1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/list.h> 37 #include <linux/mempolicy.h> 38 #include <linux/mm.h> 39 #include <linux/memory.h> 40 #include <linux/export.h> 41 #include <linux/mount.h> 42 #include <linux/fs_context.h> 43 #include <linux/namei.h> 44 #include <linux/pagemap.h> 45 #include <linux/proc_fs.h> 46 #include <linux/rcupdate.h> 47 #include <linux/sched.h> 48 #include <linux/sched/deadline.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sched/task.h> 51 #include <linux/seq_file.h> 52 #include <linux/security.h> 53 #include <linux/slab.h> 54 #include <linux/spinlock.h> 55 #include <linux/stat.h> 56 #include <linux/string.h> 57 #include <linux/time.h> 58 #include <linux/time64.h> 59 #include <linux/backing-dev.h> 60 #include <linux/sort.h> 61 #include <linux/oom.h> 62 #include <linux/sched/isolation.h> 63 #include <linux/uaccess.h> 64 #include <linux/atomic.h> 65 #include <linux/mutex.h> 66 #include <linux/cgroup.h> 67 #include <linux/wait.h> 68 69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 71 72 /* See "Frequency meter" comments, below. */ 73 74 struct fmeter { 75 int cnt; /* unprocessed events count */ 76 int val; /* most recent output value */ 77 time64_t time; /* clock (secs) when val computed */ 78 spinlock_t lock; /* guards read or write of above */ 79 }; 80 81 struct cpuset { 82 struct cgroup_subsys_state css; 83 84 unsigned long flags; /* "unsigned long" so bitops work */ 85 86 /* 87 * On default hierarchy: 88 * 89 * The user-configured masks can only be changed by writing to 90 * cpuset.cpus and cpuset.mems, and won't be limited by the 91 * parent masks. 92 * 93 * The effective masks is the real masks that apply to the tasks 94 * in the cpuset. They may be changed if the configured masks are 95 * changed or hotplug happens. 96 * 97 * effective_mask == configured_mask & parent's effective_mask, 98 * and if it ends up empty, it will inherit the parent's mask. 99 * 100 * 101 * On legacy hierachy: 102 * 103 * The user-configured masks are always the same with effective masks. 104 */ 105 106 /* user-configured CPUs and Memory Nodes allow to tasks */ 107 cpumask_var_t cpus_allowed; 108 nodemask_t mems_allowed; 109 110 /* effective CPUs and Memory Nodes allow to tasks */ 111 cpumask_var_t effective_cpus; 112 nodemask_t effective_mems; 113 114 /* 115 * CPUs allocated to child sub-partitions (default hierarchy only) 116 * - CPUs granted by the parent = effective_cpus U subparts_cpus 117 * - effective_cpus and subparts_cpus are mutually exclusive. 118 * 119 * effective_cpus contains only onlined CPUs, but subparts_cpus 120 * may have offlined ones. 121 */ 122 cpumask_var_t subparts_cpus; 123 124 /* 125 * This is old Memory Nodes tasks took on. 126 * 127 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 128 * - A new cpuset's old_mems_allowed is initialized when some 129 * task is moved into it. 130 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 131 * cpuset.mems_allowed and have tasks' nodemask updated, and 132 * then old_mems_allowed is updated to mems_allowed. 133 */ 134 nodemask_t old_mems_allowed; 135 136 struct fmeter fmeter; /* memory_pressure filter */ 137 138 /* 139 * Tasks are being attached to this cpuset. Used to prevent 140 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 141 */ 142 int attach_in_progress; 143 144 /* partition number for rebuild_sched_domains() */ 145 int pn; 146 147 /* for custom sched domain */ 148 int relax_domain_level; 149 150 /* number of CPUs in subparts_cpus */ 151 int nr_subparts_cpus; 152 153 /* partition root state */ 154 int partition_root_state; 155 156 /* 157 * Default hierarchy only: 158 * use_parent_ecpus - set if using parent's effective_cpus 159 * child_ecpus_count - # of children with use_parent_ecpus set 160 */ 161 int use_parent_ecpus; 162 int child_ecpus_count; 163 }; 164 165 /* 166 * Partition root states: 167 * 168 * 0 - not a partition root 169 * 170 * 1 - partition root 171 * 172 * -1 - invalid partition root 173 * None of the cpus in cpus_allowed can be put into the parent's 174 * subparts_cpus. In this case, the cpuset is not a real partition 175 * root anymore. However, the CPU_EXCLUSIVE bit will still be set 176 * and the cpuset can be restored back to a partition root if the 177 * parent cpuset can give more CPUs back to this child cpuset. 178 */ 179 #define PRS_DISABLED 0 180 #define PRS_ENABLED 1 181 #define PRS_ERROR -1 182 183 /* 184 * Temporary cpumasks for working with partitions that are passed among 185 * functions to avoid memory allocation in inner functions. 186 */ 187 struct tmpmasks { 188 cpumask_var_t addmask, delmask; /* For partition root */ 189 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 190 }; 191 192 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 193 { 194 return css ? container_of(css, struct cpuset, css) : NULL; 195 } 196 197 /* Retrieve the cpuset for a task */ 198 static inline struct cpuset *task_cs(struct task_struct *task) 199 { 200 return css_cs(task_css(task, cpuset_cgrp_id)); 201 } 202 203 static inline struct cpuset *parent_cs(struct cpuset *cs) 204 { 205 return css_cs(cs->css.parent); 206 } 207 208 /* bits in struct cpuset flags field */ 209 typedef enum { 210 CS_ONLINE, 211 CS_CPU_EXCLUSIVE, 212 CS_MEM_EXCLUSIVE, 213 CS_MEM_HARDWALL, 214 CS_MEMORY_MIGRATE, 215 CS_SCHED_LOAD_BALANCE, 216 CS_SPREAD_PAGE, 217 CS_SPREAD_SLAB, 218 } cpuset_flagbits_t; 219 220 /* convenient tests for these bits */ 221 static inline bool is_cpuset_online(struct cpuset *cs) 222 { 223 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 224 } 225 226 static inline int is_cpu_exclusive(const struct cpuset *cs) 227 { 228 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 229 } 230 231 static inline int is_mem_exclusive(const struct cpuset *cs) 232 { 233 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 234 } 235 236 static inline int is_mem_hardwall(const struct cpuset *cs) 237 { 238 return test_bit(CS_MEM_HARDWALL, &cs->flags); 239 } 240 241 static inline int is_sched_load_balance(const struct cpuset *cs) 242 { 243 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 244 } 245 246 static inline int is_memory_migrate(const struct cpuset *cs) 247 { 248 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 249 } 250 251 static inline int is_spread_page(const struct cpuset *cs) 252 { 253 return test_bit(CS_SPREAD_PAGE, &cs->flags); 254 } 255 256 static inline int is_spread_slab(const struct cpuset *cs) 257 { 258 return test_bit(CS_SPREAD_SLAB, &cs->flags); 259 } 260 261 static inline int is_partition_root(const struct cpuset *cs) 262 { 263 return cs->partition_root_state > 0; 264 } 265 266 static struct cpuset top_cpuset = { 267 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 268 (1 << CS_MEM_EXCLUSIVE)), 269 .partition_root_state = PRS_ENABLED, 270 }; 271 272 /** 273 * cpuset_for_each_child - traverse online children of a cpuset 274 * @child_cs: loop cursor pointing to the current child 275 * @pos_css: used for iteration 276 * @parent_cs: target cpuset to walk children of 277 * 278 * Walk @child_cs through the online children of @parent_cs. Must be used 279 * with RCU read locked. 280 */ 281 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 282 css_for_each_child((pos_css), &(parent_cs)->css) \ 283 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 284 285 /** 286 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 287 * @des_cs: loop cursor pointing to the current descendant 288 * @pos_css: used for iteration 289 * @root_cs: target cpuset to walk ancestor of 290 * 291 * Walk @des_cs through the online descendants of @root_cs. Must be used 292 * with RCU read locked. The caller may modify @pos_css by calling 293 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 294 * iteration and the first node to be visited. 295 */ 296 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 297 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 298 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 299 300 /* 301 * There are two global locks guarding cpuset structures - cpuset_mutex and 302 * callback_lock. We also require taking task_lock() when dereferencing a 303 * task's cpuset pointer. See "The task_lock() exception", at the end of this 304 * comment. 305 * 306 * A task must hold both locks to modify cpusets. If a task holds 307 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it 308 * is the only task able to also acquire callback_lock and be able to 309 * modify cpusets. It can perform various checks on the cpuset structure 310 * first, knowing nothing will change. It can also allocate memory while 311 * just holding cpuset_mutex. While it is performing these checks, various 312 * callback routines can briefly acquire callback_lock to query cpusets. 313 * Once it is ready to make the changes, it takes callback_lock, blocking 314 * everyone else. 315 * 316 * Calls to the kernel memory allocator can not be made while holding 317 * callback_lock, as that would risk double tripping on callback_lock 318 * from one of the callbacks into the cpuset code from within 319 * __alloc_pages(). 320 * 321 * If a task is only holding callback_lock, then it has read-only 322 * access to cpusets. 323 * 324 * Now, the task_struct fields mems_allowed and mempolicy may be changed 325 * by other task, we use alloc_lock in the task_struct fields to protect 326 * them. 327 * 328 * The cpuset_common_file_read() handlers only hold callback_lock across 329 * small pieces of code, such as when reading out possibly multi-word 330 * cpumasks and nodemasks. 331 * 332 * Accessing a task's cpuset should be done in accordance with the 333 * guidelines for accessing subsystem state in kernel/cgroup.c 334 */ 335 336 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem); 337 338 void cpuset_read_lock(void) 339 { 340 percpu_down_read(&cpuset_rwsem); 341 } 342 343 void cpuset_read_unlock(void) 344 { 345 percpu_up_read(&cpuset_rwsem); 346 } 347 348 static DEFINE_SPINLOCK(callback_lock); 349 350 static struct workqueue_struct *cpuset_migrate_mm_wq; 351 352 /* 353 * CPU / memory hotplug is handled asynchronously. 354 */ 355 static void cpuset_hotplug_workfn(struct work_struct *work); 356 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 357 358 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 359 360 /* 361 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 362 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 363 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 364 * With v2 behavior, "cpus" and "mems" are always what the users have 365 * requested and won't be changed by hotplug events. Only the effective 366 * cpus or mems will be affected. 367 */ 368 static inline bool is_in_v2_mode(void) 369 { 370 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 371 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 372 } 373 374 /* 375 * Return in pmask the portion of a cpusets's cpus_allowed that 376 * are online. If none are online, walk up the cpuset hierarchy 377 * until we find one that does have some online cpus. 378 * 379 * One way or another, we guarantee to return some non-empty subset 380 * of cpu_online_mask. 381 * 382 * Call with callback_lock or cpuset_mutex held. 383 */ 384 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) 385 { 386 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) { 387 cs = parent_cs(cs); 388 if (unlikely(!cs)) { 389 /* 390 * The top cpuset doesn't have any online cpu as a 391 * consequence of a race between cpuset_hotplug_work 392 * and cpu hotplug notifier. But we know the top 393 * cpuset's effective_cpus is on its way to be 394 * identical to cpu_online_mask. 395 */ 396 cpumask_copy(pmask, cpu_online_mask); 397 return; 398 } 399 } 400 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); 401 } 402 403 /* 404 * Return in *pmask the portion of a cpusets's mems_allowed that 405 * are online, with memory. If none are online with memory, walk 406 * up the cpuset hierarchy until we find one that does have some 407 * online mems. The top cpuset always has some mems online. 408 * 409 * One way or another, we guarantee to return some non-empty subset 410 * of node_states[N_MEMORY]. 411 * 412 * Call with callback_lock or cpuset_mutex held. 413 */ 414 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 415 { 416 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 417 cs = parent_cs(cs); 418 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 419 } 420 421 /* 422 * update task's spread flag if cpuset's page/slab spread flag is set 423 * 424 * Call with callback_lock or cpuset_mutex held. 425 */ 426 static void cpuset_update_task_spread_flag(struct cpuset *cs, 427 struct task_struct *tsk) 428 { 429 if (is_spread_page(cs)) 430 task_set_spread_page(tsk); 431 else 432 task_clear_spread_page(tsk); 433 434 if (is_spread_slab(cs)) 435 task_set_spread_slab(tsk); 436 else 437 task_clear_spread_slab(tsk); 438 } 439 440 /* 441 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 442 * 443 * One cpuset is a subset of another if all its allowed CPUs and 444 * Memory Nodes are a subset of the other, and its exclusive flags 445 * are only set if the other's are set. Call holding cpuset_mutex. 446 */ 447 448 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 449 { 450 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 451 nodes_subset(p->mems_allowed, q->mems_allowed) && 452 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 453 is_mem_exclusive(p) <= is_mem_exclusive(q); 454 } 455 456 /** 457 * alloc_cpumasks - allocate three cpumasks for cpuset 458 * @cs: the cpuset that have cpumasks to be allocated. 459 * @tmp: the tmpmasks structure pointer 460 * Return: 0 if successful, -ENOMEM otherwise. 