xref: /linux/kernel/cgroup/cpuset.c (revision 76d9b92e68f2bb55890f935c5143f4fef97a935d)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 #include "cgroup-internal.h"
25 
26 #include <linux/cpu.h>
27 #include <linux/cpumask.h>
28 #include <linux/cpuset.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/mempolicy.h>
34 #include <linux/mm.h>
35 #include <linux/memory.h>
36 #include <linux/export.h>
37 #include <linux/rcupdate.h>
38 #include <linux/sched.h>
39 #include <linux/sched/deadline.h>
40 #include <linux/sched/mm.h>
41 #include <linux/sched/task.h>
42 #include <linux/security.h>
43 #include <linux/spinlock.h>
44 #include <linux/oom.h>
45 #include <linux/sched/isolation.h>
46 #include <linux/cgroup.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 
50 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
51 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
52 
53 /*
54  * There could be abnormal cpuset configurations for cpu or memory
55  * node binding, add this key to provide a quick low-cost judgment
56  * of the situation.
57  */
58 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
59 
60 /* See "Frequency meter" comments, below. */
61 
62 struct fmeter {
63 	int cnt;		/* unprocessed events count */
64 	int val;		/* most recent output value */
65 	time64_t time;		/* clock (secs) when val computed */
66 	spinlock_t lock;	/* guards read or write of above */
67 };
68 
69 /*
70  * Invalid partition error code
71  */
72 enum prs_errcode {
73 	PERR_NONE = 0,
74 	PERR_INVCPUS,
75 	PERR_INVPARENT,
76 	PERR_NOTPART,
77 	PERR_NOTEXCL,
78 	PERR_NOCPUS,
79 	PERR_HOTPLUG,
80 	PERR_CPUSEMPTY,
81 	PERR_HKEEPING,
82 };
83 
84 static const char * const perr_strings[] = {
85 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus.exclusive",
86 	[PERR_INVPARENT] = "Parent is an invalid partition root",
87 	[PERR_NOTPART]   = "Parent is not a partition root",
88 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
89 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
90 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
91 	[PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
92 	[PERR_HKEEPING]  = "partition config conflicts with housekeeping setup",
93 };
94 
95 struct cpuset {
96 	struct cgroup_subsys_state css;
97 
98 	unsigned long flags;		/* "unsigned long" so bitops work */
99 
100 	/*
101 	 * On default hierarchy:
102 	 *
103 	 * The user-configured masks can only be changed by writing to
104 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
105 	 * parent masks.
106 	 *
107 	 * The effective masks is the real masks that apply to the tasks
108 	 * in the cpuset. They may be changed if the configured masks are
109 	 * changed or hotplug happens.
110 	 *
111 	 * effective_mask == configured_mask & parent's effective_mask,
112 	 * and if it ends up empty, it will inherit the parent's mask.
113 	 *
114 	 *
115 	 * On legacy hierarchy:
116 	 *
117 	 * The user-configured masks are always the same with effective masks.
118 	 */
119 
120 	/* user-configured CPUs and Memory Nodes allow to tasks */
121 	cpumask_var_t cpus_allowed;
122 	nodemask_t mems_allowed;
123 
124 	/* effective CPUs and Memory Nodes allow to tasks */
125 	cpumask_var_t effective_cpus;
126 	nodemask_t effective_mems;
127 
128 	/*
129 	 * Exclusive CPUs dedicated to current cgroup (default hierarchy only)
130 	 *
131 	 * The effective_cpus of a valid partition root comes solely from its
132 	 * effective_xcpus and some of the effective_xcpus may be distributed
133 	 * to sub-partitions below & hence excluded from its effective_cpus.
134 	 * For a valid partition root, its effective_cpus have no relationship
135 	 * with cpus_allowed unless its exclusive_cpus isn't set.
136 	 *
137 	 * This value will only be set if either exclusive_cpus is set or
138 	 * when this cpuset becomes a local partition root.
139 	 */
140 	cpumask_var_t effective_xcpus;
141 
142 	/*
143 	 * Exclusive CPUs as requested by the user (default hierarchy only)
144 	 *
145 	 * Its value is independent of cpus_allowed and designates the set of
146 	 * CPUs that can be granted to the current cpuset or its children when
147 	 * it becomes a valid partition root. The effective set of exclusive
148 	 * CPUs granted (effective_xcpus) depends on whether those exclusive
149 	 * CPUs are passed down by its ancestors and not yet taken up by
150 	 * another sibling partition root along the way.
151 	 *
152 	 * If its value isn't set, it defaults to cpus_allowed.
153 	 */
154 	cpumask_var_t exclusive_cpus;
155 
156 	/*
157 	 * This is old Memory Nodes tasks took on.
158 	 *
159 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
160 	 * - A new cpuset's old_mems_allowed is initialized when some
161 	 *   task is moved into it.
162 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
163 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
164 	 *   then old_mems_allowed is updated to mems_allowed.
165 	 */
166 	nodemask_t old_mems_allowed;
167 
168 	struct fmeter fmeter;		/* memory_pressure filter */
169 
170 	/*
171 	 * Tasks are being attached to this cpuset.  Used to prevent
172 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
173 	 */
174 	int attach_in_progress;
175 
176 	/* partition number for rebuild_sched_domains() */
177 	int pn;
178 
179 	/* for custom sched domain */
180 	int relax_domain_level;
181 
182 	/* number of valid local child partitions */
183 	int nr_subparts;
184 
185 	/* partition root state */
186 	int partition_root_state;
187 
188 	/*
189 	 * Default hierarchy only:
190 	 * use_parent_ecpus - set if using parent's effective_cpus
191 	 * child_ecpus_count - # of children with use_parent_ecpus set
192 	 */
193 	int use_parent_ecpus;
194 	int child_ecpus_count;
195 
196 	/*
197 	 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we
198 	 * know when to rebuild associated root domain bandwidth information.
199 	 */
200 	int nr_deadline_tasks;
201 	int nr_migrate_dl_tasks;
202 	u64 sum_migrate_dl_bw;
203 
204 	/* Invalid partition error code, not lock protected */
205 	enum prs_errcode prs_err;
206 
207 	/* Handle for cpuset.cpus.partition */
208 	struct cgroup_file partition_file;
209 
210 	/* Remote partition silbling list anchored at remote_children */
211 	struct list_head remote_sibling;
212 };
213 
214 /*
215  * Legacy hierarchy call to cgroup_transfer_tasks() is handled asynchrously
216  */
217 struct cpuset_remove_tasks_struct {
218 	struct work_struct work;
219 	struct cpuset *cs;
220 };
221 
222 /*
223  * Exclusive CPUs distributed out to sub-partitions of top_cpuset
224  */
225 static cpumask_var_t	subpartitions_cpus;
226 
227 /*
228  * Exclusive CPUs in isolated partitions
229  */
230 static cpumask_var_t	isolated_cpus;
231 
232 /* List of remote partition root children */
233 static struct list_head remote_children;
234 
235 /*
236  * Partition root states:
237  *
238  *   0 - member (not a partition root)
239  *   1 - partition root
240  *   2 - partition root without load balancing (isolated)
241  *  -1 - invalid partition root
242  *  -2 - invalid isolated partition root
243  *
244  *  There are 2 types of partitions - local or remote. Local partitions are
245  *  those whose parents are partition root themselves. Setting of
246  *  cpuset.cpus.exclusive are optional in setting up local partitions.
247  *  Remote partitions are those whose parents are not partition roots. Passing
248  *  down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
249  *  nodes are mandatory in creating a remote partition.
250  *
251  *  For simplicity, a local partition can be created under a local or remote
252  *  partition but a remote partition cannot have any partition root in its
253  *  ancestor chain except the cgroup root.
254  */
255 #define PRS_MEMBER		0
256 #define PRS_ROOT		1
257 #define PRS_ISOLATED		2
258 #define PRS_INVALID_ROOT	-1
259 #define PRS_INVALID_ISOLATED	-2
260 
261 static inline bool is_prs_invalid(int prs_state)
262 {
263 	return prs_state < 0;
264 }
265 
266 /*
267  * Temporary cpumasks for working with partitions that are passed among
268  * functions to avoid memory allocation in inner functions.
269  */
270 struct tmpmasks {
271 	cpumask_var_t addmask, delmask;	/* For partition root */
272 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
273 };
274 
275 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
276 {
277 	return css ? container_of(css, struct cpuset, css) : NULL;
278 }
279 
280 /* Retrieve the cpuset for a task */
281 static inline struct cpuset *task_cs(struct task_struct *task)
282 {
283 	return css_cs(task_css(task, cpuset_cgrp_id));
284 }
285 
286 static inline struct cpuset *parent_cs(struct cpuset *cs)
287 {
288 	return css_cs(cs->css.parent);
289 }
290 
291 void inc_dl_tasks_cs(struct task_struct *p)
292 {
293 	struct cpuset *cs = task_cs(p);
294 
295 	cs->nr_deadline_tasks++;
296 }
297 
298 void dec_dl_tasks_cs(struct task_struct *p)
299 {
300 	struct cpuset *cs = task_cs(p);
301 
302 	cs->nr_deadline_tasks--;
303 }
304 
305 /* bits in struct cpuset flags field */
306 typedef enum {
307 	CS_ONLINE,
308 	CS_CPU_EXCLUSIVE,
309 	CS_MEM_EXCLUSIVE,
310 	CS_MEM_HARDWALL,
311 	CS_MEMORY_MIGRATE,
312 	CS_SCHED_LOAD_BALANCE,
313 	CS_SPREAD_PAGE,
314 	CS_SPREAD_SLAB,
315 } cpuset_flagbits_t;
316 
317 /* convenient tests for these bits */
318 static inline bool is_cpuset_online(struct cpuset *cs)
319 {
320 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
321 }
322 
323 static inline int is_cpu_exclusive(const struct cpuset *cs)
324 {
325 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
326 }
327 
328 static inline int is_mem_exclusive(const struct cpuset *cs)
329 {
330 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
331 }
332 
333 static inline int is_mem_hardwall(const struct cpuset *cs)
334 {
335 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
336 }
337 
338 static inline int is_sched_load_balance(const struct cpuset *cs)
339 {
340 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
341 }
342 
343 static inline int is_memory_migrate(const struct cpuset *cs)
344 {
345 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
346 }
347 
348 static inline int is_spread_page(const struct cpuset *cs)
349 {
350 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
351 }
352 
353 static inline int is_spread_slab(const struct cpuset *cs)
354 {
355 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
356 }
357 
358 static inline int is_partition_valid(const struct cpuset *cs)
359 {
360 	return cs->partition_root_state > 0;
361 }
362 
363 static inline int is_partition_invalid(const struct cpuset *cs)
364 {
365 	return cs->partition_root_state < 0;
366 }
367 
368 /*
369  * Callers should hold callback_lock to modify partition_root_state.
370  */
371 static inline void make_partition_invalid(struct cpuset *cs)
372 {
373 	if (cs->partition_root_state > 0)
374 		cs->partition_root_state = -cs->partition_root_state;
375 }
376 
377 /*
378  * Send notification event of whenever partition_root_state changes.
379  */
380 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
381 {
382 	if (old_prs == cs->partition_root_state)
383 		return;
384 	cgroup_file_notify(&cs->partition_file);
385 
386 	/* Reset prs_err if not invalid */
387 	if (is_partition_valid(cs))
388 		WRITE_ONCE(cs->prs_err, PERR_NONE);
389 }
390 
391 static struct cpuset top_cpuset = {
392 	.flags = BIT(CS_ONLINE) | BIT(CS_CPU_EXCLUSIVE) |
393 		 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
394 	.partition_root_state = PRS_ROOT,
395 	.relax_domain_level = -1,
396 	.remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling),
397 };
398 
399 /**
400  * cpuset_for_each_child - traverse online children of a cpuset
401  * @child_cs: loop cursor pointing to the current child
402  * @pos_css: used for iteration
403  * @parent_cs: target cpuset to walk children of
404  *
405  * Walk @child_cs through the online children of @parent_cs.  Must be used
406  * with RCU read locked.
407  */
408 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
409 	css_for_each_child((pos_css), &(parent_cs)->css)		\
410 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
411 
412 /**
413  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
414  * @des_cs: loop cursor pointing to the current descendant
415  * @pos_css: used for iteration
416  * @root_cs: target cpuset to walk ancestor of
417  *
418  * Walk @des_cs through the online descendants of @root_cs.  Must be used
419  * with RCU read locked.  The caller may modify @pos_css by calling
420  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
421  * iteration and the first node to be visited.
422  */
423 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
424 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
425 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
426 
427 /*
428  * There are two global locks guarding cpuset structures - cpuset_mutex and
429  * callback_lock. We also require taking task_lock() when dereferencing a
430  * task's cpuset pointer. See "The task_lock() exception", at the end of this
431  * comment.  The cpuset code uses only cpuset_mutex. Other kernel subsystems
432  * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
433  * structures. Note that cpuset_mutex needs to be a mutex as it is used in
434  * paths that rely on priority inheritance (e.g. scheduler - on RT) for
435  * correctness.
436  *
437  * A task must hold both locks to modify cpusets.  If a task holds
438  * cpuset_mutex, it blocks others, ensuring that it is the only task able to
439  * also acquire callback_lock and be able to modify cpusets.  It can perform
440  * various checks on the cpuset structure first, knowing nothing will change.
441  * It can also allocate memory while just holding cpuset_mutex.  While it is
442  * performing these checks, various callback routines can briefly acquire
443  * callback_lock to query cpusets.  Once it is ready to make the changes, it
444  * takes callback_lock, blocking everyone else.
445  *
446  * Calls to the kernel memory allocator can not be made while holding
447  * callback_lock, as that would risk double tripping on callback_lock
448  * from one of the callbacks into the cpuset code from within
449  * __alloc_pages().
450  *
451  * If a task is only holding callback_lock, then it has read-only
452  * access to cpusets.
453  *
454  * Now, the task_struct fields mems_allowed and mempolicy may be changed
455  * by other task, we use alloc_lock in the task_struct fields to protect
456  * them.
457  *
458  * The cpuset_common_seq_show() handlers only hold callback_lock across
459  * small pieces of code, such as when reading out possibly multi-word
460  * cpumasks and nodemasks.
461  *
462  * Accessing a task's cpuset should be done in accordance with the
463  * guidelines for accessing subsystem state in kernel/cgroup.c
464  */
465 
466 static DEFINE_MUTEX(cpuset_mutex);
467 
468 void cpuset_lock(void)
469 {
470 	mutex_lock(&cpuset_mutex);
471 }
472 
473 void cpuset_unlock(void)
474 {
475 	mutex_unlock(&cpuset_mutex);
476 }
477 
478 static DEFINE_SPINLOCK(callback_lock);
479 
480 static struct workqueue_struct *cpuset_migrate_mm_wq;
481 
482 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
483 
484 static inline void check_insane_mems_config(nodemask_t *nodes)
485 {
486 	if (!cpusets_insane_config() &&
487 		movable_only_nodes(nodes)) {
488 		static_branch_enable(&cpusets_insane_config_key);
489 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
490 			"Cpuset allocations might fail even with a lot of memory available.\n",
491 			nodemask_pr_args(nodes));
492 	}
493 }
494 
495 /*
496  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
497  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
498  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
499  * With v2 behavior, "cpus" and "mems" are always what the users have
500  * requested and won't be changed by hotplug events. Only the effective
501  * cpus or mems will be affected.
502  */
503 static inline bool is_in_v2_mode(void)
504 {
505 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
506 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
507 }
508 
509 /**
510  * partition_is_populated - check if partition has tasks
511  * @cs: partition root to be checked
512  * @excluded_child: a child cpuset to be excluded in task checking
513  * Return: true if there are tasks, false otherwise
514  *
515  * It is assumed that @cs is a valid partition root. @excluded_child should
516  * be non-NULL when this cpuset is going to become a partition itself.
517  */
518 static inline bool partition_is_populated(struct cpuset *cs,
519 					  struct cpuset *excluded_child)
520 {
521 	struct cgroup_subsys_state *css;
522 	struct cpuset *child;
523 
524 	if (cs->css.cgroup->nr_populated_csets)
525 		return true;
526 	if (!excluded_child && !cs->nr_subparts)
527 		return cgroup_is_populated(cs->css.cgroup);
528 
529 	rcu_read_lock();
530 	cpuset_for_each_child(child, css, cs) {
531 		if (child == excluded_child)
532 			continue;
533 		if (is_partition_valid(child))
534 			continue;
535 		if (cgroup_is_populated(child->css.cgroup)) {
536 			rcu_read_unlock();
537 			return true;
538 		}
539 	}
540 	rcu_read_unlock();
541 	return false;
542 }
543 
544 /*
545  * Return in pmask the portion of a task's cpusets's cpus_allowed that
546  * are online and are capable of running the task.  If none are found,
547  * walk up the cpuset hierarchy until we find one that does have some
548  * appropriate cpus.
549  *
550  * One way or another, we guarantee to return some non-empty subset
551  * of cpu_online_mask.
552  *
553  * Call with callback_lock or cpuset_mutex held.
