1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 #include "cpuset-internal.h" 25 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/kernel.h> 29 #include <linux/mempolicy.h> 30 #include <linux/mm.h> 31 #include <linux/memory.h> 32 #include <linux/export.h> 33 #include <linux/rcupdate.h> 34 #include <linux/sched.h> 35 #include <linux/sched/deadline.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/task.h> 38 #include <linux/security.h> 39 #include <linux/oom.h> 40 #include <linux/sched/isolation.h> 41 #include <linux/wait.h> 42 #include <linux/workqueue.h> 43 #include <linux/task_work.h> 44 45 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 46 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 47 48 /* 49 * There could be abnormal cpuset configurations for cpu or memory 50 * node binding, add this key to provide a quick low-cost judgment 51 * of the situation. 52 */ 53 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 54 55 static const char * const perr_strings[] = { 56 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive", 57 [PERR_INVPARENT] = "Parent is an invalid partition root", 58 [PERR_NOTPART] = "Parent is not a partition root", 59 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", 60 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", 61 [PERR_HOTPLUG] = "No cpu available due to hotplug", 62 [PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty", 63 [PERR_HKEEPING] = "partition config conflicts with housekeeping setup", 64 [PERR_ACCESS] = "Enable partition not permitted", 65 [PERR_REMOTE] = "Have remote partition underneath", 66 }; 67 68 /* 69 * For local partitions, update to subpartitions_cpus & isolated_cpus is done 70 * in update_parent_effective_cpumask(). For remote partitions, it is done in 71 * the remote_partition_*() and remote_cpus_update() helpers. 72 */ 73 /* 74 * Exclusive CPUs distributed out to local or remote sub-partitions of 75 * top_cpuset 76 */ 77 static cpumask_var_t subpartitions_cpus; 78 79 /* 80 * Exclusive CPUs in isolated partitions 81 */ 82 static cpumask_var_t isolated_cpus; 83 84 /* 85 * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot 86 */ 87 static cpumask_var_t boot_hk_cpus; 88 static bool have_boot_isolcpus; 89 90 /* List of remote partition root children */ 91 static struct list_head remote_children; 92 93 /* 94 * A flag to force sched domain rebuild at the end of an operation. 95 * It can be set in 96 * - update_partition_sd_lb() 97 * - update_cpumasks_hier() 98 * - cpuset_update_flag() 99 * - cpuset_hotplug_update_tasks() 100 * - cpuset_handle_hotplug() 101 * 102 * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock. 103 * 104 * Note that update_relax_domain_level() in cpuset-v1.c can still call 105 * rebuild_sched_domains_locked() directly without using this flag. 106 */ 107 static bool force_sd_rebuild; 108 109 /* 110 * Partition root states: 111 * 112 * 0 - member (not a partition root) 113 * 1 - partition root 114 * 2 - partition root without load balancing (isolated) 115 * -1 - invalid partition root 116 * -2 - invalid isolated partition root 117 * 118 * There are 2 types of partitions - local or remote. Local partitions are 119 * those whose parents are partition root themselves. Setting of 120 * cpuset.cpus.exclusive are optional in setting up local partitions. 121 * Remote partitions are those whose parents are not partition roots. Passing 122 * down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor 123 * nodes are mandatory in creating a remote partition. 124 * 125 * For simplicity, a local partition can be created under a local or remote 126 * partition but a remote partition cannot have any partition root in its 127 * ancestor chain except the cgroup root. 128 */ 129 #define PRS_MEMBER 0 130 #define PRS_ROOT 1 131 #define PRS_ISOLATED 2 132 #define PRS_INVALID_ROOT -1 133 #define PRS_INVALID_ISOLATED -2 134 135 /* 136 * Temporary cpumasks for working with partitions that are passed among 137 * functions to avoid memory allocation in inner functions. 138 */ 139 struct tmpmasks { 140 cpumask_var_t addmask, delmask; /* For partition root */ 141 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 142 }; 143 144 void inc_dl_tasks_cs(struct task_struct *p) 145 { 146 struct cpuset *cs = task_cs(p); 147 148 cs->nr_deadline_tasks++; 149 } 150 151 void dec_dl_tasks_cs(struct task_struct *p) 152 { 153 struct cpuset *cs = task_cs(p); 154 155 cs->nr_deadline_tasks--; 156 } 157 158 static inline bool is_partition_valid(const struct cpuset *cs) 159 { 160 return cs->partition_root_state > 0; 161 } 162 163 static inline bool is_partition_invalid(const struct cpuset *cs) 164 { 165 return cs->partition_root_state < 0; 166 } 167 168 static inline bool cs_is_member(const struct cpuset *cs) 169 { 170 return cs->partition_root_state == PRS_MEMBER; 171 } 172 173 /* 174 * Callers should hold callback_lock to modify partition_root_state. 175 */ 176 static inline void make_partition_invalid(struct cpuset *cs) 177 { 178 if (cs->partition_root_state > 0) 179 cs->partition_root_state = -cs->partition_root_state; 180 } 181 182 /* 183 * Send notification event of whenever partition_root_state changes. 184 */ 185 static inline void notify_partition_change(struct cpuset *cs, int old_prs) 186 { 187 if (old_prs == cs->partition_root_state) 188 return; 189 cgroup_file_notify(&cs->partition_file); 190 191 /* Reset prs_err if not invalid */ 192 if (is_partition_valid(cs)) 193 WRITE_ONCE(cs->prs_err, PERR_NONE); 194 } 195 196 /* 197 * The top_cpuset is always synchronized to cpu_active_mask and we should avoid 198 * using cpu_online_mask as much as possible. An active CPU is always an online 199 * CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ 200 * during hotplug operations. A CPU is marked active at the last stage of CPU 201 * bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code 202 * will be called to update the sched domains so that the scheduler can move 203 * a normal task to a newly active CPU or remove tasks away from a newly 204 * inactivated CPU. The online bit is set much earlier in the CPU bringup 205 * process and cleared much later in CPU teardown. 206 * 207 * If cpu_online_mask is used while a hotunplug operation is happening in 208 * parallel, we may leave an offline CPU in cpu_allowed or some other masks. 209 */ 210 static struct cpuset top_cpuset = { 211 .flags = BIT(CS_CPU_EXCLUSIVE) | 212 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE), 213 .partition_root_state = PRS_ROOT, 214 .relax_domain_level = -1, 215 .remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling), 216 }; 217 218 /* 219 * There are two global locks guarding cpuset structures - cpuset_mutex and 220 * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel 221 * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset 222 * structures. Note that cpuset_mutex needs to be a mutex as it is used in 223 * paths that rely on priority inheritance (e.g. scheduler - on RT) for 224 * correctness. 225 * 226 * A task must hold both locks to modify cpusets. If a task holds 227 * cpuset_mutex, it blocks others, ensuring that it is the only task able to 228 * also acquire callback_lock and be able to modify cpusets. It can perform 229 * various checks on the cpuset structure first, knowing nothing will change. 230 * It can also allocate memory while just holding cpuset_mutex. While it is 231 * performing these checks, various callback routines can briefly acquire 232 * callback_lock to query cpusets. Once it is ready to make the changes, it 233 * takes callback_lock, blocking everyone else. 234 * 235 * Calls to the kernel memory allocator can not be made while holding 236 * callback_lock, as that would risk double tripping on callback_lock 237 * from one of the callbacks into the cpuset code from within 238 * __alloc_pages(). 239 * 240 * If a task is only holding callback_lock, then it has read-only 241 * access to cpusets. 242 * 243 * Now, the task_struct fields mems_allowed and mempolicy may be changed 244 * by other task, we use alloc_lock in the task_struct fields to protect 245 * them. 246 * 247 * The cpuset_common_seq_show() handlers only hold callback_lock across 248 * small pieces of code, such as when reading out possibly multi-word 249 * cpumasks and nodemasks. 250 */ 251 252 static DEFINE_MUTEX(cpuset_mutex); 253 254 /** 255 * cpuset_lock - Acquire the global cpuset mutex 256 * 257 * This locks the global cpuset mutex to prevent modifications to cpuset 258 * hierarchy and configurations. This helper is not enough to make modification. 259 */ 260 void cpuset_lock(void) 261 { 262 mutex_lock(&cpuset_mutex); 263 } 264 265 void cpuset_unlock(void) 266 { 267 mutex_unlock(&cpuset_mutex); 268 } 269 270 /** 271 * cpuset_full_lock - Acquire full protection for cpuset modification 272 * 273 * Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex 274 * to safely modify cpuset data. 275 */ 276 void cpuset_full_lock(void) 277 { 278 cpus_read_lock(); 279 mutex_lock(&cpuset_mutex); 280 } 281 282 void cpuset_full_unlock(void) 283 { 284 mutex_unlock(&cpuset_mutex); 285 cpus_read_unlock(); 286 } 287 288 static DEFINE_SPINLOCK(callback_lock); 289 290 void cpuset_callback_lock_irq(void) 291 { 292 spin_lock_irq(&callback_lock); 293 } 294 295 void cpuset_callback_unlock_irq(void) 296 { 297 spin_unlock_irq(&callback_lock); 298 } 299 300 static struct workqueue_struct *cpuset_migrate_mm_wq; 301 302 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 303 304 static inline void check_insane_mems_config(nodemask_t *nodes) 305 { 306 if (!cpusets_insane_config() && 307 movable_only_nodes(nodes)) { 308 static_branch_enable_cpuslocked(&cpusets_insane_config_key); 309 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 310 "Cpuset allocations might fail even with a lot of memory available.\n", 311 nodemask_pr_args(nodes)); 312 } 313 } 314 315 /* 316 * decrease cs->attach_in_progress. 317 * wake_up cpuset_attach_wq if cs->attach_in_progress==0. 318 */ 319 static inline void dec_attach_in_progress_locked(struct cpuset *cs) 320 { 321 lockdep_assert_held(&cpuset_mutex); 322 323 cs->attach_in_progress--; 324 if (!cs->attach_in_progress) 325 wake_up(&cpuset_attach_wq); 326 } 327 328 static inline void dec_attach_in_progress(struct cpuset *cs) 329 { 330 mutex_lock(&cpuset_mutex); 331 dec_attach_in_progress_locked(cs); 332 mutex_unlock(&cpuset_mutex); 333 } 334 335 static inline bool cpuset_v2(void) 336 { 337 return !IS_ENABLED(CONFIG_CPUSETS_V1) || 338 cgroup_subsys_on_dfl(cpuset_cgrp_subsys); 339 } 340 341 /* 342 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 343 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 344 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 345 * With v2 behavior, "cpus" and "mems" are always what the users have 346 * requested and won't be changed by hotplug events. Only the effective 347 * cpus or mems will be affected. 348 */ 349 static inline bool is_in_v2_mode(void) 350 { 351 return cpuset_v2() || 352 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 353 } 354 355 /** 356 * partition_is_populated - check if partition has tasks 357 * @cs: partition root to be checked 358 * @excluded_child: a child cpuset to be excluded in task checking 359 * Return: true if there are tasks, false otherwise 360 * 361 * It is assumed that @cs is a valid partition root. @excluded_child should 362 * be non-NULL when this cpuset is going to become a partition itself. 363 */ 364 static inline bool partition_is_populated(struct cpuset *cs, 365 struct cpuset *excluded_child) 366 { 367 struct cgroup_subsys_state *css; 368 struct cpuset *child; 369 370 if (cs->css.cgroup->nr_populated_csets) 371 return true; 372 if (!excluded_child && !cs->nr_subparts) 373 return cgroup_is_populated(cs->css.cgroup); 374 375 rcu_read_lock(); 376 cpuset_for_each_child(child, css, cs) { 377 if (child == excluded_child) 378 continue; 379 if (is_partition_valid(child)) 380 continue; 381 if (cgroup_is_populated(child->css.cgroup)) { 382 rcu_read_unlock(); 383 return true; 384 } 385 } 386 rcu_read_unlock(); 387 return false; 388 } 389 390 /* 391 * Return in pmask the portion of a task's cpusets's cpus_allowed that 392 * are online and are capable of running the task. If none are found, 393 * walk up the cpuset hierarchy until we find one that does have some 394 * appropriate cpus. 395 * 396 * One way or another, we guarantee to return some non-empty subset 397 * of cpu_active_mask. 398 * 399 * Call with callback_lock or cpuset_mutex held. 400 */ 401 static void guarantee_active_cpus(struct task_struct *tsk, 402 struct cpumask *pmask) 403 { 404 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 405 struct cpuset *cs; 406 407 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask))) 408 cpumask_copy(pmask, cpu_active_mask); 409 410 rcu_read_lock(); 411 cs = task_cs(tsk); 412 413 while (!cpumask_intersects(cs->effective_cpus, pmask)) 414 cs = parent_cs(cs); 415 416 cpumask_and(pmask, pmask, cs->effective_cpus); 417 rcu_read_unlock(); 418 } 419 420 /* 421 * Return in *pmask the portion of a cpusets's mems_allowed that 422 * are online, with memory. If none are online with memory, walk 423 * up the cpuset hierarchy until we find one that does have some 424 * online mems. The top cpuset always has some mems online. 425 * 426 * One way or another, we guarantee to return some non-empty subset 427 * of node_states[N_MEMORY]. 428 * 429 * Call with callback_lock or cpuset_mutex held. 430 */ 431 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 432 { 433 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 434 cs = parent_cs(cs); 435 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 436 } 437 438 /** 439 * alloc_cpumasks - Allocate an array of cpumask variables 440 * @pmasks: Pointer to array of cpumask_var_t pointers 441 * @size: Number of cpumasks to allocate 442 * Return: 0 if successful, -ENOMEM otherwise. 443 * 444 * Allocates @size cpumasks and initializes them to empty. Returns 0 on 445 * success, -ENOMEM on allocation failure. On failure, any previously 446 * allocated cpumasks are freed. 447 */ 448 static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size) 449 { 450 int i; 451 452 for (i = 0; i < size; i++) { 453 if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) { 454 while (--i >= 0) 455 free_cpumask_var(*pmasks[i]); 456 return -ENOMEM; 457 } 458 } 459 return 0; 460 } 461 462 /** 463 * alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations. 464 * @tmp: Pointer to tmpmasks structure to populate 465 * Return: 0 on success, -ENOMEM on allocation failure 466 */ 467 static inline int alloc_tmpmasks(struct tmpmasks *tmp) 468 { 469 /* 470 * Array of pointers to the three cpumask_var_t fields in tmpmasks. 471 * Note: Array size must match actual number of masks (3) 472 */ 473 cpumask_var_t *pmask[3] = { 474 &tmp->new_cpus, 475 &tmp->addmask, 476 &tmp->delmask 477 }; 478 479 return alloc_cpumasks(pmask, ARRAY_SIZE(pmask)); 480 } 481 482 /** 483 * free_tmpmasks - free cpumasks in a tmpmasks structure 484 * @tmp: the tmpmasks structure pointer 485 */ 486 static inline void free_tmpmasks(struct tmpmasks *tmp) 487 { 488 if (!tmp) 489 return; 490 491 free_cpumask_var(tmp->new_cpus); 492 free_cpumask_var(tmp->addmask); 493 free_cpumask_var(tmp->delmask); 494 } 495 496 /** 497 * dup_or_alloc_cpuset - Duplicate or allocate a new cpuset 498 * @cs: Source cpuset to duplicate (NULL for a fresh allocation) 499 * 500 * Creates a new cpuset by either: 501 * 1. Duplicating an existing cpuset (if @cs is non-NULL), or 502 * 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL) 503 * 504 * Return: Pointer to newly allocated cpuset on success, NULL on failure 505 */ 506 static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs) 507 { 508 struct cpuset *trial; 509 510 /* Allocate base structure */ 511 trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) : 512 kzalloc(sizeof(*cs), GFP_KERNEL); 513 if (!trial) 514 return NULL; 515 516 /* Setup cpumask pointer array */ 517 cpumask_var_t *pmask[4] = { 518 &trial->cpus_allowed, 519 &trial->effective_cpus, 520 &trial->effective_xcpus, 521 &trial->exclusive_cpus 522 }; 523 524 if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) { 525 kfree(trial); 526 return NULL; 527 } 528 529 /* Copy masks if duplicating */ 530 if (cs) { 531 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 532 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 533 cpumask_copy(trial->effective_xcpus, cs->effective_xcpus); 534 cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus); 535 } 536 537 return trial; 538 } 539 540 /** 541 * free_cpuset - free the cpuset 542 * @cs: the cpuset to be freed 543 */ 544 static inline void free_cpuset(struct cpuset *cs) 545 { 546 free_cpumask_var(cs->cpus_allowed); 547 free_cpumask_var(cs->effective_cpus); 548 free_cpumask_var(cs->effective_xcpus); 549 free_cpumask_var(cs->exclusive_cpus); 550 kfree(cs); 551 } 552 553 /* Return user specified exclusive CPUs */ 554 static inline struct cpumask *user_xcpus(struct cpuset *cs) 555 { 556 return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed 557 : cs->exclusive_cpus; 558 } 559 560 static inline bool xcpus_empty(struct cpuset *cs) 561 { 562 return cpumask_empty(cs->cpus_allowed) && 563 cpumask_empty(cs->exclusive_cpus); 564 } 565 566 /* 567 * cpusets_are_exclusive() - check if two cpusets are exclusive 568 * 569 * Return true if exclusive, false if not 570 */ 571 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2) 572 { 573 struct cpumask *xcpus1 = user_xcpus(cs1); 574 struct cpumask *xcpus2 = user_xcpus(cs2); 575 576 if (cpumask_intersects(xcpus1, xcpus2)) 577 return false; 578 return true; 579 } 580 581 /** 582 * cpus_excl_conflict - Check if two cpusets have exclusive CPU conflicts 583 * @cs1: first cpuset to check 584 * @cs2: second cpuset to check 585 * 586 * Returns: true if CPU exclusivity conflict exists, false otherwise 587 * 588 * Conflict detection rules: 589 * 1. If either cpuset is CPU exclusive, they must be mutually exclusive 590 * 2. exclusive_cpus masks cannot intersect between cpusets 591 * 3. The allowed CPUs of one cpuset cannot be a subset of another's exclusive CPUs 592 */ 593 static inline bool cpus_excl_conflict(struct cpuset *cs1, struct cpuset *cs2) 594 { 595 /* If either cpuset is exclusive, check if they are mutually exclusive */ 596 if (is_cpu_exclusive(cs1) || is_cpu_exclusive(cs2)) 597 return !cpusets_are_exclusive(cs1, cs2); 598 599 /* Exclusive_cpus cannot intersect */ 600 if (cpumask_intersects(cs1->exclusive_cpus, cs2->exclusive_cpus)) 601 return true; 602 603 /* The cpus_allowed of one cpuset cannot be a subset of another cpuset's exclusive_cpus */ 604 if (!cpumask_empty(cs1->cpus_allowed) && 605 cpumask_subset(cs1->cpus_allowed, cs2->exclusive_cpus)) 606 return true; 607 608 if (!cpumask_empty(cs2->cpus_allowed) && 609 cpumask_subset(cs2->cpus_allowed, cs1->exclusive_cpus)) 610 return true; 611 612 return false; 613 } 614 615 static inline bool mems_excl_conflict(struct cpuset *cs1, struct cpuset *cs2) 616 { 617 if ((is_mem_exclusive(cs1) || is_mem_exclusive(cs2))) 618 return nodes_intersects(cs1->mems_allowed, cs2->mems_allowed); 619 return false; 620 } 621 622 /* 623 * validate_change() - Used to validate that any proposed cpuset change 624 * follows the structural rules for cpusets. 