1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 #include "cgroup-internal.h" 25 #include "cpuset-internal.h" 26 27 #include <linux/init.h> 28 #include <linux/interrupt.h> 29 #include <linux/kernel.h> 30 #include <linux/mempolicy.h> 31 #include <linux/mm.h> 32 #include <linux/memory.h> 33 #include <linux/export.h> 34 #include <linux/rcupdate.h> 35 #include <linux/sched.h> 36 #include <linux/sched/deadline.h> 37 #include <linux/sched/mm.h> 38 #include <linux/sched/task.h> 39 #include <linux/security.h> 40 #include <linux/oom.h> 41 #include <linux/sched/isolation.h> 42 #include <linux/wait.h> 43 #include <linux/workqueue.h> 44 45 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 46 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 47 48 /* 49 * There could be abnormal cpuset configurations for cpu or memory 50 * node binding, add this key to provide a quick low-cost judgment 51 * of the situation. 52 */ 53 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 54 55 static const char * const perr_strings[] = { 56 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive", 57 [PERR_INVPARENT] = "Parent is an invalid partition root", 58 [PERR_NOTPART] = "Parent is not a partition root", 59 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", 60 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", 61 [PERR_HOTPLUG] = "No cpu available due to hotplug", 62 [PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty", 63 [PERR_HKEEPING] = "partition config conflicts with housekeeping setup", 64 [PERR_ACCESS] = "Enable partition not permitted", 65 }; 66 67 /* 68 * Exclusive CPUs distributed out to sub-partitions of top_cpuset 69 */ 70 static cpumask_var_t subpartitions_cpus; 71 72 /* 73 * Exclusive CPUs in isolated partitions 74 */ 75 static cpumask_var_t isolated_cpus; 76 77 /* 78 * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot 79 */ 80 static cpumask_var_t boot_hk_cpus; 81 static bool have_boot_isolcpus; 82 83 /* List of remote partition root children */ 84 static struct list_head remote_children; 85 86 /* 87 * A flag to force sched domain rebuild at the end of an operation. 88 * It can be set in 89 * - update_partition_sd_lb() 90 * - remote_partition_check() 91 * - update_cpumasks_hier() 92 * - cpuset_update_flag() 93 * - cpuset_hotplug_update_tasks() 94 * - cpuset_handle_hotplug() 95 * 96 * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock. 97 * 98 * Note that update_relax_domain_level() in cpuset-v1.c can still call 99 * rebuild_sched_domains_locked() directly without using this flag. 100 */ 101 static bool force_sd_rebuild; 102 103 /* 104 * Partition root states: 105 * 106 * 0 - member (not a partition root) 107 * 1 - partition root 108 * 2 - partition root without load balancing (isolated) 109 * -1 - invalid partition root 110 * -2 - invalid isolated partition root 111 * 112 * There are 2 types of partitions - local or remote. Local partitions are 113 * those whose parents are partition root themselves. Setting of 114 * cpuset.cpus.exclusive are optional in setting up local partitions. 115 * Remote partitions are those whose parents are not partition roots. Passing 116 * down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor 117 * nodes are mandatory in creating a remote partition. 118 * 119 * For simplicity, a local partition can be created under a local or remote 120 * partition but a remote partition cannot have any partition root in its 121 * ancestor chain except the cgroup root. 122 */ 123 #define PRS_MEMBER 0 124 #define PRS_ROOT 1 125 #define PRS_ISOLATED 2 126 #define PRS_INVALID_ROOT -1 127 #define PRS_INVALID_ISOLATED -2 128 129 static inline bool is_prs_invalid(int prs_state) 130 { 131 return prs_state < 0; 132 } 133 134 /* 135 * Temporary cpumasks for working with partitions that are passed among 136 * functions to avoid memory allocation in inner functions. 137 */ 138 struct tmpmasks { 139 cpumask_var_t addmask, delmask; /* For partition root */ 140 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 141 }; 142 143 void inc_dl_tasks_cs(struct task_struct *p) 144 { 145 struct cpuset *cs = task_cs(p); 146 147 cs->nr_deadline_tasks++; 148 } 149 150 void dec_dl_tasks_cs(struct task_struct *p) 151 { 152 struct cpuset *cs = task_cs(p); 153 154 cs->nr_deadline_tasks--; 155 } 156 157 static inline int is_partition_valid(const struct cpuset *cs) 158 { 159 return cs->partition_root_state > 0; 160 } 161 162 static inline int is_partition_invalid(const struct cpuset *cs) 163 { 164 return cs->partition_root_state < 0; 165 } 166 167 /* 168 * Callers should hold callback_lock to modify partition_root_state. 169 */ 170 static inline void make_partition_invalid(struct cpuset *cs) 171 { 172 if (cs->partition_root_state > 0) 173 cs->partition_root_state = -cs->partition_root_state; 174 } 175 176 /* 177 * Send notification event of whenever partition_root_state changes. 178 */ 179 static inline void notify_partition_change(struct cpuset *cs, int old_prs) 180 { 181 if (old_prs == cs->partition_root_state) 182 return; 183 cgroup_file_notify(&cs->partition_file); 184 185 /* Reset prs_err if not invalid */ 186 if (is_partition_valid(cs)) 187 WRITE_ONCE(cs->prs_err, PERR_NONE); 188 } 189 190 static struct cpuset top_cpuset = { 191 .flags = BIT(CS_ONLINE) | BIT(CS_CPU_EXCLUSIVE) | 192 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE), 193 .partition_root_state = PRS_ROOT, 194 .relax_domain_level = -1, 195 .remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling), 196 }; 197 198 /* 199 * There are two global locks guarding cpuset structures - cpuset_mutex and 200 * callback_lock. We also require taking task_lock() when dereferencing a 201 * task's cpuset pointer. See "The task_lock() exception", at the end of this 202 * comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems 203 * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset 204 * structures. Note that cpuset_mutex needs to be a mutex as it is used in 205 * paths that rely on priority inheritance (e.g. scheduler - on RT) for 206 * correctness. 207 * 208 * A task must hold both locks to modify cpusets. If a task holds 209 * cpuset_mutex, it blocks others, ensuring that it is the only task able to 210 * also acquire callback_lock and be able to modify cpusets. It can perform 211 * various checks on the cpuset structure first, knowing nothing will change. 212 * It can also allocate memory while just holding cpuset_mutex. While it is 213 * performing these checks, various callback routines can briefly acquire 214 * callback_lock to query cpusets. Once it is ready to make the changes, it 215 * takes callback_lock, blocking everyone else. 216 * 217 * Calls to the kernel memory allocator can not be made while holding 218 * callback_lock, as that would risk double tripping on callback_lock 219 * from one of the callbacks into the cpuset code from within 220 * __alloc_pages(). 221 * 222 * If a task is only holding callback_lock, then it has read-only 223 * access to cpusets. 224 * 225 * Now, the task_struct fields mems_allowed and mempolicy may be changed 226 * by other task, we use alloc_lock in the task_struct fields to protect 227 * them. 228 * 229 * The cpuset_common_seq_show() handlers only hold callback_lock across 230 * small pieces of code, such as when reading out possibly multi-word 231 * cpumasks and nodemasks. 232 * 233 * Accessing a task's cpuset should be done in accordance with the 234 * guidelines for accessing subsystem state in kernel/cgroup.c 235 */ 236 237 static DEFINE_MUTEX(cpuset_mutex); 238 239 void cpuset_lock(void) 240 { 241 mutex_lock(&cpuset_mutex); 242 } 243 244 void cpuset_unlock(void) 245 { 246 mutex_unlock(&cpuset_mutex); 247 } 248 249 static DEFINE_SPINLOCK(callback_lock); 250 251 void cpuset_callback_lock_irq(void) 252 { 253 spin_lock_irq(&callback_lock); 254 } 255 256 void cpuset_callback_unlock_irq(void) 257 { 258 spin_unlock_irq(&callback_lock); 259 } 260 261 static struct workqueue_struct *cpuset_migrate_mm_wq; 262 263 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 264 265 static inline void check_insane_mems_config(nodemask_t *nodes) 266 { 267 if (!cpusets_insane_config() && 268 movable_only_nodes(nodes)) { 269 static_branch_enable(&cpusets_insane_config_key); 270 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 271 "Cpuset allocations might fail even with a lot of memory available.\n", 272 nodemask_pr_args(nodes)); 273 } 274 } 275 276 /* 277 * decrease cs->attach_in_progress. 278 * wake_up cpuset_attach_wq if cs->attach_in_progress==0. 279 */ 280 static inline void dec_attach_in_progress_locked(struct cpuset *cs) 281 { 282 lockdep_assert_held(&cpuset_mutex); 283 284 cs->attach_in_progress--; 285 if (!cs->attach_in_progress) 286 wake_up(&cpuset_attach_wq); 287 } 288 289 static inline void dec_attach_in_progress(struct cpuset *cs) 290 { 291 mutex_lock(&cpuset_mutex); 292 dec_attach_in_progress_locked(cs); 293 mutex_unlock(&cpuset_mutex); 294 } 295 296 static inline bool cpuset_v2(void) 297 { 298 return !IS_ENABLED(CONFIG_CPUSETS_V1) || 299 cgroup_subsys_on_dfl(cpuset_cgrp_subsys); 300 } 301 302 /* 303 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 304 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 305 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 306 * With v2 behavior, "cpus" and "mems" are always what the users have 307 * requested and won't be changed by hotplug events. Only the effective 308 * cpus or mems will be affected. 309 */ 310 static inline bool is_in_v2_mode(void) 311 { 312 return cpuset_v2() || 313 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 314 } 315 316 /** 317 * partition_is_populated - check if partition has tasks 318 * @cs: partition root to be checked 319 * @excluded_child: a child cpuset to be excluded in task checking 320 * Return: true if there are tasks, false otherwise 321 * 322 * It is assumed that @cs is a valid partition root. @excluded_child should 323 * be non-NULL when this cpuset is going to become a partition itself. 324 */ 325 static inline bool partition_is_populated(struct cpuset *cs, 326 struct cpuset *excluded_child) 327 { 328 struct cgroup_subsys_state *css; 329 struct cpuset *child; 330 331 if (cs->css.cgroup->nr_populated_csets) 332 return true; 333 if (!excluded_child && !cs->nr_subparts) 334 return cgroup_is_populated(cs->css.cgroup); 335 336 rcu_read_lock(); 337 cpuset_for_each_child(child, css, cs) { 338 if (child == excluded_child) 339 continue; 340 if (is_partition_valid(child)) 341 continue; 342 if (cgroup_is_populated(child->css.cgroup)) { 343 rcu_read_unlock(); 344 return true; 345 } 346 } 347 rcu_read_unlock(); 348 return false; 349 } 350 351 /* 352 * Return in pmask the portion of a task's cpusets's cpus_allowed that 353 * are online and are capable of running the task. If none are found, 354 * walk up the cpuset hierarchy until we find one that does have some 355 * appropriate cpus. 356 * 357 * One way or another, we guarantee to return some non-empty subset 358 * of cpu_online_mask. 359 * 360 * Call with callback_lock or cpuset_mutex held. 361 */ 362 static void guarantee_online_cpus(struct task_struct *tsk, 363 struct cpumask *pmask) 364 { 365 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 366 struct cpuset *cs; 367 368 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) 369 cpumask_copy(pmask, cpu_online_mask); 370 371 rcu_read_lock(); 372 cs = task_cs(tsk); 373 374 while (!cpumask_intersects(cs->effective_cpus, pmask)) 375 cs = parent_cs(cs); 376 377 cpumask_and(pmask, pmask, cs->effective_cpus); 378 rcu_read_unlock(); 379 } 380 381 /* 382 * Return in *pmask the portion of a cpusets's mems_allowed that 383 * are online, with memory. If none are online with memory, walk 384 * up the cpuset hierarchy until we find one that does have some 385 * online mems. The top cpuset always has some mems online. 386 * 387 * One way or another, we guarantee to return some non-empty subset 388 * of node_states[N_MEMORY]. 389 * 390 * Call with callback_lock or cpuset_mutex held. 391 */ 392 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 393 { 394 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 395 cs = parent_cs(cs); 396 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 397 } 398 399 /** 400 * alloc_cpumasks - allocate three cpumasks for cpuset 401 * @cs: the cpuset that have cpumasks to be allocated. 402 * @tmp: the tmpmasks structure pointer 403 * Return: 0 if successful, -ENOMEM otherwise. 404 * 405 * Only one of the two input arguments should be non-NULL. 406 */ 407 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 408 { 409 cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4; 410 411 if (cs) { 412 pmask1 = &cs->cpus_allowed; 413 pmask2 = &cs->effective_cpus; 414 pmask3 = &cs->effective_xcpus; 415 pmask4 = &cs->exclusive_cpus; 416 } else { 417 pmask1 = &tmp->new_cpus; 418 pmask2 = &tmp->addmask; 419 pmask3 = &tmp->delmask; 420 pmask4 = NULL; 421 } 422 423 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 424 return -ENOMEM; 425 426 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 427 goto free_one; 428 429 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 430 goto free_two; 431 432 if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL)) 433 goto free_three; 434 435 436 return 0; 437 438 free_three: 439 free_cpumask_var(*pmask3); 440 free_two: 441 free_cpumask_var(*pmask2); 442 free_one: 443 free_cpumask_var(*pmask1); 444 return -ENOMEM; 445 } 446 447 /** 448 * free_cpumasks - free cpumasks in a tmpmasks structure 449 * @cs: the cpuset that have cpumasks to be free. 450 * @tmp: the tmpmasks structure pointer 451 */ 452 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 453 { 454 if (cs) { 455 free_cpumask_var(cs->cpus_allowed); 456 free_cpumask_var(cs->effective_cpus); 457 free_cpumask_var(cs->effective_xcpus); 458 free_cpumask_var(cs->exclusive_cpus); 459 } 460 if (tmp) { 461 free_cpumask_var(tmp->new_cpus); 462 free_cpumask_var(tmp->addmask); 463 free_cpumask_var(tmp->delmask); 464 } 465 } 466 467 /** 468 * alloc_trial_cpuset - allocate a trial cpuset 469 * @cs: the cpuset that the trial cpuset duplicates 470 */ 471 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 472 { 473 struct cpuset *trial; 474 475 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 476 if (!trial) 477 return NULL; 478 479 if (alloc_cpumasks(trial, NULL)) { 480 kfree(trial); 481 return NULL; 482 } 483 484 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 485 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 486 cpumask_copy(trial->effective_xcpus, cs->effective_xcpus); 487 cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus); 488 return trial; 489 } 490 491 /** 492 * free_cpuset - free the cpuset 493 * @cs: the cpuset to be freed 494 */ 495 static inline void free_cpuset(struct cpuset *cs) 496 { 497 free_cpumasks(cs, NULL); 498 kfree(cs); 499 } 500 501 /* Return user specified exclusive CPUs */ 502 static inline struct cpumask *user_xcpus(struct cpuset *cs) 503 { 504 return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed 505 : cs->exclusive_cpus; 506 } 507 508 static inline bool xcpus_empty(struct cpuset *cs) 509 { 510 return cpumask_empty(cs->cpus_allowed) && 511 cpumask_empty(cs->exclusive_cpus); 512 } 513 514 /* 515 * cpusets_are_exclusive() - check if two cpusets are exclusive 516 * 517 * Return true if exclusive, false if not 518 */ 519 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2) 520 { 521 struct cpumask *xcpus1 = user_xcpus(cs1); 522 struct cpumask *xcpus2 = user_xcpus(cs2); 523 524 if (cpumask_intersects(xcpus1, xcpus2)) 525 return false; 526 return true; 527 } 528 529 /* 530 * validate_change() - Used to validate that any proposed cpuset change 531 * follows the structural rules for cpusets. 532 * 533 * If we replaced the flag and mask values of the current cpuset 534 * (cur) with those values in the trial cpuset (trial), would 535 * our various subset and exclusive rules still be valid? Presumes 536 * cpuset_mutex held. 537 * 538 * 'cur' is the address of an actual, in-use cpuset. Operations 539 * such as list traversal that depend on the actual address of the 540 * cpuset in the list must use cur below, not trial. 541 * 542 * 'trial' is the address of bulk structure copy of cur, with 543 * perhaps one or more of the fields cpus_allowed, mems_allowed, 544 * or flags changed to new, trial values. 545 * 546 * Return 0 if valid, -errno if not. 547 */ 548 549 static int validate_change(struct cpuset *cur, struct cpuset *trial) 550 { 551 struct cgroup_subsys_state *css; 552 struct cpuset *c, *par; 553 int ret = 0; 554 555 rcu_read_lock(); 556 557 if (!is_in_v2_mode()) 558 ret = cpuset1_validate_change(cur, trial); 559 if (ret) 560 goto out; 561 562 /* Remaining checks don't apply to root cpuset */ 563 if (cur == &top_cpuset) 564 goto out; 565 566 par = parent_cs(cur); 567 568 /* 569 * Cpusets with tasks - existing or newly being attached - can't 570 * be changed to have empty cpus_allowed or mems_allowed. 