461 * 462 * Only one of the two input arguments should be non-NULL. 463 */ 464 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 465 { 466 cpumask_var_t *pmask1, *pmask2, *pmask3; 467 468 if (cs) { 469 pmask1 = &cs->cpus_allowed; 470 pmask2 = &cs->effective_cpus; 471 pmask3 = &cs->subparts_cpus; 472 } else { 473 pmask1 = &tmp->new_cpus; 474 pmask2 = &tmp->addmask; 475 pmask3 = &tmp->delmask; 476 } 477 478 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 479 return -ENOMEM; 480 481 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 482 goto free_one; 483 484 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 485 goto free_two; 486 487 return 0; 488 489 free_two: 490 free_cpumask_var(*pmask2); 491 free_one: 492 free_cpumask_var(*pmask1); 493 return -ENOMEM; 494 } 495 496 /** 497 * free_cpumasks - free cpumasks in a tmpmasks structure 498 * @cs: the cpuset that have cpumasks to be free. 499 * @tmp: the tmpmasks structure pointer 500 */ 501 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 502 { 503 if (cs) { 504 free_cpumask_var(cs->cpus_allowed); 505 free_cpumask_var(cs->effective_cpus); 506 free_cpumask_var(cs->subparts_cpus); 507 } 508 if (tmp) { 509 free_cpumask_var(tmp->new_cpus); 510 free_cpumask_var(tmp->addmask); 511 free_cpumask_var(tmp->delmask); 512 } 513 } 514 515 /** 516 * alloc_trial_cpuset - allocate a trial cpuset 517 * @cs: the cpuset that the trial cpuset duplicates 518 */ 519 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 520 { 521 struct cpuset *trial; 522 523 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 524 if (!trial) 525 return NULL; 526 527 if (alloc_cpumasks(trial, NULL)) { 528 kfree(trial); 529 return NULL; 530 } 531 532 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 533 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 534 return trial; 535 } 536 537 /** 538 * free_cpuset - free the cpuset 539 * @cs: the cpuset to be freed 540 */ 541 static inline void free_cpuset(struct cpuset *cs) 542 { 543 free_cpumasks(cs, NULL); 544 kfree(cs); 545 } 546 547 /* 548 * validate_change() - Used to validate that any proposed cpuset change 549 * follows the structural rules for cpusets. 550 * 551 * If we replaced the flag and mask values of the current cpuset 552 * (cur) with those values in the trial cpuset (trial), would 553 * our various subset and exclusive rules still be valid? Presumes 554 * cpuset_mutex held. 555 * 556 * 'cur' is the address of an actual, in-use cpuset. Operations 557 * such as list traversal that depend on the actual address of the 558 * cpuset in the list must use cur below, not trial. 559 * 560 * 'trial' is the address of bulk structure copy of cur, with 561 * perhaps one or more of the fields cpus_allowed, mems_allowed, 562 * or flags changed to new, trial values. 563 * 564 * Return 0 if valid, -errno if not. 565 */ 566 567 static int validate_change(struct cpuset *cur, struct cpuset *trial) 568 { 569 struct cgroup_subsys_state *css; 570 struct cpuset *c, *par; 571 int ret; 572 573 rcu_read_lock(); 574 575 /* Each of our child cpusets must be a subset of us */ 576 ret = -EBUSY; 577 cpuset_for_each_child(c, css, cur) 578 if (!is_cpuset_subset(c, trial)) 579 goto out; 580 581 /* Remaining checks don't apply to root cpuset */ 582 ret = 0; 583 if (cur == &top_cpuset) 584 goto out; 585 586 par = parent_cs(cur); 587 588 /* On legacy hiearchy, we must be a subset of our parent cpuset. */ 589 ret = -EACCES; 590 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par)) 591 goto out; 592 593 /* 594 * If either I or some sibling (!= me) is exclusive, we can't 595 * overlap 596 */ 597 ret = -EINVAL; 598 cpuset_for_each_child(c, css, par) { 599 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 600 c != cur && 601 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 602 goto out; 603 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 604 c != cur && 605 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 606 goto out; 607 } 608 609 /* 610 * Cpusets with tasks - existing or newly being attached - can't 611 * be changed to have empty cpus_allowed or mems_allowed. 612 */ 613 ret = -ENOSPC; 614 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 615 if (!cpumask_empty(cur->cpus_allowed) && 616 cpumask_empty(trial->cpus_allowed)) 617 goto out; 618 if (!nodes_empty(cur->mems_allowed) && 619 nodes_empty(trial->mems_allowed)) 620 goto out; 621 } 622 623 /* 624 * We can't shrink if we won't have enough room for SCHED_DEADLINE 625 * tasks. 626 */ 627 ret = -EBUSY; 628 if (is_cpu_exclusive(cur) && 629 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 630 trial->cpus_allowed)) 631 goto out; 632 633 ret = 0; 634 out: 635 rcu_read_unlock(); 636 return ret; 637 } 638 639 #ifdef CONFIG_SMP 640 /* 641 * Helper routine for generate_sched_domains(). 642 * Do cpusets a, b have overlapping effective cpus_allowed masks? 643 */ 644 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 645 { 646 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 647 } 648 649 static void 650 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 651 { 652 if (dattr->relax_domain_level < c->relax_domain_level) 653 dattr->relax_domain_level = c->relax_domain_level; 654 return; 655 } 656 657 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 658 struct cpuset *root_cs) 659 { 660 struct cpuset *cp; 661 struct cgroup_subsys_state *pos_css; 662 663 rcu_read_lock(); 664 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 665 /* skip the whole subtree if @cp doesn't have any CPU */ 666 if (cpumask_empty(cp->cpus_allowed)) { 667 pos_css = css_rightmost_descendant(pos_css); 668 continue; 669 } 670 671 if (is_sched_load_balance(cp)) 672 update_domain_attr(dattr, cp); 673 } 674 rcu_read_unlock(); 675 } 676 677 /* Must be called with cpuset_mutex held. */ 678 static inline int nr_cpusets(void) 679 { 680 /* jump label reference count + the top-level cpuset */ 681 return static_key_count(&cpusets_enabled_key.key) + 1; 682 } 683 684 /* 685 * generate_sched_domains() 686 * 687 * This function builds a partial partition of the systems CPUs 688 * A 'partial partition' is a set of non-overlapping subsets whose 689 * union is a subset of that set. 690 * The output of this function needs to be passed to kernel/sched/core.c 691 * partition_sched_domains() routine, which will rebuild the scheduler's 692 * load balancing domains (sched domains) as specified by that partial 693 * partition. 694 * 695 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 696 * for a background explanation of this. 697 * 698 * Does not return errors, on the theory that the callers of this 699 * routine would rather not worry about failures to rebuild sched 700 * domains when operating in the severe memory shortage situations 701 * that could cause allocation failures below. 702 * 703 * Must be called with cpuset_mutex held. 704 * 705 * The three key local variables below are: 706 * cp - cpuset pointer, used (together with pos_css) to perform a 707 * top-down scan of all cpusets. For our purposes, rebuilding 708 * the schedulers sched domains, we can ignore !is_sched_load_ 709 * balance cpusets. 710 * csa - (for CpuSet Array) Array of pointers to all the cpusets 711 * that need to be load balanced, for convenient iterative 712 * access by the subsequent code that finds the best partition, 713 * i.e the set of domains (subsets) of CPUs such that the 714 * cpus_allowed of every cpuset marked is_sched_load_balance 715 * is a subset of one of these domains, while there are as 716 * many such domains as possible, each as small as possible. 717 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 718 * the kernel/sched/core.c routine partition_sched_domains() in a 719 * convenient format, that can be easily compared to the prior 720 * value to determine what partition elements (sched domains) 721 * were changed (added or removed.) 722 * 723 * Finding the best partition (set of domains): 724 * The triple nested loops below over i, j, k scan over the 725 * load balanced cpusets (using the array of cpuset pointers in 726 * csa[]) looking for pairs of cpusets that have overlapping 727 * cpus_allowed, but which don't have the same 'pn' partition 728 * number and gives them in the same partition number. It keeps 729 * looping on the 'restart' label until it can no longer find 730 * any such pairs. 731 * 732 * The union of the cpus_allowed masks from the set of 733 * all cpusets having the same 'pn' value then form the one 734 * element of the partition (one sched domain) to be passed to 735 * partition_sched_domains(). 736 */ 737 static int generate_sched_domains(cpumask_var_t **domains, 738 struct sched_domain_attr **attributes) 739 { 740 struct cpuset *cp; /* top-down scan of cpusets */ 741 struct cpuset **csa; /* array of all cpuset ptrs */ 742 int csn; /* how many cpuset ptrs in csa so far */ 743 int i, j, k; /* indices for partition finding loops */ 744 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 745 struct sched_domain_attr *dattr; /* attributes for custom domains */ 746 int ndoms = 0; /* number of sched domains in result */ 747 int nslot; /* next empty doms[] struct cpumask slot */ 748 struct cgroup_subsys_state *pos_css; 749 bool root_load_balance = is_sched_load_balance(&top_cpuset); 750 751 doms = NULL; 752 dattr = NULL; 753 csa = NULL; 754 755 /* Special case for the 99% of systems with one, full, sched domain */ 756 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 757 ndoms = 1; 758 doms = alloc_sched_domains(ndoms); 759 if (!doms) 760 goto done; 761 762 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 763 if (dattr) { 764 *dattr = SD_ATTR_INIT; 765 update_domain_attr_tree(dattr, &top_cpuset); 766 } 767 cpumask_and(doms[0], top_cpuset.effective_cpus, 768 housekeeping_cpumask(HK_FLAG_DOMAIN)); 769 770 goto done; 771 } 772 773 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 774 if (!csa) 775 goto done; 776 csn = 0; 777 778 rcu_read_lock(); 779 if (root_load_balance) 780 csa[csn++] = &top_cpuset; 781 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 782 if (cp == &top_cpuset) 783 continue; 784 /* 785 * Continue traversing beyond @cp iff @cp has some CPUs and 786 * isn't load balancing. The former is obvious. The 787 * latter: All child cpusets contain a subset of the 788 * parent's cpus, so just skip them, and then we call 789 * update_domain_attr_tree() to calc relax_domain_level of 790 * the corresponding sched domain. 791 * 792 * If root is load-balancing, we can skip @cp if it 793 * is a subset of the root's effective_cpus. 794 */ 795 if (!cpumask_empty(cp->cpus_allowed) && 796 !(is_sched_load_balance(cp) && 797 cpumask_intersects(cp->cpus_allowed, 798 housekeeping_cpumask(HK_FLAG_DOMAIN)))) 799 continue; 800 801 if (root_load_balance && 802 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 803 continue; 804 805 if (is_sched_load_balance(cp) && 806 !cpumask_empty(cp->effective_cpus)) 807 csa[csn++] = cp; 808 809 /* skip @cp's subtree if not a partition root */ 810 if (!is_partition_root(cp)) 811 pos_css = css_rightmost_descendant(pos_css); 812 } 813 rcu_read_unlock(); 814 815 for (i = 0; i < csn; i++) 816 csa[i]->pn = i; 817 ndoms = csn; 818 819 restart: 820 /* Find the best partition (set of sched domains) */ 821 for (i = 0; i < csn; i++) { 822 struct cpuset *a = csa[i]; 823 int apn = a->pn; 824 825 for (j = 0; j < csn; j++) { 826 struct cpuset *b = csa[j]; 827 int bpn = b->pn; 828 829 if (apn != bpn && cpusets_overlap(a, b)) { 830 for (k = 0; k < csn; k++) { 831 struct cpuset *c = csa[k]; 832 833 if (c->pn == bpn) 834 c->pn = apn; 835 } 836 ndoms--; /* one less element */ 837 goto restart; 838 } 839 } 840 } 841 842 /* 843 * Now we know how many domains to create. 844 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 845 */ 846 doms = alloc_sched_domains(ndoms); 847 if (!doms) 848 goto done; 849 850 /* 851 * The rest of the code, including the scheduler, can deal with 852 * dattr==NULL case. No need to abort if alloc fails. 853 */ 854 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 855 GFP_KERNEL); 856 857 for (nslot = 0, i = 0; i < csn; i++) { 858 struct cpuset *a = csa[i]; 859 struct cpumask *dp; 860 int apn = a->pn; 861 862 if (apn < 0) { 863 /* Skip completed partitions */ 864 continue; 865 } 866 867 dp = doms[nslot]; 868 869 if (nslot == ndoms) { 870 static int warnings = 10; 871 if (warnings) { 872 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 873 nslot, ndoms, csn, i, apn); 874 warnings--; 875 } 876 continue; 877 } 878 879 cpumask_clear(dp); 880 if (dattr) 881 *(dattr + nslot) = SD_ATTR_INIT; 882 for (j = i; j < csn; j++) { 883 struct cpuset *b = csa[j]; 884 885 if (apn == b->pn) { 886 cpumask_or(dp, dp, b->effective_cpus); 887 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN)); 888 if (dattr) 889 update_domain_attr_tree(dattr + nslot, b); 890 891 /* Done with this partition */ 892 b->pn = -1; 893 } 894 } 895 nslot++; 896 } 897 BUG_ON(nslot != ndoms); 898 899 done: 900 kfree(csa); 901 902 /* 903 * Fallback to the default domain if kmalloc() failed. 904 * See comments in partition_sched_domains(). 905 */ 906 if (doms == NULL) 907 ndoms = 1; 908 909 *domains = doms; 910 *attributes = dattr; 911 return ndoms; 912 } 913 914 static void update_tasks_root_domain(struct cpuset *cs) 915 { 916 struct css_task_iter it; 917 struct task_struct *task; 918 919 css_task_iter_start(&cs->css, 0, &it); 920 921 while ((task = css_task_iter_next(&it))) 922 dl_add_task_root_domain(task); 923 924 css_task_iter_end(&it); 925 } 926 927 static void rebuild_root_domains(void) 928 { 929 struct cpuset *cs = NULL; 930 struct cgroup_subsys_state *pos_css; 931 932 percpu_rwsem_assert_held(&cpuset_rwsem); 933 lockdep_assert_cpus_held(); 934 lockdep_assert_held(&sched_domains_mutex); 935 936 rcu_read_lock(); 937 938 /* 939 * Clear default root domain DL accounting, it will be computed again 940 * if a task belongs to it. 941 */ 942 dl_clear_root_domain(&def_root_domain); 943 944 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 945 946 if (cpumask_empty(cs->effective_cpus)) { 947 pos_css = css_rightmost_descendant(pos_css); 948 continue; 949 } 950 951 css_get(&cs->css); 952 953 rcu_read_unlock(); 954 955 update_tasks_root_domain(cs); 956 957 rcu_read_lock(); 958 css_put(&cs->css); 959 } 960 rcu_read_unlock(); 961 } 962 963 static void 964 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 965 struct sched_domain_attr *dattr_new) 966 { 967 mutex_lock(&sched_domains_mutex); 968 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 969 rebuild_root_domains(); 970 mutex_unlock(&sched_domains_mutex); 971 } 972 973 /* 974 * Rebuild scheduler domains. 