625 * 626 * If we replaced the flag and mask values of the current cpuset 627 * (cur) with those values in the trial cpuset (trial), would 628 * our various subset and exclusive rules still be valid? Presumes 629 * cpuset_mutex held. 630 * 631 * 'cur' is the address of an actual, in-use cpuset. Operations 632 * such as list traversal that depend on the actual address of the 633 * cpuset in the list must use cur below, not trial. 634 * 635 * 'trial' is the address of bulk structure copy of cur, with 636 * perhaps one or more of the fields cpus_allowed, mems_allowed, 637 * or flags changed to new, trial values. 638 * 639 * Return 0 if valid, -errno if not. 640 */ 641 642 static int validate_change(struct cpuset *cur, struct cpuset *trial) 643 { 644 struct cgroup_subsys_state *css; 645 struct cpuset *c, *par; 646 int ret = 0; 647 648 rcu_read_lock(); 649 650 if (!is_in_v2_mode()) 651 ret = cpuset1_validate_change(cur, trial); 652 if (ret) 653 goto out; 654 655 /* Remaining checks don't apply to root cpuset */ 656 if (cur == &top_cpuset) 657 goto out; 658 659 par = parent_cs(cur); 660 661 /* 662 * Cpusets with tasks - existing or newly being attached - can't 663 * be changed to have empty cpus_allowed or mems_allowed. 664 */ 665 ret = -ENOSPC; 666 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 667 if (!cpumask_empty(cur->cpus_allowed) && 668 cpumask_empty(trial->cpus_allowed)) 669 goto out; 670 if (!nodes_empty(cur->mems_allowed) && 671 nodes_empty(trial->mems_allowed)) 672 goto out; 673 } 674 675 /* 676 * We can't shrink if we won't have enough room for SCHED_DEADLINE 677 * tasks. This check is not done when scheduling is disabled as the 678 * users should know what they are doing. 679 * 680 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns 681 * cpus_allowed. 682 * 683 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only 684 * for non-isolated partition root. At this point, the target 685 * effective_cpus isn't computed yet. user_xcpus() is the best 686 * approximation. 687 * 688 * TBD: May need to precompute the real effective_cpus here in case 689 * incorrect scheduling of SCHED_DEADLINE tasks in a partition 690 * becomes an issue. 691 */ 692 ret = -EBUSY; 693 if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) && 694 !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial))) 695 goto out; 696 697 /* 698 * If either I or some sibling (!= me) is exclusive, we can't 699 * overlap. exclusive_cpus cannot overlap with each other if set. 700 */ 701 ret = -EINVAL; 702 cpuset_for_each_child(c, css, par) { 703 if (c == cur) 704 continue; 705 if (cpus_excl_conflict(trial, c)) 706 goto out; 707 if (mems_excl_conflict(trial, c)) 708 goto out; 709 } 710 711 ret = 0; 712 out: 713 rcu_read_unlock(); 714 return ret; 715 } 716 717 #ifdef CONFIG_SMP 718 /* 719 * Helper routine for generate_sched_domains(). 720 * Do cpusets a, b have overlapping effective cpus_allowed masks? 721 */ 722 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 723 { 724 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 725 } 726 727 static void 728 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 729 { 730 if (dattr->relax_domain_level < c->relax_domain_level) 731 dattr->relax_domain_level = c->relax_domain_level; 732 return; 733 } 734 735 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 736 struct cpuset *root_cs) 737 { 738 struct cpuset *cp; 739 struct cgroup_subsys_state *pos_css; 740 741 rcu_read_lock(); 742 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 743 /* skip the whole subtree if @cp doesn't have any CPU */ 744 if (cpumask_empty(cp->cpus_allowed)) { 745 pos_css = css_rightmost_descendant(pos_css); 746 continue; 747 } 748 749 if (is_sched_load_balance(cp)) 750 update_domain_attr(dattr, cp); 751 } 752 rcu_read_unlock(); 753 } 754 755 /* Must be called with cpuset_mutex held. */ 756 static inline int nr_cpusets(void) 757 { 758 /* jump label reference count + the top-level cpuset */ 759 return static_key_count(&cpusets_enabled_key.key) + 1; 760 } 761 762 /* 763 * generate_sched_domains() 764 * 765 * This function builds a partial partition of the systems CPUs 766 * A 'partial partition' is a set of non-overlapping subsets whose 767 * union is a subset of that set. 768 * The output of this function needs to be passed to kernel/sched/core.c 769 * partition_sched_domains() routine, which will rebuild the scheduler's 770 * load balancing domains (sched domains) as specified by that partial 771 * partition. 772 * 773 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 774 * for a background explanation of this. 775 * 776 * Does not return errors, on the theory that the callers of this 777 * routine would rather not worry about failures to rebuild sched 778 * domains when operating in the severe memory shortage situations 779 * that could cause allocation failures below. 780 * 781 * Must be called with cpuset_mutex held. 782 * 783 * The three key local variables below are: 784 * cp - cpuset pointer, used (together with pos_css) to perform a 785 * top-down scan of all cpusets. For our purposes, rebuilding 786 * the schedulers sched domains, we can ignore !is_sched_load_ 787 * balance cpusets. 788 * csa - (for CpuSet Array) Array of pointers to all the cpusets 789 * that need to be load balanced, for convenient iterative 790 * access by the subsequent code that finds the best partition, 791 * i.e the set of domains (subsets) of CPUs such that the 792 * cpus_allowed of every cpuset marked is_sched_load_balance 793 * is a subset of one of these domains, while there are as 794 * many such domains as possible, each as small as possible. 795 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 796 * the kernel/sched/core.c routine partition_sched_domains() in a 797 * convenient format, that can be easily compared to the prior 798 * value to determine what partition elements (sched domains) 799 * were changed (added or removed.) 800 * 801 * Finding the best partition (set of domains): 802 * The double nested loops below over i, j scan over the load 803 * balanced cpusets (using the array of cpuset pointers in csa[]) 804 * looking for pairs of cpusets that have overlapping cpus_allowed 805 * and merging them using a union-find algorithm. 806 * 807 * The union of the cpus_allowed masks from the set of all cpusets 808 * having the same root then form the one element of the partition 809 * (one sched domain) to be passed to partition_sched_domains(). 810 * 811 */ 812 static int generate_sched_domains(cpumask_var_t **domains, 813 struct sched_domain_attr **attributes) 814 { 815 struct cpuset *cp; /* top-down scan of cpusets */ 816 struct cpuset **csa; /* array of all cpuset ptrs */ 817 int csn; /* how many cpuset ptrs in csa so far */ 818 int i, j; /* indices for partition finding loops */ 819 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 820 struct sched_domain_attr *dattr; /* attributes for custom domains */ 821 int ndoms = 0; /* number of sched domains in result */ 822 int nslot; /* next empty doms[] struct cpumask slot */ 823 struct cgroup_subsys_state *pos_css; 824 bool root_load_balance = is_sched_load_balance(&top_cpuset); 825 bool cgrpv2 = cpuset_v2(); 826 int nslot_update; 827 828 doms = NULL; 829 dattr = NULL; 830 csa = NULL; 831 832 /* Special case for the 99% of systems with one, full, sched domain */ 833 if (root_load_balance && cpumask_empty(subpartitions_cpus)) { 834 single_root_domain: 835 ndoms = 1; 836 doms = alloc_sched_domains(ndoms); 837 if (!doms) 838 goto done; 839 840 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 841 if (dattr) { 842 *dattr = SD_ATTR_INIT; 843 update_domain_attr_tree(dattr, &top_cpuset); 844 } 845 cpumask_and(doms[0], top_cpuset.effective_cpus, 846 housekeeping_cpumask(HK_TYPE_DOMAIN)); 847 848 goto done; 849 } 850 851 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 852 if (!csa) 853 goto done; 854 csn = 0; 855 856 rcu_read_lock(); 857 if (root_load_balance) 858 csa[csn++] = &top_cpuset; 859 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 860 if (cp == &top_cpuset) 861 continue; 862 863 if (cgrpv2) 864 goto v2; 865 866 /* 867 * v1: 868 * Continue traversing beyond @cp iff @cp has some CPUs and 869 * isn't load balancing. The former is obvious. The 870 * latter: All child cpusets contain a subset of the 871 * parent's cpus, so just skip them, and then we call 872 * update_domain_attr_tree() to calc relax_domain_level of 873 * the corresponding sched domain. 874 */ 875 if (!cpumask_empty(cp->cpus_allowed) && 876 !(is_sched_load_balance(cp) && 877 cpumask_intersects(cp->cpus_allowed, 878 housekeeping_cpumask(HK_TYPE_DOMAIN)))) 879 continue; 880 881 if (is_sched_load_balance(cp) && 882 !cpumask_empty(cp->effective_cpus)) 883 csa[csn++] = cp; 884 885 /* skip @cp's subtree */ 886 pos_css = css_rightmost_descendant(pos_css); 887 continue; 888 889 v2: 890 /* 891 * Only valid partition roots that are not isolated and with 892 * non-empty effective_cpus will be saved into csn[]. 893 */ 894 if ((cp->partition_root_state == PRS_ROOT) && 895 !cpumask_empty(cp->effective_cpus)) 896 csa[csn++] = cp; 897 898 /* 899 * Skip @cp's subtree if not a partition root and has no 900 * exclusive CPUs to be granted to child cpusets. 901 */ 902 if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus)) 903 pos_css = css_rightmost_descendant(pos_css); 904 } 905 rcu_read_unlock(); 906 907 /* 908 * If there are only isolated partitions underneath the cgroup root, 909 * we can optimize out unneeded sched domains scanning. 910 */ 911 if (root_load_balance && (csn == 1)) 912 goto single_root_domain; 913 914 for (i = 0; i < csn; i++) 915 uf_node_init(&csa[i]->node); 916 917 /* Merge overlapping cpusets */ 918 for (i = 0; i < csn; i++) { 919 for (j = i + 1; j < csn; j++) { 920 if (cpusets_overlap(csa[i], csa[j])) { 921 /* 922 * Cgroup v2 shouldn't pass down overlapping 923 * partition root cpusets. 924 */ 925 WARN_ON_ONCE(cgrpv2); 926 uf_union(&csa[i]->node, &csa[j]->node); 927 } 928 } 929 } 930 931 /* Count the total number of domains */ 932 for (i = 0; i < csn; i++) { 933 if (uf_find(&csa[i]->node) == &csa[i]->node) 934 ndoms++; 935 } 936 937 /* 938 * Now we know how many domains to create. 939 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 940 */ 941 doms = alloc_sched_domains(ndoms); 942 if (!doms) 943 goto done; 944 945 /* 946 * The rest of the code, including the scheduler, can deal with 947 * dattr==NULL case. No need to abort if alloc fails. 948 */ 949 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 950 GFP_KERNEL); 951 952 /* 953 * Cgroup v2 doesn't support domain attributes, just set all of them 954 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a 955 * subset of HK_TYPE_DOMAIN housekeeping CPUs. 956 */ 957 if (cgrpv2) { 958 for (i = 0; i < ndoms; i++) { 959 /* 960 * The top cpuset may contain some boot time isolated 961 * CPUs that need to be excluded from the sched domain. 962 */ 963 if (csa[i] == &top_cpuset) 964 cpumask_and(doms[i], csa[i]->effective_cpus, 965 housekeeping_cpumask(HK_TYPE_DOMAIN)); 966 else 967 cpumask_copy(doms[i], csa[i]->effective_cpus); 968 if (dattr) 969 dattr[i] = SD_ATTR_INIT; 970 } 971 goto done; 972 } 973 974 for (nslot = 0, i = 0; i < csn; i++) { 975 nslot_update = 0; 976 for (j = i; j < csn; j++) { 977 if (uf_find(&csa[j]->node) == &csa[i]->node) { 978 struct cpumask *dp = doms[nslot]; 979 980 if (i == j) { 981 nslot_update = 1; 982 cpumask_clear(dp); 983 if (dattr) 984 *(dattr + nslot) = SD_ATTR_INIT; 985 } 986 cpumask_or(dp, dp, csa[j]->effective_cpus); 987 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); 988 if (dattr) 989 update_domain_attr_tree(dattr + nslot, csa[j]); 990 } 991 } 992 if (nslot_update) 993 nslot++; 994 } 995 BUG_ON(nslot != ndoms); 996 997 done: 998 kfree(csa); 999 1000 /* 1001 * Fallback to the default domain if kmalloc() failed. 1002 * See comments in partition_sched_domains(). 1003 */ 1004 if (doms == NULL) 1005 ndoms = 1; 1006 1007 *domains = doms; 1008 *attributes = dattr; 1009 return ndoms; 1010 } 1011 1012 static void dl_update_tasks_root_domain(struct cpuset *cs) 1013 { 1014 struct css_task_iter it; 1015 struct task_struct *task; 1016 1017 if (cs->nr_deadline_tasks == 0) 1018 return; 1019 1020 css_task_iter_start(&cs->css, 0, &it); 1021 1022 while ((task = css_task_iter_next(&it))) 1023 dl_add_task_root_domain(task); 1024 1025 css_task_iter_end(&it); 1026 } 1027 1028 void dl_rebuild_rd_accounting(void) 1029 { 1030 struct cpuset *cs = NULL; 1031 struct cgroup_subsys_state *pos_css; 1032 int cpu; 1033 u64 cookie = ++dl_cookie; 1034 1035 lockdep_assert_held(&cpuset_mutex); 1036 lockdep_assert_cpus_held(); 1037 lockdep_assert_held(&sched_domains_mutex); 1038 1039 rcu_read_lock(); 1040 1041 for_each_possible_cpu(cpu) { 1042 if (dl_bw_visited(cpu, cookie)) 1043 continue; 1044 1045 dl_clear_root_domain_cpu(cpu); 1046 } 1047 1048 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1049 1050 if (cpumask_empty(cs->effective_cpus)) { 1051 pos_css = css_rightmost_descendant(pos_css); 1052 continue; 1053 } 1054 1055 css_get(&cs->css); 1056 1057 rcu_read_unlock(); 1058 1059 dl_update_tasks_root_domain(cs); 1060 1061 rcu_read_lock(); 1062 css_put(&cs->css); 1063 } 1064 rcu_read_unlock(); 1065 } 1066 1067 /* 1068 * Rebuild scheduler domains. 1069 * 1070 * If the flag 'sched_load_balance' of any cpuset with non-empty 1071 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1072 * which has that flag enabled, or if any cpuset with a non-empty 1073 * 'cpus' is removed, then call this routine to rebuild the 1074 * scheduler's dynamic sched domains. 1075 * 1076 * Call with cpuset_mutex held. Takes cpus_read_lock(). 1077 */ 1078 void rebuild_sched_domains_locked(void) 1079 { 1080 struct cgroup_subsys_state *pos_css; 1081 struct sched_domain_attr *attr; 1082 cpumask_var_t *doms; 1083 struct cpuset *cs; 1084 int ndoms; 1085 1086 lockdep_assert_cpus_held(); 1087 lockdep_assert_held(&cpuset_mutex); 1088 force_sd_rebuild = false; 1089 1090 /* 1091 * If we have raced with CPU hotplug, return early to avoid 1092 * passing doms with offlined cpu to partition_sched_domains(). 1093 * Anyways, cpuset_handle_hotplug() will rebuild sched domains. 1094 * 1095 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1096 * should be the same as the active CPUs, so checking only top_cpuset 1097 * is enough to detect racing CPU offlines. 1098 */ 1099 if (cpumask_empty(subpartitions_cpus) && 1100 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1101 return; 1102 1103 /* 1104 * With subpartition CPUs, however, the effective CPUs of a partition 1105 * root should be only a subset of the active CPUs. Since a CPU in any 1106 * partition root could be offlined, all must be checked. 