if there is any local partition root above it or
1364 	 * remote partition root underneath it, its exclusive_cpus must
1365 	 * have overlapped with subpartitions_cpus.
1366 	 */
1367 	compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1368 	if (cpumask_empty(tmp->new_cpus) ||
1369 	    cpumask_intersects(tmp->new_cpus, subpartitions_cpus) ||
1370 	    cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1371 		return PERR_INVCPUS;
1372 
1373 	spin_lock_irq(&callback_lock);
1374 	isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
1375 	list_add(&cs->remote_sibling, &remote_children);
1376 	spin_unlock_irq(&callback_lock);
1377 	update_unbound_workqueue_cpumask(isolcpus_updated);
1378 
1379 	/*
1380 	 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1381 	 */
1382 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1383 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1384 	return 0;
1385 }
1386 
1387 /*
1388  * remote_partition_disable - Remove current cpuset from remote partition list
1389  * @cs: the cpuset to update
1390  * @tmp: temparary masks
1391  *
1392  * The effective_cpus is also updated.
1393  *
1394  * cpuset_mutex must be held by the caller.
1395  */
1396 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1397 {
1398 	bool isolcpus_updated;
1399 
1400 	compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1401 	WARN_ON_ONCE(!is_remote_partition(cs));
1402 	WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus));
1403 
1404 	spin_lock_irq(&callback_lock);
1405 	list_del_init(&cs->remote_sibling);
1406 	isolcpus_updated = partition_xcpus_del(cs->partition_root_state,
1407 					       NULL, tmp->new_cpus);
1408 	cs->partition_root_state = -cs->partition_root_state;
1409 	if (!cs->prs_err)
1410 		cs->prs_err = PERR_INVCPUS;
1411 	reset_partition_data(cs);
1412 	spin_unlock_irq(&callback_lock);
1413 	update_unbound_workqueue_cpumask(isolcpus_updated);
1414 
1415 	/*
1416 	 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1417 	 */
1418 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1419 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1420 }
1421 
1422 /*
1423  * remote_cpus_update - cpus_exclusive change of remote partition
1424  * @cs: the cpuset to be updated
1425  * @newmask: the new effective_xcpus mask
1426  * @tmp: temparary masks
1427  *
1428  * top_cpuset and subpartitions_cpus will be updated or partition can be
1429  * invalidated.
1430  */
1431 static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask,
1432 			       struct tmpmasks *tmp)
1433 {
1434 	bool adding, deleting;
1435 	int prs = cs->partition_root_state;
1436 	int isolcpus_updated = 0;
1437 
1438 	if (WARN_ON_ONCE(!is_remote_partition(cs)))
1439 		return;
1440 
1441 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1442 
1443 	if (cpumask_empty(newmask))
1444 		goto invalidate;
1445 
1446 	adding   = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus);
1447 	deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask);
1448 
1449 	/*
1450 	 * Additions of remote CPUs is only allowed if those CPUs are
1451 	 * not allocated to other partitions and there are effective_cpus
1452 	 * left in the top cpuset.
1453 	 */
1454 	if (adding && (!capable(CAP_SYS_ADMIN) ||
1455 		       cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1456 		       cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)))
1457 		goto invalidate;
1458 
1459 	spin_lock_irq(&callback_lock);
1460 	if (adding)
1461 		isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask);
1462 	if (deleting)
1463 		isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask);
1464 	spin_unlock_irq(&callback_lock);
1465 	update_unbound_workqueue_cpumask(isolcpus_updated);
1466 
1467 	/*
1468 	 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1469 	 */
1470 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1471 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1472 	return;
1473 
1474 invalidate:
1475 	remote_partition_disable(cs, tmp);
1476 }
1477 
1478 /*
1479  * remote_partition_check - check if a child remote partition needs update
1480  * @cs: the cpuset to be updated
1481  * @newmask: the new effective_xcpus mask
1482  * @delmask: temporary mask for deletion (not in tmp)
1483  * @tmp: temparary masks
1484  *
1485  * This should be called before the given cs has updated its cpus_allowed
1486  * and/or effective_xcpus.
1487  */
1488 static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask,
1489 				   struct cpumask *delmask, struct tmpmasks *tmp)
1490 {
1491 	struct cpuset *child, *next;
1492 	int disable_cnt = 0;
1493 
1494 	/*
1495 	 * Compute the effective exclusive CPUs that will be deleted.
1496 	 */
1497 	if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) ||
1498 	    !cpumask_intersects(delmask, subpartitions_cpus))
1499 		return;	/* No deletion of exclusive CPUs in partitions */
1500 
1501 	/*
1502 	 * Searching the remote children list to look for those that will
1503 	 * be impacted by the deletion of exclusive CPUs.
1504 	 *
1505 	 * Since a cpuset must be removed from the remote children list
1506 	 * before it can go offline and holding cpuset_mutex will prevent
1507 	 * any change in cpuset status. RCU read lock isn't needed.
1508 	 */
1509 	lockdep_assert_held(&cpuset_mutex);
1510 	list_for_each_entry_safe(child, next, &remote_children, remote_sibling)
1511 		if (cpumask_intersects(child->effective_cpus, delmask)) {
1512 			remote_partition_disable(child, tmp);
1513 			disable_cnt++;
1514 		}
1515 	if (disable_cnt && !force_sd_rebuild)
1516 		rebuild_sched_domains_locked();
1517 }
1518 
1519 /*
1520  * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1521  * @prstate: partition root state to be checked
1522  * @new_cpus: cpu mask
1523  * Return: true if there is conflict, false otherwise
1524  *
1525  * CPUs outside of boot_hk_cpus, if defined, can only be used in an
1526  * isolated partition.
1527  */
1528 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1529 {
1530 	if (!have_boot_isolcpus)
1531 		return false;
1532 
1533 	if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus))
1534 		return true;
1535 
1536 	return false;
1537 }
1538 
1539 /**
1540  * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1541  * @cs:      The cpuset that requests change in partition root state
1542  * @cmd:     Partition root state change command
1543  * @newmask: Optional new cpumask for partcmd_update
1544  * @tmp:     Temporary addmask and delmask
1545  * Return:   0 or a partition root state error code
1546  *
1547  * For partcmd_enable*, the cpuset is being transformed from a non-partition
1548  * root to a partition root. The effective_xcpus (cpus_allowed if
1549  * effective_xcpus not set) mask of the given cpuset will be taken away from
1550  * parent's effective_cpus. The function will return 0 if all the CPUs listed
1551  * in effective_xcpus can be granted or an error code will be returned.
1552  *
1553  * For partcmd_disable, the cpuset is being transformed from a partition
1554  * root back to a non-partition root. Any CPUs in effective_xcpus will be
1555  * given back to parent's effective_cpus. 0 will always be returned.
1556  *
1557  * For partcmd_update, if the optional newmask is specified, the cpu list is
1558  * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1559  * assumed to remain the same. The cpuset should either be a valid or invalid
1560  * partition root. The partition root state may change from valid to invalid
1561  * or vice versa. An error code will be returned if transitioning from
1562  * invalid to valid violates the exclusivity rule.
1563  *
1564  * For partcmd_invalidate, the current partition will be made invalid.
1565  *
1566  * The partcmd_enable* and partcmd_disable commands are used by
1567  * update_prstate(). An error code may be returned and the caller will check
1568  * for error.
1569  *
1570  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1571  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1572  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1573  * check for error and so partition_root_state and prs_error will be updated
1574  * directly.
1575  */
1576 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1577 					   struct cpumask *newmask,
1578 					   struct tmpmasks *tmp)
1579 {
1580 	struct cpuset *parent = parent_cs(cs);
1581 	int adding;	/* Adding cpus to parent's effective_cpus	*/
1582 	int deleting;	/* Deleting cpus from parent's effective_cpus	*/
1583 	int old_prs, new_prs;
1584 	int part_error = PERR_NONE;	/* Partition error? */
1585 	int subparts_delta = 0;
1586 	struct cpumask *xcpus;		/* cs effective_xcpus */
1587 	int isolcpus_updated = 0;
1588 	bool nocpu;
1589 
1590 	lockdep_assert_held(&cpuset_mutex);
1591 
1592 	/*
1593 	 * new_prs will only be changed for the partcmd_update and
1594 	 * partcmd_invalidate commands.
1595 	 */
1596 	adding = deleting = false;
1597 	old_prs = new_prs = cs->partition_root_state;
1598 	xcpus = user_xcpus(cs);
1599 
1600 	if (cmd == partcmd_invalidate) {
1601 		if (is_prs_invalid(old_prs))
1602 			return 0;
1603 
1604 		/*
1605 		 * Make the current partition invalid.
1606 		 */
1607 		if (is_partition_valid(parent))
1608 			adding = cpumask_and(tmp->addmask,
1609 					     xcpus, parent->effective_xcpus);
1610 		if (old_prs > 0) {
1611 			new_prs = -old_prs;
1612 			subparts_delta--;
1613 		}
1614 		goto write_error;
1615 	}
1616 
1617 	/*
1618 	 * The parent must be a partition root.
1619 	 * The new cpumask, if present, or the current cpus_allowed must
1620 	 * not be empty.
1621 	 */
1622 	if (!is_partition_valid(parent)) {
1623 		return is_partition_invalid(parent)
1624 		       ? PERR_INVPARENT : PERR_NOTPART;
1625 	}
1626 	if (!newmask && xcpus_empty(cs))
1627 		return PERR_CPUSEMPTY;
1628 
1629 	nocpu = tasks_nocpu_error(parent, cs, xcpus);
1630 
1631 	if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
1632 		/*
1633 		 * Enabling partition root is not allowed if its
1634 		 * effective_xcpus is empty or doesn't overlap with
1635 		 * parent's effective_xcpus.
1636 		 */
1637 		if (cpumask_empty(xcpus) ||
1638 		    !cpumask_intersects(xcpus, parent->effective_xcpus))
1639 			return PERR_INVCPUS;
1640 
1641 		if (prstate_housekeeping_conflict(new_prs, xcpus))
1642 			return PERR_HKEEPING;
1643 
1644 		/*
1645 		 * A parent can be left with no CPU as long as there is no
1646 		 * task directly associated with the parent partition.
1647 		 */
1648 		if (nocpu)
1649 			return PERR_NOCPUS;
1650 
1651 		cpumask_copy(tmp->delmask, xcpus);
1652 		deleting = true;
1653 		subparts_delta++;
1654 		new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
1655 	} else if (cmd == partcmd_disable) {
1656 		/*
1657 		 * May need to add cpus to parent's effective_cpus for
1658 		 * valid partition root.
1659 		 */
1660 		adding = !is_prs_invalid(old_prs) &&
1661 			  cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus);
1662 		if (adding)
1663 			subparts_delta--;
1664 		new_prs = PRS_MEMBER;
1665 	} else if (newmask) {
1666 		/*
1667 		 * Empty cpumask is not allowed
1668 		 */
1669 		if (cpumask_empty(newmask)) {
1670 			part_error = PERR_CPUSEMPTY;
1671 			goto write_error;
1672 		}
1673 		/* Check newmask again, whether cpus are available for parent/cs */
1674 		nocpu |= tasks_nocpu_error(parent, cs, newmask);
1675 
1676 		/*
1677 		 * partcmd_update with newmask:
1678 		 *
1679 		 * Compute add/delete mask to/from effective_cpus
1680 		 *
1681 		 * For valid partition:
1682 		 *   addmask = exclusive_cpus & ~newmask
1683 		 *			      & parent->effective_xcpus
1684 		 *   delmask = newmask & ~exclusive_cpus
1685 		 *		       & parent->effective_xcpus
1686 		 *
1687 		 * For invalid partition:
1688 		 *   delmask = newmask & parent->effective_xcpus
1689 		 */
1690 		if (is_prs_invalid(old_prs)) {
1691 			adding = false;
1692 			deleting = cpumask_and(tmp->delmask,
1693 					newmask, parent->effective_xcpus);
1694 		} else {
1695 			cpumask_andnot(tmp->addmask, xcpus, newmask);
1696 			adding = cpumask_and(tmp->addmask, tmp->addmask,
1697 					     parent->effective_xcpus);
1698 
1699 			cpumask_andnot(tmp->delmask, newmask, xcpus);
1700 			deleting = cpumask_and(tmp->delmask, tmp->delmask,
1701 					       parent->effective_xcpus);
1702 		}
1703 		/*
1704 		 * Make partition invalid if parent's effective_cpus could
1705 		 * become empty and there are tasks in the parent.