571 */ 572 ret = -ENOSPC; 573 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 574 if (!cpumask_empty(cur->cpus_allowed) && 575 cpumask_empty(trial->cpus_allowed)) 576 goto out; 577 if (!nodes_empty(cur->mems_allowed) && 578 nodes_empty(trial->mems_allowed)) 579 goto out; 580 } 581 582 /* 583 * We can't shrink if we won't have enough room for SCHED_DEADLINE 584 * tasks. This check is not done when scheduling is disabled as the 585 * users should know what they are doing. 586 * 587 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns 588 * cpus_allowed. 589 * 590 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only 591 * for non-isolated partition root. At this point, the target 592 * effective_cpus isn't computed yet. user_xcpus() is the best 593 * approximation. 594 * 595 * TBD: May need to precompute the real effective_cpus here in case 596 * incorrect scheduling of SCHED_DEADLINE tasks in a partition 597 * becomes an issue. 598 */ 599 ret = -EBUSY; 600 if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) && 601 !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial))) 602 goto out; 603 604 /* 605 * If either I or some sibling (!= me) is exclusive, we can't 606 * overlap. exclusive_cpus cannot overlap with each other if set. 607 */ 608 ret = -EINVAL; 609 cpuset_for_each_child(c, css, par) { 610 bool txset, cxset; /* Are exclusive_cpus set? */ 611 612 if (c == cur) 613 continue; 614 615 txset = !cpumask_empty(trial->exclusive_cpus); 616 cxset = !cpumask_empty(c->exclusive_cpus); 617 if (is_cpu_exclusive(trial) || is_cpu_exclusive(c) || 618 (txset && cxset)) { 619 if (!cpusets_are_exclusive(trial, c)) 620 goto out; 621 } else if (txset || cxset) { 622 struct cpumask *xcpus, *acpus; 623 624 /* 625 * When just one of the exclusive_cpus's is set, 626 * cpus_allowed of the other cpuset, if set, cannot be 627 * a subset of it or none of those CPUs will be 628 * available if these exclusive CPUs are activated. 629 */ 630 if (txset) { 631 xcpus = trial->exclusive_cpus; 632 acpus = c->cpus_allowed; 633 } else { 634 xcpus = c->exclusive_cpus; 635 acpus = trial->cpus_allowed; 636 } 637 if (!cpumask_empty(acpus) && cpumask_subset(acpus, xcpus)) 638 goto out; 639 } 640 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 641 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 642 goto out; 643 } 644 645 ret = 0; 646 out: 647 rcu_read_unlock(); 648 return ret; 649 } 650 651 #ifdef CONFIG_SMP 652 /* 653 * Helper routine for generate_sched_domains(). 654 * Do cpusets a, b have overlapping effective cpus_allowed masks? 655 */ 656 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 657 { 658 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 659 } 660 661 static void 662 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 663 { 664 if (dattr->relax_domain_level < c->relax_domain_level) 665 dattr->relax_domain_level = c->relax_domain_level; 666 return; 667 } 668 669 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 670 struct cpuset *root_cs) 671 { 672 struct cpuset *cp; 673 struct cgroup_subsys_state *pos_css; 674 675 rcu_read_lock(); 676 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 677 /* skip the whole subtree if @cp doesn't have any CPU */ 678 if (cpumask_empty(cp->cpus_allowed)) { 679 pos_css = css_rightmost_descendant(pos_css); 680 continue; 681 } 682 683 if (is_sched_load_balance(cp)) 684 update_domain_attr(dattr, cp); 685 } 686 rcu_read_unlock(); 687 } 688 689 /* Must be called with cpuset_mutex held. */ 690 static inline int nr_cpusets(void) 691 { 692 /* jump label reference count + the top-level cpuset */ 693 return static_key_count(&cpusets_enabled_key.key) + 1; 694 } 695 696 /* 697 * generate_sched_domains() 698 * 699 * This function builds a partial partition of the systems CPUs 700 * A 'partial partition' is a set of non-overlapping subsets whose 701 * union is a subset of that set. 702 * The output of this function needs to be passed to kernel/sched/core.c 703 * partition_sched_domains() routine, which will rebuild the scheduler's 704 * load balancing domains (sched domains) as specified by that partial 705 * partition. 706 * 707 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 708 * for a background explanation of this. 709 * 710 * Does not return errors, on the theory that the callers of this 711 * routine would rather not worry about failures to rebuild sched 712 * domains when operating in the severe memory shortage situations 713 * that could cause allocation failures below. 714 * 715 * Must be called with cpuset_mutex held. 716 * 717 * The three key local variables below are: 718 * cp - cpuset pointer, used (together with pos_css) to perform a 719 * top-down scan of all cpusets. For our purposes, rebuilding 720 * the schedulers sched domains, we can ignore !is_sched_load_ 721 * balance cpusets. 722 * csa - (for CpuSet Array) Array of pointers to all the cpusets 723 * that need to be load balanced, for convenient iterative 724 * access by the subsequent code that finds the best partition, 725 * i.e the set of domains (subsets) of CPUs such that the 726 * cpus_allowed of every cpuset marked is_sched_load_balance 727 * is a subset of one of these domains, while there are as 728 * many such domains as possible, each as small as possible. 729 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 730 * the kernel/sched/core.c routine partition_sched_domains() in a 731 * convenient format, that can be easily compared to the prior 732 * value to determine what partition elements (sched domains) 733 * were changed (added or removed.) 734 * 735 * Finding the best partition (set of domains): 736 * The double nested loops below over i, j scan over the load 737 * balanced cpusets (using the array of cpuset pointers in csa[]) 738 * looking for pairs of cpusets that have overlapping cpus_allowed 739 * and merging them using a union-find algorithm. 740 * 741 * The union of the cpus_allowed masks from the set of all cpusets 742 * having the same root then form the one element of the partition 743 * (one sched domain) to be passed to partition_sched_domains(). 744 * 745 */ 746 static int generate_sched_domains(cpumask_var_t **domains, 747 struct sched_domain_attr **attributes) 748 { 749 struct cpuset *cp; /* top-down scan of cpusets */ 750 struct cpuset **csa; /* array of all cpuset ptrs */ 751 int csn; /* how many cpuset ptrs in csa so far */ 752 int i, j; /* indices for partition finding loops */ 753 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 754 struct sched_domain_attr *dattr; /* attributes for custom domains */ 755 int ndoms = 0; /* number of sched domains in result */ 756 int nslot; /* next empty doms[] struct cpumask slot */ 757 struct cgroup_subsys_state *pos_css; 758 bool root_load_balance = is_sched_load_balance(&top_cpuset); 759 bool cgrpv2 = cpuset_v2(); 760 int nslot_update; 761 762 doms = NULL; 763 dattr = NULL; 764 csa = NULL; 765 766 /* Special case for the 99% of systems with one, full, sched domain */ 767 if (root_load_balance && cpumask_empty(subpartitions_cpus)) { 768 single_root_domain: 769 ndoms = 1; 770 doms = alloc_sched_domains(ndoms); 771 if (!doms) 772 goto done; 773 774 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 775 if (dattr) { 776 *dattr = SD_ATTR_INIT; 777 update_domain_attr_tree(dattr, &top_cpuset); 778 } 779 cpumask_and(doms[0], top_cpuset.effective_cpus, 780 housekeeping_cpumask(HK_TYPE_DOMAIN)); 781 782 goto done; 783 } 784 785 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 786 if (!csa) 787 goto done; 788 csn = 0; 789 790 rcu_read_lock(); 791 if (root_load_balance) 792 csa[csn++] = &top_cpuset; 793 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 794 if (cp == &top_cpuset) 795 continue; 796 797 if (cgrpv2) 798 goto v2; 799 800 /* 801 * v1: 802 * Continue traversing beyond @cp iff @cp has some CPUs and 803 * isn't load balancing. The former is obvious. The 804 * latter: All child cpusets contain a subset of the 805 * parent's cpus, so just skip them, and then we call 806 * update_domain_attr_tree() to calc relax_domain_level of 807 * the corresponding sched domain. 808 */ 809 if (!cpumask_empty(cp->cpus_allowed) && 810 !(is_sched_load_balance(cp) && 811 cpumask_intersects(cp->cpus_allowed, 812 housekeeping_cpumask(HK_TYPE_DOMAIN)))) 813 continue; 814 815 if (is_sched_load_balance(cp) && 816 !cpumask_empty(cp->effective_cpus)) 817 csa[csn++] = cp; 818 819 /* skip @cp's subtree */ 820 pos_css = css_rightmost_descendant(pos_css); 821 continue; 822 823 v2: 824 /* 825 * Only valid partition roots that are not isolated and with 826 * non-empty effective_cpus will be saved into csn[]. 827 */ 828 if ((cp->partition_root_state == PRS_ROOT) && 829 !cpumask_empty(cp->effective_cpus)) 830 csa[csn++] = cp; 831 832 /* 833 * Skip @cp's subtree if not a partition root and has no 834 * exclusive CPUs to be granted to child cpusets. 835 */ 836 if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus)) 837 pos_css = css_rightmost_descendant(pos_css); 838 } 839 rcu_read_unlock(); 840 841 /* 842 * If there are only isolated partitions underneath the cgroup root, 843 * we can optimize out unneeded sched domains scanning. 844 */ 845 if (root_load_balance && (csn == 1)) 846 goto single_root_domain; 847 848 for (i = 0; i < csn; i++) 849 uf_node_init(&csa[i]->node); 850 851 /* Merge overlapping cpusets */ 852 for (i = 0; i < csn; i++) { 853 for (j = i + 1; j < csn; j++) { 854 if (cpusets_overlap(csa[i], csa[j])) { 855 /* 856 * Cgroup v2 shouldn't pass down overlapping 857 * partition root cpusets. 858 */ 859 WARN_ON_ONCE(cgrpv2); 860 uf_union(&csa[i]->node, &csa[j]->node); 861 } 862 } 863 } 864 865 /* Count the total number of domains */ 866 for (i = 0; i < csn; i++) { 867 if (uf_find(&csa[i]->node) == &csa[i]->node) 868 ndoms++; 869 } 870 871 /* 872 * Now we know how many domains to create. 873 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 874 */ 875 doms = alloc_sched_domains(ndoms); 876 if (!doms) 877 goto done; 878 879 /* 880 * The rest of the code, including the scheduler, can deal with 881 * dattr==NULL case. No need to abort if alloc fails. 882 */ 883 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 884 GFP_KERNEL); 885 886 /* 887 * Cgroup v2 doesn't support domain attributes, just set all of them 888 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a 889 * subset of HK_TYPE_DOMAIN housekeeping CPUs. 890 */ 891 if (cgrpv2) { 892 for (i = 0; i < ndoms; i++) { 893 cpumask_copy(doms[i], csa[i]->effective_cpus); 894 if (dattr) 895 dattr[i] = SD_ATTR_INIT; 896 } 897 goto done; 898 } 899 900 for (nslot = 0, i = 0; i < csn; i++) { 901 nslot_update = 0; 902 for (j = i; j < csn; j++) { 903 if (uf_find(&csa[j]->node) == &csa[i]->node) { 904 struct cpumask *dp = doms[nslot]; 905 906 if (i == j) { 907 nslot_update = 1; 908 cpumask_clear(dp); 909 if (dattr) 910 *(dattr + nslot) = SD_ATTR_INIT; 911 } 912 cpumask_or(dp, dp, csa[j]->effective_cpus); 913 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); 914 if (dattr) 915 update_domain_attr_tree(dattr + nslot, csa[j]); 916 } 917 } 918 if (nslot_update) 919 nslot++; 920 } 921 BUG_ON(nslot != ndoms); 922 923 done: 924 kfree(csa); 925 926 /* 927 * Fallback to the default domain if kmalloc() failed. 928 * See comments in partition_sched_domains(). 929 */ 930 if (doms == NULL) 931 ndoms = 1; 932 933 *domains = doms; 934 *attributes = dattr; 935 return ndoms; 936 } 937 938 static void dl_update_tasks_root_domain(struct cpuset *cs) 939 { 940 struct css_task_iter it; 941 struct task_struct *task; 942 943 if (cs->nr_deadline_tasks == 0) 944 return; 945 946 css_task_iter_start(&cs->css, 0, &it); 947 948 while ((task = css_task_iter_next(&it))) 949 dl_add_task_root_domain(task); 950 951 css_task_iter_end(&it); 952 } 953 954 static void dl_rebuild_rd_accounting(void) 955 { 956 struct cpuset *cs = NULL; 957 struct cgroup_subsys_state *pos_css; 958 959 lockdep_assert_held(&cpuset_mutex); 960 lockdep_assert_cpus_held(); 961 lockdep_assert_held(&sched_domains_mutex); 962 963 rcu_read_lock(); 964 965 /* 966 * Clear default root domain DL accounting, it will be computed again 967 * if a task belongs to it. 968 */ 969 dl_clear_root_domain(&def_root_domain); 970 971 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 972 973 if (cpumask_empty(cs->effective_cpus)) { 974 pos_css = css_rightmost_descendant(pos_css); 975 continue; 976 } 977 978 css_get(&cs->css); 979 980 rcu_read_unlock(); 981 982 dl_update_tasks_root_domain(cs); 983 984 rcu_read_lock(); 985 css_put(&cs->css); 986 } 987 rcu_read_unlock(); 988 } 989 990 static void 991 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 992 struct sched_domain_attr *dattr_new) 993 { 994 mutex_lock(&sched_domains_mutex); 995 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 996 dl_rebuild_rd_accounting(); 997 mutex_unlock(&sched_domains_mutex); 998 } 999 1000 /* 1001 * Rebuild scheduler domains. 1002 * 1003 * If the flag 'sched_load_balance' of any cpuset with non-empty 1004 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1005 * which has that flag enabled, or if any cpuset with a non-empty 1006 * 'cpus' is removed, then call this routine to rebuild the 1007 * scheduler's dynamic sched domains. 1008 * 1009 * Call with cpuset_mutex held. Takes cpus_read_lock(). 1010 */ 1011 void rebuild_sched_domains_locked(void) 1012 { 1013 struct cgroup_subsys_state *pos_css; 1014 struct sched_domain_attr *attr; 1015 cpumask_var_t *doms; 1016 struct cpuset *cs; 1017 int ndoms; 1018 1019 lockdep_assert_cpus_held(); 1020 lockdep_assert_held(&cpuset_mutex); 1021 force_sd_rebuild = false; 1022 1023 /* 1024 * If we have raced with CPU hotplug, return early to avoid 1025 * passing doms with offlined cpu to partition_sched_domains(). 1026 * Anyways, cpuset_handle_hotplug() will rebuild sched domains. 1027 * 1028 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1029 * should be the same as the active CPUs, so checking only top_cpuset 1030 * is enough to detect racing CPU offlines. 1031 */ 1032 if (cpumask_empty(subpartitions_cpus) && 1033 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1034 return; 1035 1036 /* 1037 * With subpartition CPUs, however, the effective CPUs of a partition 1038 * root should be only a subset of the active CPUs. Since a CPU in any 1039 * partition root could be offlined, all must be checked. 1040 */ 1041 if (!cpumask_empty(subpartitions_cpus)) { 1042 rcu_read_lock(); 1043 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1044 if (!is_partition_valid(cs)) { 1045 pos_css = css_rightmost_descendant(pos_css); 1046 continue; 1047 } 1048 if (!cpumask_subset(cs->effective_cpus, 1049 cpu_active_mask)) { 1050 rcu_read_unlock(); 1051 return; 1052 } 1053 } 1054 rcu_read_unlock(); 1055 } 1056 1057 /* Generate domain masks and attrs */ 1058 ndoms = generate_sched_domains(&doms, &attr); 1059 1060 /* Have scheduler rebuild the domains */ 1061 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1062 } 1063 #else /* !CONFIG_SMP */ 1064 void rebuild_sched_domains_locked(void) 1065 { 1066 } 1067 #endif /* CONFIG_SMP */ 1068 1069 static void rebuild_sched_domains_cpuslocked(void) 1070 { 1071 mutex_lock(&cpuset_mutex); 1072 rebuild_sched_domains_locked(); 1073 mutex_unlock(&cpuset_mutex); 1074 } 1075 1076 void rebuild_sched_domains(void) 1077 { 1078 cpus_read_lock(); 1079 rebuild_sched_domains_cpuslocked(); 1080 cpus_read_unlock(); 1081 } 1082 1083 /** 1084 * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1085 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1086 * @new_cpus: the temp variable for the new effective_cpus mask 1087 * 1088 * Iterate through each task of @cs updating its cpus_allowed to the 1089 * effective cpuset's. As this function is called with cpuset_mutex held, 1090 * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask() 1091 * is used instead of effective_cpus to make sure all offline CPUs are also 1092 * included as hotplug code won't update cpumasks for tasks in top_cpuset. 