1107 */ 1108 if (!cpumask_empty(subpartitions_cpus)) { 1109 rcu_read_lock(); 1110 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1111 if (!is_partition_valid(cs)) { 1112 pos_css = css_rightmost_descendant(pos_css); 1113 continue; 1114 } 1115 if (!cpumask_subset(cs->effective_cpus, 1116 cpu_active_mask)) { 1117 rcu_read_unlock(); 1118 return; 1119 } 1120 } 1121 rcu_read_unlock(); 1122 } 1123 1124 /* Generate domain masks and attrs */ 1125 ndoms = generate_sched_domains(&doms, &attr); 1126 1127 /* Have scheduler rebuild the domains */ 1128 partition_sched_domains(ndoms, doms, attr); 1129 } 1130 #else /* !CONFIG_SMP */ 1131 void rebuild_sched_domains_locked(void) 1132 { 1133 } 1134 #endif /* CONFIG_SMP */ 1135 1136 static void rebuild_sched_domains_cpuslocked(void) 1137 { 1138 mutex_lock(&cpuset_mutex); 1139 rebuild_sched_domains_locked(); 1140 mutex_unlock(&cpuset_mutex); 1141 } 1142 1143 void rebuild_sched_domains(void) 1144 { 1145 cpus_read_lock(); 1146 rebuild_sched_domains_cpuslocked(); 1147 cpus_read_unlock(); 1148 } 1149 1150 void cpuset_reset_sched_domains(void) 1151 { 1152 mutex_lock(&cpuset_mutex); 1153 partition_sched_domains(1, NULL, NULL); 1154 mutex_unlock(&cpuset_mutex); 1155 } 1156 1157 /** 1158 * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1159 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1160 * @new_cpus: the temp variable for the new effective_cpus mask 1161 * 1162 * Iterate through each task of @cs updating its cpus_allowed to the 1163 * effective cpuset's. As this function is called with cpuset_mutex held, 1164 * cpuset membership stays stable. 1165 * 1166 * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus 1167 * to make sure all offline CPUs are also included as hotplug code won't 1168 * update cpumasks for tasks in top_cpuset. 1169 * 1170 * As task_cpu_possible_mask() can be task dependent in arm64, we have to 1171 * do cpu masking per task instead of doing it once for all. 1172 */ 1173 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) 1174 { 1175 struct css_task_iter it; 1176 struct task_struct *task; 1177 bool top_cs = cs == &top_cpuset; 1178 1179 css_task_iter_start(&cs->css, 0, &it); 1180 while ((task = css_task_iter_next(&it))) { 1181 const struct cpumask *possible_mask = task_cpu_possible_mask(task); 1182 1183 if (top_cs) { 1184 /* 1185 * PF_NO_SETAFFINITY tasks are ignored. 1186 * All per cpu kthreads should have PF_NO_SETAFFINITY 1187 * flag set, see kthread_set_per_cpu(). 1188 */ 1189 if (task->flags & PF_NO_SETAFFINITY) 1190 continue; 1191 cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus); 1192 } else { 1193 cpumask_and(new_cpus, possible_mask, cs->effective_cpus); 1194 } 1195 set_cpus_allowed_ptr(task, new_cpus); 1196 } 1197 css_task_iter_end(&it); 1198 } 1199 1200 /** 1201 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1202 * @new_cpus: the temp variable for the new effective_cpus mask 1203 * @cs: the cpuset the need to recompute the new effective_cpus mask 1204 * @parent: the parent cpuset 1205 * 1206 * The result is valid only if the given cpuset isn't a partition root. 1207 */ 1208 static void compute_effective_cpumask(struct cpumask *new_cpus, 1209 struct cpuset *cs, struct cpuset *parent) 1210 { 1211 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1212 } 1213 1214 /* 1215 * Commands for update_parent_effective_cpumask 1216 */ 1217 enum partition_cmd { 1218 partcmd_enable, /* Enable partition root */ 1219 partcmd_enablei, /* Enable isolated partition root */ 1220 partcmd_disable, /* Disable partition root */ 1221 partcmd_update, /* Update parent's effective_cpus */ 1222 partcmd_invalidate, /* Make partition invalid */ 1223 }; 1224 1225 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1226 struct tmpmasks *tmp); 1227 1228 /* 1229 * Update partition exclusive flag 1230 * 1231 * Return: 0 if successful, an error code otherwise 1232 */ 1233 static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs) 1234 { 1235 bool exclusive = (new_prs > PRS_MEMBER); 1236 1237 if (exclusive && !is_cpu_exclusive(cs)) { 1238 if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1)) 1239 return PERR_NOTEXCL; 1240 } else if (!exclusive && is_cpu_exclusive(cs)) { 1241 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1242 cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1243 } 1244 return 0; 1245 } 1246 1247 /* 1248 * Update partition load balance flag and/or rebuild sched domain 1249 * 1250 * Changing load balance flag will automatically call 1251 * rebuild_sched_domains_locked(). 1252 * This function is for cgroup v2 only. 1253 */ 1254 static void update_partition_sd_lb(struct cpuset *cs, int old_prs) 1255 { 1256 int new_prs = cs->partition_root_state; 1257 bool rebuild_domains = (new_prs > 0) || (old_prs > 0); 1258 bool new_lb; 1259 1260 /* 1261 * If cs is not a valid partition root, the load balance state 1262 * will follow its parent. 1263 */ 1264 if (new_prs > 0) { 1265 new_lb = (new_prs != PRS_ISOLATED); 1266 } else { 1267 new_lb = is_sched_load_balance(parent_cs(cs)); 1268 } 1269 if (new_lb != !!is_sched_load_balance(cs)) { 1270 rebuild_domains = true; 1271 if (new_lb) 1272 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1273 else 1274 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1275 } 1276 1277 if (rebuild_domains) 1278 cpuset_force_rebuild(); 1279 } 1280 1281 /* 1282 * tasks_nocpu_error - Return true if tasks will have no effective_cpus 1283 */ 1284 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs, 1285 struct cpumask *xcpus) 1286 { 1287 /* 1288 * A populated partition (cs or parent) can't have empty effective_cpus 1289 */ 1290 return (cpumask_subset(parent->effective_cpus, xcpus) && 1291 partition_is_populated(parent, cs)) || 1292 (!cpumask_intersects(xcpus, cpu_active_mask) && 1293 partition_is_populated(cs, NULL)); 1294 } 1295 1296 static void reset_partition_data(struct cpuset *cs) 1297 { 1298 struct cpuset *parent = parent_cs(cs); 1299 1300 if (!cpuset_v2()) 1301 return; 1302 1303 lockdep_assert_held(&callback_lock); 1304 1305 cs->nr_subparts = 0; 1306 if (cpumask_empty(cs->exclusive_cpus)) { 1307 cpumask_clear(cs->effective_xcpus); 1308 if (is_cpu_exclusive(cs)) 1309 clear_bit(CS_CPU_EXCLUSIVE, &cs->flags); 1310 } 1311 if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed)) 1312 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 1313 } 1314 1315 /* 1316 * isolated_cpus_update - Update the isolated_cpus mask 1317 * @old_prs: old partition_root_state 1318 * @new_prs: new partition_root_state 1319 * @xcpus: exclusive CPUs with state change 1320 */ 1321 static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus) 1322 { 1323 WARN_ON_ONCE(old_prs == new_prs); 1324 if (new_prs == PRS_ISOLATED) 1325 cpumask_or(isolated_cpus, isolated_cpus, xcpus); 1326 else 1327 cpumask_andnot(isolated_cpus, isolated_cpus, xcpus); 1328 } 1329 1330 /* 1331 * partition_xcpus_add - Add new exclusive CPUs to partition 1332 * @new_prs: new partition_root_state 1333 * @parent: parent cpuset 1334 * @xcpus: exclusive CPUs to be added 1335 * Return: true if isolated_cpus modified, false otherwise 1336 * 1337 * Remote partition if parent == NULL 1338 */ 1339 static bool partition_xcpus_add(int new_prs, struct cpuset *parent, 1340 struct cpumask *xcpus) 1341 { 1342 bool isolcpus_updated; 1343 1344 WARN_ON_ONCE(new_prs < 0); 1345 lockdep_assert_held(&callback_lock); 1346 if (!parent) 1347 parent = &top_cpuset; 1348 1349 1350 if (parent == &top_cpuset) 1351 cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus); 1352 1353 isolcpus_updated = (new_prs != parent->partition_root_state); 1354 if (isolcpus_updated) 1355 isolated_cpus_update(parent->partition_root_state, new_prs, 1356 xcpus); 1357 1358 cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus); 1359 return isolcpus_updated; 1360 } 1361 1362 /* 1363 * partition_xcpus_del - Remove exclusive CPUs from partition 1364 * @old_prs: old partition_root_state 1365 * @parent: parent cpuset 1366 * @xcpus: exclusive CPUs to be removed 1367 * Return: true if isolated_cpus modified, false otherwise 1368 * 1369 * Remote partition if parent == NULL 1370 */ 1371 static bool partition_xcpus_del(int old_prs, struct cpuset *parent, 1372 struct cpumask *xcpus) 1373 { 1374 bool isolcpus_updated; 1375 1376 WARN_ON_ONCE(old_prs < 0); 1377 lockdep_assert_held(&callback_lock); 1378 if (!parent) 1379 parent = &top_cpuset; 1380 1381 if (parent == &top_cpuset) 1382 cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus); 1383 1384 isolcpus_updated = (old_prs != parent->partition_root_state); 1385 if (isolcpus_updated) 1386 isolated_cpus_update(old_prs, parent->partition_root_state, 1387 xcpus); 1388 1389 cpumask_and(xcpus, xcpus, cpu_active_mask); 1390 cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus); 1391 return isolcpus_updated; 1392 } 1393 1394 static void update_isolation_cpumasks(bool isolcpus_updated) 1395 { 1396 int ret; 1397 1398 lockdep_assert_cpus_held(); 1399 1400 if (!isolcpus_updated) 1401 return; 1402 1403 ret = workqueue_unbound_exclude_cpumask(isolated_cpus); 1404 WARN_ON_ONCE(ret < 0); 1405 1406 ret = tmigr_isolated_exclude_cpumask(isolated_cpus); 1407 WARN_ON_ONCE(ret < 0); 1408 } 1409 1410 /** 1411 * cpuset_cpu_is_isolated - Check if the given CPU is isolated 1412 * @cpu: the CPU number to be checked 1413 * Return: true if CPU is used in an isolated partition, false otherwise 1414 */ 1415 bool cpuset_cpu_is_isolated(int cpu) 1416 { 1417 return cpumask_test_cpu(cpu, isolated_cpus); 1418 } 1419 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated); 1420 1421 /** 1422 * rm_siblings_excl_cpus - Remove exclusive CPUs that are used by sibling cpusets 1423 * @parent: Parent cpuset containing all siblings 1424 * @cs: Current cpuset (will be skipped) 1425 * @excpus: exclusive effective CPU mask to modify 1426 * 1427 * This function ensures the given @excpus mask doesn't include any CPUs that 1428 * are exclusively allocated to sibling cpusets. It walks through all siblings 1429 * of @cs under @parent and removes their exclusive CPUs from @excpus. 1430 */ 1431 static int rm_siblings_excl_cpus(struct cpuset *parent, struct cpuset *cs, 1432 struct cpumask *excpus) 1433 { 1434 struct cgroup_subsys_state *css; 1435 struct cpuset *sibling; 1436 int retval = 0; 1437 1438 if (cpumask_empty(excpus)) 1439 return retval; 1440 1441 /* 1442 * Exclude exclusive CPUs from siblings 1443 */ 1444 rcu_read_lock(); 1445 cpuset_for_each_child(sibling, css, parent) { 1446 if (sibling == cs) 1447 continue; 1448 1449 if (cpumask_intersects(excpus, sibling->exclusive_cpus)) { 1450 cpumask_andnot(excpus, excpus, sibling->exclusive_cpus); 1451 retval++; 1452 continue; 1453 } 1454 if (cpumask_intersects(excpus, sibling->effective_xcpus)) { 1455 cpumask_andnot(excpus, excpus, sibling->effective_xcpus); 1456 retval++; 1457 } 1458 } 1459 rcu_read_unlock(); 1460 1461 return retval; 1462 } 1463 1464 /* 1465 * compute_excpus - compute effective exclusive CPUs 1466 * @cs: cpuset 1467 * @xcpus: effective exclusive CPUs value to be set 1468 * Return: 0 if there is no sibling conflict, > 0 otherwise 1469 * 1470 * If exclusive_cpus isn't explicitly set , we have to scan the sibling cpusets 1471 * and exclude their exclusive_cpus or effective_xcpus as well. 1472 */ 1473 static int compute_excpus(struct cpuset *cs, struct cpumask *excpus) 1474 { 1475 struct cpuset *parent = parent_cs(cs); 1476 1477 cpumask_and(excpus, user_xcpus(cs), parent->effective_xcpus); 1478 1479 if (!cpumask_empty(cs->exclusive_cpus)) 1480 return 0; 1481 1482 return rm_siblings_excl_cpus(parent, cs, excpus); 1483 } 1484 1485 /* 1486 * compute_trialcs_excpus - Compute effective exclusive CPUs for a trial cpuset 1487 * @trialcs: The trial cpuset containing the proposed new configuration 1488 * @cs: The original cpuset that the trial configuration is based on 1489 * Return: 0 if successful with no sibling conflict, >0 if a conflict is found 1490 * 1491 * Computes the effective_xcpus for a trial configuration. @cs is provided to represent 1492 * the real cs. 1493 */ 1494 static int compute_trialcs_excpus(struct cpuset *trialcs, struct cpuset *cs) 1495 { 1496 struct cpuset *parent = parent_cs(trialcs); 1497 struct cpumask *excpus = trialcs->effective_xcpus; 1498 1499 /* trialcs is member, cpuset.cpus has no impact to excpus */ 1500 if (cs_is_member(cs)) 1501 cpumask_and(excpus, trialcs->exclusive_cpus, 1502 parent->effective_xcpus); 1503 else 1504 cpumask_and(excpus, user_xcpus(trialcs), parent->effective_xcpus); 1505 1506 return rm_siblings_excl_cpus(parent, cs, excpus); 1507 } 1508 1509 static inline bool is_remote_partition(struct cpuset *cs) 1510 { 1511 return !list_empty(&cs->remote_sibling); 1512 } 1513 1514 static inline bool is_local_partition(struct cpuset *cs) 1515 { 1516 return is_partition_valid(cs) && !is_remote_partition(cs); 1517 } 1518 1519 /* 1520 * remote_partition_enable - Enable current cpuset as a remote partition root 1521 * @cs: the cpuset to update 1522 * @new_prs: new partition_root_state 1523 * @tmp: temporary masks 1524 * Return: 0 if successful, errcode if error 1525 * 1526 * Enable the current cpuset to become a remote partition root taking CPUs 1527 * directly from the top cpuset. cpuset_mutex must be held by the caller. 1528 */ 1529 static int remote_partition_enable(struct cpuset *cs, int new_prs, 1530 struct tmpmasks *tmp) 1531 { 1532 bool isolcpus_updated; 1533 1534 /* 1535 * The user must have sysadmin privilege. 1536 */ 1537 if (!capable(CAP_SYS_ADMIN)) 1538 return PERR_ACCESS; 1539 1540 /* 1541 * The requested exclusive_cpus must not be allocated to other 1542 * partitions and it can't use up all the root's effective_cpus. 1543 * 1544 * The effective_xcpus mask can contain offline CPUs, but there must 1545 * be at least one or more online CPUs present before it can be enabled. 1546 * 1547 * Note that creating a remote partition with any local partition root 1548 * above it or remote partition root underneath it is not allowed. 1549 */ 1550 compute_excpus(cs, tmp->new_cpus); 1551 WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus)); 1552 if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) || 1553 cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus)) 1554 return PERR_INVCPUS; 1555 1556 spin_lock_irq(&callback_lock); 1557 isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus); 1558 list_add(&cs->remote_sibling, &remote_children); 1559 cpumask_copy(cs->effective_xcpus, tmp->new_cpus); 1560 spin_unlock_irq(&callback_lock); 1561 update_isolation_cpumasks(isolcpus_updated); 1562 cpuset_force_rebuild(); 1563 cs->prs_err = 0; 1564 1565 /* 1566 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1567 */ 1568 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1569 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1570 return 0; 1571 } 1572 1573 /* 1574 * remote_partition_disable - Remove current cpuset from remote partition list 1575 * @cs: the cpuset to update 1576 * @tmp: temporary masks 1577 * 1578 * The effective_cpus is also updated. 1579 * 1580 * cpuset_mutex must be held by the caller. 1581 */ 1582 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp) 1583 { 1584 bool isolcpus_updated; 1585 1586 WARN_ON_ONCE(!is_remote_partition(cs)); 1587 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); 1588 1589 spin_lock_irq(&callback_lock); 1590 list_del_init(&cs->remote_sibling); 1591 isolcpus_updated = partition_xcpus_del(cs->partition_root_state, 1592 NULL, cs->effective_xcpus); 1593 if (cs->prs_err) 1594 cs->partition_root_state = -cs->partition_root_state; 1595 else 1596 cs->partition_root_state = PRS_MEMBER; 1597 1598 /* effective_xcpus may need to be changed */ 1599 compute_excpus(cs, cs->effective_xcpus); 1600 reset_partition_data(cs); 1601 spin_unlock_irq(&callback_lock); 1602 update_isolation_cpumasks(isolcpus_updated); 1603 cpuset_force_rebuild(); 1604 1605 /* 1606 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1607 */ 1608 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1609 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1610 } 1611 1612 /* 1613 * remote_cpus_update - cpus_exclusive change of remote partition 1614 * @cs: the cpuset to be updated 1615 * @xcpus: the new exclusive_cpus mask, if non-NULL 1616 * @excpus: the new effective_xcpus mask 1617 * @tmp: temporary masks 1618 * 1619 * top_cpuset and subpartitions_cpus will be updated or partition can be 1620 * invalidated. 1621 */ 1622 static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus, 1623 struct cpumask *excpus, struct tmpmasks *tmp) 1624 { 1625 bool adding, deleting; 1626 int prs = cs->partition_root_state; 1627 int isolcpus_updated = 0; 1628 1629 if (WARN_ON_ONCE(!is_remote_partition(cs))) 1630 return; 1631 1632 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); 1633 1634 if (cpumask_empty(excpus)) { 1635 cs->prs_err = PERR_CPUSEMPTY; 1636 goto invalidate; 1637 } 1638 1639 adding = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus); 1640 deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus); 1641 1642 /* 1643 * Additions of remote CPUs is only allowed if those CPUs are 1644 * not allocated to other partitions and there are effective_cpus 1645 * left in the top cpuset. 1646 */ 1647 if (adding) { 1648 WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus)); 1649 if (!capable(CAP_SYS_ADMIN)) 1650 cs->prs_err = PERR_ACCESS; 1651 else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) || 1652 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)) 1653 cs->prs_err = PERR_NOCPUS; 1654 if (cs->prs_err) 1655 goto invalidate; 1656 } 1657 1658 spin_lock_irq(&callback_lock); 1659 if (adding) 1660 isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask); 1661 if (deleting) 1662 isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask); 1663 /* 1664 * Need to update effective_xcpus and exclusive_cpus now as 1665 * update_sibling_cpumasks() below may iterate back to the same cs. 1666 */ 1667 cpumask_copy(cs->effective_xcpus, excpus); 1668 if (xcpus) 1669 cpumask_copy(cs->exclusive_cpus, xcpus); 1670 spin_unlock_irq(&callback_lock); 1671 update_isolation_cpumasks(isolcpus_updated); 1672 if (adding || deleting) 1673 cpuset_force_rebuild(); 1674 1675 /* 1676 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1677 */ 1678 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1679 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1680 return; 1681 1682 invalidate: 1683 remote_partition_disable(cs, tmp); 1684 } 1685 1686 /* 1687 * prstate_housekeeping_conflict - check for partition & housekeeping conflicts 1688 * @prstate: partition root state to be checked 1689 * @new_cpus: cpu mask 1690 * Return: true if there is conflict, false otherwise 1691 * 1692 * CPUs outside of boot_hk_cpus, if defined, can only be used in an 1693 * isolated partition. 