554  */
555 static void guarantee_online_cpus(struct task_struct *tsk,
556 				  struct cpumask *pmask)
557 {
558 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
559 	struct cpuset *cs;
560 
561 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
562 		cpumask_copy(pmask, cpu_online_mask);
563 
564 	rcu_read_lock();
565 	cs = task_cs(tsk);
566 
567 	while (!cpumask_intersects(cs->effective_cpus, pmask))
568 		cs = parent_cs(cs);
569 
570 	cpumask_and(pmask, pmask, cs->effective_cpus);
571 	rcu_read_unlock();
572 }
573 
574 /*
575  * Return in *pmask the portion of a cpusets's mems_allowed that
576  * are online, with memory.  If none are online with memory, walk
577  * up the cpuset hierarchy until we find one that does have some
578  * online mems.  The top cpuset always has some mems online.
579  *
580  * One way or another, we guarantee to return some non-empty subset
581  * of node_states[N_MEMORY].
582  *
583  * Call with callback_lock or cpuset_mutex held.
584  */
585 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
586 {
587 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
588 		cs = parent_cs(cs);
589 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
590 }
591 
592 /*
593  * update task's spread flag if cpuset's page/slab spread flag is set
594  *
595  * Call with callback_lock or cpuset_mutex held. The check can be skipped
596  * if on default hierarchy.
597  */
598 static void cpuset_update_task_spread_flags(struct cpuset *cs,
599 					struct task_struct *tsk)
600 {
601 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
602 		return;
603 
604 	if (is_spread_page(cs))
605 		task_set_spread_page(tsk);
606 	else
607 		task_clear_spread_page(tsk);
608 
609 	if (is_spread_slab(cs))
610 		task_set_spread_slab(tsk);
611 	else
612 		task_clear_spread_slab(tsk);
613 }
614 
615 /*
616  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
617  *
618  * One cpuset is a subset of another if all its allowed CPUs and
619  * Memory Nodes are a subset of the other, and its exclusive flags
620  * are only set if the other's are set.  Call holding cpuset_mutex.
621  */
622 
623 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
624 {
625 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
626 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
627 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
628 		is_mem_exclusive(p) <= is_mem_exclusive(q);
629 }
630 
631 /**
632  * alloc_cpumasks - allocate three cpumasks for cpuset
633  * @cs:  the cpuset that have cpumasks to be allocated.
634  * @tmp: the tmpmasks structure pointer
635  * Return: 0 if successful, -ENOMEM otherwise.
636  *
637  * Only one of the two input arguments should be non-NULL.
638  */
639 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
640 {
641 	cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4;
642 
643 	if (cs) {
644 		pmask1 = &cs->cpus_allowed;
645 		pmask2 = &cs->effective_cpus;
646 		pmask3 = &cs->effective_xcpus;
647 		pmask4 = &cs->exclusive_cpus;
648 	} else {
649 		pmask1 = &tmp->new_cpus;
650 		pmask2 = &tmp->addmask;
651 		pmask3 = &tmp->delmask;
652 		pmask4 = NULL;
653 	}
654 
655 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
656 		return -ENOMEM;
657 
658 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
659 		goto free_one;
660 
661 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
662 		goto free_two;
663 
664 	if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL))
665 		goto free_three;
666 
667 
668 	return 0;
669 
670 free_three:
671 	free_cpumask_var(*pmask3);
672 free_two:
673 	free_cpumask_var(*pmask2);
674 free_one:
675 	free_cpumask_var(*pmask1);
676 	return -ENOMEM;
677 }
678 
679 /**
680  * free_cpumasks - free cpumasks in a tmpmasks structure
681  * @cs:  the cpuset that have cpumasks to be free.
682  * @tmp: the tmpmasks structure pointer
683  */
684 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
685 {
686 	if (cs) {
687 		free_cpumask_var(cs->cpus_allowed);
688 		free_cpumask_var(cs->effective_cpus);
689 		free_cpumask_var(cs->effective_xcpus);
690 		free_cpumask_var(cs->exclusive_cpus);
691 	}
692 	if (tmp) {
693 		free_cpumask_var(tmp->new_cpus);
694 		free_cpumask_var(tmp->addmask);
695 		free_cpumask_var(tmp->delmask);
696 	}
697 }
698 
699 /**
700  * alloc_trial_cpuset - allocate a trial cpuset
701  * @cs: the cpuset that the trial cpuset duplicates
702  */
703 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
704 {
705 	struct cpuset *trial;
706 
707 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
708 	if (!trial)
709 		return NULL;
710 
711 	if (alloc_cpumasks(trial, NULL)) {
712 		kfree(trial);
713 		return NULL;
714 	}
715 
716 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
717 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
718 	cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
719 	cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
720 	return trial;
721 }
722 
723 /**
724  * free_cpuset - free the cpuset
725  * @cs: the cpuset to be freed
726  */
727 static inline void free_cpuset(struct cpuset *cs)
728 {
729 	free_cpumasks(cs, NULL);
730 	kfree(cs);
731 }
732 
733 /* Return user specified exclusive CPUs */
734 static inline struct cpumask *user_xcpus(struct cpuset *cs)
735 {
736 	return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
737 						 : cs->exclusive_cpus;
738 }
739 
740 static inline bool xcpus_empty(struct cpuset *cs)
741 {
742 	return cpumask_empty(cs->cpus_allowed) &&
743 	       cpumask_empty(cs->exclusive_cpus);
744 }
745 
746 static inline struct cpumask *fetch_xcpus(struct cpuset *cs)
747 {
748 	return !cpumask_empty(cs->exclusive_cpus) ? cs->exclusive_cpus :
749 	       cpumask_empty(cs->effective_xcpus) ? cs->cpus_allowed
750 						  : cs->effective_xcpus;
751 }
752 
753 /*
754  * cpusets_are_exclusive() - check if two cpusets are exclusive
755  *
756  * Return true if exclusive, false if not
757  */
758 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
759 {
760 	struct cpumask *xcpus1 = fetch_xcpus(cs1);
761 	struct cpumask *xcpus2 = fetch_xcpus(cs2);
762 
763 	if (cpumask_intersects(xcpus1, xcpus2))
764 		return false;
765 	return true;
766 }
767 
768 /*
769  * validate_change_legacy() - Validate conditions specific to legacy (v1)
770  *                            behavior.
771  */
772 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
773 {
774 	struct cgroup_subsys_state *css;
775 	struct cpuset *c, *par;
776 	int ret;
777 
778 	WARN_ON_ONCE(!rcu_read_lock_held());
779 
780 	/* Each of our child cpusets must be a subset of us */
781 	ret = -EBUSY;
782 	cpuset_for_each_child(c, css, cur)
783 		if (!is_cpuset_subset(c, trial))
784 			goto out;
785 
786 	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
787 	ret = -EACCES;
788 	par = parent_cs(cur);
789 	if (par && !is_cpuset_subset(trial, par))
790 		goto out;
791 
792 	ret = 0;
793 out:
794 	return ret;
795 }
796 
797 /*
798  * validate_change() - Used to validate that any proposed cpuset change
799  *		       follows the structural rules for cpusets.
800  *
801  * If we replaced the flag and mask values of the current cpuset
802  * (cur) with those values in the trial cpuset (trial), would
803  * our various subset and exclusive rules still be valid?  Presumes
804  * cpuset_mutex held.
805  *
806  * 'cur' is the address of an actual, in-use cpuset.  Operations
807  * such as list traversal that depend on the actual address of the
808  * cpuset in the list must use cur below, not trial.
809  *
810  * 'trial' is the address of bulk structure copy of cur, with
811  * perhaps one or more of the fields cpus_allowed, mems_allowed,
812  * or flags changed to new, trial values.
813  *
814  * Return 0 if valid, -errno if not.
815  */
816 
817 static int validate_change(struct cpuset *cur, struct cpuset *trial)
818 {
819 	struct cgroup_subsys_state *css;
820 	struct cpuset *c, *par;
821 	int ret = 0;
822 
823 	rcu_read_lock();
824 
825 	if (!is_in_v2_mode())
826 		ret = validate_change_legacy(cur, trial);
827 	if (ret)
828 		goto out;
829 
830 	/* Remaining checks don't apply to root cpuset */
831 	if (cur == &top_cpuset)
832 		goto out;
833 
834 	par = parent_cs(cur);
835 
836 	/*
837 	 * Cpusets with tasks - existing or newly being attached - can't
838 	 * be changed to have empty cpus_allowed or mems_allowed.
839 	 */
840 	ret = -ENOSPC;
841 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
842 		if (!cpumask_empty(cur->cpus_allowed) &&
843 		    cpumask_empty(trial->cpus_allowed))
844 			goto out;
845 		if (!nodes_empty(cur->mems_allowed) &&
846 		    nodes_empty(trial->mems_allowed))
847 			goto out;
848 	}
849 
850 	/*
851 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
852 	 * tasks.
853 	 */
854 	ret = -EBUSY;
855 	if (is_cpu_exclusive(cur) &&
856 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
857 				       trial->cpus_allowed))
858 		goto out;
859 
860 	/*
861 	 * If either I or some sibling (!= me) is exclusive, we can't
862 	 * overlap. exclusive_cpus cannot overlap with each other if set.
863 	 */
864 	ret = -EINVAL;
865 	cpuset_for_each_child(c, css, par) {
866 		bool txset, cxset;	/* Are exclusive_cpus set? */
867 
868 		if (c == cur)
869 			continue;
870 
871 		txset = !cpumask_empty(trial->exclusive_cpus);
872 		cxset = !cpumask_empty(c->exclusive_cpus);
873 		if (is_cpu_exclusive(trial) || is_cpu_exclusive(c) ||
874 		    (txset && cxset)) {
875 			if (!cpusets_are_exclusive(trial, c))
876 				goto out;
877 		} else if (txset || cxset) {
878 			struct cpumask *xcpus, *acpus;
879 
880 			/*
881 			 * When just one of the exclusive_cpus's is set,
882 			 * cpus_allowed of the other cpuset, if set, cannot be
883 			 * a subset of it or none of those CPUs will be
884 			 * available if these exclusive CPUs are activated.
885 			 */
886 			if (txset) {
887 				xcpus = trial->exclusive_cpus;
888 				acpus = c->cpus_allowed;
889 			} else {
890 				xcpus = c->exclusive_cpus;
891 				acpus = trial->cpus_allowed;
892 			}
893 			if (!cpumask_empty(acpus) && cpumask_subset(acpus, xcpus))
894 				goto out;
895 		}
896 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
897 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
898 			goto out;
899 	}
900 
901 	ret = 0;
902 out:
903 	rcu_read_unlock();
904 	return ret;
905 }
906 
907 #ifdef CONFIG_SMP
908 /*
909  * Helper routine for generate_sched_domains().
910  * Do cpusets a, b have overlapping effective cpus_allowed masks?
911  */
912 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
913 {
914 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
915 }
916 
917 static void
918 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
919 {
920 	if (dattr->relax_domain_level < c->relax_domain_level)
921 		dattr->relax_domain_level = c->relax_domain_level;
922 	return;
923 }
924 
925 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
926 				    struct cpuset *root_cs)
927 {
928 	struct cpuset *cp;
929 	struct cgroup_subsys_state *pos_css;
930 
931 	rcu_read_lock();
932 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
933 		/* skip the whole subtree if @cp doesn't have any CPU */
934 		if (cpumask_empty(cp->cpus_allowed)) {
935 			pos_css = css_rightmost_descendant(pos_css);
936 			continue;
937 		}
938 
939 		if (is_sched_load_balance(cp))
940 			update_domain_attr(dattr, cp);
941 	}
942 	rcu_read_unlock();
943 }
944 
945 /* Must be called with cpuset_mutex held.  */
946 static inline int nr_cpusets(void)
947 {
948 	/* jump label reference count + the top-level cpuset */
949 	return static_key_count(&cpusets_enabled_key.key) + 1;
950 }
951 
952 /*
953  * generate_sched_domains()
954  *
955  * This function builds a partial partition of the systems CPUs
956  * A 'partial partition' is a set of non-overlapping subsets whose
957  * union is a subset of that set.
958  * The output of this function needs to be passed to kernel/sched/core.c
959  * partition_sched_domains() routine, which will rebuild the scheduler's
960  * load balancing domains (sched domains) as specified by that partial
961  * partition.
962  *
963  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
964  * for a background explanation of this.
965  *
966  * Does not return errors, on the theory that the callers of this
967  * routine would rather not worry about failures to rebuild sched
968  * domains when operating in the severe memory shortage situations
969  * that could cause allocation failures below.
970  *
971  * Must be called with cpuset_mutex held.
972  *
973  * The three key local variables below are:
974  *    cp - cpuset pointer, used (together with pos_css) to perform a
975  *	   top-down scan of all cpusets. For our purposes, rebuilding
976  *	   the schedulers sched domains, we can ignore !is_sched_load_
977  *	   balance cpusets.
978  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
979  *	   that need to be load balanced, for convenient iterative
980  *	   access by the subsequent code that finds the best partition,
981  *	   i.e the set of domains (subsets) of CPUs such that the
982  *	   cpus_allowed of every cpuset marked is_sched_load_balance
983  *	   is a subset of one of these domains, while there are as
984  *	   many such domains as possible, each as small as possible.
985  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
986  *	   the kernel/sched/core.c routine partition_sched_domains() in a
987  *	   convenient format, that can be easily compared to the prior
988  *	   value to determine what partition elements (sched domains)
989  *	   were changed (added or removed.)
990  *
991  * Finding the best partition (set of domains):
992  *	The triple nested loops below over i, j, k scan over the
993  *	load balanced cpusets (using the array of cpuset pointers in
994  *	csa[]) looking for pairs of cpusets that have overlapping
995  *	cpus_allowed, but which don't have the same 'pn' partition
996  *	number and gives them in the same partition number.  It keeps
997  *	looping on the 'restart' label until it can no longer find
998  *	any such pairs.
999  *
1000  *	The union of the cpus_allowed masks from the set of
1001  *	all cpusets having the same 'pn' value then form the one
1002  *	element of the partition (one sched domain) to be passed to
1003  *	partition_sched_domains().
1004  */
1005 static int generate_sched_domains(cpumask_var_t **domains,
1006 			struct sched_domain_attr **attributes)
1007 {
1008 	struct cpuset *cp;	/* top-down scan of cpusets */
1009 	struct cpuset **csa;	/* array of all cpuset ptrs */
1010 	int csn;		/* how many cpuset ptrs in csa so far */
1011 	int i, j, k;		/* indices for partition finding loops */
1012 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
1013 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
1014 	int ndoms = 0;		/* number of sched domains in result */
1015 	int nslot;		/* next empty doms[] struct cpumask slot */
1016 	struct cgroup_subsys_state *pos_css;
1017 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
1018 	bool cgrpv2 = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
1019 
1020 	doms = NULL;
1021 	dattr = NULL;
1022 	csa = NULL;
1023 
1024 	/* Special case for the 99% of systems with one, full, sched domain */
1025 	if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
1026 single_root_domain:
1027 		ndoms = 1;
1028 		doms = alloc_sched_domains(ndoms);
1029 		if (!doms)
1030 			goto done;
1031 
1032 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
1033 		if (dattr) {
1034 			*dattr = SD_ATTR_INIT;
1035 			update_domain_attr_tree(dattr, &top_cpuset);
1036 		}
1037 		cpumask_and(doms[0], top_cpuset.effective_cpus,
1038 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
1039 
1040 		goto done;
1041 	}
1042 
1043 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
1044 	if (!csa)
1045 		goto done;
1046 	csn = 0;
1047 
1048 	rcu_read_lock();
1049 	if (root_load_balance)
1050 		csa[csn++] = &top_cpuset;
1051 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
1052 		if (cp == &top_cpuset)
1053 			continue;
1054 
1055 		if (cgrpv2)
1056 			goto v2;
1057 
1058 		/*
1059 		 * v1:
1060 		 * Continue traversing beyond @cp iff @cp has some CPUs and
1061 		 * isn't load balancing.  The former is obvious.  The
1062 		 * latter: All child cpusets contain a subset of the
1063 		 * parent's cpus, so just skip them, and then we call
1064 		 * update_domain_attr_tree() to calc relax_domain_level of
1065 		 * the corresponding sched domain.
1066 		 */
1067 		if (!cpumask_empty(cp->cpus_allowed) &&
1068 		    !(is_sched_load_balance(cp) &&
1069 		      cpumask_intersects(cp->cpus_allowed,
1070 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
1071 			continue;
1072 
1073 		if (is_sched_load_balance(cp) &&
1074 		    !cpumask_empty(cp->effective_cpus))
1075 			csa[csn++] = cp;
1076 
1077 		/* skip @cp's subtree */
1078 		pos_css = css_rightmost_descendant(pos_css);
1079 		continue;
1080 
1081 v2:
1082 		/*
1083 		 * Only valid partition roots that are not isolated and with
1084 		 * non-empty effective_cpus will be saved into csn[].