1093 */ 1094 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) 1095 { 1096 struct css_task_iter it; 1097 struct task_struct *task; 1098 bool top_cs = cs == &top_cpuset; 1099 1100 css_task_iter_start(&cs->css, 0, &it); 1101 while ((task = css_task_iter_next(&it))) { 1102 const struct cpumask *possible_mask = task_cpu_possible_mask(task); 1103 1104 if (top_cs) { 1105 /* 1106 * Percpu kthreads in top_cpuset are ignored 1107 */ 1108 if (kthread_is_per_cpu(task)) 1109 continue; 1110 cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus); 1111 } else { 1112 cpumask_and(new_cpus, possible_mask, cs->effective_cpus); 1113 } 1114 set_cpus_allowed_ptr(task, new_cpus); 1115 } 1116 css_task_iter_end(&it); 1117 } 1118 1119 /** 1120 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1121 * @new_cpus: the temp variable for the new effective_cpus mask 1122 * @cs: the cpuset the need to recompute the new effective_cpus mask 1123 * @parent: the parent cpuset 1124 * 1125 * The result is valid only if the given cpuset isn't a partition root. 1126 */ 1127 static void compute_effective_cpumask(struct cpumask *new_cpus, 1128 struct cpuset *cs, struct cpuset *parent) 1129 { 1130 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1131 } 1132 1133 /* 1134 * Commands for update_parent_effective_cpumask 1135 */ 1136 enum partition_cmd { 1137 partcmd_enable, /* Enable partition root */ 1138 partcmd_enablei, /* Enable isolated partition root */ 1139 partcmd_disable, /* Disable partition root */ 1140 partcmd_update, /* Update parent's effective_cpus */ 1141 partcmd_invalidate, /* Make partition invalid */ 1142 }; 1143 1144 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1145 struct tmpmasks *tmp); 1146 1147 /* 1148 * Update partition exclusive flag 1149 * 1150 * Return: 0 if successful, an error code otherwise 1151 */ 1152 static int update_partition_exclusive(struct cpuset *cs, int new_prs) 1153 { 1154 bool exclusive = (new_prs > PRS_MEMBER); 1155 1156 if (exclusive && !is_cpu_exclusive(cs)) { 1157 if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1)) 1158 return PERR_NOTEXCL; 1159 } else if (!exclusive && is_cpu_exclusive(cs)) { 1160 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1161 cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1162 } 1163 return 0; 1164 } 1165 1166 /* 1167 * Update partition load balance flag and/or rebuild sched domain 1168 * 1169 * Changing load balance flag will automatically call 1170 * rebuild_sched_domains_locked(). 1171 * This function is for cgroup v2 only. 1172 */ 1173 static void update_partition_sd_lb(struct cpuset *cs, int old_prs) 1174 { 1175 int new_prs = cs->partition_root_state; 1176 bool rebuild_domains = (new_prs > 0) || (old_prs > 0); 1177 bool new_lb; 1178 1179 /* 1180 * If cs is not a valid partition root, the load balance state 1181 * will follow its parent. 1182 */ 1183 if (new_prs > 0) { 1184 new_lb = (new_prs != PRS_ISOLATED); 1185 } else { 1186 new_lb = is_sched_load_balance(parent_cs(cs)); 1187 } 1188 if (new_lb != !!is_sched_load_balance(cs)) { 1189 rebuild_domains = true; 1190 if (new_lb) 1191 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1192 else 1193 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1194 } 1195 1196 if (rebuild_domains) 1197 cpuset_force_rebuild(); 1198 } 1199 1200 /* 1201 * tasks_nocpu_error - Return true if tasks will have no effective_cpus 1202 */ 1203 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs, 1204 struct cpumask *xcpus) 1205 { 1206 /* 1207 * A populated partition (cs or parent) can't have empty effective_cpus 1208 */ 1209 return (cpumask_subset(parent->effective_cpus, xcpus) && 1210 partition_is_populated(parent, cs)) || 1211 (!cpumask_intersects(xcpus, cpu_active_mask) && 1212 partition_is_populated(cs, NULL)); 1213 } 1214 1215 static void reset_partition_data(struct cpuset *cs) 1216 { 1217 struct cpuset *parent = parent_cs(cs); 1218 1219 if (!cpuset_v2()) 1220 return; 1221 1222 lockdep_assert_held(&callback_lock); 1223 1224 cs->nr_subparts = 0; 1225 if (cpumask_empty(cs->exclusive_cpus)) { 1226 cpumask_clear(cs->effective_xcpus); 1227 if (is_cpu_exclusive(cs)) 1228 clear_bit(CS_CPU_EXCLUSIVE, &cs->flags); 1229 } 1230 if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed)) 1231 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 1232 } 1233 1234 /* 1235 * partition_xcpus_newstate - Exclusive CPUs state change 1236 * @old_prs: old partition_root_state 1237 * @new_prs: new partition_root_state 1238 * @xcpus: exclusive CPUs with state change 1239 */ 1240 static void partition_xcpus_newstate(int old_prs, int new_prs, struct cpumask *xcpus) 1241 { 1242 WARN_ON_ONCE(old_prs == new_prs); 1243 if (new_prs == PRS_ISOLATED) 1244 cpumask_or(isolated_cpus, isolated_cpus, xcpus); 1245 else 1246 cpumask_andnot(isolated_cpus, isolated_cpus, xcpus); 1247 } 1248 1249 /* 1250 * partition_xcpus_add - Add new exclusive CPUs to partition 1251 * @new_prs: new partition_root_state 1252 * @parent: parent cpuset 1253 * @xcpus: exclusive CPUs to be added 1254 * Return: true if isolated_cpus modified, false otherwise 1255 * 1256 * Remote partition if parent == NULL 1257 */ 1258 static bool partition_xcpus_add(int new_prs, struct cpuset *parent, 1259 struct cpumask *xcpus) 1260 { 1261 bool isolcpus_updated; 1262 1263 WARN_ON_ONCE(new_prs < 0); 1264 lockdep_assert_held(&callback_lock); 1265 if (!parent) 1266 parent = &top_cpuset; 1267 1268 1269 if (parent == &top_cpuset) 1270 cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus); 1271 1272 isolcpus_updated = (new_prs != parent->partition_root_state); 1273 if (isolcpus_updated) 1274 partition_xcpus_newstate(parent->partition_root_state, new_prs, 1275 xcpus); 1276 1277 cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus); 1278 return isolcpus_updated; 1279 } 1280 1281 /* 1282 * partition_xcpus_del - Remove exclusive CPUs from partition 1283 * @old_prs: old partition_root_state 1284 * @parent: parent cpuset 1285 * @xcpus: exclusive CPUs to be removed 1286 * Return: true if isolated_cpus modified, false otherwise 1287 * 1288 * Remote partition if parent == NULL 1289 */ 1290 static bool partition_xcpus_del(int old_prs, struct cpuset *parent, 1291 struct cpumask *xcpus) 1292 { 1293 bool isolcpus_updated; 1294 1295 WARN_ON_ONCE(old_prs < 0); 1296 lockdep_assert_held(&callback_lock); 1297 if (!parent) 1298 parent = &top_cpuset; 1299 1300 if (parent == &top_cpuset) 1301 cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus); 1302 1303 isolcpus_updated = (old_prs != parent->partition_root_state); 1304 if (isolcpus_updated) 1305 partition_xcpus_newstate(old_prs, parent->partition_root_state, 1306 xcpus); 1307 1308 cpumask_and(xcpus, xcpus, cpu_active_mask); 1309 cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus); 1310 return isolcpus_updated; 1311 } 1312 1313 static void update_unbound_workqueue_cpumask(bool isolcpus_updated) 1314 { 1315 int ret; 1316 1317 lockdep_assert_cpus_held(); 1318 1319 if (!isolcpus_updated) 1320 return; 1321 1322 ret = workqueue_unbound_exclude_cpumask(isolated_cpus); 1323 WARN_ON_ONCE(ret < 0); 1324 } 1325 1326 /** 1327 * cpuset_cpu_is_isolated - Check if the given CPU is isolated 1328 * @cpu: the CPU number to be checked 1329 * Return: true if CPU is used in an isolated partition, false otherwise 1330 */ 1331 bool cpuset_cpu_is_isolated(int cpu) 1332 { 1333 return cpumask_test_cpu(cpu, isolated_cpus); 1334 } 1335 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated); 1336 1337 /* 1338 * compute_effective_exclusive_cpumask - compute effective exclusive CPUs 1339 * @cs: cpuset 1340 * @xcpus: effective exclusive CPUs value to be set 1341 * Return: true if xcpus is not empty, false otherwise. 1342 * 1343 * Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set), 1344 * it must be a subset of parent's effective_xcpus. 1345 */ 1346 static bool compute_effective_exclusive_cpumask(struct cpuset *cs, 1347 struct cpumask *xcpus) 1348 { 1349 struct cpuset *parent = parent_cs(cs); 1350 1351 if (!xcpus) 1352 xcpus = cs->effective_xcpus; 1353 1354 return cpumask_and(xcpus, user_xcpus(cs), parent->effective_xcpus); 1355 } 1356 1357 static inline bool is_remote_partition(struct cpuset *cs) 1358 { 1359 return !list_empty(&cs->remote_sibling); 1360 } 1361 1362 static inline bool is_local_partition(struct cpuset *cs) 1363 { 1364 return is_partition_valid(cs) && !is_remote_partition(cs); 1365 } 1366 1367 /* 1368 * remote_partition_enable - Enable current cpuset as a remote partition root 1369 * @cs: the cpuset to update 1370 * @new_prs: new partition_root_state 1371 * @tmp: temporary masks 1372 * Return: 0 if successful, errcode if error 1373 * 1374 * Enable the current cpuset to become a remote partition root taking CPUs 1375 * directly from the top cpuset. cpuset_mutex must be held by the caller. 1376 */ 1377 static int remote_partition_enable(struct cpuset *cs, int new_prs, 1378 struct tmpmasks *tmp) 1379 { 1380 bool isolcpus_updated; 1381 1382 /* 1383 * The user must have sysadmin privilege. 1384 */ 1385 if (!capable(CAP_SYS_ADMIN)) 1386 return PERR_ACCESS; 1387 1388 /* 1389 * The requested exclusive_cpus must not be allocated to other 1390 * partitions and it can't use up all the root's effective_cpus. 1391 * 1392 * Note that if there is any local partition root above it or 1393 * remote partition root underneath it, its exclusive_cpus must 1394 * have overlapped with subpartitions_cpus. 1395 */ 1396 compute_effective_exclusive_cpumask(cs, tmp->new_cpus); 1397 if (cpumask_empty(tmp->new_cpus) || 1398 cpumask_intersects(tmp->new_cpus, subpartitions_cpus) || 1399 cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus)) 1400 return PERR_INVCPUS; 1401 1402 spin_lock_irq(&callback_lock); 1403 isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus); 1404 list_add(&cs->remote_sibling, &remote_children); 1405 spin_unlock_irq(&callback_lock); 1406 update_unbound_workqueue_cpumask(isolcpus_updated); 1407 1408 /* 1409 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1410 */ 1411 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1412 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1413 return 0; 1414 } 1415 1416 /* 1417 * remote_partition_disable - Remove current cpuset from remote partition list 1418 * @cs: the cpuset to update 1419 * @tmp: temporary masks 1420 * 1421 * The effective_cpus is also updated. 1422 * 1423 * cpuset_mutex must be held by the caller. 1424 */ 1425 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp) 1426 { 1427 bool isolcpus_updated; 1428 1429 compute_effective_exclusive_cpumask(cs, tmp->new_cpus); 1430 WARN_ON_ONCE(!is_remote_partition(cs)); 1431 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus)); 1432 1433 spin_lock_irq(&callback_lock); 1434 list_del_init(&cs->remote_sibling); 1435 isolcpus_updated = partition_xcpus_del(cs->partition_root_state, 1436 NULL, tmp->new_cpus); 1437 cs->partition_root_state = -cs->partition_root_state; 1438 if (!cs->prs_err) 1439 cs->prs_err = PERR_INVCPUS; 1440 reset_partition_data(cs); 1441 spin_unlock_irq(&callback_lock); 1442 update_unbound_workqueue_cpumask(isolcpus_updated); 1443 1444 /* 1445 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1446 */ 1447 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1448 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1449 } 1450 1451 /* 1452 * remote_cpus_update - cpus_exclusive change of remote partition 1453 * @cs: the cpuset to be updated 1454 * @newmask: the new effective_xcpus mask 1455 * @tmp: temporary masks 1456 * 1457 * top_cpuset and subpartitions_cpus will be updated or partition can be 1458 * invalidated. 1459 */ 1460 static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask, 1461 struct tmpmasks *tmp) 1462 { 1463 bool adding, deleting; 1464 int prs = cs->partition_root_state; 1465 int isolcpus_updated = 0; 1466 1467 if (WARN_ON_ONCE(!is_remote_partition(cs))) 1468 return; 1469 1470 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); 1471 1472 if (cpumask_empty(newmask)) 1473 goto invalidate; 1474 1475 adding = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus); 1476 deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask); 1477 1478 /* 1479 * Additions of remote CPUs is only allowed if those CPUs are 1480 * not allocated to other partitions and there are effective_cpus 1481 * left in the top cpuset. 1482 */ 1483 if (adding && (!capable(CAP_SYS_ADMIN) || 1484 cpumask_intersects(tmp->addmask, subpartitions_cpus) || 1485 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))) 1486 goto invalidate; 1487 1488 spin_lock_irq(&callback_lock); 1489 if (adding) 1490 isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask); 1491 if (deleting) 1492 isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask); 1493 spin_unlock_irq(&callback_lock); 1494 update_unbound_workqueue_cpumask(isolcpus_updated); 1495 1496 /* 1497 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1498 */ 1499 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1500 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1501 return; 1502 1503 invalidate: 1504 remote_partition_disable(cs, tmp); 1505 } 1506 1507 /* 1508 * remote_partition_check - check if a child remote partition needs update 1509 * @cs: the cpuset to be updated 1510 * @newmask: the new effective_xcpus mask 1511 * @delmask: temporary mask for deletion (not in tmp) 1512 * @tmp: temporary masks 1513 * 1514 * This should be called before the given cs has updated its cpus_allowed 1515 * and/or effective_xcpus. 1516 */ 1517 static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask, 1518 struct cpumask *delmask, struct tmpmasks *tmp) 1519 { 1520 struct cpuset *child, *next; 1521 int disable_cnt = 0; 1522 1523 /* 1524 * Compute the effective exclusive CPUs that will be deleted. 1525 */ 1526 if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) || 1527 !cpumask_intersects(delmask, subpartitions_cpus)) 1528 return; /* No deletion of exclusive CPUs in partitions */ 1529 1530 /* 1531 * Searching the remote children list to look for those that will 1532 * be impacted by the deletion of exclusive CPUs. 1533 * 1534 * Since a cpuset must be removed from the remote children list 1535 * before it can go offline and holding cpuset_mutex will prevent 1536 * any change in cpuset status. RCU read lock isn't needed. 1537 */ 1538 lockdep_assert_held(&cpuset_mutex); 1539 list_for_each_entry_safe(child, next, &remote_children, remote_sibling) 1540 if (cpumask_intersects(child->effective_cpus, delmask)) { 1541 remote_partition_disable(child, tmp); 1542 disable_cnt++; 1543 } 1544 if (disable_cnt) 1545 cpuset_force_rebuild(); 1546 } 1547 1548 /* 1549 * prstate_housekeeping_conflict - check for partition & housekeeping conflicts 1550 * @prstate: partition root state to be checked 1551 * @new_cpus: cpu mask 1552 * Return: true if there is conflict, false otherwise 1553 * 1554 * CPUs outside of boot_hk_cpus, if defined, can only be used in an 1555 * isolated partition. 1556 */ 1557 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus) 1558 { 1559 if (!have_boot_isolcpus) 1560 return false; 1561 1562 if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus)) 1563 return true; 1564 1565 return false; 1566 } 1567 1568 /** 1569 * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset 1570 * @cs: The cpuset that requests change in partition root state 1571 * @cmd: Partition root state change command 1572 * @newmask: Optional new cpumask for partcmd_update 1573 * @tmp: Temporary addmask and delmask 1574 * Return: 0 or a partition root state error code 1575 * 1576 * For partcmd_enable*, the cpuset is being transformed from a non-partition 1577 * root to a partition root. The effective_xcpus (cpus_allowed if 1578 * effective_xcpus not set) mask of the given cpuset will be taken away from 1579 * parent's effective_cpus. The function will return 0 if all the CPUs listed 1580 * in effective_xcpus can be granted or an error code will be returned. 1581 * 1582 * For partcmd_disable, the cpuset is being transformed from a partition 1583 * root back to a non-partition root. Any CPUs in effective_xcpus will be 1584 * given back to parent's effective_cpus. 0 will always be returned. 1585 * 1586 * For partcmd_update, if the optional newmask is specified, the cpu list is 1587 * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is 1588 * assumed to remain the same. The cpuset should either be a valid or invalid 1589 * partition root. The partition root state may change from valid to invalid 1590 * or vice versa. An error code will be returned if transitioning from 1591 * invalid to valid violates the exclusivity rule. 1592 * 1593 * For partcmd_invalidate, the current partition will be made invalid. 1594 * 1595 * The partcmd_enable* and partcmd_disable commands are used by 1596 * update_prstate(). An error code may be returned and the caller will check 1597 * for error. 1598 * 1599 * The partcmd_update command is used by update_cpumasks_hier() with newmask 1600 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used 1601 * by update_cpumask() with NULL newmask. In both cases, the callers won't 1602 * check for error and so partition_root_state and prs_error will be updated 1603 * directly. 