1706 		 */
1707 		if (nocpu && (!adding ||
1708 		    !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
1709 			part_error = PERR_NOCPUS;
1710 			deleting = false;
1711 			adding = cpumask_and(tmp->addmask,
1712 					     xcpus, parent->effective_xcpus);
1713 		}
1714 	} else {
1715 		/*
1716 		 * partcmd_update w/o newmask
1717 		 *
1718 		 * delmask = effective_xcpus & parent->effective_cpus
1719 		 *
1720 		 * This can be called from:
1721 		 * 1) update_cpumasks_hier()
1722 		 * 2) cpuset_hotplug_update_tasks()
1723 		 *
1724 		 * Check to see if it can be transitioned from valid to
1725 		 * invalid partition or vice versa.
1726 		 *
1727 		 * A partition error happens when parent has tasks and all
1728 		 * its effective CPUs will have to be distributed out.
1729 		 */
1730 		WARN_ON_ONCE(!is_partition_valid(parent));
1731 		if (nocpu) {
1732 			part_error = PERR_NOCPUS;
1733 			if (is_partition_valid(cs))
1734 				adding = cpumask_and(tmp->addmask,
1735 						xcpus, parent->effective_xcpus);
1736 		} else if (is_partition_invalid(cs) &&
1737 			   cpumask_subset(xcpus, parent->effective_xcpus)) {
1738 			struct cgroup_subsys_state *css;
1739 			struct cpuset *child;
1740 			bool exclusive = true;
1741 
1742 			/*
1743 			 * Convert invalid partition to valid has to
1744 			 * pass the cpu exclusivity test.
1745 			 */
1746 			rcu_read_lock();
1747 			cpuset_for_each_child(child, css, parent) {
1748 				if (child == cs)
1749 					continue;
1750 				if (!cpusets_are_exclusive(cs, child)) {
1751 					exclusive = false;
1752 					break;
1753 				}
1754 			}
1755 			rcu_read_unlock();
1756 			if (exclusive)
1757 				deleting = cpumask_and(tmp->delmask,
1758 						xcpus, parent->effective_cpus);
1759 			else
1760 				part_error = PERR_NOTEXCL;
1761 		}
1762 	}
1763 
1764 write_error:
1765 	if (part_error)
1766 		WRITE_ONCE(cs->prs_err, part_error);
1767 
1768 	if (cmd == partcmd_update) {
1769 		/*
1770 		 * Check for possible transition between valid and invalid
1771 		 * partition root.
1772 		 */
1773 		switch (cs->partition_root_state) {
1774 		case PRS_ROOT:
1775 		case PRS_ISOLATED:
1776 			if (part_error) {
1777 				new_prs = -old_prs;
1778 				subparts_delta--;
1779 			}
1780 			break;
1781 		case PRS_INVALID_ROOT:
1782 		case PRS_INVALID_ISOLATED:
1783 			if (!part_error) {
1784 				new_prs = -old_prs;
1785 				subparts_delta++;
1786 			}
1787 			break;
1788 		}
1789 	}
1790 
1791 	if (!adding && !deleting && (new_prs == old_prs))
1792 		return 0;
1793 
1794 	/*
1795 	 * Transitioning between invalid to valid or vice versa may require
1796 	 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
1797 	 * validate_change() has already been successfully called and
1798 	 * CPU lists in cs haven't been updated yet. So defer it to later.
1799 	 */
1800 	if ((old_prs != new_prs) && (cmd != partcmd_update))  {
1801 		int err = update_partition_exclusive(cs, new_prs);
1802 
1803 		if (err)
1804 			return err;
1805 	}
1806 
1807 	/*
1808 	 * Change the parent's effective_cpus & effective_xcpus (top cpuset
1809 	 * only).
1810 	 *
1811 	 * Newly added CPUs will be removed from effective_cpus and
1812 	 * newly deleted ones will be added back to effective_cpus.
1813 	 */
1814 	spin_lock_irq(&callback_lock);
1815 	if (old_prs != new_prs) {
1816 		cs->partition_root_state = new_prs;
1817 		if (new_prs <= 0)
1818 			cs->nr_subparts = 0;
1819 	}
1820 	/*
1821 	 * Adding to parent's effective_cpus means deletion CPUs from cs
1822 	 * and vice versa.
1823 	 */
1824 	if (adding)
1825 		isolcpus_updated += partition_xcpus_del(old_prs, parent,
1826 							tmp->addmask);
1827 	if (deleting)
1828 		isolcpus_updated += partition_xcpus_add(new_prs, parent,
1829 							tmp->delmask);
1830 
1831 	if (is_partition_valid(parent)) {
1832 		parent->nr_subparts += subparts_delta;
1833 		WARN_ON_ONCE(parent->nr_subparts < 0);
1834 	}
1835 	spin_unlock_irq(&callback_lock);
1836 	update_unbound_workqueue_cpumask(isolcpus_updated);
1837 
1838 	if ((old_prs != new_prs) && (cmd == partcmd_update))
1839 		update_partition_exclusive(cs, new_prs);
1840 
1841 	if (adding || deleting) {
1842 		cpuset_update_tasks_cpumask(parent, tmp->addmask);
1843 		update_sibling_cpumasks(parent, cs, tmp);
1844 	}
1845 
1846 	/*
1847 	 * For partcmd_update without newmask, it is being called from
1848 	 * cpuset_handle_hotplug(). Update the load balance flag and
1849 	 * scheduling domain accordingly.
1850 	 */
1851 	if ((cmd == partcmd_update) && !newmask)
1852 		update_partition_sd_lb(cs, old_prs);
1853 
1854 	notify_partition_change(cs, old_prs);
1855 	return 0;
1856 }
1857 
1858 /**
1859  * compute_partition_effective_cpumask - compute effective_cpus for partition
1860  * @cs: partition root cpuset
1861  * @new_ecpus: previously computed effective_cpus to be updated
1862  *
1863  * Compute the effective_cpus of a partition root by scanning effective_xcpus
1864  * of child partition roots and excluding their effective_xcpus.
1865  *
1866  * This has the side effect of invalidating valid child partition roots,
1867  * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
1868  * or update_cpumasks_hier() where parent and children are modified
1869  * successively, we don't need to call update_parent_effective_cpumask()
1870  * and the child's effective_cpus will be updated in later iterations.
1871  *
1872  * Note that rcu_read_lock() is assumed to be held.
1873  */
1874 static void compute_partition_effective_cpumask(struct cpuset *cs,
1875 						struct cpumask *new_ecpus)
1876 {
1877 	struct cgroup_subsys_state *css;
1878 	struct cpuset *child;
1879 	bool populated = partition_is_populated(cs, NULL);
1880 
1881 	/*
1882 	 * Check child partition roots to see if they should be
1883 	 * invalidated when
1884 	 *  1) child effective_xcpus not a subset of new
1885 	 *     excluisve_cpus
1886 	 *  2) All the effective_cpus will be used up and cp
1887 	 *     has tasks
1888 	 */
1889 	compute_effective_exclusive_cpumask(cs, new_ecpus);
1890 	cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
1891 
1892 	rcu_read_lock();
1893 	cpuset_for_each_child(child, css, cs) {
1894 		if (!is_partition_valid(child))
1895 			continue;
1896 
1897 		child->prs_err = 0;
1898 		if (!cpumask_subset(child->effective_xcpus,
1899 				    cs->effective_xcpus))
1900 			child->prs_err = PERR_INVCPUS;
1901 		else if (populated &&
1902 			 cpumask_subset(new_ecpus, child->effective_xcpus))
1903 			child->prs_err = PERR_NOCPUS;
1904 
1905 		if (child->prs_err) {
1906 			int old_prs = child->partition_root_state;
1907 
1908 			/*
1909 			 * Invalidate child partition
1910 			 */
1911 			spin_lock_irq(&callback_lock);
1912 			make_partition_invalid(child);
1913 			cs->nr_subparts--;
1914 			child->nr_subparts = 0;
1915 			spin_unlock_irq(&callback_lock);
1916 			notify_partition_change(child, old_prs);
1917 			continue;
1918 		}
1919 		cpumask_andnot(new_ecpus, new_ecpus,
1920 			       child->effective_xcpus);
1921 	}
1922 	rcu_read_unlock();
1923 }
1924 
1925 /*
1926  * update_cpumasks_hier() flags
1927  */
1928 #define HIER_CHECKALL		0x01	/* Check all cpusets with no skipping */
1929 #define HIER_NO_SD_REBUILD	0x02	/* Don't rebuild sched domains */
1930 
1931 /*
1932  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1933  * @cs:  the cpuset to consider
1934  * @tmp: temp variables for calculating effective_cpus & partition setup
1935  * @force: don't skip any descendant cpusets if set
1936  *
1937  * When configured cpumask is changed, the effective cpumasks of this cpuset
1938  * and all its descendants need to be updated.
1939  *
1940  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1941  *
1942  * Called with cpuset_mutex held
1943  */
1944 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
1945 				 int flags)
1946 {
1947 	struct cpuset *cp;
1948 	struct cgroup_subsys_state *pos_css;
1949 	bool need_rebuild_sched_domains = false;
1950 	int old_prs, new_prs;
1951 
1952 	rcu_read_lock();
1953 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1954 		struct cpuset *parent = parent_cs(cp);
1955 		bool remote = is_remote_partition(cp);
1956 		bool update_parent = false;
1957 
1958 		/*
1959 		 * Skip descendent remote partition that acquires CPUs
1960 		 * directly from top cpuset unless it is cs.
1961 		 */
1962 		if (remote && (cp != cs)) {
1963 			pos_css = css_rightmost_descendant(pos_css);
1964 			continue;
1965 		}
1966 
1967 		/*
1968 		 * Update effective_xcpus if exclusive_cpus set.
1969 		 * The case when exclusive_cpus isn't set is handled later.
1970 		 */
1971 		if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) {
1972 			spin_lock_irq(&callback_lock);
1973 			compute_effective_exclusive_cpumask(cp, NULL);
1974 			spin_unlock_irq(&callback_lock);
1975 		}
1976 
1977 		old_prs = new_prs = cp->partition_root_state;
1978 		if (remote || (is_partition_valid(parent) &&
1979 			       is_partition_valid(cp)))
1980 			compute_partition_effective_cpumask(cp, tmp->new_cpus);
1981 		else
1982 			compute_effective_cpumask(tmp->new_cpus, cp, parent);
1983 
1984 		/*
1985 		 * A partition with no effective_cpus is allowed as long as
1986 		 * there is no task associated with it. Call
1987 		 * update_parent_effective_cpumask() to check it.
1988 		 */
1989 		if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
1990 			update_parent = true;
1991 			goto update_parent_effective;
1992 		}
1993 
1994 		/*
1995 		 * If it becomes empty, inherit the effective mask of the
1996 		 * parent, which is guaranteed to have some CPUs unless
1997 		 * it is a partition root that has explicitly distributed
1998 		 * out all its CPUs.
1999 		 */
2000 		if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus))
2001 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2002 
2003 		if (remote)
2004 			goto get_css;
2005 
2006 		/*
2007 		 * Skip the whole subtree if
2008 		 * 1) the cpumask remains the same,
2009 		 * 2) has no partition root state,
2010 		 * 3) HIER_CHECKALL flag not set, and
2011 		 * 4) for v2 load balance state same as its parent.
2012 		 */
2013 		if (!cp->partition_root_state && !(flags & HIER_CHECKALL) &&
2014 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2015 		    (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
2016 		    (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2017 			pos_css = css_rightmost_descendant(pos_css);
2018 			continue;
2019 		}
2020 
2021 update_parent_effective:
2022 		/*
2023 		 * update_parent_effective_cpumask() should have been called
2024 		 * for cs already in update_cpumask(). We should also call
2025 		 * cpuset_update_tasks_cpumask() again for tasks in the parent
2026 		 * cpuset if the parent's effective_cpus changes.
2027 		 */
2028 		if ((cp != cs) && old_prs) {
2029 			switch (parent->partition_root_state) {
2030 			case PRS_ROOT:
2031 			case PRS_ISOLATED:
2032 				update_parent = true;
2033 				break;
2034 
2035 			default:
2036 				/*
2037 				 * When parent is not a partition root or is
2038 				 * invalid, child partition roots become
2039 				 * invalid too.
2040 				 */
2041 				if (is_partition_valid(cp))
2042 					new_prs = -cp->partition_root_state;
2043 				WRITE_ONCE(cp->prs_err,
2044 					   is_partition_invalid(parent)
2045 					   ? PERR_INVPARENT : PERR_NOTPART);
2046 				break;
2047 			}
2048 		}
2049 get_css:
2050 		if (!css_tryget_online(&cp->css))
2051 			continue;
2052 		rcu_read_unlock();
2053 
2054 		if (update_parent) {
2055 			update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
2056 			/*
2057 			 * The cpuset partition_root_state may become
2058 			 * invalid. Capture it.
