1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/delay.h> 29 #include <linux/init.h> 30 #include <linux/interrupt.h> 31 #include <linux/kernel.h> 32 #include <linux/mempolicy.h> 33 #include <linux/mm.h> 34 #include <linux/memory.h> 35 #include <linux/export.h> 36 #include <linux/rcupdate.h> 37 #include <linux/sched.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/mm.h> 40 #include <linux/sched/task.h> 41 #include <linux/security.h> 42 #include <linux/spinlock.h> 43 #include <linux/oom.h> 44 #include <linux/sched/isolation.h> 45 #include <linux/cgroup.h> 46 #include <linux/wait.h> 47 #include <linux/workqueue.h> 48 49 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 50 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 51 52 /* 53 * There could be abnormal cpuset configurations for cpu or memory 54 * node binding, add this key to provide a quick low-cost judgment 55 * of the situation. 56 */ 57 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 58 59 /* See "Frequency meter" comments, below. */ 60 61 struct fmeter { 62 int cnt; /* unprocessed events count */ 63 int val; /* most recent output value */ 64 time64_t time; /* clock (secs) when val computed */ 65 spinlock_t lock; /* guards read or write of above */ 66 }; 67 68 /* 69 * Invalid partition error code 70 */ 71 enum prs_errcode { 72 PERR_NONE = 0, 73 PERR_INVCPUS, 74 PERR_INVPARENT, 75 PERR_NOTPART, 76 PERR_NOTEXCL, 77 PERR_NOCPUS, 78 PERR_HOTPLUG, 79 PERR_CPUSEMPTY, 80 PERR_HKEEPING, 81 }; 82 83 static const char * const perr_strings[] = { 84 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive", 85 [PERR_INVPARENT] = "Parent is an invalid partition root", 86 [PERR_NOTPART] = "Parent is not a partition root", 87 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", 88 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", 89 [PERR_HOTPLUG] = "No cpu available due to hotplug", 90 [PERR_CPUSEMPTY] = "cpuset.cpus is empty", 91 [PERR_HKEEPING] = "partition config conflicts with housekeeping setup", 92 }; 93 94 struct cpuset { 95 struct cgroup_subsys_state css; 96 97 unsigned long flags; /* "unsigned long" so bitops work */ 98 99 /* 100 * On default hierarchy: 101 * 102 * The user-configured masks can only be changed by writing to 103 * cpuset.cpus and cpuset.mems, and won't be limited by the 104 * parent masks. 105 * 106 * The effective masks is the real masks that apply to the tasks 107 * in the cpuset. They may be changed if the configured masks are 108 * changed or hotplug happens. 109 * 110 * effective_mask == configured_mask & parent's effective_mask, 111 * and if it ends up empty, it will inherit the parent's mask. 112 * 113 * 114 * On legacy hierarchy: 115 * 116 * The user-configured masks are always the same with effective masks. 117 */ 118 119 /* user-configured CPUs and Memory Nodes allow to tasks */ 120 cpumask_var_t cpus_allowed; 121 nodemask_t mems_allowed; 122 123 /* effective CPUs and Memory Nodes allow to tasks */ 124 cpumask_var_t effective_cpus; 125 nodemask_t effective_mems; 126 127 /* 128 * Exclusive CPUs dedicated to current cgroup (default hierarchy only) 129 * 130 * This exclusive CPUs must be a subset of cpus_allowed. A parent 131 * cgroup can only grant exclusive CPUs to one of its children. 132 * 133 * When the cgroup becomes a valid partition root, effective_xcpus 134 * defaults to cpus_allowed if not set. The effective_cpus of a valid 135 * partition root comes solely from its effective_xcpus and some of the 136 * effective_xcpus may be distributed to sub-partitions below & hence 137 * excluded from its effective_cpus. 138 */ 139 cpumask_var_t effective_xcpus; 140 141 /* 142 * Exclusive CPUs as requested by the user (default hierarchy only) 143 */ 144 cpumask_var_t exclusive_cpus; 145 146 /* 147 * This is old Memory Nodes tasks took on. 148 * 149 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 150 * - A new cpuset's old_mems_allowed is initialized when some 151 * task is moved into it. 152 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 153 * cpuset.mems_allowed and have tasks' nodemask updated, and 154 * then old_mems_allowed is updated to mems_allowed. 155 */ 156 nodemask_t old_mems_allowed; 157 158 struct fmeter fmeter; /* memory_pressure filter */ 159 160 /* 161 * Tasks are being attached to this cpuset. Used to prevent 162 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 163 */ 164 int attach_in_progress; 165 166 /* partition number for rebuild_sched_domains() */ 167 int pn; 168 169 /* for custom sched domain */ 170 int relax_domain_level; 171 172 /* number of valid sub-partitions */ 173 int nr_subparts; 174 175 /* partition root state */ 176 int partition_root_state; 177 178 /* 179 * Default hierarchy only: 180 * use_parent_ecpus - set if using parent's effective_cpus 181 * child_ecpus_count - # of children with use_parent_ecpus set 182 */ 183 int use_parent_ecpus; 184 int child_ecpus_count; 185 186 /* 187 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we 188 * know when to rebuild associated root domain bandwidth information. 189 */ 190 int nr_deadline_tasks; 191 int nr_migrate_dl_tasks; 192 u64 sum_migrate_dl_bw; 193 194 /* Invalid partition error code, not lock protected */ 195 enum prs_errcode prs_err; 196 197 /* Handle for cpuset.cpus.partition */ 198 struct cgroup_file partition_file; 199 200 /* Remote partition silbling list anchored at remote_children */ 201 struct list_head remote_sibling; 202 }; 203 204 /* 205 * Exclusive CPUs distributed out to sub-partitions of top_cpuset 206 */ 207 static cpumask_var_t subpartitions_cpus; 208 209 /* 210 * Exclusive CPUs in isolated partitions 211 */ 212 static cpumask_var_t isolated_cpus; 213 214 /* List of remote partition root children */ 215 static struct list_head remote_children; 216 217 /* 218 * Partition root states: 219 * 220 * 0 - member (not a partition root) 221 * 1 - partition root 222 * 2 - partition root without load balancing (isolated) 223 * -1 - invalid partition root 224 * -2 - invalid isolated partition root 225 */ 226 #define PRS_MEMBER 0 227 #define PRS_ROOT 1 228 #define PRS_ISOLATED 2 229 #define PRS_INVALID_ROOT -1 230 #define PRS_INVALID_ISOLATED -2 231 232 static inline bool is_prs_invalid(int prs_state) 233 { 234 return prs_state < 0; 235 } 236 237 /* 238 * Temporary cpumasks for working with partitions that are passed among 239 * functions to avoid memory allocation in inner functions. 240 */ 241 struct tmpmasks { 242 cpumask_var_t addmask, delmask; /* For partition root */ 243 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 244 }; 245 246 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 247 { 248 return css ? container_of(css, struct cpuset, css) : NULL; 249 } 250 251 /* Retrieve the cpuset for a task */ 252 static inline struct cpuset *task_cs(struct task_struct *task) 253 { 254 return css_cs(task_css(task, cpuset_cgrp_id)); 255 } 256 257 static inline struct cpuset *parent_cs(struct cpuset *cs) 258 { 259 return css_cs(cs->css.parent); 260 } 261 262 void inc_dl_tasks_cs(struct task_struct *p) 263 { 264 struct cpuset *cs = task_cs(p); 265 266 cs->nr_deadline_tasks++; 267 } 268 269 void dec_dl_tasks_cs(struct task_struct *p) 270 { 271 struct cpuset *cs = task_cs(p); 272 273 cs->nr_deadline_tasks--; 274 } 275 276 /* bits in struct cpuset flags field */ 277 typedef enum { 278 CS_ONLINE, 279 CS_CPU_EXCLUSIVE, 280 CS_MEM_EXCLUSIVE, 281 CS_MEM_HARDWALL, 282 CS_MEMORY_MIGRATE, 283 CS_SCHED_LOAD_BALANCE, 284 CS_SPREAD_PAGE, 285 CS_SPREAD_SLAB, 286 } cpuset_flagbits_t; 287 288 /* convenient tests for these bits */ 289 static inline bool is_cpuset_online(struct cpuset *cs) 290 { 291 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 292 } 293 294 static inline int is_cpu_exclusive(const struct cpuset *cs) 295 { 296 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 297 } 298 299 static inline int is_mem_exclusive(const struct cpuset *cs) 300 { 301 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 302 } 303 304 static inline int is_mem_hardwall(const struct cpuset *cs) 305 { 306 return test_bit(CS_MEM_HARDWALL, &cs->flags); 307 } 308 309 static inline int is_sched_load_balance(const struct cpuset *cs) 310 { 311 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 312 } 313 314 static inline int is_memory_migrate(const struct cpuset *cs) 315 { 316 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 317 } 318 319 static inline int is_spread_page(const struct cpuset *cs) 320 { 321 return test_bit(CS_SPREAD_PAGE, &cs->flags); 322 } 323 324 static inline int is_spread_slab(const struct cpuset *cs) 325 { 326 return test_bit(CS_SPREAD_SLAB, &cs->flags); 327 } 328 329 static inline int is_partition_valid(const struct cpuset *cs) 330 { 331 return cs->partition_root_state > 0; 332 } 333 334 static inline int is_partition_invalid(const struct cpuset *cs) 335 { 336 return cs->partition_root_state < 0; 337 } 338 339 /* 340 * Callers should hold callback_lock to modify partition_root_state. 341 */ 342 static inline void make_partition_invalid(struct cpuset *cs) 343 { 344 if (cs->partition_root_state > 0) 345 cs->partition_root_state = -cs->partition_root_state; 346 } 347 348 /* 349 * Send notification event of whenever partition_root_state changes. 350 */ 351 static inline void notify_partition_change(struct cpuset *cs, int old_prs) 352 { 353 if (old_prs == cs->partition_root_state) 354 return; 355 cgroup_file_notify(&cs->partition_file); 356 357 /* Reset prs_err if not invalid */ 358 if (is_partition_valid(cs)) 359 WRITE_ONCE(cs->prs_err, PERR_NONE); 360 } 361 362 static struct cpuset top_cpuset = { 363 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 364 (1 << CS_MEM_EXCLUSIVE)), 365 .partition_root_state = PRS_ROOT, 366 .remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling), 367 }; 368 369 /** 370 * cpuset_for_each_child - traverse online children of a cpuset 371 * @child_cs: loop cursor pointing to the current child 372 * @pos_css: used for iteration 373 * @parent_cs: target cpuset to walk children of 374 * 375 * Walk @child_cs through the online children of @parent_cs. Must be used 376 * with RCU read locked. 377 */ 378 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 379 css_for_each_child((pos_css), &(parent_cs)->css) \ 380 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 381 382 /** 383 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 384 * @des_cs: loop cursor pointing to the current descendant 385 * @pos_css: used for iteration 386 * @root_cs: target cpuset to walk ancestor of 387 * 388 * Walk @des_cs through the online descendants of @root_cs. Must be used 389 * with RCU read locked. The caller may modify @pos_css by calling 390 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 391 * iteration and the first node to be visited. 392 */ 393 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 394 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 395 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 396 397 /* 398 * There are two global locks guarding cpuset structures - cpuset_mutex and 399 * callback_lock. We also require taking task_lock() when dereferencing a 400 * task's cpuset pointer. See "The task_lock() exception", at the end of this 401 * comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems 402 * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset 403 * structures. Note that cpuset_mutex needs to be a mutex as it is used in 404 * paths that rely on priority inheritance (e.g. scheduler - on RT) for 405 * correctness. 406 * 407 * A task must hold both locks to modify cpusets. If a task holds 408 * cpuset_mutex, it blocks others, ensuring that it is the only task able to 409 * also acquire callback_lock and be able to modify cpusets. It can perform 410 * various checks on the cpuset structure first, knowing nothing will change. 411 * It can also allocate memory while just holding cpuset_mutex. While it is 412 * performing these checks, various callback routines can briefly acquire 413 * callback_lock to query cpusets. Once it is ready to make the changes, it 414 * takes callback_lock, blocking everyone else. 415 * 416 * Calls to the kernel memory allocator can not be made while holding 417 * callback_lock, as that would risk double tripping on callback_lock 418 * from one of the callbacks into the cpuset code from within 419 * __alloc_pages(). 420 * 421 * If a task is only holding callback_lock, then it has read-only 422 * access to cpusets. 423 * 424 * Now, the task_struct fields mems_allowed and mempolicy may be changed 425 * by other task, we use alloc_lock in the task_struct fields to protect 426 * them. 427 * 428 * The cpuset_common_file_read() handlers only hold callback_lock across 429 * small pieces of code, such as when reading out possibly multi-word 430 * cpumasks and nodemasks. 431 * 432 * Accessing a task's cpuset should be done in accordance with the 433 * guidelines for accessing subsystem state in kernel/cgroup.c 434 */ 435 436 static DEFINE_MUTEX(cpuset_mutex); 437 438 void cpuset_lock(void) 439 { 440 mutex_lock(&cpuset_mutex); 441 } 442 443 void cpuset_unlock(void) 444 { 445 mutex_unlock(&cpuset_mutex); 446 } 447 448 static DEFINE_SPINLOCK(callback_lock); 449 450 static struct workqueue_struct *cpuset_migrate_mm_wq; 451 452 /* 453 * CPU / memory hotplug is handled asynchronously. 454 */ 455 static void cpuset_hotplug_workfn(struct work_struct *work); 456 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 457 458 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 459 460 static inline void check_insane_mems_config(nodemask_t *nodes) 461 { 462 if (!cpusets_insane_config() && 463 movable_only_nodes(nodes)) { 464 static_branch_enable(&cpusets_insane_config_key); 465 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 466 "Cpuset allocations might fail even with a lot of memory available.\n", 467 nodemask_pr_args(nodes)); 468 } 469 } 470 471 /* 472 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 473 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 474 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 475 * With v2 behavior, "cpus" and "mems" are always what the users have 476 * requested and won't be changed by hotplug events. Only the effective 477 * cpus or mems will be affected. 478 */ 479 static inline bool is_in_v2_mode(void) 480 { 481 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 482 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 483 } 484 485 /** 486 * partition_is_populated - check if partition has tasks 487 * @cs: partition root to be checked 488 * @excluded_child: a child cpuset to be excluded in task checking 489 * Return: true if there are tasks, false otherwise 490 * 491 * It is assumed that @cs is a valid partition root. @excluded_child should 492 * be non-NULL when this cpuset is going to become a partition itself. 493 */ 494 static inline bool partition_is_populated(struct cpuset *cs, 495 struct cpuset *excluded_child) 496 { 497 struct cgroup_subsys_state *css; 498 struct cpuset *child; 499 500 if (cs->css.cgroup->nr_populated_csets) 501 return true; 502 if (!excluded_child && !cs->nr_subparts) 503 return cgroup_is_populated(cs->css.cgroup); 504 505 rcu_read_lock(); 506 cpuset_for_each_child(child, css, cs) { 507 if (child == excluded_child) 508 continue; 509 if (is_partition_valid(child)) 510 continue; 511 if (cgroup_is_populated(child->css.cgroup)) { 512 rcu_read_unlock(); 513 return true; 514 } 515 } 516 rcu_read_unlock(); 517 return false; 518 } 519 520 /* 521 * Return in pmask the portion of a task's cpusets's cpus_allowed that 522 * are online and are capable of running the task. If none are found, 523 * walk up the cpuset hierarchy until we find one that does have some 524 * appropriate cpus. 525 * 526 * One way or another, we guarantee to return some non-empty subset 527 * of cpu_online_mask. 528 * 529 * Call with callback_lock or cpuset_mutex held. 530 */ 531 static void guarantee_online_cpus(struct task_struct *tsk, 532 struct cpumask *pmask) 533 { 534 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 535 struct cpuset *cs; 536 537 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) 538 cpumask_copy(pmask, cpu_online_mask); 539 540 rcu_read_lock(); 541 cs = task_cs(tsk); 542 543 while (!cpumask_intersects(cs->effective_cpus, pmask)) { 544 cs = parent_cs(cs); 545 if (unlikely(!cs)) { 546 /* 547 * The top cpuset doesn't have any online cpu as a 548 * consequence of a race between cpuset_hotplug_work 549 * and cpu hotplug notifier. But we know the top 550 * cpuset's effective_cpus is on its way to be 551 * identical to cpu_online_mask. 552 */ 553 goto out_unlock; 554 } 555 } 556 cpumask_and(pmask, pmask, cs->effective_cpus); 557 558 out_unlock: 559 rcu_read_unlock(); 560 } 561 562 /* 563 * Return in *pmask the portion of a cpusets's mems_allowed that 564 * are online, with memory. If none are online with memory, walk 565 * up the cpuset hierarchy until we find one that does have some 566 * online mems. The top cpuset always has some mems online. 567 * 568 * One way or another, we guarantee to return some non-empty subset 569 * of node_states[N_MEMORY]. 570 * 571 * Call with callback_lock or cpuset_mutex held. 572 */ 573 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 574 { 575 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 576 cs = parent_cs(cs); 577 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 578 } 579 580 /* 581 * update task's spread flag if cpuset's page/slab spread flag is set 582 * 583 * Call with callback_lock or cpuset_mutex held. The check can be skipped 584 * if on default hierarchy. 585 */ 586 static void cpuset_update_task_spread_flags(struct cpuset *cs, 587 struct task_struct *tsk) 588 { 589 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 590 return; 591 592 if (is_spread_page(cs)) 593 task_set_spread_page(tsk); 594 else 595 task_clear_spread_page(tsk); 596 597 if (is_spread_slab(cs)) 598 task_set_spread_slab(tsk); 599 else 600 task_clear_spread_slab(tsk); 601 } 602 603 /* 604 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 605 * 606 * One cpuset is a subset of another if all its allowed CPUs and 607 * Memory Nodes are a subset of the other, and its exclusive flags 608 * are only set if the other's are set. Call holding cpuset_mutex. 609 */ 610 611 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 612 { 613 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 614 nodes_subset(p->mems_allowed, q->mems_allowed) && 615 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 616 is_mem_exclusive(p) <= is_mem_exclusive(q); 617 } 618 619 /** 620 * alloc_cpumasks - allocate three cpumasks for cpuset 621 * @cs: the cpuset that have cpumasks to be allocated. 622 * @tmp: the tmpmasks structure pointer 623 * Return: 0 if successful, -ENOMEM otherwise. 