1085 		 */
1086 		if ((cp->partition_root_state == PRS_ROOT) &&
1087 		    !cpumask_empty(cp->effective_cpus))
1088 			csa[csn++] = cp;
1089 
1090 		/*
1091 		 * Skip @cp's subtree if not a partition root and has no
1092 		 * exclusive CPUs to be granted to child cpusets.
1093 		 */
1094 		if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
1095 			pos_css = css_rightmost_descendant(pos_css);
1096 	}
1097 	rcu_read_unlock();
1098 
1099 	/*
1100 	 * If there are only isolated partitions underneath the cgroup root,
1101 	 * we can optimize out unneeded sched domains scanning.
1102 	 */
1103 	if (root_load_balance && (csn == 1))
1104 		goto single_root_domain;
1105 
1106 	for (i = 0; i < csn; i++)
1107 		csa[i]->pn = i;
1108 	ndoms = csn;
1109 
1110 restart:
1111 	/* Find the best partition (set of sched domains) */
1112 	for (i = 0; i < csn; i++) {
1113 		struct cpuset *a = csa[i];
1114 		int apn = a->pn;
1115 
1116 		for (j = 0; j < csn; j++) {
1117 			struct cpuset *b = csa[j];
1118 			int bpn = b->pn;
1119 
1120 			if (apn != bpn && cpusets_overlap(a, b)) {
1121 				for (k = 0; k < csn; k++) {
1122 					struct cpuset *c = csa[k];
1123 
1124 					if (c->pn == bpn)
1125 						c->pn = apn;
1126 				}
1127 				ndoms--;	/* one less element */
1128 				goto restart;
1129 			}
1130 		}
1131 	}
1132 
1133 	/*
1134 	 * Now we know how many domains to create.
1135 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
1136 	 */
1137 	doms = alloc_sched_domains(ndoms);
1138 	if (!doms)
1139 		goto done;
1140 
1141 	/*
1142 	 * The rest of the code, including the scheduler, can deal with
1143 	 * dattr==NULL case. No need to abort if alloc fails.
1144 	 */
1145 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
1146 			      GFP_KERNEL);
1147 
1148 	/*
1149 	 * Cgroup v2 doesn't support domain attributes, just set all of them
1150 	 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
1151 	 * subset of HK_TYPE_DOMAIN housekeeping CPUs.
1152 	 */
1153 	if (cgrpv2) {
1154 		for (i = 0; i < ndoms; i++) {
1155 			cpumask_copy(doms[i], csa[i]->effective_cpus);
1156 			if (dattr)
1157 				dattr[i] = SD_ATTR_INIT;
1158 		}
1159 		goto done;
1160 	}
1161 
1162 	for (nslot = 0, i = 0; i < csn; i++) {
1163 		struct cpuset *a = csa[i];
1164 		struct cpumask *dp;
1165 		int apn = a->pn;
1166 
1167 		if (apn < 0) {
1168 			/* Skip completed partitions */
1169 			continue;
1170 		}
1171 
1172 		dp = doms[nslot];
1173 
1174 		if (nslot == ndoms) {
1175 			static int warnings = 10;
1176 			if (warnings) {
1177 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
1178 					nslot, ndoms, csn, i, apn);
1179 				warnings--;
1180 			}
1181 			continue;
1182 		}
1183 
1184 		cpumask_clear(dp);
1185 		if (dattr)
1186 			*(dattr + nslot) = SD_ATTR_INIT;
1187 		for (j = i; j < csn; j++) {
1188 			struct cpuset *b = csa[j];
1189 
1190 			if (apn == b->pn) {
1191 				cpumask_or(dp, dp, b->effective_cpus);
1192 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1193 				if (dattr)
1194 					update_domain_attr_tree(dattr + nslot, b);
1195 
1196 				/* Done with this partition */
1197 				b->pn = -1;
1198 			}
1199 		}
1200 		nslot++;
1201 	}
1202 	BUG_ON(nslot != ndoms);
1203 
1204 done:
1205 	kfree(csa);
1206 
1207 	/*
1208 	 * Fallback to the default domain if kmalloc() failed.
1209 	 * See comments in partition_sched_domains().
1210 	 */
1211 	if (doms == NULL)
1212 		ndoms = 1;
1213 
1214 	*domains    = doms;
1215 	*attributes = dattr;
1216 	return ndoms;
1217 }
1218 
1219 static void dl_update_tasks_root_domain(struct cpuset *cs)
1220 {
1221 	struct css_task_iter it;
1222 	struct task_struct *task;
1223 
1224 	if (cs->nr_deadline_tasks == 0)
1225 		return;
1226 
1227 	css_task_iter_start(&cs->css, 0, &it);
1228 
1229 	while ((task = css_task_iter_next(&it)))
1230 		dl_add_task_root_domain(task);
1231 
1232 	css_task_iter_end(&it);
1233 }
1234 
1235 static void dl_rebuild_rd_accounting(void)
1236 {
1237 	struct cpuset *cs = NULL;
1238 	struct cgroup_subsys_state *pos_css;
1239 
1240 	lockdep_assert_held(&cpuset_mutex);
1241 	lockdep_assert_cpus_held();
1242 	lockdep_assert_held(&sched_domains_mutex);
1243 
1244 	rcu_read_lock();
1245 
1246 	/*
1247 	 * Clear default root domain DL accounting, it will be computed again
1248 	 * if a task belongs to it.
1249 	 */
1250 	dl_clear_root_domain(&def_root_domain);
1251 
1252 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1253 
1254 		if (cpumask_empty(cs->effective_cpus)) {
1255 			pos_css = css_rightmost_descendant(pos_css);
1256 			continue;
1257 		}
1258 
1259 		css_get(&cs->css);
1260 
1261 		rcu_read_unlock();
1262 
1263 		dl_update_tasks_root_domain(cs);
1264 
1265 		rcu_read_lock();
1266 		css_put(&cs->css);
1267 	}
1268 	rcu_read_unlock();
1269 }
1270 
1271 static void
1272 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1273 				    struct sched_domain_attr *dattr_new)
1274 {
1275 	mutex_lock(&sched_domains_mutex);
1276 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1277 	dl_rebuild_rd_accounting();
1278 	mutex_unlock(&sched_domains_mutex);
1279 }
1280 
1281 /*
1282  * Rebuild scheduler domains.
1283  *
1284  * If the flag 'sched_load_balance' of any cpuset with non-empty
1285  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1286  * which has that flag enabled, or if any cpuset with a non-empty
1287  * 'cpus' is removed, then call this routine to rebuild the
1288  * scheduler's dynamic sched domains.
1289  *
1290  * Call with cpuset_mutex held.  Takes cpus_read_lock().
1291  */
1292 static void rebuild_sched_domains_locked(void)
1293 {
1294 	struct cgroup_subsys_state *pos_css;
1295 	struct sched_domain_attr *attr;
1296 	cpumask_var_t *doms;
1297 	struct cpuset *cs;
1298 	int ndoms;
1299 
1300 	lockdep_assert_cpus_held();
1301 	lockdep_assert_held(&cpuset_mutex);
1302 
1303 	/*
1304 	 * If we have raced with CPU hotplug, return early to avoid
1305 	 * passing doms with offlined cpu to partition_sched_domains().
1306 	 * Anyways, cpuset_handle_hotplug() will rebuild sched domains.
1307 	 *
1308 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1309 	 * should be the same as the active CPUs, so checking only top_cpuset
1310 	 * is enough to detect racing CPU offlines.
1311 	 */
1312 	if (cpumask_empty(subpartitions_cpus) &&
1313 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1314 		return;
1315 
1316 	/*
1317 	 * With subpartition CPUs, however, the effective CPUs of a partition
1318 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1319 	 * partition root could be offlined, all must be checked.
1320 	 */
1321 	if (!cpumask_empty(subpartitions_cpus)) {
1322 		rcu_read_lock();
1323 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1324 			if (!is_partition_valid(cs)) {
1325 				pos_css = css_rightmost_descendant(pos_css);
1326 				continue;
1327 			}
1328 			if (!cpumask_subset(cs->effective_cpus,
1329 					    cpu_active_mask)) {
1330 				rcu_read_unlock();
1331 				return;
1332 			}
1333 		}
1334 		rcu_read_unlock();
1335 	}
1336 
1337 	/* Generate domain masks and attrs */
1338 	ndoms = generate_sched_domains(&doms, &attr);
1339 
1340 	/* Have scheduler rebuild the domains */
1341 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1342 }
1343 #else /* !CONFIG_SMP */
1344 static void rebuild_sched_domains_locked(void)
1345 {
1346 }
1347 #endif /* CONFIG_SMP */
1348 
1349 static void rebuild_sched_domains_cpuslocked(void)
1350 {
1351 	mutex_lock(&cpuset_mutex);
1352 	rebuild_sched_domains_locked();
1353 	mutex_unlock(&cpuset_mutex);
1354 }
1355 
1356 void rebuild_sched_domains(void)
1357 {
1358 	cpus_read_lock();
1359 	rebuild_sched_domains_cpuslocked();
1360 	cpus_read_unlock();
1361 }
1362 
1363 /**
1364  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1365  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1366  * @new_cpus: the temp variable for the new effective_cpus mask
1367  *
1368  * Iterate through each task of @cs updating its cpus_allowed to the
1369  * effective cpuset's.  As this function is called with cpuset_mutex held,
1370  * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
1371  * is used instead of effective_cpus to make sure all offline CPUs are also
1372  * included as hotplug code won't update cpumasks for tasks in top_cpuset.
1373  */
1374 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1375 {
1376 	struct css_task_iter it;
1377 	struct task_struct *task;
1378 	bool top_cs = cs == &top_cpuset;
1379 
1380 	css_task_iter_start(&cs->css, 0, &it);
1381 	while ((task = css_task_iter_next(&it))) {
1382 		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1383 
1384 		if (top_cs) {
1385 			/*
1386 			 * Percpu kthreads in top_cpuset are ignored
1387 			 */
1388 			if (kthread_is_per_cpu(task))
1389 				continue;
1390 			cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1391 		} else {
1392 			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1393 		}
1394 		set_cpus_allowed_ptr(task, new_cpus);
1395 	}
1396 	css_task_iter_end(&it);
1397 }
1398 
1399 /**
1400  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1401  * @new_cpus: the temp variable for the new effective_cpus mask
1402  * @cs: the cpuset the need to recompute the new effective_cpus mask
1403  * @parent: the parent cpuset
1404  *
1405  * The result is valid only if the given cpuset isn't a partition root.
1406  */
1407 static void compute_effective_cpumask(struct cpumask *new_cpus,
1408 				      struct cpuset *cs, struct cpuset *parent)
1409 {
1410 	cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1411 }
1412 
1413 /*
1414  * Commands for update_parent_effective_cpumask
1415  */
1416 enum partition_cmd {
1417 	partcmd_enable,		/* Enable partition root	  */
1418 	partcmd_enablei,	/* Enable isolated partition root */
1419 	partcmd_disable,	/* Disable partition root	  */
1420 	partcmd_update,		/* Update parent's effective_cpus */
1421 	partcmd_invalidate,	/* Make partition invalid	  */
1422 };
1423 
1424 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1425 		       int turning_on);
1426 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1427 				    struct tmpmasks *tmp);
1428 
1429 /*
1430  * Update partition exclusive flag
1431  *
1432  * Return: 0 if successful, an error code otherwise
1433  */
1434 static int update_partition_exclusive(struct cpuset *cs, int new_prs)
1435 {
1436 	bool exclusive = (new_prs > PRS_MEMBER);
1437 
1438 	if (exclusive && !is_cpu_exclusive(cs)) {
1439 		if (update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1440 			return PERR_NOTEXCL;
1441 	} else if (!exclusive && is_cpu_exclusive(cs)) {
1442 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1443 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1444 	}
1445 	return 0;
1446 }
1447 
1448 /*
1449  * Update partition load balance flag and/or rebuild sched domain
1450  *
1451  * Changing load balance flag will automatically call
1452  * rebuild_sched_domains_locked().
1453  * This function is for cgroup v2 only.
1454  */
1455 static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1456 {
1457 	int new_prs = cs->partition_root_state;
1458 	bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1459 	bool new_lb;
1460 
1461 	/*
1462 	 * If cs is not a valid partition root, the load balance state
1463 	 * will follow its parent.
1464 	 */
1465 	if (new_prs > 0) {
1466 		new_lb = (new_prs != PRS_ISOLATED);
1467 	} else {
1468 		new_lb = is_sched_load_balance(parent_cs(cs));
1469 	}
1470 	if (new_lb != !!is_sched_load_balance(cs)) {
1471 		rebuild_domains = true;
1472 		if (new_lb)
1473 			set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1474 		else
1475 			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1476 	}
1477 
1478 	if (rebuild_domains)
1479 		rebuild_sched_domains_locked();
1480 }
1481 
1482 /*
1483  * tasks_nocpu_error - Return true if tasks will have no effective_cpus
1484  */
1485 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1486 			      struct cpumask *xcpus)
1487 {
1488 	/*
1489 	 * A populated partition (cs or parent) can't have empty effective_cpus
1490 	 */
1491 	return (cpumask_subset(parent->effective_cpus, xcpus) &&
1492 		partition_is_populated(parent, cs)) ||
1493 	       (!cpumask_intersects(xcpus, cpu_active_mask) &&
1494 		partition_is_populated(cs, NULL));
1495 }
1496 
1497 static void reset_partition_data(struct cpuset *cs)
1498 {
1499 	struct cpuset *parent = parent_cs(cs);
1500 
1501 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
1502 		return;
1503 
1504 	lockdep_assert_held(&callback_lock);
1505 
1506 	cs->nr_subparts = 0;
1507 	if (cpumask_empty(cs->exclusive_cpus)) {
1508 		cpumask_clear(cs->effective_xcpus);
1509 		if (is_cpu_exclusive(cs))
1510 			clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1511 	}
1512 	if (!cpumask_and(cs->effective_cpus,
1513 			 parent->effective_cpus, cs->cpus_allowed)) {
1514 		cs->use_parent_ecpus = true;
1515 		parent->child_ecpus_count++;
1516 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1517 	}
1518 }
1519 
1520 /*
1521  * partition_xcpus_newstate - Exclusive CPUs state change
1522  * @old_prs: old partition_root_state
1523  * @new_prs: new partition_root_state
1524  * @xcpus: exclusive CPUs with state change
1525  */
1526 static void partition_xcpus_newstate(int old_prs, int new_prs, struct cpumask *xcpus)
1527 {
1528 	WARN_ON_ONCE(old_prs == new_prs);
1529 	if (new_prs == PRS_ISOLATED)
1530 		cpumask_or(isolated_cpus, isolated_cpus, xcpus);
1531 	else
1532 		cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
1533 }
1534 
1535 /*
1536  * partition_xcpus_add - Add new exclusive CPUs to partition
1537  * @new_prs: new partition_root_state
1538  * @parent: parent cpuset
1539  * @xcpus: exclusive CPUs to be added
1540  * Return: true if isolated_cpus modified, false otherwise
1541  *
1542  * Remote partition if parent == NULL
1543  */
1544 static bool partition_xcpus_add(int new_prs, struct cpuset *parent,
1545 				struct cpumask *xcpus)
1546 {
1547 	bool isolcpus_updated;
1548 
1549 	WARN_ON_ONCE(new_prs < 0);
1550 	lockdep_assert_held(&callback_lock);
1551 	if (!parent)
1552 		parent = &top_cpuset;
1553 
1554 
1555 	if (parent == &top_cpuset)
1556 		cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
1557 
1558 	isolcpus_updated = (new_prs != parent->partition_root_state);
1559 	if (isolcpus_updated)
1560 		partition_xcpus_newstate(parent->partition_root_state, new_prs,
1561 					 xcpus);
1562 
1563 	cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
1564 	return isolcpus_updated;
1565 }
1566 
1567 /*
1568  * partition_xcpus_del - Remove exclusive CPUs from partition
1569  * @old_prs: old partition_root_state
1570  * @parent: parent cpuset
1571  * @xcpus: exclusive CPUs to be removed
1572  * Return: true if isolated_cpus modified, false otherwise
1573  *
1574  * Remote partition if parent == NULL
1575  */
1576 static bool partition_xcpus_del(int old_prs, struct cpuset *parent,
1577 				struct cpumask *xcpus)
1578 {
1579 	bool isolcpus_updated;
1580 
1581 	WARN_ON_ONCE(old_prs < 0);
1582 	lockdep_assert_held(&callback_lock);
1583 	if (!parent)
1584 		parent = &top_cpuset;
1585 
1586 	if (parent == &top_cpuset)
1587 		cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
1588 
1589 	isolcpus_updated = (old_prs != parent->partition_root_state);
1590 	if (isolcpus_updated)
1591 		partition_xcpus_newstate(old_prs, parent->partition_root_state,
1592 					 xcpus);
1593 
1594 	cpumask_and(xcpus, xcpus, cpu_active_mask);
1595 	cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
1596 	return isolcpus_updated;
1597 }
1598 
1599 static void update_unbound_workqueue_cpumask(bool isolcpus_updated)
1600 {
1601 	int ret;
1602 
1603 	lockdep_assert_cpus_held();
1604 
1605 	if (!isolcpus_updated)
1606 		return;
1607 
1608 	ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
1609 	WARN_ON_ONCE(ret < 0);
1610 }
1611 
1612 /**
1613  * cpuset_cpu_is_isolated - Check if the given CPU is isolated
1614  * @cpu: the CPU number to be checked
1615  * Return: true if CPU is used in an isolated partition, false otherwise
1616  */
1617 bool cpuset_cpu_is_isolated(int cpu)
1618 {
1619 	return cpumask_test_cpu(cpu, isolated_cpus);
1620 }
1621 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
1622 
1623 /*
1624  * compute_effective_exclusive_cpumask - compute effective exclusive CPUs
1625  * @cs: cpuset
1626  * @xcpus: effective exclusive CPUs value to be set
1627  * Return: true if xcpus is not empty, false otherwise.