2059 			 */
2060 			new_prs = cp->partition_root_state;
2061 		}
2062 
2063 		spin_lock_irq(&callback_lock);
2064 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2065 		cp->partition_root_state = new_prs;
2066 		/*
2067 		 * Make sure effective_xcpus is properly set for a valid
2068 		 * partition root.
2069 		 */
2070 		if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2071 			cpumask_and(cp->effective_xcpus,
2072 				    cp->cpus_allowed, parent->effective_xcpus);
2073 		else if (new_prs < 0)
2074 			reset_partition_data(cp);
2075 		spin_unlock_irq(&callback_lock);
2076 
2077 		notify_partition_change(cp, old_prs);
2078 
2079 		WARN_ON(!is_in_v2_mode() &&
2080 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2081 
2082 		cpuset_update_tasks_cpumask(cp, cp->effective_cpus);
2083 
2084 		/*
2085 		 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2086 		 * from parent if current cpuset isn't a valid partition root
2087 		 * and their load balance states differ.
2088 		 */
2089 		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2090 		    !is_partition_valid(cp) &&
2091 		    (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2092 			if (is_sched_load_balance(parent))
2093 				set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2094 			else
2095 				clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2096 		}
2097 
2098 		/*
2099 		 * On legacy hierarchy, if the effective cpumask of any non-
2100 		 * empty cpuset is changed, we need to rebuild sched domains.
2101 		 * On default hierarchy, the cpuset needs to be a partition
2102 		 * root as well.
2103 		 */
2104 		if (!cpumask_empty(cp->cpus_allowed) &&
2105 		    is_sched_load_balance(cp) &&
2106 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
2107 		    is_partition_valid(cp)))
2108 			need_rebuild_sched_domains = true;
2109 
2110 		rcu_read_lock();
2111 		css_put(&cp->css);
2112 	}
2113 	rcu_read_unlock();
2114 
2115 	if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD) &&
2116 	    !force_sd_rebuild)
2117 		rebuild_sched_domains_locked();
2118 }
2119 
2120 /**
2121  * update_sibling_cpumasks - Update siblings cpumasks
2122  * @parent:  Parent cpuset
2123  * @cs:      Current cpuset
2124  * @tmp:     Temp variables
2125  */
2126 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2127 				    struct tmpmasks *tmp)
2128 {
2129 	struct cpuset *sibling;
2130 	struct cgroup_subsys_state *pos_css;
2131 
2132 	lockdep_assert_held(&cpuset_mutex);
2133 
2134 	/*
2135 	 * Check all its siblings and call update_cpumasks_hier()
2136 	 * if their effective_cpus will need to be changed.
2137 	 *
2138 	 * It is possible a change in parent's effective_cpus
2139 	 * due to a change in a child partition's effective_xcpus will impact
2140 	 * its siblings even if they do not inherit parent's effective_cpus
2141 	 * directly.
2142 	 *
2143 	 * The update_cpumasks_hier() function may sleep. So we have to
2144 	 * release the RCU read lock before calling it. HIER_NO_SD_REBUILD
2145 	 * flag is used to suppress rebuild of sched domains as the callers
2146 	 * will take care of that.
2147 	 */
2148 	rcu_read_lock();
2149 	cpuset_for_each_child(sibling, pos_css, parent) {
2150 		if (sibling == cs)
2151 			continue;
2152 		if (!is_partition_valid(sibling)) {
2153 			compute_effective_cpumask(tmp->new_cpus, sibling,
2154 						  parent);
2155 			if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2156 				continue;
2157 		}
2158 		if (!css_tryget_online(&sibling->css))
2159 			continue;
2160 
2161 		rcu_read_unlock();
2162 		update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD);
2163 		rcu_read_lock();
2164 		css_put(&sibling->css);
2165 	}
2166 	rcu_read_unlock();
2167 }
2168 
2169 /**
2170  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2171  * @cs: the cpuset to consider
2172  * @trialcs: trial cpuset
2173  * @buf: buffer of cpu numbers written to this cpuset
2174  */
2175 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2176 			  const char *buf)
2177 {
2178 	int retval;
2179 	struct tmpmasks tmp;
2180 	struct cpuset *parent = parent_cs(cs);
2181 	bool invalidate = false;
2182 	int hier_flags = 0;
2183 	int old_prs = cs->partition_root_state;
2184 
2185 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
2186 	if (cs == &top_cpuset)
2187 		return -EACCES;
2188 
2189 	/*
2190 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
2191 	 * Since cpulist_parse() fails on an empty mask, we special case
2192 	 * that parsing.  The validate_change() call ensures that cpusets
2193 	 * with tasks have cpus.
2194 	 */
2195 	if (!*buf) {
2196 		cpumask_clear(trialcs->cpus_allowed);
2197 		if (cpumask_empty(trialcs->exclusive_cpus))
2198 			cpumask_clear(trialcs->effective_xcpus);
2199 	} else {
2200 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
2201 		if (retval < 0)
2202 			return retval;
2203 
2204 		if (!cpumask_subset(trialcs->cpus_allowed,
2205 				    top_cpuset.cpus_allowed))
2206 			return -EINVAL;
2207 
2208 		/*
2209 		 * When exclusive_cpus isn't explicitly set, it is constrainted
2210 		 * by cpus_allowed and parent's effective_xcpus. Otherwise,
2211 		 * trialcs->effective_xcpus is used as a temporary cpumask
2212 		 * for checking validity of the partition root.
2213 		 */
2214 		if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs))
2215 			compute_effective_exclusive_cpumask(trialcs, NULL);
2216 	}
2217 
2218 	/* Nothing to do if the cpus didn't change */
2219 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2220 		return 0;
2221 
2222 	if (alloc_cpumasks(NULL, &tmp))
2223 		return -ENOMEM;
2224 
2225 	if (old_prs) {
2226 		if (is_partition_valid(cs) &&
2227 		    cpumask_empty(trialcs->effective_xcpus)) {
2228 			invalidate = true;
2229 			cs->prs_err = PERR_INVCPUS;
2230 		} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2231 			invalidate = true;
2232 			cs->prs_err = PERR_HKEEPING;
2233 		} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2234 			invalidate = true;
2235 			cs->prs_err = PERR_NOCPUS;
2236 		}
2237 	}
2238 
2239 	/*
2240 	 * Check all the descendants in update_cpumasks_hier() if
2241 	 * effective_xcpus is to be changed.
2242 	 */
2243 	if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
2244 		hier_flags = HIER_CHECKALL;
2245 
2246 	retval = validate_change(cs, trialcs);
2247 
2248 	if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2249 		struct cgroup_subsys_state *css;
2250 		struct cpuset *cp;
2251 
2252 		/*
2253 		 * The -EINVAL error code indicates that partition sibling
2254 		 * CPU exclusivity rule has been violated. We still allow
2255 		 * the cpumask change to proceed while invalidating the
2256 		 * partition. However, any conflicting sibling partitions
2257 		 * have to be marked as invalid too.
2258 		 */
2259 		invalidate = true;
2260 		rcu_read_lock();
2261 		cpuset_for_each_child(cp, css, parent) {
2262 			struct cpumask *xcpus = user_xcpus(trialcs);
2263 
2264 			if (is_partition_valid(cp) &&
2265 			    cpumask_intersects(xcpus, cp->effective_xcpus)) {
2266 				rcu_read_unlock();
2267 				update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp);
2268 				rcu_read_lock();
2269 			}
2270 		}
2271 		rcu_read_unlock();
2272 		retval = 0;
2273 	}
2274 
2275 	if (retval < 0)
2276 		goto out_free;
2277 
2278 	if (is_partition_valid(cs) ||
2279 	   (is_partition_invalid(cs) && !invalidate)) {
2280 		struct cpumask *xcpus = trialcs->effective_xcpus;
2281 
2282 		if (cpumask_empty(xcpus) && is_partition_invalid(cs))
2283 			xcpus = trialcs->cpus_allowed;
2284 
2285 		/*
2286 		 * Call remote_cpus_update() to handle valid remote partition
2287 		 */
2288 		if (is_remote_partition(cs))
2289 			remote_cpus_update(cs, xcpus, &tmp);
2290 		else if (invalidate)
2291 			update_parent_effective_cpumask(cs, partcmd_invalidate,
2292 							NULL, &tmp);
2293 		else
2294 			update_parent_effective_cpumask(cs, partcmd_update,
2295 							xcpus, &tmp);
2296 	} else if (!cpumask_empty(cs->exclusive_cpus)) {
2297 		/*
2298 		 * Use trialcs->effective_cpus as a temp cpumask
2299 		 */
2300 		remote_partition_check(cs, trialcs->effective_xcpus,
2301 				       trialcs->effective_cpus, &tmp);
2302 	}
2303 
2304 	spin_lock_irq(&callback_lock);
2305 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2306 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2307 	if ((old_prs > 0) && !is_partition_valid(cs))
2308 		reset_partition_data(cs);
2309 	spin_unlock_irq(&callback_lock);
2310 
2311 	/* effective_cpus/effective_xcpus will be updated here */
2312 	update_cpumasks_hier(cs, &tmp, hier_flags);
2313 
2314 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2315 	if (cs->partition_root_state)
2316 		update_partition_sd_lb(cs, old_prs);
2317 out_free:
2318 	free_cpumasks(NULL, &tmp);
2319 	return retval;
2320 }
2321 
2322 /**
2323  * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2324  * @cs: the cpuset to consider
2325  * @trialcs: trial cpuset
2326  * @buf: buffer of cpu numbers written to this cpuset
2327  *
2328  * The tasks' cpumask will be updated if cs is a valid partition root.
2329  */
2330 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2331 				    const char *buf)
2332 {
2333 	int retval;
2334 	struct tmpmasks tmp;
2335 	struct cpuset *parent = parent_cs(cs);
2336 	bool invalidate = false;
2337 	int hier_flags = 0;
2338 	int old_prs = cs->partition_root_state;
2339 
2340 	if (!*buf) {
2341 		cpumask_clear(trialcs->exclusive_cpus);
2342 		cpumask_clear(trialcs->effective_xcpus);
2343 	} else {
2344 		retval = cpulist_parse(buf, trialcs->exclusive_cpus);
2345 		if (retval < 0)
2346 			return retval;
2347 	}
2348 
2349 	/* Nothing to do if the CPUs didn't change */
2350 	if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2351 		return 0;
2352 
2353 	if (*buf)
2354 		compute_effective_exclusive_cpumask(trialcs, NULL);
2355 
2356 	/*
2357 	 * Check all the descendants in update_cpumasks_hier() if
2358 	 * effective_xcpus is to be changed.
2359 	 */
2360 	if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
2361 		hier_flags = HIER_CHECKALL;
2362 
2363 	retval = validate_change(cs, trialcs);
2364 	if (retval)
2365 		return retval;
2366 
2367 	if (alloc_cpumasks(NULL, &tmp))
2368 		return -ENOMEM;
2369 
2370 	if (old_prs) {
2371 		if (cpumask_empty(trialcs->effective_xcpus)) {
2372 			invalidate = true;
2373 			cs->prs_err = PERR_INVCPUS;
2374 		} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2375 			invalidate = true;
2376 			cs->prs_err = PERR_HKEEPING;
2377 		} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2378 			invalidate = true;
2379 			cs->prs_err = PERR_NOCPUS;
2380 		}
2381 
2382 		if (is_remote_partition(cs)) {
2383 			if (invalidate)
2384 				remote_partition_disable(cs, &tmp);
2385 			else
2386 				remote_cpus_update(cs, trialcs->effective_xcpus,
2387 						   &tmp);
2388 		} else if (invalidate) {
2389 			update_parent_effective_cpumask(cs, partcmd_invalidate,
2390 							NULL, &tmp);
2391 		} else {
2392 			update_parent_effective_cpumask(cs, partcmd_update,
2393 						trialcs->effective_xcpus, &tmp);
2394 		}
2395 	} else if (!cpumask_empty(trialcs->exclusive_cpus)) {
2396 		/*
2397 		 * Use trialcs->effective_cpus as a temp cpumask
2398 		 */
2399 		remote_partition_check(cs, trialcs->effective_xcpus,
2400 				       trialcs->effective_cpus, &tmp);
2401 	}
2402 	spin_lock_irq(&callback_lock);
2403 	cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2404 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2405 	if ((old_prs > 0) && !is_partition_valid(cs))
2406 		reset_partition_data(cs);
2407 	spin_unlock_irq(&callback_lock);
2408 
2409 	/*
2410 	 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2411 	 * of the subtree when it is a valid partition root or effective_xcpus
2412 	 * is updated.