1694 */ 1695 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus) 1696 { 1697 if (!have_boot_isolcpus) 1698 return false; 1699 1700 if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus)) 1701 return true; 1702 1703 return false; 1704 } 1705 1706 /** 1707 * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset 1708 * @cs: The cpuset that requests change in partition root state 1709 * @cmd: Partition root state change command 1710 * @newmask: Optional new cpumask for partcmd_update 1711 * @tmp: Temporary addmask and delmask 1712 * Return: 0 or a partition root state error code 1713 * 1714 * For partcmd_enable*, the cpuset is being transformed from a non-partition 1715 * root to a partition root. The effective_xcpus (cpus_allowed if 1716 * effective_xcpus not set) mask of the given cpuset will be taken away from 1717 * parent's effective_cpus. The function will return 0 if all the CPUs listed 1718 * in effective_xcpus can be granted or an error code will be returned. 1719 * 1720 * For partcmd_disable, the cpuset is being transformed from a partition 1721 * root back to a non-partition root. Any CPUs in effective_xcpus will be 1722 * given back to parent's effective_cpus. 0 will always be returned. 1723 * 1724 * For partcmd_update, if the optional newmask is specified, the cpu list is 1725 * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is 1726 * assumed to remain the same. The cpuset should either be a valid or invalid 1727 * partition root. The partition root state may change from valid to invalid 1728 * or vice versa. An error code will be returned if transitioning from 1729 * invalid to valid violates the exclusivity rule. 1730 * 1731 * For partcmd_invalidate, the current partition will be made invalid. 1732 * 1733 * The partcmd_enable* and partcmd_disable commands are used by 1734 * update_prstate(). An error code may be returned and the caller will check 1735 * for error. 1736 * 1737 * The partcmd_update command is used by update_cpumasks_hier() with newmask 1738 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used 1739 * by update_cpumask() with NULL newmask. In both cases, the callers won't 1740 * check for error and so partition_root_state and prs_err will be updated 1741 * directly. 1742 */ 1743 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd, 1744 struct cpumask *newmask, 1745 struct tmpmasks *tmp) 1746 { 1747 struct cpuset *parent = parent_cs(cs); 1748 int adding; /* Adding cpus to parent's effective_cpus */ 1749 int deleting; /* Deleting cpus from parent's effective_cpus */ 1750 int old_prs, new_prs; 1751 int part_error = PERR_NONE; /* Partition error? */ 1752 int subparts_delta = 0; 1753 int isolcpus_updated = 0; 1754 struct cpumask *xcpus = user_xcpus(cs); 1755 bool nocpu; 1756 1757 lockdep_assert_held(&cpuset_mutex); 1758 WARN_ON_ONCE(is_remote_partition(cs)); /* For local partition only */ 1759 1760 /* 1761 * new_prs will only be changed for the partcmd_update and 1762 * partcmd_invalidate commands. 1763 */ 1764 adding = deleting = false; 1765 old_prs = new_prs = cs->partition_root_state; 1766 1767 if (cmd == partcmd_invalidate) { 1768 if (is_partition_invalid(cs)) 1769 return 0; 1770 1771 /* 1772 * Make the current partition invalid. 1773 */ 1774 if (is_partition_valid(parent)) 1775 adding = cpumask_and(tmp->addmask, 1776 xcpus, parent->effective_xcpus); 1777 if (old_prs > 0) { 1778 new_prs = -old_prs; 1779 subparts_delta--; 1780 } 1781 goto write_error; 1782 } 1783 1784 /* 1785 * The parent must be a partition root. 1786 * The new cpumask, if present, or the current cpus_allowed must 1787 * not be empty. 1788 */ 1789 if (!is_partition_valid(parent)) { 1790 return is_partition_invalid(parent) 1791 ? PERR_INVPARENT : PERR_NOTPART; 1792 } 1793 if (!newmask && xcpus_empty(cs)) 1794 return PERR_CPUSEMPTY; 1795 1796 nocpu = tasks_nocpu_error(parent, cs, xcpus); 1797 1798 if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) { 1799 /* 1800 * Need to call compute_excpus() in case 1801 * exclusive_cpus not set. Sibling conflict should only happen 1802 * if exclusive_cpus isn't set. 1803 */ 1804 xcpus = tmp->delmask; 1805 if (compute_excpus(cs, xcpus)) 1806 WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus)); 1807 new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED; 1808 1809 /* 1810 * Enabling partition root is not allowed if its 1811 * effective_xcpus is empty. 1812 */ 1813 if (cpumask_empty(xcpus)) 1814 return PERR_INVCPUS; 1815 1816 if (prstate_housekeeping_conflict(new_prs, xcpus)) 1817 return PERR_HKEEPING; 1818 1819 if (tasks_nocpu_error(parent, cs, xcpus)) 1820 return PERR_NOCPUS; 1821 1822 /* 1823 * This function will only be called when all the preliminary 1824 * checks have passed. At this point, the following condition 1825 * should hold. 1826 * 1827 * (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus 1828 * 1829 * Warn if it is not the case. 1830 */ 1831 cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask); 1832 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus)); 1833 1834 deleting = true; 1835 subparts_delta++; 1836 } else if (cmd == partcmd_disable) { 1837 /* 1838 * May need to add cpus back to parent's effective_cpus 1839 * (and maybe removed from subpartitions_cpus/isolated_cpus) 1840 * for valid partition root. xcpus may contain CPUs that 1841 * shouldn't be removed from the two global cpumasks. 1842 */ 1843 if (is_partition_valid(cs)) { 1844 cpumask_copy(tmp->addmask, cs->effective_xcpus); 1845 adding = true; 1846 subparts_delta--; 1847 } 1848 new_prs = PRS_MEMBER; 1849 } else if (newmask) { 1850 /* 1851 * Empty cpumask is not allowed 1852 */ 1853 if (cpumask_empty(newmask)) { 1854 part_error = PERR_CPUSEMPTY; 1855 goto write_error; 1856 } 1857 1858 /* Check newmask again, whether cpus are available for parent/cs */ 1859 nocpu |= tasks_nocpu_error(parent, cs, newmask); 1860 1861 /* 1862 * partcmd_update with newmask: 1863 * 1864 * Compute add/delete mask to/from effective_cpus 1865 * 1866 * For valid partition: 1867 * addmask = exclusive_cpus & ~newmask 1868 * & parent->effective_xcpus 1869 * delmask = newmask & ~exclusive_cpus 1870 * & parent->effective_xcpus 1871 * 1872 * For invalid partition: 1873 * delmask = newmask & parent->effective_xcpus 1874 */ 1875 if (is_partition_invalid(cs)) { 1876 adding = false; 1877 deleting = cpumask_and(tmp->delmask, 1878 newmask, parent->effective_xcpus); 1879 } else { 1880 cpumask_andnot(tmp->addmask, xcpus, newmask); 1881 adding = cpumask_and(tmp->addmask, tmp->addmask, 1882 parent->effective_xcpus); 1883 1884 cpumask_andnot(tmp->delmask, newmask, xcpus); 1885 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1886 parent->effective_xcpus); 1887 } 1888 /* 1889 * The new CPUs to be removed from parent's effective CPUs 1890 * must be present. 1891 */ 1892 if (deleting) { 1893 cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask); 1894 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus)); 1895 } 1896 1897 /* 1898 * Make partition invalid if parent's effective_cpus could 1899 * become empty and there are tasks in the parent. 1900 */ 1901 if (nocpu && (!adding || 1902 !cpumask_intersects(tmp->addmask, cpu_active_mask))) { 1903 part_error = PERR_NOCPUS; 1904 deleting = false; 1905 adding = cpumask_and(tmp->addmask, 1906 xcpus, parent->effective_xcpus); 1907 } 1908 } else { 1909 /* 1910 * partcmd_update w/o newmask 1911 * 1912 * delmask = effective_xcpus & parent->effective_cpus 1913 * 1914 * This can be called from: 1915 * 1) update_cpumasks_hier() 1916 * 2) cpuset_hotplug_update_tasks() 1917 * 1918 * Check to see if it can be transitioned from valid to 1919 * invalid partition or vice versa. 1920 * 1921 * A partition error happens when parent has tasks and all 1922 * its effective CPUs will have to be distributed out. 1923 */ 1924 if (nocpu) { 1925 part_error = PERR_NOCPUS; 1926 if (is_partition_valid(cs)) 1927 adding = cpumask_and(tmp->addmask, 1928 xcpus, parent->effective_xcpus); 1929 } else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) && 1930 cpumask_subset(xcpus, parent->effective_xcpus)) { 1931 struct cgroup_subsys_state *css; 1932 struct cpuset *child; 1933 bool exclusive = true; 1934 1935 /* 1936 * Convert invalid partition to valid has to 1937 * pass the cpu exclusivity test. 1938 */ 1939 rcu_read_lock(); 1940 cpuset_for_each_child(child, css, parent) { 1941 if (child == cs) 1942 continue; 1943 if (!cpusets_are_exclusive(cs, child)) { 1944 exclusive = false; 1945 break; 1946 } 1947 } 1948 rcu_read_unlock(); 1949 if (exclusive) 1950 deleting = cpumask_and(tmp->delmask, 1951 xcpus, parent->effective_cpus); 1952 else 1953 part_error = PERR_NOTEXCL; 1954 } 1955 } 1956 1957 write_error: 1958 if (part_error) 1959 WRITE_ONCE(cs->prs_err, part_error); 1960 1961 if (cmd == partcmd_update) { 1962 /* 1963 * Check for possible transition between valid and invalid 1964 * partition root. 1965 */ 1966 switch (cs->partition_root_state) { 1967 case PRS_ROOT: 1968 case PRS_ISOLATED: 1969 if (part_error) { 1970 new_prs = -old_prs; 1971 subparts_delta--; 1972 } 1973 break; 1974 case PRS_INVALID_ROOT: 1975 case PRS_INVALID_ISOLATED: 1976 if (!part_error) { 1977 new_prs = -old_prs; 1978 subparts_delta++; 1979 } 1980 break; 1981 } 1982 } 1983 1984 if (!adding && !deleting && (new_prs == old_prs)) 1985 return 0; 1986 1987 /* 1988 * Transitioning between invalid to valid or vice versa may require 1989 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update, 1990 * validate_change() has already been successfully called and 1991 * CPU lists in cs haven't been updated yet. So defer it to later. 1992 */ 1993 if ((old_prs != new_prs) && (cmd != partcmd_update)) { 1994 int err = update_partition_exclusive_flag(cs, new_prs); 1995 1996 if (err) 1997 return err; 1998 } 1999 2000 /* 2001 * Change the parent's effective_cpus & effective_xcpus (top cpuset 2002 * only). 2003 * 2004 * Newly added CPUs will be removed from effective_cpus and 2005 * newly deleted ones will be added back to effective_cpus. 2006 */ 2007 spin_lock_irq(&callback_lock); 2008 if (old_prs != new_prs) { 2009 cs->partition_root_state = new_prs; 2010 if (new_prs <= 0) 2011 cs->nr_subparts = 0; 2012 } 2013 /* 2014 * Adding to parent's effective_cpus means deletion CPUs from cs 2015 * and vice versa. 2016 */ 2017 if (adding) 2018 isolcpus_updated += partition_xcpus_del(old_prs, parent, 2019 tmp->addmask); 2020 if (deleting) 2021 isolcpus_updated += partition_xcpus_add(new_prs, parent, 2022 tmp->delmask); 2023 2024 if (is_partition_valid(parent)) { 2025 parent->nr_subparts += subparts_delta; 2026 WARN_ON_ONCE(parent->nr_subparts < 0); 2027 } 2028 spin_unlock_irq(&callback_lock); 2029 update_isolation_cpumasks(isolcpus_updated); 2030 2031 if ((old_prs != new_prs) && (cmd == partcmd_update)) 2032 update_partition_exclusive_flag(cs, new_prs); 2033 2034 if (adding || deleting) { 2035 cpuset_update_tasks_cpumask(parent, tmp->addmask); 2036 update_sibling_cpumasks(parent, cs, tmp); 2037 } 2038 2039 /* 2040 * For partcmd_update without newmask, it is being called from 2041 * cpuset_handle_hotplug(). Update the load balance flag and 2042 * scheduling domain accordingly. 2043 */ 2044 if ((cmd == partcmd_update) && !newmask) 2045 update_partition_sd_lb(cs, old_prs); 2046 2047 notify_partition_change(cs, old_prs); 2048 return 0; 2049 } 2050 2051 /** 2052 * compute_partition_effective_cpumask - compute effective_cpus for partition 2053 * @cs: partition root cpuset 2054 * @new_ecpus: previously computed effective_cpus to be updated 2055 * 2056 * Compute the effective_cpus of a partition root by scanning effective_xcpus 2057 * of child partition roots and excluding their effective_xcpus. 2058 * 2059 * This has the side effect of invalidating valid child partition roots, 2060 * if necessary. Since it is called from either cpuset_hotplug_update_tasks() 2061 * or update_cpumasks_hier() where parent and children are modified 2062 * successively, we don't need to call update_parent_effective_cpumask() 2063 * and the child's effective_cpus will be updated in later iterations. 2064 * 2065 * Note that rcu_read_lock() is assumed to be held. 2066 */ 2067 static void compute_partition_effective_cpumask(struct cpuset *cs, 2068 struct cpumask *new_ecpus) 2069 { 2070 struct cgroup_subsys_state *css; 2071 struct cpuset *child; 2072 bool populated = partition_is_populated(cs, NULL); 2073 2074 /* 2075 * Check child partition roots to see if they should be 2076 * invalidated when 2077 * 1) child effective_xcpus not a subset of new 2078 * excluisve_cpus 2079 * 2) All the effective_cpus will be used up and cp 2080 * has tasks 2081 */ 2082 compute_excpus(cs, new_ecpus); 2083 cpumask_and(new_ecpus, new_ecpus, cpu_active_mask); 2084 2085 rcu_read_lock(); 2086 cpuset_for_each_child(child, css, cs) { 2087 if (!is_partition_valid(child)) 2088 continue; 2089 2090 /* 2091 * There shouldn't be a remote partition underneath another 2092 * partition root. 2093 */ 2094 WARN_ON_ONCE(is_remote_partition(child)); 2095 child->prs_err = 0; 2096 if (!cpumask_subset(child->effective_xcpus, 2097 cs->effective_xcpus)) 2098 child->prs_err = PERR_INVCPUS; 2099 else if (populated && 2100 cpumask_subset(new_ecpus, child->effective_xcpus)) 2101 child->prs_err = PERR_NOCPUS; 2102 2103 if (child->prs_err) { 2104 int old_prs = child->partition_root_state; 2105 2106 /* 2107 * Invalidate child partition 2108 */ 2109 spin_lock_irq(&callback_lock); 2110 make_partition_invalid(child); 2111 cs->nr_subparts--; 2112 child->nr_subparts = 0; 2113 spin_unlock_irq(&callback_lock); 2114 notify_partition_change(child, old_prs); 2115 continue; 2116 } 2117 cpumask_andnot(new_ecpus, new_ecpus, 2118 child->effective_xcpus); 2119 } 2120 rcu_read_unlock(); 2121 } 2122 2123 /* 2124 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 2125 * @cs: the cpuset to consider 2126 * @tmp: temp variables for calculating effective_cpus & partition setup 2127 * @force: don't skip any descendant cpusets if set 2128 * 2129 * When configured cpumask is changed, the effective cpumasks of this cpuset 2130 * and all its descendants need to be updated. 2131 * 2132 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 2133 * 2134 * Called with cpuset_mutex held 2135 */ 2136 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, 2137 bool force) 2138 { 2139 struct cpuset *cp; 2140 struct cgroup_subsys_state *pos_css; 2141 bool need_rebuild_sched_domains = false; 2142 int old_prs, new_prs; 2143 2144 rcu_read_lock(); 2145 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2146 struct cpuset *parent = parent_cs(cp); 2147 bool remote = is_remote_partition(cp); 2148 bool update_parent = false; 2149 2150 old_prs = new_prs = cp->partition_root_state; 2151 2152 /* 2153 * For child remote partition root (!= cs), we need to call 2154 * remote_cpus_update() if effective_xcpus will be changed. 2155 * Otherwise, we can skip the whole subtree. 2156 * 2157 * remote_cpus_update() will reuse tmp->new_cpus only after 2158 * its value is being processed. 2159 */ 2160 if (remote && (cp != cs)) { 2161 compute_excpus(cp, tmp->new_cpus); 2162 if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) { 2163 pos_css = css_rightmost_descendant(pos_css); 2164 continue; 2165 } 2166 rcu_read_unlock(); 2167 remote_cpus_update(cp, NULL, tmp->new_cpus, tmp); 2168 rcu_read_lock(); 2169 2170 /* Remote partition may be invalidated */ 2171 new_prs = cp->partition_root_state; 2172 remote = (new_prs == old_prs); 2173 } 2174 2175 if (remote || (is_partition_valid(parent) && is_partition_valid(cp))) 2176 compute_partition_effective_cpumask(cp, tmp->new_cpus); 2177 else 2178 compute_effective_cpumask(tmp->new_cpus, cp, parent); 2179 2180 if (remote) 2181 goto get_css; /* Ready to update cpuset data */ 2182 2183 /* 2184 * A partition with no effective_cpus is allowed as long as 2185 * there is no task associated with it. Call 2186 * update_parent_effective_cpumask() to check it. 2187 */ 2188 if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) { 2189 update_parent = true; 2190 goto update_parent_effective; 2191 } 2192 2193 /* 2194 * If it becomes empty, inherit the effective mask of the 2195 * parent, which is guaranteed to have some CPUs unless 2196 * it is a partition root that has explicitly distributed 2197 * out all its CPUs. 2198 */ 2199 if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) 2200 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 2201 2202 /* 2203 * Skip the whole subtree if 2204 * 1) the cpumask remains the same, 2205 * 2) has no partition root state, 2206 * 3) force flag not set, and 2207 * 4) for v2 load balance state same as its parent. 