624 * 625 * Only one of the two input arguments should be non-NULL. 626 */ 627 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 628 { 629 cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4; 630 631 if (cs) { 632 pmask1 = &cs->cpus_allowed; 633 pmask2 = &cs->effective_cpus; 634 pmask3 = &cs->effective_xcpus; 635 pmask4 = &cs->exclusive_cpus; 636 } else { 637 pmask1 = &tmp->new_cpus; 638 pmask2 = &tmp->addmask; 639 pmask3 = &tmp->delmask; 640 pmask4 = NULL; 641 } 642 643 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 644 return -ENOMEM; 645 646 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 647 goto free_one; 648 649 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 650 goto free_two; 651 652 if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL)) 653 goto free_three; 654 655 656 return 0; 657 658 free_three: 659 free_cpumask_var(*pmask3); 660 free_two: 661 free_cpumask_var(*pmask2); 662 free_one: 663 free_cpumask_var(*pmask1); 664 return -ENOMEM; 665 } 666 667 /** 668 * free_cpumasks - free cpumasks in a tmpmasks structure 669 * @cs: the cpuset that have cpumasks to be free. 670 * @tmp: the tmpmasks structure pointer 671 */ 672 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 673 { 674 if (cs) { 675 free_cpumask_var(cs->cpus_allowed); 676 free_cpumask_var(cs->effective_cpus); 677 free_cpumask_var(cs->effective_xcpus); 678 free_cpumask_var(cs->exclusive_cpus); 679 } 680 if (tmp) { 681 free_cpumask_var(tmp->new_cpus); 682 free_cpumask_var(tmp->addmask); 683 free_cpumask_var(tmp->delmask); 684 } 685 } 686 687 /** 688 * alloc_trial_cpuset - allocate a trial cpuset 689 * @cs: the cpuset that the trial cpuset duplicates 690 */ 691 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 692 { 693 struct cpuset *trial; 694 695 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 696 if (!trial) 697 return NULL; 698 699 if (alloc_cpumasks(trial, NULL)) { 700 kfree(trial); 701 return NULL; 702 } 703 704 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 705 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 706 cpumask_copy(trial->effective_xcpus, cs->effective_xcpus); 707 cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus); 708 return trial; 709 } 710 711 /** 712 * free_cpuset - free the cpuset 713 * @cs: the cpuset to be freed 714 */ 715 static inline void free_cpuset(struct cpuset *cs) 716 { 717 free_cpumasks(cs, NULL); 718 kfree(cs); 719 } 720 721 static inline struct cpumask *fetch_xcpus(struct cpuset *cs) 722 { 723 return !cpumask_empty(cs->exclusive_cpus) ? cs->exclusive_cpus : 724 cpumask_empty(cs->effective_xcpus) ? cs->cpus_allowed 725 : cs->effective_xcpus; 726 } 727 728 /* 729 * cpusets_are_exclusive() - check if two cpusets are exclusive 730 * 731 * Return true if exclusive, false if not 732 */ 733 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2) 734 { 735 struct cpumask *xcpus1 = fetch_xcpus(cs1); 736 struct cpumask *xcpus2 = fetch_xcpus(cs2); 737 738 if (cpumask_intersects(xcpus1, xcpus2)) 739 return false; 740 return true; 741 } 742 743 /* 744 * validate_change_legacy() - Validate conditions specific to legacy (v1) 745 * behavior. 746 */ 747 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial) 748 { 749 struct cgroup_subsys_state *css; 750 struct cpuset *c, *par; 751 int ret; 752 753 WARN_ON_ONCE(!rcu_read_lock_held()); 754 755 /* Each of our child cpusets must be a subset of us */ 756 ret = -EBUSY; 757 cpuset_for_each_child(c, css, cur) 758 if (!is_cpuset_subset(c, trial)) 759 goto out; 760 761 /* On legacy hierarchy, we must be a subset of our parent cpuset. */ 762 ret = -EACCES; 763 par = parent_cs(cur); 764 if (par && !is_cpuset_subset(trial, par)) 765 goto out; 766 767 ret = 0; 768 out: 769 return ret; 770 } 771 772 /* 773 * validate_change() - Used to validate that any proposed cpuset change 774 * follows the structural rules for cpusets. 775 * 776 * If we replaced the flag and mask values of the current cpuset 777 * (cur) with those values in the trial cpuset (trial), would 778 * our various subset and exclusive rules still be valid? Presumes 779 * cpuset_mutex held. 780 * 781 * 'cur' is the address of an actual, in-use cpuset. Operations 782 * such as list traversal that depend on the actual address of the 783 * cpuset in the list must use cur below, not trial. 784 * 785 * 'trial' is the address of bulk structure copy of cur, with 786 * perhaps one or more of the fields cpus_allowed, mems_allowed, 787 * or flags changed to new, trial values. 788 * 789 * Return 0 if valid, -errno if not. 790 */ 791 792 static int validate_change(struct cpuset *cur, struct cpuset *trial) 793 { 794 struct cgroup_subsys_state *css; 795 struct cpuset *c, *par; 796 int ret = 0; 797 798 rcu_read_lock(); 799 800 if (!is_in_v2_mode()) 801 ret = validate_change_legacy(cur, trial); 802 if (ret) 803 goto out; 804 805 /* Remaining checks don't apply to root cpuset */ 806 if (cur == &top_cpuset) 807 goto out; 808 809 par = parent_cs(cur); 810 811 /* 812 * Cpusets with tasks - existing or newly being attached - can't 813 * be changed to have empty cpus_allowed or mems_allowed. 814 */ 815 ret = -ENOSPC; 816 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 817 if (!cpumask_empty(cur->cpus_allowed) && 818 cpumask_empty(trial->cpus_allowed)) 819 goto out; 820 if (!nodes_empty(cur->mems_allowed) && 821 nodes_empty(trial->mems_allowed)) 822 goto out; 823 } 824 825 /* 826 * We can't shrink if we won't have enough room for SCHED_DEADLINE 827 * tasks. 828 */ 829 ret = -EBUSY; 830 if (is_cpu_exclusive(cur) && 831 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 832 trial->cpus_allowed)) 833 goto out; 834 835 /* 836 * If either I or some sibling (!= me) is exclusive, we can't 837 * overlap 838 */ 839 ret = -EINVAL; 840 cpuset_for_each_child(c, css, par) { 841 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 842 c != cur) { 843 if (!cpusets_are_exclusive(trial, c)) 844 goto out; 845 } 846 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 847 c != cur && 848 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 849 goto out; 850 } 851 852 ret = 0; 853 out: 854 rcu_read_unlock(); 855 return ret; 856 } 857 858 #ifdef CONFIG_SMP 859 /* 860 * Helper routine for generate_sched_domains(). 861 * Do cpusets a, b have overlapping effective cpus_allowed masks? 862 */ 863 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 864 { 865 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 866 } 867 868 static void 869 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 870 { 871 if (dattr->relax_domain_level < c->relax_domain_level) 872 dattr->relax_domain_level = c->relax_domain_level; 873 return; 874 } 875 876 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 877 struct cpuset *root_cs) 878 { 879 struct cpuset *cp; 880 struct cgroup_subsys_state *pos_css; 881 882 rcu_read_lock(); 883 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 884 /* skip the whole subtree if @cp doesn't have any CPU */ 885 if (cpumask_empty(cp->cpus_allowed)) { 886 pos_css = css_rightmost_descendant(pos_css); 887 continue; 888 } 889 890 if (is_sched_load_balance(cp)) 891 update_domain_attr(dattr, cp); 892 } 893 rcu_read_unlock(); 894 } 895 896 /* Must be called with cpuset_mutex held. */ 897 static inline int nr_cpusets(void) 898 { 899 /* jump label reference count + the top-level cpuset */ 900 return static_key_count(&cpusets_enabled_key.key) + 1; 901 } 902 903 /* 904 * generate_sched_domains() 905 * 906 * This function builds a partial partition of the systems CPUs 907 * A 'partial partition' is a set of non-overlapping subsets whose 908 * union is a subset of that set. 909 * The output of this function needs to be passed to kernel/sched/core.c 910 * partition_sched_domains() routine, which will rebuild the scheduler's 911 * load balancing domains (sched domains) as specified by that partial 912 * partition. 913 * 914 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 915 * for a background explanation of this. 916 * 917 * Does not return errors, on the theory that the callers of this 918 * routine would rather not worry about failures to rebuild sched 919 * domains when operating in the severe memory shortage situations 920 * that could cause allocation failures below. 921 * 922 * Must be called with cpuset_mutex held. 923 * 924 * The three key local variables below are: 925 * cp - cpuset pointer, used (together with pos_css) to perform a 926 * top-down scan of all cpusets. For our purposes, rebuilding 927 * the schedulers sched domains, we can ignore !is_sched_load_ 928 * balance cpusets. 929 * csa - (for CpuSet Array) Array of pointers to all the cpusets 930 * that need to be load balanced, for convenient iterative 931 * access by the subsequent code that finds the best partition, 932 * i.e the set of domains (subsets) of CPUs such that the 933 * cpus_allowed of every cpuset marked is_sched_load_balance 934 * is a subset of one of these domains, while there are as 935 * many such domains as possible, each as small as possible. 936 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 937 * the kernel/sched/core.c routine partition_sched_domains() in a 938 * convenient format, that can be easily compared to the prior 939 * value to determine what partition elements (sched domains) 940 * were changed (added or removed.) 941 * 942 * Finding the best partition (set of domains): 943 * The triple nested loops below over i, j, k scan over the 944 * load balanced cpusets (using the array of cpuset pointers in 945 * csa[]) looking for pairs of cpusets that have overlapping 946 * cpus_allowed, but which don't have the same 'pn' partition 947 * number and gives them in the same partition number. It keeps 948 * looping on the 'restart' label until it can no longer find 949 * any such pairs. 950 * 951 * The union of the cpus_allowed masks from the set of 952 * all cpusets having the same 'pn' value then form the one 953 * element of the partition (one sched domain) to be passed to 954 * partition_sched_domains(). 955 */ 956 static int generate_sched_domains(cpumask_var_t **domains, 957 struct sched_domain_attr **attributes) 958 { 959 struct cpuset *cp; /* top-down scan of cpusets */ 960 struct cpuset **csa; /* array of all cpuset ptrs */ 961 int csn; /* how many cpuset ptrs in csa so far */ 962 int i, j, k; /* indices for partition finding loops */ 963 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 964 struct sched_domain_attr *dattr; /* attributes for custom domains */ 965 int ndoms = 0; /* number of sched domains in result */ 966 int nslot; /* next empty doms[] struct cpumask slot */ 967 struct cgroup_subsys_state *pos_css; 968 bool root_load_balance = is_sched_load_balance(&top_cpuset); 969 970 doms = NULL; 971 dattr = NULL; 972 csa = NULL; 973 974 /* Special case for the 99% of systems with one, full, sched domain */ 975 if (root_load_balance && !top_cpuset.nr_subparts) { 976 ndoms = 1; 977 doms = alloc_sched_domains(ndoms); 978 if (!doms) 979 goto done; 980 981 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 982 if (dattr) { 983 *dattr = SD_ATTR_INIT; 984 update_domain_attr_tree(dattr, &top_cpuset); 985 } 986 cpumask_and(doms[0], top_cpuset.effective_cpus, 987 housekeeping_cpumask(HK_TYPE_DOMAIN)); 988 989 goto done; 990 } 991 992 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 993 if (!csa) 994 goto done; 995 csn = 0; 996 997 rcu_read_lock(); 998 if (root_load_balance) 999 csa[csn++] = &top_cpuset; 1000 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 1001 if (cp == &top_cpuset) 1002 continue; 1003 /* 1004 * Continue traversing beyond @cp iff @cp has some CPUs and 1005 * isn't load balancing. The former is obvious. The 1006 * latter: All child cpusets contain a subset of the 1007 * parent's cpus, so just skip them, and then we call 1008 * update_domain_attr_tree() to calc relax_domain_level of 1009 * the corresponding sched domain. 1010 * 1011 * If root is load-balancing, we can skip @cp if it 1012 * is a subset of the root's effective_cpus. 1013 */ 1014 if (!cpumask_empty(cp->cpus_allowed) && 1015 !(is_sched_load_balance(cp) && 1016 cpumask_intersects(cp->cpus_allowed, 1017 housekeeping_cpumask(HK_TYPE_DOMAIN)))) 1018 continue; 1019 1020 if (root_load_balance && 1021 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 1022 continue; 1023 1024 if (is_sched_load_balance(cp) && 1025 !cpumask_empty(cp->effective_cpus)) 1026 csa[csn++] = cp; 1027 1028 /* skip @cp's subtree if not a partition root */ 1029 if (!is_partition_valid(cp)) 1030 pos_css = css_rightmost_descendant(pos_css); 1031 } 1032 rcu_read_unlock(); 1033 1034 for (i = 0; i < csn; i++) 1035 csa[i]->pn = i; 1036 ndoms = csn; 1037 1038 restart: 1039 /* Find the best partition (set of sched domains) */ 1040 for (i = 0; i < csn; i++) { 1041 struct cpuset *a = csa[i]; 1042 int apn = a->pn; 1043 1044 for (j = 0; j < csn; j++) { 1045 struct cpuset *b = csa[j]; 1046 int bpn = b->pn; 1047 1048 if (apn != bpn && cpusets_overlap(a, b)) { 1049 for (k = 0; k < csn; k++) { 1050 struct cpuset *c = csa[k]; 1051 1052 if (c->pn == bpn) 1053 c->pn = apn; 1054 } 1055 ndoms--; /* one less element */ 1056 goto restart; 1057 } 1058 } 1059 } 1060 1061 /* 1062 * Now we know how many domains to create. 1063 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 1064 */ 1065 doms = alloc_sched_domains(ndoms); 1066 if (!doms) 1067 goto done; 1068 1069 /* 1070 * The rest of the code, including the scheduler, can deal with 1071 * dattr==NULL case. No need to abort if alloc fails. 1072 */ 1073 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 1074 GFP_KERNEL); 1075 1076 for (nslot = 0, i = 0; i < csn; i++) { 1077 struct cpuset *a = csa[i]; 1078 struct cpumask *dp; 1079 int apn = a->pn; 1080 1081 if (apn < 0) { 1082 /* Skip completed partitions */ 1083 continue; 1084 } 1085 1086 dp = doms[nslot]; 1087 1088 if (nslot == ndoms) { 1089 static int warnings = 10; 1090 if (warnings) { 1091 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 1092 nslot, ndoms, csn, i, apn); 1093 warnings--; 1094 } 1095 continue; 1096 } 1097 1098 cpumask_clear(dp); 1099 if (dattr) 1100 *(dattr + nslot) = SD_ATTR_INIT; 1101 for (j = i; j < csn; j++) { 1102 struct cpuset *b = csa[j]; 1103 1104 if (apn == b->pn) { 1105 cpumask_or(dp, dp, b->effective_cpus); 1106 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); 1107 if (dattr) 1108 update_domain_attr_tree(dattr + nslot, b); 1109 1110 /* Done with this partition */ 1111 b->pn = -1; 1112 } 1113 } 1114 nslot++; 1115 } 1116 BUG_ON(nslot != ndoms); 1117 1118 done: 1119 kfree(csa); 1120 1121 /* 1122 * Fallback to the default domain if kmalloc() failed. 1123 * See comments in partition_sched_domains(). 1124 */ 1125 if (doms == NULL) 1126 ndoms = 1; 1127 1128 *domains = doms; 1129 *attributes = dattr; 1130 return ndoms; 1131 } 1132 1133 static void dl_update_tasks_root_domain(struct cpuset *cs) 1134 { 1135 struct css_task_iter it; 1136 struct task_struct *task; 1137 1138 if (cs->nr_deadline_tasks == 0) 1139 return; 1140 1141 css_task_iter_start(&cs->css, 0, &it); 1142 1143 while ((task = css_task_iter_next(&it))) 1144 dl_add_task_root_domain(task); 1145 1146 css_task_iter_end(&it); 1147 } 1148 1149 static void dl_rebuild_rd_accounting(void) 1150 { 1151 struct cpuset *cs = NULL; 1152 struct cgroup_subsys_state *pos_css; 1153 1154 lockdep_assert_held(&cpuset_mutex); 1155 lockdep_assert_cpus_held(); 1156 lockdep_assert_held(&sched_domains_mutex); 1157 1158 rcu_read_lock(); 1159 1160 /* 1161 * Clear default root domain DL accounting, it will be computed again 1162 * if a task belongs to it. 1163 */ 1164 dl_clear_root_domain(&def_root_domain); 1165 1166 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1167 1168 if (cpumask_empty(cs->effective_cpus)) { 1169 pos_css = css_rightmost_descendant(pos_css); 1170 continue; 1171 } 1172 1173 css_get(&cs->css); 1174 1175 rcu_read_unlock(); 1176 1177 dl_update_tasks_root_domain(cs); 1178 1179 rcu_read_lock(); 1180 css_put(&cs->css); 1181 } 1182 rcu_read_unlock(); 1183 } 1184 1185 static void 1186 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1187 struct sched_domain_attr *dattr_new) 1188 { 1189 mutex_lock(&sched_domains_mutex); 1190 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 1191 dl_rebuild_rd_accounting(); 1192 mutex_unlock(&sched_domains_mutex); 1193 } 1194 1195 /* 1196 * Rebuild scheduler domains. 1197 * 1198 * If the flag 'sched_load_balance' of any cpuset with non-empty 1199 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1200 * which has that flag enabled, or if any cpuset with a non-empty 1201 * 'cpus' is removed, then call this routine to rebuild the 1202 * scheduler's dynamic sched domains. 1203 * 1204 * Call with cpuset_mutex held. Takes cpus_read_lock(). 1205 */ 1206 static void rebuild_sched_domains_locked(void) 1207 { 1208 struct cgroup_subsys_state *pos_css; 1209 struct sched_domain_attr *attr; 1210 cpumask_var_t *doms; 1211 struct cpuset *cs; 1212 int ndoms; 1213 1214 lockdep_assert_cpus_held(); 1215 lockdep_assert_held(&cpuset_mutex); 1216 1217 /* 1218 * If we have raced with CPU hotplug, return early to avoid 1219 * passing doms with offlined cpu to partition_sched_domains(). 1220 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains. 1221 * 1222 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1223 * should be the same as the active CPUs, so checking only top_cpuset 1224 * is enough to detect racing CPU offlines. 1225 */ 1226 if (cpumask_empty(subpartitions_cpus) && 1227 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1228 return; 1229 1230 /* 1231 * With subpartition CPUs, however, the effective CPUs of a partition 1232 * root should be only a subset of the active CPUs. Since a CPU in any 1233 * partition root could be offlined, all must be checked. 1234 */ 1235 if (top_cpuset.nr_subparts) { 1236 rcu_read_lock(); 1237 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1238 if (!is_partition_valid(cs)) { 1239 pos_css = css_rightmost_descendant(pos_css); 1240 continue; 1241 } 1242 if (!cpumask_subset(cs->effective_cpus, 1243 cpu_active_mask)) { 1244 rcu_read_unlock(); 1245 return; 1246 } 1247 } 1248 rcu_read_unlock(); 1249 } 1250 1251 /* Generate domain masks and attrs */ 1252 ndoms = generate_sched_domains(&doms, &attr); 1253 1254 /* Have scheduler rebuild the domains */ 1255 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1256 } 1257 #else /* !CONFIG_SMP */ 1258 static void rebuild_sched_domains_locked(void) 1259 { 1260 } 1261 #endif /* CONFIG_SMP */ 1262 1263 void rebuild_sched_domains(void) 1264 { 1265 cpus_read_lock(); 1266 mutex_lock(&cpuset_mutex); 1267 rebuild_sched_domains_locked(); 1268 mutex_unlock(&cpuset_mutex); 1269 cpus_read_unlock(); 1270 } 1271 1272 /** 1273 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1274 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1275 * @new_cpus: the temp variable for the new effective_cpus mask 1276 * 1277 * Iterate through each task of @cs updating its cpus_allowed to the 1278 * effective cpuset's. As this function is called with cpuset_mutex held, 1279 * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask() 1280 * is used instead of effective_cpus to make sure all offline CPUs are also 1281 * included as hotplug code won't update cpumasks for tasks in top_cpuset. 1282 */ 1283 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) 1284 { 1285 struct css_task_iter it; 1286 struct task_struct *task; 1287 bool top_cs = cs == &top_cpuset; 1288 1289 css_task_iter_start(&cs->css, 0, &it); 1290 while ((task = css_task_iter_next(&it))) { 1291 const struct cpumask *possible_mask = task_cpu_possible_mask(task); 1292 1293 if (top_cs) { 1294 /* 1295 * Percpu kthreads in top_cpuset are ignored 1296 */ 1297 if (kthread_is_per_cpu(task)) 1298 continue; 1299 cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus); 1300 } else { 1301 cpumask_and(new_cpus, possible_mask, cs->effective_cpus); 1302 } 1303 set_cpus_allowed_ptr(task, new_cpus); 1304 } 1305 css_task_iter_end(&it); 1306 } 1307 1308 /** 1309 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1310 * @new_cpus: the temp variable for the new effective_cpus mask 1311 * @cs: the cpuset the need to recompute the new effective_cpus mask 1312 * @parent: the parent cpuset 1313 * 1314 * The result is valid only if the given cpuset isn't a partition root. 1315 */ 1316 static void compute_effective_cpumask(struct cpumask *new_cpus, 1317 struct cpuset *cs, struct cpuset *parent) 1318 { 1319 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1320 } 1321 1322 /* 1323 * Commands for update_parent_effective_cpumask 1324 */ 1325 enum partition_cmd { 1326 partcmd_enable, /* Enable partition root */ 1327 partcmd_enablei, /* Enable isolated partition root */ 1328 partcmd_disable, /* Disable partition root */ 1329 partcmd_update, /* Update parent's effective_cpus */ 1330 partcmd_invalidate, /* Make partition invalid */ 1331 }; 1332 1333 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1334 int turning_on); 1335 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1336 struct tmpmasks *tmp); 1337 1338 /* 1339 * Update partition exclusive flag 1340 * 1341 * Return: 0 if successful, an error code otherwise 1342 */ 1343 static int update_partition_exclusive(struct cpuset *cs, int new_prs) 1344 { 1345 bool exclusive = (new_prs > 0); 1346 1347 if (exclusive && !is_cpu_exclusive(cs)) { 1348 if (update_flag(CS_CPU_EXCLUSIVE, cs, 1)) 1349 return PERR_NOTEXCL; 1350 } else if (!exclusive && is_cpu_exclusive(cs)) { 1351 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1352 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1353 } 1354 return 0; 1355 } 1356 1357 /* 1358 * Update partition load balance flag and/or rebuild sched domain 1359 * 1360 * Changing load balance flag will automatically call 1361 * rebuild_sched_domains_locked(). 