2413 	 */
2414 	if (is_partition_valid(cs) || hier_flags)
2415 		update_cpumasks_hier(cs, &tmp, hier_flags);
2416 
2417 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2418 	if (cs->partition_root_state)
2419 		update_partition_sd_lb(cs, old_prs);
2420 
2421 	free_cpumasks(NULL, &tmp);
2422 	return 0;
2423 }
2424 
2425 /*
2426  * Migrate memory region from one set of nodes to another.  This is
2427  * performed asynchronously as it can be called from process migration path
2428  * holding locks involved in process management.  All mm migrations are
2429  * performed in the queued order and can be waited for by flushing
2430  * cpuset_migrate_mm_wq.
2431  */
2432 
2433 struct cpuset_migrate_mm_work {
2434 	struct work_struct	work;
2435 	struct mm_struct	*mm;
2436 	nodemask_t		from;
2437 	nodemask_t		to;
2438 };
2439 
2440 static void cpuset_migrate_mm_workfn(struct work_struct *work)
2441 {
2442 	struct cpuset_migrate_mm_work *mwork =
2443 		container_of(work, struct cpuset_migrate_mm_work, work);
2444 
2445 	/* on a wq worker, no need to worry about %current's mems_allowed */
2446 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2447 	mmput(mwork->mm);
2448 	kfree(mwork);
2449 }
2450 
2451 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2452 							const nodemask_t *to)
2453 {
2454 	struct cpuset_migrate_mm_work *mwork;
2455 
2456 	if (nodes_equal(*from, *to)) {
2457 		mmput(mm);
2458 		return;
2459 	}
2460 
2461 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2462 	if (mwork) {
2463 		mwork->mm = mm;
2464 		mwork->from = *from;
2465 		mwork->to = *to;
2466 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2467 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
2468 	} else {
2469 		mmput(mm);
2470 	}
2471 }
2472 
2473 static void cpuset_post_attach(void)
2474 {
2475 	flush_workqueue(cpuset_migrate_mm_wq);
2476 }
2477 
2478 /*
2479  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2480  * @tsk: the task to change
2481  * @newmems: new nodes that the task will be set
2482  *
2483  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2484  * and rebind an eventual tasks' mempolicy. If the task is allocating in
2485  * parallel, it might temporarily see an empty intersection, which results in
2486  * a seqlock check and retry before OOM or allocation failure.
2487  */
2488 static void cpuset_change_task_nodemask(struct task_struct *tsk,
2489 					nodemask_t *newmems)
2490 {
2491 	task_lock(tsk);
2492 
2493 	local_irq_disable();
2494 	write_seqcount_begin(&tsk->mems_allowed_seq);
2495 
2496 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2497 	mpol_rebind_task(tsk, newmems);
2498 	tsk->mems_allowed = *newmems;
2499 
2500 	write_seqcount_end(&tsk->mems_allowed_seq);
2501 	local_irq_enable();
2502 
2503 	task_unlock(tsk);
2504 }
2505 
2506 static void *cpuset_being_rebound;
2507 
2508 /**
2509  * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2510  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2511  *
2512  * Iterate through each task of @cs updating its mems_allowed to the
2513  * effective cpuset's.  As this function is called with cpuset_mutex held,
2514  * cpuset membership stays stable.
2515  */
2516 void cpuset_update_tasks_nodemask(struct cpuset *cs)
2517 {
2518 	static nodemask_t newmems;	/* protected by cpuset_mutex */
2519 	struct css_task_iter it;
2520 	struct task_struct *task;
2521 
2522 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
2523 
2524 	guarantee_online_mems(cs, &newmems);
2525 
2526 	/*
2527 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2528 	 * take while holding tasklist_lock.  Forks can happen - the
2529 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
2530 	 * and rebind their vma mempolicies too.  Because we still hold
2531 	 * the global cpuset_mutex, we know that no other rebind effort
2532 	 * will be contending for the global variable cpuset_being_rebound.
2533 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2534 	 * is idempotent.  Also migrate pages in each mm to new nodes.
2535 	 */
2536 	css_task_iter_start(&cs->css, 0, &it);
2537 	while ((task = css_task_iter_next(&it))) {
2538 		struct mm_struct *mm;
2539 		bool migrate;
2540 
2541 		cpuset_change_task_nodemask(task, &newmems);
2542 
2543 		mm = get_task_mm(task);
2544 		if (!mm)
2545 			continue;
2546 
2547 		migrate = is_memory_migrate(cs);
2548 
2549 		mpol_rebind_mm(mm, &cs->mems_allowed);
2550 		if (migrate)
2551 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2552 		else
2553 			mmput(mm);
2554 	}
2555 	css_task_iter_end(&it);
2556 
2557 	/*
2558 	 * All the tasks' nodemasks have been updated, update
2559 	 * cs->old_mems_allowed.
2560 	 */
2561 	cs->old_mems_allowed = newmems;
2562 
2563 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2564 	cpuset_being_rebound = NULL;
2565 }
2566 
2567 /*
2568  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2569  * @cs: the cpuset to consider
2570  * @new_mems: a temp variable for calculating new effective_mems
2571  *
2572  * When configured nodemask is changed, the effective nodemasks of this cpuset
2573  * and all its descendants need to be updated.
2574  *
2575  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2576  *
2577  * Called with cpuset_mutex held
2578  */
2579 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2580 {
2581 	struct cpuset *cp;
2582 	struct cgroup_subsys_state *pos_css;
2583 
2584 	rcu_read_lock();
2585 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2586 		struct cpuset *parent = parent_cs(cp);
2587 
2588 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2589 
2590 		/*
2591 		 * If it becomes empty, inherit the effective mask of the
2592 		 * parent, which is guaranteed to have some MEMs.
2593 		 */
2594 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2595 			*new_mems = parent->effective_mems;
2596 
2597 		/* Skip the whole subtree if the nodemask remains the same. */
2598 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2599 			pos_css = css_rightmost_descendant(pos_css);
2600 			continue;
2601 		}
2602 
2603 		if (!css_tryget_online(&cp->css))
2604 			continue;
2605 		rcu_read_unlock();
2606 
2607 		spin_lock_irq(&callback_lock);
2608 		cp->effective_mems = *new_mems;
2609 		spin_unlock_irq(&callback_lock);
2610 
2611 		WARN_ON(!is_in_v2_mode() &&
2612 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2613 
2614 		cpuset_update_tasks_nodemask(cp);
2615 
2616 		rcu_read_lock();
2617 		css_put(&cp->css);
2618 	}
2619 	rcu_read_unlock();
2620 }
2621 
2622 /*
2623  * Handle user request to change the 'mems' memory placement
2624  * of a cpuset.  Needs to validate the request, update the
2625  * cpusets mems_allowed, and for each task in the cpuset,
2626  * update mems_allowed and rebind task's mempolicy and any vma
2627  * mempolicies and if the cpuset is marked 'memory_migrate',
2628  * migrate the tasks pages to the new memory.
2629  *
2630  * Call with cpuset_mutex held. May take callback_lock during call.
2631  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2632  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2633  * their mempolicies to the cpusets new mems_allowed.
2634  */
2635 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2636 			   const char *buf)
2637 {
2638 	int retval;
2639 
2640 	/*
2641 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2642 	 * it's read-only
2643 	 */
2644 	if (cs == &top_cpuset) {
2645 		retval = -EACCES;
2646 		goto done;
2647 	}
2648 
2649 	/*
2650 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2651 	 * Since nodelist_parse() fails on an empty mask, we special case
2652 	 * that parsing.  The validate_change() call ensures that cpusets
2653 	 * with tasks have memory.
2654 	 */
2655 	if (!*buf) {
2656 		nodes_clear(trialcs->mems_allowed);
2657 	} else {
2658 		retval = nodelist_parse(buf, trialcs->mems_allowed);
2659 		if (retval < 0)
2660 			goto done;
2661 
2662 		if (!nodes_subset(trialcs->mems_allowed,
2663 				  top_cpuset.mems_allowed)) {
2664 			retval = -EINVAL;
2665 			goto done;
2666 		}
2667 	}
2668 
2669 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2670 		retval = 0;		/* Too easy - nothing to do */
2671 		goto done;
2672 	}
2673 	retval = validate_change(cs, trialcs);
2674 	if (retval < 0)
2675 		goto done;
2676 
2677 	check_insane_mems_config(&trialcs->mems_allowed);
2678 
2679 	spin_lock_irq(&callback_lock);
2680 	cs->mems_allowed = trialcs->mems_allowed;
2681 	spin_unlock_irq(&callback_lock);
2682 
2683 	/* use trialcs->mems_allowed as a temp variable */
2684 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2685 done:
2686 	return retval;
2687 }
2688 
2689 bool current_cpuset_is_being_rebound(void)
2690 {
2691 	bool ret;
2692 
2693 	rcu_read_lock();
2694 	ret = task_cs(current) == cpuset_being_rebound;
2695 	rcu_read_unlock();
2696 
2697 	return ret;
2698 }
2699 
2700 /*
2701  * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag
2702  * bit:		the bit to update (see cpuset_flagbits_t)
2703  * cs:		the cpuset to update
2704  * turning_on: 	whether the flag is being set or cleared
2705  *
2706  * Call with cpuset_mutex held.
2707  */
2708 
2709 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2710 		       int turning_on)
2711 {
2712 	struct cpuset *trialcs;
2713 	int balance_flag_changed;
2714 	int spread_flag_changed;
2715 	int err;
2716 
2717 	trialcs = alloc_trial_cpuset(cs);
2718 	if (!trialcs)
2719 		return -ENOMEM;
2720 
2721 	if (turning_on)
2722 		set_bit(bit, &trialcs->flags);
2723 	else
2724 		clear_bit(bit, &trialcs->flags);
2725 
2726 	err = validate_change(cs, trialcs);
2727 	if (err < 0)
2728 		goto out;
2729 
2730 	balance_flag_changed = (is_sched_load_balance(cs) !=
2731 				is_sched_load_balance(trialcs));
2732 
2733 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2734 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2735 
2736 	spin_lock_irq(&callback_lock);
2737 	cs->flags = trialcs->flags;
2738 	spin_unlock_irq(&callback_lock);
2739 
2740 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed &&
2741 	    !force_sd_rebuild)
2742 		rebuild_sched_domains_locked();
2743 
2744 	if (spread_flag_changed)
2745 		cpuset1_update_tasks_flags(cs);
2746 out:
2747 	free_cpuset(trialcs);
2748 	return err;
2749 }
2750 
2751 /**
2752  * update_prstate - update partition_root_state
2753  * @cs: the cpuset to update
2754  * @new_prs: new partition root state
2755  * Return: 0 if successful, != 0 if error
2756  *
2757  * Call with cpuset_mutex held.
2758  */
2759 static int update_prstate(struct cpuset *cs, int new_prs)
2760 {
2761 	int err = PERR_NONE, old_prs = cs->partition_root_state;
2762 	struct cpuset *parent = parent_cs(cs);
2763 	struct tmpmasks tmpmask;
2764 	bool new_xcpus_state = false;
2765 
2766 	if (old_prs == new_prs)
2767 		return 0;
2768 
2769 	/*
2770 	 * Treat a previously invalid partition root as if it is a "member".
2771 	 */
2772 	if (new_prs && is_prs_invalid(old_prs))
2773 		old_prs = PRS_MEMBER;
2774 
2775 	if (alloc_cpumasks(NULL, &tmpmask))
2776 		return -ENOMEM;
2777 
2778 	/*
2779 	 * Setup effective_xcpus if not properly set yet, it will be cleared
2780 	 * later if partition becomes invalid.
2781 	 */
2782 	if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) {
2783 		spin_lock_irq(&callback_lock);
2784 		cpumask_and(cs->effective_xcpus,
2785 			    cs->cpus_allowed, parent->effective_xcpus);
2786 		spin_unlock_irq(&callback_lock);
2787 	}
2788 
2789 	err = update_partition_exclusive(cs, new_prs);
2790 	if (err)
2791 		goto out;
2792 
2793 	if (!old_prs) {
2794 		/*
2795 		 * cpus_allowed and exclusive_cpus cannot be both empty.
2796 		 */
2797 		if (xcpus_empty(cs)) {
2798 			err = PERR_CPUSEMPTY;
2799 			goto out;
2800 		}
2801 
2802 		/*
2803 		 * If parent is valid partition, enable local partiion.
2804 		 * Otherwise, enable a remote partition.