1604 */ 1605 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd, 1606 struct cpumask *newmask, 1607 struct tmpmasks *tmp) 1608 { 1609 struct cpuset *parent = parent_cs(cs); 1610 int adding; /* Adding cpus to parent's effective_cpus */ 1611 int deleting; /* Deleting cpus from parent's effective_cpus */ 1612 int old_prs, new_prs; 1613 int part_error = PERR_NONE; /* Partition error? */ 1614 int subparts_delta = 0; 1615 struct cpumask *xcpus; /* cs effective_xcpus */ 1616 int isolcpus_updated = 0; 1617 bool nocpu; 1618 1619 lockdep_assert_held(&cpuset_mutex); 1620 1621 /* 1622 * new_prs will only be changed for the partcmd_update and 1623 * partcmd_invalidate commands. 1624 */ 1625 adding = deleting = false; 1626 old_prs = new_prs = cs->partition_root_state; 1627 xcpus = user_xcpus(cs); 1628 1629 if (cmd == partcmd_invalidate) { 1630 if (is_prs_invalid(old_prs)) 1631 return 0; 1632 1633 /* 1634 * Make the current partition invalid. 1635 */ 1636 if (is_partition_valid(parent)) 1637 adding = cpumask_and(tmp->addmask, 1638 xcpus, parent->effective_xcpus); 1639 if (old_prs > 0) { 1640 new_prs = -old_prs; 1641 subparts_delta--; 1642 } 1643 goto write_error; 1644 } 1645 1646 /* 1647 * The parent must be a partition root. 1648 * The new cpumask, if present, or the current cpus_allowed must 1649 * not be empty. 1650 */ 1651 if (!is_partition_valid(parent)) { 1652 return is_partition_invalid(parent) 1653 ? PERR_INVPARENT : PERR_NOTPART; 1654 } 1655 if (!newmask && xcpus_empty(cs)) 1656 return PERR_CPUSEMPTY; 1657 1658 nocpu = tasks_nocpu_error(parent, cs, xcpus); 1659 1660 if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) { 1661 /* 1662 * Enabling partition root is not allowed if its 1663 * effective_xcpus is empty or doesn't overlap with 1664 * parent's effective_xcpus. 1665 */ 1666 if (cpumask_empty(xcpus) || 1667 !cpumask_intersects(xcpus, parent->effective_xcpus)) 1668 return PERR_INVCPUS; 1669 1670 if (prstate_housekeeping_conflict(new_prs, xcpus)) 1671 return PERR_HKEEPING; 1672 1673 /* 1674 * A parent can be left with no CPU as long as there is no 1675 * task directly associated with the parent partition. 1676 */ 1677 if (nocpu) 1678 return PERR_NOCPUS; 1679 1680 cpumask_copy(tmp->delmask, xcpus); 1681 deleting = true; 1682 subparts_delta++; 1683 new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED; 1684 } else if (cmd == partcmd_disable) { 1685 /* 1686 * May need to add cpus to parent's effective_cpus for 1687 * valid partition root. 1688 */ 1689 adding = !is_prs_invalid(old_prs) && 1690 cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus); 1691 if (adding) 1692 subparts_delta--; 1693 new_prs = PRS_MEMBER; 1694 } else if (newmask) { 1695 /* 1696 * Empty cpumask is not allowed 1697 */ 1698 if (cpumask_empty(newmask)) { 1699 part_error = PERR_CPUSEMPTY; 1700 goto write_error; 1701 } 1702 /* Check newmask again, whether cpus are available for parent/cs */ 1703 nocpu |= tasks_nocpu_error(parent, cs, newmask); 1704 1705 /* 1706 * partcmd_update with newmask: 1707 * 1708 * Compute add/delete mask to/from effective_cpus 1709 * 1710 * For valid partition: 1711 * addmask = exclusive_cpus & ~newmask 1712 * & parent->effective_xcpus 1713 * delmask = newmask & ~exclusive_cpus 1714 * & parent->effective_xcpus 1715 * 1716 * For invalid partition: 1717 * delmask = newmask & parent->effective_xcpus 1718 */ 1719 if (is_prs_invalid(old_prs)) { 1720 adding = false; 1721 deleting = cpumask_and(tmp->delmask, 1722 newmask, parent->effective_xcpus); 1723 } else { 1724 cpumask_andnot(tmp->addmask, xcpus, newmask); 1725 adding = cpumask_and(tmp->addmask, tmp->addmask, 1726 parent->effective_xcpus); 1727 1728 cpumask_andnot(tmp->delmask, newmask, xcpus); 1729 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1730 parent->effective_xcpus); 1731 } 1732 /* 1733 * Make partition invalid if parent's effective_cpus could 1734 * become empty and there are tasks in the parent. 1735 */ 1736 if (nocpu && (!adding || 1737 !cpumask_intersects(tmp->addmask, cpu_active_mask))) { 1738 part_error = PERR_NOCPUS; 1739 deleting = false; 1740 adding = cpumask_and(tmp->addmask, 1741 xcpus, parent->effective_xcpus); 1742 } 1743 } else { 1744 /* 1745 * partcmd_update w/o newmask 1746 * 1747 * delmask = effective_xcpus & parent->effective_cpus 1748 * 1749 * This can be called from: 1750 * 1) update_cpumasks_hier() 1751 * 2) cpuset_hotplug_update_tasks() 1752 * 1753 * Check to see if it can be transitioned from valid to 1754 * invalid partition or vice versa. 1755 * 1756 * A partition error happens when parent has tasks and all 1757 * its effective CPUs will have to be distributed out. 1758 */ 1759 WARN_ON_ONCE(!is_partition_valid(parent)); 1760 if (nocpu) { 1761 part_error = PERR_NOCPUS; 1762 if (is_partition_valid(cs)) 1763 adding = cpumask_and(tmp->addmask, 1764 xcpus, parent->effective_xcpus); 1765 } else if (is_partition_invalid(cs) && 1766 cpumask_subset(xcpus, parent->effective_xcpus)) { 1767 struct cgroup_subsys_state *css; 1768 struct cpuset *child; 1769 bool exclusive = true; 1770 1771 /* 1772 * Convert invalid partition to valid has to 1773 * pass the cpu exclusivity test. 1774 */ 1775 rcu_read_lock(); 1776 cpuset_for_each_child(child, css, parent) { 1777 if (child == cs) 1778 continue; 1779 if (!cpusets_are_exclusive(cs, child)) { 1780 exclusive = false; 1781 break; 1782 } 1783 } 1784 rcu_read_unlock(); 1785 if (exclusive) 1786 deleting = cpumask_and(tmp->delmask, 1787 xcpus, parent->effective_cpus); 1788 else 1789 part_error = PERR_NOTEXCL; 1790 } 1791 } 1792 1793 write_error: 1794 if (part_error) 1795 WRITE_ONCE(cs->prs_err, part_error); 1796 1797 if (cmd == partcmd_update) { 1798 /* 1799 * Check for possible transition between valid and invalid 1800 * partition root. 1801 */ 1802 switch (cs->partition_root_state) { 1803 case PRS_ROOT: 1804 case PRS_ISOLATED: 1805 if (part_error) { 1806 new_prs = -old_prs; 1807 subparts_delta--; 1808 } 1809 break; 1810 case PRS_INVALID_ROOT: 1811 case PRS_INVALID_ISOLATED: 1812 if (!part_error) { 1813 new_prs = -old_prs; 1814 subparts_delta++; 1815 } 1816 break; 1817 } 1818 } 1819 1820 if (!adding && !deleting && (new_prs == old_prs)) 1821 return 0; 1822 1823 /* 1824 * Transitioning between invalid to valid or vice versa may require 1825 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update, 1826 * validate_change() has already been successfully called and 1827 * CPU lists in cs haven't been updated yet. So defer it to later. 1828 */ 1829 if ((old_prs != new_prs) && (cmd != partcmd_update)) { 1830 int err = update_partition_exclusive(cs, new_prs); 1831 1832 if (err) 1833 return err; 1834 } 1835 1836 /* 1837 * Change the parent's effective_cpus & effective_xcpus (top cpuset 1838 * only). 1839 * 1840 * Newly added CPUs will be removed from effective_cpus and 1841 * newly deleted ones will be added back to effective_cpus. 1842 */ 1843 spin_lock_irq(&callback_lock); 1844 if (old_prs != new_prs) { 1845 cs->partition_root_state = new_prs; 1846 if (new_prs <= 0) 1847 cs->nr_subparts = 0; 1848 } 1849 /* 1850 * Adding to parent's effective_cpus means deletion CPUs from cs 1851 * and vice versa. 1852 */ 1853 if (adding) 1854 isolcpus_updated += partition_xcpus_del(old_prs, parent, 1855 tmp->addmask); 1856 if (deleting) 1857 isolcpus_updated += partition_xcpus_add(new_prs, parent, 1858 tmp->delmask); 1859 1860 if (is_partition_valid(parent)) { 1861 parent->nr_subparts += subparts_delta; 1862 WARN_ON_ONCE(parent->nr_subparts < 0); 1863 } 1864 spin_unlock_irq(&callback_lock); 1865 update_unbound_workqueue_cpumask(isolcpus_updated); 1866 1867 if ((old_prs != new_prs) && (cmd == partcmd_update)) 1868 update_partition_exclusive(cs, new_prs); 1869 1870 if (adding || deleting) { 1871 cpuset_update_tasks_cpumask(parent, tmp->addmask); 1872 update_sibling_cpumasks(parent, cs, tmp); 1873 } 1874 1875 /* 1876 * For partcmd_update without newmask, it is being called from 1877 * cpuset_handle_hotplug(). Update the load balance flag and 1878 * scheduling domain accordingly. 1879 */ 1880 if ((cmd == partcmd_update) && !newmask) 1881 update_partition_sd_lb(cs, old_prs); 1882 1883 notify_partition_change(cs, old_prs); 1884 return 0; 1885 } 1886 1887 /** 1888 * compute_partition_effective_cpumask - compute effective_cpus for partition 1889 * @cs: partition root cpuset 1890 * @new_ecpus: previously computed effective_cpus to be updated 1891 * 1892 * Compute the effective_cpus of a partition root by scanning effective_xcpus 1893 * of child partition roots and excluding their effective_xcpus. 1894 * 1895 * This has the side effect of invalidating valid child partition roots, 1896 * if necessary. Since it is called from either cpuset_hotplug_update_tasks() 1897 * or update_cpumasks_hier() where parent and children are modified 1898 * successively, we don't need to call update_parent_effective_cpumask() 1899 * and the child's effective_cpus will be updated in later iterations. 1900 * 1901 * Note that rcu_read_lock() is assumed to be held. 1902 */ 1903 static void compute_partition_effective_cpumask(struct cpuset *cs, 1904 struct cpumask *new_ecpus) 1905 { 1906 struct cgroup_subsys_state *css; 1907 struct cpuset *child; 1908 bool populated = partition_is_populated(cs, NULL); 1909 1910 /* 1911 * Check child partition roots to see if they should be 1912 * invalidated when 1913 * 1) child effective_xcpus not a subset of new 1914 * excluisve_cpus 1915 * 2) All the effective_cpus will be used up and cp 1916 * has tasks 1917 */ 1918 compute_effective_exclusive_cpumask(cs, new_ecpus); 1919 cpumask_and(new_ecpus, new_ecpus, cpu_active_mask); 1920 1921 rcu_read_lock(); 1922 cpuset_for_each_child(child, css, cs) { 1923 if (!is_partition_valid(child)) 1924 continue; 1925 1926 child->prs_err = 0; 1927 if (!cpumask_subset(child->effective_xcpus, 1928 cs->effective_xcpus)) 1929 child->prs_err = PERR_INVCPUS; 1930 else if (populated && 1931 cpumask_subset(new_ecpus, child->effective_xcpus)) 1932 child->prs_err = PERR_NOCPUS; 1933 1934 if (child->prs_err) { 1935 int old_prs = child->partition_root_state; 1936 1937 /* 1938 * Invalidate child partition 1939 */ 1940 spin_lock_irq(&callback_lock); 1941 make_partition_invalid(child); 1942 cs->nr_subparts--; 1943 child->nr_subparts = 0; 1944 spin_unlock_irq(&callback_lock); 1945 notify_partition_change(child, old_prs); 1946 continue; 1947 } 1948 cpumask_andnot(new_ecpus, new_ecpus, 1949 child->effective_xcpus); 1950 } 1951 rcu_read_unlock(); 1952 } 1953 1954 /* 1955 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1956 * @cs: the cpuset to consider 1957 * @tmp: temp variables for calculating effective_cpus & partition setup 1958 * @force: don't skip any descendant cpusets if set 1959 * 1960 * When configured cpumask is changed, the effective cpumasks of this cpuset 1961 * and all its descendants need to be updated. 1962 * 1963 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 1964 * 1965 * Called with cpuset_mutex held 1966 */ 1967 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, 1968 bool force) 1969 { 1970 struct cpuset *cp; 1971 struct cgroup_subsys_state *pos_css; 1972 bool need_rebuild_sched_domains = false; 1973 int old_prs, new_prs; 1974 1975 rcu_read_lock(); 1976 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1977 struct cpuset *parent = parent_cs(cp); 1978 bool remote = is_remote_partition(cp); 1979 bool update_parent = false; 1980 1981 /* 1982 * Skip descendent remote partition that acquires CPUs 1983 * directly from top cpuset unless it is cs. 1984 */ 1985 if (remote && (cp != cs)) { 1986 pos_css = css_rightmost_descendant(pos_css); 1987 continue; 1988 } 1989 1990 /* 1991 * Update effective_xcpus if exclusive_cpus set. 1992 * The case when exclusive_cpus isn't set is handled later. 1993 */ 1994 if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) { 1995 spin_lock_irq(&callback_lock); 1996 compute_effective_exclusive_cpumask(cp, NULL); 1997 spin_unlock_irq(&callback_lock); 1998 } 1999 2000 old_prs = new_prs = cp->partition_root_state; 2001 if (remote || (is_partition_valid(parent) && 2002 is_partition_valid(cp))) 2003 compute_partition_effective_cpumask(cp, tmp->new_cpus); 2004 else 2005 compute_effective_cpumask(tmp->new_cpus, cp, parent); 2006 2007 /* 2008 * A partition with no effective_cpus is allowed as long as 2009 * there is no task associated with it. Call 2010 * update_parent_effective_cpumask() to check it. 2011 */ 2012 if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) { 2013 update_parent = true; 2014 goto update_parent_effective; 2015 } 2016 2017 /* 2018 * If it becomes empty, inherit the effective mask of the 2019 * parent, which is guaranteed to have some CPUs unless 2020 * it is a partition root that has explicitly distributed 2021 * out all its CPUs. 2022 */ 2023 if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) 2024 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 2025 2026 if (remote) 2027 goto get_css; 2028 2029 /* 2030 * Skip the whole subtree if 2031 * 1) the cpumask remains the same, 2032 * 2) has no partition root state, 2033 * 3) force flag not set, and 2034 * 4) for v2 load balance state same as its parent. 2035 */ 2036 if (!cp->partition_root_state && !force && 2037 cpumask_equal(tmp->new_cpus, cp->effective_cpus) && 2038 (!cpuset_v2() || 2039 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { 2040 pos_css = css_rightmost_descendant(pos_css); 2041 continue; 2042 } 2043 2044 update_parent_effective: 2045 /* 2046 * update_parent_effective_cpumask() should have been called 2047 * for cs already in update_cpumask(). We should also call 2048 * cpuset_update_tasks_cpumask() again for tasks in the parent 2049 * cpuset if the parent's effective_cpus changes. 2050 */ 2051 if ((cp != cs) && old_prs) { 2052 switch (parent->partition_root_state) { 2053 case PRS_ROOT: 2054 case PRS_ISOLATED: 2055 update_parent = true; 2056 break; 2057 2058 default: 2059 /* 2060 * When parent is not a partition root or is 2061 * invalid, child partition roots become 2062 * invalid too. 2063 */ 2064 if (is_partition_valid(cp)) 2065 new_prs = -cp->partition_root_state; 2066 WRITE_ONCE(cp->prs_err, 2067 is_partition_invalid(parent) 2068 ? PERR_INVPARENT : PERR_NOTPART); 2069 break; 2070 } 2071 } 2072 get_css: 2073 if (!css_tryget_online(&cp->css)) 2074 continue; 2075 rcu_read_unlock(); 2076 2077 if (update_parent) { 2078 update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp); 2079 /* 2080 * The cpuset partition_root_state may become 2081 * invalid. Capture it. 2082 */ 2083 new_prs = cp->partition_root_state; 2084 } 2085 2086 spin_lock_irq(&callback_lock); 2087 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 2088 cp->partition_root_state = new_prs; 2089 /* 2090 * Make sure effective_xcpus is properly set for a valid 2091 * partition root. 2092 */ 2093 if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus)) 2094 cpumask_and(cp->effective_xcpus, 2095 cp->cpus_allowed, parent->effective_xcpus); 2096 else if (new_prs < 0) 2097 reset_partition_data(cp); 2098 spin_unlock_irq(&callback_lock); 2099 2100 notify_partition_change(cp, old_prs); 2101 2102 WARN_ON(!is_in_v2_mode() && 2103 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 2104 2105 cpuset_update_tasks_cpumask(cp, cp->effective_cpus); 2106 2107 /* 2108 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE 2109 * from parent if current cpuset isn't a valid partition root 2110 * and their load balance states differ. 2111 */ 2112 if (cpuset_v2() && !is_partition_valid(cp) && 2113 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { 2114 if (is_sched_load_balance(parent)) 2115 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2116 else 2117 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2118 } 2119 2120 /* 2121 * On legacy hierarchy, if the effective cpumask of any non- 2122 * empty cpuset is changed, we need to rebuild sched domains. 2123 * On default hierarchy, the cpuset needs to be a partition 2124 * root as well. 2125 */ 2126 if (!cpumask_empty(cp->cpus_allowed) && 2127 is_sched_load_balance(cp) && 2128 (!cpuset_v2() || is_partition_valid(cp))) 2129 need_rebuild_sched_domains = true; 2130 2131 rcu_read_lock(); 2132 css_put(&cp->css); 2133 } 2134 rcu_read_unlock(); 2135 2136 if (need_rebuild_sched_domains) 2137 cpuset_force_rebuild(); 2138 } 2139 2140 /** 2141 * update_sibling_cpumasks - Update siblings cpumasks 2142 * @parent: Parent cpuset 2143 * @cs: Current cpuset 2144 * @tmp: Temp variables 2145 */ 2146 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 2147 struct tmpmasks *tmp) 2148 { 2149 struct cpuset *sibling; 2150 struct cgroup_subsys_state *pos_css; 2151 2152 lockdep_assert_held(&cpuset_mutex); 2153 2154 /* 2155 * Check all its siblings and call update_cpumasks_hier() 2156 * if their effective_cpus will need to be changed. 