1362 * This function is for cgroup v2 only. 1363 */ 1364 static void update_partition_sd_lb(struct cpuset *cs, int old_prs) 1365 { 1366 int new_prs = cs->partition_root_state; 1367 bool rebuild_domains = (new_prs > 0) || (old_prs > 0); 1368 bool new_lb; 1369 1370 /* 1371 * If cs is not a valid partition root, the load balance state 1372 * will follow its parent. 1373 */ 1374 if (new_prs > 0) { 1375 new_lb = (new_prs != PRS_ISOLATED); 1376 } else { 1377 new_lb = is_sched_load_balance(parent_cs(cs)); 1378 } 1379 if (new_lb != !!is_sched_load_balance(cs)) { 1380 rebuild_domains = true; 1381 if (new_lb) 1382 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1383 else 1384 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1385 } 1386 1387 if (rebuild_domains) 1388 rebuild_sched_domains_locked(); 1389 } 1390 1391 /* 1392 * tasks_nocpu_error - Return true if tasks will have no effective_cpus 1393 */ 1394 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs, 1395 struct cpumask *xcpus) 1396 { 1397 /* 1398 * A populated partition (cs or parent) can't have empty effective_cpus 1399 */ 1400 return (cpumask_subset(parent->effective_cpus, xcpus) && 1401 partition_is_populated(parent, cs)) || 1402 (!cpumask_intersects(xcpus, cpu_active_mask) && 1403 partition_is_populated(cs, NULL)); 1404 } 1405 1406 static void reset_partition_data(struct cpuset *cs) 1407 { 1408 struct cpuset *parent = parent_cs(cs); 1409 1410 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 1411 return; 1412 1413 lockdep_assert_held(&callback_lock); 1414 1415 cs->nr_subparts = 0; 1416 if (cpumask_empty(cs->exclusive_cpus)) { 1417 cpumask_clear(cs->effective_xcpus); 1418 if (is_cpu_exclusive(cs)) 1419 clear_bit(CS_CPU_EXCLUSIVE, &cs->flags); 1420 } 1421 if (!cpumask_and(cs->effective_cpus, 1422 parent->effective_cpus, cs->cpus_allowed)) { 1423 cs->use_parent_ecpus = true; 1424 parent->child_ecpus_count++; 1425 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 1426 } 1427 } 1428 1429 /* 1430 * partition_xcpus_newstate - Exclusive CPUs state change 1431 * @old_prs: old partition_root_state 1432 * @new_prs: new partition_root_state 1433 * @xcpus: exclusive CPUs with state change 1434 */ 1435 static void partition_xcpus_newstate(int old_prs, int new_prs, struct cpumask *xcpus) 1436 { 1437 WARN_ON_ONCE(old_prs == new_prs); 1438 if (new_prs == PRS_ISOLATED) 1439 cpumask_or(isolated_cpus, isolated_cpus, xcpus); 1440 else 1441 cpumask_andnot(isolated_cpus, isolated_cpus, xcpus); 1442 } 1443 1444 /* 1445 * partition_xcpus_add - Add new exclusive CPUs to partition 1446 * @new_prs: new partition_root_state 1447 * @parent: parent cpuset 1448 * @xcpus: exclusive CPUs to be added 1449 * Return: true if isolated_cpus modified, false otherwise 1450 * 1451 * Remote partition if parent == NULL 1452 */ 1453 static bool partition_xcpus_add(int new_prs, struct cpuset *parent, 1454 struct cpumask *xcpus) 1455 { 1456 bool isolcpus_updated; 1457 1458 WARN_ON_ONCE(new_prs < 0); 1459 lockdep_assert_held(&callback_lock); 1460 if (!parent) 1461 parent = &top_cpuset; 1462 1463 1464 if (parent == &top_cpuset) 1465 cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus); 1466 1467 isolcpus_updated = (new_prs != parent->partition_root_state); 1468 if (isolcpus_updated) 1469 partition_xcpus_newstate(parent->partition_root_state, new_prs, 1470 xcpus); 1471 1472 cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus); 1473 return isolcpus_updated; 1474 } 1475 1476 /* 1477 * partition_xcpus_del - Remove exclusive CPUs from partition 1478 * @old_prs: old partition_root_state 1479 * @parent: parent cpuset 1480 * @xcpus: exclusive CPUs to be removed 1481 * Return: true if isolated_cpus modified, false otherwise 1482 * 1483 * Remote partition if parent == NULL 1484 */ 1485 static bool partition_xcpus_del(int old_prs, struct cpuset *parent, 1486 struct cpumask *xcpus) 1487 { 1488 bool isolcpus_updated; 1489 1490 WARN_ON_ONCE(old_prs < 0); 1491 lockdep_assert_held(&callback_lock); 1492 if (!parent) 1493 parent = &top_cpuset; 1494 1495 if (parent == &top_cpuset) 1496 cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus); 1497 1498 isolcpus_updated = (old_prs != parent->partition_root_state); 1499 if (isolcpus_updated) 1500 partition_xcpus_newstate(old_prs, parent->partition_root_state, 1501 xcpus); 1502 1503 cpumask_and(xcpus, xcpus, cpu_active_mask); 1504 cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus); 1505 return isolcpus_updated; 1506 } 1507 1508 static void update_unbound_workqueue_cpumask(bool isolcpus_updated) 1509 { 1510 int ret; 1511 1512 lockdep_assert_cpus_held(); 1513 1514 if (!isolcpus_updated) 1515 return; 1516 1517 ret = workqueue_unbound_exclude_cpumask(isolated_cpus); 1518 WARN_ON_ONCE(ret < 0); 1519 } 1520 1521 /** 1522 * cpuset_cpu_is_isolated - Check if the given CPU is isolated 1523 * @cpu: the CPU number to be checked 1524 * Return: true if CPU is used in an isolated partition, false otherwise 1525 */ 1526 bool cpuset_cpu_is_isolated(int cpu) 1527 { 1528 return cpumask_test_cpu(cpu, isolated_cpus); 1529 } 1530 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated); 1531 1532 /* 1533 * compute_effective_exclusive_cpumask - compute effective exclusive CPUs 1534 * @cs: cpuset 1535 * @xcpus: effective exclusive CPUs value to be set 1536 * Return: true if xcpus is not empty, false otherwise. 1537 * 1538 * Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set), 1539 * it must be a subset of cpus_allowed and parent's effective_xcpus. 1540 */ 1541 static bool compute_effective_exclusive_cpumask(struct cpuset *cs, 1542 struct cpumask *xcpus) 1543 { 1544 struct cpuset *parent = parent_cs(cs); 1545 1546 if (!xcpus) 1547 xcpus = cs->effective_xcpus; 1548 1549 if (!cpumask_empty(cs->exclusive_cpus)) 1550 cpumask_and(xcpus, cs->exclusive_cpus, cs->cpus_allowed); 1551 else 1552 cpumask_copy(xcpus, cs->cpus_allowed); 1553 1554 return cpumask_and(xcpus, xcpus, parent->effective_xcpus); 1555 } 1556 1557 static inline bool is_remote_partition(struct cpuset *cs) 1558 { 1559 return !list_empty(&cs->remote_sibling); 1560 } 1561 1562 static inline bool is_local_partition(struct cpuset *cs) 1563 { 1564 return is_partition_valid(cs) && !is_remote_partition(cs); 1565 } 1566 1567 /* 1568 * remote_partition_enable - Enable current cpuset as a remote partition root 1569 * @cs: the cpuset to update 1570 * @new_prs: new partition_root_state 1571 * @tmp: temparary masks 1572 * Return: 1 if successful, 0 if error 1573 * 1574 * Enable the current cpuset to become a remote partition root taking CPUs 1575 * directly from the top cpuset. cpuset_mutex must be held by the caller. 1576 */ 1577 static int remote_partition_enable(struct cpuset *cs, int new_prs, 1578 struct tmpmasks *tmp) 1579 { 1580 bool isolcpus_updated; 1581 1582 /* 1583 * The user must have sysadmin privilege. 1584 */ 1585 if (!capable(CAP_SYS_ADMIN)) 1586 return 0; 1587 1588 /* 1589 * The requested exclusive_cpus must not be allocated to other 1590 * partitions and it can't use up all the root's effective_cpus. 1591 * 1592 * Note that if there is any local partition root above it or 1593 * remote partition root underneath it, its exclusive_cpus must 1594 * have overlapped with subpartitions_cpus. 1595 */ 1596 compute_effective_exclusive_cpumask(cs, tmp->new_cpus); 1597 if (cpumask_empty(tmp->new_cpus) || 1598 cpumask_intersects(tmp->new_cpus, subpartitions_cpus) || 1599 cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus)) 1600 return 0; 1601 1602 spin_lock_irq(&callback_lock); 1603 isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus); 1604 list_add(&cs->remote_sibling, &remote_children); 1605 if (cs->use_parent_ecpus) { 1606 struct cpuset *parent = parent_cs(cs); 1607 1608 cs->use_parent_ecpus = false; 1609 parent->child_ecpus_count--; 1610 } 1611 spin_unlock_irq(&callback_lock); 1612 update_unbound_workqueue_cpumask(isolcpus_updated); 1613 1614 /* 1615 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy. 1616 */ 1617 update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1618 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1619 return 1; 1620 } 1621 1622 /* 1623 * remote_partition_disable - Remove current cpuset from remote partition list 1624 * @cs: the cpuset to update 1625 * @tmp: temparary masks 1626 * 1627 * The effective_cpus is also updated. 1628 * 1629 * cpuset_mutex must be held by the caller. 1630 */ 1631 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp) 1632 { 1633 bool isolcpus_updated; 1634 1635 compute_effective_exclusive_cpumask(cs, tmp->new_cpus); 1636 WARN_ON_ONCE(!is_remote_partition(cs)); 1637 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus)); 1638 1639 spin_lock_irq(&callback_lock); 1640 list_del_init(&cs->remote_sibling); 1641 isolcpus_updated = partition_xcpus_del(cs->partition_root_state, 1642 NULL, tmp->new_cpus); 1643 cs->partition_root_state = -cs->partition_root_state; 1644 if (!cs->prs_err) 1645 cs->prs_err = PERR_INVCPUS; 1646 reset_partition_data(cs); 1647 spin_unlock_irq(&callback_lock); 1648 update_unbound_workqueue_cpumask(isolcpus_updated); 1649 1650 /* 1651 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy. 1652 */ 1653 update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1654 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1655 } 1656 1657 /* 1658 * remote_cpus_update - cpus_exclusive change of remote partition 1659 * @cs: the cpuset to be updated 1660 * @newmask: the new effective_xcpus mask 1661 * @tmp: temparary masks 1662 * 1663 * top_cpuset and subpartitions_cpus will be updated or partition can be 1664 * invalidated. 1665 */ 1666 static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask, 1667 struct tmpmasks *tmp) 1668 { 1669 bool adding, deleting; 1670 int prs = cs->partition_root_state; 1671 int isolcpus_updated = 0; 1672 1673 if (WARN_ON_ONCE(!is_remote_partition(cs))) 1674 return; 1675 1676 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); 1677 1678 if (cpumask_empty(newmask)) 1679 goto invalidate; 1680 1681 adding = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus); 1682 deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask); 1683 1684 /* 1685 * Additions of remote CPUs is only allowed if those CPUs are 1686 * not allocated to other partitions and there are effective_cpus 1687 * left in the top cpuset. 1688 */ 1689 if (adding && (!capable(CAP_SYS_ADMIN) || 1690 cpumask_intersects(tmp->addmask, subpartitions_cpus) || 1691 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))) 1692 goto invalidate; 1693 1694 spin_lock_irq(&callback_lock); 1695 if (adding) 1696 isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask); 1697 if (deleting) 1698 isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask); 1699 spin_unlock_irq(&callback_lock); 1700 update_unbound_workqueue_cpumask(isolcpus_updated); 1701 1702 /* 1703 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy. 1704 */ 1705 update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1706 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1707 return; 1708 1709 invalidate: 1710 remote_partition_disable(cs, tmp); 1711 } 1712 1713 /* 1714 * remote_partition_check - check if a child remote partition needs update 1715 * @cs: the cpuset to be updated 1716 * @newmask: the new effective_xcpus mask 1717 * @delmask: temporary mask for deletion (not in tmp) 1718 * @tmp: temparary masks 1719 * 1720 * This should be called before the given cs has updated its cpus_allowed 1721 * and/or effective_xcpus. 1722 */ 1723 static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask, 1724 struct cpumask *delmask, struct tmpmasks *tmp) 1725 { 1726 struct cpuset *child, *next; 1727 int disable_cnt = 0; 1728 1729 /* 1730 * Compute the effective exclusive CPUs that will be deleted. 1731 */ 1732 if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) || 1733 !cpumask_intersects(delmask, subpartitions_cpus)) 1734 return; /* No deletion of exclusive CPUs in partitions */ 1735 1736 /* 1737 * Searching the remote children list to look for those that will 1738 * be impacted by the deletion of exclusive CPUs. 1739 * 1740 * Since a cpuset must be removed from the remote children list 1741 * before it can go offline and holding cpuset_mutex will prevent 1742 * any change in cpuset status. RCU read lock isn't needed. 1743 */ 1744 lockdep_assert_held(&cpuset_mutex); 1745 list_for_each_entry_safe(child, next, &remote_children, remote_sibling) 1746 if (cpumask_intersects(child->effective_cpus, delmask)) { 1747 remote_partition_disable(child, tmp); 1748 disable_cnt++; 1749 } 1750 if (disable_cnt) 1751 rebuild_sched_domains_locked(); 1752 } 1753 1754 /* 1755 * prstate_housekeeping_conflict - check for partition & housekeeping conflicts 1756 * @prstate: partition root state to be checked 1757 * @new_cpus: cpu mask 1758 * Return: true if there is conflict, false otherwise 1759 * 1760 * CPUs outside of housekeeping_cpumask(HK_TYPE_DOMAIN) can only be used in 1761 * an isolated partition. 1762 */ 1763 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus) 1764 { 1765 const struct cpumask *hk_domain = housekeeping_cpumask(HK_TYPE_DOMAIN); 1766 bool all_in_hk = cpumask_subset(new_cpus, hk_domain); 1767 1768 if (!all_in_hk && (prstate != PRS_ISOLATED)) 1769 return true; 1770 1771 return false; 1772 } 1773 1774 /** 1775 * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset 1776 * @cs: The cpuset that requests change in partition root state 1777 * @cmd: Partition root state change command 1778 * @newmask: Optional new cpumask for partcmd_update 1779 * @tmp: Temporary addmask and delmask 1780 * Return: 0 or a partition root state error code 1781 * 1782 * For partcmd_enable*, the cpuset is being transformed from a non-partition 1783 * root to a partition root. The effective_xcpus (cpus_allowed if 1784 * effective_xcpus not set) mask of the given cpuset will be taken away from 1785 * parent's effective_cpus. The function will return 0 if all the CPUs listed 1786 * in effective_xcpus can be granted or an error code will be returned. 1787 * 1788 * For partcmd_disable, the cpuset is being transformed from a partition 1789 * root back to a non-partition root. Any CPUs in effective_xcpus will be 1790 * given back to parent's effective_cpus. 0 will always be returned. 1791 * 1792 * For partcmd_update, if the optional newmask is specified, the cpu list is 1793 * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is 1794 * assumed to remain the same. The cpuset should either be a valid or invalid 1795 * partition root. The partition root state may change from valid to invalid 1796 * or vice versa. An error code will be returned if transitioning from 1797 * invalid to valid violates the exclusivity rule. 1798 * 1799 * For partcmd_invalidate, the current partition will be made invalid. 1800 * 1801 * The partcmd_enable* and partcmd_disable commands are used by 1802 * update_prstate(). An error code may be returned and the caller will check 1803 * for error. 1804 * 1805 * The partcmd_update command is used by update_cpumasks_hier() with newmask 1806 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used 1807 * by update_cpumask() with NULL newmask. In both cases, the callers won't 1808 * check for error and so partition_root_state and prs_error will be updated 1809 * directly. 1810 */ 1811 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd, 1812 struct cpumask *newmask, 1813 struct tmpmasks *tmp) 1814 { 1815 struct cpuset *parent = parent_cs(cs); 1816 int adding; /* Adding cpus to parent's effective_cpus */ 1817 int deleting; /* Deleting cpus from parent's effective_cpus */ 1818 int old_prs, new_prs; 1819 int part_error = PERR_NONE; /* Partition error? */ 1820 int subparts_delta = 0; 1821 struct cpumask *xcpus; /* cs effective_xcpus */ 1822 int isolcpus_updated = 0; 1823 bool nocpu; 1824 1825 lockdep_assert_held(&cpuset_mutex); 1826 1827 /* 1828 * new_prs will only be changed for the partcmd_update and 1829 * partcmd_invalidate commands. 1830 */ 1831 adding = deleting = false; 1832 old_prs = new_prs = cs->partition_root_state; 1833 xcpus = !cpumask_empty(cs->exclusive_cpus) 1834 ? cs->effective_xcpus : cs->cpus_allowed; 1835 1836 if (cmd == partcmd_invalidate) { 1837 if (is_prs_invalid(old_prs)) 1838 return 0; 1839 1840 /* 1841 * Make the current partition invalid. 1842 */ 1843 if (is_partition_valid(parent)) 1844 adding = cpumask_and(tmp->addmask, 1845 xcpus, parent->effective_xcpus); 1846 if (old_prs > 0) { 1847 new_prs = -old_prs; 1848 subparts_delta--; 1849 } 1850 goto write_error; 1851 } 1852 1853 /* 1854 * The parent must be a partition root. 1855 * The new cpumask, if present, or the current cpus_allowed must 1856 * not be empty. 1857 */ 1858 if (!is_partition_valid(parent)) { 1859 return is_partition_invalid(parent) 1860 ? PERR_INVPARENT : PERR_NOTPART; 1861 } 1862 if (!newmask && cpumask_empty(cs->cpus_allowed)) 1863 return PERR_CPUSEMPTY; 1864 1865 nocpu = tasks_nocpu_error(parent, cs, xcpus); 1866 1867 if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) { 1868 /* 1869 * Enabling partition root is not allowed if its 1870 * effective_xcpus is empty or doesn't overlap with 1871 * parent's effective_xcpus. 1872 */ 1873 if (cpumask_empty(xcpus) || 1874 !cpumask_intersects(xcpus, parent->effective_xcpus)) 1875 return PERR_INVCPUS; 1876 1877 if (prstate_housekeeping_conflict(new_prs, xcpus)) 1878 return PERR_HKEEPING; 1879 1880 /* 1881 * A parent can be left with no CPU as long as there is no 1882 * task directly associated with the parent partition. 1883 */ 1884 if (nocpu) 1885 return PERR_NOCPUS; 1886 1887 cpumask_copy(tmp->delmask, xcpus); 1888 deleting = true; 1889 subparts_delta++; 1890 new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED; 1891 } else if (cmd == partcmd_disable) { 1892 /* 1893 * May need to add cpus to parent's effective_cpus for 1894 * valid partition root. 1895 */ 1896 adding = !is_prs_invalid(old_prs) && 1897 cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus); 1898 if (adding) 1899 subparts_delta--; 1900 new_prs = PRS_MEMBER; 1901 } else if (newmask) { 1902 /* 1903 * Empty cpumask is not allowed 1904 */ 1905 if (cpumask_empty(newmask)) { 1906 part_error = PERR_CPUSEMPTY; 1907 goto write_error; 1908 } 1909 1910 /* 1911 * partcmd_update with newmask: 1912 * 1913 * Compute add/delete mask to/from effective_cpus 1914 * 1915 * For valid partition: 1916 * addmask = exclusive_cpus & ~newmask 1917 * & parent->effective_xcpus 1918 * delmask = newmask & ~exclusive_cpus 1919 * & parent->effective_xcpus 1920 * 1921 * For invalid partition: 1922 * delmask = newmask & parent->effective_xcpus 1923 */ 1924 if (is_prs_invalid(old_prs)) { 1925 adding = false; 1926 deleting = cpumask_and(tmp->delmask, 1927 newmask, parent->effective_xcpus); 1928 } else { 1929 cpumask_andnot(tmp->addmask, xcpus, newmask); 1930 adding = cpumask_and(tmp->addmask, tmp->addmask, 1931 parent->effective_xcpus); 1932 1933 cpumask_andnot(tmp->delmask, newmask, xcpus); 1934 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1935 parent->effective_xcpus); 1936 } 1937 /* 1938 * Make partition invalid if parent's effective_cpus could 1939 * become empty and there are tasks in the parent. 