2805 		 */
2806 		if (is_partition_valid(parent)) {
2807 			enum partition_cmd cmd = (new_prs == PRS_ROOT)
2808 					       ? partcmd_enable : partcmd_enablei;
2809 
2810 			err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
2811 		} else {
2812 			err = remote_partition_enable(cs, new_prs, &tmpmask);
2813 		}
2814 	} else if (old_prs && new_prs) {
2815 		/*
2816 		 * A change in load balance state only, no change in cpumasks.
2817 		 */
2818 		new_xcpus_state = true;
2819 	} else {
2820 		/*
2821 		 * Switching back to member is always allowed even if it
2822 		 * disables child partitions.
2823 		 */
2824 		if (is_remote_partition(cs))
2825 			remote_partition_disable(cs, &tmpmask);
2826 		else
2827 			update_parent_effective_cpumask(cs, partcmd_disable,
2828 							NULL, &tmpmask);
2829 
2830 		/*
2831 		 * Invalidation of child partitions will be done in
2832 		 * update_cpumasks_hier().
2833 		 */
2834 	}
2835 out:
2836 	/*
2837 	 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
2838 	 * happens.
2839 	 */
2840 	if (err) {
2841 		new_prs = -new_prs;
2842 		update_partition_exclusive(cs, new_prs);
2843 	}
2844 
2845 	spin_lock_irq(&callback_lock);
2846 	cs->partition_root_state = new_prs;
2847 	WRITE_ONCE(cs->prs_err, err);
2848 	if (!is_partition_valid(cs))
2849 		reset_partition_data(cs);
2850 	else if (new_xcpus_state)
2851 		partition_xcpus_newstate(old_prs, new_prs, cs->effective_xcpus);
2852 	spin_unlock_irq(&callback_lock);
2853 	update_unbound_workqueue_cpumask(new_xcpus_state);
2854 
2855 	/* Force update if switching back to member */
2856 	update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0);
2857 
2858 	/* Update sched domains and load balance flag */
2859 	update_partition_sd_lb(cs, old_prs);
2860 
2861 	notify_partition_change(cs, old_prs);
2862 	free_cpumasks(NULL, &tmpmask);
2863 	return 0;
2864 }
2865 
2866 static struct cpuset *cpuset_attach_old_cs;
2867 
2868 /*
2869  * Check to see if a cpuset can accept a new task
2870  * For v1, cpus_allowed and mems_allowed can't be empty.
2871  * For v2, effective_cpus can't be empty.
2872  * Note that in v1, effective_cpus = cpus_allowed.
2873  */
2874 static int cpuset_can_attach_check(struct cpuset *cs)
2875 {
2876 	if (cpumask_empty(cs->effective_cpus) ||
2877 	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
2878 		return -ENOSPC;
2879 	return 0;
2880 }
2881 
2882 static void reset_migrate_dl_data(struct cpuset *cs)
2883 {
2884 	cs->nr_migrate_dl_tasks = 0;
2885 	cs->sum_migrate_dl_bw = 0;
2886 }
2887 
2888 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2889 static int cpuset_can_attach(struct cgroup_taskset *tset)
2890 {
2891 	struct cgroup_subsys_state *css;
2892 	struct cpuset *cs, *oldcs;
2893 	struct task_struct *task;
2894 	bool cpus_updated, mems_updated;
2895 	int ret;
2896 
2897 	/* used later by cpuset_attach() */
2898 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2899 	oldcs = cpuset_attach_old_cs;
2900 	cs = css_cs(css);
2901 
2902 	mutex_lock(&cpuset_mutex);
2903 
2904 	/* Check to see if task is allowed in the cpuset */
2905 	ret = cpuset_can_attach_check(cs);
2906 	if (ret)
2907 		goto out_unlock;
2908 
2909 	cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
2910 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
2911 
2912 	cgroup_taskset_for_each(task, css, tset) {
2913 		ret = task_can_attach(task);
2914 		if (ret)
2915 			goto out_unlock;
2916 
2917 		/*
2918 		 * Skip rights over task check in v2 when nothing changes,
2919 		 * migration permission derives from hierarchy ownership in
2920 		 * cgroup_procs_write_permission()).
2921 		 */
2922 		if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
2923 		    (cpus_updated || mems_updated)) {
2924 			ret = security_task_setscheduler(task);
2925 			if (ret)
2926 				goto out_unlock;
2927 		}
2928 
2929 		if (dl_task(task)) {
2930 			cs->nr_migrate_dl_tasks++;
2931 			cs->sum_migrate_dl_bw += task->dl.dl_bw;
2932 		}
2933 	}
2934 
2935 	if (!cs->nr_migrate_dl_tasks)
2936 		goto out_success;
2937 
2938 	if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
2939 		int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
2940 
2941 		if (unlikely(cpu >= nr_cpu_ids)) {
2942 			reset_migrate_dl_data(cs);
2943 			ret = -EINVAL;
2944 			goto out_unlock;
2945 		}
2946 
2947 		ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
2948 		if (ret) {
2949 			reset_migrate_dl_data(cs);
2950 			goto out_unlock;
2951 		}
2952 	}
2953 
2954 out_success:
2955 	/*
2956 	 * Mark attach is in progress.  This makes validate_change() fail
2957 	 * changes which zero cpus/mems_allowed.
2958 	 */
2959 	cs->attach_in_progress++;
2960 out_unlock:
2961 	mutex_unlock(&cpuset_mutex);
2962 	return ret;
2963 }
2964 
2965 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2966 {
2967 	struct cgroup_subsys_state *css;
2968 	struct cpuset *cs;
2969 
2970 	cgroup_taskset_first(tset, &css);
2971 	cs = css_cs(css);
2972 
2973 	mutex_lock(&cpuset_mutex);
2974 	dec_attach_in_progress_locked(cs);
2975 
2976 	if (cs->nr_migrate_dl_tasks) {
2977 		int cpu = cpumask_any(cs->effective_cpus);
2978 
2979 		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
2980 		reset_migrate_dl_data(cs);
2981 	}
2982 
2983 	mutex_unlock(&cpuset_mutex);
2984 }
2985 
2986 /*
2987  * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
2988  * but we can't allocate it dynamically there.  Define it global and
2989  * allocate from cpuset_init().
2990  */
2991 static cpumask_var_t cpus_attach;
2992 static nodemask_t cpuset_attach_nodemask_to;
2993 
2994 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
2995 {
2996 	lockdep_assert_held(&cpuset_mutex);
2997 
2998 	if (cs != &top_cpuset)
2999 		guarantee_online_cpus(task, cpus_attach);
3000 	else
3001 		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3002 			       subpartitions_cpus);
3003 	/*
3004 	 * can_attach beforehand should guarantee that this doesn't
3005 	 * fail.  TODO: have a better way to handle failure here
3006 	 */
3007 	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
3008 
3009 	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3010 	cpuset1_update_task_spread_flags(cs, task);
3011 }
3012 
3013 static void cpuset_attach(struct cgroup_taskset *tset)
3014 {
3015 	struct task_struct *task;
3016 	struct task_struct *leader;
3017 	struct cgroup_subsys_state *css;
3018 	struct cpuset *cs;
3019 	struct cpuset *oldcs = cpuset_attach_old_cs;
3020 	bool cpus_updated, mems_updated;
3021 
3022 	cgroup_taskset_first(tset, &css);
3023 	cs = css_cs(css);
3024 
3025 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
3026 	mutex_lock(&cpuset_mutex);
3027 	cpus_updated = !cpumask_equal(cs->effective_cpus,
3028 				      oldcs->effective_cpus);
3029 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3030 
3031 	/*
3032 	 * In the default hierarchy, enabling cpuset in the child cgroups
3033 	 * will trigger a number of cpuset_attach() calls with no change
3034 	 * in effective cpus and mems. In that case, we can optimize out
3035 	 * by skipping the task iteration and update.
3036 	 */
3037 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3038 	    !cpus_updated && !mems_updated) {
3039 		cpuset_attach_nodemask_to = cs->effective_mems;
3040 		goto out;
3041 	}
3042 
3043 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3044 
3045 	cgroup_taskset_for_each(task, css, tset)
3046 		cpuset_attach_task(cs, task);
3047 
3048 	/*
3049 	 * Change mm for all threadgroup leaders. This is expensive and may
3050 	 * sleep and should be moved outside migration path proper. Skip it
3051 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3052 	 * not set.
3053 	 */
3054 	cpuset_attach_nodemask_to = cs->effective_mems;
3055 	if (!is_memory_migrate(cs) && !mems_updated)
3056 		goto out;
3057 
3058 	cgroup_taskset_for_each_leader(leader, css, tset) {
3059 		struct mm_struct *mm = get_task_mm(leader);
3060 
3061 		if (mm) {
3062 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3063 
3064 			/*
3065 			 * old_mems_allowed is the same with mems_allowed
3066 			 * here, except if this task is being moved
3067 			 * automatically due to hotplug.  In that case
3068 			 * @mems_allowed has been updated and is empty, so
3069 			 * @old_mems_allowed is the right nodesets that we
3070 			 * migrate mm from.
3071 			 */
3072 			if (is_memory_migrate(cs))
3073 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3074 						  &cpuset_attach_nodemask_to);
3075 			else
3076 				mmput(mm);
3077 		}
3078 	}
3079 
3080 out:
3081 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
3082 
3083 	if (cs->nr_migrate_dl_tasks) {
3084 		cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3085 		oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3086 		reset_migrate_dl_data(cs);
3087 	}
3088 
3089 	dec_attach_in_progress_locked(cs);
3090 
3091 	mutex_unlock(&cpuset_mutex);
3092 }
3093 
3094 /*
3095  * Common handling for a write to a "cpus" or "mems" file.
3096  */
3097 ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3098 				    char *buf, size_t nbytes, loff_t off)
3099 {
3100 	struct cpuset *cs = css_cs(of_css(of));
3101 	struct cpuset *trialcs;
3102 	int retval = -ENODEV;
3103 
3104 	buf = strstrip(buf);
3105 
3106 	/*
3107 	 * CPU or memory hotunplug may leave @cs w/o any execution
3108 	 * resources, in which case the hotplug code asynchronously updates
3109 	 * configuration and transfers all tasks to the nearest ancestor
3110 	 * which can execute.
3111 	 *
3112 	 * As writes to "cpus" or "mems" may restore @cs's execution
3113 	 * resources, wait for the previously scheduled operations before
3114 	 * proceeding, so that we don't end up keep removing tasks added
3115 	 * after execution capability is restored.
3116 	 *
3117 	 * cpuset_handle_hotplug may call back into cgroup core asynchronously
3118 	 * via cgroup_transfer_tasks() and waiting for it from a cgroupfs
3119 	 * operation like this one can lead to a deadlock through kernfs
3120 	 * active_ref protection.  Let's break the protection.  Losing the
3121 	 * protection is okay as we check whether @cs is online after
3122 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
3123 	 * hierarchies.
3124 	 */
3125 	css_get(&cs->css);
3126 	kernfs_break_active_protection(of->kn);
3127 
3128 	cpus_read_lock();
3129 	mutex_lock(&cpuset_mutex);
3130 	if (!is_cpuset_online(cs))
3131 		goto out_unlock;
3132 
3133 	trialcs = alloc_trial_cpuset(cs);
3134 	if (!trialcs) {
3135 		retval = -ENOMEM;
3136 		goto out_unlock;
3137 	}
3138 
3139 	switch (of_cft(of)->private) {
3140 	case FILE_CPULIST:
3141 		retval = update_cpumask(cs, trialcs, buf);
3142 		break;
3143 	case FILE_EXCLUSIVE_CPULIST:
3144 		retval = update_exclusive_cpumask(cs, trialcs, buf);
3145 		break;
3146 	case FILE_MEMLIST:
3147 		retval = update_nodemask(cs, trialcs, buf);
3148 		break;
3149 	default:
3150 		retval = -EINVAL;
3151 		break;
3152 	}
3153 
3154 	free_cpuset(trialcs);
3155 out_unlock:
3156 	mutex_unlock(&cpuset_mutex);
3157 	cpus_read_unlock();
3158 	kernfs_unbreak_active_protection(of->kn);
3159 	css_put(&cs->css);
3160 	flush_workqueue(cpuset_migrate_mm_wq);
3161 	return retval ?: nbytes;
3162 }
3163 
3164 /*
3165  * These ascii lists should be read in a single call, by using a user
3166  * buffer large enough to hold the entire map.  If read in smaller
3167  * chunks, there is no guarantee of atomicity.  Since the display format
3168  * used, list of ranges of sequential numbers, is variable length,
3169  * and since these maps can change value dynamically, one could read
3170  * gibberish by doing partial reads while a list was changing.