2157 * 2158 * It is possible a change in parent's effective_cpus 2159 * due to a change in a child partition's effective_xcpus will impact 2160 * its siblings even if they do not inherit parent's effective_cpus 2161 * directly. 2162 * 2163 * The update_cpumasks_hier() function may sleep. So we have to 2164 * release the RCU read lock before calling it. 2165 */ 2166 rcu_read_lock(); 2167 cpuset_for_each_child(sibling, pos_css, parent) { 2168 if (sibling == cs) 2169 continue; 2170 if (!is_partition_valid(sibling)) { 2171 compute_effective_cpumask(tmp->new_cpus, sibling, 2172 parent); 2173 if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus)) 2174 continue; 2175 } 2176 if (!css_tryget_online(&sibling->css)) 2177 continue; 2178 2179 rcu_read_unlock(); 2180 update_cpumasks_hier(sibling, tmp, false); 2181 rcu_read_lock(); 2182 css_put(&sibling->css); 2183 } 2184 rcu_read_unlock(); 2185 } 2186 2187 /** 2188 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 2189 * @cs: the cpuset to consider 2190 * @trialcs: trial cpuset 2191 * @buf: buffer of cpu numbers written to this cpuset 2192 */ 2193 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2194 const char *buf) 2195 { 2196 int retval; 2197 struct tmpmasks tmp; 2198 struct cpuset *parent = parent_cs(cs); 2199 bool invalidate = false; 2200 bool force = false; 2201 int old_prs = cs->partition_root_state; 2202 2203 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 2204 if (cs == &top_cpuset) 2205 return -EACCES; 2206 2207 /* 2208 * An empty cpus_allowed is ok only if the cpuset has no tasks. 2209 * Since cpulist_parse() fails on an empty mask, we special case 2210 * that parsing. The validate_change() call ensures that cpusets 2211 * with tasks have cpus. 2212 */ 2213 if (!*buf) { 2214 cpumask_clear(trialcs->cpus_allowed); 2215 if (cpumask_empty(trialcs->exclusive_cpus)) 2216 cpumask_clear(trialcs->effective_xcpus); 2217 } else { 2218 retval = cpulist_parse(buf, trialcs->cpus_allowed); 2219 if (retval < 0) 2220 return retval; 2221 2222 if (!cpumask_subset(trialcs->cpus_allowed, 2223 top_cpuset.cpus_allowed)) 2224 return -EINVAL; 2225 2226 /* 2227 * When exclusive_cpus isn't explicitly set, it is constrained 2228 * by cpus_allowed and parent's effective_xcpus. Otherwise, 2229 * trialcs->effective_xcpus is used as a temporary cpumask 2230 * for checking validity of the partition root. 2231 */ 2232 if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs)) 2233 compute_effective_exclusive_cpumask(trialcs, NULL); 2234 } 2235 2236 /* Nothing to do if the cpus didn't change */ 2237 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 2238 return 0; 2239 2240 if (alloc_cpumasks(NULL, &tmp)) 2241 return -ENOMEM; 2242 2243 if (old_prs) { 2244 if (is_partition_valid(cs) && 2245 cpumask_empty(trialcs->effective_xcpus)) { 2246 invalidate = true; 2247 cs->prs_err = PERR_INVCPUS; 2248 } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) { 2249 invalidate = true; 2250 cs->prs_err = PERR_HKEEPING; 2251 } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) { 2252 invalidate = true; 2253 cs->prs_err = PERR_NOCPUS; 2254 } 2255 } 2256 2257 /* 2258 * Check all the descendants in update_cpumasks_hier() if 2259 * effective_xcpus is to be changed. 2260 */ 2261 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); 2262 2263 retval = validate_change(cs, trialcs); 2264 2265 if ((retval == -EINVAL) && cpuset_v2()) { 2266 struct cgroup_subsys_state *css; 2267 struct cpuset *cp; 2268 2269 /* 2270 * The -EINVAL error code indicates that partition sibling 2271 * CPU exclusivity rule has been violated. We still allow 2272 * the cpumask change to proceed while invalidating the 2273 * partition. However, any conflicting sibling partitions 2274 * have to be marked as invalid too. 2275 */ 2276 invalidate = true; 2277 rcu_read_lock(); 2278 cpuset_for_each_child(cp, css, parent) { 2279 struct cpumask *xcpus = user_xcpus(trialcs); 2280 2281 if (is_partition_valid(cp) && 2282 cpumask_intersects(xcpus, cp->effective_xcpus)) { 2283 rcu_read_unlock(); 2284 update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp); 2285 rcu_read_lock(); 2286 } 2287 } 2288 rcu_read_unlock(); 2289 retval = 0; 2290 } 2291 2292 if (retval < 0) 2293 goto out_free; 2294 2295 if (is_partition_valid(cs) || 2296 (is_partition_invalid(cs) && !invalidate)) { 2297 struct cpumask *xcpus = trialcs->effective_xcpus; 2298 2299 if (cpumask_empty(xcpus) && is_partition_invalid(cs)) 2300 xcpus = trialcs->cpus_allowed; 2301 2302 /* 2303 * Call remote_cpus_update() to handle valid remote partition 2304 */ 2305 if (is_remote_partition(cs)) 2306 remote_cpus_update(cs, xcpus, &tmp); 2307 else if (invalidate) 2308 update_parent_effective_cpumask(cs, partcmd_invalidate, 2309 NULL, &tmp); 2310 else 2311 update_parent_effective_cpumask(cs, partcmd_update, 2312 xcpus, &tmp); 2313 } else if (!cpumask_empty(cs->exclusive_cpus)) { 2314 /* 2315 * Use trialcs->effective_cpus as a temp cpumask 2316 */ 2317 remote_partition_check(cs, trialcs->effective_xcpus, 2318 trialcs->effective_cpus, &tmp); 2319 } 2320 2321 spin_lock_irq(&callback_lock); 2322 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 2323 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2324 if ((old_prs > 0) && !is_partition_valid(cs)) 2325 reset_partition_data(cs); 2326 spin_unlock_irq(&callback_lock); 2327 2328 /* effective_cpus/effective_xcpus will be updated here */ 2329 update_cpumasks_hier(cs, &tmp, force); 2330 2331 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2332 if (cs->partition_root_state) 2333 update_partition_sd_lb(cs, old_prs); 2334 out_free: 2335 free_cpumasks(NULL, &tmp); 2336 return retval; 2337 } 2338 2339 /** 2340 * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset 2341 * @cs: the cpuset to consider 2342 * @trialcs: trial cpuset 2343 * @buf: buffer of cpu numbers written to this cpuset 2344 * 2345 * The tasks' cpumask will be updated if cs is a valid partition root. 2346 */ 2347 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2348 const char *buf) 2349 { 2350 int retval; 2351 struct tmpmasks tmp; 2352 struct cpuset *parent = parent_cs(cs); 2353 bool invalidate = false; 2354 bool force = false; 2355 int old_prs = cs->partition_root_state; 2356 2357 if (!*buf) { 2358 cpumask_clear(trialcs->exclusive_cpus); 2359 cpumask_clear(trialcs->effective_xcpus); 2360 } else { 2361 retval = cpulist_parse(buf, trialcs->exclusive_cpus); 2362 if (retval < 0) 2363 return retval; 2364 } 2365 2366 /* Nothing to do if the CPUs didn't change */ 2367 if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus)) 2368 return 0; 2369 2370 if (*buf) 2371 compute_effective_exclusive_cpumask(trialcs, NULL); 2372 2373 /* 2374 * Check all the descendants in update_cpumasks_hier() if 2375 * effective_xcpus is to be changed. 2376 */ 2377 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); 2378 2379 retval = validate_change(cs, trialcs); 2380 if (retval) 2381 return retval; 2382 2383 if (alloc_cpumasks(NULL, &tmp)) 2384 return -ENOMEM; 2385 2386 if (old_prs) { 2387 if (cpumask_empty(trialcs->effective_xcpus)) { 2388 invalidate = true; 2389 cs->prs_err = PERR_INVCPUS; 2390 } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) { 2391 invalidate = true; 2392 cs->prs_err = PERR_HKEEPING; 2393 } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) { 2394 invalidate = true; 2395 cs->prs_err = PERR_NOCPUS; 2396 } 2397 2398 if (is_remote_partition(cs)) { 2399 if (invalidate) 2400 remote_partition_disable(cs, &tmp); 2401 else 2402 remote_cpus_update(cs, trialcs->effective_xcpus, 2403 &tmp); 2404 } else if (invalidate) { 2405 update_parent_effective_cpumask(cs, partcmd_invalidate, 2406 NULL, &tmp); 2407 } else { 2408 update_parent_effective_cpumask(cs, partcmd_update, 2409 trialcs->effective_xcpus, &tmp); 2410 } 2411 } else if (!cpumask_empty(trialcs->exclusive_cpus)) { 2412 /* 2413 * Use trialcs->effective_cpus as a temp cpumask 2414 */ 2415 remote_partition_check(cs, trialcs->effective_xcpus, 2416 trialcs->effective_cpus, &tmp); 2417 } 2418 spin_lock_irq(&callback_lock); 2419 cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus); 2420 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2421 if ((old_prs > 0) && !is_partition_valid(cs)) 2422 reset_partition_data(cs); 2423 spin_unlock_irq(&callback_lock); 2424 2425 /* 2426 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus 2427 * of the subtree when it is a valid partition root or effective_xcpus 2428 * is updated. 2429 */ 2430 if (is_partition_valid(cs) || force) 2431 update_cpumasks_hier(cs, &tmp, force); 2432 2433 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2434 if (cs->partition_root_state) 2435 update_partition_sd_lb(cs, old_prs); 2436 2437 free_cpumasks(NULL, &tmp); 2438 return 0; 2439 } 2440 2441 /* 2442 * Migrate memory region from one set of nodes to another. This is 2443 * performed asynchronously as it can be called from process migration path 2444 * holding locks involved in process management. All mm migrations are 2445 * performed in the queued order and can be waited for by flushing 2446 * cpuset_migrate_mm_wq. 2447 */ 2448 2449 struct cpuset_migrate_mm_work { 2450 struct work_struct work; 2451 struct mm_struct *mm; 2452 nodemask_t from; 2453 nodemask_t to; 2454 }; 2455 2456 static void cpuset_migrate_mm_workfn(struct work_struct *work) 2457 { 2458 struct cpuset_migrate_mm_work *mwork = 2459 container_of(work, struct cpuset_migrate_mm_work, work); 2460 2461 /* on a wq worker, no need to worry about %current's mems_allowed */ 2462 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 2463 mmput(mwork->mm); 2464 kfree(mwork); 2465 } 2466 2467 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 2468 const nodemask_t *to) 2469 { 2470 struct cpuset_migrate_mm_work *mwork; 2471 2472 if (nodes_equal(*from, *to)) { 2473 mmput(mm); 2474 return; 2475 } 2476 2477 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 2478 if (mwork) { 2479 mwork->mm = mm; 2480 mwork->from = *from; 2481 mwork->to = *to; 2482 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 2483 queue_work(cpuset_migrate_mm_wq, &mwork->work); 2484 } else { 2485 mmput(mm); 2486 } 2487 } 2488 2489 static void cpuset_post_attach(void) 2490 { 2491 flush_workqueue(cpuset_migrate_mm_wq); 2492 } 2493 2494 /* 2495 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 2496 * @tsk: the task to change 2497 * @newmems: new nodes that the task will be set 2498 * 2499 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 2500 * and rebind an eventual tasks' mempolicy. If the task is allocating in 2501 * parallel, it might temporarily see an empty intersection, which results in 2502 * a seqlock check and retry before OOM or allocation failure. 2503 */ 2504 static void cpuset_change_task_nodemask(struct task_struct *tsk, 2505 nodemask_t *newmems) 2506 { 2507 task_lock(tsk); 2508 2509 local_irq_disable(); 2510 write_seqcount_begin(&tsk->mems_allowed_seq); 2511 2512 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 2513 mpol_rebind_task(tsk, newmems); 2514 tsk->mems_allowed = *newmems; 2515 2516 write_seqcount_end(&tsk->mems_allowed_seq); 2517 local_irq_enable(); 2518 2519 task_unlock(tsk); 2520 } 2521 2522 static void *cpuset_being_rebound; 2523 2524 /** 2525 * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 2526 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 2527 * 2528 * Iterate through each task of @cs updating its mems_allowed to the 2529 * effective cpuset's. As this function is called with cpuset_mutex held, 2530 * cpuset membership stays stable. 2531 */ 2532 void cpuset_update_tasks_nodemask(struct cpuset *cs) 2533 { 2534 static nodemask_t newmems; /* protected by cpuset_mutex */ 2535 struct css_task_iter it; 2536 struct task_struct *task; 2537 2538 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 2539 2540 guarantee_online_mems(cs, &newmems); 2541 2542 /* 2543 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 2544 * take while holding tasklist_lock. Forks can happen - the 2545 * mpol_dup() cpuset_being_rebound check will catch such forks, 2546 * and rebind their vma mempolicies too. Because we still hold 2547 * the global cpuset_mutex, we know that no other rebind effort 2548 * will be contending for the global variable cpuset_being_rebound. 2549 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 2550 * is idempotent. Also migrate pages in each mm to new nodes. 2551 */ 2552 css_task_iter_start(&cs->css, 0, &it); 2553 while ((task = css_task_iter_next(&it))) { 2554 struct mm_struct *mm; 2555 bool migrate; 2556 2557 cpuset_change_task_nodemask(task, &newmems); 2558 2559 mm = get_task_mm(task); 2560 if (!mm) 2561 continue; 2562 2563 migrate = is_memory_migrate(cs); 2564 2565 mpol_rebind_mm(mm, &cs->mems_allowed); 2566 if (migrate) 2567 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 2568 else 2569 mmput(mm); 2570 } 2571 css_task_iter_end(&it); 2572 2573 /* 2574 * All the tasks' nodemasks have been updated, update 2575 * cs->old_mems_allowed. 2576 */ 2577 cs->old_mems_allowed = newmems; 2578 2579 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 2580 cpuset_being_rebound = NULL; 2581 } 2582 2583 /* 2584 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 2585 * @cs: the cpuset to consider 2586 * @new_mems: a temp variable for calculating new effective_mems 2587 * 2588 * When configured nodemask is changed, the effective nodemasks of this cpuset 2589 * and all its descendants need to be updated. 2590 * 2591 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 2592 * 2593 * Called with cpuset_mutex held 2594 */ 2595 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 2596 { 2597 struct cpuset *cp; 2598 struct cgroup_subsys_state *pos_css; 2599 2600 rcu_read_lock(); 2601 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2602 struct cpuset *parent = parent_cs(cp); 2603 2604 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 2605 2606 /* 2607 * If it becomes empty, inherit the effective mask of the 2608 * parent, which is guaranteed to have some MEMs. 2609 */ 2610 if (is_in_v2_mode() && nodes_empty(*new_mems)) 2611 *new_mems = parent->effective_mems; 2612 2613 /* Skip the whole subtree if the nodemask remains the same. */ 2614 if (nodes_equal(*new_mems, cp->effective_mems)) { 2615 pos_css = css_rightmost_descendant(pos_css); 2616 continue; 2617 } 2618 2619 if (!css_tryget_online(&cp->css)) 2620 continue; 2621 rcu_read_unlock(); 2622 2623 spin_lock_irq(&callback_lock); 2624 cp->effective_mems = *new_mems; 2625 spin_unlock_irq(&callback_lock); 2626 2627 WARN_ON(!is_in_v2_mode() && 2628 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 2629 2630 cpuset_update_tasks_nodemask(cp); 2631 2632 rcu_read_lock(); 2633 css_put(&cp->css); 2634 } 2635 rcu_read_unlock(); 2636 } 2637 2638 /* 2639 * Handle user request to change the 'mems' memory placement 2640 * of a cpuset. Needs to validate the request, update the 2641 * cpusets mems_allowed, and for each task in the cpuset, 2642 * update mems_allowed and rebind task's mempolicy and any vma 2643 * mempolicies and if the cpuset is marked 'memory_migrate', 2644 * migrate the tasks pages to the new memory. 2645 * 2646 * Call with cpuset_mutex held. May take callback_lock during call. 2647 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 2648 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 2649 * their mempolicies to the cpusets new mems_allowed. 2650 */ 2651 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 2652 const char *buf) 2653 { 2654 int retval; 2655 2656 /* 2657 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 2658 * it's read-only 2659 */ 2660 if (cs == &top_cpuset) { 2661 retval = -EACCES; 2662 goto done; 2663 } 2664 2665 /* 2666 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 2667 * Since nodelist_parse() fails on an empty mask, we special case 2668 * that parsing. The validate_change() call ensures that cpusets 2669 * with tasks have memory. 2670 */ 2671 if (!