1628  *
1629  * Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set),
1630  * it must be a subset of parent's effective_xcpus.
1631  */
1632 static bool compute_effective_exclusive_cpumask(struct cpuset *cs,
1633 						struct cpumask *xcpus)
1634 {
1635 	struct cpuset *parent = parent_cs(cs);
1636 
1637 	if (!xcpus)
1638 		xcpus = cs->effective_xcpus;
1639 
1640 	return cpumask_and(xcpus, user_xcpus(cs), parent->effective_xcpus);
1641 }
1642 
1643 static inline bool is_remote_partition(struct cpuset *cs)
1644 {
1645 	return !list_empty(&cs->remote_sibling);
1646 }
1647 
1648 static inline bool is_local_partition(struct cpuset *cs)
1649 {
1650 	return is_partition_valid(cs) && !is_remote_partition(cs);
1651 }
1652 
1653 /*
1654  * remote_partition_enable - Enable current cpuset as a remote partition root
1655  * @cs: the cpuset to update
1656  * @new_prs: new partition_root_state
1657  * @tmp: temparary masks
1658  * Return: 1 if successful, 0 if error
1659  *
1660  * Enable the current cpuset to become a remote partition root taking CPUs
1661  * directly from the top cpuset. cpuset_mutex must be held by the caller.
1662  */
1663 static int remote_partition_enable(struct cpuset *cs, int new_prs,
1664 				   struct tmpmasks *tmp)
1665 {
1666 	bool isolcpus_updated;
1667 
1668 	/*
1669 	 * The user must have sysadmin privilege.
1670 	 */
1671 	if (!capable(CAP_SYS_ADMIN))
1672 		return 0;
1673 
1674 	/*
1675 	 * The requested exclusive_cpus must not be allocated to other
1676 	 * partitions and it can't use up all the root's effective_cpus.
1677 	 *
1678 	 * Note that if there is any local partition root above it or
1679 	 * remote partition root underneath it, its exclusive_cpus must
1680 	 * have overlapped with subpartitions_cpus.
1681 	 */
1682 	compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1683 	if (cpumask_empty(tmp->new_cpus) ||
1684 	    cpumask_intersects(tmp->new_cpus, subpartitions_cpus) ||
1685 	    cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1686 		return 0;
1687 
1688 	spin_lock_irq(&callback_lock);
1689 	isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
1690 	list_add(&cs->remote_sibling, &remote_children);
1691 	if (cs->use_parent_ecpus) {
1692 		struct cpuset *parent = parent_cs(cs);
1693 
1694 		cs->use_parent_ecpus = false;
1695 		parent->child_ecpus_count--;
1696 	}
1697 	spin_unlock_irq(&callback_lock);
1698 	update_unbound_workqueue_cpumask(isolcpus_updated);
1699 
1700 	/*
1701 	 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1702 	 */
1703 	update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1704 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1705 	return 1;
1706 }
1707 
1708 /*
1709  * remote_partition_disable - Remove current cpuset from remote partition list
1710  * @cs: the cpuset to update
1711  * @tmp: temparary masks
1712  *
1713  * The effective_cpus is also updated.
1714  *
1715  * cpuset_mutex must be held by the caller.
1716  */
1717 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1718 {
1719 	bool isolcpus_updated;
1720 
1721 	compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1722 	WARN_ON_ONCE(!is_remote_partition(cs));
1723 	WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus));
1724 
1725 	spin_lock_irq(&callback_lock);
1726 	list_del_init(&cs->remote_sibling);
1727 	isolcpus_updated = partition_xcpus_del(cs->partition_root_state,
1728 					       NULL, tmp->new_cpus);
1729 	cs->partition_root_state = -cs->partition_root_state;
1730 	if (!cs->prs_err)
1731 		cs->prs_err = PERR_INVCPUS;
1732 	reset_partition_data(cs);
1733 	spin_unlock_irq(&callback_lock);
1734 	update_unbound_workqueue_cpumask(isolcpus_updated);
1735 
1736 	/*
1737 	 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1738 	 */
1739 	update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1740 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1741 }
1742 
1743 /*
1744  * remote_cpus_update - cpus_exclusive change of remote partition
1745  * @cs: the cpuset to be updated
1746  * @newmask: the new effective_xcpus mask
1747  * @tmp: temparary masks
1748  *
1749  * top_cpuset and subpartitions_cpus will be updated or partition can be
1750  * invalidated.
1751  */
1752 static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask,
1753 			       struct tmpmasks *tmp)
1754 {
1755 	bool adding, deleting;
1756 	int prs = cs->partition_root_state;
1757 	int isolcpus_updated = 0;
1758 
1759 	if (WARN_ON_ONCE(!is_remote_partition(cs)))
1760 		return;
1761 
1762 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1763 
1764 	if (cpumask_empty(newmask))
1765 		goto invalidate;
1766 
1767 	adding   = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus);
1768 	deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask);
1769 
1770 	/*
1771 	 * Additions of remote CPUs is only allowed if those CPUs are
1772 	 * not allocated to other partitions and there are effective_cpus
1773 	 * left in the top cpuset.
1774 	 */
1775 	if (adding && (!capable(CAP_SYS_ADMIN) ||
1776 		       cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1777 		       cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)))
1778 		goto invalidate;
1779 
1780 	spin_lock_irq(&callback_lock);
1781 	if (adding)
1782 		isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask);
1783 	if (deleting)
1784 		isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask);
1785 	spin_unlock_irq(&callback_lock);
1786 	update_unbound_workqueue_cpumask(isolcpus_updated);
1787 
1788 	/*
1789 	 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1790 	 */
1791 	update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1792 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1793 	return;
1794 
1795 invalidate:
1796 	remote_partition_disable(cs, tmp);
1797 }
1798 
1799 /*
1800  * remote_partition_check - check if a child remote partition needs update
1801  * @cs: the cpuset to be updated
1802  * @newmask: the new effective_xcpus mask
1803  * @delmask: temporary mask for deletion (not in tmp)
1804  * @tmp: temparary masks
1805  *
1806  * This should be called before the given cs has updated its cpus_allowed
1807  * and/or effective_xcpus.
1808  */
1809 static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask,
1810 				   struct cpumask *delmask, struct tmpmasks *tmp)
1811 {
1812 	struct cpuset *child, *next;
1813 	int disable_cnt = 0;
1814 
1815 	/*
1816 	 * Compute the effective exclusive CPUs that will be deleted.
1817 	 */
1818 	if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) ||
1819 	    !cpumask_intersects(delmask, subpartitions_cpus))
1820 		return;	/* No deletion of exclusive CPUs in partitions */
1821 
1822 	/*
1823 	 * Searching the remote children list to look for those that will
1824 	 * be impacted by the deletion of exclusive CPUs.
1825 	 *
1826 	 * Since a cpuset must be removed from the remote children list
1827 	 * before it can go offline and holding cpuset_mutex will prevent
1828 	 * any change in cpuset status. RCU read lock isn't needed.
1829 	 */
1830 	lockdep_assert_held(&cpuset_mutex);
1831 	list_for_each_entry_safe(child, next, &remote_children, remote_sibling)
1832 		if (cpumask_intersects(child->effective_cpus, delmask)) {
1833 			remote_partition_disable(child, tmp);
1834 			disable_cnt++;
1835 		}
1836 	if (disable_cnt)
1837 		rebuild_sched_domains_locked();
1838 }
1839 
1840 /*
1841  * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1842  * @prstate: partition root state to be checked
1843  * @new_cpus: cpu mask
1844  * Return: true if there is conflict, false otherwise
1845  *
1846  * CPUs outside of housekeeping_cpumask(HK_TYPE_DOMAIN) can only be used in
1847  * an isolated partition.
1848  */
1849 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1850 {
1851 	const struct cpumask *hk_domain = housekeeping_cpumask(HK_TYPE_DOMAIN);
1852 	bool all_in_hk = cpumask_subset(new_cpus, hk_domain);
1853 
1854 	if (!all_in_hk && (prstate != PRS_ISOLATED))
1855 		return true;
1856 
1857 	return false;
1858 }
1859 
1860 /**
1861  * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1862  * @cs:      The cpuset that requests change in partition root state
1863  * @cmd:     Partition root state change command
1864  * @newmask: Optional new cpumask for partcmd_update
1865  * @tmp:     Temporary addmask and delmask
1866  * Return:   0 or a partition root state error code
1867  *
1868  * For partcmd_enable*, the cpuset is being transformed from a non-partition
1869  * root to a partition root. The effective_xcpus (cpus_allowed if
1870  * effective_xcpus not set) mask of the given cpuset will be taken away from
1871  * parent's effective_cpus. The function will return 0 if all the CPUs listed
1872  * in effective_xcpus can be granted or an error code will be returned.
1873  *
1874  * For partcmd_disable, the cpuset is being transformed from a partition
1875  * root back to a non-partition root. Any CPUs in effective_xcpus will be
1876  * given back to parent's effective_cpus. 0 will always be returned.
1877  *
1878  * For partcmd_update, if the optional newmask is specified, the cpu list is
1879  * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1880  * assumed to remain the same. The cpuset should either be a valid or invalid
1881  * partition root. The partition root state may change from valid to invalid
1882  * or vice versa. An error code will be returned if transitioning from
1883  * invalid to valid violates the exclusivity rule.
1884  *
1885  * For partcmd_invalidate, the current partition will be made invalid.
1886  *
1887  * The partcmd_enable* and partcmd_disable commands are used by
1888  * update_prstate(). An error code may be returned and the caller will check
1889  * for error.
1890  *
1891  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1892  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1893  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1894  * check for error and so partition_root_state and prs_error will be updated
1895  * directly.
1896  */
1897 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1898 					   struct cpumask *newmask,
1899 					   struct tmpmasks *tmp)
1900 {
1901 	struct cpuset *parent = parent_cs(cs);
1902 	int adding;	/* Adding cpus to parent's effective_cpus	*/
1903 	int deleting;	/* Deleting cpus from parent's effective_cpus	*/
1904 	int old_prs, new_prs;
1905 	int part_error = PERR_NONE;	/* Partition error? */
1906 	int subparts_delta = 0;
1907 	struct cpumask *xcpus;		/* cs effective_xcpus */
1908 	int isolcpus_updated = 0;
1909 	bool nocpu;
1910 
1911 	lockdep_assert_held(&cpuset_mutex);
1912 
1913 	/*
1914 	 * new_prs will only be changed for the partcmd_update and
1915 	 * partcmd_invalidate commands.
1916 	 */
1917 	adding = deleting = false;
1918 	old_prs = new_prs = cs->partition_root_state;
1919 	xcpus = user_xcpus(cs);
1920 
1921 	if (cmd == partcmd_invalidate) {
1922 		if (is_prs_invalid(old_prs))
1923 			return 0;
1924 
1925 		/*
1926 		 * Make the current partition invalid.
1927 		 */
1928 		if (is_partition_valid(parent))
1929 			adding = cpumask_and(tmp->addmask,
1930 					     xcpus, parent->effective_xcpus);
1931 		if (old_prs > 0) {
1932 			new_prs = -old_prs;
1933 			subparts_delta--;
1934 		}
1935 		goto write_error;
1936 	}
1937 
1938 	/*
1939 	 * The parent must be a partition root.
1940 	 * The new cpumask, if present, or the current cpus_allowed must
1941 	 * not be empty.
1942 	 */
1943 	if (!is_partition_valid(parent)) {
1944 		return is_partition_invalid(parent)
1945 		       ? PERR_INVPARENT : PERR_NOTPART;
1946 	}
1947 	if (!newmask && xcpus_empty(cs))
1948 		return PERR_CPUSEMPTY;
1949 
1950 	nocpu = tasks_nocpu_error(parent, cs, xcpus);
1951 
1952 	if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
1953 		/*
1954 		 * Enabling partition root is not allowed if its
1955 		 * effective_xcpus is empty or doesn't overlap with
1956 		 * parent's effective_xcpus.
1957 		 */
1958 		if (cpumask_empty(xcpus) ||
1959 		    !cpumask_intersects(xcpus, parent->effective_xcpus))
1960 			return PERR_INVCPUS;
1961 
1962 		if (prstate_housekeeping_conflict(new_prs, xcpus))
1963 			return PERR_HKEEPING;
1964 
1965 		/*
1966 		 * A parent can be left with no CPU as long as there is no
1967 		 * task directly associated with the parent partition.
1968 		 */
1969 		if (nocpu)
1970 			return PERR_NOCPUS;
1971 
1972 		cpumask_copy(tmp->delmask, xcpus);
1973 		deleting = true;
1974 		subparts_delta++;
1975 		new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
1976 	} else if (cmd == partcmd_disable) {
1977 		/*
1978 		 * May need to add cpus to parent's effective_cpus for
1979 		 * valid partition root.
1980 		 */
1981 		adding = !is_prs_invalid(old_prs) &&
1982 			  cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus);
1983 		if (adding)
1984 			subparts_delta--;
1985 		new_prs = PRS_MEMBER;
1986 	} else if (newmask) {
1987 		/*
1988 		 * Empty cpumask is not allowed
1989 		 */
1990 		if (cpumask_empty(newmask)) {
1991 			part_error = PERR_CPUSEMPTY;
1992 			goto write_error;
1993 		}
1994 
1995 		/*
1996 		 * partcmd_update with newmask:
1997 		 *
1998 		 * Compute add/delete mask to/from effective_cpus
1999 		 *
2000 		 * For valid partition:
2001 		 *   addmask = exclusive_cpus & ~newmask
2002 		 *			      & parent->effective_xcpus
2003 		 *   delmask = newmask & ~exclusive_cpus
2004 		 *		       & parent->effective_xcpus
2005 		 *
2006 		 * For invalid partition:
2007 		 *   delmask = newmask & parent->effective_xcpus
2008 		 */
2009 		if (is_prs_invalid(old_prs)) {
2010 			adding = false;
2011 			deleting = cpumask_and(tmp->delmask,
2012 					newmask, parent->effective_xcpus);
2013 		} else {
2014 			cpumask_andnot(tmp->addmask, xcpus, newmask);
2015 			adding = cpumask_and(tmp->addmask, tmp->addmask,
2016 					     parent->effective_xcpus);
2017 
2018 			cpumask_andnot(tmp->delmask, newmask, xcpus);
2019 			deleting = cpumask_and(tmp->delmask, tmp->delmask,
2020 					       parent->effective_xcpus);
2021 		}
2022 		/*
2023 		 * Make partition invalid if parent's effective_cpus could
2024 		 * become empty and there are tasks in the parent.
2025 		 */
2026 		if (nocpu && (!adding ||
2027 		    !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
2028 			part_error = PERR_NOCPUS;
2029 			deleting = false;
2030 			adding = cpumask_and(tmp->addmask,
2031 					     xcpus, parent->effective_xcpus);
2032 		}
2033 	} else {
2034 		/*
2035 		 * partcmd_update w/o newmask
2036 		 *
2037 		 * delmask = effective_xcpus & parent->effective_cpus
2038 		 *
2039 		 * This can be called from:
2040 		 * 1) update_cpumasks_hier()
2041 		 * 2) cpuset_hotplug_update_tasks()
2042 		 *
2043 		 * Check to see if it can be transitioned from valid to
2044 		 * invalid partition or vice versa.
2045 		 *
2046 		 * A partition error happens when parent has tasks and all
2047 		 * its effective CPUs will have to be distributed out.
2048 		 */
2049 		WARN_ON_ONCE(!is_partition_valid(parent));
2050 		if (nocpu) {
2051 			part_error = PERR_NOCPUS;
2052 			if (is_partition_valid(cs))
2053 				adding = cpumask_and(tmp->addmask,
2054 						xcpus, parent->effective_xcpus);
2055 		} else if (is_partition_invalid(cs) &&
2056 			   cpumask_subset(xcpus, parent->effective_xcpus)) {
2057 			struct cgroup_subsys_state *css;
2058 			struct cpuset *child;
2059 			bool exclusive = true;
2060 
2061 			/*
2062 			 * Convert invalid partition to valid has to
2063 			 * pass the cpu exclusivity test.