3171  */
3172 int cpuset_common_seq_show(struct seq_file *sf, void *v)
3173 {
3174 	struct cpuset *cs = css_cs(seq_css(sf));
3175 	cpuset_filetype_t type = seq_cft(sf)->private;
3176 	int ret = 0;
3177 
3178 	spin_lock_irq(&callback_lock);
3179 
3180 	switch (type) {
3181 	case FILE_CPULIST:
3182 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3183 		break;
3184 	case FILE_MEMLIST:
3185 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3186 		break;
3187 	case FILE_EFFECTIVE_CPULIST:
3188 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3189 		break;
3190 	case FILE_EFFECTIVE_MEMLIST:
3191 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3192 		break;
3193 	case FILE_EXCLUSIVE_CPULIST:
3194 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3195 		break;
3196 	case FILE_EFFECTIVE_XCPULIST:
3197 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3198 		break;
3199 	case FILE_SUBPARTS_CPULIST:
3200 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3201 		break;
3202 	case FILE_ISOLATED_CPULIST:
3203 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
3204 		break;
3205 	default:
3206 		ret = -EINVAL;
3207 	}
3208 
3209 	spin_unlock_irq(&callback_lock);
3210 	return ret;
3211 }
3212 
3213 static int sched_partition_show(struct seq_file *seq, void *v)
3214 {
3215 	struct cpuset *cs = css_cs(seq_css(seq));
3216 	const char *err, *type = NULL;
3217 
3218 	switch (cs->partition_root_state) {
3219 	case PRS_ROOT:
3220 		seq_puts(seq, "root\n");
3221 		break;
3222 	case PRS_ISOLATED:
3223 		seq_puts(seq, "isolated\n");
3224 		break;
3225 	case PRS_MEMBER:
3226 		seq_puts(seq, "member\n");
3227 		break;
3228 	case PRS_INVALID_ROOT:
3229 		type = "root";
3230 		fallthrough;
3231 	case PRS_INVALID_ISOLATED:
3232 		if (!type)
3233 			type = "isolated";
3234 		err = perr_strings[READ_ONCE(cs->prs_err)];
3235 		if (err)
3236 			seq_printf(seq, "%s invalid (%s)\n", type, err);
3237 		else
3238 			seq_printf(seq, "%s invalid\n", type);
3239 		break;
3240 	}
3241 	return 0;
3242 }
3243 
3244 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
3245 				     size_t nbytes, loff_t off)
3246 {
3247 	struct cpuset *cs = css_cs(of_css(of));
3248 	int val;
3249 	int retval = -ENODEV;
3250 
3251 	buf = strstrip(buf);
3252 
3253 	if (!strcmp(buf, "root"))
3254 		val = PRS_ROOT;
3255 	else if (!strcmp(buf, "member"))
3256 		val = PRS_MEMBER;
3257 	else if (!strcmp(buf, "isolated"))
3258 		val = PRS_ISOLATED;
3259 	else
3260 		return -EINVAL;
3261 
3262 	css_get(&cs->css);
3263 	cpus_read_lock();
3264 	mutex_lock(&cpuset_mutex);
3265 	if (!is_cpuset_online(cs))
3266 		goto out_unlock;
3267 
3268 	retval = update_prstate(cs, val);
3269 out_unlock:
3270 	mutex_unlock(&cpuset_mutex);
3271 	cpus_read_unlock();
3272 	css_put(&cs->css);
3273 	return retval ?: nbytes;
3274 }
3275 
3276 /*
3277  * This is currently a minimal set for the default hierarchy. It can be
3278  * expanded later on by migrating more features and control files from v1.
3279  */
3280 static struct cftype dfl_files[] = {
3281 	{
3282 		.name = "cpus",
3283 		.seq_show = cpuset_common_seq_show,
3284 		.write = cpuset_write_resmask,
3285 		.max_write_len = (100U + 6 * NR_CPUS),
3286 		.private = FILE_CPULIST,
3287 		.flags = CFTYPE_NOT_ON_ROOT,
3288 	},
3289 
3290 	{
3291 		.name = "mems",
3292 		.seq_show = cpuset_common_seq_show,
3293 		.write = cpuset_write_resmask,
3294 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3295 		.private = FILE_MEMLIST,
3296 		.flags = CFTYPE_NOT_ON_ROOT,
3297 	},
3298 
3299 	{
3300 		.name = "cpus.effective",
3301 		.seq_show = cpuset_common_seq_show,
3302 		.private = FILE_EFFECTIVE_CPULIST,
3303 	},
3304 
3305 	{
3306 		.name = "mems.effective",
3307 		.seq_show = cpuset_common_seq_show,
3308 		.private = FILE_EFFECTIVE_MEMLIST,
3309 	},
3310 
3311 	{
3312 		.name = "cpus.partition",
3313 		.seq_show = sched_partition_show,
3314 		.write = sched_partition_write,
3315 		.private = FILE_PARTITION_ROOT,
3316 		.flags = CFTYPE_NOT_ON_ROOT,
3317 		.file_offset = offsetof(struct cpuset, partition_file),
3318 	},
3319 
3320 	{
3321 		.name = "cpus.exclusive",
3322 		.seq_show = cpuset_common_seq_show,
3323 		.write = cpuset_write_resmask,
3324 		.max_write_len = (100U + 6 * NR_CPUS),
3325 		.private = FILE_EXCLUSIVE_CPULIST,
3326 		.flags = CFTYPE_NOT_ON_ROOT,
3327 	},
3328 
3329 	{
3330 		.name = "cpus.exclusive.effective",
3331 		.seq_show = cpuset_common_seq_show,
3332 		.private = FILE_EFFECTIVE_XCPULIST,
3333 		.flags = CFTYPE_NOT_ON_ROOT,
3334 	},
3335 
3336 	{
3337 		.name = "cpus.subpartitions",
3338 		.seq_show = cpuset_common_seq_show,
3339 		.private = FILE_SUBPARTS_CPULIST,
3340 		.flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
3341 	},
3342 
3343 	{
3344 		.name = "cpus.isolated",
3345 		.seq_show = cpuset_common_seq_show,
3346 		.private = FILE_ISOLATED_CPULIST,
3347 		.flags = CFTYPE_ONLY_ON_ROOT,
3348 	},
3349 
3350 	{ }	/* terminate */
3351 };
3352 
3353 
3354 /**
3355  * cpuset_css_alloc - Allocate a cpuset css
3356  * @parent_css: Parent css of the control group that the new cpuset will be
3357  *              part of
3358  * Return: cpuset css on success, -ENOMEM on failure.
3359  *
3360  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3361  * top cpuset css otherwise.
3362  */
3363 static struct cgroup_subsys_state *
3364 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3365 {
3366 	struct cpuset *cs;
3367 
3368 	if (!parent_css)
3369 		return &top_cpuset.css;
3370 
3371 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
3372 	if (!cs)
3373 		return ERR_PTR(-ENOMEM);
3374 
3375 	if (alloc_cpumasks(cs, NULL)) {
3376 		kfree(cs);
3377 		return ERR_PTR(-ENOMEM);
3378 	}
3379 
3380 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3381 	fmeter_init(&cs->fmeter);
3382 	cs->relax_domain_level = -1;
3383 	INIT_LIST_HEAD(&cs->remote_sibling);
3384 
3385 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3386 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
3387 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3388 
3389 	return &cs->css;
3390 }
3391 
3392 static int cpuset_css_online(struct cgroup_subsys_state *css)
3393 {
3394 	struct cpuset *cs = css_cs(css);
3395 	struct cpuset *parent = parent_cs(cs);
3396 	struct cpuset *tmp_cs;
3397 	struct cgroup_subsys_state *pos_css;
3398 
3399 	if (!parent)
3400 		return 0;
3401 
3402 	cpus_read_lock();
3403 	mutex_lock(&cpuset_mutex);
3404 
3405 	set_bit(CS_ONLINE, &cs->flags);
3406 	if (is_spread_page(parent))
3407 		set_bit(CS_SPREAD_PAGE, &cs->flags);
3408 	if (is_spread_slab(parent))
3409 		set_bit(CS_SPREAD_SLAB, &cs->flags);
3410 	/*
3411 	 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
3412 	 */
3413 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3414 	    !is_sched_load_balance(parent))
3415 		clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3416 
3417 	cpuset_inc();
3418 
3419 	spin_lock_irq(&callback_lock);
3420 	if (is_in_v2_mode()) {
3421 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3422 		cs->effective_mems = parent->effective_mems;
3423 	}
3424 	spin_unlock_irq(&callback_lock);
3425 
3426 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3427 		goto out_unlock;
3428 
3429 	/*
3430 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3431 	 * set.  This flag handling is implemented in cgroup core for
3432 	 * historical reasons - the flag may be specified during mount.
3433 	 *
3434 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3435 	 * refuse to clone the configuration - thereby refusing the task to
3436 	 * be entered, and as a result refusing the sys_unshare() or
3437 	 * clone() which initiated it.  If this becomes a problem for some
3438 	 * users who wish to allow that scenario, then this could be
3439 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3440 	 * (and likewise for mems) to the new cgroup.
3441 	 */
3442 	rcu_read_lock();
3443 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3444 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3445 			rcu_read_unlock();
3446 			goto out_unlock;
3447 		}
3448 	}
3449 	rcu_read_unlock();
3450 
3451 	spin_lock_irq(&callback_lock);
3452 	cs->mems_allowed = parent->mems_allowed;
3453 	cs->effective_mems = parent->mems_allowed;
3454 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3455 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3456 	spin_unlock_irq(&callback_lock);
3457 out_unlock:
3458 	mutex_unlock(&cpuset_mutex);
3459 	cpus_read_unlock();
3460 	return 0;
3461 }
3462 
3463 /*
3464  * If the cpuset being removed has its flag 'sched_load_balance'
3465  * enabled, then simulate turning sched_load_balance off, which
3466  * will call rebuild_sched_domains_locked(). That is not needed
3467  * in the default hierarchy where only changes in partition
3468  * will cause repartitioning.
3469  *
3470  * If the cpuset has the 'sched.partition' flag enabled, simulate
3471  * turning 'sched.partition" off.
3472  */
3473 
3474 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3475 {
3476 	struct cpuset *cs = css_cs(css);
3477 
3478 	cpus_read_lock();
3479 	mutex_lock(&cpuset_mutex);
3480 
3481 	if (is_partition_valid(cs))
3482 		update_prstate(cs, 0);
3483 
3484 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3485 	    is_sched_load_balance(cs))
3486 		cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3487 
3488 	cpuset_dec();
3489 	clear_bit(CS_ONLINE, &cs->flags);
3490 
3491 	mutex_unlock(&cpuset_mutex);
3492 	cpus_read_unlock();
3493 }
3494 
3495 static void cpuset_css_free(struct cgroup_subsys_state *css)
3496 {
3497 	struct cpuset *cs = css_cs(css);
3498 
3499 	free_cpuset(cs);
3500 }
3501 
3502 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3503 {
3504 	mutex_lock(&cpuset_mutex);
3505 	spin_lock_irq(&callback_lock);
3506 
3507 	if (is_in_v2_mode()) {
3508 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3509 		cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
3510 		top_cpuset.mems_allowed = node_possible_map;
3511 	} else {
3512 		cpumask_copy(top_cpuset.cpus_allowed,
3513 			     top_cpuset.effective_cpus);
3514 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
3515 	}
3516 
3517 	spin_unlock_irq(&callback_lock);
3518 	mutex_unlock(&cpuset_mutex);
3519 }
3520 
3521 /*
3522  * In case the child is cloned into a cpuset different from its parent,
3523  * additional checks are done to see if the move is allowed.
3524  */
3525 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3526 {
3527 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3528 	bool same_cs;
3529 	int ret;
3530 
3531 	rcu_read_lock();
3532 	same_cs = (cs == task_cs(current));
3533 	rcu_read_unlock();
3534 
3535 	if (same_cs)
3536 		return 0;
3537 
3538 	lockdep_assert_held(&cgroup_mutex);
3539 	mutex_lock(&cpuset_mutex);
3540 
3541 	/* Check to see if task is allowed in the cpuset */
3542 	ret = cpuset_can_attach_check(cs);
3543 	if (ret)
3544 		goto out_unlock;
3545 
3546 	ret = task_can_attach(task);
3547 	if (ret)
3548 		goto out_unlock;
3549 
3550 	ret = security_task_setscheduler(task);
3551 	if (ret)
3552 		goto out_unlock;
3553 
3554 	/*
3555 	 * Mark attach is in progress.  This makes validate_change() fail
3556 	 * changes which zero cpus/mems_allowed.