2208 */ 2209 if (!cp->partition_root_state && !force && 2210 cpumask_equal(tmp->new_cpus, cp->effective_cpus) && 2211 (!cpuset_v2() || 2212 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { 2213 pos_css = css_rightmost_descendant(pos_css); 2214 continue; 2215 } 2216 2217 update_parent_effective: 2218 /* 2219 * update_parent_effective_cpumask() should have been called 2220 * for cs already in update_cpumask(). We should also call 2221 * cpuset_update_tasks_cpumask() again for tasks in the parent 2222 * cpuset if the parent's effective_cpus changes. 2223 */ 2224 if ((cp != cs) && old_prs) { 2225 switch (parent->partition_root_state) { 2226 case PRS_ROOT: 2227 case PRS_ISOLATED: 2228 update_parent = true; 2229 break; 2230 2231 default: 2232 /* 2233 * When parent is not a partition root or is 2234 * invalid, child partition roots become 2235 * invalid too. 2236 */ 2237 if (is_partition_valid(cp)) 2238 new_prs = -cp->partition_root_state; 2239 WRITE_ONCE(cp->prs_err, 2240 is_partition_invalid(parent) 2241 ? PERR_INVPARENT : PERR_NOTPART); 2242 break; 2243 } 2244 } 2245 get_css: 2246 if (!css_tryget_online(&cp->css)) 2247 continue; 2248 rcu_read_unlock(); 2249 2250 if (update_parent) { 2251 update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp); 2252 /* 2253 * The cpuset partition_root_state may become 2254 * invalid. Capture it. 2255 */ 2256 new_prs = cp->partition_root_state; 2257 } 2258 2259 spin_lock_irq(&callback_lock); 2260 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 2261 cp->partition_root_state = new_prs; 2262 if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) 2263 compute_excpus(cp, cp->effective_xcpus); 2264 2265 /* 2266 * Make sure effective_xcpus is properly set for a valid 2267 * partition root. 2268 */ 2269 if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus)) 2270 cpumask_and(cp->effective_xcpus, 2271 cp->cpus_allowed, parent->effective_xcpus); 2272 else if (new_prs < 0) 2273 reset_partition_data(cp); 2274 spin_unlock_irq(&callback_lock); 2275 2276 notify_partition_change(cp, old_prs); 2277 2278 WARN_ON(!is_in_v2_mode() && 2279 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 2280 2281 cpuset_update_tasks_cpumask(cp, cp->effective_cpus); 2282 2283 /* 2284 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE 2285 * from parent if current cpuset isn't a valid partition root 2286 * and their load balance states differ. 2287 */ 2288 if (cpuset_v2() && !is_partition_valid(cp) && 2289 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { 2290 if (is_sched_load_balance(parent)) 2291 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2292 else 2293 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2294 } 2295 2296 /* 2297 * On legacy hierarchy, if the effective cpumask of any non- 2298 * empty cpuset is changed, we need to rebuild sched domains. 2299 * On default hierarchy, the cpuset needs to be a partition 2300 * root as well. 2301 */ 2302 if (!cpumask_empty(cp->cpus_allowed) && 2303 is_sched_load_balance(cp) && 2304 (!cpuset_v2() || is_partition_valid(cp))) 2305 need_rebuild_sched_domains = true; 2306 2307 rcu_read_lock(); 2308 css_put(&cp->css); 2309 } 2310 rcu_read_unlock(); 2311 2312 if (need_rebuild_sched_domains) 2313 cpuset_force_rebuild(); 2314 } 2315 2316 /** 2317 * update_sibling_cpumasks - Update siblings cpumasks 2318 * @parent: Parent cpuset 2319 * @cs: Current cpuset 2320 * @tmp: Temp variables 2321 */ 2322 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 2323 struct tmpmasks *tmp) 2324 { 2325 struct cpuset *sibling; 2326 struct cgroup_subsys_state *pos_css; 2327 2328 lockdep_assert_held(&cpuset_mutex); 2329 2330 /* 2331 * Check all its siblings and call update_cpumasks_hier() 2332 * if their effective_cpus will need to be changed. 2333 * 2334 * It is possible a change in parent's effective_cpus 2335 * due to a change in a child partition's effective_xcpus will impact 2336 * its siblings even if they do not inherit parent's effective_cpus 2337 * directly. 2338 * 2339 * The update_cpumasks_hier() function may sleep. So we have to 2340 * release the RCU read lock before calling it. 2341 */ 2342 rcu_read_lock(); 2343 cpuset_for_each_child(sibling, pos_css, parent) { 2344 if (sibling == cs) 2345 continue; 2346 if (!is_partition_valid(sibling)) { 2347 compute_effective_cpumask(tmp->new_cpus, sibling, 2348 parent); 2349 if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus)) 2350 continue; 2351 } else if (is_remote_partition(sibling)) { 2352 /* 2353 * Change in a sibling cpuset won't affect a remote 2354 * partition root. 2355 */ 2356 continue; 2357 } 2358 2359 if (!css_tryget_online(&sibling->css)) 2360 continue; 2361 2362 rcu_read_unlock(); 2363 update_cpumasks_hier(sibling, tmp, false); 2364 rcu_read_lock(); 2365 css_put(&sibling->css); 2366 } 2367 rcu_read_unlock(); 2368 } 2369 2370 static int parse_cpuset_cpulist(const char *buf, struct cpumask *out_mask) 2371 { 2372 int retval; 2373 2374 retval = cpulist_parse(buf, out_mask); 2375 if (retval < 0) 2376 return retval; 2377 if (!cpumask_subset(out_mask, top_cpuset.cpus_allowed)) 2378 return -EINVAL; 2379 2380 return 0; 2381 } 2382 2383 /** 2384 * validate_partition - Validate a cpuset partition configuration 2385 * @cs: The cpuset to validate 2386 * @trialcs: The trial cpuset containing proposed configuration changes 2387 * 2388 * If any validation check fails, the appropriate error code is set in the 2389 * cpuset's prs_err field. 2390 * 2391 * Return: PRS error code (0 if valid, non-zero error code if invalid) 2392 */ 2393 static enum prs_errcode validate_partition(struct cpuset *cs, struct cpuset *trialcs) 2394 { 2395 struct cpuset *parent = parent_cs(cs); 2396 2397 if (cs_is_member(trialcs)) 2398 return PERR_NONE; 2399 2400 if (cpumask_empty(trialcs->effective_xcpus)) 2401 return PERR_INVCPUS; 2402 2403 if (prstate_housekeeping_conflict(trialcs->partition_root_state, 2404 trialcs->effective_xcpus)) 2405 return PERR_HKEEPING; 2406 2407 if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) 2408 return PERR_NOCPUS; 2409 2410 return PERR_NONE; 2411 } 2412 2413 static int cpus_allowed_validate_change(struct cpuset *cs, struct cpuset *trialcs, 2414 struct tmpmasks *tmp) 2415 { 2416 int retval; 2417 struct cpuset *parent = parent_cs(cs); 2418 2419 retval = validate_change(cs, trialcs); 2420 2421 if ((retval == -EINVAL) && cpuset_v2()) { 2422 struct cgroup_subsys_state *css; 2423 struct cpuset *cp; 2424 2425 /* 2426 * The -EINVAL error code indicates that partition sibling 2427 * CPU exclusivity rule has been violated. We still allow 2428 * the cpumask change to proceed while invalidating the 2429 * partition. However, any conflicting sibling partitions 2430 * have to be marked as invalid too. 2431 */ 2432 trialcs->prs_err = PERR_NOTEXCL; 2433 rcu_read_lock(); 2434 cpuset_for_each_child(cp, css, parent) { 2435 struct cpumask *xcpus = user_xcpus(trialcs); 2436 2437 if (is_partition_valid(cp) && 2438 cpumask_intersects(xcpus, cp->effective_xcpus)) { 2439 rcu_read_unlock(); 2440 update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, tmp); 2441 rcu_read_lock(); 2442 } 2443 } 2444 rcu_read_unlock(); 2445 retval = 0; 2446 } 2447 return retval; 2448 } 2449 2450 /** 2451 * partition_cpus_change - Handle partition state changes due to CPU mask updates 2452 * @cs: The target cpuset being modified 2453 * @trialcs: The trial cpuset containing proposed configuration changes 2454 * @tmp: Temporary masks for intermediate calculations 2455 * 2456 * This function handles partition state transitions triggered by CPU mask changes. 2457 * CPU modifications may cause a partition to be disabled or require state updates. 2458 */ 2459 static void partition_cpus_change(struct cpuset *cs, struct cpuset *trialcs, 2460 struct tmpmasks *tmp) 2461 { 2462 enum prs_errcode prs_err; 2463 2464 if (cs_is_member(cs)) 2465 return; 2466 2467 prs_err = validate_partition(cs, trialcs); 2468 if (prs_err) 2469 trialcs->prs_err = cs->prs_err = prs_err; 2470 2471 if (is_remote_partition(cs)) { 2472 if (trialcs->prs_err) 2473 remote_partition_disable(cs, tmp); 2474 else 2475 remote_cpus_update(cs, trialcs->exclusive_cpus, 2476 trialcs->effective_xcpus, tmp); 2477 } else { 2478 if (trialcs->prs_err) 2479 update_parent_effective_cpumask(cs, partcmd_invalidate, 2480 NULL, tmp); 2481 else 2482 update_parent_effective_cpumask(cs, partcmd_update, 2483 trialcs->effective_xcpus, tmp); 2484 } 2485 } 2486 2487 /** 2488 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 2489 * @cs: the cpuset to consider 2490 * @trialcs: trial cpuset 2491 * @buf: buffer of cpu numbers written to this cpuset 2492 */ 2493 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2494 const char *buf) 2495 { 2496 int retval; 2497 struct tmpmasks tmp; 2498 bool force = false; 2499 int old_prs = cs->partition_root_state; 2500 2501 retval = parse_cpuset_cpulist(buf, trialcs->cpus_allowed); 2502 if (retval < 0) 2503 return retval; 2504 2505 /* Nothing to do if the cpus didn't change */ 2506 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 2507 return 0; 2508 2509 if (alloc_tmpmasks(&tmp)) 2510 return -ENOMEM; 2511 2512 compute_trialcs_excpus(trialcs, cs); 2513 trialcs->prs_err = PERR_NONE; 2514 2515 retval = cpus_allowed_validate_change(cs, trialcs, &tmp); 2516 if (retval < 0) 2517 goto out_free; 2518 2519 /* 2520 * Check all the descendants in update_cpumasks_hier() if 2521 * effective_xcpus is to be changed. 2522 */ 2523 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); 2524 2525 partition_cpus_change(cs, trialcs, &tmp); 2526 2527 spin_lock_irq(&callback_lock); 2528 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 2529 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2530 if ((old_prs > 0) && !is_partition_valid(cs)) 2531 reset_partition_data(cs); 2532 spin_unlock_irq(&callback_lock); 2533 2534 /* effective_cpus/effective_xcpus will be updated here */ 2535 update_cpumasks_hier(cs, &tmp, force); 2536 2537 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2538 if (cs->partition_root_state) 2539 update_partition_sd_lb(cs, old_prs); 2540 out_free: 2541 free_tmpmasks(&tmp); 2542 return retval; 2543 } 2544 2545 /** 2546 * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset 2547 * @cs: the cpuset to consider 2548 * @trialcs: trial cpuset 2549 * @buf: buffer of cpu numbers written to this cpuset 2550 * 2551 * The tasks' cpumask will be updated if cs is a valid partition root. 2552 */ 2553 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2554 const char *buf) 2555 { 2556 int retval; 2557 struct tmpmasks tmp; 2558 bool force = false; 2559 int old_prs = cs->partition_root_state; 2560 2561 retval = parse_cpuset_cpulist(buf, trialcs->exclusive_cpus); 2562 if (retval < 0) 2563 return retval; 2564 2565 /* Nothing to do if the CPUs didn't change */ 2566 if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus)) 2567 return 0; 2568 2569 /* 2570 * Reject the change if there is exclusive CPUs conflict with 2571 * the siblings. 2572 */ 2573 if (compute_trialcs_excpus(trialcs, cs)) 2574 return -EINVAL; 2575 2576 /* 2577 * Check all the descendants in update_cpumasks_hier() if 2578 * effective_xcpus is to be changed. 2579 */ 2580 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); 2581 2582 retval = validate_change(cs, trialcs); 2583 if (retval) 2584 return retval; 2585 2586 if (alloc_tmpmasks(&tmp)) 2587 return -ENOMEM; 2588 2589 trialcs->prs_err = PERR_NONE; 2590 partition_cpus_change(cs, trialcs, &tmp); 2591 2592 spin_lock_irq(&callback_lock); 2593 cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus); 2594 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2595 if ((old_prs > 0) && !is_partition_valid(cs)) 2596 reset_partition_data(cs); 2597 spin_unlock_irq(&callback_lock); 2598 2599 /* 2600 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus 2601 * of the subtree when it is a valid partition root or effective_xcpus 2602 * is updated. 2603 */ 2604 if (is_partition_valid(cs) || force) 2605 update_cpumasks_hier(cs, &tmp, force); 2606 2607 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2608 if (cs->partition_root_state) 2609 update_partition_sd_lb(cs, old_prs); 2610 2611 free_tmpmasks(&tmp); 2612 return 0; 2613 } 2614 2615 /* 2616 * Migrate memory region from one set of nodes to another. This is 2617 * performed asynchronously as it can be called from process migration path 2618 * holding locks involved in process management. All mm migrations are 2619 * performed in the queued order and can be waited for by flushing 2620 * cpuset_migrate_mm_wq. 2621 */ 2622 2623 struct cpuset_migrate_mm_work { 2624 struct work_struct work; 2625 struct mm_struct *mm; 2626 nodemask_t from; 2627 nodemask_t to; 2628 }; 2629 2630 static void cpuset_migrate_mm_workfn(struct work_struct *work) 2631 { 2632 struct cpuset_migrate_mm_work *mwork = 2633 container_of(work, struct cpuset_migrate_mm_work, work); 2634 2635 /* on a wq worker, no need to worry about %current's mems_allowed */ 2636 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 2637 mmput(mwork->mm); 2638 kfree(mwork); 2639 } 2640 2641 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 2642 const nodemask_t *to) 2643 { 2644 struct cpuset_migrate_mm_work *mwork; 2645 2646 if (nodes_equal(*from, *to)) { 2647 mmput(mm); 2648 return; 2649 } 2650 2651 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 2652 if (mwork) { 2653 mwork->mm = mm; 2654 mwork->from = *from; 2655 mwork->to = *to; 2656 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 2657 queue_work(cpuset_migrate_mm_wq, &mwork->work); 2658 } else { 2659 mmput(mm); 2660 } 2661 } 2662 2663 static void flush_migrate_mm_task_workfn(struct callback_head *head) 2664 { 2665 flush_workqueue(cpuset_migrate_mm_wq); 2666 kfree(head); 2667 } 2668 2669 static void schedule_flush_migrate_mm(void) 2670 { 2671 struct callback_head *flush_cb; 2672 2673 flush_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL); 2674 if (!flush_cb) 2675 return; 2676 2677 init_task_work(flush_cb, flush_migrate_mm_task_workfn); 2678 2679 if (task_work_add(current, flush_cb, TWA_RESUME)) 2680 kfree(flush_cb); 2681 } 2682 2683 /* 2684 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 2685 * @tsk: the task to change 2686 * @newmems: new nodes that the task will be set 2687 * 2688 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 2689 * and rebind an eventual tasks' mempolicy. If the task is allocating in 2690 * parallel, it might temporarily see an empty intersection, which results in 2691 * a seqlock check and retry before OOM or allocation failure. 2692 */ 2693 static void cpuset_change_task_nodemask(struct task_struct *tsk, 2694 nodemask_t *newmems) 2695 { 2696 task_lock(tsk); 2697 2698 local_irq_disable(); 2699 write_seqcount_begin(&tsk->mems_allowed_seq); 2700 2701 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 2702 mpol_rebind_task(tsk, newmems); 2703 tsk->mems_allowed = *newmems; 2704 2705 write_seqcount_end(&tsk->mems_allowed_seq); 2706 local_irq_enable(); 2707 2708 task_unlock(tsk); 2709 } 2710 2711 static void *cpuset_being_rebound; 2712 2713 /** 2714 * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 2715 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 2716 * 2717 * Iterate through each task of @cs updating its mems_allowed to the 2718 * effective cpuset's. As this function is called with cpuset_mutex held, 2719 * cpuset membership stays stable. 2720 */ 2721 void cpuset_update_tasks_nodemask(struct cpuset *cs) 2722 { 2723 static nodemask_t newmems; /* protected by cpuset_mutex */ 2724 struct css_task_iter it; 2725 struct task_struct *task; 2726 2727 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 2728 2729 guarantee_online_mems(cs, &newmems); 2730 2731 /* 2732 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 2733 * take while holding tasklist_lock. Forks can happen - the 2734 * mpol_dup() cpuset_being_rebound check will catch such forks, 2735 * and rebind their vma mempolicies too. Because we still hold 2736 * the global cpuset_mutex, we know that no other rebind effort 2737 * will be contending for the global variable cpuset_being_rebound. 2738 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 2739 * is idempotent. Also migrate pages in each mm to new nodes. 2740 */ 2741 css_task_iter_start(&cs->css, 0, &it); 2742 while ((task = css_task_iter_next(&it))) { 2743 struct mm_struct *mm; 2744 bool migrate; 2745 2746 cpuset_change_task_nodemask(task, &newmems); 2747 2748 mm = get_task_mm(task); 2749 if (!mm) 2750 continue; 2751 2752 migrate = is_memory_migrate(cs); 2753 2754 mpol_rebind_mm(mm, &cs->mems_allowed); 2755 if (migrate) 2756 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 2757 else 2758 mmput(mm); 2759 } 2760 css_task_iter_end(&it); 2761 2762 /* 2763 * All the tasks' nodemasks have been updated, update 2764 * cs->old_mems_allowed. 2765 */ 2766 cs->old_mems_allowed = newmems; 2767 2768 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 2769 cpuset_being_rebound = NULL; 2770 } 2771 2772 /* 2773 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 2774 * @cs: the cpuset to consider 2775 * @new_mems: a temp variable for calculating new effective_mems 2776 * 2777 * When configured nodemask is changed, the effective nodemasks of this cpuset 2778 * and all its descendants need to be updated. 