2064 			 */
2065 			rcu_read_lock();
2066 			cpuset_for_each_child(child, css, parent) {
2067 				if (child == cs)
2068 					continue;
2069 				if (!cpusets_are_exclusive(cs, child)) {
2070 					exclusive = false;
2071 					break;
2072 				}
2073 			}
2074 			rcu_read_unlock();
2075 			if (exclusive)
2076 				deleting = cpumask_and(tmp->delmask,
2077 						xcpus, parent->effective_cpus);
2078 			else
2079 				part_error = PERR_NOTEXCL;
2080 		}
2081 	}
2082 
2083 write_error:
2084 	if (part_error)
2085 		WRITE_ONCE(cs->prs_err, part_error);
2086 
2087 	if (cmd == partcmd_update) {
2088 		/*
2089 		 * Check for possible transition between valid and invalid
2090 		 * partition root.
2091 		 */
2092 		switch (cs->partition_root_state) {
2093 		case PRS_ROOT:
2094 		case PRS_ISOLATED:
2095 			if (part_error) {
2096 				new_prs = -old_prs;
2097 				subparts_delta--;
2098 			}
2099 			break;
2100 		case PRS_INVALID_ROOT:
2101 		case PRS_INVALID_ISOLATED:
2102 			if (!part_error) {
2103 				new_prs = -old_prs;
2104 				subparts_delta++;
2105 			}
2106 			break;
2107 		}
2108 	}
2109 
2110 	if (!adding && !deleting && (new_prs == old_prs))
2111 		return 0;
2112 
2113 	/*
2114 	 * Transitioning between invalid to valid or vice versa may require
2115 	 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
2116 	 * validate_change() has already been successfully called and
2117 	 * CPU lists in cs haven't been updated yet. So defer it to later.
2118 	 */
2119 	if ((old_prs != new_prs) && (cmd != partcmd_update))  {
2120 		int err = update_partition_exclusive(cs, new_prs);
2121 
2122 		if (err)
2123 			return err;
2124 	}
2125 
2126 	/*
2127 	 * Change the parent's effective_cpus & effective_xcpus (top cpuset
2128 	 * only).
2129 	 *
2130 	 * Newly added CPUs will be removed from effective_cpus and
2131 	 * newly deleted ones will be added back to effective_cpus.
2132 	 */
2133 	spin_lock_irq(&callback_lock);
2134 	if (old_prs != new_prs) {
2135 		cs->partition_root_state = new_prs;
2136 		if (new_prs <= 0)
2137 			cs->nr_subparts = 0;
2138 	}
2139 	/*
2140 	 * Adding to parent's effective_cpus means deletion CPUs from cs
2141 	 * and vice versa.
2142 	 */
2143 	if (adding)
2144 		isolcpus_updated += partition_xcpus_del(old_prs, parent,
2145 							tmp->addmask);
2146 	if (deleting)
2147 		isolcpus_updated += partition_xcpus_add(new_prs, parent,
2148 							tmp->delmask);
2149 
2150 	if (is_partition_valid(parent)) {
2151 		parent->nr_subparts += subparts_delta;
2152 		WARN_ON_ONCE(parent->nr_subparts < 0);
2153 	}
2154 	spin_unlock_irq(&callback_lock);
2155 	update_unbound_workqueue_cpumask(isolcpus_updated);
2156 
2157 	if ((old_prs != new_prs) && (cmd == partcmd_update))
2158 		update_partition_exclusive(cs, new_prs);
2159 
2160 	if (adding || deleting) {
2161 		update_tasks_cpumask(parent, tmp->addmask);
2162 		update_sibling_cpumasks(parent, cs, tmp);
2163 	}
2164 
2165 	/*
2166 	 * For partcmd_update without newmask, it is being called from
2167 	 * cpuset_handle_hotplug(). Update the load balance flag and
2168 	 * scheduling domain accordingly.
2169 	 */
2170 	if ((cmd == partcmd_update) && !newmask)
2171 		update_partition_sd_lb(cs, old_prs);
2172 
2173 	notify_partition_change(cs, old_prs);
2174 	return 0;
2175 }
2176 
2177 /**
2178  * compute_partition_effective_cpumask - compute effective_cpus for partition
2179  * @cs: partition root cpuset
2180  * @new_ecpus: previously computed effective_cpus to be updated
2181  *
2182  * Compute the effective_cpus of a partition root by scanning effective_xcpus
2183  * of child partition roots and excluding their effective_xcpus.
2184  *
2185  * This has the side effect of invalidating valid child partition roots,
2186  * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
2187  * or update_cpumasks_hier() where parent and children are modified
2188  * successively, we don't need to call update_parent_effective_cpumask()
2189  * and the child's effective_cpus will be updated in later iterations.
2190  *
2191  * Note that rcu_read_lock() is assumed to be held.
2192  */
2193 static void compute_partition_effective_cpumask(struct cpuset *cs,
2194 						struct cpumask *new_ecpus)
2195 {
2196 	struct cgroup_subsys_state *css;
2197 	struct cpuset *child;
2198 	bool populated = partition_is_populated(cs, NULL);
2199 
2200 	/*
2201 	 * Check child partition roots to see if they should be
2202 	 * invalidated when
2203 	 *  1) child effective_xcpus not a subset of new
2204 	 *     excluisve_cpus
2205 	 *  2) All the effective_cpus will be used up and cp
2206 	 *     has tasks
2207 	 */
2208 	compute_effective_exclusive_cpumask(cs, new_ecpus);
2209 	cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
2210 
2211 	rcu_read_lock();
2212 	cpuset_for_each_child(child, css, cs) {
2213 		if (!is_partition_valid(child))
2214 			continue;
2215 
2216 		child->prs_err = 0;
2217 		if (!cpumask_subset(child->effective_xcpus,
2218 				    cs->effective_xcpus))
2219 			child->prs_err = PERR_INVCPUS;
2220 		else if (populated &&
2221 			 cpumask_subset(new_ecpus, child->effective_xcpus))
2222 			child->prs_err = PERR_NOCPUS;
2223 
2224 		if (child->prs_err) {
2225 			int old_prs = child->partition_root_state;
2226 
2227 			/*
2228 			 * Invalidate child partition
2229 			 */
2230 			spin_lock_irq(&callback_lock);
2231 			make_partition_invalid(child);
2232 			cs->nr_subparts--;
2233 			child->nr_subparts = 0;
2234 			spin_unlock_irq(&callback_lock);
2235 			notify_partition_change(child, old_prs);
2236 			continue;
2237 		}
2238 		cpumask_andnot(new_ecpus, new_ecpus,
2239 			       child->effective_xcpus);
2240 	}
2241 	rcu_read_unlock();
2242 }
2243 
2244 /*
2245  * update_cpumasks_hier() flags
2246  */
2247 #define HIER_CHECKALL		0x01	/* Check all cpusets with no skipping */
2248 #define HIER_NO_SD_REBUILD	0x02	/* Don't rebuild sched domains */
2249 
2250 /*
2251  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
2252  * @cs:  the cpuset to consider
2253  * @tmp: temp variables for calculating effective_cpus & partition setup
2254  * @force: don't skip any descendant cpusets if set
2255  *
2256  * When configured cpumask is changed, the effective cpumasks of this cpuset
2257  * and all its descendants need to be updated.
2258  *
2259  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
2260  *
2261  * Called with cpuset_mutex held
2262  */
2263 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
2264 				 int flags)
2265 {
2266 	struct cpuset *cp;
2267 	struct cgroup_subsys_state *pos_css;
2268 	bool need_rebuild_sched_domains = false;
2269 	int old_prs, new_prs;
2270 
2271 	rcu_read_lock();
2272 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2273 		struct cpuset *parent = parent_cs(cp);
2274 		bool remote = is_remote_partition(cp);
2275 		bool update_parent = false;
2276 
2277 		/*
2278 		 * Skip descendent remote partition that acquires CPUs
2279 		 * directly from top cpuset unless it is cs.
2280 		 */
2281 		if (remote && (cp != cs)) {
2282 			pos_css = css_rightmost_descendant(pos_css);
2283 			continue;
2284 		}
2285 
2286 		/*
2287 		 * Update effective_xcpus if exclusive_cpus set.
2288 		 * The case when exclusive_cpus isn't set is handled later.
2289 		 */
2290 		if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) {
2291 			spin_lock_irq(&callback_lock);
2292 			compute_effective_exclusive_cpumask(cp, NULL);
2293 			spin_unlock_irq(&callback_lock);
2294 		}
2295 
2296 		old_prs = new_prs = cp->partition_root_state;
2297 		if (remote || (is_partition_valid(parent) &&
2298 			       is_partition_valid(cp)))
2299 			compute_partition_effective_cpumask(cp, tmp->new_cpus);
2300 		else
2301 			compute_effective_cpumask(tmp->new_cpus, cp, parent);
2302 
2303 		/*
2304 		 * A partition with no effective_cpus is allowed as long as
2305 		 * there is no task associated with it. Call
2306 		 * update_parent_effective_cpumask() to check it.
2307 		 */
2308 		if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
2309 			update_parent = true;
2310 			goto update_parent_effective;
2311 		}
2312 
2313 		/*
2314 		 * If it becomes empty, inherit the effective mask of the
2315 		 * parent, which is guaranteed to have some CPUs unless
2316 		 * it is a partition root that has explicitly distributed
2317 		 * out all its CPUs.
2318 		 */
2319 		if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) {
2320 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2321 			if (!cp->use_parent_ecpus) {
2322 				cp->use_parent_ecpus = true;
2323 				parent->child_ecpus_count++;
2324 			}
2325 		} else if (cp->use_parent_ecpus) {
2326 			cp->use_parent_ecpus = false;
2327 			WARN_ON_ONCE(!parent->child_ecpus_count);
2328 			parent->child_ecpus_count--;
2329 		}
2330 
2331 		if (remote)
2332 			goto get_css;
2333 
2334 		/*
2335 		 * Skip the whole subtree if
2336 		 * 1) the cpumask remains the same,
2337 		 * 2) has no partition root state,
2338 		 * 3) HIER_CHECKALL flag not set, and
2339 		 * 4) for v2 load balance state same as its parent.
2340 		 */
2341 		if (!cp->partition_root_state && !(flags & HIER_CHECKALL) &&
2342 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2343 		    (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
2344 		    (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2345 			pos_css = css_rightmost_descendant(pos_css);
2346 			continue;
2347 		}
2348 
2349 update_parent_effective:
2350 		/*
2351 		 * update_parent_effective_cpumask() should have been called
2352 		 * for cs already in update_cpumask(). We should also call
2353 		 * update_tasks_cpumask() again for tasks in the parent
2354 		 * cpuset if the parent's effective_cpus changes.
2355 		 */
2356 		if ((cp != cs) && old_prs) {
2357 			switch (parent->partition_root_state) {
2358 			case PRS_ROOT:
2359 			case PRS_ISOLATED:
2360 				update_parent = true;
2361 				break;
2362 
2363 			default:
2364 				/*
2365 				 * When parent is not a partition root or is
2366 				 * invalid, child partition roots become
2367 				 * invalid too.
2368 				 */
2369 				if (is_partition_valid(cp))
2370 					new_prs = -cp->partition_root_state;
2371 				WRITE_ONCE(cp->prs_err,
2372 					   is_partition_invalid(parent)
2373 					   ? PERR_INVPARENT : PERR_NOTPART);
2374 				break;
2375 			}
2376 		}
2377 get_css:
2378 		if (!css_tryget_online(&cp->css))
2379 			continue;
2380 		rcu_read_unlock();
2381 
2382 		if (update_parent) {
2383 			update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
2384 			/*
2385 			 * The cpuset partition_root_state may become
2386 			 * invalid. Capture it.
2387 			 */
2388 			new_prs = cp->partition_root_state;
2389 		}
2390 
2391 		spin_lock_irq(&callback_lock);
2392 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2393 		cp->partition_root_state = new_prs;
2394 		/*
2395 		 * Make sure effective_xcpus is properly set for a valid
2396 		 * partition root.
2397 		 */
2398 		if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2399 			cpumask_and(cp->effective_xcpus,
2400 				    cp->cpus_allowed, parent->effective_xcpus);
2401 		else if (new_prs < 0)
2402 			reset_partition_data(cp);
2403 		spin_unlock_irq(&callback_lock);
2404 
2405 		notify_partition_change(cp, old_prs);
2406 
2407 		WARN_ON(!is_in_v2_mode() &&
2408 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2409 
2410 		update_tasks_cpumask(cp, cp->effective_cpus);
2411 
2412 		/*
2413 		 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2414 		 * from parent if current cpuset isn't a valid partition root
2415 		 * and their load balance states differ.
2416 		 */
2417 		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2418 		    !is_partition_valid(cp) &&
2419 		    (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2420 			if (is_sched_load_balance(parent))
2421 				set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2422 			else
2423 				clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2424 		}
2425 
2426 		/*
2427 		 * On legacy hierarchy, if the effective cpumask of any non-
2428 		 * empty cpuset is changed, we need to rebuild sched domains.
2429 		 * On default hierarchy, the cpuset needs to be a partition
2430 		 * root as well.
2431 		 */
2432 		if (!cpumask_empty(cp->cpus_allowed) &&
2433 		    is_sched_load_balance(cp) &&
2434 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
2435 		    is_partition_valid(cp)))
2436 			need_rebuild_sched_domains = true;
2437 
2438 		rcu_read_lock();
2439 		css_put(&cp->css);
2440 	}
2441 	rcu_read_unlock();
2442 
2443 	if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD))
2444 		rebuild_sched_domains_locked();
2445 }
2446 
2447 /**
2448  * update_sibling_cpumasks - Update siblings cpumasks
2449  * @parent:  Parent cpuset
2450  * @cs:      Current cpuset
2451  * @tmp:     Temp variables
2452  */
2453 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2454 				    struct tmpmasks *tmp)
2455 {
2456 	struct cpuset *sibling;
2457 	struct cgroup_subsys_state *pos_css;
2458 
2459 	lockdep_assert_held(&cpuset_mutex);
2460 
2461 	/*
2462 	 * Check all its siblings and call update_cpumasks_hier()
2463 	 * if their effective_cpus will need to be changed.
2464 	 *
2465 	 * With the addition of effective_xcpus which is a subset of
2466 	 * cpus_allowed. It is possible a change in parent's effective_cpus
2467 	 * due to a change in a child partition's effective_xcpus will impact
2468 	 * its siblings even if they do not inherit parent's effective_cpus
2469 	 * directly.
2470 	 *
2471 	 * The update_cpumasks_hier() function may sleep. So we have to
2472 	 * release the RCU read lock before calling it. HIER_NO_SD_REBUILD
2473 	 * flag is used to suppress rebuild of sched domains as the callers
2474 	 * will take care of that.
2475 	 */
2476 	rcu_read_lock();
2477 	cpuset_for_each_child(sibling, pos_css, parent) {
2478 		if (sibling == cs)
2479 			continue;
2480 		if (!sibling->use_parent_ecpus &&
2481 		    !is_partition_valid(sibling)) {
2482 			compute_effective_cpumask(tmp->new_cpus, sibling,
2483 						  parent);
2484 			if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2485 				continue;
2486 		}
2487 		if (!css_tryget_online(&sibling->css))
2488 			continue;
2489 
2490 		rcu_read_unlock();
2491 		update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD);
2492 		rcu_read_lock();
2493 		css_put(&sibling->css);
2494 	}
2495 	rcu_read_unlock();
2496 }
2497 
2498 /**
2499  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2500  * @cs: the cpuset to consider
2501  * @trialcs: trial cpuset
2502  * @buf: buffer of cpu numbers written to this cpuset
2503  */
2504 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2505 			  const char *buf)
2506 {
2507 	int retval;
2508 	struct tmpmasks tmp;
2509 	struct cpuset *parent = parent_cs(cs);
2510 	bool invalidate = false;
2511 	int hier_flags = 0;
2512 	int old_prs = cs->partition_root_state;
2513 
2514 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
2515 	if (cs == &top_cpuset)
2516 		return -EACCES;
2517 
2518 	/*
2519 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
2520 	 * Since cpulist_parse() fails on an empty mask, we special case
2521 	 * that parsing.  The validate_change() call ensures that cpusets
2522 	 * with tasks have cpus.
2523 	 */
2524 	if (!*buf) {
2525 		cpumask_clear(trialcs->cpus_allowed);
2526 		cpumask_clear(trialcs->effective_xcpus);
2527 	} else {
2528 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
2529 		if (retval < 0)
2530 			return retval;
2531 
2532 		if (!cpumask_subset(trialcs->cpus_allowed,
2533 				    top_cpuset.cpus_allowed))
2534 			return -EINVAL;
2535 
2536 		/*
2537 		 * When exclusive_cpus isn't explicitly set, it is constrainted
2538 		 * by cpus_allowed and parent's effective_xcpus. Otherwise,
2539 		 * trialcs->effective_xcpus is used as a temporary cpumask
2540 		 * for checking validity of the partition root.