975 * 976 * If the flag 'sched_load_balance' of any cpuset with non-empty 977 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 978 * which has that flag enabled, or if any cpuset with a non-empty 979 * 'cpus' is removed, then call this routine to rebuild the 980 * scheduler's dynamic sched domains. 981 * 982 * Call with cpuset_mutex held. Takes get_online_cpus(). 983 */ 984 static void rebuild_sched_domains_locked(void) 985 { 986 struct cgroup_subsys_state *pos_css; 987 struct sched_domain_attr *attr; 988 cpumask_var_t *doms; 989 struct cpuset *cs; 990 int ndoms; 991 992 lockdep_assert_cpus_held(); 993 percpu_rwsem_assert_held(&cpuset_rwsem); 994 995 /* 996 * If we have raced with CPU hotplug, return early to avoid 997 * passing doms with offlined cpu to partition_sched_domains(). 998 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains. 999 * 1000 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1001 * should be the same as the active CPUs, so checking only top_cpuset 1002 * is enough to detect racing CPU offlines. 1003 */ 1004 if (!top_cpuset.nr_subparts_cpus && 1005 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1006 return; 1007 1008 /* 1009 * With subpartition CPUs, however, the effective CPUs of a partition 1010 * root should be only a subset of the active CPUs. Since a CPU in any 1011 * partition root could be offlined, all must be checked. 1012 */ 1013 if (top_cpuset.nr_subparts_cpus) { 1014 rcu_read_lock(); 1015 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1016 if (!is_partition_root(cs)) { 1017 pos_css = css_rightmost_descendant(pos_css); 1018 continue; 1019 } 1020 if (!cpumask_subset(cs->effective_cpus, 1021 cpu_active_mask)) { 1022 rcu_read_unlock(); 1023 return; 1024 } 1025 } 1026 rcu_read_unlock(); 1027 } 1028 1029 /* Generate domain masks and attrs */ 1030 ndoms = generate_sched_domains(&doms, &attr); 1031 1032 /* Have scheduler rebuild the domains */ 1033 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1034 } 1035 #else /* !CONFIG_SMP */ 1036 static void rebuild_sched_domains_locked(void) 1037 { 1038 } 1039 #endif /* CONFIG_SMP */ 1040 1041 void rebuild_sched_domains(void) 1042 { 1043 get_online_cpus(); 1044 percpu_down_write(&cpuset_rwsem); 1045 rebuild_sched_domains_locked(); 1046 percpu_up_write(&cpuset_rwsem); 1047 put_online_cpus(); 1048 } 1049 1050 /** 1051 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1052 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1053 * 1054 * Iterate through each task of @cs updating its cpus_allowed to the 1055 * effective cpuset's. As this function is called with cpuset_mutex held, 1056 * cpuset membership stays stable. 1057 */ 1058 static void update_tasks_cpumask(struct cpuset *cs) 1059 { 1060 struct css_task_iter it; 1061 struct task_struct *task; 1062 1063 css_task_iter_start(&cs->css, 0, &it); 1064 while ((task = css_task_iter_next(&it))) 1065 set_cpus_allowed_ptr(task, cs->effective_cpus); 1066 css_task_iter_end(&it); 1067 } 1068 1069 /** 1070 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1071 * @new_cpus: the temp variable for the new effective_cpus mask 1072 * @cs: the cpuset the need to recompute the new effective_cpus mask 1073 * @parent: the parent cpuset 1074 * 1075 * If the parent has subpartition CPUs, include them in the list of 1076 * allowable CPUs in computing the new effective_cpus mask. Since offlined 1077 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 1078 * to mask those out. 1079 */ 1080 static void compute_effective_cpumask(struct cpumask *new_cpus, 1081 struct cpuset *cs, struct cpuset *parent) 1082 { 1083 if (parent->nr_subparts_cpus) { 1084 cpumask_or(new_cpus, parent->effective_cpus, 1085 parent->subparts_cpus); 1086 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 1087 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 1088 } else { 1089 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1090 } 1091 } 1092 1093 /* 1094 * Commands for update_parent_subparts_cpumask 1095 */ 1096 enum subparts_cmd { 1097 partcmd_enable, /* Enable partition root */ 1098 partcmd_disable, /* Disable partition root */ 1099 partcmd_update, /* Update parent's subparts_cpus */ 1100 }; 1101 1102 /** 1103 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1104 * @cpuset: The cpuset that requests change in partition root state 1105 * @cmd: Partition root state change command 1106 * @newmask: Optional new cpumask for partcmd_update 1107 * @tmp: Temporary addmask and delmask 1108 * Return: 0, 1 or an error code 1109 * 1110 * For partcmd_enable, the cpuset is being transformed from a non-partition 1111 * root to a partition root. The cpus_allowed mask of the given cpuset will 1112 * be put into parent's subparts_cpus and taken away from parent's 1113 * effective_cpus. The function will return 0 if all the CPUs listed in 1114 * cpus_allowed can be granted or an error code will be returned. 1115 * 1116 * For partcmd_disable, the cpuset is being transofrmed from a partition 1117 * root back to a non-partition root. any CPUs in cpus_allowed that are in 1118 * parent's subparts_cpus will be taken away from that cpumask and put back 1119 * into parent's effective_cpus. 0 should always be returned. 1120 * 1121 * For partcmd_update, if the optional newmask is specified, the cpu 1122 * list is to be changed from cpus_allowed to newmask. Otherwise, 1123 * cpus_allowed is assumed to remain the same. The cpuset should either 1124 * be a partition root or an invalid partition root. The partition root 1125 * state may change if newmask is NULL and none of the requested CPUs can 1126 * be granted by the parent. The function will return 1 if changes to 1127 * parent's subparts_cpus and effective_cpus happen or 0 otherwise. 1128 * Error code should only be returned when newmask is non-NULL. 1129 * 1130 * The partcmd_enable and partcmd_disable commands are used by 1131 * update_prstate(). The partcmd_update command is used by 1132 * update_cpumasks_hier() with newmask NULL and update_cpumask() with 1133 * newmask set. 1134 * 1135 * The checking is more strict when enabling partition root than the 1136 * other two commands. 1137 * 1138 * Because of the implicit cpu exclusive nature of a partition root, 1139 * cpumask changes that violates the cpu exclusivity rule will not be 1140 * permitted when checked by validate_change(). The validate_change() 1141 * function will also prevent any changes to the cpu list if it is not 1142 * a superset of children's cpu lists. 1143 */ 1144 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, 1145 struct cpumask *newmask, 1146 struct tmpmasks *tmp) 1147 { 1148 struct cpuset *parent = parent_cs(cpuset); 1149 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1150 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1151 bool part_error = false; /* Partition error? */ 1152 1153 percpu_rwsem_assert_held(&cpuset_rwsem); 1154 1155 /* 1156 * The parent must be a partition root. 1157 * The new cpumask, if present, or the current cpus_allowed must 1158 * not be empty. 1159 */ 1160 if (!is_partition_root(parent) || 1161 (newmask && cpumask_empty(newmask)) || 1162 (!newmask && cpumask_empty(cpuset->cpus_allowed))) 1163 return -EINVAL; 1164 1165 /* 1166 * Enabling/disabling partition root is not allowed if there are 1167 * online children. 1168 */ 1169 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css)) 1170 return -EBUSY; 1171 1172 /* 1173 * Enabling partition root is not allowed if not all the CPUs 1174 * can be granted from parent's effective_cpus or at least one 1175 * CPU will be left after that. 1176 */ 1177 if ((cmd == partcmd_enable) && 1178 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) || 1179 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus))) 1180 return -EINVAL; 1181 1182 /* 1183 * A cpumask update cannot make parent's effective_cpus become empty. 1184 */ 1185 adding = deleting = false; 1186 if (cmd == partcmd_enable) { 1187 cpumask_copy(tmp->addmask, cpuset->cpus_allowed); 1188 adding = true; 1189 } else if (cmd == partcmd_disable) { 1190 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1191 parent->subparts_cpus); 1192 } else if (newmask) { 1193 /* 1194 * partcmd_update with newmask: 1195 * 1196 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1197 * addmask = newmask & parent->effective_cpus 1198 * & ~parent->subparts_cpus 1199 */ 1200 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask); 1201 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1202 parent->subparts_cpus); 1203 1204 cpumask_and(tmp->addmask, newmask, parent->effective_cpus); 1205 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1206 parent->subparts_cpus); 1207 /* 1208 * Return error if the new effective_cpus could become empty. 1209 */ 1210 if (adding && 1211 cpumask_equal(parent->effective_cpus, tmp->addmask)) { 1212 if (!deleting) 1213 return -EINVAL; 1214 /* 1215 * As some of the CPUs in subparts_cpus might have 1216 * been offlined, we need to compute the real delmask 1217 * to confirm that. 1218 */ 1219 if (!cpumask_and(tmp->addmask, tmp->delmask, 1220 cpu_active_mask)) 1221 return -EINVAL; 1222 cpumask_copy(tmp->addmask, parent->effective_cpus); 1223 } 1224 } else { 1225 /* 1226 * partcmd_update w/o newmask: 1227 * 1228 * addmask = cpus_allowed & parent->effectiveb_cpus 1229 * 1230 * Note that parent's subparts_cpus may have been 1231 * pre-shrunk in case there is a change in the cpu list. 1232 * So no deletion is needed. 1233 */ 1234 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed, 1235 parent->effective_cpus); 1236 part_error = cpumask_equal(tmp->addmask, 1237 parent->effective_cpus); 1238 } 1239 1240 if (cmd == partcmd_update) { 1241 int prev_prs = cpuset->partition_root_state; 1242 1243 /* 1244 * Check for possible transition between PRS_ENABLED 1245 * and PRS_ERROR. 1246 */ 1247 switch (cpuset->partition_root_state) { 1248 case PRS_ENABLED: 1249 if (part_error) 1250 cpuset->partition_root_state = PRS_ERROR; 1251 break; 1252 case PRS_ERROR: 1253 if (!part_error) 1254 cpuset->partition_root_state = PRS_ENABLED; 1255 break; 1256 } 1257 /* 1258 * Set part_error if previously in invalid state. 1259 */ 1260 part_error = (prev_prs == PRS_ERROR); 1261 } 1262 1263 if (!part_error && (cpuset->partition_root_state == PRS_ERROR)) 1264 return 0; /* Nothing need to be done */ 1265 1266 if (cpuset->partition_root_state == PRS_ERROR) { 1267 /* 1268 * Remove all its cpus from parent's subparts_cpus. 1269 */ 1270 adding = false; 1271 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1272 parent->subparts_cpus); 1273 } 1274 1275 if (!adding && !deleting) 1276 return 0; 1277 1278 /* 1279 * Change the parent's subparts_cpus. 1280 * Newly added CPUs will be removed from effective_cpus and 1281 * newly deleted ones will be added back to effective_cpus. 1282 */ 1283 spin_lock_irq(&callback_lock); 1284 if (adding) { 1285 cpumask_or(parent->subparts_cpus, 1286 parent->subparts_cpus, tmp->addmask); 1287 cpumask_andnot(parent->effective_cpus, 1288 parent->effective_cpus, tmp->addmask); 1289 } 1290 if (deleting) { 1291 cpumask_andnot(parent->subparts_cpus, 1292 parent->subparts_cpus, tmp->delmask); 1293 /* 1294 * Some of the CPUs in subparts_cpus might have been offlined. 1295 */ 1296 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1297 cpumask_or(parent->effective_cpus, 1298 parent->effective_cpus, tmp->delmask); 1299 } 1300 1301 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1302 spin_unlock_irq(&callback_lock); 1303 1304 return cmd == partcmd_update; 1305 } 1306 1307 /* 1308 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1309 * @cs: the cpuset to consider 1310 * @tmp: temp variables for calculating effective_cpus & partition setup 1311 * 1312 * When congifured cpumask is changed, the effective cpumasks of this cpuset 1313 * and all its descendants need to be updated. 1314 * 1315 * On legacy hierachy, effective_cpus will be the same with cpu_allowed. 1316 * 1317 * Called with cpuset_mutex held 1318 */ 1319 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp) 1320 { 1321 struct cpuset *cp; 1322 struct cgroup_subsys_state *pos_css; 1323 bool need_rebuild_sched_domains = false; 1324 1325 rcu_read_lock(); 1326 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1327 struct cpuset *parent = parent_cs(cp); 1328 1329 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1330 1331 /* 1332 * If it becomes empty, inherit the effective mask of the 1333 * parent, which is guaranteed to have some CPUs. 1334 */ 1335 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1336 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1337 if (!cp->use_parent_ecpus) { 1338 cp->use_parent_ecpus = true; 1339 parent->child_ecpus_count++; 1340 } 1341 } else if (cp->use_parent_ecpus) { 1342 cp->use_parent_ecpus = false; 1343 WARN_ON_ONCE(!parent->child_ecpus_count); 1344 parent->child_ecpus_count--; 1345 } 1346 1347 /* 1348 * Skip the whole subtree if the cpumask remains the same 1349 * and has no partition root state. 1350 */ 1351 if (!cp->partition_root_state && 1352 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { 1353 pos_css = css_rightmost_descendant(pos_css); 1354 continue; 1355 } 1356 1357 /* 1358 * update_parent_subparts_cpumask() should have been called 1359 * for cs already in update_cpumask(). We should also call 1360 * update_tasks_cpumask() again for tasks in the parent 1361 * cpuset if the parent's subparts_cpus changes. 