2779 * 2780 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 2781 * 2782 * Called with cpuset_mutex held 2783 */ 2784 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 2785 { 2786 struct cpuset *cp; 2787 struct cgroup_subsys_state *pos_css; 2788 2789 rcu_read_lock(); 2790 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2791 struct cpuset *parent = parent_cs(cp); 2792 2793 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 2794 2795 /* 2796 * If it becomes empty, inherit the effective mask of the 2797 * parent, which is guaranteed to have some MEMs. 2798 */ 2799 if (is_in_v2_mode() && nodes_empty(*new_mems)) 2800 *new_mems = parent->effective_mems; 2801 2802 /* Skip the whole subtree if the nodemask remains the same. */ 2803 if (nodes_equal(*new_mems, cp->effective_mems)) { 2804 pos_css = css_rightmost_descendant(pos_css); 2805 continue; 2806 } 2807 2808 if (!css_tryget_online(&cp->css)) 2809 continue; 2810 rcu_read_unlock(); 2811 2812 spin_lock_irq(&callback_lock); 2813 cp->effective_mems = *new_mems; 2814 spin_unlock_irq(&callback_lock); 2815 2816 WARN_ON(!is_in_v2_mode() && 2817 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 2818 2819 cpuset_update_tasks_nodemask(cp); 2820 2821 rcu_read_lock(); 2822 css_put(&cp->css); 2823 } 2824 rcu_read_unlock(); 2825 } 2826 2827 /* 2828 * Handle user request to change the 'mems' memory placement 2829 * of a cpuset. Needs to validate the request, update the 2830 * cpusets mems_allowed, and for each task in the cpuset, 2831 * update mems_allowed and rebind task's mempolicy and any vma 2832 * mempolicies and if the cpuset is marked 'memory_migrate', 2833 * migrate the tasks pages to the new memory. 2834 * 2835 * Call with cpuset_mutex held. May take callback_lock during call. 2836 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 2837 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 2838 * their mempolicies to the cpusets new mems_allowed. 2839 */ 2840 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 2841 const char *buf) 2842 { 2843 int retval; 2844 2845 /* 2846 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 2847 * The validate_change() call ensures that cpusets with tasks have memory. 2848 */ 2849 retval = nodelist_parse(buf, trialcs->mems_allowed); 2850 if (retval < 0) 2851 goto done; 2852 2853 if (!nodes_subset(trialcs->mems_allowed, 2854 top_cpuset.mems_allowed)) { 2855 retval = -EINVAL; 2856 goto done; 2857 } 2858 2859 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 2860 retval = 0; /* Too easy - nothing to do */ 2861 goto done; 2862 } 2863 retval = validate_change(cs, trialcs); 2864 if (retval < 0) 2865 goto done; 2866 2867 check_insane_mems_config(&trialcs->mems_allowed); 2868 2869 spin_lock_irq(&callback_lock); 2870 cs->mems_allowed = trialcs->mems_allowed; 2871 spin_unlock_irq(&callback_lock); 2872 2873 /* use trialcs->mems_allowed as a temp variable */ 2874 update_nodemasks_hier(cs, &trialcs->mems_allowed); 2875 done: 2876 return retval; 2877 } 2878 2879 bool current_cpuset_is_being_rebound(void) 2880 { 2881 bool ret; 2882 2883 rcu_read_lock(); 2884 ret = task_cs(current) == cpuset_being_rebound; 2885 rcu_read_unlock(); 2886 2887 return ret; 2888 } 2889 2890 /* 2891 * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag 2892 * bit: the bit to update (see cpuset_flagbits_t) 2893 * cs: the cpuset to update 2894 * turning_on: whether the flag is being set or cleared 2895 * 2896 * Call with cpuset_mutex held. 2897 */ 2898 2899 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 2900 int turning_on) 2901 { 2902 struct cpuset *trialcs; 2903 int balance_flag_changed; 2904 int spread_flag_changed; 2905 int err; 2906 2907 trialcs = dup_or_alloc_cpuset(cs); 2908 if (!trialcs) 2909 return -ENOMEM; 2910 2911 if (turning_on) 2912 set_bit(bit, &trialcs->flags); 2913 else 2914 clear_bit(bit, &trialcs->flags); 2915 2916 err = validate_change(cs, trialcs); 2917 if (err < 0) 2918 goto out; 2919 2920 balance_flag_changed = (is_sched_load_balance(cs) != 2921 is_sched_load_balance(trialcs)); 2922 2923 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 2924 || (is_spread_page(cs) != is_spread_page(trialcs))); 2925 2926 spin_lock_irq(&callback_lock); 2927 cs->flags = trialcs->flags; 2928 spin_unlock_irq(&callback_lock); 2929 2930 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) { 2931 if (cpuset_v2()) 2932 cpuset_force_rebuild(); 2933 else 2934 rebuild_sched_domains_locked(); 2935 } 2936 2937 if (spread_flag_changed) 2938 cpuset1_update_tasks_flags(cs); 2939 out: 2940 free_cpuset(trialcs); 2941 return err; 2942 } 2943 2944 /** 2945 * update_prstate - update partition_root_state 2946 * @cs: the cpuset to update 2947 * @new_prs: new partition root state 2948 * Return: 0 if successful, != 0 if error 2949 * 2950 * Call with cpuset_mutex held. 2951 */ 2952 static int update_prstate(struct cpuset *cs, int new_prs) 2953 { 2954 int err = PERR_NONE, old_prs = cs->partition_root_state; 2955 struct cpuset *parent = parent_cs(cs); 2956 struct tmpmasks tmpmask; 2957 bool isolcpus_updated = false; 2958 2959 if (old_prs == new_prs) 2960 return 0; 2961 2962 /* 2963 * Treat a previously invalid partition root as if it is a "member". 2964 */ 2965 if (new_prs && is_partition_invalid(cs)) 2966 old_prs = PRS_MEMBER; 2967 2968 if (alloc_tmpmasks(&tmpmask)) 2969 return -ENOMEM; 2970 2971 err = update_partition_exclusive_flag(cs, new_prs); 2972 if (err) 2973 goto out; 2974 2975 if (!old_prs) { 2976 /* 2977 * cpus_allowed and exclusive_cpus cannot be both empty. 2978 */ 2979 if (xcpus_empty(cs)) { 2980 err = PERR_CPUSEMPTY; 2981 goto out; 2982 } 2983 2984 /* 2985 * We don't support the creation of a new local partition with 2986 * a remote partition underneath it. This unsupported 2987 * setting can happen only if parent is the top_cpuset because 2988 * a remote partition cannot be created underneath an existing 2989 * local or remote partition. 2990 */ 2991 if ((parent == &top_cpuset) && 2992 cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) { 2993 err = PERR_REMOTE; 2994 goto out; 2995 } 2996 2997 /* 2998 * If parent is valid partition, enable local partiion. 2999 * Otherwise, enable a remote partition. 3000 */ 3001 if (is_partition_valid(parent)) { 3002 enum partition_cmd cmd = (new_prs == PRS_ROOT) 3003 ? partcmd_enable : partcmd_enablei; 3004 3005 err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask); 3006 } else { 3007 err = remote_partition_enable(cs, new_prs, &tmpmask); 3008 } 3009 } else if (old_prs && new_prs) { 3010 /* 3011 * A change in load balance state only, no change in cpumasks. 3012 * Need to update isolated_cpus. 3013 */ 3014 isolcpus_updated = true; 3015 } else { 3016 /* 3017 * Switching back to member is always allowed even if it 3018 * disables child partitions. 3019 */ 3020 if (is_remote_partition(cs)) 3021 remote_partition_disable(cs, &tmpmask); 3022 else 3023 update_parent_effective_cpumask(cs, partcmd_disable, 3024 NULL, &tmpmask); 3025 3026 /* 3027 * Invalidation of child partitions will be done in 3028 * update_cpumasks_hier(). 3029 */ 3030 } 3031 out: 3032 /* 3033 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error 3034 * happens. 3035 */ 3036 if (err) { 3037 new_prs = -new_prs; 3038 update_partition_exclusive_flag(cs, new_prs); 3039 } 3040 3041 spin_lock_irq(&callback_lock); 3042 cs->partition_root_state = new_prs; 3043 WRITE_ONCE(cs->prs_err, err); 3044 if (!is_partition_valid(cs)) 3045 reset_partition_data(cs); 3046 else if (isolcpus_updated) 3047 isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus); 3048 spin_unlock_irq(&callback_lock); 3049 update_isolation_cpumasks(isolcpus_updated); 3050 3051 /* Force update if switching back to member & update effective_xcpus */ 3052 update_cpumasks_hier(cs, &tmpmask, !new_prs); 3053 3054 /* A newly created partition must have effective_xcpus set */ 3055 WARN_ON_ONCE(!old_prs && (new_prs > 0) 3056 && cpumask_empty(cs->effective_xcpus)); 3057 3058 /* Update sched domains and load balance flag */ 3059 update_partition_sd_lb(cs, old_prs); 3060 3061 notify_partition_change(cs, old_prs); 3062 if (force_sd_rebuild) 3063 rebuild_sched_domains_locked(); 3064 free_tmpmasks(&tmpmask); 3065 return 0; 3066 } 3067 3068 static struct cpuset *cpuset_attach_old_cs; 3069 3070 /* 3071 * Check to see if a cpuset can accept a new task 3072 * For v1, cpus_allowed and mems_allowed can't be empty. 3073 * For v2, effective_cpus can't be empty. 3074 * Note that in v1, effective_cpus = cpus_allowed. 3075 */ 3076 static int cpuset_can_attach_check(struct cpuset *cs) 3077 { 3078 if (cpumask_empty(cs->effective_cpus) || 3079 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) 3080 return -ENOSPC; 3081 return 0; 3082 } 3083 3084 static void reset_migrate_dl_data(struct cpuset *cs) 3085 { 3086 cs->nr_migrate_dl_tasks = 0; 3087 cs->sum_migrate_dl_bw = 0; 3088 } 3089 3090 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 3091 static int cpuset_can_attach(struct cgroup_taskset *tset) 3092 { 3093 struct cgroup_subsys_state *css; 3094 struct cpuset *cs, *oldcs; 3095 struct task_struct *task; 3096 bool cpus_updated, mems_updated; 3097 int ret; 3098 3099 /* used later by cpuset_attach() */ 3100 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 3101 oldcs = cpuset_attach_old_cs; 3102 cs = css_cs(css); 3103 3104 mutex_lock(&cpuset_mutex); 3105 3106 /* Check to see if task is allowed in the cpuset */ 3107 ret = cpuset_can_attach_check(cs); 3108 if (ret) 3109 goto out_unlock; 3110 3111 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); 3112 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 3113 3114 cgroup_taskset_for_each(task, css, tset) { 3115 ret = task_can_attach(task); 3116 if (ret) 3117 goto out_unlock; 3118 3119 /* 3120 * Skip rights over task check in v2 when nothing changes, 3121 * migration permission derives from hierarchy ownership in 3122 * cgroup_procs_write_permission()). 3123 */ 3124 if (!cpuset_v2() || (cpus_updated || mems_updated)) { 3125 ret = security_task_setscheduler(task); 3126 if (ret) 3127 goto out_unlock; 3128 } 3129 3130 if (dl_task(task)) { 3131 cs->nr_migrate_dl_tasks++; 3132 cs->sum_migrate_dl_bw += task->dl.dl_bw; 3133 } 3134 } 3135 3136 if (!cs->nr_migrate_dl_tasks) 3137 goto out_success; 3138 3139 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { 3140 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); 3141 3142 if (unlikely(cpu >= nr_cpu_ids)) { 3143 reset_migrate_dl_data(cs); 3144 ret = -EINVAL; 3145 goto out_unlock; 3146 } 3147 3148 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); 3149 if (ret) { 3150 reset_migrate_dl_data(cs); 3151 goto out_unlock; 3152 } 3153 } 3154 3155 out_success: 3156 /* 3157 * Mark attach is in progress. This makes validate_change() fail 3158 * changes which zero cpus/mems_allowed. 3159 */ 3160 cs->attach_in_progress++; 3161 out_unlock: 3162 mutex_unlock(&cpuset_mutex); 3163 return ret; 3164 } 3165 3166 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 3167 { 3168 struct cgroup_subsys_state *css; 3169 struct cpuset *cs; 3170 3171 cgroup_taskset_first(tset, &css); 3172 cs = css_cs(css); 3173 3174 mutex_lock(&cpuset_mutex); 3175 dec_attach_in_progress_locked(cs); 3176 3177 if (cs->nr_migrate_dl_tasks) { 3178 int cpu = cpumask_any(cs->effective_cpus); 3179 3180 dl_bw_free(cpu, cs->sum_migrate_dl_bw); 3181 reset_migrate_dl_data(cs); 3182 } 3183 3184 mutex_unlock(&cpuset_mutex); 3185 } 3186 3187 /* 3188 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() 3189 * but we can't allocate it dynamically there. Define it global and 3190 * allocate from cpuset_init(). 3191 */ 3192 static cpumask_var_t cpus_attach; 3193 static nodemask_t cpuset_attach_nodemask_to; 3194 3195 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) 3196 { 3197 lockdep_assert_held(&cpuset_mutex); 3198 3199 if (cs != &top_cpuset) 3200 guarantee_active_cpus(task, cpus_attach); 3201 else 3202 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), 3203 subpartitions_cpus); 3204 /* 3205 * can_attach beforehand should guarantee that this doesn't 3206 * fail. TODO: have a better way to handle failure here 3207 */ 3208 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 3209 3210 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 3211 cpuset1_update_task_spread_flags(cs, task); 3212 } 3213 3214 static void cpuset_attach(struct cgroup_taskset *tset) 3215 { 3216 struct task_struct *task; 3217 struct task_struct *leader; 3218 struct cgroup_subsys_state *css; 3219 struct cpuset *cs; 3220 struct cpuset *oldcs = cpuset_attach_old_cs; 3221 bool cpus_updated, mems_updated; 3222 bool queue_task_work = false; 3223 3224 cgroup_taskset_first(tset, &css); 3225 cs = css_cs(css); 3226 3227 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ 3228 mutex_lock(&cpuset_mutex); 3229 cpus_updated = !cpumask_equal(cs->effective_cpus, 3230 oldcs->effective_cpus); 3231 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 3232 3233 /* 3234 * In the default hierarchy, enabling cpuset in the child cgroups 3235 * will trigger a number of cpuset_attach() calls with no change 3236 * in effective cpus and mems. In that case, we can optimize out 3237 * by skipping the task iteration and update. 3238 */ 3239 if (cpuset_v2() && !cpus_updated && !mems_updated) { 3240 cpuset_attach_nodemask_to = cs->effective_mems; 3241 goto out; 3242 } 3243 3244 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3245 3246 cgroup_taskset_for_each(task, css, tset) 3247 cpuset_attach_task(cs, task); 3248 3249 /* 3250 * Change mm for all threadgroup leaders. This is expensive and may 3251 * sleep and should be moved outside migration path proper. Skip it 3252 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is 3253 * not set. 3254 */ 3255 cpuset_attach_nodemask_to = cs->effective_mems; 3256 if (!is_memory_migrate(cs) && !mems_updated) 3257 goto out; 3258 3259 cgroup_taskset_for_each_leader(leader, css, tset) { 3260 struct mm_struct *mm = get_task_mm(leader); 3261 3262 if (mm) { 3263 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 3264 3265 /* 3266 * old_mems_allowed is the same with mems_allowed 3267 * here, except if this task is being moved 3268 * automatically due to hotplug. In that case 3269 * @mems_allowed has been updated and is empty, so 3270 * @old_mems_allowed is the right nodesets that we 3271 * migrate mm from. 3272 */ 3273 if (is_memory_migrate(cs)) { 3274 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 3275 &cpuset_attach_nodemask_to); 3276 queue_task_work = true; 3277 } else 3278 mmput(mm); 3279 } 3280 } 3281 3282 out: 3283 if (queue_task_work) 3284 schedule_flush_migrate_mm(); 3285 cs->old_mems_allowed = cpuset_attach_nodemask_to; 3286 3287 if (cs->nr_migrate_dl_tasks) { 3288 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; 3289 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; 3290 reset_migrate_dl_data(cs); 3291 } 3292 3293 dec_attach_in_progress_locked(cs); 3294 3295 mutex_unlock(&cpuset_mutex); 3296 } 3297 3298 /* 3299 * Common handling for a write to a "cpus" or "mems" file. 3300 */ 3301 ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 3302 char *buf, size_t nbytes, loff_t off) 3303 { 3304 struct cpuset *cs = css_cs(of_css(of)); 3305 struct cpuset *trialcs; 3306 int retval = -ENODEV; 3307 3308 /* root is read-only */ 3309 if (cs == &top_cpuset) 3310 return -EACCES; 3311 3312 buf = strstrip(buf); 3313 cpuset_full_lock(); 3314 if (!is_cpuset_online(cs)) 3315 goto out_unlock; 3316 3317 trialcs = dup_or_alloc_cpuset(cs); 3318 if (!trialcs) { 3319 retval = -ENOMEM; 3320 goto out_unlock; 3321 } 3322 3323 switch (of_cft(of)->private) { 3324 case FILE_CPULIST: 3325 retval = update_cpumask(cs, trialcs, buf); 3326 break; 3327 case FILE_EXCLUSIVE_CPULIST: 3328 retval = update_exclusive_cpumask(cs, trialcs, buf); 3329 break; 3330 case FILE_MEMLIST: 3331 retval = update_nodemask(cs, trialcs, buf); 3332 break; 3333 default: 3334 retval = -EINVAL; 3335 break; 3336 } 3337 3338 free_cpuset(trialcs); 3339 if (force_sd_rebuild) 3340 rebuild_sched_domains_locked(); 3341 out_unlock: 3342 cpuset_full_unlock(); 3343 if (of_cft(of)->private == FILE_MEMLIST) 3344 schedule_flush_migrate_mm(); 3345 return retval ?: nbytes; 3346 } 3347 3348 /* 3349 * These ascii lists should be read in a single call, by using a user 3350 * buffer large enough to hold the entire map. If read in smaller 3351 * chunks, there is no guarantee of atomicity. Since the display format 3352 * used, list of ranges of sequential numbers, is variable length, 3353 * and since these maps can change value dynamically, one could read 3354 * gibberish by doing partial reads while a list was changing. 