1940 */ 1941 if (nocpu && (!adding || 1942 !cpumask_intersects(tmp->addmask, cpu_active_mask))) { 1943 part_error = PERR_NOCPUS; 1944 deleting = false; 1945 adding = cpumask_and(tmp->addmask, 1946 xcpus, parent->effective_xcpus); 1947 } 1948 } else { 1949 /* 1950 * partcmd_update w/o newmask 1951 * 1952 * delmask = effective_xcpus & parent->effective_cpus 1953 * 1954 * This can be called from: 1955 * 1) update_cpumasks_hier() 1956 * 2) cpuset_hotplug_update_tasks() 1957 * 1958 * Check to see if it can be transitioned from valid to 1959 * invalid partition or vice versa. 1960 * 1961 * A partition error happens when parent has tasks and all 1962 * its effective CPUs will have to be distributed out. 1963 */ 1964 WARN_ON_ONCE(!is_partition_valid(parent)); 1965 if (nocpu) { 1966 part_error = PERR_NOCPUS; 1967 if (is_partition_valid(cs)) 1968 adding = cpumask_and(tmp->addmask, 1969 xcpus, parent->effective_xcpus); 1970 } else if (is_partition_invalid(cs) && 1971 cpumask_subset(xcpus, parent->effective_xcpus)) { 1972 struct cgroup_subsys_state *css; 1973 struct cpuset *child; 1974 bool exclusive = true; 1975 1976 /* 1977 * Convert invalid partition to valid has to 1978 * pass the cpu exclusivity test. 1979 */ 1980 rcu_read_lock(); 1981 cpuset_for_each_child(child, css, parent) { 1982 if (child == cs) 1983 continue; 1984 if (!cpusets_are_exclusive(cs, child)) { 1985 exclusive = false; 1986 break; 1987 } 1988 } 1989 rcu_read_unlock(); 1990 if (exclusive) 1991 deleting = cpumask_and(tmp->delmask, 1992 xcpus, parent->effective_cpus); 1993 else 1994 part_error = PERR_NOTEXCL; 1995 } 1996 } 1997 1998 write_error: 1999 if (part_error) 2000 WRITE_ONCE(cs->prs_err, part_error); 2001 2002 if (cmd == partcmd_update) { 2003 /* 2004 * Check for possible transition between valid and invalid 2005 * partition root. 2006 */ 2007 switch (cs->partition_root_state) { 2008 case PRS_ROOT: 2009 case PRS_ISOLATED: 2010 if (part_error) { 2011 new_prs = -old_prs; 2012 subparts_delta--; 2013 } 2014 break; 2015 case PRS_INVALID_ROOT: 2016 case PRS_INVALID_ISOLATED: 2017 if (!part_error) { 2018 new_prs = -old_prs; 2019 subparts_delta++; 2020 } 2021 break; 2022 } 2023 } 2024 2025 if (!adding && !deleting && (new_prs == old_prs)) 2026 return 0; 2027 2028 /* 2029 * Transitioning between invalid to valid or vice versa may require 2030 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update, 2031 * validate_change() has already been successfully called and 2032 * CPU lists in cs haven't been updated yet. So defer it to later. 2033 */ 2034 if ((old_prs != new_prs) && (cmd != partcmd_update)) { 2035 int err = update_partition_exclusive(cs, new_prs); 2036 2037 if (err) 2038 return err; 2039 } 2040 2041 /* 2042 * Change the parent's effective_cpus & effective_xcpus (top cpuset 2043 * only). 2044 * 2045 * Newly added CPUs will be removed from effective_cpus and 2046 * newly deleted ones will be added back to effective_cpus. 2047 */ 2048 spin_lock_irq(&callback_lock); 2049 if (old_prs != new_prs) { 2050 cs->partition_root_state = new_prs; 2051 if (new_prs <= 0) 2052 cs->nr_subparts = 0; 2053 } 2054 /* 2055 * Adding to parent's effective_cpus means deletion CPUs from cs 2056 * and vice versa. 2057 */ 2058 if (adding) 2059 isolcpus_updated += partition_xcpus_del(old_prs, parent, 2060 tmp->addmask); 2061 if (deleting) 2062 isolcpus_updated += partition_xcpus_add(new_prs, parent, 2063 tmp->delmask); 2064 2065 if (is_partition_valid(parent)) { 2066 parent->nr_subparts += subparts_delta; 2067 WARN_ON_ONCE(parent->nr_subparts < 0); 2068 } 2069 spin_unlock_irq(&callback_lock); 2070 update_unbound_workqueue_cpumask(isolcpus_updated); 2071 2072 if ((old_prs != new_prs) && (cmd == partcmd_update)) 2073 update_partition_exclusive(cs, new_prs); 2074 2075 if (adding || deleting) { 2076 update_tasks_cpumask(parent, tmp->addmask); 2077 update_sibling_cpumasks(parent, cs, tmp); 2078 } 2079 2080 /* 2081 * For partcmd_update without newmask, it is being called from 2082 * cpuset_hotplug_workfn() where cpus_read_lock() wasn't taken. 2083 * Update the load balance flag and scheduling domain if 2084 * cpus_read_trylock() is successful. 2085 */ 2086 if ((cmd == partcmd_update) && !newmask && cpus_read_trylock()) { 2087 update_partition_sd_lb(cs, old_prs); 2088 cpus_read_unlock(); 2089 } 2090 2091 notify_partition_change(cs, old_prs); 2092 return 0; 2093 } 2094 2095 /** 2096 * compute_partition_effective_cpumask - compute effective_cpus for partition 2097 * @cs: partition root cpuset 2098 * @new_ecpus: previously computed effective_cpus to be updated 2099 * 2100 * Compute the effective_cpus of a partition root by scanning effective_xcpus 2101 * of child partition roots and excluding their effective_xcpus. 2102 * 2103 * This has the side effect of invalidating valid child partition roots, 2104 * if necessary. Since it is called from either cpuset_hotplug_update_tasks() 2105 * or update_cpumasks_hier() where parent and children are modified 2106 * successively, we don't need to call update_parent_effective_cpumask() 2107 * and the child's effective_cpus will be updated in later iterations. 2108 * 2109 * Note that rcu_read_lock() is assumed to be held. 2110 */ 2111 static void compute_partition_effective_cpumask(struct cpuset *cs, 2112 struct cpumask *new_ecpus) 2113 { 2114 struct cgroup_subsys_state *css; 2115 struct cpuset *child; 2116 bool populated = partition_is_populated(cs, NULL); 2117 2118 /* 2119 * Check child partition roots to see if they should be 2120 * invalidated when 2121 * 1) child effective_xcpus not a subset of new 2122 * excluisve_cpus 2123 * 2) All the effective_cpus will be used up and cp 2124 * has tasks 2125 */ 2126 compute_effective_exclusive_cpumask(cs, new_ecpus); 2127 cpumask_and(new_ecpus, new_ecpus, cpu_active_mask); 2128 2129 rcu_read_lock(); 2130 cpuset_for_each_child(child, css, cs) { 2131 if (!is_partition_valid(child)) 2132 continue; 2133 2134 child->prs_err = 0; 2135 if (!cpumask_subset(child->effective_xcpus, 2136 cs->effective_xcpus)) 2137 child->prs_err = PERR_INVCPUS; 2138 else if (populated && 2139 cpumask_subset(new_ecpus, child->effective_xcpus)) 2140 child->prs_err = PERR_NOCPUS; 2141 2142 if (child->prs_err) { 2143 int old_prs = child->partition_root_state; 2144 2145 /* 2146 * Invalidate child partition 2147 */ 2148 spin_lock_irq(&callback_lock); 2149 make_partition_invalid(child); 2150 cs->nr_subparts--; 2151 child->nr_subparts = 0; 2152 spin_unlock_irq(&callback_lock); 2153 notify_partition_change(child, old_prs); 2154 continue; 2155 } 2156 cpumask_andnot(new_ecpus, new_ecpus, 2157 child->effective_xcpus); 2158 } 2159 rcu_read_unlock(); 2160 } 2161 2162 /* 2163 * update_cpumasks_hier() flags 2164 */ 2165 #define HIER_CHECKALL 0x01 /* Check all cpusets with no skipping */ 2166 #define HIER_NO_SD_REBUILD 0x02 /* Don't rebuild sched domains */ 2167 2168 /* 2169 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 2170 * @cs: the cpuset to consider 2171 * @tmp: temp variables for calculating effective_cpus & partition setup 2172 * @force: don't skip any descendant cpusets if set 2173 * 2174 * When configured cpumask is changed, the effective cpumasks of this cpuset 2175 * and all its descendants need to be updated. 2176 * 2177 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 2178 * 2179 * Called with cpuset_mutex held 2180 */ 2181 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, 2182 int flags) 2183 { 2184 struct cpuset *cp; 2185 struct cgroup_subsys_state *pos_css; 2186 bool need_rebuild_sched_domains = false; 2187 int old_prs, new_prs; 2188 2189 rcu_read_lock(); 2190 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2191 struct cpuset *parent = parent_cs(cp); 2192 bool remote = is_remote_partition(cp); 2193 bool update_parent = false; 2194 2195 /* 2196 * Skip descendent remote partition that acquires CPUs 2197 * directly from top cpuset unless it is cs. 2198 */ 2199 if (remote && (cp != cs)) { 2200 pos_css = css_rightmost_descendant(pos_css); 2201 continue; 2202 } 2203 2204 /* 2205 * Update effective_xcpus if exclusive_cpus set. 2206 * The case when exclusive_cpus isn't set is handled later. 2207 */ 2208 if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) { 2209 spin_lock_irq(&callback_lock); 2210 compute_effective_exclusive_cpumask(cp, NULL); 2211 spin_unlock_irq(&callback_lock); 2212 } 2213 2214 old_prs = new_prs = cp->partition_root_state; 2215 if (remote || (is_partition_valid(parent) && 2216 is_partition_valid(cp))) 2217 compute_partition_effective_cpumask(cp, tmp->new_cpus); 2218 else 2219 compute_effective_cpumask(tmp->new_cpus, cp, parent); 2220 2221 /* 2222 * A partition with no effective_cpus is allowed as long as 2223 * there is no task associated with it. Call 2224 * update_parent_effective_cpumask() to check it. 2225 */ 2226 if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) { 2227 update_parent = true; 2228 goto update_parent_effective; 2229 } 2230 2231 /* 2232 * If it becomes empty, inherit the effective mask of the 2233 * parent, which is guaranteed to have some CPUs unless 2234 * it is a partition root that has explicitly distributed 2235 * out all its CPUs. 2236 */ 2237 if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) { 2238 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 2239 if (!cp->use_parent_ecpus) { 2240 cp->use_parent_ecpus = true; 2241 parent->child_ecpus_count++; 2242 } 2243 } else if (cp->use_parent_ecpus) { 2244 cp->use_parent_ecpus = false; 2245 WARN_ON_ONCE(!parent->child_ecpus_count); 2246 parent->child_ecpus_count--; 2247 } 2248 2249 if (remote) 2250 goto get_css; 2251 2252 /* 2253 * Skip the whole subtree if 2254 * 1) the cpumask remains the same, 2255 * 2) has no partition root state, 2256 * 3) HIER_CHECKALL flag not set, and 2257 * 4) for v2 load balance state same as its parent. 2258 */ 2259 if (!cp->partition_root_state && !(flags & HIER_CHECKALL) && 2260 cpumask_equal(tmp->new_cpus, cp->effective_cpus) && 2261 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 2262 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { 2263 pos_css = css_rightmost_descendant(pos_css); 2264 continue; 2265 } 2266 2267 update_parent_effective: 2268 /* 2269 * update_parent_effective_cpumask() should have been called 2270 * for cs already in update_cpumask(). We should also call 2271 * update_tasks_cpumask() again for tasks in the parent 2272 * cpuset if the parent's effective_cpus changes. 2273 */ 2274 if ((cp != cs) && old_prs) { 2275 switch (parent->partition_root_state) { 2276 case PRS_ROOT: 2277 case PRS_ISOLATED: 2278 update_parent = true; 2279 break; 2280 2281 default: 2282 /* 2283 * When parent is not a partition root or is 2284 * invalid, child partition roots become 2285 * invalid too. 2286 */ 2287 if (is_partition_valid(cp)) 2288 new_prs = -cp->partition_root_state; 2289 WRITE_ONCE(cp->prs_err, 2290 is_partition_invalid(parent) 2291 ? PERR_INVPARENT : PERR_NOTPART); 2292 break; 2293 } 2294 } 2295 get_css: 2296 if (!css_tryget_online(&cp->css)) 2297 continue; 2298 rcu_read_unlock(); 2299 2300 if (update_parent) { 2301 update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp); 2302 /* 2303 * The cpuset partition_root_state may become 2304 * invalid. Capture it. 2305 */ 2306 new_prs = cp->partition_root_state; 2307 } 2308 2309 spin_lock_irq(&callback_lock); 2310 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 2311 cp->partition_root_state = new_prs; 2312 /* 2313 * Make sure effective_xcpus is properly set for a valid 2314 * partition root. 2315 */ 2316 if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus)) 2317 cpumask_and(cp->effective_xcpus, 2318 cp->cpus_allowed, parent->effective_xcpus); 2319 else if (new_prs < 0) 2320 reset_partition_data(cp); 2321 spin_unlock_irq(&callback_lock); 2322 2323 notify_partition_change(cp, old_prs); 2324 2325 WARN_ON(!is_in_v2_mode() && 2326 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 2327 2328 update_tasks_cpumask(cp, cp->effective_cpus); 2329 2330 /* 2331 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE 2332 * from parent if current cpuset isn't a valid partition root 2333 * and their load balance states differ. 2334 */ 2335 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2336 !is_partition_valid(cp) && 2337 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { 2338 if (is_sched_load_balance(parent)) 2339 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2340 else 2341 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2342 } 2343 2344 /* 2345 * On legacy hierarchy, if the effective cpumask of any non- 2346 * empty cpuset is changed, we need to rebuild sched domains. 2347 * On default hierarchy, the cpuset needs to be a partition 2348 * root as well. 2349 */ 2350 if (!cpumask_empty(cp->cpus_allowed) && 2351 is_sched_load_balance(cp) && 2352 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 2353 is_partition_valid(cp))) 2354 need_rebuild_sched_domains = true; 2355 2356 rcu_read_lock(); 2357 css_put(&cp->css); 2358 } 2359 rcu_read_unlock(); 2360 2361 if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD)) 2362 rebuild_sched_domains_locked(); 2363 } 2364 2365 /** 2366 * update_sibling_cpumasks - Update siblings cpumasks 2367 * @parent: Parent cpuset 2368 * @cs: Current cpuset 2369 * @tmp: Temp variables 2370 */ 2371 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 2372 struct tmpmasks *tmp) 2373 { 2374 struct cpuset *sibling; 2375 struct cgroup_subsys_state *pos_css; 2376 2377 lockdep_assert_held(&cpuset_mutex); 2378 2379 /* 2380 * Check all its siblings and call update_cpumasks_hier() 2381 * if their effective_cpus will need to be changed. 2382 * 2383 * With the addition of effective_xcpus which is a subset of 2384 * cpus_allowed. It is possible a change in parent's effective_cpus 2385 * due to a change in a child partition's effective_xcpus will impact 2386 * its siblings even if they do not inherit parent's effective_cpus 2387 * directly. 2388 * 2389 * The update_cpumasks_hier() function may sleep. So we have to 2390 * release the RCU read lock before calling it. HIER_NO_SD_REBUILD 2391 * flag is used to suppress rebuild of sched domains as the callers 2392 * will take care of that. 2393 */ 2394 rcu_read_lock(); 2395 cpuset_for_each_child(sibling, pos_css, parent) { 2396 if (sibling == cs) 2397 continue; 2398 if (!sibling->use_parent_ecpus && 2399 !is_partition_valid(sibling)) { 2400 compute_effective_cpumask(tmp->new_cpus, sibling, 2401 parent); 2402 if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus)) 2403 continue; 2404 } 2405 if (!css_tryget_online(&sibling->css)) 2406 continue; 2407 2408 rcu_read_unlock(); 2409 update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD); 2410 rcu_read_lock(); 2411 css_put(&sibling->css); 2412 } 2413 rcu_read_unlock(); 2414 } 2415 2416 /** 2417 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 2418 * @cs: the cpuset to consider 2419 * @trialcs: trial cpuset 2420 * @buf: buffer of cpu numbers written to this cpuset 2421 */ 2422 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2423 const char *buf) 2424 { 2425 int retval; 2426 struct tmpmasks tmp; 2427 struct cpuset *parent = parent_cs(cs); 2428 bool invalidate = false; 2429 int hier_flags = 0; 2430 int old_prs = cs->partition_root_state; 2431 2432 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 2433 if (cs == &top_cpuset) 2434 return -EACCES; 2435 2436 /* 2437 * An empty cpus_allowed is ok only if the cpuset has no tasks. 2438 * Since cpulist_parse() fails on an empty mask, we special case 2439 * that parsing. The validate_change() call ensures that cpusets 2440 * with tasks have cpus. 2441 */ 2442 if (!*buf) { 2443 cpumask_clear(trialcs->cpus_allowed); 2444 cpumask_clear(trialcs->effective_xcpus); 2445 } else { 2446 retval = cpulist_parse(buf, trialcs->cpus_allowed); 2447 if (retval < 0) 2448 return retval; 2449 2450 if (!cpumask_subset(trialcs->cpus_allowed, 2451 top_cpuset.cpus_allowed)) 2452 return -EINVAL; 2453 2454 /* 2455 * When exclusive_cpus isn't explicitly set, it is constrainted 2456 * by cpus_allowed and parent's effective_xcpus. Otherwise, 2457 * trialcs->effective_xcpus is used as a temporary cpumask 2458 * for checking validity of the partition root. 2459 */ 2460 if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs)) 2461 compute_effective_exclusive_cpumask(trialcs, NULL); 2462 } 2463 2464 /* Nothing to do if the cpus didn't change */ 2465 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 2466 return 0; 2467 2468 if (alloc_cpumasks(NULL, &tmp)) 2469 return -ENOMEM; 2470 2471 if (old_prs) { 2472 if (is_partition_valid(cs) && 2473 cpumask_empty(trialcs->effective_xcpus)) { 2474 invalidate = true; 2475 cs->prs_err = PERR_INVCPUS; 2476 } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) { 2477 invalidate = true; 2478 cs->prs_err = PERR_HKEEPING; 2479 } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) { 2480 invalidate = true; 2481 cs->prs_err = PERR_NOCPUS; 2482 } 2483 } 2484 2485 /* 2486 * Check all the descendants in update_cpumasks_hier() if 2487 * effective_xcpus is to be changed. 2488 */ 2489 if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus)) 2490 hier_flags = HIER_CHECKALL; 2491 2492 retval = validate_change(cs, trialcs); 2493 2494 if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { 2495 struct cgroup_subsys_state *css; 2496 struct cpuset *cp; 2497 2498 /* 2499 * The -EINVAL error code indicates that partition sibling 2500 * CPU exclusivity rule has been violated. We still allow 2501 * the cpumask change to proceed while invalidating the 2502 * partition. However, any conflicting sibling partitions 2503 * have to be marked as invalid too. 2504 */ 2505 invalidate = true; 2506 rcu_read_lock(); 2507 cpuset_for_each_child(cp, css, parent) { 2508 struct cpumask *xcpus = fetch_xcpus(trialcs); 2509 2510 if (is_partition_valid(cp) && 2511 cpumask_intersects(xcpus, cp->effective_xcpus)) { 2512 rcu_read_unlock(); 2513 update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp); 2514 rcu_read_lock(); 2515 } 2516 } 2517 rcu_read_unlock(); 2518 retval = 0; 2519 } 2520 2521 if (retval < 0) 2522 goto out_free; 2523 2524 if (is_partition_valid(cs) || 2525 (is_partition_invalid(cs) && !invalidate)) { 2526 struct cpumask *xcpus = trialcs->effective_xcpus; 2527 2528 if (cpumask_empty(xcpus) && is_partition_invalid(cs)) 2529 xcpus = trialcs->cpus_allowed; 2530 2531 /* 2532 * Call remote_cpus_update() to handle valid remote partition 2533 */ 2534 if (is_remote_partition(cs)) 2535 remote_cpus_update(cs, xcpus, &tmp); 2536 else if (invalidate) 2537 update_parent_effective_cpumask(cs, partcmd_invalidate, 2538 NULL, &tmp); 2539 else 2540 update_parent_effective_cpumask(cs, partcmd_update, 2541 xcpus, &tmp); 2542 } else if (!cpumask_empty(cs->exclusive_cpus)) { 2543 /* 2544 * Use trialcs->effective_cpus as a temp cpumask 2545 */ 2546 remote_partition_check(cs, trialcs->effective_xcpus, 2547 trialcs->effective_cpus, &tmp); 2548 } 2549 2550 spin_lock_irq(&callback_lock); 2551 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 2552 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2553 if ((old_prs > 0) && !is_partition_valid(cs)) 2554 reset_partition_data(cs); 2555 spin_unlock_irq(&callback_lock); 2556 2557 /* effective_cpus/effective_xcpus will be updated here */ 2558 update_cpumasks_hier(cs, &tmp, hier_flags); 2559 2560 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2561 if (cs->partition_root_state) 2562 update_partition_sd_lb(cs, old_prs); 2563 out_free: 2564 free_cpumasks(NULL, &tmp); 2565 return retval; 2566 } 2567 2568 /** 2569 * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset 2570 * @cs: the cpuset to consider 2571 * @trialcs: trial cpuset 2572 * @buf: buffer of cpu numbers written to this cpuset 2573 * 2574 * The tasks' cpumask will be updated if cs is a valid partition root. 2575 */ 2576 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2577 const char *buf) 2578 { 2579 int retval; 2580 struct tmpmasks tmp; 2581 struct cpuset *parent = parent_cs(cs); 2582 bool invalidate = false; 2583 int hier_flags = 0; 2584 int old_prs = cs->partition_root_state; 2585 2586 if (!