1362 */ 1363 if ((cp != cs) && cp->partition_root_state) { 1364 switch (parent->partition_root_state) { 1365 case PRS_DISABLED: 1366 /* 1367 * If parent is not a partition root or an 1368 * invalid partition root, clear the state 1369 * state and the CS_CPU_EXCLUSIVE flag. 1370 */ 1371 WARN_ON_ONCE(cp->partition_root_state 1372 != PRS_ERROR); 1373 cp->partition_root_state = 0; 1374 1375 /* 1376 * clear_bit() is an atomic operation and 1377 * readers aren't interested in the state 1378 * of CS_CPU_EXCLUSIVE anyway. So we can 1379 * just update the flag without holding 1380 * the callback_lock. 1381 */ 1382 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags); 1383 break; 1384 1385 case PRS_ENABLED: 1386 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp)) 1387 update_tasks_cpumask(parent); 1388 break; 1389 1390 case PRS_ERROR: 1391 /* 1392 * When parent is invalid, it has to be too. 1393 */ 1394 cp->partition_root_state = PRS_ERROR; 1395 if (cp->nr_subparts_cpus) { 1396 cp->nr_subparts_cpus = 0; 1397 cpumask_clear(cp->subparts_cpus); 1398 } 1399 break; 1400 } 1401 } 1402 1403 if (!css_tryget_online(&cp->css)) 1404 continue; 1405 rcu_read_unlock(); 1406 1407 spin_lock_irq(&callback_lock); 1408 1409 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1410 if (cp->nr_subparts_cpus && 1411 (cp->partition_root_state != PRS_ENABLED)) { 1412 cp->nr_subparts_cpus = 0; 1413 cpumask_clear(cp->subparts_cpus); 1414 } else if (cp->nr_subparts_cpus) { 1415 /* 1416 * Make sure that effective_cpus & subparts_cpus 1417 * are mutually exclusive. 1418 * 1419 * In the unlikely event that effective_cpus 1420 * becomes empty. we clear cp->nr_subparts_cpus and 1421 * let its child partition roots to compete for 1422 * CPUs again. 1423 */ 1424 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1425 cp->subparts_cpus); 1426 if (cpumask_empty(cp->effective_cpus)) { 1427 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1428 cpumask_clear(cp->subparts_cpus); 1429 cp->nr_subparts_cpus = 0; 1430 } else if (!cpumask_subset(cp->subparts_cpus, 1431 tmp->new_cpus)) { 1432 cpumask_andnot(cp->subparts_cpus, 1433 cp->subparts_cpus, tmp->new_cpus); 1434 cp->nr_subparts_cpus 1435 = cpumask_weight(cp->subparts_cpus); 1436 } 1437 } 1438 spin_unlock_irq(&callback_lock); 1439 1440 WARN_ON(!is_in_v2_mode() && 1441 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1442 1443 update_tasks_cpumask(cp); 1444 1445 /* 1446 * On legacy hierarchy, if the effective cpumask of any non- 1447 * empty cpuset is changed, we need to rebuild sched domains. 1448 * On default hierarchy, the cpuset needs to be a partition 1449 * root as well. 1450 */ 1451 if (!cpumask_empty(cp->cpus_allowed) && 1452 is_sched_load_balance(cp) && 1453 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1454 is_partition_root(cp))) 1455 need_rebuild_sched_domains = true; 1456 1457 rcu_read_lock(); 1458 css_put(&cp->css); 1459 } 1460 rcu_read_unlock(); 1461 1462 if (need_rebuild_sched_domains) 1463 rebuild_sched_domains_locked(); 1464 } 1465 1466 /** 1467 * update_sibling_cpumasks - Update siblings cpumasks 1468 * @parent: Parent cpuset 1469 * @cs: Current cpuset 1470 * @tmp: Temp variables 1471 */ 1472 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1473 struct tmpmasks *tmp) 1474 { 1475 struct cpuset *sibling; 1476 struct cgroup_subsys_state *pos_css; 1477 1478 /* 1479 * Check all its siblings and call update_cpumasks_hier() 1480 * if their use_parent_ecpus flag is set in order for them 1481 * to use the right effective_cpus value. 1482 */ 1483 rcu_read_lock(); 1484 cpuset_for_each_child(sibling, pos_css, parent) { 1485 if (sibling == cs) 1486 continue; 1487 if (!sibling->use_parent_ecpus) 1488 continue; 1489 1490 update_cpumasks_hier(sibling, tmp); 1491 } 1492 rcu_read_unlock(); 1493 } 1494 1495 /** 1496 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1497 * @cs: the cpuset to consider 1498 * @trialcs: trial cpuset 1499 * @buf: buffer of cpu numbers written to this cpuset 1500 */ 1501 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1502 const char *buf) 1503 { 1504 int retval; 1505 struct tmpmasks tmp; 1506 1507 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1508 if (cs == &top_cpuset) 1509 return -EACCES; 1510 1511 /* 1512 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1513 * Since cpulist_parse() fails on an empty mask, we special case 1514 * that parsing. The validate_change() call ensures that cpusets 1515 * with tasks have cpus. 1516 */ 1517 if (!*buf) { 1518 cpumask_clear(trialcs->cpus_allowed); 1519 } else { 1520 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1521 if (retval < 0) 1522 return retval; 1523 1524 if (!cpumask_subset(trialcs->cpus_allowed, 1525 top_cpuset.cpus_allowed)) 1526 return -EINVAL; 1527 } 1528 1529 /* Nothing to do if the cpus didn't change */ 1530 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1531 return 0; 1532 1533 retval = validate_change(cs, trialcs); 1534 if (retval < 0) 1535 return retval; 1536 1537 #ifdef CONFIG_CPUMASK_OFFSTACK 1538 /* 1539 * Use the cpumasks in trialcs for tmpmasks when they are pointers 1540 * to allocated cpumasks. 1541 */ 1542 tmp.addmask = trialcs->subparts_cpus; 1543 tmp.delmask = trialcs->effective_cpus; 1544 tmp.new_cpus = trialcs->cpus_allowed; 1545 #endif 1546 1547 if (cs->partition_root_state) { 1548 /* Cpumask of a partition root cannot be empty */ 1549 if (cpumask_empty(trialcs->cpus_allowed)) 1550 return -EINVAL; 1551 if (update_parent_subparts_cpumask(cs, partcmd_update, 1552 trialcs->cpus_allowed, &tmp) < 0) 1553 return -EINVAL; 1554 } 1555 1556 spin_lock_irq(&callback_lock); 1557 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1558 1559 /* 1560 * Make sure that subparts_cpus is a subset of cpus_allowed. 1561 */ 1562 if (cs->nr_subparts_cpus) { 1563 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus, 1564 cs->cpus_allowed); 1565 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1566 } 1567 spin_unlock_irq(&callback_lock); 1568 1569 update_cpumasks_hier(cs, &tmp); 1570 1571 if (cs->partition_root_state) { 1572 struct cpuset *parent = parent_cs(cs); 1573 1574 /* 1575 * For partition root, update the cpumasks of sibling 1576 * cpusets if they use parent's effective_cpus. 1577 */ 1578 if (parent->child_ecpus_count) 1579 update_sibling_cpumasks(parent, cs, &tmp); 1580 } 1581 return 0; 1582 } 1583 1584 /* 1585 * Migrate memory region from one set of nodes to another. This is 1586 * performed asynchronously as it can be called from process migration path 1587 * holding locks involved in process management. All mm migrations are 1588 * performed in the queued order and can be waited for by flushing 1589 * cpuset_migrate_mm_wq. 1590 */ 1591 1592 struct cpuset_migrate_mm_work { 1593 struct work_struct work; 1594 struct mm_struct *mm; 1595 nodemask_t from; 1596 nodemask_t to; 1597 }; 1598 1599 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1600 { 1601 struct cpuset_migrate_mm_work *mwork = 1602 container_of(work, struct cpuset_migrate_mm_work, work); 1603 1604 /* on a wq worker, no need to worry about %current's mems_allowed */ 1605 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1606 mmput(mwork->mm); 1607 kfree(mwork); 1608 } 1609 1610 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1611 const nodemask_t *to) 1612 { 1613 struct cpuset_migrate_mm_work *mwork; 1614 1615 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1616 if (mwork) { 1617 mwork->mm = mm; 1618 mwork->from = *from; 1619 mwork->to = *to; 1620 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1621 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1622 } else { 1623 mmput(mm); 1624 } 1625 } 1626 1627 static void cpuset_post_attach(void) 1628 { 1629 flush_workqueue(cpuset_migrate_mm_wq); 1630 } 1631 1632 /* 1633 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1634 * @tsk: the task to change 1635 * @newmems: new nodes that the task will be set 1636 * 1637 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1638 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1639 * parallel, it might temporarily see an empty intersection, which results in 1640 * a seqlock check and retry before OOM or allocation failure. 1641 */ 1642 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1643 nodemask_t *newmems) 1644 { 1645 task_lock(tsk); 1646 1647 local_irq_disable(); 1648 write_seqcount_begin(&tsk->mems_allowed_seq); 1649 1650 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1651 mpol_rebind_task(tsk, newmems); 1652 tsk->mems_allowed = *newmems; 1653 1654 write_seqcount_end(&tsk->mems_allowed_seq); 1655 local_irq_enable(); 1656 1657 task_unlock(tsk); 1658 } 1659 1660 static void *cpuset_being_rebound; 1661 1662 /** 1663 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1664 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1665 * 1666 * Iterate through each task of @cs updating its mems_allowed to the 1667 * effective cpuset's. As this function is called with cpuset_mutex held, 1668 * cpuset membership stays stable. 1669 */ 1670 static void update_tasks_nodemask(struct cpuset *cs) 1671 { 1672 static nodemask_t newmems; /* protected by cpuset_mutex */ 1673 struct css_task_iter it; 1674 struct task_struct *task; 1675 1676 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1677 1678 guarantee_online_mems(cs, &newmems); 1679 1680 /* 1681 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 1682 * take while holding tasklist_lock. Forks can happen - the 1683 * mpol_dup() cpuset_being_rebound check will catch such forks, 1684 * and rebind their vma mempolicies too. Because we still hold 1685 * the global cpuset_mutex, we know that no other rebind effort 1686 * will be contending for the global variable cpuset_being_rebound. 1687 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1688 * is idempotent. Also migrate pages in each mm to new nodes. 1689 */ 1690 css_task_iter_start(&cs->css, 0, &it); 1691 while ((task = css_task_iter_next(&it))) { 1692 struct mm_struct *mm; 1693 bool migrate; 1694 1695 cpuset_change_task_nodemask(task, &newmems); 1696 1697 mm = get_task_mm(task); 1698 if (!mm) 1699 continue; 1700 1701 migrate = is_memory_migrate(cs); 1702 1703 mpol_rebind_mm(mm, &cs->mems_allowed); 1704 if (migrate) 1705 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1706 else 1707 mmput(mm); 1708 } 1709 css_task_iter_end(&it); 1710 1711 /* 1712 * All the tasks' nodemasks have been updated, update 1713 * cs->old_mems_allowed. 1714 */ 1715 cs->old_mems_allowed = newmems; 1716 1717 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1718 cpuset_being_rebound = NULL; 1719 } 1720 1721 /* 1722 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 1723 * @cs: the cpuset to consider 1724 * @new_mems: a temp variable for calculating new effective_mems 1725 * 1726 * When configured nodemask is changed, the effective nodemasks of this cpuset 1727 * and all its descendants need to be updated. 1728 * 1729 * On legacy hiearchy, effective_mems will be the same with mems_allowed. 1730 * 1731 * Called with cpuset_mutex held 1732 */ 1733 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 1734 { 1735 struct cpuset *cp; 1736 struct cgroup_subsys_state *pos_css; 1737 1738 rcu_read_lock(); 1739 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1740 struct cpuset *parent = parent_cs(cp); 1741 1742 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 1743 1744 /* 1745 * If it becomes empty, inherit the effective mask of the 1746 * parent, which is guaranteed to have some MEMs. 1747 */ 1748 if (is_in_v2_mode() && nodes_empty(*new_mems)) 1749 *new_mems = parent->effective_mems; 1750 1751 /* Skip the whole subtree if the nodemask remains the same. */ 1752 if (nodes_equal(*new_mems, cp->effective_mems)) { 1753 pos_css = css_rightmost_descendant(pos_css); 1754 continue; 1755 } 1756 1757 if (!css_tryget_online(&cp->css)) 1758 continue; 1759 rcu_read_unlock(); 1760 1761 spin_lock_irq(&callback_lock); 1762 cp->effective_mems = *new_mems; 1763 spin_unlock_irq(&callback_lock); 1764 1765 WARN_ON(!is_in_v2_mode() && 1766 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 1767 1768 update_tasks_nodemask(cp); 1769 1770 rcu_read_lock(); 1771 css_put(&cp->css); 1772 } 1773 rcu_read_unlock(); 1774 } 1775 1776 /* 1777 * Handle user request to change the 'mems' memory placement 1778 * of a cpuset. Needs to validate the request, update the 1779 * cpusets mems_allowed, and for each task in the cpuset, 1780 * update mems_allowed and rebind task's mempolicy and any vma 1781 * mempolicies and if the cpuset is marked 'memory_migrate', 1782 * migrate the tasks pages to the new memory. 1783 * 1784 * Call with cpuset_mutex held. May take callback_lock during call. 1785 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1786 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 1787 * their mempolicies to the cpusets new mems_allowed. 1788 */ 1789 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 1790 const char *buf) 1791 { 1792 int retval; 1793 1794 /* 1795 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 1796 * it's read-only 1797 */ 1798 if (cs == &top_cpuset) { 1799 retval = -EACCES; 1800 goto done; 1801 } 1802 1803 /* 1804 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1805 * Since nodelist_parse() fails on an empty mask, we special case 1806 * that parsing. The validate_change() call ensures that cpusets 1807 * with tasks have memory. 1808 */ 1809 if (!