3557 	 */
3558 	cs->attach_in_progress++;
3559 out_unlock:
3560 	mutex_unlock(&cpuset_mutex);
3561 	return ret;
3562 }
3563 
3564 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3565 {
3566 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3567 	bool same_cs;
3568 
3569 	rcu_read_lock();
3570 	same_cs = (cs == task_cs(current));
3571 	rcu_read_unlock();
3572 
3573 	if (same_cs)
3574 		return;
3575 
3576 	dec_attach_in_progress(cs);
3577 }
3578 
3579 /*
3580  * Make sure the new task conform to the current state of its parent,
3581  * which could have been changed by cpuset just after it inherits the
3582  * state from the parent and before it sits on the cgroup's task list.
3583  */
3584 static void cpuset_fork(struct task_struct *task)
3585 {
3586 	struct cpuset *cs;
3587 	bool same_cs;
3588 
3589 	rcu_read_lock();
3590 	cs = task_cs(task);
3591 	same_cs = (cs == task_cs(current));
3592 	rcu_read_unlock();
3593 
3594 	if (same_cs) {
3595 		if (cs == &top_cpuset)
3596 			return;
3597 
3598 		set_cpus_allowed_ptr(task, current->cpus_ptr);
3599 		task->mems_allowed = current->mems_allowed;
3600 		return;
3601 	}
3602 
3603 	/* CLONE_INTO_CGROUP */
3604 	mutex_lock(&cpuset_mutex);
3605 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3606 	cpuset_attach_task(cs, task);
3607 
3608 	dec_attach_in_progress_locked(cs);
3609 	mutex_unlock(&cpuset_mutex);
3610 }
3611 
3612 struct cgroup_subsys cpuset_cgrp_subsys = {
3613 	.css_alloc	= cpuset_css_alloc,
3614 	.css_online	= cpuset_css_online,
3615 	.css_offline	= cpuset_css_offline,
3616 	.css_free	= cpuset_css_free,
3617 	.can_attach	= cpuset_can_attach,
3618 	.cancel_attach	= cpuset_cancel_attach,
3619 	.attach		= cpuset_attach,
3620 	.post_attach	= cpuset_post_attach,
3621 	.bind		= cpuset_bind,
3622 	.can_fork	= cpuset_can_fork,
3623 	.cancel_fork	= cpuset_cancel_fork,
3624 	.fork		= cpuset_fork,
3625 #ifdef CONFIG_CPUSETS_V1
3626 	.legacy_cftypes	= cpuset1_files,
3627 #endif
3628 	.dfl_cftypes	= dfl_files,
3629 	.early_init	= true,
3630 	.threaded	= true,
3631 };
3632 
3633 /**
3634  * cpuset_init - initialize cpusets at system boot
3635  *
3636  * Description: Initialize top_cpuset
3637  **/
3638 
3639 int __init cpuset_init(void)
3640 {
3641 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3642 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3643 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
3644 	BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
3645 	BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
3646 	BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
3647 
3648 	cpumask_setall(top_cpuset.cpus_allowed);
3649 	nodes_setall(top_cpuset.mems_allowed);
3650 	cpumask_setall(top_cpuset.effective_cpus);
3651 	cpumask_setall(top_cpuset.effective_xcpus);
3652 	cpumask_setall(top_cpuset.exclusive_cpus);
3653 	nodes_setall(top_cpuset.effective_mems);
3654 
3655 	fmeter_init(&top_cpuset.fmeter);
3656 	INIT_LIST_HEAD(&remote_children);
3657 
3658 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3659 
3660 	have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN);
3661 	if (have_boot_isolcpus) {
3662 		BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL));
3663 		cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN));
3664 		cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus);
3665 	}
3666 
3667 	return 0;
3668 }
3669 
3670 static void
3671 hotplug_update_tasks(struct cpuset *cs,
3672 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3673 		     bool cpus_updated, bool mems_updated)
3674 {
3675 	/* A partition root is allowed to have empty effective cpus */
3676 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3677 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3678 	if (nodes_empty(*new_mems))
3679 		*new_mems = parent_cs(cs)->effective_mems;
3680 
3681 	spin_lock_irq(&callback_lock);
3682 	cpumask_copy(cs->effective_cpus, new_cpus);
3683 	cs->effective_mems = *new_mems;
3684 	spin_unlock_irq(&callback_lock);
3685 
3686 	if (cpus_updated)
3687 		cpuset_update_tasks_cpumask(cs, new_cpus);
3688 	if (mems_updated)
3689 		cpuset_update_tasks_nodemask(cs);
3690 }
3691 
3692 void cpuset_force_rebuild(void)
3693 {
3694 	force_sd_rebuild = true;
3695 }
3696 
3697 /**
3698  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3699  * @cs: cpuset in interest
3700  * @tmp: the tmpmasks structure pointer
3701  *
3702  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3703  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3704  * all its tasks are moved to the nearest ancestor with both resources.
3705  */
3706 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3707 {
3708 	static cpumask_t new_cpus;
3709 	static nodemask_t new_mems;
3710 	bool cpus_updated;
3711 	bool mems_updated;
3712 	bool remote;
3713 	int partcmd = -1;
3714 	struct cpuset *parent;
3715 retry:
3716 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3717 
3718 	mutex_lock(&cpuset_mutex);
3719 
3720 	/*
3721 	 * We have raced with task attaching. We wait until attaching
3722 	 * is finished, so we won't attach a task to an empty cpuset.
3723 	 */
3724 	if (cs->attach_in_progress) {
3725 		mutex_unlock(&cpuset_mutex);
3726 		goto retry;
3727 	}
3728 
3729 	parent = parent_cs(cs);
3730 	compute_effective_cpumask(&new_cpus, cs, parent);
3731 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3732 
3733 	if (!tmp || !cs->partition_root_state)
3734 		goto update_tasks;
3735 
3736 	/*
3737 	 * Compute effective_cpus for valid partition root, may invalidate
3738 	 * child partition roots if necessary.
3739 	 */
3740 	remote = is_remote_partition(cs);
3741 	if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
3742 		compute_partition_effective_cpumask(cs, &new_cpus);
3743 
3744 	if (remote && cpumask_empty(&new_cpus) &&
3745 	    partition_is_populated(cs, NULL)) {
3746 		remote_partition_disable(cs, tmp);
3747 		compute_effective_cpumask(&new_cpus, cs, parent);
3748 		remote = false;
3749 		cpuset_force_rebuild();
3750 	}
3751 
3752 	/*
3753 	 * Force the partition to become invalid if either one of
3754 	 * the following conditions hold:
3755 	 * 1) empty effective cpus but not valid empty partition.
3756 	 * 2) parent is invalid or doesn't grant any cpus to child
3757 	 *    partitions.
3758 	 */
3759 	if (is_local_partition(cs) && (!is_partition_valid(parent) ||
3760 				tasks_nocpu_error(parent, cs, &new_cpus)))
3761 		partcmd = partcmd_invalidate;
3762 	/*
3763 	 * On the other hand, an invalid partition root may be transitioned
3764 	 * back to a regular one.
3765 	 */
3766 	else if (is_partition_valid(parent) && is_partition_invalid(cs))
3767 		partcmd = partcmd_update;
3768 
3769 	if (partcmd >= 0) {
3770 		update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
3771 		if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
3772 			compute_partition_effective_cpumask(cs, &new_cpus);
3773 			cpuset_force_rebuild();
3774 		}
3775 	}
3776 
3777 update_tasks:
3778 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3779 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3780 	if (!cpus_updated && !mems_updated)
3781 		goto unlock;	/* Hotplug doesn't affect this cpuset */
3782 
3783 	if (mems_updated)
3784 		check_insane_mems_config(&new_mems);
3785 
3786 	if (is_in_v2_mode())
3787 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3788 				     cpus_updated, mems_updated);
3789 	else
3790 		cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems,
3791 					    cpus_updated, mems_updated);
3792 
3793 unlock:
3794 	mutex_unlock(&cpuset_mutex);
3795 }
3796 
3797 /**
3798  * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
3799  *
3800  * This function is called after either CPU or memory configuration has
3801  * changed and updates cpuset accordingly.  The top_cpuset is always
3802  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3803  * order to make cpusets transparent (of no affect) on systems that are
3804  * actively using CPU hotplug but making no active use of cpusets.
3805  *
3806  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3807  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3808  * all descendants.
3809  *
3810  * Note that CPU offlining during suspend is ignored.  We don't modify
3811  * cpusets across suspend/resume cycles at all.
3812  *
3813  * CPU / memory hotplug is handled synchronously.
3814  */
3815 static void cpuset_handle_hotplug(void)
3816 {
3817 	static cpumask_t new_cpus;
3818 	static nodemask_t new_mems;
3819 	bool cpus_updated, mems_updated;
3820 	bool on_dfl = is_in_v2_mode();
3821 	struct tmpmasks tmp, *ptmp = NULL;
3822 
3823 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3824 		ptmp = &tmp;
3825 
3826 	lockdep_assert_cpus_held();
3827 	mutex_lock(&cpuset_mutex);
3828 
3829 	/* fetch the available cpus/mems and find out which changed how */
3830 	cpumask_copy(&new_cpus, cpu_active_mask);
3831 	new_mems = node_states[N_MEMORY];
3832 
3833 	/*
3834 	 * If subpartitions_cpus is populated, it is likely that the check
3835 	 * below will produce a false positive on cpus_updated when the cpu
3836 	 * list isn't changed. It is extra work, but it is better to be safe.
3837 	 */
3838 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
3839 		       !cpumask_empty(subpartitions_cpus);
3840 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3841 
3842 	/* For v1, synchronize cpus_allowed to cpu_active_mask */
3843 	if (cpus_updated) {
3844 		cpuset_force_rebuild();
3845 		spin_lock_irq(&callback_lock);
3846 		if (!on_dfl)
3847 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3848 		/*
3849 		 * Make sure that CPUs allocated to child partitions
3850 		 * do not show up in effective_cpus. If no CPU is left,
3851 		 * we clear the subpartitions_cpus & let the child partitions
3852 		 * fight for the CPUs again.
3853 		 */
3854 		if (!cpumask_empty(subpartitions_cpus)) {
3855 			if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
3856 				top_cpuset.nr_subparts = 0;
3857 				cpumask_clear(subpartitions_cpus);
3858 			} else {
3859 				cpumask_andnot(&new_cpus, &new_cpus,
3860 					       subpartitions_cpus);
3861 			}
3862 		}
3863 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3864 		spin_unlock_irq(&callback_lock);
3865 		/* we don't mess with cpumasks of tasks in top_cpuset */
3866 	}
3867 
3868 	/* synchronize mems_allowed to N_MEMORY */
3869 	if (mems_updated) {
3870 		spin_lock_irq(&callback_lock);
3871 		if (!on_dfl)
3872 			top_cpuset.mems_allowed = new_mems;
3873 		top_cpuset.effective_mems = new_mems;
3874 		spin_unlock_irq(&callback_lock);
3875 		cpuset_update_tasks_nodemask(&top_cpuset);
3876 	}
3877 
3878 	mutex_unlock(&cpuset_mutex);
3879 
3880 	/* if cpus or mems changed, we need to propagate to descendants */
3881 	if (cpus_updated || mems_updated) {
3882 		struct cpuset *cs;
3883 		struct cgroup_subsys_state *pos_css;
3884 
3885 		rcu_read_lock();
3886 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3887 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3888 				continue;
3889 			rcu_read_unlock();
3890 
3891 			cpuset_hotplug_update_tasks(cs, ptmp);
3892 
3893 			rcu_read_lock();
3894 			css_put(&cs->css);
3895 		}
3896 		rcu_read_unlock();
3897 	}
3898 
3899 	/* rebuild sched domains if cpus_allowed has changed */
3900 	if (force_sd_rebuild) {
3901 		force_sd_rebuild = false;
3902 		rebuild_sched_domains_cpuslocked();
3903 	}
3904 
3905 	free_cpumasks(NULL, ptmp);
3906 }
3907 
3908 void cpuset_update_active_cpus(void)
3909 {
3910 	/*
3911 	 * We're inside cpu hotplug critical region which usually nests
3912 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3913 	 * to a work item to avoid reverse locking order.
3914 	 */
3915 	cpuset_handle_hotplug();
3916 }
3917 
3918 /*
3919  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3920  * Call this routine anytime after node_states[N_MEMORY] changes.
3921  * See cpuset_update_active_cpus() for CPU hotplug handling.