2541 		 */
2542 		if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs))
2543 			compute_effective_exclusive_cpumask(trialcs, NULL);
2544 	}
2545 
2546 	/* Nothing to do if the cpus didn't change */
2547 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2548 		return 0;
2549 
2550 	if (alloc_cpumasks(NULL, &tmp))
2551 		return -ENOMEM;
2552 
2553 	if (old_prs) {
2554 		if (is_partition_valid(cs) &&
2555 		    cpumask_empty(trialcs->effective_xcpus)) {
2556 			invalidate = true;
2557 			cs->prs_err = PERR_INVCPUS;
2558 		} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2559 			invalidate = true;
2560 			cs->prs_err = PERR_HKEEPING;
2561 		} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2562 			invalidate = true;
2563 			cs->prs_err = PERR_NOCPUS;
2564 		}
2565 	}
2566 
2567 	/*
2568 	 * Check all the descendants in update_cpumasks_hier() if
2569 	 * effective_xcpus is to be changed.
2570 	 */
2571 	if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
2572 		hier_flags = HIER_CHECKALL;
2573 
2574 	retval = validate_change(cs, trialcs);
2575 
2576 	if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2577 		struct cgroup_subsys_state *css;
2578 		struct cpuset *cp;
2579 
2580 		/*
2581 		 * The -EINVAL error code indicates that partition sibling
2582 		 * CPU exclusivity rule has been violated. We still allow
2583 		 * the cpumask change to proceed while invalidating the
2584 		 * partition. However, any conflicting sibling partitions
2585 		 * have to be marked as invalid too.
2586 		 */
2587 		invalidate = true;
2588 		rcu_read_lock();
2589 		cpuset_for_each_child(cp, css, parent) {
2590 			struct cpumask *xcpus = fetch_xcpus(trialcs);
2591 
2592 			if (is_partition_valid(cp) &&
2593 			    cpumask_intersects(xcpus, cp->effective_xcpus)) {
2594 				rcu_read_unlock();
2595 				update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp);
2596 				rcu_read_lock();
2597 			}
2598 		}
2599 		rcu_read_unlock();
2600 		retval = 0;
2601 	}
2602 
2603 	if (retval < 0)
2604 		goto out_free;
2605 
2606 	if (is_partition_valid(cs) ||
2607 	   (is_partition_invalid(cs) && !invalidate)) {
2608 		struct cpumask *xcpus = trialcs->effective_xcpus;
2609 
2610 		if (cpumask_empty(xcpus) && is_partition_invalid(cs))
2611 			xcpus = trialcs->cpus_allowed;
2612 
2613 		/*
2614 		 * Call remote_cpus_update() to handle valid remote partition
2615 		 */
2616 		if (is_remote_partition(cs))
2617 			remote_cpus_update(cs, xcpus, &tmp);
2618 		else if (invalidate)
2619 			update_parent_effective_cpumask(cs, partcmd_invalidate,
2620 							NULL, &tmp);
2621 		else
2622 			update_parent_effective_cpumask(cs, partcmd_update,
2623 							xcpus, &tmp);
2624 	} else if (!cpumask_empty(cs->exclusive_cpus)) {
2625 		/*
2626 		 * Use trialcs->effective_cpus as a temp cpumask
2627 		 */
2628 		remote_partition_check(cs, trialcs->effective_xcpus,
2629 				       trialcs->effective_cpus, &tmp);
2630 	}
2631 
2632 	spin_lock_irq(&callback_lock);
2633 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2634 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2635 	if ((old_prs > 0) && !is_partition_valid(cs))
2636 		reset_partition_data(cs);
2637 	spin_unlock_irq(&callback_lock);
2638 
2639 	/* effective_cpus/effective_xcpus will be updated here */
2640 	update_cpumasks_hier(cs, &tmp, hier_flags);
2641 
2642 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2643 	if (cs->partition_root_state)
2644 		update_partition_sd_lb(cs, old_prs);
2645 out_free:
2646 	free_cpumasks(NULL, &tmp);
2647 	return retval;
2648 }
2649 
2650 /**
2651  * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2652  * @cs: the cpuset to consider
2653  * @trialcs: trial cpuset
2654  * @buf: buffer of cpu numbers written to this cpuset
2655  *
2656  * The tasks' cpumask will be updated if cs is a valid partition root.
2657  */
2658 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2659 				    const char *buf)
2660 {
2661 	int retval;
2662 	struct tmpmasks tmp;
2663 	struct cpuset *parent = parent_cs(cs);
2664 	bool invalidate = false;
2665 	int hier_flags = 0;
2666 	int old_prs = cs->partition_root_state;
2667 
2668 	if (!*buf) {
2669 		cpumask_clear(trialcs->exclusive_cpus);
2670 		cpumask_clear(trialcs->effective_xcpus);
2671 	} else {
2672 		retval = cpulist_parse(buf, trialcs->exclusive_cpus);
2673 		if (retval < 0)
2674 			return retval;
2675 	}
2676 
2677 	/* Nothing to do if the CPUs didn't change */
2678 	if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2679 		return 0;
2680 
2681 	if (*buf)
2682 		compute_effective_exclusive_cpumask(trialcs, NULL);
2683 
2684 	/*
2685 	 * Check all the descendants in update_cpumasks_hier() if
2686 	 * effective_xcpus is to be changed.
2687 	 */
2688 	if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
2689 		hier_flags = HIER_CHECKALL;
2690 
2691 	retval = validate_change(cs, trialcs);
2692 	if (retval)
2693 		return retval;
2694 
2695 	if (alloc_cpumasks(NULL, &tmp))
2696 		return -ENOMEM;
2697 
2698 	if (old_prs) {
2699 		if (cpumask_empty(trialcs->effective_xcpus)) {
2700 			invalidate = true;
2701 			cs->prs_err = PERR_INVCPUS;
2702 		} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2703 			invalidate = true;
2704 			cs->prs_err = PERR_HKEEPING;
2705 		} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2706 			invalidate = true;
2707 			cs->prs_err = PERR_NOCPUS;
2708 		}
2709 
2710 		if (is_remote_partition(cs)) {
2711 			if (invalidate)
2712 				remote_partition_disable(cs, &tmp);
2713 			else
2714 				remote_cpus_update(cs, trialcs->effective_xcpus,
2715 						   &tmp);
2716 		} else if (invalidate) {
2717 			update_parent_effective_cpumask(cs, partcmd_invalidate,
2718 							NULL, &tmp);
2719 		} else {
2720 			update_parent_effective_cpumask(cs, partcmd_update,
2721 						trialcs->effective_xcpus, &tmp);
2722 		}
2723 	} else if (!cpumask_empty(trialcs->exclusive_cpus)) {
2724 		/*
2725 		 * Use trialcs->effective_cpus as a temp cpumask
2726 		 */
2727 		remote_partition_check(cs, trialcs->effective_xcpus,
2728 				       trialcs->effective_cpus, &tmp);
2729 	}
2730 	spin_lock_irq(&callback_lock);
2731 	cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2732 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2733 	if ((old_prs > 0) && !is_partition_valid(cs))
2734 		reset_partition_data(cs);
2735 	spin_unlock_irq(&callback_lock);
2736 
2737 	/*
2738 	 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2739 	 * of the subtree when it is a valid partition root or effective_xcpus
2740 	 * is updated.
2741 	 */
2742 	if (is_partition_valid(cs) || hier_flags)
2743 		update_cpumasks_hier(cs, &tmp, hier_flags);
2744 
2745 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2746 	if (cs->partition_root_state)
2747 		update_partition_sd_lb(cs, old_prs);
2748 
2749 	free_cpumasks(NULL, &tmp);
2750 	return 0;
2751 }
2752 
2753 /*
2754  * Migrate memory region from one set of nodes to another.  This is
2755  * performed asynchronously as it can be called from process migration path
2756  * holding locks involved in process management.  All mm migrations are
2757  * performed in the queued order and can be waited for by flushing
2758  * cpuset_migrate_mm_wq.
2759  */
2760 
2761 struct cpuset_migrate_mm_work {
2762 	struct work_struct	work;
2763 	struct mm_struct	*mm;
2764 	nodemask_t		from;
2765 	nodemask_t		to;
2766 };
2767 
2768 static void cpuset_migrate_mm_workfn(struct work_struct *work)
2769 {
2770 	struct cpuset_migrate_mm_work *mwork =
2771 		container_of(work, struct cpuset_migrate_mm_work, work);
2772 
2773 	/* on a wq worker, no need to worry about %current's mems_allowed */
2774 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2775 	mmput(mwork->mm);
2776 	kfree(mwork);
2777 }
2778 
2779 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2780 							const nodemask_t *to)
2781 {
2782 	struct cpuset_migrate_mm_work *mwork;
2783 
2784 	if (nodes_equal(*from, *to)) {
2785 		mmput(mm);
2786 		return;
2787 	}
2788 
2789 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2790 	if (mwork) {
2791 		mwork->mm = mm;
2792 		mwork->from = *from;
2793 		mwork->to = *to;
2794 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2795 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
2796 	} else {
2797 		mmput(mm);
2798 	}
2799 }
2800 
2801 static void cpuset_post_attach(void)
2802 {
2803 	flush_workqueue(cpuset_migrate_mm_wq);
2804 }
2805 
2806 /*
2807  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2808  * @tsk: the task to change
2809  * @newmems: new nodes that the task will be set
2810  *
2811  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2812  * and rebind an eventual tasks' mempolicy. If the task is allocating in
2813  * parallel, it might temporarily see an empty intersection, which results in
2814  * a seqlock check and retry before OOM or allocation failure.
2815  */
2816 static void cpuset_change_task_nodemask(struct task_struct *tsk,
2817 					nodemask_t *newmems)
2818 {
2819 	task_lock(tsk);
2820 
2821 	local_irq_disable();
2822 	write_seqcount_begin(&tsk->mems_allowed_seq);
2823 
2824 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2825 	mpol_rebind_task(tsk, newmems);
2826 	tsk->mems_allowed = *newmems;
2827 
2828 	write_seqcount_end(&tsk->mems_allowed_seq);
2829 	local_irq_enable();
2830 
2831 	task_unlock(tsk);
2832 }
2833 
2834 static void *cpuset_being_rebound;
2835 
2836 /**
2837  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2838  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2839  *
2840  * Iterate through each task of @cs updating its mems_allowed to the
2841  * effective cpuset's.  As this function is called with cpuset_mutex held,
2842  * cpuset membership stays stable.
2843  */
2844 static void update_tasks_nodemask(struct cpuset *cs)
2845 {
2846 	static nodemask_t newmems;	/* protected by cpuset_mutex */
2847 	struct css_task_iter it;
2848 	struct task_struct *task;
2849 
2850 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
2851 
2852 	guarantee_online_mems(cs, &newmems);
2853 
2854 	/*
2855 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2856 	 * take while holding tasklist_lock.  Forks can happen - the
2857 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
2858 	 * and rebind their vma mempolicies too.  Because we still hold
2859 	 * the global cpuset_mutex, we know that no other rebind effort
2860 	 * will be contending for the global variable cpuset_being_rebound.
2861 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2862 	 * is idempotent.  Also migrate pages in each mm to new nodes.
2863 	 */
2864 	css_task_iter_start(&cs->css, 0, &it);
2865 	while ((task = css_task_iter_next(&it))) {
2866 		struct mm_struct *mm;
2867 		bool migrate;
2868 
2869 		cpuset_change_task_nodemask(task, &newmems);
2870 
2871 		mm = get_task_mm(task);
2872 		if (!mm)
2873 			continue;
2874 
2875 		migrate = is_memory_migrate(cs);
2876 
2877 		mpol_rebind_mm(mm, &cs->mems_allowed);
2878 		if (migrate)
2879 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2880 		else
2881 			mmput(mm);
2882 	}
2883 	css_task_iter_end(&it);
2884 
2885 	/*
2886 	 * All the tasks' nodemasks have been updated, update
2887 	 * cs->old_mems_allowed.
2888 	 */
2889 	cs->old_mems_allowed = newmems;
2890 
2891 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2892 	cpuset_being_rebound = NULL;
2893 }
2894 
2895 /*
2896  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2897  * @cs: the cpuset to consider
2898  * @new_mems: a temp variable for calculating new effective_mems
2899  *
2900  * When configured nodemask is changed, the effective nodemasks of this cpuset
2901  * and all its descendants need to be updated.
2902  *
2903  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2904  *
2905  * Called with cpuset_mutex held
2906  */
2907 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2908 {
2909 	struct cpuset *cp;
2910 	struct cgroup_subsys_state *pos_css;
2911 
2912 	rcu_read_lock();
2913 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2914 		struct cpuset *parent = parent_cs(cp);
2915 
2916 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2917 
2918 		/*
2919 		 * If it becomes empty, inherit the effective mask of the
2920 		 * parent, which is guaranteed to have some MEMs.
2921 		 */
2922 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2923 			*new_mems = parent->effective_mems;
2924 
2925 		/* Skip the whole subtree if the nodemask remains the same. */
2926 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2927 			pos_css = css_rightmost_descendant(pos_css);
2928 			continue;
2929 		}
2930 
2931 		if (!css_tryget_online(&cp->css))
2932 			continue;
2933 		rcu_read_unlock();
2934 
2935 		spin_lock_irq(&callback_lock);
2936 		cp->effective_mems = *new_mems;
2937 		spin_unlock_irq(&callback_lock);
2938 
2939 		WARN_ON(!is_in_v2_mode() &&
2940 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2941 
2942 		update_tasks_nodemask(cp);
2943 
2944 		rcu_read_lock();
2945 		css_put(&cp->css);
2946 	}
2947 	rcu_read_unlock();
2948 }
2949 
2950 /*
2951  * Handle user request to change the 'mems' memory placement
2952  * of a cpuset.  Needs to validate the request, update the
2953  * cpusets mems_allowed, and for each task in the cpuset,
2954  * update mems_allowed and rebind task's mempolicy and any vma
2955  * mempolicies and if the cpuset is marked 'memory_migrate',
2956  * migrate the tasks pages to the new memory.
2957  *
2958  * Call with cpuset_mutex held. May take callback_lock during call.
2959  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2960  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2961  * their mempolicies to the cpusets new mems_allowed.
2962  */
2963 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2964 			   const char *buf)
2965 {
2966 	int retval;
2967 
2968 	/*
2969 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2970 	 * it's read-only
2971 	 */
2972 	if (cs == &top_cpuset) {
2973 		retval = -EACCES;
2974 		goto done;
2975 	}
2976 
2977 	/*
2978 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2979 	 * Since nodelist_parse() fails on an empty mask, we special case
2980 	 * that parsing.  The validate_change() call ensures that cpusets
2981 	 * with tasks have memory.
2982 	 */
2983 	if (!*buf) {
2984 		nodes_clear(trialcs->mems_allowed);
2985 	} else {
2986 		retval = nodelist_parse(buf, trialcs->mems_allowed);
2987 		if (retval < 0)
2988 			goto done;
2989 
2990 		if (!nodes_subset(trialcs->mems_allowed,
2991 				  top_cpuset.mems_allowed)) {
2992 			retval = -EINVAL;
2993 			goto done;
2994 		}
2995 	}
2996 
2997 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2998 		retval = 0;		/* Too easy - nothing to do */
2999 		goto done;
3000 	}
3001 	retval = validate_change(cs, trialcs);
3002 	if (retval < 0)
3003 		goto done;
3004 
3005 	check_insane_mems_config(&trialcs->mems_allowed);
3006 
3007 	spin_lock_irq(&callback_lock);
3008 	cs->mems_allowed = trialcs->mems_allowed;
3009 	spin_unlock_irq(&callback_lock);
3010 
3011 	/* use trialcs->mems_allowed as a temp variable */
3012 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
3013 done:
3014 	return retval;
3015 }
3016 
3017 bool current_cpuset_is_being_rebound(void)
3018 {
3019 	bool ret;
3020 
3021 	rcu_read_lock();
3022 	ret = task_cs(current) == cpuset_being_rebound;
3023 	rcu_read_unlock();
3024 
3025 	return ret;
3026 }
3027 
3028 static int update_relax_domain_level(struct cpuset *cs, s64 val)
3029 {
3030 #ifdef CONFIG_SMP
3031 	if (val < -1 || val > sched_domain_level_max + 1)
3032 		return -EINVAL;
3033 #endif
3034 
3035 	if (val != cs->relax_domain_level) {
3036 		cs->relax_domain_level = val;
3037 		if (!cpumask_empty(cs->cpus_allowed) &&
3038 		    is_sched_load_balance(cs))
3039 			rebuild_sched_domains_locked();
3040 	}
3041 
3042 	return 0;
3043 }
3044 
3045 /**
3046  * update_tasks_flags - update the spread flags of tasks in the cpuset.
3047  * @cs: the cpuset in which each task's spread flags needs to be changed
3048  *
3049  * Iterate through each task of @cs updating its spread flags.  As this
3050  * function is called with cpuset_mutex held, cpuset membership stays
3051  * stable.