3355 */ 3356 int cpuset_common_seq_show(struct seq_file *sf, void *v) 3357 { 3358 struct cpuset *cs = css_cs(seq_css(sf)); 3359 cpuset_filetype_t type = seq_cft(sf)->private; 3360 int ret = 0; 3361 3362 spin_lock_irq(&callback_lock); 3363 3364 switch (type) { 3365 case FILE_CPULIST: 3366 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 3367 break; 3368 case FILE_MEMLIST: 3369 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 3370 break; 3371 case FILE_EFFECTIVE_CPULIST: 3372 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 3373 break; 3374 case FILE_EFFECTIVE_MEMLIST: 3375 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 3376 break; 3377 case FILE_EXCLUSIVE_CPULIST: 3378 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus)); 3379 break; 3380 case FILE_EFFECTIVE_XCPULIST: 3381 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus)); 3382 break; 3383 case FILE_SUBPARTS_CPULIST: 3384 seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus)); 3385 break; 3386 case FILE_ISOLATED_CPULIST: 3387 seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus)); 3388 break; 3389 default: 3390 ret = -EINVAL; 3391 } 3392 3393 spin_unlock_irq(&callback_lock); 3394 return ret; 3395 } 3396 3397 static int cpuset_partition_show(struct seq_file *seq, void *v) 3398 { 3399 struct cpuset *cs = css_cs(seq_css(seq)); 3400 const char *err, *type = NULL; 3401 3402 switch (cs->partition_root_state) { 3403 case PRS_ROOT: 3404 seq_puts(seq, "root\n"); 3405 break; 3406 case PRS_ISOLATED: 3407 seq_puts(seq, "isolated\n"); 3408 break; 3409 case PRS_MEMBER: 3410 seq_puts(seq, "member\n"); 3411 break; 3412 case PRS_INVALID_ROOT: 3413 type = "root"; 3414 fallthrough; 3415 case PRS_INVALID_ISOLATED: 3416 if (!type) 3417 type = "isolated"; 3418 err = perr_strings[READ_ONCE(cs->prs_err)]; 3419 if (err) 3420 seq_printf(seq, "%s invalid (%s)\n", type, err); 3421 else 3422 seq_printf(seq, "%s invalid\n", type); 3423 break; 3424 } 3425 return 0; 3426 } 3427 3428 static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf, 3429 size_t nbytes, loff_t off) 3430 { 3431 struct cpuset *cs = css_cs(of_css(of)); 3432 int val; 3433 int retval = -ENODEV; 3434 3435 buf = strstrip(buf); 3436 3437 if (!strcmp(buf, "root")) 3438 val = PRS_ROOT; 3439 else if (!strcmp(buf, "member")) 3440 val = PRS_MEMBER; 3441 else if (!strcmp(buf, "isolated")) 3442 val = PRS_ISOLATED; 3443 else 3444 return -EINVAL; 3445 3446 cpuset_full_lock(); 3447 if (is_cpuset_online(cs)) 3448 retval = update_prstate(cs, val); 3449 cpuset_full_unlock(); 3450 return retval ?: nbytes; 3451 } 3452 3453 /* 3454 * This is currently a minimal set for the default hierarchy. It can be 3455 * expanded later on by migrating more features and control files from v1. 3456 */ 3457 static struct cftype dfl_files[] = { 3458 { 3459 .name = "cpus", 3460 .seq_show = cpuset_common_seq_show, 3461 .write = cpuset_write_resmask, 3462 .max_write_len = (100U + 6 * NR_CPUS), 3463 .private = FILE_CPULIST, 3464 .flags = CFTYPE_NOT_ON_ROOT, 3465 }, 3466 3467 { 3468 .name = "mems", 3469 .seq_show = cpuset_common_seq_show, 3470 .write = cpuset_write_resmask, 3471 .max_write_len = (100U + 6 * MAX_NUMNODES), 3472 .private = FILE_MEMLIST, 3473 .flags = CFTYPE_NOT_ON_ROOT, 3474 }, 3475 3476 { 3477 .name = "cpus.effective", 3478 .seq_show = cpuset_common_seq_show, 3479 .private = FILE_EFFECTIVE_CPULIST, 3480 }, 3481 3482 { 3483 .name = "mems.effective", 3484 .seq_show = cpuset_common_seq_show, 3485 .private = FILE_EFFECTIVE_MEMLIST, 3486 }, 3487 3488 { 3489 .name = "cpus.partition", 3490 .seq_show = cpuset_partition_show, 3491 .write = cpuset_partition_write, 3492 .private = FILE_PARTITION_ROOT, 3493 .flags = CFTYPE_NOT_ON_ROOT, 3494 .file_offset = offsetof(struct cpuset, partition_file), 3495 }, 3496 3497 { 3498 .name = "cpus.exclusive", 3499 .seq_show = cpuset_common_seq_show, 3500 .write = cpuset_write_resmask, 3501 .max_write_len = (100U + 6 * NR_CPUS), 3502 .private = FILE_EXCLUSIVE_CPULIST, 3503 .flags = CFTYPE_NOT_ON_ROOT, 3504 }, 3505 3506 { 3507 .name = "cpus.exclusive.effective", 3508 .seq_show = cpuset_common_seq_show, 3509 .private = FILE_EFFECTIVE_XCPULIST, 3510 .flags = CFTYPE_NOT_ON_ROOT, 3511 }, 3512 3513 { 3514 .name = "cpus.subpartitions", 3515 .seq_show = cpuset_common_seq_show, 3516 .private = FILE_SUBPARTS_CPULIST, 3517 .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG, 3518 }, 3519 3520 { 3521 .name = "cpus.isolated", 3522 .seq_show = cpuset_common_seq_show, 3523 .private = FILE_ISOLATED_CPULIST, 3524 .flags = CFTYPE_ONLY_ON_ROOT, 3525 }, 3526 3527 { } /* terminate */ 3528 }; 3529 3530 3531 /** 3532 * cpuset_css_alloc - Allocate a cpuset css 3533 * @parent_css: Parent css of the control group that the new cpuset will be 3534 * part of 3535 * Return: cpuset css on success, -ENOMEM on failure. 3536 * 3537 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return 3538 * top cpuset css otherwise. 3539 */ 3540 static struct cgroup_subsys_state * 3541 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 3542 { 3543 struct cpuset *cs; 3544 3545 if (!parent_css) 3546 return &top_cpuset.css; 3547 3548 cs = dup_or_alloc_cpuset(NULL); 3549 if (!cs) 3550 return ERR_PTR(-ENOMEM); 3551 3552 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3553 fmeter_init(&cs->fmeter); 3554 cs->relax_domain_level = -1; 3555 INIT_LIST_HEAD(&cs->remote_sibling); 3556 3557 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 3558 if (cpuset_v2()) 3559 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 3560 3561 return &cs->css; 3562 } 3563 3564 static int cpuset_css_online(struct cgroup_subsys_state *css) 3565 { 3566 struct cpuset *cs = css_cs(css); 3567 struct cpuset *parent = parent_cs(cs); 3568 struct cpuset *tmp_cs; 3569 struct cgroup_subsys_state *pos_css; 3570 3571 if (!parent) 3572 return 0; 3573 3574 cpuset_full_lock(); 3575 if (is_spread_page(parent)) 3576 set_bit(CS_SPREAD_PAGE, &cs->flags); 3577 if (is_spread_slab(parent)) 3578 set_bit(CS_SPREAD_SLAB, &cs->flags); 3579 /* 3580 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated 3581 */ 3582 if (cpuset_v2() && !is_sched_load_balance(parent)) 3583 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3584 3585 cpuset_inc(); 3586 3587 spin_lock_irq(&callback_lock); 3588 if (is_in_v2_mode()) { 3589 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 3590 cs->effective_mems = parent->effective_mems; 3591 } 3592 spin_unlock_irq(&callback_lock); 3593 3594 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 3595 goto out_unlock; 3596 3597 /* 3598 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 3599 * set. This flag handling is implemented in cgroup core for 3600 * historical reasons - the flag may be specified during mount. 3601 * 3602 * Currently, if any sibling cpusets have exclusive cpus or mem, we 3603 * refuse to clone the configuration - thereby refusing the task to 3604 * be entered, and as a result refusing the sys_unshare() or 3605 * clone() which initiated it. If this becomes a problem for some 3606 * users who wish to allow that scenario, then this could be 3607 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 3608 * (and likewise for mems) to the new cgroup. 3609 */ 3610 rcu_read_lock(); 3611 cpuset_for_each_child(tmp_cs, pos_css, parent) { 3612 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 3613 rcu_read_unlock(); 3614 goto out_unlock; 3615 } 3616 } 3617 rcu_read_unlock(); 3618 3619 spin_lock_irq(&callback_lock); 3620 cs->mems_allowed = parent->mems_allowed; 3621 cs->effective_mems = parent->mems_allowed; 3622 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 3623 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 3624 spin_unlock_irq(&callback_lock); 3625 out_unlock: 3626 cpuset_full_unlock(); 3627 return 0; 3628 } 3629 3630 /* 3631 * If the cpuset being removed has its flag 'sched_load_balance' 3632 * enabled, then simulate turning sched_load_balance off, which 3633 * will call rebuild_sched_domains_locked(). That is not needed 3634 * in the default hierarchy where only changes in partition 3635 * will cause repartitioning. 3636 */ 3637 static void cpuset_css_offline(struct cgroup_subsys_state *css) 3638 { 3639 struct cpuset *cs = css_cs(css); 3640 3641 cpuset_full_lock(); 3642 if (!cpuset_v2() && is_sched_load_balance(cs)) 3643 cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 3644 3645 cpuset_dec(); 3646 cpuset_full_unlock(); 3647 } 3648 3649 /* 3650 * If a dying cpuset has the 'cpus.partition' enabled, turn it off by 3651 * changing it back to member to free its exclusive CPUs back to the pool to 3652 * be used by other online cpusets. 3653 */ 3654 static void cpuset_css_killed(struct cgroup_subsys_state *css) 3655 { 3656 struct cpuset *cs = css_cs(css); 3657 3658 cpuset_full_lock(); 3659 /* Reset valid partition back to member */ 3660 if (is_partition_valid(cs)) 3661 update_prstate(cs, PRS_MEMBER); 3662 cpuset_full_unlock(); 3663 } 3664 3665 static void cpuset_css_free(struct cgroup_subsys_state *css) 3666 { 3667 struct cpuset *cs = css_cs(css); 3668 3669 free_cpuset(cs); 3670 } 3671 3672 static void cpuset_bind(struct cgroup_subsys_state *root_css) 3673 { 3674 mutex_lock(&cpuset_mutex); 3675 spin_lock_irq(&callback_lock); 3676 3677 if (is_in_v2_mode()) { 3678 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 3679 cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask); 3680 top_cpuset.mems_allowed = node_possible_map; 3681 } else { 3682 cpumask_copy(top_cpuset.cpus_allowed, 3683 top_cpuset.effective_cpus); 3684 top_cpuset.mems_allowed = top_cpuset.effective_mems; 3685 } 3686 3687 spin_unlock_irq(&callback_lock); 3688 mutex_unlock(&cpuset_mutex); 3689 } 3690 3691 /* 3692 * In case the child is cloned into a cpuset different from its parent, 3693 * additional checks are done to see if the move is allowed. 3694 */ 3695 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) 3696 { 3697 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3698 bool same_cs; 3699 int ret; 3700 3701 rcu_read_lock(); 3702 same_cs = (cs == task_cs(current)); 3703 rcu_read_unlock(); 3704 3705 if (same_cs) 3706 return 0; 3707 3708 lockdep_assert_held(&cgroup_mutex); 3709 mutex_lock(&cpuset_mutex); 3710 3711 /* Check to see if task is allowed in the cpuset */ 3712 ret = cpuset_can_attach_check(cs); 3713 if (ret) 3714 goto out_unlock; 3715 3716 ret = task_can_attach(task); 3717 if (ret) 3718 goto out_unlock; 3719 3720 ret = security_task_setscheduler(task); 3721 if (ret) 3722 goto out_unlock; 3723 3724 /* 3725 * Mark attach is in progress. This makes validate_change() fail 3726 * changes which zero cpus/mems_allowed. 3727 */ 3728 cs->attach_in_progress++; 3729 out_unlock: 3730 mutex_unlock(&cpuset_mutex); 3731 return ret; 3732 } 3733 3734 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) 3735 { 3736 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3737 bool same_cs; 3738 3739 rcu_read_lock(); 3740 same_cs = (cs == task_cs(current)); 3741 rcu_read_unlock(); 3742 3743 if (same_cs) 3744 return; 3745 3746 dec_attach_in_progress(cs); 3747 } 3748 3749 /* 3750 * Make sure the new task conform to the current state of its parent, 3751 * which could have been changed by cpuset just after it inherits the 3752 * state from the parent and before it sits on the cgroup's task list. 3753 */ 3754 static void cpuset_fork(struct task_struct *task) 3755 { 3756 struct cpuset *cs; 3757 bool same_cs; 3758 3759 rcu_read_lock(); 3760 cs = task_cs(task); 3761 same_cs = (cs == task_cs(current)); 3762 rcu_read_unlock(); 3763 3764 if (same_cs) { 3765 if (cs == &top_cpuset) 3766 return; 3767 3768 set_cpus_allowed_ptr(task, current->cpus_ptr); 3769 task->mems_allowed = current->mems_allowed; 3770 return; 3771 } 3772 3773 /* CLONE_INTO_CGROUP */ 3774 mutex_lock(&cpuset_mutex); 3775 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3776 cpuset_attach_task(cs, task); 3777 3778 dec_attach_in_progress_locked(cs); 3779 mutex_unlock(&cpuset_mutex); 3780 } 3781 3782 struct cgroup_subsys cpuset_cgrp_subsys = { 3783 .css_alloc = cpuset_css_alloc, 3784 .css_online = cpuset_css_online, 3785 .css_offline = cpuset_css_offline, 3786 .css_killed = cpuset_css_killed, 3787 .css_free = cpuset_css_free, 3788 .can_attach = cpuset_can_attach, 3789 .cancel_attach = cpuset_cancel_attach, 3790 .attach = cpuset_attach, 3791 .bind = cpuset_bind, 3792 .can_fork = cpuset_can_fork, 3793 .cancel_fork = cpuset_cancel_fork, 3794 .fork = cpuset_fork, 3795 #ifdef CONFIG_CPUSETS_V1 3796 .legacy_cftypes = cpuset1_files, 3797 #endif 3798 .dfl_cftypes = dfl_files, 3799 .early_init = true, 3800 .threaded = true, 3801 }; 3802 3803 /** 3804 * cpuset_init - initialize cpusets at system boot 3805 * 3806 * Description: Initialize top_cpuset 3807 **/ 3808 3809 int __init cpuset_init(void) 3810 { 3811 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 3812 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 3813 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL)); 3814 BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL)); 3815 BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL)); 3816 BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL)); 3817 3818 cpumask_setall(top_cpuset.cpus_allowed); 3819 nodes_setall(top_cpuset.mems_allowed); 3820 cpumask_setall(top_cpuset.effective_cpus); 3821 cpumask_setall(top_cpuset.effective_xcpus); 3822 cpumask_setall(top_cpuset.exclusive_cpus); 3823 nodes_setall(top_cpuset.effective_mems); 3824 3825 fmeter_init(&top_cpuset.fmeter); 3826 INIT_LIST_HEAD(&remote_children); 3827 3828 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 3829 3830 have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN); 3831 if (have_boot_isolcpus) { 3832 BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL)); 3833 cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN)); 3834 cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus); 3835 } 3836 3837 return 0; 3838 } 3839 3840 static void 3841 hotplug_update_tasks(struct cpuset *cs, 3842 struct cpumask *new_cpus, nodemask_t *new_mems, 3843 bool cpus_updated, bool mems_updated) 3844 { 3845 /* A partition root is allowed to have empty effective cpus */ 3846 if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) 3847 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3848 if (nodes_empty(*new_mems)) 3849 *new_mems = parent_cs(cs)->effective_mems; 3850 3851 spin_lock_irq(&callback_lock); 3852 cpumask_copy(cs->effective_cpus, new_cpus); 3853 cs->effective_mems = *new_mems; 3854 spin_unlock_irq(&callback_lock); 3855 3856 if (cpus_updated) 3857 cpuset_update_tasks_cpumask(cs, new_cpus); 3858 if (mems_updated) 3859 cpuset_update_tasks_nodemask(cs); 3860 } 3861 3862 void cpuset_force_rebuild(void) 3863 { 3864 force_sd_rebuild = true; 3865 } 3866 3867 /** 3868 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3869 * @cs: cpuset in interest 3870 * @tmp: the tmpmasks structure pointer 3871 * 3872 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3873 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3874 * all its tasks are moved to the nearest ancestor with both resources. 3875 */ 3876 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3877 { 3878 static cpumask_t new_cpus; 3879 static nodemask_t new_mems; 3880 bool cpus_updated; 3881 bool mems_updated; 3882 bool remote; 3883 int partcmd = -1; 3884 struct cpuset *parent; 3885 retry: 3886 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3887 3888 mutex_lock(&cpuset_mutex); 3889 3890 /* 3891 * We have raced with task attaching. We wait until attaching 3892 * is finished, so we won't attach a task to an empty cpuset. 3893 */ 3894 if (cs->attach_in_progress) { 3895 mutex_unlock(&cpuset_mutex); 3896 goto retry; 3897 } 3898 3899 parent = parent_cs(cs); 3900 compute_effective_cpumask(&new_cpus, cs, parent); 3901 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3902 3903 if (!tmp || !cs->partition_root_state) 3904 goto update_tasks; 3905 3906 /* 3907 * Compute effective_cpus for valid partition root, may invalidate 3908 * child partition roots if necessary. 3909 */ 3910 remote = is_remote_partition(cs); 3911 if (remote || (is_partition_valid(cs) && is_partition_valid(parent))) 3912 compute_partition_effective_cpumask(cs, &new_cpus); 3913 3914 if (remote && cpumask_empty(&new_cpus) && 3915 partition_is_populated(cs, NULL)) { 3916 cs->prs_err = PERR_HOTPLUG; 3917 remote_partition_disable(cs, tmp); 3918 compute_effective_cpumask(&new_cpus, cs, parent); 3919 remote = false; 3920 } 3921 3922 /* 3923 * Force the partition to become invalid if either one of 3924 * the following conditions hold: 3925 * 1) empty effective cpus but not valid empty partition. 3926 * 2) parent is invalid or doesn't grant any cpus to child 3927 * partitions. 3928 */ 3929 if (is_local_partition(cs) && (!is_partition_valid(parent) || 3930 tasks_nocpu_error(parent, cs, &new_cpus))) 3931 partcmd = partcmd_invalidate; 3932 /* 3933 * On the other hand, an invalid partition root may be transitioned 3934 * back to a regular one with a non-empty effective xcpus. 3935 */ 3936 else if (is_partition_valid(parent) && is_partition_invalid(cs) && 3937 !cpumask_empty(cs->effective_xcpus)) 3938 partcmd = partcmd_update; 3939 3940 if (partcmd >= 0) { 3941 update_parent_effective_cpumask(cs, partcmd, NULL, tmp); 3942 if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) { 3943 compute_partition_effective_cpumask(cs, &new_cpus); 3944 cpuset_force_rebuild(); 3945 } 3946 } 3947 3948 update_tasks: 3949 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3950 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3951 if (!cpus_updated && !mems_updated) 3952 goto unlock; /* Hotplug doesn't affect this cpuset */ 3953 3954 if (mems_updated) 3955 check_insane_mems_config(&new_mems); 3956 3957 if (is_in_v2_mode()) 3958 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3959 cpus_updated, mems_updated); 3960 else 3961 cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems, 3962 cpus_updated, mems_updated); 3963 3964 unlock: 3965 mutex_unlock(&cpuset_mutex); 3966 } 3967 3968 /** 3969 * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset 3970 * 3971 * This function is called after either CPU or memory configuration has 3972 * changed and updates cpuset accordingly. The top_cpuset is always 3973 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3974 * order to make cpusets transparent (of no affect) on systems that are 3975 * actively using CPU hotplug but making no active use of cpusets. 