*buf) { 2587 cpumask_clear(trialcs->exclusive_cpus); 2588 cpumask_clear(trialcs->effective_xcpus); 2589 } else { 2590 retval = cpulist_parse(buf, trialcs->exclusive_cpus); 2591 if (retval < 0) 2592 return retval; 2593 if (!is_cpu_exclusive(cs)) 2594 set_bit(CS_CPU_EXCLUSIVE, &trialcs->flags); 2595 } 2596 2597 /* Nothing to do if the CPUs didn't change */ 2598 if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus)) 2599 return 0; 2600 2601 if (*buf) 2602 compute_effective_exclusive_cpumask(trialcs, NULL); 2603 2604 /* 2605 * Check all the descendants in update_cpumasks_hier() if 2606 * effective_xcpus is to be changed. 2607 */ 2608 if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus)) 2609 hier_flags = HIER_CHECKALL; 2610 2611 retval = validate_change(cs, trialcs); 2612 if (retval) 2613 return retval; 2614 2615 if (alloc_cpumasks(NULL, &tmp)) 2616 return -ENOMEM; 2617 2618 if (old_prs) { 2619 if (cpumask_empty(trialcs->effective_xcpus)) { 2620 invalidate = true; 2621 cs->prs_err = PERR_INVCPUS; 2622 } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) { 2623 invalidate = true; 2624 cs->prs_err = PERR_HKEEPING; 2625 } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) { 2626 invalidate = true; 2627 cs->prs_err = PERR_NOCPUS; 2628 } 2629 2630 if (is_remote_partition(cs)) { 2631 if (invalidate) 2632 remote_partition_disable(cs, &tmp); 2633 else 2634 remote_cpus_update(cs, trialcs->effective_xcpus, 2635 &tmp); 2636 } else if (invalidate) { 2637 update_parent_effective_cpumask(cs, partcmd_invalidate, 2638 NULL, &tmp); 2639 } else { 2640 update_parent_effective_cpumask(cs, partcmd_update, 2641 trialcs->effective_xcpus, &tmp); 2642 } 2643 } else if (!cpumask_empty(trialcs->exclusive_cpus)) { 2644 /* 2645 * Use trialcs->effective_cpus as a temp cpumask 2646 */ 2647 remote_partition_check(cs, trialcs->effective_xcpus, 2648 trialcs->effective_cpus, &tmp); 2649 } 2650 spin_lock_irq(&callback_lock); 2651 cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus); 2652 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2653 if ((old_prs > 0) && !is_partition_valid(cs)) 2654 reset_partition_data(cs); 2655 spin_unlock_irq(&callback_lock); 2656 2657 /* 2658 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus 2659 * of the subtree when it is a valid partition root or effective_xcpus 2660 * is updated. 2661 */ 2662 if (is_partition_valid(cs) || hier_flags) 2663 update_cpumasks_hier(cs, &tmp, hier_flags); 2664 2665 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2666 if (cs->partition_root_state) 2667 update_partition_sd_lb(cs, old_prs); 2668 2669 free_cpumasks(NULL, &tmp); 2670 return 0; 2671 } 2672 2673 /* 2674 * Migrate memory region from one set of nodes to another. This is 2675 * performed asynchronously as it can be called from process migration path 2676 * holding locks involved in process management. All mm migrations are 2677 * performed in the queued order and can be waited for by flushing 2678 * cpuset_migrate_mm_wq. 2679 */ 2680 2681 struct cpuset_migrate_mm_work { 2682 struct work_struct work; 2683 struct mm_struct *mm; 2684 nodemask_t from; 2685 nodemask_t to; 2686 }; 2687 2688 static void cpuset_migrate_mm_workfn(struct work_struct *work) 2689 { 2690 struct cpuset_migrate_mm_work *mwork = 2691 container_of(work, struct cpuset_migrate_mm_work, work); 2692 2693 /* on a wq worker, no need to worry about %current's mems_allowed */ 2694 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 2695 mmput(mwork->mm); 2696 kfree(mwork); 2697 } 2698 2699 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 2700 const nodemask_t *to) 2701 { 2702 struct cpuset_migrate_mm_work *mwork; 2703 2704 if (nodes_equal(*from, *to)) { 2705 mmput(mm); 2706 return; 2707 } 2708 2709 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 2710 if (mwork) { 2711 mwork->mm = mm; 2712 mwork->from = *from; 2713 mwork->to = *to; 2714 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 2715 queue_work(cpuset_migrate_mm_wq, &mwork->work); 2716 } else { 2717 mmput(mm); 2718 } 2719 } 2720 2721 static void cpuset_post_attach(void) 2722 { 2723 flush_workqueue(cpuset_migrate_mm_wq); 2724 } 2725 2726 /* 2727 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 2728 * @tsk: the task to change 2729 * @newmems: new nodes that the task will be set 2730 * 2731 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 2732 * and rebind an eventual tasks' mempolicy. If the task is allocating in 2733 * parallel, it might temporarily see an empty intersection, which results in 2734 * a seqlock check and retry before OOM or allocation failure. 2735 */ 2736 static void cpuset_change_task_nodemask(struct task_struct *tsk, 2737 nodemask_t *newmems) 2738 { 2739 task_lock(tsk); 2740 2741 local_irq_disable(); 2742 write_seqcount_begin(&tsk->mems_allowed_seq); 2743 2744 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 2745 mpol_rebind_task(tsk, newmems); 2746 tsk->mems_allowed = *newmems; 2747 2748 write_seqcount_end(&tsk->mems_allowed_seq); 2749 local_irq_enable(); 2750 2751 task_unlock(tsk); 2752 } 2753 2754 static void *cpuset_being_rebound; 2755 2756 /** 2757 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 2758 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 2759 * 2760 * Iterate through each task of @cs updating its mems_allowed to the 2761 * effective cpuset's. As this function is called with cpuset_mutex held, 2762 * cpuset membership stays stable. 2763 */ 2764 static void update_tasks_nodemask(struct cpuset *cs) 2765 { 2766 static nodemask_t newmems; /* protected by cpuset_mutex */ 2767 struct css_task_iter it; 2768 struct task_struct *task; 2769 2770 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 2771 2772 guarantee_online_mems(cs, &newmems); 2773 2774 /* 2775 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 2776 * take while holding tasklist_lock. Forks can happen - the 2777 * mpol_dup() cpuset_being_rebound check will catch such forks, 2778 * and rebind their vma mempolicies too. Because we still hold 2779 * the global cpuset_mutex, we know that no other rebind effort 2780 * will be contending for the global variable cpuset_being_rebound. 2781 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 2782 * is idempotent. Also migrate pages in each mm to new nodes. 2783 */ 2784 css_task_iter_start(&cs->css, 0, &it); 2785 while ((task = css_task_iter_next(&it))) { 2786 struct mm_struct *mm; 2787 bool migrate; 2788 2789 cpuset_change_task_nodemask(task, &newmems); 2790 2791 mm = get_task_mm(task); 2792 if (!mm) 2793 continue; 2794 2795 migrate = is_memory_migrate(cs); 2796 2797 mpol_rebind_mm(mm, &cs->mems_allowed); 2798 if (migrate) 2799 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 2800 else 2801 mmput(mm); 2802 } 2803 css_task_iter_end(&it); 2804 2805 /* 2806 * All the tasks' nodemasks have been updated, update 2807 * cs->old_mems_allowed. 2808 */ 2809 cs->old_mems_allowed = newmems; 2810 2811 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 2812 cpuset_being_rebound = NULL; 2813 } 2814 2815 /* 2816 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 2817 * @cs: the cpuset to consider 2818 * @new_mems: a temp variable for calculating new effective_mems 2819 * 2820 * When configured nodemask is changed, the effective nodemasks of this cpuset 2821 * and all its descendants need to be updated. 2822 * 2823 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 2824 * 2825 * Called with cpuset_mutex held 2826 */ 2827 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 2828 { 2829 struct cpuset *cp; 2830 struct cgroup_subsys_state *pos_css; 2831 2832 rcu_read_lock(); 2833 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2834 struct cpuset *parent = parent_cs(cp); 2835 2836 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 2837 2838 /* 2839 * If it becomes empty, inherit the effective mask of the 2840 * parent, which is guaranteed to have some MEMs. 2841 */ 2842 if (is_in_v2_mode() && nodes_empty(*new_mems)) 2843 *new_mems = parent->effective_mems; 2844 2845 /* Skip the whole subtree if the nodemask remains the same. */ 2846 if (nodes_equal(*new_mems, cp->effective_mems)) { 2847 pos_css = css_rightmost_descendant(pos_css); 2848 continue; 2849 } 2850 2851 if (!css_tryget_online(&cp->css)) 2852 continue; 2853 rcu_read_unlock(); 2854 2855 spin_lock_irq(&callback_lock); 2856 cp->effective_mems = *new_mems; 2857 spin_unlock_irq(&callback_lock); 2858 2859 WARN_ON(!is_in_v2_mode() && 2860 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 2861 2862 update_tasks_nodemask(cp); 2863 2864 rcu_read_lock(); 2865 css_put(&cp->css); 2866 } 2867 rcu_read_unlock(); 2868 } 2869 2870 /* 2871 * Handle user request to change the 'mems' memory placement 2872 * of a cpuset. Needs to validate the request, update the 2873 * cpusets mems_allowed, and for each task in the cpuset, 2874 * update mems_allowed and rebind task's mempolicy and any vma 2875 * mempolicies and if the cpuset is marked 'memory_migrate', 2876 * migrate the tasks pages to the new memory. 2877 * 2878 * Call with cpuset_mutex held. May take callback_lock during call. 2879 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 2880 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 2881 * their mempolicies to the cpusets new mems_allowed. 2882 */ 2883 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 2884 const char *buf) 2885 { 2886 int retval; 2887 2888 /* 2889 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 2890 * it's read-only 2891 */ 2892 if (cs == &top_cpuset) { 2893 retval = -EACCES; 2894 goto done; 2895 } 2896 2897 /* 2898 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 2899 * Since nodelist_parse() fails on an empty mask, we special case 2900 * that parsing. The validate_change() call ensures that cpusets 2901 * with tasks have memory. 2902 */ 2903 if (!*buf) { 2904 nodes_clear(trialcs->mems_allowed); 2905 } else { 2906 retval = nodelist_parse(buf, trialcs->mems_allowed); 2907 if (retval < 0) 2908 goto done; 2909 2910 if (!nodes_subset(trialcs->mems_allowed, 2911 top_cpuset.mems_allowed)) { 2912 retval = -EINVAL; 2913 goto done; 2914 } 2915 } 2916 2917 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 2918 retval = 0; /* Too easy - nothing to do */ 2919 goto done; 2920 } 2921 retval = validate_change(cs, trialcs); 2922 if (retval < 0) 2923 goto done; 2924 2925 check_insane_mems_config(&trialcs->mems_allowed); 2926 2927 spin_lock_irq(&callback_lock); 2928 cs->mems_allowed = trialcs->mems_allowed; 2929 spin_unlock_irq(&callback_lock); 2930 2931 /* use trialcs->mems_allowed as a temp variable */ 2932 update_nodemasks_hier(cs, &trialcs->mems_allowed); 2933 done: 2934 return retval; 2935 } 2936 2937 bool current_cpuset_is_being_rebound(void) 2938 { 2939 bool ret; 2940 2941 rcu_read_lock(); 2942 ret = task_cs(current) == cpuset_being_rebound; 2943 rcu_read_unlock(); 2944 2945 return ret; 2946 } 2947 2948 static int update_relax_domain_level(struct cpuset *cs, s64 val) 2949 { 2950 #ifdef CONFIG_SMP 2951 if (val < -1 || val >= sched_domain_level_max) 2952 return -EINVAL; 2953 #endif 2954 2955 if (val != cs->relax_domain_level) { 2956 cs->relax_domain_level = val; 2957 if (!cpumask_empty(cs->cpus_allowed) && 2958 is_sched_load_balance(cs)) 2959 rebuild_sched_domains_locked(); 2960 } 2961 2962 return 0; 2963 } 2964 2965 /** 2966 * update_tasks_flags - update the spread flags of tasks in the cpuset. 2967 * @cs: the cpuset in which each task's spread flags needs to be changed 2968 * 2969 * Iterate through each task of @cs updating its spread flags. As this 2970 * function is called with cpuset_mutex held, cpuset membership stays 2971 * stable. 2972 */ 2973 static void update_tasks_flags(struct cpuset *cs) 2974 { 2975 struct css_task_iter it; 2976 struct task_struct *task; 2977 2978 css_task_iter_start(&cs->css, 0, &it); 2979 while ((task = css_task_iter_next(&it))) 2980 cpuset_update_task_spread_flags(cs, task); 2981 css_task_iter_end(&it); 2982 } 2983 2984 /* 2985 * update_flag - read a 0 or a 1 in a file and update associated flag 2986 * bit: the bit to update (see cpuset_flagbits_t) 2987 * cs: the cpuset to update 2988 * turning_on: whether the flag is being set or cleared 2989 * 2990 * Call with cpuset_mutex held. 2991 */ 2992 2993 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 2994 int turning_on) 2995 { 2996 struct cpuset *trialcs; 2997 int balance_flag_changed; 2998 int spread_flag_changed; 2999 int err; 3000 3001 trialcs = alloc_trial_cpuset(cs); 3002 if (!trialcs) 3003 return -ENOMEM; 3004 3005 if (turning_on) 3006 set_bit(bit, &trialcs->flags); 3007 else 3008 clear_bit(bit, &trialcs->flags); 3009 3010 err = validate_change(cs, trialcs); 3011 if (err < 0) 3012 goto out; 3013 3014 balance_flag_changed = (is_sched_load_balance(cs) != 3015 is_sched_load_balance(trialcs)); 3016 3017 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 3018 || (is_spread_page(cs) != is_spread_page(trialcs))); 3019 3020 spin_lock_irq(&callback_lock); 3021 cs->flags = trialcs->flags; 3022 spin_unlock_irq(&callback_lock); 3023 3024 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 3025 rebuild_sched_domains_locked(); 3026 3027 if (spread_flag_changed) 3028 update_tasks_flags(cs); 3029 out: 3030 free_cpuset(trialcs); 3031 return err; 3032 } 3033 3034 /** 3035 * update_prstate - update partition_root_state 3036 * @cs: the cpuset to update 3037 * @new_prs: new partition root state 3038 * Return: 0 if successful, != 0 if error 3039 * 3040 * Call with cpuset_mutex held. 3041 */ 3042 static int update_prstate(struct cpuset *cs, int new_prs) 3043 { 3044 int err = PERR_NONE, old_prs = cs->partition_root_state; 3045 struct cpuset *parent = parent_cs(cs); 3046 struct tmpmasks tmpmask; 3047 bool new_xcpus_state = false; 3048 3049 if (old_prs == new_prs) 3050 return 0; 3051 3052 /* 3053 * Treat a previously invalid partition root as if it is a "member". 3054 */ 3055 if (new_prs && is_prs_invalid(old_prs)) 3056 old_prs = PRS_MEMBER; 3057 3058 if (alloc_cpumasks(NULL, &tmpmask)) 3059 return -ENOMEM; 3060 3061 /* 3062 * Setup effective_xcpus if not properly set yet, it will be cleared 3063 * later if partition becomes invalid. 3064 */ 3065 if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) { 3066 spin_lock_irq(&callback_lock); 3067 cpumask_and(cs->effective_xcpus, 3068 cs->cpus_allowed, parent->effective_xcpus); 3069 spin_unlock_irq(&callback_lock); 3070 } 3071 3072 err = update_partition_exclusive(cs, new_prs); 3073 if (err) 3074 goto out; 3075 3076 if (!old_prs) { 3077 enum partition_cmd cmd = (new_prs == PRS_ROOT) 3078 ? partcmd_enable : partcmd_enablei; 3079 3080 /* 3081 * cpus_allowed cannot be empty. 3082 */ 3083 if (cpumask_empty(cs->cpus_allowed)) { 3084 err = PERR_CPUSEMPTY; 3085 goto out; 3086 } 3087 3088 err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask); 3089 /* 3090 * If an attempt to become local partition root fails, 3091 * try to become a remote partition root instead. 3092 */ 3093 if (err && remote_partition_enable(cs, new_prs, &tmpmask)) 3094 err = 0; 3095 } else if (old_prs && new_prs) { 3096 /* 3097 * A change in load balance state only, no change in cpumasks. 3098 */ 3099 new_xcpus_state = true; 3100 } else { 3101 /* 3102 * Switching back to member is always allowed even if it 3103 * disables child partitions. 3104 */ 3105 if (is_remote_partition(cs)) 3106 remote_partition_disable(cs, &tmpmask); 3107 else 3108 update_parent_effective_cpumask(cs, partcmd_disable, 3109 NULL, &tmpmask); 3110 3111 /* 3112 * Invalidation of child partitions will be done in 3113 * update_cpumasks_hier(). 3114 */ 3115 } 3116 out: 3117 /* 3118 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error 3119 * happens. 3120 */ 3121 if (err) { 3122 new_prs = -new_prs; 3123 update_partition_exclusive(cs, new_prs); 3124 } 3125 3126 spin_lock_irq(&callback_lock); 3127 cs->partition_root_state = new_prs; 3128 WRITE_ONCE(cs->prs_err, err); 3129 if (!is_partition_valid(cs)) 3130 reset_partition_data(cs); 3131 else if (new_xcpus_state) 3132 partition_xcpus_newstate(old_prs, new_prs, cs->effective_xcpus); 3133 spin_unlock_irq(&callback_lock); 3134 update_unbound_workqueue_cpumask(new_xcpus_state); 3135 3136 /* Force update if switching back to member */ 3137 update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0); 3138 3139 /* Update sched domains and load balance flag */ 3140 update_partition_sd_lb(cs, old_prs); 3141 3142 notify_partition_change(cs, old_prs); 3143 free_cpumasks(NULL, &tmpmask); 3144 return 0; 3145 } 3146 3147 /* 3148 * Frequency meter - How fast is some event occurring? 3149 * 3150 * These routines manage a digitally filtered, constant time based, 3151 * event frequency meter. There are four routines: 3152 * fmeter_init() - initialize a frequency meter. 3153 * fmeter_markevent() - called each time the event happens. 3154 * fmeter_getrate() - returns the recent rate of such events. 3155 * fmeter_update() - internal routine used to update fmeter. 3156 * 3157 * A common data structure is passed to each of these routines, 3158 * which is used to keep track of the state required to manage the 3159 * frequency meter and its digital filter. 3160 * 3161 * The filter works on the number of events marked per unit time. 3162 * The filter is single-pole low-pass recursive (IIR). The time unit 3163 * is 1 second. Arithmetic is done using 32-bit integers scaled to 3164 * simulate 3 decimal digits of precision (multiplied by 1000). 3165 * 3166 * With an FM_COEF of 933, and a time base of 1 second, the filter 3167 * has a half-life of 10 seconds, meaning that if the events quit 3168 * happening, then the rate returned from the fmeter_getrate() 3169 * will be cut in half each 10 seconds, until it converges to zero. 3170 * 3171 * It is not worth doing a real infinitely recursive filter. If more 3172 * than FM_MAXTICKS ticks have elapsed since the last filter event, 3173 * just compute FM_MAXTICKS ticks worth, by which point the level 3174 * will be stable. 3175 * 3176 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 3177 * arithmetic overflow in the fmeter_update() routine. 3178 * 3179 * Given the simple 32 bit integer arithmetic used, this meter works 3180 * best for reporting rates between one per millisecond (msec) and 3181 * one per 32 (approx) seconds. At constant rates faster than one 3182 * per msec it maxes out at values just under 1,000,000. At constant 3183 * rates between one per msec, and one per second it will stabilize 3184 * to a value N*1000, where N is the rate of events per second. 