*buf) { 2672 nodes_clear(trialcs->mems_allowed); 2673 } else { 2674 retval = nodelist_parse(buf, trialcs->mems_allowed); 2675 if (retval < 0) 2676 goto done; 2677 2678 if (!nodes_subset(trialcs->mems_allowed, 2679 top_cpuset.mems_allowed)) { 2680 retval = -EINVAL; 2681 goto done; 2682 } 2683 } 2684 2685 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 2686 retval = 0; /* Too easy - nothing to do */ 2687 goto done; 2688 } 2689 retval = validate_change(cs, trialcs); 2690 if (retval < 0) 2691 goto done; 2692 2693 check_insane_mems_config(&trialcs->mems_allowed); 2694 2695 spin_lock_irq(&callback_lock); 2696 cs->mems_allowed = trialcs->mems_allowed; 2697 spin_unlock_irq(&callback_lock); 2698 2699 /* use trialcs->mems_allowed as a temp variable */ 2700 update_nodemasks_hier(cs, &trialcs->mems_allowed); 2701 done: 2702 return retval; 2703 } 2704 2705 bool current_cpuset_is_being_rebound(void) 2706 { 2707 bool ret; 2708 2709 rcu_read_lock(); 2710 ret = task_cs(current) == cpuset_being_rebound; 2711 rcu_read_unlock(); 2712 2713 return ret; 2714 } 2715 2716 /* 2717 * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag 2718 * bit: the bit to update (see cpuset_flagbits_t) 2719 * cs: the cpuset to update 2720 * turning_on: whether the flag is being set or cleared 2721 * 2722 * Call with cpuset_mutex held. 2723 */ 2724 2725 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 2726 int turning_on) 2727 { 2728 struct cpuset *trialcs; 2729 int balance_flag_changed; 2730 int spread_flag_changed; 2731 int err; 2732 2733 trialcs = alloc_trial_cpuset(cs); 2734 if (!trialcs) 2735 return -ENOMEM; 2736 2737 if (turning_on) 2738 set_bit(bit, &trialcs->flags); 2739 else 2740 clear_bit(bit, &trialcs->flags); 2741 2742 err = validate_change(cs, trialcs); 2743 if (err < 0) 2744 goto out; 2745 2746 balance_flag_changed = (is_sched_load_balance(cs) != 2747 is_sched_load_balance(trialcs)); 2748 2749 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 2750 || (is_spread_page(cs) != is_spread_page(trialcs))); 2751 2752 spin_lock_irq(&callback_lock); 2753 cs->flags = trialcs->flags; 2754 spin_unlock_irq(&callback_lock); 2755 2756 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) { 2757 if (cpuset_v2()) 2758 cpuset_force_rebuild(); 2759 else 2760 rebuild_sched_domains_locked(); 2761 } 2762 2763 if (spread_flag_changed) 2764 cpuset1_update_tasks_flags(cs); 2765 out: 2766 free_cpuset(trialcs); 2767 return err; 2768 } 2769 2770 /** 2771 * update_prstate - update partition_root_state 2772 * @cs: the cpuset to update 2773 * @new_prs: new partition root state 2774 * Return: 0 if successful, != 0 if error 2775 * 2776 * Call with cpuset_mutex held. 2777 */ 2778 static int update_prstate(struct cpuset *cs, int new_prs) 2779 { 2780 int err = PERR_NONE, old_prs = cs->partition_root_state; 2781 struct cpuset *parent = parent_cs(cs); 2782 struct tmpmasks tmpmask; 2783 bool new_xcpus_state = false; 2784 2785 if (old_prs == new_prs) 2786 return 0; 2787 2788 /* 2789 * Treat a previously invalid partition root as if it is a "member". 2790 */ 2791 if (new_prs && is_prs_invalid(old_prs)) 2792 old_prs = PRS_MEMBER; 2793 2794 if (alloc_cpumasks(NULL, &tmpmask)) 2795 return -ENOMEM; 2796 2797 /* 2798 * Setup effective_xcpus if not properly set yet, it will be cleared 2799 * later if partition becomes invalid. 2800 */ 2801 if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) { 2802 spin_lock_irq(&callback_lock); 2803 cpumask_and(cs->effective_xcpus, 2804 cs->cpus_allowed, parent->effective_xcpus); 2805 spin_unlock_irq(&callback_lock); 2806 } 2807 2808 err = update_partition_exclusive(cs, new_prs); 2809 if (err) 2810 goto out; 2811 2812 if (!old_prs) { 2813 /* 2814 * cpus_allowed and exclusive_cpus cannot be both empty. 2815 */ 2816 if (xcpus_empty(cs)) { 2817 err = PERR_CPUSEMPTY; 2818 goto out; 2819 } 2820 2821 /* 2822 * If parent is valid partition, enable local partiion. 2823 * Otherwise, enable a remote partition. 2824 */ 2825 if (is_partition_valid(parent)) { 2826 enum partition_cmd cmd = (new_prs == PRS_ROOT) 2827 ? partcmd_enable : partcmd_enablei; 2828 2829 err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask); 2830 } else { 2831 err = remote_partition_enable(cs, new_prs, &tmpmask); 2832 } 2833 } else if (old_prs && new_prs) { 2834 /* 2835 * A change in load balance state only, no change in cpumasks. 2836 */ 2837 new_xcpus_state = true; 2838 } else { 2839 /* 2840 * Switching back to member is always allowed even if it 2841 * disables child partitions. 2842 */ 2843 if (is_remote_partition(cs)) 2844 remote_partition_disable(cs, &tmpmask); 2845 else 2846 update_parent_effective_cpumask(cs, partcmd_disable, 2847 NULL, &tmpmask); 2848 2849 /* 2850 * Invalidation of child partitions will be done in 2851 * update_cpumasks_hier(). 2852 */ 2853 } 2854 out: 2855 /* 2856 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error 2857 * happens. 2858 */ 2859 if (err) { 2860 new_prs = -new_prs; 2861 update_partition_exclusive(cs, new_prs); 2862 } 2863 2864 spin_lock_irq(&callback_lock); 2865 cs->partition_root_state = new_prs; 2866 WRITE_ONCE(cs->prs_err, err); 2867 if (!is_partition_valid(cs)) 2868 reset_partition_data(cs); 2869 else if (new_xcpus_state) 2870 partition_xcpus_newstate(old_prs, new_prs, cs->effective_xcpus); 2871 spin_unlock_irq(&callback_lock); 2872 update_unbound_workqueue_cpumask(new_xcpus_state); 2873 2874 /* Force update if switching back to member */ 2875 update_cpumasks_hier(cs, &tmpmask, !new_prs); 2876 2877 /* Update sched domains and load balance flag */ 2878 update_partition_sd_lb(cs, old_prs); 2879 2880 notify_partition_change(cs, old_prs); 2881 if (force_sd_rebuild) 2882 rebuild_sched_domains_locked(); 2883 free_cpumasks(NULL, &tmpmask); 2884 return 0; 2885 } 2886 2887 static struct cpuset *cpuset_attach_old_cs; 2888 2889 /* 2890 * Check to see if a cpuset can accept a new task 2891 * For v1, cpus_allowed and mems_allowed can't be empty. 2892 * For v2, effective_cpus can't be empty. 2893 * Note that in v1, effective_cpus = cpus_allowed. 2894 */ 2895 static int cpuset_can_attach_check(struct cpuset *cs) 2896 { 2897 if (cpumask_empty(cs->effective_cpus) || 2898 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) 2899 return -ENOSPC; 2900 return 0; 2901 } 2902 2903 static void reset_migrate_dl_data(struct cpuset *cs) 2904 { 2905 cs->nr_migrate_dl_tasks = 0; 2906 cs->sum_migrate_dl_bw = 0; 2907 } 2908 2909 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 2910 static int cpuset_can_attach(struct cgroup_taskset *tset) 2911 { 2912 struct cgroup_subsys_state *css; 2913 struct cpuset *cs, *oldcs; 2914 struct task_struct *task; 2915 bool cpus_updated, mems_updated; 2916 int ret; 2917 2918 /* used later by cpuset_attach() */ 2919 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2920 oldcs = cpuset_attach_old_cs; 2921 cs = css_cs(css); 2922 2923 mutex_lock(&cpuset_mutex); 2924 2925 /* Check to see if task is allowed in the cpuset */ 2926 ret = cpuset_can_attach_check(cs); 2927 if (ret) 2928 goto out_unlock; 2929 2930 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); 2931 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 2932 2933 cgroup_taskset_for_each(task, css, tset) { 2934 ret = task_can_attach(task); 2935 if (ret) 2936 goto out_unlock; 2937 2938 /* 2939 * Skip rights over task check in v2 when nothing changes, 2940 * migration permission derives from hierarchy ownership in 2941 * cgroup_procs_write_permission()). 2942 */ 2943 if (!cpuset_v2() || (cpus_updated || mems_updated)) { 2944 ret = security_task_setscheduler(task); 2945 if (ret) 2946 goto out_unlock; 2947 } 2948 2949 if (dl_task(task)) { 2950 cs->nr_migrate_dl_tasks++; 2951 cs->sum_migrate_dl_bw += task->dl.dl_bw; 2952 } 2953 } 2954 2955 if (!cs->nr_migrate_dl_tasks) 2956 goto out_success; 2957 2958 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { 2959 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); 2960 2961 if (unlikely(cpu >= nr_cpu_ids)) { 2962 reset_migrate_dl_data(cs); 2963 ret = -EINVAL; 2964 goto out_unlock; 2965 } 2966 2967 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); 2968 if (ret) { 2969 reset_migrate_dl_data(cs); 2970 goto out_unlock; 2971 } 2972 } 2973 2974 out_success: 2975 /* 2976 * Mark attach is in progress. This makes validate_change() fail 2977 * changes which zero cpus/mems_allowed. 2978 */ 2979 cs->attach_in_progress++; 2980 out_unlock: 2981 mutex_unlock(&cpuset_mutex); 2982 return ret; 2983 } 2984 2985 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2986 { 2987 struct cgroup_subsys_state *css; 2988 struct cpuset *cs; 2989 2990 cgroup_taskset_first(tset, &css); 2991 cs = css_cs(css); 2992 2993 mutex_lock(&cpuset_mutex); 2994 dec_attach_in_progress_locked(cs); 2995 2996 if (cs->nr_migrate_dl_tasks) { 2997 int cpu = cpumask_any(cs->effective_cpus); 2998 2999 dl_bw_free(cpu, cs->sum_migrate_dl_bw); 3000 reset_migrate_dl_data(cs); 3001 } 3002 3003 mutex_unlock(&cpuset_mutex); 3004 } 3005 3006 /* 3007 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() 3008 * but we can't allocate it dynamically there. Define it global and 3009 * allocate from cpuset_init(). 3010 */ 3011 static cpumask_var_t cpus_attach; 3012 static nodemask_t cpuset_attach_nodemask_to; 3013 3014 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) 3015 { 3016 lockdep_assert_held(&cpuset_mutex); 3017 3018 if (cs != &top_cpuset) 3019 guarantee_online_cpus(task, cpus_attach); 3020 else 3021 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), 3022 subpartitions_cpus); 3023 /* 3024 * can_attach beforehand should guarantee that this doesn't 3025 * fail. TODO: have a better way to handle failure here 3026 */ 3027 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 3028 3029 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 3030 cpuset1_update_task_spread_flags(cs, task); 3031 } 3032 3033 static void cpuset_attach(struct cgroup_taskset *tset) 3034 { 3035 struct task_struct *task; 3036 struct task_struct *leader; 3037 struct cgroup_subsys_state *css; 3038 struct cpuset *cs; 3039 struct cpuset *oldcs = cpuset_attach_old_cs; 3040 bool cpus_updated, mems_updated; 3041 3042 cgroup_taskset_first(tset, &css); 3043 cs = css_cs(css); 3044 3045 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ 3046 mutex_lock(&cpuset_mutex); 3047 cpus_updated = !cpumask_equal(cs->effective_cpus, 3048 oldcs->effective_cpus); 3049 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 3050 3051 /* 3052 * In the default hierarchy, enabling cpuset in the child cgroups 3053 * will trigger a number of cpuset_attach() calls with no change 3054 * in effective cpus and mems. In that case, we can optimize out 3055 * by skipping the task iteration and update. 3056 */ 3057 if (cpuset_v2() && !cpus_updated && !mems_updated) { 3058 cpuset_attach_nodemask_to = cs->effective_mems; 3059 goto out; 3060 } 3061 3062 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3063 3064 cgroup_taskset_for_each(task, css, tset) 3065 cpuset_attach_task(cs, task); 3066 3067 /* 3068 * Change mm for all threadgroup leaders. This is expensive and may 3069 * sleep and should be moved outside migration path proper. Skip it 3070 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is 3071 * not set. 3072 */ 3073 cpuset_attach_nodemask_to = cs->effective_mems; 3074 if (!is_memory_migrate(cs) && !mems_updated) 3075 goto out; 3076 3077 cgroup_taskset_for_each_leader(leader, css, tset) { 3078 struct mm_struct *mm = get_task_mm(leader); 3079 3080 if (mm) { 3081 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 3082 3083 /* 3084 * old_mems_allowed is the same with mems_allowed 3085 * here, except if this task is being moved 3086 * automatically due to hotplug. In that case 3087 * @mems_allowed has been updated and is empty, so 3088 * @old_mems_allowed is the right nodesets that we 3089 * migrate mm from. 3090 */ 3091 if (is_memory_migrate(cs)) 3092 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 3093 &cpuset_attach_nodemask_to); 3094 else 3095 mmput(mm); 3096 } 3097 } 3098 3099 out: 3100 cs->old_mems_allowed = cpuset_attach_nodemask_to; 3101 3102 if (cs->nr_migrate_dl_tasks) { 3103 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; 3104 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; 3105 reset_migrate_dl_data(cs); 3106 } 3107 3108 dec_attach_in_progress_locked(cs); 3109 3110 mutex_unlock(&cpuset_mutex); 3111 } 3112 3113 /* 3114 * Common handling for a write to a "cpus" or "mems" file. 3115 */ 3116 ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 3117 char *buf, size_t nbytes, loff_t off) 3118 { 3119 struct cpuset *cs = css_cs(of_css(of)); 3120 struct cpuset *trialcs; 3121 int retval = -ENODEV; 3122 3123 buf = strstrip(buf); 3124 3125 /* 3126 * CPU or memory hotunplug may leave @cs w/o any execution 3127 * resources, in which case the hotplug code asynchronously updates 3128 * configuration and transfers all tasks to the nearest ancestor 3129 * which can execute. 3130 * 3131 * As writes to "cpus" or "mems" may restore @cs's execution 3132 * resources, wait for the previously scheduled operations before 3133 * proceeding, so that we don't end up keep removing tasks added 3134 * after execution capability is restored. 3135 * 3136 * cpuset_handle_hotplug may call back into cgroup core asynchronously 3137 * via cgroup_transfer_tasks() and waiting for it from a cgroupfs 3138 * operation like this one can lead to a deadlock through kernfs 3139 * active_ref protection. Let's break the protection. Losing the 3140 * protection is okay as we check whether @cs is online after 3141 * grabbing cpuset_mutex anyway. This only happens on the legacy 3142 * hierarchies. 3143 */ 3144 css_get(&cs->css); 3145 kernfs_break_active_protection(of->kn); 3146 3147 cpus_read_lock(); 3148 mutex_lock(&cpuset_mutex); 3149 if (!is_cpuset_online(cs)) 3150 goto out_unlock; 3151 3152 trialcs = alloc_trial_cpuset(cs); 3153 if (!trialcs) { 3154 retval = -ENOMEM; 3155 goto out_unlock; 3156 } 3157 3158 switch (of_cft(of)->private) { 3159 case FILE_CPULIST: 3160 retval = update_cpumask(cs, trialcs, buf); 3161 break; 3162 case FILE_EXCLUSIVE_CPULIST: 3163 retval = update_exclusive_cpumask(cs, trialcs, buf); 3164 break; 3165 case FILE_MEMLIST: 3166 retval = update_nodemask(cs, trialcs, buf); 3167 break; 3168 default: 3169 retval = -EINVAL; 3170 break; 3171 } 3172 3173 free_cpuset(trialcs); 3174 if (force_sd_rebuild) 3175 rebuild_sched_domains_locked(); 3176 out_unlock: 3177 mutex_unlock(&cpuset_mutex); 3178 cpus_read_unlock(); 3179 kernfs_unbreak_active_protection(of->kn); 3180 css_put(&cs->css); 3181 flush_workqueue(cpuset_migrate_mm_wq); 3182 return retval ?: nbytes; 3183 } 3184 3185 /* 3186 * These ascii lists should be read in a single call, by using a user 3187 * buffer large enough to hold the entire map. If read in smaller 3188 * chunks, there is no guarantee of atomicity. Since the display format 3189 * used, list of ranges of sequential numbers, is variable length, 3190 * and since these maps can change value dynamically, one could read 3191 * gibberish by doing partial reads while a list was changing. 3192 */ 3193 int cpuset_common_seq_show(struct seq_file *sf, void *v) 3194 { 3195 struct cpuset *cs = css_cs(seq_css(sf)); 3196 cpuset_filetype_t type = seq_cft(sf)->private; 3197 int ret = 0; 3198 3199 spin_lock_irq(&callback_lock); 3200 3201 switch (type) { 3202 case FILE_CPULIST: 3203 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 3204 break; 3205 case FILE_MEMLIST: 3206 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 3207 break; 3208 case FILE_EFFECTIVE_CPULIST: 3209 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 3210 break; 3211 case FILE_EFFECTIVE_MEMLIST: 3212 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 3213 break; 3214 case FILE_EXCLUSIVE_CPULIST: 3215 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus)); 3216 break; 3217 case FILE_EFFECTIVE_XCPULIST: 3218 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus)); 3219 break; 3220 case FILE_SUBPARTS_CPULIST: 3221 seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus)); 3222 break; 3223 case FILE_ISOLATED_CPULIST: 3224 seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus)); 3225 break; 3226 default: 3227 ret = -EINVAL; 3228 } 3229 3230 spin_unlock_irq(&callback_lock); 3231 return ret; 3232 } 3233 3234 static int sched_partition_show(struct seq_file *seq, void *v) 3235 { 3236 struct cpuset *cs = css_cs(seq_css(seq)); 3237 const char *err, *type = NULL; 3238 3239 switch (cs->partition_root_state) { 3240 case PRS_ROOT: 3241 seq_puts(seq, "root\n"); 3242 break; 3243 case PRS_ISOLATED: 3244 seq_puts(seq, "isolated\n"); 3245 break; 3246 case PRS_MEMBER: 3247 seq_puts(seq, "member\n"); 3248 break; 3249 case PRS_INVALID_ROOT: 3250 type = "root"; 3251 fallthrough; 3252 case PRS_INVALID_ISOLATED: 3253 if (!type) 3254 type = "isolated"; 3255 err = perr_strings[READ_ONCE(cs->prs_err)]; 3256 if (err) 3257 seq_printf(seq, "%s invalid (%s)\n", type, err); 3258 else 3259 seq_printf(seq, "%s invalid\n", type); 3260 break; 3261 } 3262 return 0; 3263 } 3264 3265 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 3266 size_t nbytes, loff_t off) 3267 { 3268 struct cpuset *cs = css_cs(of_css(of)); 3269 int val; 3270 int retval = -ENODEV; 3271 3272 buf = strstrip(buf); 3273 3274 if (!strcmp(buf, "root")) 3275 val = PRS_ROOT; 3276 else if (!strcmp(buf, "member")) 3277 val = PRS_MEMBER; 3278 else if (!strcmp(buf, "isolated")) 3279 val = PRS_ISOLATED; 3280 else 3281 return -EINVAL; 3282 3283 css_get(&cs->css); 3284 cpus_read_lock(); 3285 mutex_lock(&cpuset_mutex); 3286 if (!is_cpuset_online(cs)) 3287 goto out_unlock; 3288 3289 retval = update_prstate(cs, val); 3290 out_unlock: 3291 mutex_unlock(&cpuset_mutex); 3292 cpus_read_unlock(); 3293 css_put(&cs->css); 3294 return retval ?: nbytes; 3295 } 3296 3297 /* 3298 * This is currently a minimal set for the default hierarchy. It can be 3299 * expanded later on by migrating more features and control files from v1. 