3976 * 3977 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3978 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3979 * all descendants. 3980 * 3981 * Note that CPU offlining during suspend is ignored. We don't modify 3982 * cpusets across suspend/resume cycles at all. 3983 * 3984 * CPU / memory hotplug is handled synchronously. 3985 */ 3986 static void cpuset_handle_hotplug(void) 3987 { 3988 static cpumask_t new_cpus; 3989 static nodemask_t new_mems; 3990 bool cpus_updated, mems_updated; 3991 bool on_dfl = is_in_v2_mode(); 3992 struct tmpmasks tmp, *ptmp = NULL; 3993 3994 if (on_dfl && !alloc_tmpmasks(&tmp)) 3995 ptmp = &tmp; 3996 3997 lockdep_assert_cpus_held(); 3998 mutex_lock(&cpuset_mutex); 3999 4000 /* fetch the available cpus/mems and find out which changed how */ 4001 cpumask_copy(&new_cpus, cpu_active_mask); 4002 new_mems = node_states[N_MEMORY]; 4003 4004 /* 4005 * If subpartitions_cpus is populated, it is likely that the check 4006 * below will produce a false positive on cpus_updated when the cpu 4007 * list isn't changed. It is extra work, but it is better to be safe. 4008 */ 4009 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) || 4010 !cpumask_empty(subpartitions_cpus); 4011 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 4012 4013 /* For v1, synchronize cpus_allowed to cpu_active_mask */ 4014 if (cpus_updated) { 4015 cpuset_force_rebuild(); 4016 spin_lock_irq(&callback_lock); 4017 if (!on_dfl) 4018 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 4019 /* 4020 * Make sure that CPUs allocated to child partitions 4021 * do not show up in effective_cpus. If no CPU is left, 4022 * we clear the subpartitions_cpus & let the child partitions 4023 * fight for the CPUs again. 4024 */ 4025 if (!cpumask_empty(subpartitions_cpus)) { 4026 if (cpumask_subset(&new_cpus, subpartitions_cpus)) { 4027 top_cpuset.nr_subparts = 0; 4028 cpumask_clear(subpartitions_cpus); 4029 } else { 4030 cpumask_andnot(&new_cpus, &new_cpus, 4031 subpartitions_cpus); 4032 } 4033 } 4034 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 4035 spin_unlock_irq(&callback_lock); 4036 /* we don't mess with cpumasks of tasks in top_cpuset */ 4037 } 4038 4039 /* synchronize mems_allowed to N_MEMORY */ 4040 if (mems_updated) { 4041 spin_lock_irq(&callback_lock); 4042 if (!on_dfl) 4043 top_cpuset.mems_allowed = new_mems; 4044 top_cpuset.effective_mems = new_mems; 4045 spin_unlock_irq(&callback_lock); 4046 cpuset_update_tasks_nodemask(&top_cpuset); 4047 } 4048 4049 mutex_unlock(&cpuset_mutex); 4050 4051 /* if cpus or mems changed, we need to propagate to descendants */ 4052 if (cpus_updated || mems_updated) { 4053 struct cpuset *cs; 4054 struct cgroup_subsys_state *pos_css; 4055 4056 rcu_read_lock(); 4057 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 4058 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 4059 continue; 4060 rcu_read_unlock(); 4061 4062 cpuset_hotplug_update_tasks(cs, ptmp); 4063 4064 rcu_read_lock(); 4065 css_put(&cs->css); 4066 } 4067 rcu_read_unlock(); 4068 } 4069 4070 /* rebuild sched domains if necessary */ 4071 if (force_sd_rebuild) 4072 rebuild_sched_domains_cpuslocked(); 4073 4074 free_tmpmasks(ptmp); 4075 } 4076 4077 void cpuset_update_active_cpus(void) 4078 { 4079 /* 4080 * We're inside cpu hotplug critical region which usually nests 4081 * inside cgroup synchronization. Bounce actual hotplug processing 4082 * to a work item to avoid reverse locking order. 4083 */ 4084 cpuset_handle_hotplug(); 4085 } 4086 4087 /* 4088 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 4089 * Call this routine anytime after node_states[N_MEMORY] changes. 4090 * See cpuset_update_active_cpus() for CPU hotplug handling. 4091 */ 4092 static int cpuset_track_online_nodes(struct notifier_block *self, 4093 unsigned long action, void *arg) 4094 { 4095 cpuset_handle_hotplug(); 4096 return NOTIFY_OK; 4097 } 4098 4099 /** 4100 * cpuset_init_smp - initialize cpus_allowed 4101 * 4102 * Description: Finish top cpuset after cpu, node maps are initialized 4103 */ 4104 void __init cpuset_init_smp(void) 4105 { 4106 /* 4107 * cpus_allowd/mems_allowed set to v2 values in the initial 4108 * cpuset_bind() call will be reset to v1 values in another 4109 * cpuset_bind() call when v1 cpuset is mounted. 4110 */ 4111 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 4112 4113 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 4114 top_cpuset.effective_mems = node_states[N_MEMORY]; 4115 4116 hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); 4117 4118 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 4119 BUG_ON(!cpuset_migrate_mm_wq); 4120 } 4121 4122 /** 4123 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 4124 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 4125 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 4126 * 4127 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 4128 * attached to the specified @tsk. Guaranteed to return some non-empty 4129 * subset of cpu_active_mask, even if this means going outside the 4130 * tasks cpuset, except when the task is in the top cpuset. 4131 **/ 4132 4133 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 4134 { 4135 unsigned long flags; 4136 struct cpuset *cs; 4137 4138 spin_lock_irqsave(&callback_lock, flags); 4139 4140 cs = task_cs(tsk); 4141 if (cs != &top_cpuset) 4142 guarantee_active_cpus(tsk, pmask); 4143 /* 4144 * Tasks in the top cpuset won't get update to their cpumasks 4145 * when a hotplug online/offline event happens. So we include all 4146 * offline cpus in the allowed cpu list. 4147 */ 4148 if ((cs == &top_cpuset) || cpumask_empty(pmask)) { 4149 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 4150 4151 /* 4152 * We first exclude cpus allocated to partitions. If there is no 4153 * allowable online cpu left, we fall back to all possible cpus. 4154 */ 4155 cpumask_andnot(pmask, possible_mask, subpartitions_cpus); 4156 if (!cpumask_intersects(pmask, cpu_active_mask)) 4157 cpumask_copy(pmask, possible_mask); 4158 } 4159 4160 spin_unlock_irqrestore(&callback_lock, flags); 4161 } 4162 4163 /** 4164 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 4165 * @tsk: pointer to task_struct with which the scheduler is struggling 4166 * 4167 * Description: In the case that the scheduler cannot find an allowed cpu in 4168 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 4169 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 4170 * which will not contain a sane cpumask during cases such as cpu hotplugging. 4171 * This is the absolute last resort for the scheduler and it is only used if 4172 * _every_ other avenue has been traveled. 4173 * 4174 * Returns true if the affinity of @tsk was changed, false otherwise. 4175 **/ 4176 4177 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 4178 { 4179 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 4180 const struct cpumask *cs_mask; 4181 bool changed = false; 4182 4183 rcu_read_lock(); 4184 cs_mask = task_cs(tsk)->cpus_allowed; 4185 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 4186 set_cpus_allowed_force(tsk, cs_mask); 4187 changed = true; 4188 } 4189 rcu_read_unlock(); 4190 4191 /* 4192 * We own tsk->cpus_allowed, nobody can change it under us. 4193 * 4194 * But we used cs && cs->cpus_allowed lockless and thus can 4195 * race with cgroup_attach_task() or update_cpumask() and get 4196 * the wrong tsk->cpus_allowed. However, both cases imply the 4197 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 4198 * which takes task_rq_lock(). 4199 * 4200 * If we are called after it dropped the lock we must see all 4201 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 4202 * set any mask even if it is not right from task_cs() pov, 4203 * the pending set_cpus_allowed_ptr() will fix things. 4204 * 4205 * select_fallback_rq() will fix things ups and set cpu_possible_mask 4206 * if required. 4207 */ 4208 return changed; 4209 } 4210 4211 void __init cpuset_init_current_mems_allowed(void) 4212 { 4213 nodes_setall(current->mems_allowed); 4214 } 4215 4216 /** 4217 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 4218 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 4219 * 4220 * Description: Returns the nodemask_t mems_allowed of the cpuset 4221 * attached to the specified @tsk. Guaranteed to return some non-empty 4222 * subset of node_states[N_MEMORY], even if this means going outside the 4223 * tasks cpuset. 4224 **/ 4225 4226 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 4227 { 4228 nodemask_t mask; 4229 unsigned long flags; 4230 4231 spin_lock_irqsave(&callback_lock, flags); 4232 guarantee_online_mems(task_cs(tsk), &mask); 4233 spin_unlock_irqrestore(&callback_lock, flags); 4234 4235 return mask; 4236 } 4237 4238 /** 4239 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 4240 * @nodemask: the nodemask to be checked 4241 * 4242 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 4243 */ 4244 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 4245 { 4246 return nodes_intersects(*nodemask, current->mems_allowed); 4247 } 4248 4249 /* 4250 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 4251 * mem_hardwall ancestor to the specified cpuset. Call holding 4252 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 4253 * (an unusual configuration), then returns the root cpuset. 4254 */ 4255 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 4256 { 4257 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 4258 cs = parent_cs(cs); 4259 return cs; 4260 } 4261 4262 /* 4263 * cpuset_current_node_allowed - Can current task allocate on a memory node? 4264 * @node: is this an allowed node? 4265 * @gfp_mask: memory allocation flags 4266 * 4267 * If we're in interrupt, yes, we can always allocate. If @node is set in 4268 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 4269 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 4270 * yes. If current has access to memory reserves as an oom victim, yes. 4271 * Otherwise, no. 4272 * 4273 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 4274 * and do not allow allocations outside the current tasks cpuset 4275 * unless the task has been OOM killed. 4276 * GFP_KERNEL allocations are not so marked, so can escape to the 4277 * nearest enclosing hardwalled ancestor cpuset. 4278 * 4279 * Scanning up parent cpusets requires callback_lock. The 4280 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 4281 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 4282 * current tasks mems_allowed came up empty on the first pass over 4283 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 4284 * cpuset are short of memory, might require taking the callback_lock. 4285 * 4286 * The first call here from mm/page_alloc:get_page_from_freelist() 4287 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 4288 * so no allocation on a node outside the cpuset is allowed (unless 4289 * in interrupt, of course). 4290 * 4291 * The second pass through get_page_from_freelist() doesn't even call 4292 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 4293 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 4294 * in alloc_flags. That logic and the checks below have the combined 4295 * affect that: 4296 * in_interrupt - any node ok (current task context irrelevant) 4297 * GFP_ATOMIC - any node ok 4298 * tsk_is_oom_victim - any node ok 4299 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 4300 * GFP_USER - only nodes in current tasks mems allowed ok. 4301 */ 4302 bool cpuset_current_node_allowed(int node, gfp_t gfp_mask) 4303 { 4304 struct cpuset *cs; /* current cpuset ancestors */ 4305 bool allowed; /* is allocation in zone z allowed? */ 4306 unsigned long flags; 4307 4308 if (in_interrupt()) 4309 return true; 4310 if (node_isset(node, current->mems_allowed)) 4311 return true; 4312 /* 4313 * Allow tasks that have access to memory reserves because they have 4314 * been OOM killed to get memory anywhere. 4315 */ 4316 if (unlikely(tsk_is_oom_victim(current))) 4317 return true; 4318 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 4319 return false; 4320 4321 if (current->flags & PF_EXITING) /* Let dying task have memory */ 4322 return true; 4323 4324 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 4325 spin_lock_irqsave(&callback_lock, flags); 4326 4327 cs = nearest_hardwall_ancestor(task_cs(current)); 4328 allowed = node_isset(node, cs->mems_allowed); 4329 4330 spin_unlock_irqrestore(&callback_lock, flags); 4331 return allowed; 4332 } 4333 4334 bool cpuset_node_allowed(struct cgroup *cgroup, int nid) 4335 { 4336 struct cgroup_subsys_state *css; 4337 struct cpuset *cs; 4338 bool allowed; 4339 4340 /* 4341 * In v1, mem_cgroup and cpuset are unlikely in the same hierarchy 4342 * and mems_allowed is likely to be empty even if we could get to it, 4343 * so return true to avoid taking a global lock on the empty check. 4344 */ 4345 if (!cpuset_v2()) 4346 return true; 4347 4348 css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys); 4349 if (!css) 4350 return true; 4351 4352 /* 4353 * Normally, accessing effective_mems would require the cpuset_mutex 4354 * or callback_lock - but node_isset is atomic and the reference 4355 * taken via cgroup_get_e_css is sufficient to protect css. 4356 * 4357 * Since this interface is intended for use by migration paths, we 4358 * relax locking here to avoid taking global locks - while accepting 4359 * there may be rare scenarios where the result may be innaccurate. 4360 * 4361 * Reclaim and migration are subject to these same race conditions, and 4362 * cannot make strong isolation guarantees, so this is acceptable. 4363 */ 4364 cs = container_of(css, struct cpuset, css); 4365 allowed = node_isset(nid, cs->effective_mems); 4366 css_put(css); 4367 return allowed; 4368 } 4369 4370 /** 4371 * cpuset_spread_node() - On which node to begin search for a page 4372 * @rotor: round robin rotor 4373 * 4374 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 4375 * tasks in a cpuset with is_spread_page or is_spread_slab set), 4376 * and if the memory allocation used cpuset_mem_spread_node() 4377 * to determine on which node to start looking, as it will for 4378 * certain page cache or slab cache pages such as used for file 4379 * system buffers and inode caches, then instead of starting on the 4380 * local node to look for a free page, rather spread the starting 4381 * node around the tasks mems_allowed nodes. 4382 * 4383 * We don't have to worry about the returned node being offline 4384 * because "it can't happen", and even if it did, it would be ok. 4385 * 4386 * The routines calling guarantee_online_mems() are careful to 4387 * only set nodes in task->mems_allowed that are online. So it 4388 * should not be possible for the following code to return an 4389 * offline node. But if it did, that would be ok, as this routine 4390 * is not returning the node where the allocation must be, only 4391 * the node where the search should start. The zonelist passed to 4392 * __alloc_pages() will include all nodes. If the slab allocator 4393 * is passed an offline node, it will fall back to the local node. 4394 * See kmem_cache_alloc_node(). 4395 */ 4396 static int cpuset_spread_node(int *rotor) 4397 { 4398 return *rotor = next_node_in(*rotor, current->mems_allowed); 4399 } 4400 4401 /** 4402 * cpuset_mem_spread_node() - On which node to begin search for a file page 4403 */ 4404 int cpuset_mem_spread_node(void) 4405 { 4406 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 4407 current->cpuset_mem_spread_rotor = 4408 node_random(¤t->mems_allowed); 4409 4410 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 4411 } 4412 4413 /** 4414 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 4415 * @tsk1: pointer to task_struct of some task. 4416 * @tsk2: pointer to task_struct of some other task. 4417 * 4418 * Description: Return true if @tsk1's mems_allowed intersects the 4419 * mems_allowed of @tsk2. Used by the OOM killer to determine if 4420 * one of the task's memory usage might impact the memory available 4421 * to the other. 4422 **/ 4423 4424 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 4425 const struct task_struct *tsk2) 4426 { 4427 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 4428 } 4429 4430 /** 4431 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 4432 * 4433 * Description: Prints current's name, cpuset name, and cached copy of its 4434 * mems_allowed to the kernel log. 4435 */ 4436 void cpuset_print_current_mems_allowed(void) 4437 { 4438 struct cgroup *cgrp; 4439 4440 rcu_read_lock(); 4441 4442 cgrp = task_cs(current)->css.cgroup; 4443 pr_cont(",cpuset="); 4444 pr_cont_cgroup_name(cgrp); 4445 pr_cont(",mems_allowed=%*pbl", 4446 nodemask_pr_args(¤t->mems_allowed)); 4447 4448 rcu_read_unlock(); 4449 } 4450 4451 /* Display task mems_allowed in /proc/<pid>/status file. */ 4452 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 4453 { 4454 seq_printf(m, "Mems_allowed:\t%*pb\n", 4455 nodemask_pr_args(&task->mems_allowed)); 4456 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 4457 nodemask_pr_args(&task->mems_allowed)); 4458 } 4459