3922  */
3923 static int cpuset_track_online_nodes(struct notifier_block *self,
3924 				unsigned long action, void *arg)
3925 {
3926 	cpuset_handle_hotplug();
3927 	return NOTIFY_OK;
3928 }
3929 
3930 /**
3931  * cpuset_init_smp - initialize cpus_allowed
3932  *
3933  * Description: Finish top cpuset after cpu, node maps are initialized
3934  */
3935 void __init cpuset_init_smp(void)
3936 {
3937 	/*
3938 	 * cpus_allowd/mems_allowed set to v2 values in the initial
3939 	 * cpuset_bind() call will be reset to v1 values in another
3940 	 * cpuset_bind() call when v1 cpuset is mounted.
3941 	 */
3942 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3943 
3944 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3945 	top_cpuset.effective_mems = node_states[N_MEMORY];
3946 
3947 	hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
3948 
3949 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3950 	BUG_ON(!cpuset_migrate_mm_wq);
3951 }
3952 
3953 /**
3954  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3955  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3956  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3957  *
3958  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3959  * attached to the specified @tsk.  Guaranteed to return some non-empty
3960  * subset of cpu_online_mask, even if this means going outside the
3961  * tasks cpuset, except when the task is in the top cpuset.
3962  **/
3963 
3964 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3965 {
3966 	unsigned long flags;
3967 	struct cpuset *cs;
3968 
3969 	spin_lock_irqsave(&callback_lock, flags);
3970 	rcu_read_lock();
3971 
3972 	cs = task_cs(tsk);
3973 	if (cs != &top_cpuset)
3974 		guarantee_online_cpus(tsk, pmask);
3975 	/*
3976 	 * Tasks in the top cpuset won't get update to their cpumasks
3977 	 * when a hotplug online/offline event happens. So we include all
3978 	 * offline cpus in the allowed cpu list.
3979 	 */
3980 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
3981 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3982 
3983 		/*
3984 		 * We first exclude cpus allocated to partitions. If there is no
3985 		 * allowable online cpu left, we fall back to all possible cpus.
3986 		 */
3987 		cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
3988 		if (!cpumask_intersects(pmask, cpu_online_mask))
3989 			cpumask_copy(pmask, possible_mask);
3990 	}
3991 
3992 	rcu_read_unlock();
3993 	spin_unlock_irqrestore(&callback_lock, flags);
3994 }
3995 
3996 /**
3997  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3998  * @tsk: pointer to task_struct with which the scheduler is struggling
3999  *
4000  * Description: In the case that the scheduler cannot find an allowed cpu in
4001  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
4002  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
4003  * which will not contain a sane cpumask during cases such as cpu hotplugging.
4004  * This is the absolute last resort for the scheduler and it is only used if
4005  * _every_ other avenue has been traveled.
4006  *
4007  * Returns true if the affinity of @tsk was changed, false otherwise.
4008  **/
4009 
4010 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4011 {
4012 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4013 	const struct cpumask *cs_mask;
4014 	bool changed = false;
4015 
4016 	rcu_read_lock();
4017 	cs_mask = task_cs(tsk)->cpus_allowed;
4018 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4019 		do_set_cpus_allowed(tsk, cs_mask);
4020 		changed = true;
4021 	}
4022 	rcu_read_unlock();
4023 
4024 	/*
4025 	 * We own tsk->cpus_allowed, nobody can change it under us.
4026 	 *
4027 	 * But we used cs && cs->cpus_allowed lockless and thus can
4028 	 * race with cgroup_attach_task() or update_cpumask() and get
4029 	 * the wrong tsk->cpus_allowed. However, both cases imply the
4030 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4031 	 * which takes task_rq_lock().
4032 	 *
4033 	 * If we are called after it dropped the lock we must see all
4034 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4035 	 * set any mask even if it is not right from task_cs() pov,
4036 	 * the pending set_cpus_allowed_ptr() will fix things.
4037 	 *
4038 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4039 	 * if required.
4040 	 */
4041 	return changed;
4042 }
4043 
4044 void __init cpuset_init_current_mems_allowed(void)
4045 {
4046 	nodes_setall(current->mems_allowed);
4047 }
4048 
4049 /**
4050  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4051  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4052  *
4053  * Description: Returns the nodemask_t mems_allowed of the cpuset
4054  * attached to the specified @tsk.  Guaranteed to return some non-empty
4055  * subset of node_states[N_MEMORY], even if this means going outside the
4056  * tasks cpuset.
4057  **/
4058 
4059 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4060 {
4061 	nodemask_t mask;
4062 	unsigned long flags;
4063 
4064 	spin_lock_irqsave(&callback_lock, flags);
4065 	rcu_read_lock();
4066 	guarantee_online_mems(task_cs(tsk), &mask);
4067 	rcu_read_unlock();
4068 	spin_unlock_irqrestore(&callback_lock, flags);
4069 
4070 	return mask;
4071 }
4072 
4073 /**
4074  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4075  * @nodemask: the nodemask to be checked
4076  *
4077  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4078  */
4079 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4080 {
4081 	return nodes_intersects(*nodemask, current->mems_allowed);
4082 }
4083 
4084 /*
4085  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4086  * mem_hardwall ancestor to the specified cpuset.  Call holding
4087  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
4088  * (an unusual configuration), then returns the root cpuset.
4089  */
4090 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4091 {
4092 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4093 		cs = parent_cs(cs);
4094 	return cs;
4095 }
4096 
4097 /*
4098  * cpuset_node_allowed - Can we allocate on a memory node?
4099  * @node: is this an allowed node?
4100  * @gfp_mask: memory allocation flags
4101  *
4102  * If we're in interrupt, yes, we can always allocate.  If @node is set in
4103  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
4104  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4105  * yes.  If current has access to memory reserves as an oom victim, yes.
4106  * Otherwise, no.
4107  *
4108  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4109  * and do not allow allocations outside the current tasks cpuset
4110  * unless the task has been OOM killed.
4111  * GFP_KERNEL allocations are not so marked, so can escape to the
4112  * nearest enclosing hardwalled ancestor cpuset.
4113  *
4114  * Scanning up parent cpusets requires callback_lock.  The
4115  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4116  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4117  * current tasks mems_allowed came up empty on the first pass over
4118  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
4119  * cpuset are short of memory, might require taking the callback_lock.
4120  *
4121  * The first call here from mm/page_alloc:get_page_from_freelist()
4122  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4123  * so no allocation on a node outside the cpuset is allowed (unless
4124  * in interrupt, of course).
4125  *
4126  * The second pass through get_page_from_freelist() doesn't even call
4127  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
4128  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4129  * in alloc_flags.  That logic and the checks below have the combined
4130  * affect that:
4131  *	in_interrupt - any node ok (current task context irrelevant)
4132  *	GFP_ATOMIC   - any node ok
4133  *	tsk_is_oom_victim   - any node ok
4134  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
4135  *	GFP_USER     - only nodes in current tasks mems allowed ok.
4136  */
4137 bool cpuset_node_allowed(int node, gfp_t gfp_mask)
4138 {
4139 	struct cpuset *cs;		/* current cpuset ancestors */
4140 	bool allowed;			/* is allocation in zone z allowed? */
4141 	unsigned long flags;
4142 
4143 	if (in_interrupt())
4144 		return true;
4145 	if (node_isset(node, current->mems_allowed))
4146 		return true;
4147 	/*
4148 	 * Allow tasks that have access to memory reserves because they have
4149 	 * been OOM killed to get memory anywhere.
4150 	 */
4151 	if (unlikely(tsk_is_oom_victim(current)))
4152 		return true;
4153 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4154 		return false;
4155 
4156 	if (current->flags & PF_EXITING) /* Let dying task have memory */
4157 		return true;
4158 
4159 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4160 	spin_lock_irqsave(&callback_lock, flags);
4161 
4162 	rcu_read_lock();
4163 	cs = nearest_hardwall_ancestor(task_cs(current));
4164 	allowed = node_isset(node, cs->mems_allowed);
4165 	rcu_read_unlock();
4166 
4167 	spin_unlock_irqrestore(&callback_lock, flags);
4168 	return allowed;
4169 }
4170 
4171 /**
4172  * cpuset_spread_node() - On which node to begin search for a page
4173  * @rotor: round robin rotor
4174  *
4175  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4176  * tasks in a cpuset with is_spread_page or is_spread_slab set),
4177  * and if the memory allocation used cpuset_mem_spread_node()
4178  * to determine on which node to start looking, as it will for
4179  * certain page cache or slab cache pages such as used for file
4180  * system buffers and inode caches, then instead of starting on the
4181  * local node to look for a free page, rather spread the starting
4182  * node around the tasks mems_allowed nodes.
4183  *
4184  * We don't have to worry about the returned node being offline
4185  * because "it can't happen", and even if it did, it would be ok.
4186  *
4187  * The routines calling guarantee_online_mems() are careful to
4188  * only set nodes in task->mems_allowed that are online.  So it
4189  * should not be possible for the following code to return an
4190  * offline node.  But if it did, that would be ok, as this routine
4191  * is not returning the node where the allocation must be, only
4192  * the node where the search should start.  The zonelist passed to
4193  * __alloc_pages() will include all nodes.  If the slab allocator
4194  * is passed an offline node, it will fall back to the local node.
4195  * See kmem_cache_alloc_node().
4196  */
4197 static int cpuset_spread_node(int *rotor)
4198 {
4199 	return *rotor = next_node_in(*rotor, current->mems_allowed);
4200 }
4201 
4202 /**
4203  * cpuset_mem_spread_node() - On which node to begin search for a file page
4204  */
4205 int cpuset_mem_spread_node(void)
4206 {
4207 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4208 		current->cpuset_mem_spread_rotor =
4209 			node_random(&current->mems_allowed);
4210 
4211 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4212 }
4213 
4214 /**
4215  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4216  * @tsk1: pointer to task_struct of some task.
4217  * @tsk2: pointer to task_struct of some other task.
4218  *
4219  * Description: Return true if @tsk1's mems_allowed intersects the
4220  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
4221  * one of the task's memory usage might impact the memory available
4222  * to the other.
4223  **/
4224 
4225 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4226 				   const struct task_struct *tsk2)
4227 {
4228 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4229 }
4230 
4231 /**
4232  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4233  *
4234  * Description: Prints current's name, cpuset name, and cached copy of its
4235  * mems_allowed to the kernel log.
4236  */
4237 void cpuset_print_current_mems_allowed(void)
4238 {
4239 	struct cgroup *cgrp;
4240 
4241 	rcu_read_lock();
4242 
4243 	cgrp = task_cs(current)->css.cgroup;
4244 	pr_cont(",cpuset=");
4245 	pr_cont_cgroup_name(cgrp);
4246 	pr_cont(",mems_allowed=%*pbl",
4247 		nodemask_pr_args(&current->mems_allowed));
4248 
4249 	rcu_read_unlock();
4250 }
4251 
4252 #ifdef CONFIG_PROC_PID_CPUSET
4253 /*
4254  * proc_cpuset_show()
4255  *  - Print tasks cpuset path into seq_file.
4256  *  - Used for /proc/<pid>/cpuset.
4257  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
4258  *    doesn't really matter if tsk->cpuset changes after we read it,
4259  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
4260  *    anyway.
4261  */
4262 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
4263 		     struct pid *pid, struct task_struct *tsk)
4264 {
4265 	char *buf;
4266 	struct cgroup_subsys_state *css;
4267 	int retval;
4268 
4269 	retval = -ENOMEM;
4270 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
4271 	if (!buf)
4272 		goto out;
4273 
4274 	rcu_read_lock();
4275 	spin_lock_irq(&css_set_lock);
4276 	css = task_css(tsk, cpuset_cgrp_id);
4277 	retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX,
4278 				       current->nsproxy->cgroup_ns);
4279 	spin_unlock_irq(&css_set_lock);
4280 	rcu_read_unlock();
4281 
4282 	if (retval == -E2BIG)
4283 		retval = -ENAMETOOLONG;
4284 	if (retval < 0)
4285 		goto out_free;
4286 	seq_puts(m, buf);
4287 	seq_putc(m, '\n');
4288 	retval = 0;
4289 out_free:
4290 	kfree(buf);
4291 out:
4292 	return retval;
4293 }
4294 #endif /* CONFIG_PROC_PID_CPUSET */
4295 
4296 /* Display task mems_allowed in /proc/<pid>/status file. */
4297 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4298 {
4299 	seq_printf(m, "Mems_allowed:\t%*pb\n",
4300 		   nodemask_pr_args(&task->mems_allowed));
4301 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4302 		   nodemask_pr_args(&task->mems_allowed));
4303 }
4304