3185 * At constant rates between one per second and one per 32 seconds, 3186 * it will be choppy, moving up on the seconds that have an event, 3187 * and then decaying until the next event. At rates slower than 3188 * about one in 32 seconds, it decays all the way back to zero between 3189 * each event. 3190 */ 3191 3192 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 3193 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 3194 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 3195 #define FM_SCALE 1000 /* faux fixed point scale */ 3196 3197 /* Initialize a frequency meter */ 3198 static void fmeter_init(struct fmeter *fmp) 3199 { 3200 fmp->cnt = 0; 3201 fmp->val = 0; 3202 fmp->time = 0; 3203 spin_lock_init(&fmp->lock); 3204 } 3205 3206 /* Internal meter update - process cnt events and update value */ 3207 static void fmeter_update(struct fmeter *fmp) 3208 { 3209 time64_t now; 3210 u32 ticks; 3211 3212 now = ktime_get_seconds(); 3213 ticks = now - fmp->time; 3214 3215 if (ticks == 0) 3216 return; 3217 3218 ticks = min(FM_MAXTICKS, ticks); 3219 while (ticks-- > 0) 3220 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 3221 fmp->time = now; 3222 3223 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 3224 fmp->cnt = 0; 3225 } 3226 3227 /* Process any previous ticks, then bump cnt by one (times scale). */ 3228 static void fmeter_markevent(struct fmeter *fmp) 3229 { 3230 spin_lock(&fmp->lock); 3231 fmeter_update(fmp); 3232 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 3233 spin_unlock(&fmp->lock); 3234 } 3235 3236 /* Process any previous ticks, then return current value. */ 3237 static int fmeter_getrate(struct fmeter *fmp) 3238 { 3239 int val; 3240 3241 spin_lock(&fmp->lock); 3242 fmeter_update(fmp); 3243 val = fmp->val; 3244 spin_unlock(&fmp->lock); 3245 return val; 3246 } 3247 3248 static struct cpuset *cpuset_attach_old_cs; 3249 3250 /* 3251 * Check to see if a cpuset can accept a new task 3252 * For v1, cpus_allowed and mems_allowed can't be empty. 3253 * For v2, effective_cpus can't be empty. 3254 * Note that in v1, effective_cpus = cpus_allowed. 3255 */ 3256 static int cpuset_can_attach_check(struct cpuset *cs) 3257 { 3258 if (cpumask_empty(cs->effective_cpus) || 3259 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) 3260 return -ENOSPC; 3261 return 0; 3262 } 3263 3264 static void reset_migrate_dl_data(struct cpuset *cs) 3265 { 3266 cs->nr_migrate_dl_tasks = 0; 3267 cs->sum_migrate_dl_bw = 0; 3268 } 3269 3270 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 3271 static int cpuset_can_attach(struct cgroup_taskset *tset) 3272 { 3273 struct cgroup_subsys_state *css; 3274 struct cpuset *cs, *oldcs; 3275 struct task_struct *task; 3276 bool cpus_updated, mems_updated; 3277 int ret; 3278 3279 /* used later by cpuset_attach() */ 3280 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 3281 oldcs = cpuset_attach_old_cs; 3282 cs = css_cs(css); 3283 3284 mutex_lock(&cpuset_mutex); 3285 3286 /* Check to see if task is allowed in the cpuset */ 3287 ret = cpuset_can_attach_check(cs); 3288 if (ret) 3289 goto out_unlock; 3290 3291 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); 3292 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 3293 3294 cgroup_taskset_for_each(task, css, tset) { 3295 ret = task_can_attach(task); 3296 if (ret) 3297 goto out_unlock; 3298 3299 /* 3300 * Skip rights over task check in v2 when nothing changes, 3301 * migration permission derives from hierarchy ownership in 3302 * cgroup_procs_write_permission()). 3303 */ 3304 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 3305 (cpus_updated || mems_updated)) { 3306 ret = security_task_setscheduler(task); 3307 if (ret) 3308 goto out_unlock; 3309 } 3310 3311 if (dl_task(task)) { 3312 cs->nr_migrate_dl_tasks++; 3313 cs->sum_migrate_dl_bw += task->dl.dl_bw; 3314 } 3315 } 3316 3317 if (!cs->nr_migrate_dl_tasks) 3318 goto out_success; 3319 3320 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { 3321 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); 3322 3323 if (unlikely(cpu >= nr_cpu_ids)) { 3324 reset_migrate_dl_data(cs); 3325 ret = -EINVAL; 3326 goto out_unlock; 3327 } 3328 3329 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); 3330 if (ret) { 3331 reset_migrate_dl_data(cs); 3332 goto out_unlock; 3333 } 3334 } 3335 3336 out_success: 3337 /* 3338 * Mark attach is in progress. This makes validate_change() fail 3339 * changes which zero cpus/mems_allowed. 3340 */ 3341 cs->attach_in_progress++; 3342 out_unlock: 3343 mutex_unlock(&cpuset_mutex); 3344 return ret; 3345 } 3346 3347 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 3348 { 3349 struct cgroup_subsys_state *css; 3350 struct cpuset *cs; 3351 3352 cgroup_taskset_first(tset, &css); 3353 cs = css_cs(css); 3354 3355 mutex_lock(&cpuset_mutex); 3356 cs->attach_in_progress--; 3357 if (!cs->attach_in_progress) 3358 wake_up(&cpuset_attach_wq); 3359 3360 if (cs->nr_migrate_dl_tasks) { 3361 int cpu = cpumask_any(cs->effective_cpus); 3362 3363 dl_bw_free(cpu, cs->sum_migrate_dl_bw); 3364 reset_migrate_dl_data(cs); 3365 } 3366 3367 mutex_unlock(&cpuset_mutex); 3368 } 3369 3370 /* 3371 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() 3372 * but we can't allocate it dynamically there. Define it global and 3373 * allocate from cpuset_init(). 3374 */ 3375 static cpumask_var_t cpus_attach; 3376 static nodemask_t cpuset_attach_nodemask_to; 3377 3378 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) 3379 { 3380 lockdep_assert_held(&cpuset_mutex); 3381 3382 if (cs != &top_cpuset) 3383 guarantee_online_cpus(task, cpus_attach); 3384 else 3385 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), 3386 subpartitions_cpus); 3387 /* 3388 * can_attach beforehand should guarantee that this doesn't 3389 * fail. TODO: have a better way to handle failure here 3390 */ 3391 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 3392 3393 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 3394 cpuset_update_task_spread_flags(cs, task); 3395 } 3396 3397 static void cpuset_attach(struct cgroup_taskset *tset) 3398 { 3399 struct task_struct *task; 3400 struct task_struct *leader; 3401 struct cgroup_subsys_state *css; 3402 struct cpuset *cs; 3403 struct cpuset *oldcs = cpuset_attach_old_cs; 3404 bool cpus_updated, mems_updated; 3405 3406 cgroup_taskset_first(tset, &css); 3407 cs = css_cs(css); 3408 3409 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ 3410 mutex_lock(&cpuset_mutex); 3411 cpus_updated = !cpumask_equal(cs->effective_cpus, 3412 oldcs->effective_cpus); 3413 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 3414 3415 /* 3416 * In the default hierarchy, enabling cpuset in the child cgroups 3417 * will trigger a number of cpuset_attach() calls with no change 3418 * in effective cpus and mems. In that case, we can optimize out 3419 * by skipping the task iteration and update. 3420 */ 3421 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 3422 !cpus_updated && !mems_updated) { 3423 cpuset_attach_nodemask_to = cs->effective_mems; 3424 goto out; 3425 } 3426 3427 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3428 3429 cgroup_taskset_for_each(task, css, tset) 3430 cpuset_attach_task(cs, task); 3431 3432 /* 3433 * Change mm for all threadgroup leaders. This is expensive and may 3434 * sleep and should be moved outside migration path proper. Skip it 3435 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is 3436 * not set. 3437 */ 3438 cpuset_attach_nodemask_to = cs->effective_mems; 3439 if (!is_memory_migrate(cs) && !mems_updated) 3440 goto out; 3441 3442 cgroup_taskset_for_each_leader(leader, css, tset) { 3443 struct mm_struct *mm = get_task_mm(leader); 3444 3445 if (mm) { 3446 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 3447 3448 /* 3449 * old_mems_allowed is the same with mems_allowed 3450 * here, except if this task is being moved 3451 * automatically due to hotplug. In that case 3452 * @mems_allowed has been updated and is empty, so 3453 * @old_mems_allowed is the right nodesets that we 3454 * migrate mm from. 3455 */ 3456 if (is_memory_migrate(cs)) 3457 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 3458 &cpuset_attach_nodemask_to); 3459 else 3460 mmput(mm); 3461 } 3462 } 3463 3464 out: 3465 cs->old_mems_allowed = cpuset_attach_nodemask_to; 3466 3467 if (cs->nr_migrate_dl_tasks) { 3468 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; 3469 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; 3470 reset_migrate_dl_data(cs); 3471 } 3472 3473 cs->attach_in_progress--; 3474 if (!cs->attach_in_progress) 3475 wake_up(&cpuset_attach_wq); 3476 3477 mutex_unlock(&cpuset_mutex); 3478 } 3479 3480 /* The various types of files and directories in a cpuset file system */ 3481 3482 typedef enum { 3483 FILE_MEMORY_MIGRATE, 3484 FILE_CPULIST, 3485 FILE_MEMLIST, 3486 FILE_EFFECTIVE_CPULIST, 3487 FILE_EFFECTIVE_MEMLIST, 3488 FILE_SUBPARTS_CPULIST, 3489 FILE_EXCLUSIVE_CPULIST, 3490 FILE_EFFECTIVE_XCPULIST, 3491 FILE_ISOLATED_CPULIST, 3492 FILE_CPU_EXCLUSIVE, 3493 FILE_MEM_EXCLUSIVE, 3494 FILE_MEM_HARDWALL, 3495 FILE_SCHED_LOAD_BALANCE, 3496 FILE_PARTITION_ROOT, 3497 FILE_SCHED_RELAX_DOMAIN_LEVEL, 3498 FILE_MEMORY_PRESSURE_ENABLED, 3499 FILE_MEMORY_PRESSURE, 3500 FILE_SPREAD_PAGE, 3501 FILE_SPREAD_SLAB, 3502 } cpuset_filetype_t; 3503 3504 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 3505 u64 val) 3506 { 3507 struct cpuset *cs = css_cs(css); 3508 cpuset_filetype_t type = cft->private; 3509 int retval = 0; 3510 3511 cpus_read_lock(); 3512 mutex_lock(&cpuset_mutex); 3513 if (!is_cpuset_online(cs)) { 3514 retval = -ENODEV; 3515 goto out_unlock; 3516 } 3517 3518 switch (type) { 3519 case FILE_CPU_EXCLUSIVE: 3520 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 3521 break; 3522 case FILE_MEM_EXCLUSIVE: 3523 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 3524 break; 3525 case FILE_MEM_HARDWALL: 3526 retval = update_flag(CS_MEM_HARDWALL, cs, val); 3527 break; 3528 case FILE_SCHED_LOAD_BALANCE: 3529 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 3530 break; 3531 case FILE_MEMORY_MIGRATE: 3532 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 3533 break; 3534 case FILE_MEMORY_PRESSURE_ENABLED: 3535 cpuset_memory_pressure_enabled = !!val; 3536 break; 3537 case FILE_SPREAD_PAGE: 3538 retval = update_flag(CS_SPREAD_PAGE, cs, val); 3539 break; 3540 case FILE_SPREAD_SLAB: 3541 retval = update_flag(CS_SPREAD_SLAB, cs, val); 3542 break; 3543 default: 3544 retval = -EINVAL; 3545 break; 3546 } 3547 out_unlock: 3548 mutex_unlock(&cpuset_mutex); 3549 cpus_read_unlock(); 3550 return retval; 3551 } 3552 3553 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 3554 s64 val) 3555 { 3556 struct cpuset *cs = css_cs(css); 3557 cpuset_filetype_t type = cft->private; 3558 int retval = -ENODEV; 3559 3560 cpus_read_lock(); 3561 mutex_lock(&cpuset_mutex); 3562 if (!is_cpuset_online(cs)) 3563 goto out_unlock; 3564 3565 switch (type) { 3566 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 3567 retval = update_relax_domain_level(cs, val); 3568 break; 3569 default: 3570 retval = -EINVAL; 3571 break; 3572 } 3573 out_unlock: 3574 mutex_unlock(&cpuset_mutex); 3575 cpus_read_unlock(); 3576 return retval; 3577 } 3578 3579 /* 3580 * Common handling for a write to a "cpus" or "mems" file. 3581 */ 3582 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 3583 char *buf, size_t nbytes, loff_t off) 3584 { 3585 struct cpuset *cs = css_cs(of_css(of)); 3586 struct cpuset *trialcs; 3587 int retval = -ENODEV; 3588 3589 buf = strstrip(buf); 3590 3591 /* 3592 * CPU or memory hotunplug may leave @cs w/o any execution 3593 * resources, in which case the hotplug code asynchronously updates 3594 * configuration and transfers all tasks to the nearest ancestor 3595 * which can execute. 3596 * 3597 * As writes to "cpus" or "mems" may restore @cs's execution 3598 * resources, wait for the previously scheduled operations before 3599 * proceeding, so that we don't end up keep removing tasks added 3600 * after execution capability is restored. 3601 * 3602 * cpuset_hotplug_work calls back into cgroup core via 3603 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 3604 * operation like this one can lead to a deadlock through kernfs 3605 * active_ref protection. Let's break the protection. Losing the 3606 * protection is okay as we check whether @cs is online after 3607 * grabbing cpuset_mutex anyway. This only happens on the legacy 3608 * hierarchies. 3609 */ 3610 css_get(&cs->css); 3611 kernfs_break_active_protection(of->kn); 3612 flush_work(&cpuset_hotplug_work); 3613 3614 cpus_read_lock(); 3615 mutex_lock(&cpuset_mutex); 3616 if (!is_cpuset_online(cs)) 3617 goto out_unlock; 3618 3619 trialcs = alloc_trial_cpuset(cs); 3620 if (!trialcs) { 3621 retval = -ENOMEM; 3622 goto out_unlock; 3623 } 3624 3625 switch (of_cft(of)->private) { 3626 case FILE_CPULIST: 3627 retval = update_cpumask(cs, trialcs, buf); 3628 break; 3629 case FILE_EXCLUSIVE_CPULIST: 3630 retval = update_exclusive_cpumask(cs, trialcs, buf); 3631 break; 3632 case FILE_MEMLIST: 3633 retval = update_nodemask(cs, trialcs, buf); 3634 break; 3635 default: 3636 retval = -EINVAL; 3637 break; 3638 } 3639 3640 free_cpuset(trialcs); 3641 out_unlock: 3642 mutex_unlock(&cpuset_mutex); 3643 cpus_read_unlock(); 3644 kernfs_unbreak_active_protection(of->kn); 3645 css_put(&cs->css); 3646 flush_workqueue(cpuset_migrate_mm_wq); 3647 return retval ?: nbytes; 3648 } 3649 3650 /* 3651 * These ascii lists should be read in a single call, by using a user 3652 * buffer large enough to hold the entire map. If read in smaller 3653 * chunks, there is no guarantee of atomicity. Since the display format 3654 * used, list of ranges of sequential numbers, is variable length, 3655 * and since these maps can change value dynamically, one could read 3656 * gibberish by doing partial reads while a list was changing. 3657 */ 3658 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 3659 { 3660 struct cpuset *cs = css_cs(seq_css(sf)); 3661 cpuset_filetype_t type = seq_cft(sf)->private; 3662 int ret = 0; 3663 3664 spin_lock_irq(&callback_lock); 3665 3666 switch (type) { 3667 case FILE_CPULIST: 3668 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 3669 break; 3670 case FILE_MEMLIST: 3671 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 3672 break; 3673 case FILE_EFFECTIVE_CPULIST: 3674 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 3675 break; 3676 case FILE_EFFECTIVE_MEMLIST: 3677 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 3678 break; 3679 case FILE_EXCLUSIVE_CPULIST: 3680 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus)); 3681 break; 3682 case FILE_EFFECTIVE_XCPULIST: 3683 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus)); 3684 break; 3685 case FILE_SUBPARTS_CPULIST: 3686 seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus)); 3687 break; 3688 case FILE_ISOLATED_CPULIST: 3689 seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus)); 3690 break; 3691 default: 3692 ret = -EINVAL; 3693 } 3694 3695 spin_unlock_irq(&callback_lock); 3696 return ret; 3697 } 3698 3699 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 3700 { 3701 struct cpuset *cs = css_cs(css); 3702 cpuset_filetype_t type = cft->private; 3703 switch (type) { 3704 case FILE_CPU_EXCLUSIVE: 3705 return is_cpu_exclusive(cs); 3706 case FILE_MEM_EXCLUSIVE: 3707 return is_mem_exclusive(cs); 3708 case FILE_MEM_HARDWALL: 3709 return is_mem_hardwall(cs); 3710 case FILE_SCHED_LOAD_BALANCE: 3711 return is_sched_load_balance(cs); 3712 case FILE_MEMORY_MIGRATE: 3713 return is_memory_migrate(cs); 3714 case FILE_MEMORY_PRESSURE_ENABLED: 3715 return cpuset_memory_pressure_enabled; 3716 case FILE_MEMORY_PRESSURE: 3717 return fmeter_getrate(&cs->fmeter); 3718 case FILE_SPREAD_PAGE: 3719 return is_spread_page(cs); 3720 case FILE_SPREAD_SLAB: 3721 return is_spread_slab(cs); 3722 default: 3723 BUG(); 3724 } 3725 3726 /* Unreachable but makes gcc happy */ 3727 return 0; 3728 } 3729 3730 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 3731 { 3732 struct cpuset *cs = css_cs(css); 3733 cpuset_filetype_t type = cft->private; 3734 switch (type) { 3735 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 3736 return cs->relax_domain_level; 3737 default: 3738 BUG(); 3739 } 3740 3741 /* Unreachable but makes gcc happy */ 3742 return 0; 3743 } 3744 3745 static int sched_partition_show(struct seq_file *seq, void *v) 3746 { 3747 struct cpuset *cs = css_cs(seq_css(seq)); 3748 const char *err, *type = NULL; 3749 3750 switch (cs->partition_root_state) { 3751 case PRS_ROOT: 3752 seq_puts(seq, "root\n"); 3753 break; 3754 case PRS_ISOLATED: 3755 seq_puts(seq, "isolated\n"); 3756 break; 3757 case PRS_MEMBER: 3758 seq_puts(seq, "member\n"); 3759 break; 3760 case PRS_INVALID_ROOT: 3761 type = "root"; 3762 fallthrough; 3763 case PRS_INVALID_ISOLATED: 3764 if (!type) 3765 type = "isolated"; 3766 err = perr_strings[READ_ONCE(cs->prs_err)]; 3767 if (err) 3768 seq_printf(seq, "%s invalid (%s)\n", type, err); 3769 else 3770 seq_printf(seq, "%s invalid\n", type); 3771 break; 3772 } 3773 return 0; 3774 } 3775 3776 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 3777 size_t nbytes, loff_t off) 3778 { 3779 struct cpuset *cs = css_cs(of_css(of)); 3780 int val; 3781 int retval = -ENODEV; 3782 3783 buf = strstrip(buf); 3784 3785 /* 3786 * Convert "root" to ENABLED, and convert "member" to DISABLED. 3787 */ 3788 if (!strcmp(buf, "root")) 3789 val = PRS_ROOT; 3790 else if (!strcmp(buf, "member")) 3791 val = PRS_MEMBER; 3792 else if (!strcmp(buf, "isolated")) 3793 val = PRS_ISOLATED; 3794 else 3795 return -EINVAL; 3796 3797 css_get(&cs->css); 3798 cpus_read_lock(); 3799 mutex_lock(&cpuset_mutex); 3800 if (!is_cpuset_online(cs)) 3801 goto out_unlock; 3802 3803 retval = update_prstate(cs, val); 3804 out_unlock: 3805 mutex_unlock(&cpuset_mutex); 3806 cpus_read_unlock(); 3807 css_put(&cs->css); 3808 return retval ?: nbytes; 3809 } 3810 3811 /* 3812 * for the common functions, 'private' gives the type of file 3813 */ 3814 3815 static struct cftype legacy_files[] = { 3816 { 3817 .name = "cpus", 3818 .seq_show = cpuset_common_seq_show, 3819 .write = cpuset_write_resmask, 3820 .max_write_len = (100U + 6 * NR_CPUS), 3821 .private = FILE_CPULIST, 3822 }, 3823 3824 { 3825 .name = "mems", 3826 .seq_show = cpuset_common_seq_show, 3827 .write = cpuset_write_resmask, 3828 .max_write_len = (100U + 6 * MAX_NUMNODES), 3829 .private = FILE_MEMLIST, 3830 }, 3831 3832 { 3833 .name = "effective_cpus", 3834 .seq_show = cpuset_common_seq_show, 3835 .private = FILE_EFFECTIVE_CPULIST, 3836 }, 3837 3838 { 3839 .name = "effective_mems", 3840 .seq_show = cpuset_common_seq_show, 3841 .private = FILE_EFFECTIVE_MEMLIST, 3842 }, 3843 3844 { 3845 .name = "cpu_exclusive", 3846 .read_u64 = cpuset_read_u64, 3847 .write_u64 = cpuset_write_u64, 3848 .private = FILE_CPU_EXCLUSIVE, 3849 }, 3850 3851 { 3852 .name = "mem_exclusive", 3853 .read_u64 = cpuset_read_u64, 3854 .write_u64 = cpuset_write_u64, 3855 .private = FILE_MEM_EXCLUSIVE, 3856 }, 3857 3858 { 3859 .name = "mem_hardwall", 3860 .read_u64 = cpuset_read_u64, 3861 .write_u64 = cpuset_write_u64, 3862 .private = FILE_MEM_HARDWALL, 3863 }, 3864 3865 { 3866 .name = "sched_load_balance", 3867 .read_u64 = cpuset_read_u64, 3868 .write_u64 = cpuset_write_u64, 3869 .private = FILE_SCHED_LOAD_BALANCE, 3870 }, 3871 3872 { 3873 .name = "sched_relax_domain_level", 3874 .read_s64 = cpuset_read_s64, 3875 .write_s64 = cpuset_write_s64, 3876 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 3877 }, 3878 3879 { 3880 .name = "memory_migrate", 3881 .read_u64 = cpuset_read_u64, 3882 .write_u64 = cpuset_write_u64, 3883 .private = FILE_MEMORY_MIGRATE, 3884 }, 3885 3886 { 3887 .name = "memory_pressure", 3888 .read_u64 = cpuset_read_u64, 3889 .private = FILE_MEMORY_PRESSURE, 3890 }, 3891 3892 { 3893 .name = "memory_spread_page", 3894 .read_u64 = cpuset_read_u64, 3895 .write_u64 = cpuset_write_u64, 3896 .private = FILE_SPREAD_PAGE, 3897 }, 3898 3899 { 3900 /* obsolete, may be removed in the future */ 3901 .name = "memory_spread_slab", 3902 .read_u64 = cpuset_read_u64, 3903 .write_u64 = cpuset_write_u64, 3904 .private = FILE_SPREAD_SLAB, 3905 }, 3906 3907 { 3908 .name = "memory_pressure_enabled", 3909 .flags = CFTYPE_ONLY_ON_ROOT, 3910 .read_u64 = cpuset_read_u64, 3911 .write_u64 = cpuset_write_u64, 3912 .private = FILE_MEMORY_PRESSURE_ENABLED, 3913 }, 3914 3915 { } /* terminate */ 3916 }; 3917 3918 /* 3919 * This is currently a minimal set for the default hierarchy. It can be 3920 * expanded later on by migrating more features and control files from v1. 