3300 */ 3301 static struct cftype dfl_files[] = { 3302 { 3303 .name = "cpus", 3304 .seq_show = cpuset_common_seq_show, 3305 .write = cpuset_write_resmask, 3306 .max_write_len = (100U + 6 * NR_CPUS), 3307 .private = FILE_CPULIST, 3308 .flags = CFTYPE_NOT_ON_ROOT, 3309 }, 3310 3311 { 3312 .name = "mems", 3313 .seq_show = cpuset_common_seq_show, 3314 .write = cpuset_write_resmask, 3315 .max_write_len = (100U + 6 * MAX_NUMNODES), 3316 .private = FILE_MEMLIST, 3317 .flags = CFTYPE_NOT_ON_ROOT, 3318 }, 3319 3320 { 3321 .name = "cpus.effective", 3322 .seq_show = cpuset_common_seq_show, 3323 .private = FILE_EFFECTIVE_CPULIST, 3324 }, 3325 3326 { 3327 .name = "mems.effective", 3328 .seq_show = cpuset_common_seq_show, 3329 .private = FILE_EFFECTIVE_MEMLIST, 3330 }, 3331 3332 { 3333 .name = "cpus.partition", 3334 .seq_show = sched_partition_show, 3335 .write = sched_partition_write, 3336 .private = FILE_PARTITION_ROOT, 3337 .flags = CFTYPE_NOT_ON_ROOT, 3338 .file_offset = offsetof(struct cpuset, partition_file), 3339 }, 3340 3341 { 3342 .name = "cpus.exclusive", 3343 .seq_show = cpuset_common_seq_show, 3344 .write = cpuset_write_resmask, 3345 .max_write_len = (100U + 6 * NR_CPUS), 3346 .private = FILE_EXCLUSIVE_CPULIST, 3347 .flags = CFTYPE_NOT_ON_ROOT, 3348 }, 3349 3350 { 3351 .name = "cpus.exclusive.effective", 3352 .seq_show = cpuset_common_seq_show, 3353 .private = FILE_EFFECTIVE_XCPULIST, 3354 .flags = CFTYPE_NOT_ON_ROOT, 3355 }, 3356 3357 { 3358 .name = "cpus.subpartitions", 3359 .seq_show = cpuset_common_seq_show, 3360 .private = FILE_SUBPARTS_CPULIST, 3361 .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG, 3362 }, 3363 3364 { 3365 .name = "cpus.isolated", 3366 .seq_show = cpuset_common_seq_show, 3367 .private = FILE_ISOLATED_CPULIST, 3368 .flags = CFTYPE_ONLY_ON_ROOT, 3369 }, 3370 3371 { } /* terminate */ 3372 }; 3373 3374 3375 /** 3376 * cpuset_css_alloc - Allocate a cpuset css 3377 * @parent_css: Parent css of the control group that the new cpuset will be 3378 * part of 3379 * Return: cpuset css on success, -ENOMEM on failure. 3380 * 3381 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return 3382 * top cpuset css otherwise. 3383 */ 3384 static struct cgroup_subsys_state * 3385 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 3386 { 3387 struct cpuset *cs; 3388 3389 if (!parent_css) 3390 return &top_cpuset.css; 3391 3392 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 3393 if (!cs) 3394 return ERR_PTR(-ENOMEM); 3395 3396 if (alloc_cpumasks(cs, NULL)) { 3397 kfree(cs); 3398 return ERR_PTR(-ENOMEM); 3399 } 3400 3401 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3402 fmeter_init(&cs->fmeter); 3403 cs->relax_domain_level = -1; 3404 INIT_LIST_HEAD(&cs->remote_sibling); 3405 3406 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 3407 if (cpuset_v2()) 3408 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 3409 3410 return &cs->css; 3411 } 3412 3413 static int cpuset_css_online(struct cgroup_subsys_state *css) 3414 { 3415 struct cpuset *cs = css_cs(css); 3416 struct cpuset *parent = parent_cs(cs); 3417 struct cpuset *tmp_cs; 3418 struct cgroup_subsys_state *pos_css; 3419 3420 if (!parent) 3421 return 0; 3422 3423 cpus_read_lock(); 3424 mutex_lock(&cpuset_mutex); 3425 3426 set_bit(CS_ONLINE, &cs->flags); 3427 if (is_spread_page(parent)) 3428 set_bit(CS_SPREAD_PAGE, &cs->flags); 3429 if (is_spread_slab(parent)) 3430 set_bit(CS_SPREAD_SLAB, &cs->flags); 3431 /* 3432 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated 3433 */ 3434 if (cpuset_v2() && !is_sched_load_balance(parent)) 3435 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3436 3437 cpuset_inc(); 3438 3439 spin_lock_irq(&callback_lock); 3440 if (is_in_v2_mode()) { 3441 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 3442 cs->effective_mems = parent->effective_mems; 3443 } 3444 spin_unlock_irq(&callback_lock); 3445 3446 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 3447 goto out_unlock; 3448 3449 /* 3450 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 3451 * set. This flag handling is implemented in cgroup core for 3452 * historical reasons - the flag may be specified during mount. 3453 * 3454 * Currently, if any sibling cpusets have exclusive cpus or mem, we 3455 * refuse to clone the configuration - thereby refusing the task to 3456 * be entered, and as a result refusing the sys_unshare() or 3457 * clone() which initiated it. If this becomes a problem for some 3458 * users who wish to allow that scenario, then this could be 3459 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 3460 * (and likewise for mems) to the new cgroup. 3461 */ 3462 rcu_read_lock(); 3463 cpuset_for_each_child(tmp_cs, pos_css, parent) { 3464 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 3465 rcu_read_unlock(); 3466 goto out_unlock; 3467 } 3468 } 3469 rcu_read_unlock(); 3470 3471 spin_lock_irq(&callback_lock); 3472 cs->mems_allowed = parent->mems_allowed; 3473 cs->effective_mems = parent->mems_allowed; 3474 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 3475 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 3476 spin_unlock_irq(&callback_lock); 3477 out_unlock: 3478 mutex_unlock(&cpuset_mutex); 3479 cpus_read_unlock(); 3480 return 0; 3481 } 3482 3483 /* 3484 * If the cpuset being removed has its flag 'sched_load_balance' 3485 * enabled, then simulate turning sched_load_balance off, which 3486 * will call rebuild_sched_domains_locked(). That is not needed 3487 * in the default hierarchy where only changes in partition 3488 * will cause repartitioning. 3489 * 3490 * If the cpuset has the 'sched.partition' flag enabled, simulate 3491 * turning 'sched.partition" off. 3492 */ 3493 3494 static void cpuset_css_offline(struct cgroup_subsys_state *css) 3495 { 3496 struct cpuset *cs = css_cs(css); 3497 3498 cpus_read_lock(); 3499 mutex_lock(&cpuset_mutex); 3500 3501 if (is_partition_valid(cs)) 3502 update_prstate(cs, 0); 3503 3504 if (!cpuset_v2() && is_sched_load_balance(cs)) 3505 cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 3506 3507 cpuset_dec(); 3508 clear_bit(CS_ONLINE, &cs->flags); 3509 3510 mutex_unlock(&cpuset_mutex); 3511 cpus_read_unlock(); 3512 } 3513 3514 static void cpuset_css_free(struct cgroup_subsys_state *css) 3515 { 3516 struct cpuset *cs = css_cs(css); 3517 3518 free_cpuset(cs); 3519 } 3520 3521 static void cpuset_bind(struct cgroup_subsys_state *root_css) 3522 { 3523 mutex_lock(&cpuset_mutex); 3524 spin_lock_irq(&callback_lock); 3525 3526 if (is_in_v2_mode()) { 3527 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 3528 cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask); 3529 top_cpuset.mems_allowed = node_possible_map; 3530 } else { 3531 cpumask_copy(top_cpuset.cpus_allowed, 3532 top_cpuset.effective_cpus); 3533 top_cpuset.mems_allowed = top_cpuset.effective_mems; 3534 } 3535 3536 spin_unlock_irq(&callback_lock); 3537 mutex_unlock(&cpuset_mutex); 3538 } 3539 3540 /* 3541 * In case the child is cloned into a cpuset different from its parent, 3542 * additional checks are done to see if the move is allowed. 3543 */ 3544 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) 3545 { 3546 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3547 bool same_cs; 3548 int ret; 3549 3550 rcu_read_lock(); 3551 same_cs = (cs == task_cs(current)); 3552 rcu_read_unlock(); 3553 3554 if (same_cs) 3555 return 0; 3556 3557 lockdep_assert_held(&cgroup_mutex); 3558 mutex_lock(&cpuset_mutex); 3559 3560 /* Check to see if task is allowed in the cpuset */ 3561 ret = cpuset_can_attach_check(cs); 3562 if (ret) 3563 goto out_unlock; 3564 3565 ret = task_can_attach(task); 3566 if (ret) 3567 goto out_unlock; 3568 3569 ret = security_task_setscheduler(task); 3570 if (ret) 3571 goto out_unlock; 3572 3573 /* 3574 * Mark attach is in progress. This makes validate_change() fail 3575 * changes which zero cpus/mems_allowed. 3576 */ 3577 cs->attach_in_progress++; 3578 out_unlock: 3579 mutex_unlock(&cpuset_mutex); 3580 return ret; 3581 } 3582 3583 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) 3584 { 3585 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3586 bool same_cs; 3587 3588 rcu_read_lock(); 3589 same_cs = (cs == task_cs(current)); 3590 rcu_read_unlock(); 3591 3592 if (same_cs) 3593 return; 3594 3595 dec_attach_in_progress(cs); 3596 } 3597 3598 /* 3599 * Make sure the new task conform to the current state of its parent, 3600 * which could have been changed by cpuset just after it inherits the 3601 * state from the parent and before it sits on the cgroup's task list. 3602 */ 3603 static void cpuset_fork(struct task_struct *task) 3604 { 3605 struct cpuset *cs; 3606 bool same_cs; 3607 3608 rcu_read_lock(); 3609 cs = task_cs(task); 3610 same_cs = (cs == task_cs(current)); 3611 rcu_read_unlock(); 3612 3613 if (same_cs) { 3614 if (cs == &top_cpuset) 3615 return; 3616 3617 set_cpus_allowed_ptr(task, current->cpus_ptr); 3618 task->mems_allowed = current->mems_allowed; 3619 return; 3620 } 3621 3622 /* CLONE_INTO_CGROUP */ 3623 mutex_lock(&cpuset_mutex); 3624 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3625 cpuset_attach_task(cs, task); 3626 3627 dec_attach_in_progress_locked(cs); 3628 mutex_unlock(&cpuset_mutex); 3629 } 3630 3631 struct cgroup_subsys cpuset_cgrp_subsys = { 3632 .css_alloc = cpuset_css_alloc, 3633 .css_online = cpuset_css_online, 3634 .css_offline = cpuset_css_offline, 3635 .css_free = cpuset_css_free, 3636 .can_attach = cpuset_can_attach, 3637 .cancel_attach = cpuset_cancel_attach, 3638 .attach = cpuset_attach, 3639 .post_attach = cpuset_post_attach, 3640 .bind = cpuset_bind, 3641 .can_fork = cpuset_can_fork, 3642 .cancel_fork = cpuset_cancel_fork, 3643 .fork = cpuset_fork, 3644 #ifdef CONFIG_CPUSETS_V1 3645 .legacy_cftypes = cpuset1_files, 3646 #endif 3647 .dfl_cftypes = dfl_files, 3648 .early_init = true, 3649 .threaded = true, 3650 }; 3651 3652 /** 3653 * cpuset_init - initialize cpusets at system boot 3654 * 3655 * Description: Initialize top_cpuset 3656 **/ 3657 3658 int __init cpuset_init(void) 3659 { 3660 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 3661 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 3662 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL)); 3663 BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL)); 3664 BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL)); 3665 BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL)); 3666 3667 cpumask_setall(top_cpuset.cpus_allowed); 3668 nodes_setall(top_cpuset.mems_allowed); 3669 cpumask_setall(top_cpuset.effective_cpus); 3670 cpumask_setall(top_cpuset.effective_xcpus); 3671 cpumask_setall(top_cpuset.exclusive_cpus); 3672 nodes_setall(top_cpuset.effective_mems); 3673 3674 fmeter_init(&top_cpuset.fmeter); 3675 INIT_LIST_HEAD(&remote_children); 3676 3677 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 3678 3679 have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN); 3680 if (have_boot_isolcpus) { 3681 BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL)); 3682 cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN)); 3683 cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus); 3684 } 3685 3686 return 0; 3687 } 3688 3689 static void 3690 hotplug_update_tasks(struct cpuset *cs, 3691 struct cpumask *new_cpus, nodemask_t *new_mems, 3692 bool cpus_updated, bool mems_updated) 3693 { 3694 /* A partition root is allowed to have empty effective cpus */ 3695 if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) 3696 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3697 if (nodes_empty(*new_mems)) 3698 *new_mems = parent_cs(cs)->effective_mems; 3699 3700 spin_lock_irq(&callback_lock); 3701 cpumask_copy(cs->effective_cpus, new_cpus); 3702 cs->effective_mems = *new_mems; 3703 spin_unlock_irq(&callback_lock); 3704 3705 if (cpus_updated) 3706 cpuset_update_tasks_cpumask(cs, new_cpus); 3707 if (mems_updated) 3708 cpuset_update_tasks_nodemask(cs); 3709 } 3710 3711 void cpuset_force_rebuild(void) 3712 { 3713 force_sd_rebuild = true; 3714 } 3715 3716 /** 3717 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3718 * @cs: cpuset in interest 3719 * @tmp: the tmpmasks structure pointer 3720 * 3721 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3722 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3723 * all its tasks are moved to the nearest ancestor with both resources. 3724 */ 3725 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3726 { 3727 static cpumask_t new_cpus; 3728 static nodemask_t new_mems; 3729 bool cpus_updated; 3730 bool mems_updated; 3731 bool remote; 3732 int partcmd = -1; 3733 struct cpuset *parent; 3734 retry: 3735 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3736 3737 mutex_lock(&cpuset_mutex); 3738 3739 /* 3740 * We have raced with task attaching. We wait until attaching 3741 * is finished, so we won't attach a task to an empty cpuset. 3742 */ 3743 if (cs->attach_in_progress) { 3744 mutex_unlock(&cpuset_mutex); 3745 goto retry; 3746 } 3747 3748 parent = parent_cs(cs); 3749 compute_effective_cpumask(&new_cpus, cs, parent); 3750 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3751 3752 if (!tmp || !cs->partition_root_state) 3753 goto update_tasks; 3754 3755 /* 3756 * Compute effective_cpus for valid partition root, may invalidate 3757 * child partition roots if necessary. 3758 */ 3759 remote = is_remote_partition(cs); 3760 if (remote || (is_partition_valid(cs) && is_partition_valid(parent))) 3761 compute_partition_effective_cpumask(cs, &new_cpus); 3762 3763 if (remote && cpumask_empty(&new_cpus) && 3764 partition_is_populated(cs, NULL)) { 3765 remote_partition_disable(cs, tmp); 3766 compute_effective_cpumask(&new_cpus, cs, parent); 3767 remote = false; 3768 cpuset_force_rebuild(); 3769 } 3770 3771 /* 3772 * Force the partition to become invalid if either one of 3773 * the following conditions hold: 3774 * 1) empty effective cpus but not valid empty partition. 3775 * 2) parent is invalid or doesn't grant any cpus to child 3776 * partitions. 3777 */ 3778 if (is_local_partition(cs) && (!is_partition_valid(parent) || 3779 tasks_nocpu_error(parent, cs, &new_cpus))) 3780 partcmd = partcmd_invalidate; 3781 /* 3782 * On the other hand, an invalid partition root may be transitioned 3783 * back to a regular one. 3784 */ 3785 else if (is_partition_valid(parent) && is_partition_invalid(cs)) 3786 partcmd = partcmd_update; 3787 3788 if (partcmd >= 0) { 3789 update_parent_effective_cpumask(cs, partcmd, NULL, tmp); 3790 if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) { 3791 compute_partition_effective_cpumask(cs, &new_cpus); 3792 cpuset_force_rebuild(); 3793 } 3794 } 3795 3796 update_tasks: 3797 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3798 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3799 if (!cpus_updated && !mems_updated) 3800 goto unlock; /* Hotplug doesn't affect this cpuset */ 3801 3802 if (mems_updated) 3803 check_insane_mems_config(&new_mems); 3804 3805 if (is_in_v2_mode()) 3806 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3807 cpus_updated, mems_updated); 3808 else 3809 cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems, 3810 cpus_updated, mems_updated); 3811 3812 unlock: 3813 mutex_unlock(&cpuset_mutex); 3814 } 3815 3816 /** 3817 * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset 3818 * 3819 * This function is called after either CPU or memory configuration has 3820 * changed and updates cpuset accordingly. The top_cpuset is always 3821 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3822 * order to make cpusets transparent (of no affect) on systems that are 3823 * actively using CPU hotplug but making no active use of cpusets. 3824 * 3825 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3826 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3827 * all descendants. 3828 * 3829 * Note that CPU offlining during suspend is ignored. We don't modify 3830 * cpusets across suspend/resume cycles at all. 3831 * 3832 * CPU / memory hotplug is handled synchronously. 