3052  */
3053 static void update_tasks_flags(struct cpuset *cs)
3054 {
3055 	struct css_task_iter it;
3056 	struct task_struct *task;
3057 
3058 	css_task_iter_start(&cs->css, 0, &it);
3059 	while ((task = css_task_iter_next(&it)))
3060 		cpuset_update_task_spread_flags(cs, task);
3061 	css_task_iter_end(&it);
3062 }
3063 
3064 /*
3065  * update_flag - read a 0 or a 1 in a file and update associated flag
3066  * bit:		the bit to update (see cpuset_flagbits_t)
3067  * cs:		the cpuset to update
3068  * turning_on: 	whether the flag is being set or cleared
3069  *
3070  * Call with cpuset_mutex held.
3071  */
3072 
3073 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
3074 		       int turning_on)
3075 {
3076 	struct cpuset *trialcs;
3077 	int balance_flag_changed;
3078 	int spread_flag_changed;
3079 	int err;
3080 
3081 	trialcs = alloc_trial_cpuset(cs);
3082 	if (!trialcs)
3083 		return -ENOMEM;
3084 
3085 	if (turning_on)
3086 		set_bit(bit, &trialcs->flags);
3087 	else
3088 		clear_bit(bit, &trialcs->flags);
3089 
3090 	err = validate_change(cs, trialcs);
3091 	if (err < 0)
3092 		goto out;
3093 
3094 	balance_flag_changed = (is_sched_load_balance(cs) !=
3095 				is_sched_load_balance(trialcs));
3096 
3097 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
3098 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
3099 
3100 	spin_lock_irq(&callback_lock);
3101 	cs->flags = trialcs->flags;
3102 	spin_unlock_irq(&callback_lock);
3103 
3104 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
3105 		rebuild_sched_domains_locked();
3106 
3107 	if (spread_flag_changed)
3108 		update_tasks_flags(cs);
3109 out:
3110 	free_cpuset(trialcs);
3111 	return err;
3112 }
3113 
3114 /**
3115  * update_prstate - update partition_root_state
3116  * @cs: the cpuset to update
3117  * @new_prs: new partition root state
3118  * Return: 0 if successful, != 0 if error
3119  *
3120  * Call with cpuset_mutex held.
3121  */
3122 static int update_prstate(struct cpuset *cs, int new_prs)
3123 {
3124 	int err = PERR_NONE, old_prs = cs->partition_root_state;
3125 	struct cpuset *parent = parent_cs(cs);
3126 	struct tmpmasks tmpmask;
3127 	bool new_xcpus_state = false;
3128 
3129 	if (old_prs == new_prs)
3130 		return 0;
3131 
3132 	/*
3133 	 * Treat a previously invalid partition root as if it is a "member".
3134 	 */
3135 	if (new_prs && is_prs_invalid(old_prs))
3136 		old_prs = PRS_MEMBER;
3137 
3138 	if (alloc_cpumasks(NULL, &tmpmask))
3139 		return -ENOMEM;
3140 
3141 	/*
3142 	 * Setup effective_xcpus if not properly set yet, it will be cleared
3143 	 * later if partition becomes invalid.
3144 	 */
3145 	if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) {
3146 		spin_lock_irq(&callback_lock);
3147 		cpumask_and(cs->effective_xcpus,
3148 			    cs->cpus_allowed, parent->effective_xcpus);
3149 		spin_unlock_irq(&callback_lock);
3150 	}
3151 
3152 	err = update_partition_exclusive(cs, new_prs);
3153 	if (err)
3154 		goto out;
3155 
3156 	if (!old_prs) {
3157 		enum partition_cmd cmd = (new_prs == PRS_ROOT)
3158 				       ? partcmd_enable : partcmd_enablei;
3159 
3160 		/*
3161 		 * cpus_allowed and exclusive_cpus cannot be both empty.
3162 		 */
3163 		if (xcpus_empty(cs)) {
3164 			err = PERR_CPUSEMPTY;
3165 			goto out;
3166 		}
3167 
3168 		err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
3169 		/*
3170 		 * If an attempt to become local partition root fails,
3171 		 * try to become a remote partition root instead.
3172 		 */
3173 		if (err && remote_partition_enable(cs, new_prs, &tmpmask))
3174 			err = 0;
3175 	} else if (old_prs && new_prs) {
3176 		/*
3177 		 * A change in load balance state only, no change in cpumasks.
3178 		 */
3179 		new_xcpus_state = true;
3180 	} else {
3181 		/*
3182 		 * Switching back to member is always allowed even if it
3183 		 * disables child partitions.
3184 		 */
3185 		if (is_remote_partition(cs))
3186 			remote_partition_disable(cs, &tmpmask);
3187 		else
3188 			update_parent_effective_cpumask(cs, partcmd_disable,
3189 							NULL, &tmpmask);
3190 
3191 		/*
3192 		 * Invalidation of child partitions will be done in
3193 		 * update_cpumasks_hier().
3194 		 */
3195 	}
3196 out:
3197 	/*
3198 	 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
3199 	 * happens.
3200 	 */
3201 	if (err) {
3202 		new_prs = -new_prs;
3203 		update_partition_exclusive(cs, new_prs);
3204 	}
3205 
3206 	spin_lock_irq(&callback_lock);
3207 	cs->partition_root_state = new_prs;
3208 	WRITE_ONCE(cs->prs_err, err);
3209 	if (!is_partition_valid(cs))
3210 		reset_partition_data(cs);
3211 	else if (new_xcpus_state)
3212 		partition_xcpus_newstate(old_prs, new_prs, cs->effective_xcpus);
3213 	spin_unlock_irq(&callback_lock);
3214 	update_unbound_workqueue_cpumask(new_xcpus_state);
3215 
3216 	/* Force update if switching back to member */
3217 	update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0);
3218 
3219 	/* Update sched domains and load balance flag */
3220 	update_partition_sd_lb(cs, old_prs);
3221 
3222 	notify_partition_change(cs, old_prs);
3223 	free_cpumasks(NULL, &tmpmask);
3224 	return 0;
3225 }
3226 
3227 /*
3228  * Frequency meter - How fast is some event occurring?
3229  *
3230  * These routines manage a digitally filtered, constant time based,
3231  * event frequency meter.  There are four routines:
3232  *   fmeter_init() - initialize a frequency meter.
3233  *   fmeter_markevent() - called each time the event happens.
3234  *   fmeter_getrate() - returns the recent rate of such events.
3235  *   fmeter_update() - internal routine used to update fmeter.
3236  *
3237  * A common data structure is passed to each of these routines,
3238  * which is used to keep track of the state required to manage the
3239  * frequency meter and its digital filter.
3240  *
3241  * The filter works on the number of events marked per unit time.
3242  * The filter is single-pole low-pass recursive (IIR).  The time unit
3243  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
3244  * simulate 3 decimal digits of precision (multiplied by 1000).
3245  *
3246  * With an FM_COEF of 933, and a time base of 1 second, the filter
3247  * has a half-life of 10 seconds, meaning that if the events quit
3248  * happening, then the rate returned from the fmeter_getrate()
3249  * will be cut in half each 10 seconds, until it converges to zero.
3250  *
3251  * It is not worth doing a real infinitely recursive filter.  If more
3252  * than FM_MAXTICKS ticks have elapsed since the last filter event,
3253  * just compute FM_MAXTICKS ticks worth, by which point the level
3254  * will be stable.
3255  *
3256  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
3257  * arithmetic overflow in the fmeter_update() routine.
3258  *
3259  * Given the simple 32 bit integer arithmetic used, this meter works
3260  * best for reporting rates between one per millisecond (msec) and
3261  * one per 32 (approx) seconds.  At constant rates faster than one
3262  * per msec it maxes out at values just under 1,000,000.  At constant
3263  * rates between one per msec, and one per second it will stabilize
3264  * to a value N*1000, where N is the rate of events per second.
3265  * At constant rates between one per second and one per 32 seconds,
3266  * it will be choppy, moving up on the seconds that have an event,
3267  * and then decaying until the next event.  At rates slower than
3268  * about one in 32 seconds, it decays all the way back to zero between
3269  * each event.
3270  */
3271 
3272 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
3273 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
3274 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
3275 #define FM_SCALE 1000		/* faux fixed point scale */
3276 
3277 /* Initialize a frequency meter */
3278 static void fmeter_init(struct fmeter *fmp)
3279 {
3280 	fmp->cnt = 0;
3281 	fmp->val = 0;
3282 	fmp->time = 0;
3283 	spin_lock_init(&fmp->lock);
3284 }
3285 
3286 /* Internal meter update - process cnt events and update value */
3287 static void fmeter_update(struct fmeter *fmp)
3288 {
3289 	time64_t now;
3290 	u32 ticks;
3291 
3292 	now = ktime_get_seconds();
3293 	ticks = now - fmp->time;
3294 
3295 	if (ticks == 0)
3296 		return;
3297 
3298 	ticks = min(FM_MAXTICKS, ticks);
3299 	while (ticks-- > 0)
3300 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
3301 	fmp->time = now;
3302 
3303 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
3304 	fmp->cnt = 0;
3305 }
3306 
3307 /* Process any previous ticks, then bump cnt by one (times scale). */
3308 static void fmeter_markevent(struct fmeter *fmp)
3309 {
3310 	spin_lock(&fmp->lock);
3311 	fmeter_update(fmp);
3312 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
3313 	spin_unlock(&fmp->lock);
3314 }
3315 
3316 /* Process any previous ticks, then return current value. */
3317 static int fmeter_getrate(struct fmeter *fmp)
3318 {
3319 	int val;
3320 
3321 	spin_lock(&fmp->lock);
3322 	fmeter_update(fmp);
3323 	val = fmp->val;
3324 	spin_unlock(&fmp->lock);
3325 	return val;
3326 }
3327 
3328 static struct cpuset *cpuset_attach_old_cs;
3329 
3330 /*
3331  * Check to see if a cpuset can accept a new task
3332  * For v1, cpus_allowed and mems_allowed can't be empty.
3333  * For v2, effective_cpus can't be empty.
3334  * Note that in v1, effective_cpus = cpus_allowed.
3335  */
3336 static int cpuset_can_attach_check(struct cpuset *cs)
3337 {
3338 	if (cpumask_empty(cs->effective_cpus) ||
3339 	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
3340 		return -ENOSPC;
3341 	return 0;
3342 }
3343 
3344 static void reset_migrate_dl_data(struct cpuset *cs)
3345 {
3346 	cs->nr_migrate_dl_tasks = 0;
3347 	cs->sum_migrate_dl_bw = 0;
3348 }
3349 
3350 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
3351 static int cpuset_can_attach(struct cgroup_taskset *tset)
3352 {
3353 	struct cgroup_subsys_state *css;
3354 	struct cpuset *cs, *oldcs;
3355 	struct task_struct *task;
3356 	bool cpus_updated, mems_updated;
3357 	int ret;
3358 
3359 	/* used later by cpuset_attach() */
3360 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
3361 	oldcs = cpuset_attach_old_cs;
3362 	cs = css_cs(css);
3363 
3364 	mutex_lock(&cpuset_mutex);
3365 
3366 	/* Check to see if task is allowed in the cpuset */
3367 	ret = cpuset_can_attach_check(cs);
3368 	if (ret)
3369 		goto out_unlock;
3370 
3371 	cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
3372 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3373 
3374 	cgroup_taskset_for_each(task, css, tset) {
3375 		ret = task_can_attach(task);
3376 		if (ret)
3377 			goto out_unlock;
3378 
3379 		/*
3380 		 * Skip rights over task check in v2 when nothing changes,
3381 		 * migration permission derives from hierarchy ownership in
3382 		 * cgroup_procs_write_permission()).
3383 		 */
3384 		if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
3385 		    (cpus_updated || mems_updated)) {
3386 			ret = security_task_setscheduler(task);
3387 			if (ret)
3388 				goto out_unlock;
3389 		}
3390 
3391 		if (dl_task(task)) {
3392 			cs->nr_migrate_dl_tasks++;
3393 			cs->sum_migrate_dl_bw += task->dl.dl_bw;
3394 		}
3395 	}
3396 
3397 	if (!cs->nr_migrate_dl_tasks)
3398 		goto out_success;
3399 
3400 	if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
3401 		int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
3402 
3403 		if (unlikely(cpu >= nr_cpu_ids)) {
3404 			reset_migrate_dl_data(cs);
3405 			ret = -EINVAL;
3406 			goto out_unlock;
3407 		}
3408 
3409 		ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
3410 		if (ret) {
3411 			reset_migrate_dl_data(cs);
3412 			goto out_unlock;
3413 		}
3414 	}
3415 
3416 out_success:
3417 	/*
3418 	 * Mark attach is in progress.  This makes validate_change() fail
3419 	 * changes which zero cpus/mems_allowed.
3420 	 */
3421 	cs->attach_in_progress++;
3422 out_unlock:
3423 	mutex_unlock(&cpuset_mutex);
3424 	return ret;
3425 }
3426 
3427 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
3428 {
3429 	struct cgroup_subsys_state *css;
3430 	struct cpuset *cs;
3431 
3432 	cgroup_taskset_first(tset, &css);
3433 	cs = css_cs(css);
3434 
3435 	mutex_lock(&cpuset_mutex);
3436 	cs->attach_in_progress--;
3437 	if (!cs->attach_in_progress)
3438 		wake_up(&cpuset_attach_wq);
3439 
3440 	if (cs->nr_migrate_dl_tasks) {
3441 		int cpu = cpumask_any(cs->effective_cpus);
3442 
3443 		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
3444 		reset_migrate_dl_data(cs);
3445 	}
3446 
3447 	mutex_unlock(&cpuset_mutex);
3448 }
3449 
3450 /*
3451  * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
3452  * but we can't allocate it dynamically there.  Define it global and
3453  * allocate from cpuset_init().
3454  */
3455 static cpumask_var_t cpus_attach;
3456 static nodemask_t cpuset_attach_nodemask_to;
3457 
3458 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
3459 {
3460 	lockdep_assert_held(&cpuset_mutex);
3461 
3462 	if (cs != &top_cpuset)
3463 		guarantee_online_cpus(task, cpus_attach);
3464 	else
3465 		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3466 			       subpartitions_cpus);
3467 	/*
3468 	 * can_attach beforehand should guarantee that this doesn't
3469 	 * fail.  TODO: have a better way to handle failure here
3470 	 */
3471 	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
3472 
3473 	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3474 	cpuset_update_task_spread_flags(cs, task);
3475 }
3476 
3477 static void cpuset_attach(struct cgroup_taskset *tset)
3478 {
3479 	struct task_struct *task;
3480 	struct task_struct *leader;
3481 	struct cgroup_subsys_state *css;
3482 	struct cpuset *cs;
3483 	struct cpuset *oldcs = cpuset_attach_old_cs;
3484 	bool cpus_updated, mems_updated;
3485 
3486 	cgroup_taskset_first(tset, &css);
3487 	cs = css_cs(css);
3488 
3489 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
3490 	mutex_lock(&cpuset_mutex);
3491 	cpus_updated = !cpumask_equal(cs->effective_cpus,
3492 				      oldcs->effective_cpus);
3493 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3494 
3495 	/*
3496 	 * In the default hierarchy, enabling cpuset in the child cgroups
3497 	 * will trigger a number of cpuset_attach() calls with no change
3498 	 * in effective cpus and mems. In that case, we can optimize out
3499 	 * by skipping the task iteration and update.
3500 	 */
3501 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3502 	    !cpus_updated && !mems_updated) {
3503 		cpuset_attach_nodemask_to = cs->effective_mems;
3504 		goto out;
3505 	}
3506 
3507 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3508 
3509 	cgroup_taskset_for_each(task, css, tset)
3510 		cpuset_attach_task(cs, task);
3511 
3512 	/*
3513 	 * Change mm for all threadgroup leaders. This is expensive and may
3514 	 * sleep and should be moved outside migration path proper. Skip it
3515 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3516 	 * not set.
3517 	 */
3518 	cpuset_attach_nodemask_to = cs->effective_mems;
3519 	if (!is_memory_migrate(cs) && !mems_updated)
3520 		goto out;
3521 
3522 	cgroup_taskset_for_each_leader(leader, css, tset) {
3523 		struct mm_struct *mm = get_task_mm(leader);
3524 
3525 		if (mm) {
3526 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3527 
3528 			/*
3529 			 * old_mems_allowed is the same with mems_allowed
3530 			 * here, except if this task is being moved
3531 			 * automatically due to hotplug.  In that case
3532 			 * @mems_allowed has been updated and is empty, so
3533 			 * @old_mems_allowed is the right nodesets that we
3534 			 * migrate mm from.