3921 */ 3922 static struct cftype dfl_files[] = { 3923 { 3924 .name = "cpus", 3925 .seq_show = cpuset_common_seq_show, 3926 .write = cpuset_write_resmask, 3927 .max_write_len = (100U + 6 * NR_CPUS), 3928 .private = FILE_CPULIST, 3929 .flags = CFTYPE_NOT_ON_ROOT, 3930 }, 3931 3932 { 3933 .name = "mems", 3934 .seq_show = cpuset_common_seq_show, 3935 .write = cpuset_write_resmask, 3936 .max_write_len = (100U + 6 * MAX_NUMNODES), 3937 .private = FILE_MEMLIST, 3938 .flags = CFTYPE_NOT_ON_ROOT, 3939 }, 3940 3941 { 3942 .name = "cpus.effective", 3943 .seq_show = cpuset_common_seq_show, 3944 .private = FILE_EFFECTIVE_CPULIST, 3945 }, 3946 3947 { 3948 .name = "mems.effective", 3949 .seq_show = cpuset_common_seq_show, 3950 .private = FILE_EFFECTIVE_MEMLIST, 3951 }, 3952 3953 { 3954 .name = "cpus.partition", 3955 .seq_show = sched_partition_show, 3956 .write = sched_partition_write, 3957 .private = FILE_PARTITION_ROOT, 3958 .flags = CFTYPE_NOT_ON_ROOT, 3959 .file_offset = offsetof(struct cpuset, partition_file), 3960 }, 3961 3962 { 3963 .name = "cpus.exclusive", 3964 .seq_show = cpuset_common_seq_show, 3965 .write = cpuset_write_resmask, 3966 .max_write_len = (100U + 6 * NR_CPUS), 3967 .private = FILE_EXCLUSIVE_CPULIST, 3968 .flags = CFTYPE_NOT_ON_ROOT, 3969 }, 3970 3971 { 3972 .name = "cpus.exclusive.effective", 3973 .seq_show = cpuset_common_seq_show, 3974 .private = FILE_EFFECTIVE_XCPULIST, 3975 .flags = CFTYPE_NOT_ON_ROOT, 3976 }, 3977 3978 { 3979 .name = "cpus.subpartitions", 3980 .seq_show = cpuset_common_seq_show, 3981 .private = FILE_SUBPARTS_CPULIST, 3982 .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG, 3983 }, 3984 3985 { 3986 .name = "cpus.isolated", 3987 .seq_show = cpuset_common_seq_show, 3988 .private = FILE_ISOLATED_CPULIST, 3989 .flags = CFTYPE_ONLY_ON_ROOT, 3990 }, 3991 3992 { } /* terminate */ 3993 }; 3994 3995 3996 /** 3997 * cpuset_css_alloc - Allocate a cpuset css 3998 * @parent_css: Parent css of the control group that the new cpuset will be 3999 * part of 4000 * Return: cpuset css on success, -ENOMEM on failure. 4001 * 4002 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return 4003 * top cpuset css otherwise. 4004 */ 4005 static struct cgroup_subsys_state * 4006 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 4007 { 4008 struct cpuset *cs; 4009 4010 if (!parent_css) 4011 return &top_cpuset.css; 4012 4013 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 4014 if (!cs) 4015 return ERR_PTR(-ENOMEM); 4016 4017 if (alloc_cpumasks(cs, NULL)) { 4018 kfree(cs); 4019 return ERR_PTR(-ENOMEM); 4020 } 4021 4022 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 4023 nodes_clear(cs->mems_allowed); 4024 nodes_clear(cs->effective_mems); 4025 fmeter_init(&cs->fmeter); 4026 cs->relax_domain_level = -1; 4027 INIT_LIST_HEAD(&cs->remote_sibling); 4028 4029 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 4030 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 4031 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 4032 4033 return &cs->css; 4034 } 4035 4036 static int cpuset_css_online(struct cgroup_subsys_state *css) 4037 { 4038 struct cpuset *cs = css_cs(css); 4039 struct cpuset *parent = parent_cs(cs); 4040 struct cpuset *tmp_cs; 4041 struct cgroup_subsys_state *pos_css; 4042 4043 if (!parent) 4044 return 0; 4045 4046 cpus_read_lock(); 4047 mutex_lock(&cpuset_mutex); 4048 4049 set_bit(CS_ONLINE, &cs->flags); 4050 if (is_spread_page(parent)) 4051 set_bit(CS_SPREAD_PAGE, &cs->flags); 4052 if (is_spread_slab(parent)) 4053 set_bit(CS_SPREAD_SLAB, &cs->flags); 4054 4055 cpuset_inc(); 4056 4057 spin_lock_irq(&callback_lock); 4058 if (is_in_v2_mode()) { 4059 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 4060 cs->effective_mems = parent->effective_mems; 4061 cs->use_parent_ecpus = true; 4062 parent->child_ecpus_count++; 4063 /* 4064 * Clear CS_SCHED_LOAD_BALANCE if parent is isolated 4065 */ 4066 if (!is_sched_load_balance(parent)) 4067 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 4068 } 4069 4070 /* 4071 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated 4072 */ 4073 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 4074 !is_sched_load_balance(parent)) 4075 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 4076 4077 spin_unlock_irq(&callback_lock); 4078 4079 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 4080 goto out_unlock; 4081 4082 /* 4083 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 4084 * set. This flag handling is implemented in cgroup core for 4085 * historical reasons - the flag may be specified during mount. 4086 * 4087 * Currently, if any sibling cpusets have exclusive cpus or mem, we 4088 * refuse to clone the configuration - thereby refusing the task to 4089 * be entered, and as a result refusing the sys_unshare() or 4090 * clone() which initiated it. If this becomes a problem for some 4091 * users who wish to allow that scenario, then this could be 4092 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 4093 * (and likewise for mems) to the new cgroup. 4094 */ 4095 rcu_read_lock(); 4096 cpuset_for_each_child(tmp_cs, pos_css, parent) { 4097 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 4098 rcu_read_unlock(); 4099 goto out_unlock; 4100 } 4101 } 4102 rcu_read_unlock(); 4103 4104 spin_lock_irq(&callback_lock); 4105 cs->mems_allowed = parent->mems_allowed; 4106 cs->effective_mems = parent->mems_allowed; 4107 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 4108 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 4109 spin_unlock_irq(&callback_lock); 4110 out_unlock: 4111 mutex_unlock(&cpuset_mutex); 4112 cpus_read_unlock(); 4113 return 0; 4114 } 4115 4116 /* 4117 * If the cpuset being removed has its flag 'sched_load_balance' 4118 * enabled, then simulate turning sched_load_balance off, which 4119 * will call rebuild_sched_domains_locked(). That is not needed 4120 * in the default hierarchy where only changes in partition 4121 * will cause repartitioning. 4122 * 4123 * If the cpuset has the 'sched.partition' flag enabled, simulate 4124 * turning 'sched.partition" off. 4125 */ 4126 4127 static void cpuset_css_offline(struct cgroup_subsys_state *css) 4128 { 4129 struct cpuset *cs = css_cs(css); 4130 4131 cpus_read_lock(); 4132 mutex_lock(&cpuset_mutex); 4133 4134 if (is_partition_valid(cs)) 4135 update_prstate(cs, 0); 4136 4137 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 4138 is_sched_load_balance(cs)) 4139 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 4140 4141 if (cs->use_parent_ecpus) { 4142 struct cpuset *parent = parent_cs(cs); 4143 4144 cs->use_parent_ecpus = false; 4145 parent->child_ecpus_count--; 4146 } 4147 4148 cpuset_dec(); 4149 clear_bit(CS_ONLINE, &cs->flags); 4150 4151 mutex_unlock(&cpuset_mutex); 4152 cpus_read_unlock(); 4153 } 4154 4155 static void cpuset_css_free(struct cgroup_subsys_state *css) 4156 { 4157 struct cpuset *cs = css_cs(css); 4158 4159 free_cpuset(cs); 4160 } 4161 4162 static void cpuset_bind(struct cgroup_subsys_state *root_css) 4163 { 4164 mutex_lock(&cpuset_mutex); 4165 spin_lock_irq(&callback_lock); 4166 4167 if (is_in_v2_mode()) { 4168 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 4169 cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask); 4170 top_cpuset.mems_allowed = node_possible_map; 4171 } else { 4172 cpumask_copy(top_cpuset.cpus_allowed, 4173 top_cpuset.effective_cpus); 4174 top_cpuset.mems_allowed = top_cpuset.effective_mems; 4175 } 4176 4177 spin_unlock_irq(&callback_lock); 4178 mutex_unlock(&cpuset_mutex); 4179 } 4180 4181 /* 4182 * In case the child is cloned into a cpuset different from its parent, 4183 * additional checks are done to see if the move is allowed. 4184 */ 4185 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) 4186 { 4187 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 4188 bool same_cs; 4189 int ret; 4190 4191 rcu_read_lock(); 4192 same_cs = (cs == task_cs(current)); 4193 rcu_read_unlock(); 4194 4195 if (same_cs) 4196 return 0; 4197 4198 lockdep_assert_held(&cgroup_mutex); 4199 mutex_lock(&cpuset_mutex); 4200 4201 /* Check to see if task is allowed in the cpuset */ 4202 ret = cpuset_can_attach_check(cs); 4203 if (ret) 4204 goto out_unlock; 4205 4206 ret = task_can_attach(task); 4207 if (ret) 4208 goto out_unlock; 4209 4210 ret = security_task_setscheduler(task); 4211 if (ret) 4212 goto out_unlock; 4213 4214 /* 4215 * Mark attach is in progress. This makes validate_change() fail 4216 * changes which zero cpus/mems_allowed. 4217 */ 4218 cs->attach_in_progress++; 4219 out_unlock: 4220 mutex_unlock(&cpuset_mutex); 4221 return ret; 4222 } 4223 4224 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) 4225 { 4226 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 4227 bool same_cs; 4228 4229 rcu_read_lock(); 4230 same_cs = (cs == task_cs(current)); 4231 rcu_read_unlock(); 4232 4233 if (same_cs) 4234 return; 4235 4236 mutex_lock(&cpuset_mutex); 4237 cs->attach_in_progress--; 4238 if (!cs->attach_in_progress) 4239 wake_up(&cpuset_attach_wq); 4240 mutex_unlock(&cpuset_mutex); 4241 } 4242 4243 /* 4244 * Make sure the new task conform to the current state of its parent, 4245 * which could have been changed by cpuset just after it inherits the 4246 * state from the parent and before it sits on the cgroup's task list. 4247 */ 4248 static void cpuset_fork(struct task_struct *task) 4249 { 4250 struct cpuset *cs; 4251 bool same_cs; 4252 4253 rcu_read_lock(); 4254 cs = task_cs(task); 4255 same_cs = (cs == task_cs(current)); 4256 rcu_read_unlock(); 4257 4258 if (same_cs) { 4259 if (cs == &top_cpuset) 4260 return; 4261 4262 set_cpus_allowed_ptr(task, current->cpus_ptr); 4263 task->mems_allowed = current->mems_allowed; 4264 return; 4265 } 4266 4267 /* CLONE_INTO_CGROUP */ 4268 mutex_lock(&cpuset_mutex); 4269 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 4270 cpuset_attach_task(cs, task); 4271 4272 cs->attach_in_progress--; 4273 if (!cs->attach_in_progress) 4274 wake_up(&cpuset_attach_wq); 4275 4276 mutex_unlock(&cpuset_mutex); 4277 } 4278 4279 struct cgroup_subsys cpuset_cgrp_subsys = { 4280 .css_alloc = cpuset_css_alloc, 4281 .css_online = cpuset_css_online, 4282 .css_offline = cpuset_css_offline, 4283 .css_free = cpuset_css_free, 4284 .can_attach = cpuset_can_attach, 4285 .cancel_attach = cpuset_cancel_attach, 4286 .attach = cpuset_attach, 4287 .post_attach = cpuset_post_attach, 4288 .bind = cpuset_bind, 4289 .can_fork = cpuset_can_fork, 4290 .cancel_fork = cpuset_cancel_fork, 4291 .fork = cpuset_fork, 4292 .legacy_cftypes = legacy_files, 4293 .dfl_cftypes = dfl_files, 4294 .early_init = true, 4295 .threaded = true, 4296 }; 4297 4298 /** 4299 * cpuset_init - initialize cpusets at system boot 4300 * 4301 * Description: Initialize top_cpuset 4302 **/ 4303 4304 int __init cpuset_init(void) 4305 { 4306 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 4307 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 4308 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL)); 4309 BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL)); 4310 BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL)); 4311 BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL)); 4312 4313 cpumask_setall(top_cpuset.cpus_allowed); 4314 nodes_setall(top_cpuset.mems_allowed); 4315 cpumask_setall(top_cpuset.effective_cpus); 4316 cpumask_setall(top_cpuset.effective_xcpus); 4317 cpumask_setall(top_cpuset.exclusive_cpus); 4318 nodes_setall(top_cpuset.effective_mems); 4319 4320 fmeter_init(&top_cpuset.fmeter); 4321 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 4322 top_cpuset.relax_domain_level = -1; 4323 INIT_LIST_HEAD(&remote_children); 4324 4325 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 4326 4327 return 0; 4328 } 4329 4330 /* 4331 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 4332 * or memory nodes, we need to walk over the cpuset hierarchy, 4333 * removing that CPU or node from all cpusets. If this removes the 4334 * last CPU or node from a cpuset, then move the tasks in the empty 4335 * cpuset to its next-highest non-empty parent. 4336 */ 4337 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 4338 { 4339 struct cpuset *parent; 4340 4341 /* 4342 * Find its next-highest non-empty parent, (top cpuset 4343 * has online cpus, so can't be empty). 4344 */ 4345 parent = parent_cs(cs); 4346 while (cpumask_empty(parent->cpus_allowed) || 4347 nodes_empty(parent->mems_allowed)) 4348 parent = parent_cs(parent); 4349 4350 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 4351 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 4352 pr_cont_cgroup_name(cs->css.cgroup); 4353 pr_cont("\n"); 4354 } 4355 } 4356 4357 static void 4358 hotplug_update_tasks_legacy(struct cpuset *cs, 4359 struct cpumask *new_cpus, nodemask_t *new_mems, 4360 bool cpus_updated, bool mems_updated) 4361 { 4362 bool is_empty; 4363 4364 spin_lock_irq(&callback_lock); 4365 cpumask_copy(cs->cpus_allowed, new_cpus); 4366 cpumask_copy(cs->effective_cpus, new_cpus); 4367 cs->mems_allowed = *new_mems; 4368 cs->effective_mems = *new_mems; 4369 spin_unlock_irq(&callback_lock); 4370 4371 /* 4372 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 4373 * as the tasks will be migrated to an ancestor. 4374 */ 4375 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 4376 update_tasks_cpumask(cs, new_cpus); 4377 if (mems_updated && !nodes_empty(cs->mems_allowed)) 4378 update_tasks_nodemask(cs); 4379 4380 is_empty = cpumask_empty(cs->cpus_allowed) || 4381 nodes_empty(cs->mems_allowed); 4382 4383 /* 4384 * Move tasks to the nearest ancestor with execution resources, 4385 * This is full cgroup operation which will also call back into 4386 * cpuset. Should be done outside any lock. 4387 */ 4388 if (is_empty) { 4389 mutex_unlock(&cpuset_mutex); 4390 remove_tasks_in_empty_cpuset(cs); 4391 mutex_lock(&cpuset_mutex); 4392 } 4393 } 4394 4395 static void 4396 hotplug_update_tasks(struct cpuset *cs, 4397 struct cpumask *new_cpus, nodemask_t *new_mems, 4398 bool cpus_updated, bool mems_updated) 4399 { 4400 /* A partition root is allowed to have empty effective cpus */ 4401 if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) 4402 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 4403 if (nodes_empty(*new_mems)) 4404 *new_mems = parent_cs(cs)->effective_mems; 4405 4406 spin_lock_irq(&callback_lock); 4407 cpumask_copy(cs->effective_cpus, new_cpus); 4408 cs->effective_mems = *new_mems; 4409 spin_unlock_irq(&callback_lock); 4410 4411 if (cpus_updated) 4412 update_tasks_cpumask(cs, new_cpus); 4413 if (mems_updated) 4414 update_tasks_nodemask(cs); 4415 } 4416 4417 static bool force_rebuild; 4418 4419 void cpuset_force_rebuild(void) 4420 { 4421 force_rebuild = true; 4422 } 4423 4424 /* 4425 * Attempt to acquire a cpus_read_lock while a hotplug operation may be in 4426 * progress. 4427 * Return: true if successful, false otherwise 4428 * 4429 * To avoid circular lock dependency between cpuset_mutex and cpus_read_lock, 4430 * cpus_read_trylock() is used here to acquire the lock. 4431 */ 4432 static bool cpuset_hotplug_cpus_read_trylock(void) 4433 { 4434 int retries = 0; 4435 4436 while (!cpus_read_trylock()) { 4437 /* 4438 * CPU hotplug still in progress. Retry 5 times 4439 * with a 10ms wait before bailing out. 4440 */ 4441 if (++retries > 5) 4442 return false; 4443 msleep(10); 4444 } 4445 return true; 4446 } 4447 4448 /** 4449 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 4450 * @cs: cpuset in interest 4451 * @tmp: the tmpmasks structure pointer 4452 * 4453 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 4454 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 4455 * all its tasks are moved to the nearest ancestor with both resources. 4456 */ 4457 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 4458 { 4459 static cpumask_t new_cpus; 4460 static nodemask_t new_mems; 4461 bool cpus_updated; 4462 bool mems_updated; 4463 bool remote; 4464 int partcmd = -1; 4465 struct cpuset *parent; 4466 retry: 4467 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 4468 4469 mutex_lock(&cpuset_mutex); 4470 4471 /* 4472 * We have raced with task attaching. We wait until attaching 4473 * is finished, so we won't attach a task to an empty cpuset. 4474 */ 4475 if (cs->attach_in_progress) { 4476 mutex_unlock(&cpuset_mutex); 4477 goto retry; 4478 } 4479 4480 parent = parent_cs(cs); 4481 compute_effective_cpumask(&new_cpus, cs, parent); 4482 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 4483 4484 if (!tmp || !cs->partition_root_state) 4485 goto update_tasks; 4486 4487 /* 4488 * Compute effective_cpus for valid partition root, may invalidate 4489 * child partition roots if necessary. 4490 */ 4491 remote = is_remote_partition(cs); 4492 if (remote || (is_partition_valid(cs) && is_partition_valid(parent))) 4493 compute_partition_effective_cpumask(cs, &new_cpus); 4494 4495 if (remote && cpumask_empty(&new_cpus) && 4496 partition_is_populated(cs, NULL) && 4497 cpuset_hotplug_cpus_read_trylock()) { 4498 remote_partition_disable(cs, tmp); 4499 compute_effective_cpumask(&new_cpus, cs, parent); 4500 remote = false; 4501 cpuset_force_rebuild(); 4502 cpus_read_unlock(); 4503 } 4504 4505 /* 4506 * Force the partition to become invalid if either one of 4507 * the following conditions hold: 4508 * 1) empty effective cpus but not valid empty partition. 4509 * 2) parent is invalid or doesn't grant any cpus to child 4510 * partitions. 4511 */ 4512 if (is_local_partition(cs) && (!is_partition_valid(parent) || 4513 tasks_nocpu_error(parent, cs, &new_cpus))) 4514 partcmd = partcmd_invalidate; 4515 /* 4516 * On the other hand, an invalid partition root may be transitioned 4517 * back to a regular one. 4518 */ 4519 else if (is_partition_valid(parent) && is_partition_invalid(cs)) 4520 partcmd = partcmd_update; 4521 4522 /* 4523 * cpus_read_lock needs to be held before calling 4524 * update_parent_effective_cpumask(). To avoid circular lock 4525 * dependency between cpuset_mutex and cpus_read_lock, 4526 * cpus_read_trylock() is used here to acquire the lock. 4527 */ 4528 if (partcmd >= 0) { 4529 if (!cpuset_hotplug_cpus_read_trylock()) 4530 goto update_tasks; 4531 4532 update_parent_effective_cpumask(cs, partcmd, NULL, tmp); 4533 cpus_read_unlock(); 4534 if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) { 4535 compute_partition_effective_cpumask(cs, &new_cpus); 4536 cpuset_force_rebuild(); 4537 } 4538 } 4539 4540 update_tasks: 4541 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 4542 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 4543 if (!cpus_updated && !mems_updated) 4544 goto unlock; /* Hotplug doesn't affect this cpuset */ 4545 4546 if (mems_updated) 4547 check_insane_mems_config(&new_mems); 4548 4549 if (is_in_v2_mode()) 4550 hotplug_update_tasks(cs, &new_cpus, &new_mems, 4551 cpus_updated, mems_updated); 4552 else 4553 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 4554 cpus_updated, mems_updated); 4555 4556 unlock: 4557 mutex_unlock(&cpuset_mutex); 4558 } 4559 4560 /** 4561 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 4562 * @work: unused 4563 * 4564 * This function is called after either CPU or memory configuration has 4565 * changed and updates cpuset accordingly. The top_cpuset is always 4566 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 4567 * order to make cpusets transparent (of no affect) on systems that are 4568 * actively using CPU hotplug but making no active use of cpusets. 