*buf) { 1810 nodes_clear(trialcs->mems_allowed); 1811 } else { 1812 retval = nodelist_parse(buf, trialcs->mems_allowed); 1813 if (retval < 0) 1814 goto done; 1815 1816 if (!nodes_subset(trialcs->mems_allowed, 1817 top_cpuset.mems_allowed)) { 1818 retval = -EINVAL; 1819 goto done; 1820 } 1821 } 1822 1823 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 1824 retval = 0; /* Too easy - nothing to do */ 1825 goto done; 1826 } 1827 retval = validate_change(cs, trialcs); 1828 if (retval < 0) 1829 goto done; 1830 1831 spin_lock_irq(&callback_lock); 1832 cs->mems_allowed = trialcs->mems_allowed; 1833 spin_unlock_irq(&callback_lock); 1834 1835 /* use trialcs->mems_allowed as a temp variable */ 1836 update_nodemasks_hier(cs, &trialcs->mems_allowed); 1837 done: 1838 return retval; 1839 } 1840 1841 bool current_cpuset_is_being_rebound(void) 1842 { 1843 bool ret; 1844 1845 rcu_read_lock(); 1846 ret = task_cs(current) == cpuset_being_rebound; 1847 rcu_read_unlock(); 1848 1849 return ret; 1850 } 1851 1852 static int update_relax_domain_level(struct cpuset *cs, s64 val) 1853 { 1854 #ifdef CONFIG_SMP 1855 if (val < -1 || val >= sched_domain_level_max) 1856 return -EINVAL; 1857 #endif 1858 1859 if (val != cs->relax_domain_level) { 1860 cs->relax_domain_level = val; 1861 if (!cpumask_empty(cs->cpus_allowed) && 1862 is_sched_load_balance(cs)) 1863 rebuild_sched_domains_locked(); 1864 } 1865 1866 return 0; 1867 } 1868 1869 /** 1870 * update_tasks_flags - update the spread flags of tasks in the cpuset. 1871 * @cs: the cpuset in which each task's spread flags needs to be changed 1872 * 1873 * Iterate through each task of @cs updating its spread flags. As this 1874 * function is called with cpuset_mutex held, cpuset membership stays 1875 * stable. 1876 */ 1877 static void update_tasks_flags(struct cpuset *cs) 1878 { 1879 struct css_task_iter it; 1880 struct task_struct *task; 1881 1882 css_task_iter_start(&cs->css, 0, &it); 1883 while ((task = css_task_iter_next(&it))) 1884 cpuset_update_task_spread_flag(cs, task); 1885 css_task_iter_end(&it); 1886 } 1887 1888 /* 1889 * update_flag - read a 0 or a 1 in a file and update associated flag 1890 * bit: the bit to update (see cpuset_flagbits_t) 1891 * cs: the cpuset to update 1892 * turning_on: whether the flag is being set or cleared 1893 * 1894 * Call with cpuset_mutex held. 1895 */ 1896 1897 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1898 int turning_on) 1899 { 1900 struct cpuset *trialcs; 1901 int balance_flag_changed; 1902 int spread_flag_changed; 1903 int err; 1904 1905 trialcs = alloc_trial_cpuset(cs); 1906 if (!trialcs) 1907 return -ENOMEM; 1908 1909 if (turning_on) 1910 set_bit(bit, &trialcs->flags); 1911 else 1912 clear_bit(bit, &trialcs->flags); 1913 1914 err = validate_change(cs, trialcs); 1915 if (err < 0) 1916 goto out; 1917 1918 balance_flag_changed = (is_sched_load_balance(cs) != 1919 is_sched_load_balance(trialcs)); 1920 1921 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 1922 || (is_spread_page(cs) != is_spread_page(trialcs))); 1923 1924 spin_lock_irq(&callback_lock); 1925 cs->flags = trialcs->flags; 1926 spin_unlock_irq(&callback_lock); 1927 1928 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 1929 rebuild_sched_domains_locked(); 1930 1931 if (spread_flag_changed) 1932 update_tasks_flags(cs); 1933 out: 1934 free_cpuset(trialcs); 1935 return err; 1936 } 1937 1938 /* 1939 * update_prstate - update partititon_root_state 1940 * cs: the cpuset to update 1941 * val: 0 - disabled, 1 - enabled 1942 * 1943 * Call with cpuset_mutex held. 1944 */ 1945 static int update_prstate(struct cpuset *cs, int val) 1946 { 1947 int err; 1948 struct cpuset *parent = parent_cs(cs); 1949 struct tmpmasks tmp; 1950 1951 if ((val != 0) && (val != 1)) 1952 return -EINVAL; 1953 if (val == cs->partition_root_state) 1954 return 0; 1955 1956 /* 1957 * Cannot force a partial or invalid partition root to a full 1958 * partition root. 1959 */ 1960 if (val && cs->partition_root_state) 1961 return -EINVAL; 1962 1963 if (alloc_cpumasks(NULL, &tmp)) 1964 return -ENOMEM; 1965 1966 err = -EINVAL; 1967 if (!cs->partition_root_state) { 1968 /* 1969 * Turning on partition root requires setting the 1970 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed 1971 * cannot be NULL. 1972 */ 1973 if (cpumask_empty(cs->cpus_allowed)) 1974 goto out; 1975 1976 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); 1977 if (err) 1978 goto out; 1979 1980 err = update_parent_subparts_cpumask(cs, partcmd_enable, 1981 NULL, &tmp); 1982 if (err) { 1983 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1984 goto out; 1985 } 1986 cs->partition_root_state = PRS_ENABLED; 1987 } else { 1988 /* 1989 * Turning off partition root will clear the 1990 * CS_CPU_EXCLUSIVE bit. 1991 */ 1992 if (cs->partition_root_state == PRS_ERROR) { 1993 cs->partition_root_state = 0; 1994 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1995 err = 0; 1996 goto out; 1997 } 1998 1999 err = update_parent_subparts_cpumask(cs, partcmd_disable, 2000 NULL, &tmp); 2001 if (err) 2002 goto out; 2003 2004 cs->partition_root_state = 0; 2005 2006 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 2007 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2008 } 2009 2010 /* 2011 * Update cpumask of parent's tasks except when it is the top 2012 * cpuset as some system daemons cannot be mapped to other CPUs. 2013 */ 2014 if (parent != &top_cpuset) 2015 update_tasks_cpumask(parent); 2016 2017 if (parent->child_ecpus_count) 2018 update_sibling_cpumasks(parent, cs, &tmp); 2019 2020 rebuild_sched_domains_locked(); 2021 out: 2022 free_cpumasks(NULL, &tmp); 2023 return err; 2024 } 2025 2026 /* 2027 * Frequency meter - How fast is some event occurring? 2028 * 2029 * These routines manage a digitally filtered, constant time based, 2030 * event frequency meter. There are four routines: 2031 * fmeter_init() - initialize a frequency meter. 2032 * fmeter_markevent() - called each time the event happens. 2033 * fmeter_getrate() - returns the recent rate of such events. 2034 * fmeter_update() - internal routine used to update fmeter. 2035 * 2036 * A common data structure is passed to each of these routines, 2037 * which is used to keep track of the state required to manage the 2038 * frequency meter and its digital filter. 2039 * 2040 * The filter works on the number of events marked per unit time. 2041 * The filter is single-pole low-pass recursive (IIR). The time unit 2042 * is 1 second. Arithmetic is done using 32-bit integers scaled to 2043 * simulate 3 decimal digits of precision (multiplied by 1000). 2044 * 2045 * With an FM_COEF of 933, and a time base of 1 second, the filter 2046 * has a half-life of 10 seconds, meaning that if the events quit 2047 * happening, then the rate returned from the fmeter_getrate() 2048 * will be cut in half each 10 seconds, until it converges to zero. 2049 * 2050 * It is not worth doing a real infinitely recursive filter. If more 2051 * than FM_MAXTICKS ticks have elapsed since the last filter event, 2052 * just compute FM_MAXTICKS ticks worth, by which point the level 2053 * will be stable. 2054 * 2055 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 2056 * arithmetic overflow in the fmeter_update() routine. 2057 * 2058 * Given the simple 32 bit integer arithmetic used, this meter works 2059 * best for reporting rates between one per millisecond (msec) and 2060 * one per 32 (approx) seconds. At constant rates faster than one 2061 * per msec it maxes out at values just under 1,000,000. At constant 2062 * rates between one per msec, and one per second it will stabilize 2063 * to a value N*1000, where N is the rate of events per second. 2064 * At constant rates between one per second and one per 32 seconds, 2065 * it will be choppy, moving up on the seconds that have an event, 2066 * and then decaying until the next event. At rates slower than 2067 * about one in 32 seconds, it decays all the way back to zero between 2068 * each event. 2069 */ 2070 2071 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 2072 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 2073 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 2074 #define FM_SCALE 1000 /* faux fixed point scale */ 2075 2076 /* Initialize a frequency meter */ 2077 static void fmeter_init(struct fmeter *fmp) 2078 { 2079 fmp->cnt = 0; 2080 fmp->val = 0; 2081 fmp->time = 0; 2082 spin_lock_init(&fmp->lock); 2083 } 2084 2085 /* Internal meter update - process cnt events and update value */ 2086 static void fmeter_update(struct fmeter *fmp) 2087 { 2088 time64_t now; 2089 u32 ticks; 2090 2091 now = ktime_get_seconds(); 2092 ticks = now - fmp->time; 2093 2094 if (ticks == 0) 2095 return; 2096 2097 ticks = min(FM_MAXTICKS, ticks); 2098 while (ticks-- > 0) 2099 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2100 fmp->time = now; 2101 2102 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2103 fmp->cnt = 0; 2104 } 2105 2106 /* Process any previous ticks, then bump cnt by one (times scale). */ 2107 static void fmeter_markevent(struct fmeter *fmp) 2108 { 2109 spin_lock(&fmp->lock); 2110 fmeter_update(fmp); 2111 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2112 spin_unlock(&fmp->lock); 2113 } 2114 2115 /* Process any previous ticks, then return current value. */ 2116 static int fmeter_getrate(struct fmeter *fmp) 2117 { 2118 int val; 2119 2120 spin_lock(&fmp->lock); 2121 fmeter_update(fmp); 2122 val = fmp->val; 2123 spin_unlock(&fmp->lock); 2124 return val; 2125 } 2126 2127 static struct cpuset *cpuset_attach_old_cs; 2128 2129 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 2130 static int cpuset_can_attach(struct cgroup_taskset *tset) 2131 { 2132 struct cgroup_subsys_state *css; 2133 struct cpuset *cs; 2134 struct task_struct *task; 2135 int ret; 2136 2137 /* used later by cpuset_attach() */ 2138 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2139 cs = css_cs(css); 2140 2141 percpu_down_write(&cpuset_rwsem); 2142 2143 /* allow moving tasks into an empty cpuset if on default hierarchy */ 2144 ret = -ENOSPC; 2145 if (!is_in_v2_mode() && 2146 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 2147 goto out_unlock; 2148 2149 cgroup_taskset_for_each(task, css, tset) { 2150 ret = task_can_attach(task, cs->cpus_allowed); 2151 if (ret) 2152 goto out_unlock; 2153 ret = security_task_setscheduler(task); 2154 if (ret) 2155 goto out_unlock; 2156 } 2157 2158 /* 2159 * Mark attach is in progress. This makes validate_change() fail 2160 * changes which zero cpus/mems_allowed. 2161 */ 2162 cs->attach_in_progress++; 2163 ret = 0; 2164 out_unlock: 2165 percpu_up_write(&cpuset_rwsem); 2166 return ret; 2167 } 2168 2169 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2170 { 2171 struct cgroup_subsys_state *css; 2172 2173 cgroup_taskset_first(tset, &css); 2174 2175 percpu_down_write(&cpuset_rwsem); 2176 css_cs(css)->attach_in_progress--; 2177 percpu_up_write(&cpuset_rwsem); 2178 } 2179 2180 /* 2181 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() 2182 * but we can't allocate it dynamically there. Define it global and 2183 * allocate from cpuset_init(). 2184 */ 2185 static cpumask_var_t cpus_attach; 2186 2187 static void cpuset_attach(struct cgroup_taskset *tset) 2188 { 2189 /* static buf protected by cpuset_mutex */ 2190 static nodemask_t cpuset_attach_nodemask_to; 2191 struct task_struct *task; 2192 struct task_struct *leader; 2193 struct cgroup_subsys_state *css; 2194 struct cpuset *cs; 2195 struct cpuset *oldcs = cpuset_attach_old_cs; 2196 2197 cgroup_taskset_first(tset, &css); 2198 cs = css_cs(css); 2199 2200 percpu_down_write(&cpuset_rwsem); 2201 2202 /* prepare for attach */ 2203 if (cs == &top_cpuset) 2204 cpumask_copy(cpus_attach, cpu_possible_mask); 2205 else 2206 guarantee_online_cpus(cs, cpus_attach); 2207 2208 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2209 2210 cgroup_taskset_for_each(task, css, tset) { 2211 /* 2212 * can_attach beforehand should guarantee that this doesn't 2213 * fail. TODO: have a better way to handle failure here 2214 */ 2215 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2216 2217 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2218 cpuset_update_task_spread_flag(cs, task); 2219 } 2220 2221 /* 2222 * Change mm for all threadgroup leaders. This is expensive and may 2223 * sleep and should be moved outside migration path proper. 2224 */ 2225 cpuset_attach_nodemask_to = cs->effective_mems; 2226 cgroup_taskset_for_each_leader(leader, css, tset) { 2227 struct mm_struct *mm = get_task_mm(leader); 2228 2229 if (mm) { 2230 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2231 2232 /* 2233 * old_mems_allowed is the same with mems_allowed 2234 * here, except if this task is being moved 2235 * automatically due to hotplug. In that case 2236 * @mems_allowed has been updated and is empty, so 2237 * @old_mems_allowed is the right nodesets that we 2238 * migrate mm from. 2239 */ 2240 if (is_memory_migrate(cs)) 2241 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2242 &cpuset_attach_nodemask_to); 2243 else 2244 mmput(mm); 2245 } 2246 } 2247 2248 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2249 2250 cs->attach_in_progress--; 2251 if (!cs->attach_in_progress) 2252 wake_up(&cpuset_attach_wq); 2253 2254 percpu_up_write(&cpuset_rwsem); 2255 } 2256 2257 /* The various types of files and directories in a cpuset file system */ 2258 2259 typedef enum { 2260 FILE_MEMORY_MIGRATE, 2261 FILE_CPULIST, 2262 FILE_MEMLIST, 2263 FILE_EFFECTIVE_CPULIST, 2264 FILE_EFFECTIVE_MEMLIST, 2265 FILE_SUBPARTS_CPULIST, 2266 FILE_CPU_EXCLUSIVE, 2267 FILE_MEM_EXCLUSIVE, 2268 FILE_MEM_HARDWALL, 2269 FILE_SCHED_LOAD_BALANCE, 2270 FILE_PARTITION_ROOT, 2271 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2272 FILE_MEMORY_PRESSURE_ENABLED, 2273 FILE_MEMORY_PRESSURE, 2274 FILE_SPREAD_PAGE, 2275 FILE_SPREAD_SLAB, 2276 } cpuset_filetype_t; 2277 2278 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2279 u64 val) 2280 { 2281 struct cpuset *cs = css_cs(css); 2282 cpuset_filetype_t type = cft->private; 2283 int retval = 0; 2284 2285 get_online_cpus(); 2286 percpu_down_write(&cpuset_rwsem); 2287 if (!is_cpuset_online(cs)) { 2288 retval = -ENODEV; 2289 goto out_unlock; 2290 } 2291 2292 switch (type) { 2293 case FILE_CPU_EXCLUSIVE: 2294 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2295 break; 2296 case FILE_MEM_EXCLUSIVE: 2297 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2298 break; 2299 case FILE_MEM_HARDWALL: 2300 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2301 break; 2302 case FILE_SCHED_LOAD_BALANCE: 2303 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2304 break; 2305 case FILE_MEMORY_MIGRATE: 2306 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2307 break; 2308 case FILE_MEMORY_PRESSURE_ENABLED: 2309 cpuset_memory_pressure_enabled = !!val; 2310 break; 2311 case FILE_SPREAD_PAGE: 2312 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2313 break; 2314 case FILE_SPREAD_SLAB: 2315 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2316 break; 2317 default: 2318 retval = -EINVAL; 2319 break; 2320 } 2321 out_unlock: 2322 percpu_up_write(&cpuset_rwsem); 2323 put_online_cpus(); 2324 return retval; 2325 } 2326 2327 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2328 s64 val) 2329 { 2330 struct cpuset *cs = css_cs(css); 2331 cpuset_filetype_t type = cft->private; 2332 int retval = -ENODEV; 2333 2334 get_online_cpus(); 2335 percpu_down_write(&cpuset_rwsem); 2336 if (!is_cpuset_online(cs)) 2337 goto out_unlock; 2338 2339 switch (type) { 2340 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2341 retval = update_relax_domain_level(cs, val); 2342 break; 2343 default: 2344 retval = -EINVAL; 2345 break; 2346 } 2347 out_unlock: 2348 percpu_up_write(&cpuset_rwsem); 2349 put_online_cpus(); 2350 return retval; 2351 } 2352 2353 /* 2354 * Common handling for a write to a "cpus" or "mems" file. 2355 */ 2356 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2357 char *buf, size_t nbytes, loff_t off) 2358 { 2359 struct cpuset *cs = css_cs(of_css(of)); 2360 struct cpuset *trialcs; 2361 int retval = -ENODEV; 2362 2363 buf = strstrip(buf); 2364 2365 /* 2366 * CPU or memory hotunplug may leave @cs w/o any execution 2367 * resources, in which case the hotplug code asynchronously updates 2368 * configuration and transfers all tasks to the nearest ancestor 2369 * which can execute. 