3833 */ 3834 static void cpuset_handle_hotplug(void) 3835 { 3836 static cpumask_t new_cpus; 3837 static nodemask_t new_mems; 3838 bool cpus_updated, mems_updated; 3839 bool on_dfl = is_in_v2_mode(); 3840 struct tmpmasks tmp, *ptmp = NULL; 3841 3842 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3843 ptmp = &tmp; 3844 3845 lockdep_assert_cpus_held(); 3846 mutex_lock(&cpuset_mutex); 3847 3848 /* fetch the available cpus/mems and find out which changed how */ 3849 cpumask_copy(&new_cpus, cpu_active_mask); 3850 new_mems = node_states[N_MEMORY]; 3851 3852 /* 3853 * If subpartitions_cpus is populated, it is likely that the check 3854 * below will produce a false positive on cpus_updated when the cpu 3855 * list isn't changed. It is extra work, but it is better to be safe. 3856 */ 3857 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) || 3858 !cpumask_empty(subpartitions_cpus); 3859 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3860 3861 /* For v1, synchronize cpus_allowed to cpu_active_mask */ 3862 if (cpus_updated) { 3863 cpuset_force_rebuild(); 3864 spin_lock_irq(&callback_lock); 3865 if (!on_dfl) 3866 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3867 /* 3868 * Make sure that CPUs allocated to child partitions 3869 * do not show up in effective_cpus. If no CPU is left, 3870 * we clear the subpartitions_cpus & let the child partitions 3871 * fight for the CPUs again. 3872 */ 3873 if (!cpumask_empty(subpartitions_cpus)) { 3874 if (cpumask_subset(&new_cpus, subpartitions_cpus)) { 3875 top_cpuset.nr_subparts = 0; 3876 cpumask_clear(subpartitions_cpus); 3877 } else { 3878 cpumask_andnot(&new_cpus, &new_cpus, 3879 subpartitions_cpus); 3880 } 3881 } 3882 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3883 spin_unlock_irq(&callback_lock); 3884 /* we don't mess with cpumasks of tasks in top_cpuset */ 3885 } 3886 3887 /* synchronize mems_allowed to N_MEMORY */ 3888 if (mems_updated) { 3889 spin_lock_irq(&callback_lock); 3890 if (!on_dfl) 3891 top_cpuset.mems_allowed = new_mems; 3892 top_cpuset.effective_mems = new_mems; 3893 spin_unlock_irq(&callback_lock); 3894 cpuset_update_tasks_nodemask(&top_cpuset); 3895 } 3896 3897 mutex_unlock(&cpuset_mutex); 3898 3899 /* if cpus or mems changed, we need to propagate to descendants */ 3900 if (cpus_updated || mems_updated) { 3901 struct cpuset *cs; 3902 struct cgroup_subsys_state *pos_css; 3903 3904 rcu_read_lock(); 3905 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3906 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3907 continue; 3908 rcu_read_unlock(); 3909 3910 cpuset_hotplug_update_tasks(cs, ptmp); 3911 3912 rcu_read_lock(); 3913 css_put(&cs->css); 3914 } 3915 rcu_read_unlock(); 3916 } 3917 3918 /* rebuild sched domains if necessary */ 3919 if (force_sd_rebuild) 3920 rebuild_sched_domains_cpuslocked(); 3921 3922 free_cpumasks(NULL, ptmp); 3923 } 3924 3925 void cpuset_update_active_cpus(void) 3926 { 3927 /* 3928 * We're inside cpu hotplug critical region which usually nests 3929 * inside cgroup synchronization. Bounce actual hotplug processing 3930 * to a work item to avoid reverse locking order. 3931 */ 3932 cpuset_handle_hotplug(); 3933 } 3934 3935 /* 3936 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3937 * Call this routine anytime after node_states[N_MEMORY] changes. 3938 * See cpuset_update_active_cpus() for CPU hotplug handling. 3939 */ 3940 static int cpuset_track_online_nodes(struct notifier_block *self, 3941 unsigned long action, void *arg) 3942 { 3943 cpuset_handle_hotplug(); 3944 return NOTIFY_OK; 3945 } 3946 3947 /** 3948 * cpuset_init_smp - initialize cpus_allowed 3949 * 3950 * Description: Finish top cpuset after cpu, node maps are initialized 3951 */ 3952 void __init cpuset_init_smp(void) 3953 { 3954 /* 3955 * cpus_allowd/mems_allowed set to v2 values in the initial 3956 * cpuset_bind() call will be reset to v1 values in another 3957 * cpuset_bind() call when v1 cpuset is mounted. 3958 */ 3959 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3960 3961 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3962 top_cpuset.effective_mems = node_states[N_MEMORY]; 3963 3964 hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); 3965 3966 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3967 BUG_ON(!cpuset_migrate_mm_wq); 3968 } 3969 3970 /** 3971 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3972 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3973 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3974 * 3975 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3976 * attached to the specified @tsk. Guaranteed to return some non-empty 3977 * subset of cpu_online_mask, even if this means going outside the 3978 * tasks cpuset, except when the task is in the top cpuset. 3979 **/ 3980 3981 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3982 { 3983 unsigned long flags; 3984 struct cpuset *cs; 3985 3986 spin_lock_irqsave(&callback_lock, flags); 3987 rcu_read_lock(); 3988 3989 cs = task_cs(tsk); 3990 if (cs != &top_cpuset) 3991 guarantee_online_cpus(tsk, pmask); 3992 /* 3993 * Tasks in the top cpuset won't get update to their cpumasks 3994 * when a hotplug online/offline event happens. So we include all 3995 * offline cpus in the allowed cpu list. 3996 */ 3997 if ((cs == &top_cpuset) || cpumask_empty(pmask)) { 3998 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3999 4000 /* 4001 * We first exclude cpus allocated to partitions. If there is no 4002 * allowable online cpu left, we fall back to all possible cpus. 4003 */ 4004 cpumask_andnot(pmask, possible_mask, subpartitions_cpus); 4005 if (!cpumask_intersects(pmask, cpu_online_mask)) 4006 cpumask_copy(pmask, possible_mask); 4007 } 4008 4009 rcu_read_unlock(); 4010 spin_unlock_irqrestore(&callback_lock, flags); 4011 } 4012 4013 /** 4014 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 4015 * @tsk: pointer to task_struct with which the scheduler is struggling 4016 * 4017 * Description: In the case that the scheduler cannot find an allowed cpu in 4018 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 4019 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 4020 * which will not contain a sane cpumask during cases such as cpu hotplugging. 4021 * This is the absolute last resort for the scheduler and it is only used if 4022 * _every_ other avenue has been traveled. 4023 * 4024 * Returns true if the affinity of @tsk was changed, false otherwise. 4025 **/ 4026 4027 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 4028 { 4029 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 4030 const struct cpumask *cs_mask; 4031 bool changed = false; 4032 4033 rcu_read_lock(); 4034 cs_mask = task_cs(tsk)->cpus_allowed; 4035 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 4036 do_set_cpus_allowed(tsk, cs_mask); 4037 changed = true; 4038 } 4039 rcu_read_unlock(); 4040 4041 /* 4042 * We own tsk->cpus_allowed, nobody can change it under us. 4043 * 4044 * But we used cs && cs->cpus_allowed lockless and thus can 4045 * race with cgroup_attach_task() or update_cpumask() and get 4046 * the wrong tsk->cpus_allowed. However, both cases imply the 4047 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 4048 * which takes task_rq_lock(). 4049 * 4050 * If we are called after it dropped the lock we must see all 4051 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 4052 * set any mask even if it is not right from task_cs() pov, 4053 * the pending set_cpus_allowed_ptr() will fix things. 4054 * 4055 * select_fallback_rq() will fix things ups and set cpu_possible_mask 4056 * if required. 4057 */ 4058 return changed; 4059 } 4060 4061 void __init cpuset_init_current_mems_allowed(void) 4062 { 4063 nodes_setall(current->mems_allowed); 4064 } 4065 4066 /** 4067 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 4068 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 4069 * 4070 * Description: Returns the nodemask_t mems_allowed of the cpuset 4071 * attached to the specified @tsk. Guaranteed to return some non-empty 4072 * subset of node_states[N_MEMORY], even if this means going outside the 4073 * tasks cpuset. 4074 **/ 4075 4076 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 4077 { 4078 nodemask_t mask; 4079 unsigned long flags; 4080 4081 spin_lock_irqsave(&callback_lock, flags); 4082 rcu_read_lock(); 4083 guarantee_online_mems(task_cs(tsk), &mask); 4084 rcu_read_unlock(); 4085 spin_unlock_irqrestore(&callback_lock, flags); 4086 4087 return mask; 4088 } 4089 4090 /** 4091 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 4092 * @nodemask: the nodemask to be checked 4093 * 4094 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 4095 */ 4096 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 4097 { 4098 return nodes_intersects(*nodemask, current->mems_allowed); 4099 } 4100 4101 /* 4102 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 4103 * mem_hardwall ancestor to the specified cpuset. Call holding 4104 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 4105 * (an unusual configuration), then returns the root cpuset. 4106 */ 4107 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 4108 { 4109 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 4110 cs = parent_cs(cs); 4111 return cs; 4112 } 4113 4114 /* 4115 * cpuset_node_allowed - Can we allocate on a memory node? 4116 * @node: is this an allowed node? 4117 * @gfp_mask: memory allocation flags 4118 * 4119 * If we're in interrupt, yes, we can always allocate. If @node is set in 4120 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 4121 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 4122 * yes. If current has access to memory reserves as an oom victim, yes. 4123 * Otherwise, no. 4124 * 4125 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 4126 * and do not allow allocations outside the current tasks cpuset 4127 * unless the task has been OOM killed. 4128 * GFP_KERNEL allocations are not so marked, so can escape to the 4129 * nearest enclosing hardwalled ancestor cpuset. 4130 * 4131 * Scanning up parent cpusets requires callback_lock. The 4132 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 4133 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 4134 * current tasks mems_allowed came up empty on the first pass over 4135 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 4136 * cpuset are short of memory, might require taking the callback_lock. 4137 * 4138 * The first call here from mm/page_alloc:get_page_from_freelist() 4139 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 4140 * so no allocation on a node outside the cpuset is allowed (unless 4141 * in interrupt, of course). 4142 * 4143 * The second pass through get_page_from_freelist() doesn't even call 4144 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 4145 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 4146 * in alloc_flags. That logic and the checks below have the combined 4147 * affect that: 4148 * in_interrupt - any node ok (current task context irrelevant) 4149 * GFP_ATOMIC - any node ok 4150 * tsk_is_oom_victim - any node ok 4151 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 4152 * GFP_USER - only nodes in current tasks mems allowed ok. 4153 */ 4154 bool cpuset_node_allowed(int node, gfp_t gfp_mask) 4155 { 4156 struct cpuset *cs; /* current cpuset ancestors */ 4157 bool allowed; /* is allocation in zone z allowed? */ 4158 unsigned long flags; 4159 4160 if (in_interrupt()) 4161 return true; 4162 if (node_isset(node, current->mems_allowed)) 4163 return true; 4164 /* 4165 * Allow tasks that have access to memory reserves because they have 4166 * been OOM killed to get memory anywhere. 4167 */ 4168 if (unlikely(tsk_is_oom_victim(current))) 4169 return true; 4170 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 4171 return false; 4172 4173 if (current->flags & PF_EXITING) /* Let dying task have memory */ 4174 return true; 4175 4176 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 4177 spin_lock_irqsave(&callback_lock, flags); 4178 4179 rcu_read_lock(); 4180 cs = nearest_hardwall_ancestor(task_cs(current)); 4181 allowed = node_isset(node, cs->mems_allowed); 4182 rcu_read_unlock(); 4183 4184 spin_unlock_irqrestore(&callback_lock, flags); 4185 return allowed; 4186 } 4187 4188 /** 4189 * cpuset_spread_node() - On which node to begin search for a page 4190 * @rotor: round robin rotor 4191 * 4192 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 4193 * tasks in a cpuset with is_spread_page or is_spread_slab set), 4194 * and if the memory allocation used cpuset_mem_spread_node() 4195 * to determine on which node to start looking, as it will for 4196 * certain page cache or slab cache pages such as used for file 4197 * system buffers and inode caches, then instead of starting on the 4198 * local node to look for a free page, rather spread the starting 4199 * node around the tasks mems_allowed nodes. 4200 * 4201 * We don't have to worry about the returned node being offline 4202 * because "it can't happen", and even if it did, it would be ok. 4203 * 4204 * The routines calling guarantee_online_mems() are careful to 4205 * only set nodes in task->mems_allowed that are online. So it 4206 * should not be possible for the following code to return an 4207 * offline node. But if it did, that would be ok, as this routine 4208 * is not returning the node where the allocation must be, only 4209 * the node where the search should start. The zonelist passed to 4210 * __alloc_pages() will include all nodes. If the slab allocator 4211 * is passed an offline node, it will fall back to the local node. 4212 * See kmem_cache_alloc_node(). 4213 */ 4214 static int cpuset_spread_node(int *rotor) 4215 { 4216 return *rotor = next_node_in(*rotor, current->mems_allowed); 4217 } 4218 4219 /** 4220 * cpuset_mem_spread_node() - On which node to begin search for a file page 4221 */ 4222 int cpuset_mem_spread_node(void) 4223 { 4224 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 4225 current->cpuset_mem_spread_rotor = 4226 node_random(¤t->mems_allowed); 4227 4228 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 4229 } 4230 4231 /** 4232 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 4233 * @tsk1: pointer to task_struct of some task. 4234 * @tsk2: pointer to task_struct of some other task. 4235 * 4236 * Description: Return true if @tsk1's mems_allowed intersects the 4237 * mems_allowed of @tsk2. Used by the OOM killer to determine if 4238 * one of the task's memory usage might impact the memory available 4239 * to the other. 4240 **/ 4241 4242 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 4243 const struct task_struct *tsk2) 4244 { 4245 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 4246 } 4247 4248 /** 4249 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 4250 * 4251 * Description: Prints current's name, cpuset name, and cached copy of its 4252 * mems_allowed to the kernel log. 4253 */ 4254 void cpuset_print_current_mems_allowed(void) 4255 { 4256 struct cgroup *cgrp; 4257 4258 rcu_read_lock(); 4259 4260 cgrp = task_cs(current)->css.cgroup; 4261 pr_cont(",cpuset="); 4262 pr_cont_cgroup_name(cgrp); 4263 pr_cont(",mems_allowed=%*pbl", 4264 nodemask_pr_args(¤t->mems_allowed)); 4265 4266 rcu_read_unlock(); 4267 } 4268 4269 #ifdef CONFIG_PROC_PID_CPUSET 4270 /* 4271 * proc_cpuset_show() 4272 * - Print tasks cpuset path into seq_file. 4273 * - Used for /proc/<pid>/cpuset. 4274 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 4275 * doesn't really matter if tsk->cpuset changes after we read it, 4276 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 4277 * anyway. 4278 */ 4279 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 4280 struct pid *pid, struct task_struct *tsk) 4281 { 4282 char *buf; 4283 struct cgroup_subsys_state *css; 4284 int retval; 4285 4286 retval = -ENOMEM; 4287 buf = kmalloc(PATH_MAX, GFP_KERNEL); 4288 if (!buf) 4289 goto out; 4290 4291 rcu_read_lock(); 4292 spin_lock_irq(&css_set_lock); 4293 css = task_css(tsk, cpuset_cgrp_id); 4294 retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX, 4295 current->nsproxy->cgroup_ns); 4296 spin_unlock_irq(&css_set_lock); 4297 rcu_read_unlock(); 4298 4299 if (retval == -E2BIG) 4300 retval = -ENAMETOOLONG; 4301 if (retval < 0) 4302 goto out_free; 4303 seq_puts(m, buf); 4304 seq_putc(m, '\n'); 4305 retval = 0; 4306 out_free: 4307 kfree(buf); 4308 out: 4309 return retval; 4310 } 4311 #endif /* CONFIG_PROC_PID_CPUSET */ 4312 4313 /* Display task mems_allowed in /proc/<pid>/status file. */ 4314 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 4315 { 4316 seq_printf(m, "Mems_allowed:\t%*pb\n", 4317 nodemask_pr_args(&task->mems_allowed)); 4318 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 4319 nodemask_pr_args(&task->mems_allowed)); 4320 } 4321