4569 * 4570 * Non-root cpusets are only affected by offlining. If any CPUs or memory 4571 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 4572 * all descendants. 4573 * 4574 * Note that CPU offlining during suspend is ignored. We don't modify 4575 * cpusets across suspend/resume cycles at all. 4576 */ 4577 static void cpuset_hotplug_workfn(struct work_struct *work) 4578 { 4579 static cpumask_t new_cpus; 4580 static nodemask_t new_mems; 4581 bool cpus_updated, mems_updated; 4582 bool on_dfl = is_in_v2_mode(); 4583 struct tmpmasks tmp, *ptmp = NULL; 4584 4585 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 4586 ptmp = &tmp; 4587 4588 mutex_lock(&cpuset_mutex); 4589 4590 /* fetch the available cpus/mems and find out which changed how */ 4591 cpumask_copy(&new_cpus, cpu_active_mask); 4592 new_mems = node_states[N_MEMORY]; 4593 4594 /* 4595 * If subpartitions_cpus is populated, it is likely that the check 4596 * below will produce a false positive on cpus_updated when the cpu 4597 * list isn't changed. It is extra work, but it is better to be safe. 4598 */ 4599 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) || 4600 !cpumask_empty(subpartitions_cpus); 4601 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 4602 4603 /* 4604 * In the rare case that hotplug removes all the cpus in 4605 * subpartitions_cpus, we assumed that cpus are updated. 4606 */ 4607 if (!cpus_updated && top_cpuset.nr_subparts) 4608 cpus_updated = true; 4609 4610 /* For v1, synchronize cpus_allowed to cpu_active_mask */ 4611 if (cpus_updated) { 4612 spin_lock_irq(&callback_lock); 4613 if (!on_dfl) 4614 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 4615 /* 4616 * Make sure that CPUs allocated to child partitions 4617 * do not show up in effective_cpus. If no CPU is left, 4618 * we clear the subpartitions_cpus & let the child partitions 4619 * fight for the CPUs again. 4620 */ 4621 if (!cpumask_empty(subpartitions_cpus)) { 4622 if (cpumask_subset(&new_cpus, subpartitions_cpus)) { 4623 top_cpuset.nr_subparts = 0; 4624 cpumask_clear(subpartitions_cpus); 4625 } else { 4626 cpumask_andnot(&new_cpus, &new_cpus, 4627 subpartitions_cpus); 4628 } 4629 } 4630 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 4631 spin_unlock_irq(&callback_lock); 4632 /* we don't mess with cpumasks of tasks in top_cpuset */ 4633 } 4634 4635 /* synchronize mems_allowed to N_MEMORY */ 4636 if (mems_updated) { 4637 spin_lock_irq(&callback_lock); 4638 if (!on_dfl) 4639 top_cpuset.mems_allowed = new_mems; 4640 top_cpuset.effective_mems = new_mems; 4641 spin_unlock_irq(&callback_lock); 4642 update_tasks_nodemask(&top_cpuset); 4643 } 4644 4645 mutex_unlock(&cpuset_mutex); 4646 4647 /* if cpus or mems changed, we need to propagate to descendants */ 4648 if (cpus_updated || mems_updated) { 4649 struct cpuset *cs; 4650 struct cgroup_subsys_state *pos_css; 4651 4652 rcu_read_lock(); 4653 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 4654 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 4655 continue; 4656 rcu_read_unlock(); 4657 4658 cpuset_hotplug_update_tasks(cs, ptmp); 4659 4660 rcu_read_lock(); 4661 css_put(&cs->css); 4662 } 4663 rcu_read_unlock(); 4664 } 4665 4666 /* rebuild sched domains if cpus_allowed has changed */ 4667 if (cpus_updated || force_rebuild) { 4668 force_rebuild = false; 4669 rebuild_sched_domains(); 4670 } 4671 4672 free_cpumasks(NULL, ptmp); 4673 } 4674 4675 void cpuset_update_active_cpus(void) 4676 { 4677 /* 4678 * We're inside cpu hotplug critical region which usually nests 4679 * inside cgroup synchronization. Bounce actual hotplug processing 4680 * to a work item to avoid reverse locking order. 4681 */ 4682 schedule_work(&cpuset_hotplug_work); 4683 } 4684 4685 void cpuset_wait_for_hotplug(void) 4686 { 4687 flush_work(&cpuset_hotplug_work); 4688 } 4689 4690 /* 4691 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 4692 * Call this routine anytime after node_states[N_MEMORY] changes. 4693 * See cpuset_update_active_cpus() for CPU hotplug handling. 4694 */ 4695 static int cpuset_track_online_nodes(struct notifier_block *self, 4696 unsigned long action, void *arg) 4697 { 4698 schedule_work(&cpuset_hotplug_work); 4699 return NOTIFY_OK; 4700 } 4701 4702 /** 4703 * cpuset_init_smp - initialize cpus_allowed 4704 * 4705 * Description: Finish top cpuset after cpu, node maps are initialized 4706 */ 4707 void __init cpuset_init_smp(void) 4708 { 4709 /* 4710 * cpus_allowd/mems_allowed set to v2 values in the initial 4711 * cpuset_bind() call will be reset to v1 values in another 4712 * cpuset_bind() call when v1 cpuset is mounted. 4713 */ 4714 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 4715 4716 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 4717 top_cpuset.effective_mems = node_states[N_MEMORY]; 4718 4719 hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); 4720 4721 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 4722 BUG_ON(!cpuset_migrate_mm_wq); 4723 } 4724 4725 /** 4726 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 4727 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 4728 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 4729 * 4730 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 4731 * attached to the specified @tsk. Guaranteed to return some non-empty 4732 * subset of cpu_online_mask, even if this means going outside the 4733 * tasks cpuset, except when the task is in the top cpuset. 4734 **/ 4735 4736 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 4737 { 4738 unsigned long flags; 4739 struct cpuset *cs; 4740 4741 spin_lock_irqsave(&callback_lock, flags); 4742 rcu_read_lock(); 4743 4744 cs = task_cs(tsk); 4745 if (cs != &top_cpuset) 4746 guarantee_online_cpus(tsk, pmask); 4747 /* 4748 * Tasks in the top cpuset won't get update to their cpumasks 4749 * when a hotplug online/offline event happens. So we include all 4750 * offline cpus in the allowed cpu list. 4751 */ 4752 if ((cs == &top_cpuset) || cpumask_empty(pmask)) { 4753 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 4754 4755 /* 4756 * We first exclude cpus allocated to partitions. If there is no 4757 * allowable online cpu left, we fall back to all possible cpus. 4758 */ 4759 cpumask_andnot(pmask, possible_mask, subpartitions_cpus); 4760 if (!cpumask_intersects(pmask, cpu_online_mask)) 4761 cpumask_copy(pmask, possible_mask); 4762 } 4763 4764 rcu_read_unlock(); 4765 spin_unlock_irqrestore(&callback_lock, flags); 4766 } 4767 4768 /** 4769 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 4770 * @tsk: pointer to task_struct with which the scheduler is struggling 4771 * 4772 * Description: In the case that the scheduler cannot find an allowed cpu in 4773 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 4774 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 4775 * which will not contain a sane cpumask during cases such as cpu hotplugging. 4776 * This is the absolute last resort for the scheduler and it is only used if 4777 * _every_ other avenue has been traveled. 4778 * 4779 * Returns true if the affinity of @tsk was changed, false otherwise. 4780 **/ 4781 4782 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 4783 { 4784 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 4785 const struct cpumask *cs_mask; 4786 bool changed = false; 4787 4788 rcu_read_lock(); 4789 cs_mask = task_cs(tsk)->cpus_allowed; 4790 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 4791 do_set_cpus_allowed(tsk, cs_mask); 4792 changed = true; 4793 } 4794 rcu_read_unlock(); 4795 4796 /* 4797 * We own tsk->cpus_allowed, nobody can change it under us. 4798 * 4799 * But we used cs && cs->cpus_allowed lockless and thus can 4800 * race with cgroup_attach_task() or update_cpumask() and get 4801 * the wrong tsk->cpus_allowed. However, both cases imply the 4802 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 4803 * which takes task_rq_lock(). 4804 * 4805 * If we are called after it dropped the lock we must see all 4806 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 4807 * set any mask even if it is not right from task_cs() pov, 4808 * the pending set_cpus_allowed_ptr() will fix things. 4809 * 4810 * select_fallback_rq() will fix things ups and set cpu_possible_mask 4811 * if required. 4812 */ 4813 return changed; 4814 } 4815 4816 void __init cpuset_init_current_mems_allowed(void) 4817 { 4818 nodes_setall(current->mems_allowed); 4819 } 4820 4821 /** 4822 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 4823 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 4824 * 4825 * Description: Returns the nodemask_t mems_allowed of the cpuset 4826 * attached to the specified @tsk. Guaranteed to return some non-empty 4827 * subset of node_states[N_MEMORY], even if this means going outside the 4828 * tasks cpuset. 4829 **/ 4830 4831 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 4832 { 4833 nodemask_t mask; 4834 unsigned long flags; 4835 4836 spin_lock_irqsave(&callback_lock, flags); 4837 rcu_read_lock(); 4838 guarantee_online_mems(task_cs(tsk), &mask); 4839 rcu_read_unlock(); 4840 spin_unlock_irqrestore(&callback_lock, flags); 4841 4842 return mask; 4843 } 4844 4845 /** 4846 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 4847 * @nodemask: the nodemask to be checked 4848 * 4849 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 4850 */ 4851 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 4852 { 4853 return nodes_intersects(*nodemask, current->mems_allowed); 4854 } 4855 4856 /* 4857 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 4858 * mem_hardwall ancestor to the specified cpuset. Call holding 4859 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 4860 * (an unusual configuration), then returns the root cpuset. 4861 */ 4862 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 4863 { 4864 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 4865 cs = parent_cs(cs); 4866 return cs; 4867 } 4868 4869 /* 4870 * cpuset_node_allowed - Can we allocate on a memory node? 4871 * @node: is this an allowed node? 4872 * @gfp_mask: memory allocation flags 4873 * 4874 * If we're in interrupt, yes, we can always allocate. If @node is set in 4875 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 4876 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 4877 * yes. If current has access to memory reserves as an oom victim, yes. 4878 * Otherwise, no. 4879 * 4880 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 4881 * and do not allow allocations outside the current tasks cpuset 4882 * unless the task has been OOM killed. 4883 * GFP_KERNEL allocations are not so marked, so can escape to the 4884 * nearest enclosing hardwalled ancestor cpuset. 4885 * 4886 * Scanning up parent cpusets requires callback_lock. The 4887 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 4888 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 4889 * current tasks mems_allowed came up empty on the first pass over 4890 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 4891 * cpuset are short of memory, might require taking the callback_lock. 4892 * 4893 * The first call here from mm/page_alloc:get_page_from_freelist() 4894 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 4895 * so no allocation on a node outside the cpuset is allowed (unless 4896 * in interrupt, of course). 4897 * 4898 * The second pass through get_page_from_freelist() doesn't even call 4899 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 4900 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 4901 * in alloc_flags. That logic and the checks below have the combined 4902 * affect that: 4903 * in_interrupt - any node ok (current task context irrelevant) 4904 * GFP_ATOMIC - any node ok 4905 * tsk_is_oom_victim - any node ok 4906 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 4907 * GFP_USER - only nodes in current tasks mems allowed ok. 4908 */ 4909 bool cpuset_node_allowed(int node, gfp_t gfp_mask) 4910 { 4911 struct cpuset *cs; /* current cpuset ancestors */ 4912 bool allowed; /* is allocation in zone z allowed? */ 4913 unsigned long flags; 4914 4915 if (in_interrupt()) 4916 return true; 4917 if (node_isset(node, current->mems_allowed)) 4918 return true; 4919 /* 4920 * Allow tasks that have access to memory reserves because they have 4921 * been OOM killed to get memory anywhere. 4922 */ 4923 if (unlikely(tsk_is_oom_victim(current))) 4924 return true; 4925 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 4926 return false; 4927 4928 if (current->flags & PF_EXITING) /* Let dying task have memory */ 4929 return true; 4930 4931 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 4932 spin_lock_irqsave(&callback_lock, flags); 4933 4934 rcu_read_lock(); 4935 cs = nearest_hardwall_ancestor(task_cs(current)); 4936 allowed = node_isset(node, cs->mems_allowed); 4937 rcu_read_unlock(); 4938 4939 spin_unlock_irqrestore(&callback_lock, flags); 4940 return allowed; 4941 } 4942 4943 /** 4944 * cpuset_spread_node() - On which node to begin search for a page 4945 * @rotor: round robin rotor 4946 * 4947 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 4948 * tasks in a cpuset with is_spread_page or is_spread_slab set), 4949 * and if the memory allocation used cpuset_mem_spread_node() 4950 * to determine on which node to start looking, as it will for 4951 * certain page cache or slab cache pages such as used for file 4952 * system buffers and inode caches, then instead of starting on the 4953 * local node to look for a free page, rather spread the starting 4954 * node around the tasks mems_allowed nodes. 4955 * 4956 * We don't have to worry about the returned node being offline 4957 * because "it can't happen", and even if it did, it would be ok. 4958 * 4959 * The routines calling guarantee_online_mems() are careful to 4960 * only set nodes in task->mems_allowed that are online. So it 4961 * should not be possible for the following code to return an 4962 * offline node. But if it did, that would be ok, as this routine 4963 * is not returning the node where the allocation must be, only 4964 * the node where the search should start. The zonelist passed to 4965 * __alloc_pages() will include all nodes. If the slab allocator 4966 * is passed an offline node, it will fall back to the local node. 4967 * See kmem_cache_alloc_node(). 4968 */ 4969 static int cpuset_spread_node(int *rotor) 4970 { 4971 return *rotor = next_node_in(*rotor, current->mems_allowed); 4972 } 4973 4974 /** 4975 * cpuset_mem_spread_node() - On which node to begin search for a file page 4976 */ 4977 int cpuset_mem_spread_node(void) 4978 { 4979 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 4980 current->cpuset_mem_spread_rotor = 4981 node_random(¤t->mems_allowed); 4982 4983 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 4984 } 4985 4986 /** 4987 * cpuset_slab_spread_node() - On which node to begin search for a slab page 4988 */ 4989 int cpuset_slab_spread_node(void) 4990 { 4991 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 4992 current->cpuset_slab_spread_rotor = 4993 node_random(¤t->mems_allowed); 4994 4995 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 4996 } 4997 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 4998 4999 /** 5000 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 5001 * @tsk1: pointer to task_struct of some task. 5002 * @tsk2: pointer to task_struct of some other task. 5003 * 5004 * Description: Return true if @tsk1's mems_allowed intersects the 5005 * mems_allowed of @tsk2. Used by the OOM killer to determine if 5006 * one of the task's memory usage might impact the memory available 5007 * to the other. 5008 **/ 5009 5010 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 5011 const struct task_struct *tsk2) 5012 { 5013 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 5014 } 5015 5016 /** 5017 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 5018 * 5019 * Description: Prints current's name, cpuset name, and cached copy of its 5020 * mems_allowed to the kernel log. 5021 */ 5022 void cpuset_print_current_mems_allowed(void) 5023 { 5024 struct cgroup *cgrp; 5025 5026 rcu_read_lock(); 5027 5028 cgrp = task_cs(current)->css.cgroup; 5029 pr_cont(",cpuset="); 5030 pr_cont_cgroup_name(cgrp); 5031 pr_cont(",mems_allowed=%*pbl", 5032 nodemask_pr_args(¤t->mems_allowed)); 5033 5034 rcu_read_unlock(); 5035 } 5036 5037 /* 5038 * Collection of memory_pressure is suppressed unless 5039 * this flag is enabled by writing "1" to the special 5040 * cpuset file 'memory_pressure_enabled' in the root cpuset. 5041 */ 5042 5043 int cpuset_memory_pressure_enabled __read_mostly; 5044 5045 /* 5046 * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 5047 * 5048 * Keep a running average of the rate of synchronous (direct) 5049 * page reclaim efforts initiated by tasks in each cpuset. 5050 * 5051 * This represents the rate at which some task in the cpuset 5052 * ran low on memory on all nodes it was allowed to use, and 5053 * had to enter the kernels page reclaim code in an effort to 5054 * create more free memory by tossing clean pages or swapping 5055 * or writing dirty pages. 5056 * 5057 * Display to user space in the per-cpuset read-only file 5058 * "memory_pressure". Value displayed is an integer 5059 * representing the recent rate of entry into the synchronous 5060 * (direct) page reclaim by any task attached to the cpuset. 5061 */ 5062 5063 void __cpuset_memory_pressure_bump(void) 5064 { 5065 rcu_read_lock(); 5066 fmeter_markevent(&task_cs(current)->fmeter); 5067 rcu_read_unlock(); 5068 } 5069 5070 #ifdef CONFIG_PROC_PID_CPUSET 5071 /* 5072 * proc_cpuset_show() 5073 * - Print tasks cpuset path into seq_file. 5074 * - Used for /proc/<pid>/cpuset. 5075 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 5076 * doesn't really matter if tsk->cpuset changes after we read it, 5077 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 5078 * anyway. 5079 */ 5080 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 5081 struct pid *pid, struct task_struct *tsk) 5082 { 5083 char *buf; 5084 struct cgroup_subsys_state *css; 5085 int retval; 5086 5087 retval = -ENOMEM; 5088 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5089 if (!buf) 5090 goto out; 5091 5092 css = task_get_css(tsk, cpuset_cgrp_id); 5093 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 5094 current->nsproxy->cgroup_ns); 5095 css_put(css); 5096 if (retval == -E2BIG) 5097 retval = -ENAMETOOLONG; 5098 if (retval < 0) 5099 goto out_free; 5100 seq_puts(m, buf); 5101 seq_putc(m, '\n'); 5102 retval = 0; 5103 out_free: 5104 kfree(buf); 5105 out: 5106 return retval; 5107 } 5108 #endif /* CONFIG_PROC_PID_CPUSET */ 5109 5110 /* Display task mems_allowed in /proc/<pid>/status file. */ 5111 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 5112 { 5113 seq_printf(m, "Mems_allowed:\t%*pb\n", 5114 nodemask_pr_args(&task->mems_allowed)); 5115 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 5116 nodemask_pr_args(&task->mems_allowed)); 5117 } 5118