2370 * 2371 * As writes to "cpus" or "mems" may restore @cs's execution 2372 * resources, wait for the previously scheduled operations before 2373 * proceeding, so that we don't end up keep removing tasks added 2374 * after execution capability is restored. 2375 * 2376 * cpuset_hotplug_work calls back into cgroup core via 2377 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2378 * operation like this one can lead to a deadlock through kernfs 2379 * active_ref protection. Let's break the protection. Losing the 2380 * protection is okay as we check whether @cs is online after 2381 * grabbing cpuset_mutex anyway. This only happens on the legacy 2382 * hierarchies. 2383 */ 2384 css_get(&cs->css); 2385 kernfs_break_active_protection(of->kn); 2386 flush_work(&cpuset_hotplug_work); 2387 2388 get_online_cpus(); 2389 percpu_down_write(&cpuset_rwsem); 2390 if (!is_cpuset_online(cs)) 2391 goto out_unlock; 2392 2393 trialcs = alloc_trial_cpuset(cs); 2394 if (!trialcs) { 2395 retval = -ENOMEM; 2396 goto out_unlock; 2397 } 2398 2399 switch (of_cft(of)->private) { 2400 case FILE_CPULIST: 2401 retval = update_cpumask(cs, trialcs, buf); 2402 break; 2403 case FILE_MEMLIST: 2404 retval = update_nodemask(cs, trialcs, buf); 2405 break; 2406 default: 2407 retval = -EINVAL; 2408 break; 2409 } 2410 2411 free_cpuset(trialcs); 2412 out_unlock: 2413 percpu_up_write(&cpuset_rwsem); 2414 put_online_cpus(); 2415 kernfs_unbreak_active_protection(of->kn); 2416 css_put(&cs->css); 2417 flush_workqueue(cpuset_migrate_mm_wq); 2418 return retval ?: nbytes; 2419 } 2420 2421 /* 2422 * These ascii lists should be read in a single call, by using a user 2423 * buffer large enough to hold the entire map. If read in smaller 2424 * chunks, there is no guarantee of atomicity. Since the display format 2425 * used, list of ranges of sequential numbers, is variable length, 2426 * and since these maps can change value dynamically, one could read 2427 * gibberish by doing partial reads while a list was changing. 2428 */ 2429 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2430 { 2431 struct cpuset *cs = css_cs(seq_css(sf)); 2432 cpuset_filetype_t type = seq_cft(sf)->private; 2433 int ret = 0; 2434 2435 spin_lock_irq(&callback_lock); 2436 2437 switch (type) { 2438 case FILE_CPULIST: 2439 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2440 break; 2441 case FILE_MEMLIST: 2442 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2443 break; 2444 case FILE_EFFECTIVE_CPULIST: 2445 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2446 break; 2447 case FILE_EFFECTIVE_MEMLIST: 2448 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2449 break; 2450 case FILE_SUBPARTS_CPULIST: 2451 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2452 break; 2453 default: 2454 ret = -EINVAL; 2455 } 2456 2457 spin_unlock_irq(&callback_lock); 2458 return ret; 2459 } 2460 2461 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2462 { 2463 struct cpuset *cs = css_cs(css); 2464 cpuset_filetype_t type = cft->private; 2465 switch (type) { 2466 case FILE_CPU_EXCLUSIVE: 2467 return is_cpu_exclusive(cs); 2468 case FILE_MEM_EXCLUSIVE: 2469 return is_mem_exclusive(cs); 2470 case FILE_MEM_HARDWALL: 2471 return is_mem_hardwall(cs); 2472 case FILE_SCHED_LOAD_BALANCE: 2473 return is_sched_load_balance(cs); 2474 case FILE_MEMORY_MIGRATE: 2475 return is_memory_migrate(cs); 2476 case FILE_MEMORY_PRESSURE_ENABLED: 2477 return cpuset_memory_pressure_enabled; 2478 case FILE_MEMORY_PRESSURE: 2479 return fmeter_getrate(&cs->fmeter); 2480 case FILE_SPREAD_PAGE: 2481 return is_spread_page(cs); 2482 case FILE_SPREAD_SLAB: 2483 return is_spread_slab(cs); 2484 default: 2485 BUG(); 2486 } 2487 2488 /* Unreachable but makes gcc happy */ 2489 return 0; 2490 } 2491 2492 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2493 { 2494 struct cpuset *cs = css_cs(css); 2495 cpuset_filetype_t type = cft->private; 2496 switch (type) { 2497 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2498 return cs->relax_domain_level; 2499 default: 2500 BUG(); 2501 } 2502 2503 /* Unrechable but makes gcc happy */ 2504 return 0; 2505 } 2506 2507 static int sched_partition_show(struct seq_file *seq, void *v) 2508 { 2509 struct cpuset *cs = css_cs(seq_css(seq)); 2510 2511 switch (cs->partition_root_state) { 2512 case PRS_ENABLED: 2513 seq_puts(seq, "root\n"); 2514 break; 2515 case PRS_DISABLED: 2516 seq_puts(seq, "member\n"); 2517 break; 2518 case PRS_ERROR: 2519 seq_puts(seq, "root invalid\n"); 2520 break; 2521 } 2522 return 0; 2523 } 2524 2525 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 2526 size_t nbytes, loff_t off) 2527 { 2528 struct cpuset *cs = css_cs(of_css(of)); 2529 int val; 2530 int retval = -ENODEV; 2531 2532 buf = strstrip(buf); 2533 2534 /* 2535 * Convert "root" to ENABLED, and convert "member" to DISABLED. 2536 */ 2537 if (!strcmp(buf, "root")) 2538 val = PRS_ENABLED; 2539 else if (!strcmp(buf, "member")) 2540 val = PRS_DISABLED; 2541 else 2542 return -EINVAL; 2543 2544 css_get(&cs->css); 2545 get_online_cpus(); 2546 percpu_down_write(&cpuset_rwsem); 2547 if (!is_cpuset_online(cs)) 2548 goto out_unlock; 2549 2550 retval = update_prstate(cs, val); 2551 out_unlock: 2552 percpu_up_write(&cpuset_rwsem); 2553 put_online_cpus(); 2554 css_put(&cs->css); 2555 return retval ?: nbytes; 2556 } 2557 2558 /* 2559 * for the common functions, 'private' gives the type of file 2560 */ 2561 2562 static struct cftype legacy_files[] = { 2563 { 2564 .name = "cpus", 2565 .seq_show = cpuset_common_seq_show, 2566 .write = cpuset_write_resmask, 2567 .max_write_len = (100U + 6 * NR_CPUS), 2568 .private = FILE_CPULIST, 2569 }, 2570 2571 { 2572 .name = "mems", 2573 .seq_show = cpuset_common_seq_show, 2574 .write = cpuset_write_resmask, 2575 .max_write_len = (100U + 6 * MAX_NUMNODES), 2576 .private = FILE_MEMLIST, 2577 }, 2578 2579 { 2580 .name = "effective_cpus", 2581 .seq_show = cpuset_common_seq_show, 2582 .private = FILE_EFFECTIVE_CPULIST, 2583 }, 2584 2585 { 2586 .name = "effective_mems", 2587 .seq_show = cpuset_common_seq_show, 2588 .private = FILE_EFFECTIVE_MEMLIST, 2589 }, 2590 2591 { 2592 .name = "cpu_exclusive", 2593 .read_u64 = cpuset_read_u64, 2594 .write_u64 = cpuset_write_u64, 2595 .private = FILE_CPU_EXCLUSIVE, 2596 }, 2597 2598 { 2599 .name = "mem_exclusive", 2600 .read_u64 = cpuset_read_u64, 2601 .write_u64 = cpuset_write_u64, 2602 .private = FILE_MEM_EXCLUSIVE, 2603 }, 2604 2605 { 2606 .name = "mem_hardwall", 2607 .read_u64 = cpuset_read_u64, 2608 .write_u64 = cpuset_write_u64, 2609 .private = FILE_MEM_HARDWALL, 2610 }, 2611 2612 { 2613 .name = "sched_load_balance", 2614 .read_u64 = cpuset_read_u64, 2615 .write_u64 = cpuset_write_u64, 2616 .private = FILE_SCHED_LOAD_BALANCE, 2617 }, 2618 2619 { 2620 .name = "sched_relax_domain_level", 2621 .read_s64 = cpuset_read_s64, 2622 .write_s64 = cpuset_write_s64, 2623 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 2624 }, 2625 2626 { 2627 .name = "memory_migrate", 2628 .read_u64 = cpuset_read_u64, 2629 .write_u64 = cpuset_write_u64, 2630 .private = FILE_MEMORY_MIGRATE, 2631 }, 2632 2633 { 2634 .name = "memory_pressure", 2635 .read_u64 = cpuset_read_u64, 2636 .private = FILE_MEMORY_PRESSURE, 2637 }, 2638 2639 { 2640 .name = "memory_spread_page", 2641 .read_u64 = cpuset_read_u64, 2642 .write_u64 = cpuset_write_u64, 2643 .private = FILE_SPREAD_PAGE, 2644 }, 2645 2646 { 2647 .name = "memory_spread_slab", 2648 .read_u64 = cpuset_read_u64, 2649 .write_u64 = cpuset_write_u64, 2650 .private = FILE_SPREAD_SLAB, 2651 }, 2652 2653 { 2654 .name = "memory_pressure_enabled", 2655 .flags = CFTYPE_ONLY_ON_ROOT, 2656 .read_u64 = cpuset_read_u64, 2657 .write_u64 = cpuset_write_u64, 2658 .private = FILE_MEMORY_PRESSURE_ENABLED, 2659 }, 2660 2661 { } /* terminate */ 2662 }; 2663 2664 /* 2665 * This is currently a minimal set for the default hierarchy. It can be 2666 * expanded later on by migrating more features and control files from v1. 2667 */ 2668 static struct cftype dfl_files[] = { 2669 { 2670 .name = "cpus", 2671 .seq_show = cpuset_common_seq_show, 2672 .write = cpuset_write_resmask, 2673 .max_write_len = (100U + 6 * NR_CPUS), 2674 .private = FILE_CPULIST, 2675 .flags = CFTYPE_NOT_ON_ROOT, 2676 }, 2677 2678 { 2679 .name = "mems", 2680 .seq_show = cpuset_common_seq_show, 2681 .write = cpuset_write_resmask, 2682 .max_write_len = (100U + 6 * MAX_NUMNODES), 2683 .private = FILE_MEMLIST, 2684 .flags = CFTYPE_NOT_ON_ROOT, 2685 }, 2686 2687 { 2688 .name = "cpus.effective", 2689 .seq_show = cpuset_common_seq_show, 2690 .private = FILE_EFFECTIVE_CPULIST, 2691 }, 2692 2693 { 2694 .name = "mems.effective", 2695 .seq_show = cpuset_common_seq_show, 2696 .private = FILE_EFFECTIVE_MEMLIST, 2697 }, 2698 2699 { 2700 .name = "cpus.partition", 2701 .seq_show = sched_partition_show, 2702 .write = sched_partition_write, 2703 .private = FILE_PARTITION_ROOT, 2704 .flags = CFTYPE_NOT_ON_ROOT, 2705 }, 2706 2707 { 2708 .name = "cpus.subpartitions", 2709 .seq_show = cpuset_common_seq_show, 2710 .private = FILE_SUBPARTS_CPULIST, 2711 .flags = CFTYPE_DEBUG, 2712 }, 2713 2714 { } /* terminate */ 2715 }; 2716 2717 2718 /* 2719 * cpuset_css_alloc - allocate a cpuset css 2720 * cgrp: control group that the new cpuset will be part of 2721 */ 2722 2723 static struct cgroup_subsys_state * 2724 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 2725 { 2726 struct cpuset *cs; 2727 2728 if (!parent_css) 2729 return &top_cpuset.css; 2730 2731 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 2732 if (!cs) 2733 return ERR_PTR(-ENOMEM); 2734 2735 if (alloc_cpumasks(cs, NULL)) { 2736 kfree(cs); 2737 return ERR_PTR(-ENOMEM); 2738 } 2739 2740 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 2741 nodes_clear(cs->mems_allowed); 2742 nodes_clear(cs->effective_mems); 2743 fmeter_init(&cs->fmeter); 2744 cs->relax_domain_level = -1; 2745 2746 return &cs->css; 2747 } 2748 2749 static int cpuset_css_online(struct cgroup_subsys_state *css) 2750 { 2751 struct cpuset *cs = css_cs(css); 2752 struct cpuset *parent = parent_cs(cs); 2753 struct cpuset *tmp_cs; 2754 struct cgroup_subsys_state *pos_css; 2755 2756 if (!parent) 2757 return 0; 2758 2759 get_online_cpus(); 2760 percpu_down_write(&cpuset_rwsem); 2761 2762 set_bit(CS_ONLINE, &cs->flags); 2763 if (is_spread_page(parent)) 2764 set_bit(CS_SPREAD_PAGE, &cs->flags); 2765 if (is_spread_slab(parent)) 2766 set_bit(CS_SPREAD_SLAB, &cs->flags); 2767 2768 cpuset_inc(); 2769 2770 spin_lock_irq(&callback_lock); 2771 if (is_in_v2_mode()) { 2772 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 2773 cs->effective_mems = parent->effective_mems; 2774 cs->use_parent_ecpus = true; 2775 parent->child_ecpus_count++; 2776 } 2777 spin_unlock_irq(&callback_lock); 2778 2779 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 2780 goto out_unlock; 2781 2782 /* 2783 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 2784 * set. This flag handling is implemented in cgroup core for 2785 * histrical reasons - the flag may be specified during mount. 2786 * 2787 * Currently, if any sibling cpusets have exclusive cpus or mem, we 2788 * refuse to clone the configuration - thereby refusing the task to 2789 * be entered, and as a result refusing the sys_unshare() or 2790 * clone() which initiated it. If this becomes a problem for some 2791 * users who wish to allow that scenario, then this could be 2792 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 2793 * (and likewise for mems) to the new cgroup. 2794 */ 2795 rcu_read_lock(); 2796 cpuset_for_each_child(tmp_cs, pos_css, parent) { 2797 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 2798 rcu_read_unlock(); 2799 goto out_unlock; 2800 } 2801 } 2802 rcu_read_unlock(); 2803 2804 spin_lock_irq(&callback_lock); 2805 cs->mems_allowed = parent->mems_allowed; 2806 cs->effective_mems = parent->mems_allowed; 2807 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 2808 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 2809 spin_unlock_irq(&callback_lock); 2810 out_unlock: 2811 percpu_up_write(&cpuset_rwsem); 2812 put_online_cpus(); 2813 return 0; 2814 } 2815 2816 /* 2817 * If the cpuset being removed has its flag 'sched_load_balance' 2818 * enabled, then simulate turning sched_load_balance off, which 2819 * will call rebuild_sched_domains_locked(). That is not needed 2820 * in the default hierarchy where only changes in partition 2821 * will cause repartitioning. 2822 * 2823 * If the cpuset has the 'sched.partition' flag enabled, simulate 2824 * turning 'sched.partition" off. 2825 */ 2826 2827 static void cpuset_css_offline(struct cgroup_subsys_state *css) 2828 { 2829 struct cpuset *cs = css_cs(css); 2830 2831 get_online_cpus(); 2832 percpu_down_write(&cpuset_rwsem); 2833 2834 if (is_partition_root(cs)) 2835 update_prstate(cs, 0); 2836 2837 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2838 is_sched_load_balance(cs)) 2839 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2840 2841 if (cs->use_parent_ecpus) { 2842 struct cpuset *parent = parent_cs(cs); 2843 2844 cs->use_parent_ecpus = false; 2845 parent->child_ecpus_count--; 2846 } 2847 2848 cpuset_dec(); 2849 clear_bit(CS_ONLINE, &cs->flags); 2850 2851 percpu_up_write(&cpuset_rwsem); 2852 put_online_cpus(); 2853 } 2854 2855 static void cpuset_css_free(struct cgroup_subsys_state *css) 2856 { 2857 struct cpuset *cs = css_cs(css); 2858 2859 free_cpuset(cs); 2860 } 2861 2862 static void cpuset_bind(struct cgroup_subsys_state *root_css) 2863 { 2864 percpu_down_write(&cpuset_rwsem); 2865 spin_lock_irq(&callback_lock); 2866 2867 if (is_in_v2_mode()) { 2868 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 2869 top_cpuset.mems_allowed = node_possible_map; 2870 } else { 2871 cpumask_copy(top_cpuset.cpus_allowed, 2872 top_cpuset.effective_cpus); 2873 top_cpuset.mems_allowed = top_cpuset.effective_mems; 2874 } 2875 2876 spin_unlock_irq(&callback_lock); 2877 percpu_up_write(&cpuset_rwsem); 2878 } 2879 2880 /* 2881 * Make sure the new task conform to the current state of its parent, 2882 * which could have been changed by cpuset just after it inherits the 2883 * state from the parent and before it sits on the cgroup's task list. 2884 */ 2885 static void cpuset_fork(struct task_struct *task) 2886 { 2887 if (task_css_is_root(task, cpuset_cgrp_id)) 2888 return; 2889 2890 set_cpus_allowed_ptr(task, current->cpus_ptr); 2891 task->mems_allowed = current->mems_allowed; 2892 } 2893 2894 struct cgroup_subsys cpuset_cgrp_subsys = { 2895 .css_alloc = cpuset_css_alloc, 2896 .css_online = cpuset_css_online, 2897 .css_offline = cpuset_css_offline, 2898 .css_free = cpuset_css_free, 2899 .can_attach = cpuset_can_attach, 2900 .cancel_attach = cpuset_cancel_attach, 2901 .attach = cpuset_attach, 2902 .post_attach = cpuset_post_attach, 2903 .bind = cpuset_bind, 2904 .fork = cpuset_fork, 2905 .legacy_cftypes = legacy_files, 2906 .dfl_cftypes = dfl_files, 2907 .early_init = true, 2908 .threaded = true, 2909 }; 2910 2911 /** 2912 * cpuset_init - initialize cpusets at system boot 2913 * 2914 * Description: Initialize top_cpuset 2915 **/ 2916 2917 int __init cpuset_init(void) 2918 { 2919 BUG_ON(percpu_init_rwsem(&cpuset_rwsem)); 2920 2921 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 2922 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 2923 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 2924 2925 cpumask_setall(top_cpuset.cpus_allowed); 2926 nodes_setall(top_cpuset.mems_allowed); 2927 cpumask_setall(top_cpuset.effective_cpus); 2928 nodes_setall(top_cpuset.effective_mems); 2929 2930 fmeter_init(&top_cpuset.fmeter); 2931 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 2932 top_cpuset.relax_domain_level = -1; 2933 2934 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 2935 2936 return 0; 2937 } 2938 2939 /* 2940 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 2941 * or memory nodes, we need to walk over the cpuset hierarchy, 2942 * removing that CPU or node from all cpusets. If this removes the 2943 * last CPU or node from a cpuset, then move the tasks in the empty 2944 * cpuset to its next-highest non-empty parent. 2945 */ 2946 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 2947 { 2948 struct cpuset *parent; 2949 2950 /* 2951 * Find its next-highest non-empty parent, (top cpuset 2952 * has online cpus, so can't be empty). 2953 */ 2954 parent = parent_cs(cs); 2955 while (cpumask_empty(parent->cpus_allowed) || 2956 nodes_empty(parent->mems_allowed)) 2957 parent = parent_cs(parent); 2958 2959 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 2960 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 2961 pr_cont_cgroup_name(cs->css.cgroup); 2962 pr_cont("\n"); 2963 } 2964 } 2965 2966 static void 2967 hotplug_update_tasks_legacy(struct cpuset *cs, 2968 struct cpumask *new_cpus, nodemask_t *new_mems, 2969 bool cpus_updated, bool mems_updated) 2970 { 2971 bool is_empty; 2972 2973 spin_lock_irq(&callback_lock); 2974 cpumask_copy(cs->cpus_allowed, new_cpus); 2975 cpumask_copy(cs->effective_cpus, new_cpus); 2976 cs->mems_allowed = *new_mems; 2977 cs->effective_mems = *new_mems; 2978 spin_unlock_irq(&callback_lock); 2979 2980 /* 2981 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 2982 * as the tasks will be migratecd to an ancestor. 2983 */ 2984 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 2985 update_tasks_cpumask(cs); 2986 if (mems_updated && !nodes_empty(cs->mems_allowed)) 2987 update_tasks_nodemask(cs); 2988 2989 is_empty = cpumask_empty(cs->cpus_allowed) || 2990 nodes_empty(cs->mems_allowed); 2991 2992 percpu_up_write(&cpuset_rwsem); 2993 2994 /* 2995 * Move tasks to the nearest ancestor with execution resources, 2996 * This is full cgroup operation which will also call back into 2997 * cpuset. Should be done outside any lock. 2998 */ 2999 if (is_empty) 3000 remove_tasks_in_empty_cpuset(cs); 3001 3002 percpu_down_write(&cpuset_rwsem); 3003 } 3004 3005 static void 3006 hotplug_update_tasks(struct cpuset *cs, 3007 struct cpumask *new_cpus, nodemask_t *new_mems, 3008 bool cpus_updated, bool mems_updated) 3009 { 3010 if (cpumask_empty(new_cpus)) 3011 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3012 if (nodes_empty(*new_mems)) 3013 *new_mems = parent_cs(cs)->effective_mems; 3014 3015 spin_lock_irq(&callback_lock); 3016 cpumask_copy(cs->effective_cpus, new_cpus); 3017 cs->effective_mems = *new_mems; 3018 spin_unlock_irq(&callback_lock); 3019 3020 if (cpus_updated) 3021 update_tasks_cpumask(cs); 3022 if (mems_updated) 3023 update_tasks_nodemask(cs); 3024 } 3025 3026 static bool force_rebuild; 3027 3028 void cpuset_force_rebuild(void) 3029 { 3030 force_rebuild = true; 3031 } 3032 3033 /** 3034 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3035 * @cs: cpuset in interest 3036 * @tmp: the tmpmasks structure pointer 3037 * 3038 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3039 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3040 * all its tasks are moved to the nearest ancestor with both resources. 3041 */ 3042 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3043 { 3044 static cpumask_t new_cpus; 3045 static nodemask_t new_mems; 3046 bool cpus_updated; 3047 bool mems_updated; 3048 struct cpuset *parent; 3049 retry: 3050 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3051 3052 percpu_down_write(&cpuset_rwsem); 3053 3054 /* 3055 * We have raced with task attaching. We wait until attaching 3056 * is finished, so we won't attach a task to an empty cpuset. 3057 */ 3058 if (cs->attach_in_progress) { 3059 percpu_up_write(&cpuset_rwsem); 3060 goto retry; 3061 } 3062 3063 parent = parent_cs(cs); 3064 compute_effective_cpumask(&new_cpus, cs, parent); 3065 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3066 3067 if (cs->nr_subparts_cpus) 3068 /* 3069 * Make sure that CPUs allocated to child partitions 3070 * do not show up in effective_cpus. 3071 */ 3072 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 3073 3074 if (!tmp || !cs->partition_root_state) 3075 goto update_tasks; 3076 3077 /* 3078 * In the unlikely event that a partition root has empty 3079 * effective_cpus or its parent becomes erroneous, we have to 3080 * transition it to the erroneous state. 3081 */ 3082 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) || 3083 (parent->partition_root_state == PRS_ERROR))) { 3084 if (cs->nr_subparts_cpus) { 3085 cs->nr_subparts_cpus = 0; 3086 cpumask_clear(cs->subparts_cpus); 3087 compute_effective_cpumask(&new_cpus, cs, parent); 3088 } 3089 3090 /* 3091 * If the effective_cpus is empty because the child 3092 * partitions take away all the CPUs, we can keep 3093 * the current partition and let the child partitions 3094 * fight for available CPUs. 3095 */ 3096 if ((parent->partition_root_state == PRS_ERROR) || 3097 cpumask_empty(&new_cpus)) { 3098 update_parent_subparts_cpumask(cs, partcmd_disable, 3099 NULL, tmp); 3100 cs->partition_root_state = PRS_ERROR; 3101 } 3102 cpuset_force_rebuild(); 3103 } 3104 3105 /* 3106 * On the other hand, an erroneous partition root may be transitioned 3107 * back to a regular one or a partition root with no CPU allocated 3108 * from the parent may change to erroneous. 3109 */ 3110 if (is_partition_root(parent) && 3111 ((cs->partition_root_state == PRS_ERROR) || 3112 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) && 3113 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp)) 3114 cpuset_force_rebuild(); 3115 3116 update_tasks: 3117 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3118 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3119 3120 if (is_in_v2_mode()) 3121 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3122 cpus_updated, mems_updated); 3123 else 3124 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3125 cpus_updated, mems_updated); 3126 3127 percpu_up_write(&cpuset_rwsem); 3128 } 3129 3130 /** 3131 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3132 * 3133 * This function is called after either CPU or memory configuration has 3134 * changed and updates cpuset accordingly. The top_cpuset is always 3135 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3136 * order to make cpusets transparent (of no affect) on systems that are 3137 * actively using CPU hotplug but making no active use of cpusets. 3138 * 3139 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3140 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3141 * all descendants. 3142 * 3143 * Note that CPU offlining during suspend is ignored. We don't modify 3144 * cpusets across suspend/resume cycles at all. 3145 */ 3146 static void cpuset_hotplug_workfn(struct work_struct *work) 3147 { 3148 static cpumask_t new_cpus; 3149 static nodemask_t new_mems; 3150 bool cpus_updated, mems_updated; 3151 bool on_dfl = is_in_v2_mode(); 3152 struct tmpmasks tmp, *ptmp = NULL; 3153 3154 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3155 ptmp = &tmp; 3156 3157 percpu_down_write(&cpuset_rwsem); 3158 3159 /* fetch the available cpus/mems and find out which changed how */ 3160 cpumask_copy(&new_cpus, cpu_active_mask); 3161 new_mems = node_states[N_MEMORY]; 3162 3163 /* 3164 * If subparts_cpus is populated, it is likely that the check below 3165 * will produce a false positive on cpus_updated when the cpu list 3166 * isn't changed. It is extra work, but it is better to be safe. 3167 */ 3168 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3169 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3170 3171 /* synchronize cpus_allowed to cpu_active_mask */ 3172 if (cpus_updated) { 3173 spin_lock_irq(&callback_lock); 3174 if (!on_dfl) 3175 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3176 /* 3177 * Make sure that CPUs allocated to child partitions 3178 * do not show up in effective_cpus. If no CPU is left, 3179 * we clear the subparts_cpus & let the child partitions 3180 * fight for the CPUs again. 3181 */ 3182 if (top_cpuset.nr_subparts_cpus) { 3183 if (cpumask_subset(&new_cpus, 3184 top_cpuset.subparts_cpus)) { 3185 top_cpuset.nr_subparts_cpus = 0; 3186 cpumask_clear(top_cpuset.subparts_cpus); 3187 } else { 3188 cpumask_andnot(&new_cpus, &new_cpus, 3189 top_cpuset.subparts_cpus); 3190 } 3191 } 3192 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3193 spin_unlock_irq(&callback_lock); 3194 /* we don't mess with cpumasks of tasks in top_cpuset */ 3195 } 3196 3197 /* synchronize mems_allowed to N_MEMORY */ 3198 if (mems_updated) { 3199 spin_lock_irq(&callback_lock); 3200 if (!on_dfl) 3201 top_cpuset.mems_allowed = new_mems; 3202 top_cpuset.effective_mems = new_mems; 3203 spin_unlock_irq(&callback_lock); 3204 update_tasks_nodemask(&top_cpuset); 3205 } 3206 3207 percpu_up_write(&cpuset_rwsem); 3208 3209 /* if cpus or mems changed, we need to propagate to descendants */ 3210 if (cpus_updated || mems_updated) { 3211 struct cpuset *cs; 3212 struct cgroup_subsys_state *pos_css; 3213 3214 rcu_read_lock(); 3215 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3216 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3217 continue; 3218 rcu_read_unlock(); 3219 3220 cpuset_hotplug_update_tasks(cs, ptmp); 3221 3222 rcu_read_lock(); 3223 css_put(&cs->css); 3224 } 3225 rcu_read_unlock(); 3226 } 3227 3228 /* rebuild sched domains if cpus_allowed has changed */ 3229 if (cpus_updated || force_rebuild) { 3230 force_rebuild = false; 3231 rebuild_sched_domains(); 3232 } 3233 3234 free_cpumasks(NULL, ptmp); 3235 } 3236 3237 void cpuset_update_active_cpus(void) 3238 { 3239 /* 3240 * We're inside cpu hotplug critical region which usually nests 3241 * inside cgroup synchronization. Bounce actual hotplug processing 3242 * to a work item to avoid reverse locking order. 3243 */ 3244 schedule_work(&cpuset_hotplug_work); 3245 } 3246 3247 void cpuset_wait_for_hotplug(void) 3248 { 3249 flush_work(&cpuset_hotplug_work); 3250 } 3251 3252 /* 3253 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3254 * Call this routine anytime after node_states[N_MEMORY] changes. 3255 * See cpuset_update_active_cpus() for CPU hotplug handling. 3256 */ 3257 static int cpuset_track_online_nodes(struct notifier_block *self, 3258 unsigned long action, void *arg) 3259 { 3260 schedule_work(&cpuset_hotplug_work); 3261 return NOTIFY_OK; 3262 } 3263 3264 static struct notifier_block cpuset_track_online_nodes_nb = { 3265 .notifier_call = cpuset_track_online_nodes, 3266 .priority = 10, /* ??! */ 3267 }; 3268 3269 /** 3270 * cpuset_init_smp - initialize cpus_allowed 3271 * 3272 * Description: Finish top cpuset after cpu, node maps are initialized 3273 */ 3274 void __init cpuset_init_smp(void) 3275 { 3276 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 3277 top_cpuset.mems_allowed = node_states[N_MEMORY]; 3278 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3279 3280 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3281 top_cpuset.effective_mems = node_states[N_MEMORY]; 3282 3283 register_hotmemory_notifier(&cpuset_track_online_nodes_nb); 3284 3285 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3286 BUG_ON(!cpuset_migrate_mm_wq); 3287 } 3288 3289 /** 3290 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3291 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3292 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3293 * 3294 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3295 * attached to the specified @tsk. Guaranteed to return some non-empty 3296 * subset of cpu_online_mask, even if this means going outside the 3297 * tasks cpuset. 3298 **/ 3299 3300 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3301 { 3302 unsigned long flags; 3303 3304 spin_lock_irqsave(&callback_lock, flags); 3305 rcu_read_lock(); 3306 guarantee_online_cpus(task_cs(tsk), pmask); 3307 rcu_read_unlock(); 3308 spin_unlock_irqrestore(&callback_lock, flags); 3309 } 3310 3311 /** 3312 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3313 * @tsk: pointer to task_struct with which the scheduler is struggling 3314 * 3315 * Description: In the case that the scheduler cannot find an allowed cpu in 3316 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 3317 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 3318 * which will not contain a sane cpumask during cases such as cpu hotplugging. 3319 * This is the absolute last resort for the scheduler and it is only used if 3320 * _every_ other avenue has been traveled. 3321 **/ 3322 3323 void cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3324 { 3325 rcu_read_lock(); 3326 do_set_cpus_allowed(tsk, is_in_v2_mode() ? 3327 task_cs(tsk)->cpus_allowed : cpu_possible_mask); 3328 rcu_read_unlock(); 3329 3330 /* 3331 * We own tsk->cpus_allowed, nobody can change it under us. 3332 * 3333 * But we used cs && cs->cpus_allowed lockless and thus can 3334 * race with cgroup_attach_task() or update_cpumask() and get 3335 * the wrong tsk->cpus_allowed. However, both cases imply the 3336 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 3337 * which takes task_rq_lock(). 3338 * 3339 * If we are called after it dropped the lock we must see all 3340 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 3341 * set any mask even if it is not right from task_cs() pov, 3342 * the pending set_cpus_allowed_ptr() will fix things. 3343 * 3344 * select_fallback_rq() will fix things ups and set cpu_possible_mask 3345 * if required. 3346 */ 3347 } 3348 3349 void __init cpuset_init_current_mems_allowed(void) 3350 { 3351 nodes_setall(current->mems_allowed); 3352 } 3353 3354 /** 3355 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 3356 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 3357 * 3358 * Description: Returns the nodemask_t mems_allowed of the cpuset 3359 * attached to the specified @tsk. Guaranteed to return some non-empty 3360 * subset of node_states[N_MEMORY], even if this means going outside the 3361 * tasks cpuset. 3362 **/ 3363 3364 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 3365 { 3366 nodemask_t mask; 3367 unsigned long flags; 3368 3369 spin_lock_irqsave(&callback_lock, flags); 3370 rcu_read_lock(); 3371 guarantee_online_mems(task_cs(tsk), &mask); 3372 rcu_read_unlock(); 3373 spin_unlock_irqrestore(&callback_lock, flags); 3374 3375 return mask; 3376 } 3377 3378 /** 3379 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed 3380 * @nodemask: the nodemask to be checked 3381 * 3382 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 3383 */ 3384 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 3385 { 3386 return nodes_intersects(*nodemask, current->mems_allowed); 3387 } 3388 3389 /* 3390 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 3391 * mem_hardwall ancestor to the specified cpuset. Call holding 3392 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 3393 * (an unusual configuration), then returns the root cpuset. 3394 */ 3395 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 3396 { 3397 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 3398 cs = parent_cs(cs); 3399 return cs; 3400 } 3401 3402 /** 3403 * cpuset_node_allowed - Can we allocate on a memory node? 3404 * @node: is this an allowed node? 3405 * @gfp_mask: memory allocation flags 3406 * 3407 * If we're in interrupt, yes, we can always allocate. If @node is set in 3408 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 3409 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 3410 * yes. If current has access to memory reserves as an oom victim, yes. 3411 * Otherwise, no. 3412 * 3413 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 3414 * and do not allow allocations outside the current tasks cpuset 3415 * unless the task has been OOM killed. 3416 * GFP_KERNEL allocations are not so marked, so can escape to the 3417 * nearest enclosing hardwalled ancestor cpuset. 3418 * 3419 * Scanning up parent cpusets requires callback_lock. The 3420 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 3421 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 3422 * current tasks mems_allowed came up empty on the first pass over 3423 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 3424 * cpuset are short of memory, might require taking the callback_lock. 3425 * 3426 * The first call here from mm/page_alloc:get_page_from_freelist() 3427 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 3428 * so no allocation on a node outside the cpuset is allowed (unless 3429 * in interrupt, of course). 3430 * 3431 * The second pass through get_page_from_freelist() doesn't even call 3432 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 3433 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 3434 * in alloc_flags. That logic and the checks below have the combined 3435 * affect that: 3436 * in_interrupt - any node ok (current task context irrelevant) 3437 * GFP_ATOMIC - any node ok 3438 * tsk_is_oom_victim - any node ok 3439 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 3440 * GFP_USER - only nodes in current tasks mems allowed ok. 3441 */ 3442 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 3443 { 3444 struct cpuset *cs; /* current cpuset ancestors */ 3445 int allowed; /* is allocation in zone z allowed? */ 3446 unsigned long flags; 3447 3448 if (in_interrupt()) 3449 return true; 3450 if (node_isset(node, current->mems_allowed)) 3451 return true; 3452 /* 3453 * Allow tasks that have access to memory reserves because they have 3454 * been OOM killed to get memory anywhere. 3455 */ 3456 if (unlikely(tsk_is_oom_victim(current))) 3457 return true; 3458 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 3459 return false; 3460 3461 if (current->flags & PF_EXITING) /* Let dying task have memory */ 3462 return true; 3463 3464 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 3465 spin_lock_irqsave(&callback_lock, flags); 3466 3467 rcu_read_lock(); 3468 cs = nearest_hardwall_ancestor(task_cs(current)); 3469 allowed = node_isset(node, cs->mems_allowed); 3470 rcu_read_unlock(); 3471 3472 spin_unlock_irqrestore(&callback_lock, flags); 3473 return allowed; 3474 } 3475 3476 /** 3477 * cpuset_mem_spread_node() - On which node to begin search for a file page 3478 * cpuset_slab_spread_node() - On which node to begin search for a slab page 3479 * 3480 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 3481 * tasks in a cpuset with is_spread_page or is_spread_slab set), 3482 * and if the memory allocation used cpuset_mem_spread_node() 3483 * to determine on which node to start looking, as it will for 3484 * certain page cache or slab cache pages such as used for file 3485 * system buffers and inode caches, then instead of starting on the 3486 * local node to look for a free page, rather spread the starting 3487 * node around the tasks mems_allowed nodes. 3488 * 3489 * We don't have to worry about the returned node being offline 3490 * because "it can't happen", and even if it did, it would be ok. 3491 * 3492 * The routines calling guarantee_online_mems() are careful to 3493 * only set nodes in task->mems_allowed that are online. So it 3494 * should not be possible for the following code to return an 3495 * offline node. But if it did, that would be ok, as this routine 3496 * is not returning the node where the allocation must be, only 3497 * the node where the search should start. The zonelist passed to 3498 * __alloc_pages() will include all nodes. If the slab allocator 3499 * is passed an offline node, it will fall back to the local node. 3500 * See kmem_cache_alloc_node(). 3501 */ 3502 3503 static int cpuset_spread_node(int *rotor) 3504 { 3505 return *rotor = next_node_in(*rotor, current->mems_allowed); 3506 } 3507 3508 int cpuset_mem_spread_node(void) 3509 { 3510 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 3511 current->cpuset_mem_spread_rotor = 3512 node_random(¤t->mems_allowed); 3513 3514 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 3515 } 3516 3517 int cpuset_slab_spread_node(void) 3518 { 3519 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 3520 current->cpuset_slab_spread_rotor = 3521 node_random(¤t->mems_allowed); 3522 3523 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 3524 } 3525 3526 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 3527 3528 /** 3529 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 3530 * @tsk1: pointer to task_struct of some task. 3531 * @tsk2: pointer to task_struct of some other task. 3532 * 3533 * Description: Return true if @tsk1's mems_allowed intersects the 3534 * mems_allowed of @tsk2. Used by the OOM killer to determine if 3535 * one of the task's memory usage might impact the memory available 3536 * to the other. 3537 **/ 3538 3539 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 3540 const struct task_struct *tsk2) 3541 { 3542 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 3543 } 3544 3545 /** 3546 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 3547 * 3548 * Description: Prints current's name, cpuset name, and cached copy of its 3549 * mems_allowed to the kernel log. 3550 */ 3551 void cpuset_print_current_mems_allowed(void) 3552 { 3553 struct cgroup *cgrp; 3554 3555 rcu_read_lock(); 3556 3557 cgrp = task_cs(current)->css.cgroup; 3558 pr_cont(",cpuset="); 3559 pr_cont_cgroup_name(cgrp); 3560 pr_cont(",mems_allowed=%*pbl", 3561 nodemask_pr_args(¤t->mems_allowed)); 3562 3563 rcu_read_unlock(); 3564 } 3565 3566 /* 3567 * Collection of memory_pressure is suppressed unless 3568 * this flag is enabled by writing "1" to the special 3569 * cpuset file 'memory_pressure_enabled' in the root cpuset. 3570 */ 3571 3572 int cpuset_memory_pressure_enabled __read_mostly; 3573 3574 /** 3575 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 3576 * 3577 * Keep a running average of the rate of synchronous (direct) 3578 * page reclaim efforts initiated by tasks in each cpuset. 3579 * 3580 * This represents the rate at which some task in the cpuset 3581 * ran low on memory on all nodes it was allowed to use, and 3582 * had to enter the kernels page reclaim code in an effort to 3583 * create more free memory by tossing clean pages or swapping 3584 * or writing dirty pages. 3585 * 3586 * Display to user space in the per-cpuset read-only file 3587 * "memory_pressure". Value displayed is an integer 3588 * representing the recent rate of entry into the synchronous 3589 * (direct) page reclaim by any task attached to the cpuset. 3590 **/ 3591 3592 void __cpuset_memory_pressure_bump(void) 3593 { 3594 rcu_read_lock(); 3595 fmeter_markevent(&task_cs(current)->fmeter); 3596 rcu_read_unlock(); 3597 } 3598 3599 #ifdef CONFIG_PROC_PID_CPUSET 3600 /* 3601 * proc_cpuset_show() 3602 * - Print tasks cpuset path into seq_file. 3603 * - Used for /proc/<pid>/cpuset. 3604 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 3605 * doesn't really matter if tsk->cpuset changes after we read it, 3606 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 3607 * anyway. 3608 */ 3609 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 3610 struct pid *pid, struct task_struct *tsk) 3611 { 3612 char *buf; 3613 struct cgroup_subsys_state *css; 3614 int retval; 3615 3616 retval = -ENOMEM; 3617 buf = kmalloc(PATH_MAX, GFP_KERNEL); 3618 if (!buf) 3619 goto out; 3620 3621 css = task_get_css(tsk, cpuset_cgrp_id); 3622 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 3623 current->nsproxy->cgroup_ns); 3624 css_put(css); 3625 if (retval >= PATH_MAX) 3626 retval = -ENAMETOOLONG; 3627 if (retval < 0) 3628 goto out_free; 3629 seq_puts(m, buf); 3630 seq_putc(m, '\n'); 3631 retval = 0; 3632 out_free: 3633 kfree(buf); 3634 out: 3635 return retval; 3636 } 3637 #endif /* CONFIG_PROC_PID_CPUSET */ 3638 3639 /* Display task mems_allowed in /proc/<pid>/status file. */ 3640 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 3641 { 3642 seq_printf(m, "Mems_allowed:\t%*pb\n", 3643 nodemask_pr_args(&task->mems_allowed)); 3644 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 3645 nodemask_pr_args(&task->mems_allowed)); 3646 } 3647