3535 			 */
3536 			if (is_memory_migrate(cs))
3537 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3538 						  &cpuset_attach_nodemask_to);
3539 			else
3540 				mmput(mm);
3541 		}
3542 	}
3543 
3544 out:
3545 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
3546 
3547 	if (cs->nr_migrate_dl_tasks) {
3548 		cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3549 		oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3550 		reset_migrate_dl_data(cs);
3551 	}
3552 
3553 	cs->attach_in_progress--;
3554 	if (!cs->attach_in_progress)
3555 		wake_up(&cpuset_attach_wq);
3556 
3557 	mutex_unlock(&cpuset_mutex);
3558 }
3559 
3560 /* The various types of files and directories in a cpuset file system */
3561 
3562 typedef enum {
3563 	FILE_MEMORY_MIGRATE,
3564 	FILE_CPULIST,
3565 	FILE_MEMLIST,
3566 	FILE_EFFECTIVE_CPULIST,
3567 	FILE_EFFECTIVE_MEMLIST,
3568 	FILE_SUBPARTS_CPULIST,
3569 	FILE_EXCLUSIVE_CPULIST,
3570 	FILE_EFFECTIVE_XCPULIST,
3571 	FILE_ISOLATED_CPULIST,
3572 	FILE_CPU_EXCLUSIVE,
3573 	FILE_MEM_EXCLUSIVE,
3574 	FILE_MEM_HARDWALL,
3575 	FILE_SCHED_LOAD_BALANCE,
3576 	FILE_PARTITION_ROOT,
3577 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
3578 	FILE_MEMORY_PRESSURE_ENABLED,
3579 	FILE_MEMORY_PRESSURE,
3580 	FILE_SPREAD_PAGE,
3581 	FILE_SPREAD_SLAB,
3582 } cpuset_filetype_t;
3583 
3584 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
3585 			    u64 val)
3586 {
3587 	struct cpuset *cs = css_cs(css);
3588 	cpuset_filetype_t type = cft->private;
3589 	int retval = 0;
3590 
3591 	cpus_read_lock();
3592 	mutex_lock(&cpuset_mutex);
3593 	if (!is_cpuset_online(cs)) {
3594 		retval = -ENODEV;
3595 		goto out_unlock;
3596 	}
3597 
3598 	switch (type) {
3599 	case FILE_CPU_EXCLUSIVE:
3600 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
3601 		break;
3602 	case FILE_MEM_EXCLUSIVE:
3603 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
3604 		break;
3605 	case FILE_MEM_HARDWALL:
3606 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
3607 		break;
3608 	case FILE_SCHED_LOAD_BALANCE:
3609 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
3610 		break;
3611 	case FILE_MEMORY_MIGRATE:
3612 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
3613 		break;
3614 	case FILE_MEMORY_PRESSURE_ENABLED:
3615 		cpuset_memory_pressure_enabled = !!val;
3616 		break;
3617 	case FILE_SPREAD_PAGE:
3618 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
3619 		break;
3620 	case FILE_SPREAD_SLAB:
3621 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
3622 		break;
3623 	default:
3624 		retval = -EINVAL;
3625 		break;
3626 	}
3627 out_unlock:
3628 	mutex_unlock(&cpuset_mutex);
3629 	cpus_read_unlock();
3630 	return retval;
3631 }
3632 
3633 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
3634 			    s64 val)
3635 {
3636 	struct cpuset *cs = css_cs(css);
3637 	cpuset_filetype_t type = cft->private;
3638 	int retval = -ENODEV;
3639 
3640 	cpus_read_lock();
3641 	mutex_lock(&cpuset_mutex);
3642 	if (!is_cpuset_online(cs))
3643 		goto out_unlock;
3644 
3645 	switch (type) {
3646 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
3647 		retval = update_relax_domain_level(cs, val);
3648 		break;
3649 	default:
3650 		retval = -EINVAL;
3651 		break;
3652 	}
3653 out_unlock:
3654 	mutex_unlock(&cpuset_mutex);
3655 	cpus_read_unlock();
3656 	return retval;
3657 }
3658 
3659 /*
3660  * Common handling for a write to a "cpus" or "mems" file.
3661  */
3662 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3663 				    char *buf, size_t nbytes, loff_t off)
3664 {
3665 	struct cpuset *cs = css_cs(of_css(of));
3666 	struct cpuset *trialcs;
3667 	int retval = -ENODEV;
3668 
3669 	buf = strstrip(buf);
3670 
3671 	/*
3672 	 * CPU or memory hotunplug may leave @cs w/o any execution
3673 	 * resources, in which case the hotplug code asynchronously updates
3674 	 * configuration and transfers all tasks to the nearest ancestor
3675 	 * which can execute.
3676 	 *
3677 	 * As writes to "cpus" or "mems" may restore @cs's execution
3678 	 * resources, wait for the previously scheduled operations before
3679 	 * proceeding, so that we don't end up keep removing tasks added
3680 	 * after execution capability is restored.
3681 	 *
3682 	 * cpuset_handle_hotplug may call back into cgroup core asynchronously
3683 	 * via cgroup_transfer_tasks() and waiting for it from a cgroupfs
3684 	 * operation like this one can lead to a deadlock through kernfs
3685 	 * active_ref protection.  Let's break the protection.  Losing the
3686 	 * protection is okay as we check whether @cs is online after
3687 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
3688 	 * hierarchies.
3689 	 */
3690 	css_get(&cs->css);
3691 	kernfs_break_active_protection(of->kn);
3692 
3693 	cpus_read_lock();
3694 	mutex_lock(&cpuset_mutex);
3695 	if (!is_cpuset_online(cs))
3696 		goto out_unlock;
3697 
3698 	trialcs = alloc_trial_cpuset(cs);
3699 	if (!trialcs) {
3700 		retval = -ENOMEM;
3701 		goto out_unlock;
3702 	}
3703 
3704 	switch (of_cft(of)->private) {
3705 	case FILE_CPULIST:
3706 		retval = update_cpumask(cs, trialcs, buf);
3707 		break;
3708 	case FILE_EXCLUSIVE_CPULIST:
3709 		retval = update_exclusive_cpumask(cs, trialcs, buf);
3710 		break;
3711 	case FILE_MEMLIST:
3712 		retval = update_nodemask(cs, trialcs, buf);
3713 		break;
3714 	default:
3715 		retval = -EINVAL;
3716 		break;
3717 	}
3718 
3719 	free_cpuset(trialcs);
3720 out_unlock:
3721 	mutex_unlock(&cpuset_mutex);
3722 	cpus_read_unlock();
3723 	kernfs_unbreak_active_protection(of->kn);
3724 	css_put(&cs->css);
3725 	flush_workqueue(cpuset_migrate_mm_wq);
3726 	return retval ?: nbytes;
3727 }
3728 
3729 /*
3730  * These ascii lists should be read in a single call, by using a user
3731  * buffer large enough to hold the entire map.  If read in smaller
3732  * chunks, there is no guarantee of atomicity.  Since the display format
3733  * used, list of ranges of sequential numbers, is variable length,
3734  * and since these maps can change value dynamically, one could read
3735  * gibberish by doing partial reads while a list was changing.
3736  */
3737 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
3738 {
3739 	struct cpuset *cs = css_cs(seq_css(sf));
3740 	cpuset_filetype_t type = seq_cft(sf)->private;
3741 	int ret = 0;
3742 
3743 	spin_lock_irq(&callback_lock);
3744 
3745 	switch (type) {
3746 	case FILE_CPULIST:
3747 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3748 		break;
3749 	case FILE_MEMLIST:
3750 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3751 		break;
3752 	case FILE_EFFECTIVE_CPULIST:
3753 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3754 		break;
3755 	case FILE_EFFECTIVE_MEMLIST:
3756 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3757 		break;
3758 	case FILE_EXCLUSIVE_CPULIST:
3759 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3760 		break;
3761 	case FILE_EFFECTIVE_XCPULIST:
3762 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3763 		break;
3764 	case FILE_SUBPARTS_CPULIST:
3765 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3766 		break;
3767 	case FILE_ISOLATED_CPULIST:
3768 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
3769 		break;
3770 	default:
3771 		ret = -EINVAL;
3772 	}
3773 
3774 	spin_unlock_irq(&callback_lock);
3775 	return ret;
3776 }
3777 
3778 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
3779 {
3780 	struct cpuset *cs = css_cs(css);
3781 	cpuset_filetype_t type = cft->private;
3782 	switch (type) {
3783 	case FILE_CPU_EXCLUSIVE:
3784 		return is_cpu_exclusive(cs);
3785 	case FILE_MEM_EXCLUSIVE:
3786 		return is_mem_exclusive(cs);
3787 	case FILE_MEM_HARDWALL:
3788 		return is_mem_hardwall(cs);
3789 	case FILE_SCHED_LOAD_BALANCE:
3790 		return is_sched_load_balance(cs);
3791 	case FILE_MEMORY_MIGRATE:
3792 		return is_memory_migrate(cs);
3793 	case FILE_MEMORY_PRESSURE_ENABLED:
3794 		return cpuset_memory_pressure_enabled;
3795 	case FILE_MEMORY_PRESSURE:
3796 		return fmeter_getrate(&cs->fmeter);
3797 	case FILE_SPREAD_PAGE:
3798 		return is_spread_page(cs);
3799 	case FILE_SPREAD_SLAB:
3800 		return is_spread_slab(cs);
3801 	default:
3802 		BUG();
3803 	}
3804 
3805 	/* Unreachable but makes gcc happy */
3806 	return 0;
3807 }
3808 
3809 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
3810 {
3811 	struct cpuset *cs = css_cs(css);
3812 	cpuset_filetype_t type = cft->private;
3813 	switch (type) {
3814 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
3815 		return cs->relax_domain_level;
3816 	default:
3817 		BUG();
3818 	}
3819 
3820 	/* Unreachable but makes gcc happy */
3821 	return 0;
3822 }
3823 
3824 static int sched_partition_show(struct seq_file *seq, void *v)
3825 {
3826 	struct cpuset *cs = css_cs(seq_css(seq));
3827 	const char *err, *type = NULL;
3828 
3829 	switch (cs->partition_root_state) {
3830 	case PRS_ROOT:
3831 		seq_puts(seq, "root\n");
3832 		break;
3833 	case PRS_ISOLATED:
3834 		seq_puts(seq, "isolated\n");
3835 		break;
3836 	case PRS_MEMBER:
3837 		seq_puts(seq, "member\n");
3838 		break;
3839 	case PRS_INVALID_ROOT:
3840 		type = "root";
3841 		fallthrough;
3842 	case PRS_INVALID_ISOLATED:
3843 		if (!type)
3844 			type = "isolated";
3845 		err = perr_strings[READ_ONCE(cs->prs_err)];
3846 		if (err)
3847 			seq_printf(seq, "%s invalid (%s)\n", type, err);
3848 		else
3849 			seq_printf(seq, "%s invalid\n", type);
3850 		break;
3851 	}
3852 	return 0;
3853 }
3854 
3855 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
3856 				     size_t nbytes, loff_t off)
3857 {
3858 	struct cpuset *cs = css_cs(of_css(of));
3859 	int val;
3860 	int retval = -ENODEV;
3861 
3862 	buf = strstrip(buf);
3863 
3864 	if (!strcmp(buf, "root"))
3865 		val = PRS_ROOT;
3866 	else if (!strcmp(buf, "member"))
3867 		val = PRS_MEMBER;
3868 	else if (!strcmp(buf, "isolated"))
3869 		val = PRS_ISOLATED;
3870 	else
3871 		return -EINVAL;
3872 
3873 	css_get(&cs->css);
3874 	cpus_read_lock();
3875 	mutex_lock(&cpuset_mutex);
3876 	if (!is_cpuset_online(cs))
3877 		goto out_unlock;
3878 
3879 	retval = update_prstate(cs, val);
3880 out_unlock:
3881 	mutex_unlock(&cpuset_mutex);
3882 	cpus_read_unlock();
3883 	css_put(&cs->css);
3884 	return retval ?: nbytes;
3885 }
3886 
3887 /*
3888  * for the common functions, 'private' gives the type of file
3889  */
3890 
3891 static struct cftype legacy_files[] = {
3892 	{
3893 		.name = "cpus",
3894 		.seq_show = cpuset_common_seq_show,
3895 		.write = cpuset_write_resmask,
3896 		.max_write_len = (100U + 6 * NR_CPUS),
3897 		.private = FILE_CPULIST,
3898 	},
3899 
3900 	{
3901 		.name = "mems",
3902 		.seq_show = cpuset_common_seq_show,
3903 		.write = cpuset_write_resmask,
3904 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3905 		.private = FILE_MEMLIST,
3906 	},
3907 
3908 	{
3909 		.name = "effective_cpus",
3910 		.seq_show = cpuset_common_seq_show,
3911 		.private = FILE_EFFECTIVE_CPULIST,
3912 	},
3913 
3914 	{
3915 		.name = "effective_mems",
3916 		.seq_show = cpuset_common_seq_show,
3917 		.private = FILE_EFFECTIVE_MEMLIST,
3918 	},
3919 
3920 	{
3921 		.name = "cpu_exclusive",
3922 		.read_u64 = cpuset_read_u64,
3923 		.write_u64 = cpuset_write_u64,
3924 		.private = FILE_CPU_EXCLUSIVE,
3925 	},
3926 
3927 	{
3928 		.name = "mem_exclusive",
3929 		.read_u64 = cpuset_read_u64,
3930 		.write_u64 = cpuset_write_u64,
3931 		.private = FILE_MEM_EXCLUSIVE,
3932 	},
3933 
3934 	{
3935 		.name = "mem_hardwall",
3936 		.read_u64 = cpuset_read_u64,
3937 		.write_u64 = cpuset_write_u64,
3938 		.private = FILE_MEM_HARDWALL,
3939 	},
3940 
3941 	{
3942 		.name = "sched_load_balance",
3943 		.read_u64 = cpuset_read_u64,
3944 		.write_u64 = cpuset_write_u64,
3945 		.private = FILE_SCHED_LOAD_BALANCE,
3946 	},
3947 
3948 	{
3949 		.name = "sched_relax_domain_level",
3950 		.read_s64 = cpuset_read_s64,
3951 		.write_s64 = cpuset_write_s64,
3952 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
3953 	},
3954 
3955 	{
3956 		.name = "memory_migrate",
3957 		.read_u64 = cpuset_read_u64,
3958 		.write_u64 = cpuset_write_u64,
3959 		.private = FILE_MEMORY_MIGRATE,
3960 	},
3961 
3962 	{
3963 		.name = "memory_pressure",
3964 		.read_u64 = cpuset_read_u64,
3965 		.private = FILE_MEMORY_PRESSURE,
3966 	},
3967 
3968 	{
3969 		.name = "memory_spread_page",
3970 		.read_u64 = cpuset_read_u64,
3971 		.write_u64 = cpuset_write_u64,
3972 		.private = FILE_SPREAD_PAGE,
3973 	},
3974 
3975 	{
3976 		/* obsolete, may be removed in the future */
3977 		.name = "memory_spread_slab",
3978 		.read_u64 = cpuset_read_u64,
3979 		.write_u64 = cpuset_write_u64,
3980 		.private = FILE_SPREAD_SLAB,
3981 	},
3982 
3983 	{
3984 		.name = "memory_pressure_enabled",
3985 		.flags = CFTYPE_ONLY_ON_ROOT,
3986 		.read_u64 = cpuset_read_u64,
3987 		.write_u64 = cpuset_write_u64,
3988 		.private = FILE_MEMORY_PRESSURE_ENABLED,
3989 	},
3990 
3991 	{ }	/* terminate */
3992 };
3993 
3994 /*
3995  * This is currently a minimal set for the default hierarchy. It can be
3996  * expanded later on by migrating more features and control files from v1.
3997  */
3998 static struct cftype dfl_files[] = {
3999 	{
4000 		.name = "cpus",
4001 		.seq_show = cpuset_common_seq_show,
4002 		.write = cpuset_write_resmask,
4003 		.max_write_len = (100U + 6 * NR_CPUS),
4004 		.private = FILE_CPULIST,
4005 		.flags = CFTYPE_NOT_ON_ROOT,
4006 	},
4007 
4008 	{
4009 		.name = "mems",
4010 		.seq_show = cpuset_common_seq_show,
4011 		.write = cpuset_write_resmask,
4012 		.max_write_len = (100U + 6 * MAX_NUMNODES),
4013 		.private = FILE_MEMLIST,
4014 		.flags = CFTYPE_NOT_ON_ROOT,
4015 	},
4016 
4017 	{
4018 		.name = "cpus.effective",
4019 		.seq_show = cpuset_common_seq_show,
4020 		.private = FILE_EFFECTIVE_CPULIST,
4021 	},
4022 
4023 	{
4024 		.name = "mems.effective",
4025 		.seq_show = cpuset_common_seq_show,
4026 		.private = FILE_EFFECTIVE_MEMLIST,
4027 	},
4028 
4029 	{
4030 		.name = "cpus.partition",
4031 		.seq_show = sched_partition_show,
4032 		.write = sched_partition_write,
4033 		.private = FILE_PARTITION_ROOT,
4034 		.flags = CFTYPE_NOT_ON_ROOT,
4035 		.file_offset = offsetof(struct cpuset, partition_file),
4036 	},
4037 
4038 	{
4039 		.name = "cpus.exclusive",
4040 		.seq_show = cpuset_common_seq_show,
4041 		.write = cpuset_write_resmask,
4042 		.max_write_len = (100U + 6 * NR_CPUS),
4043 		.private = FILE_EXCLUSIVE_CPULIST,
4044 		.flags = CFTYPE_NOT_ON_ROOT,
4045 	},
4046 
4047 	{
4048 		.name = "cpus.exclusive.effective",
4049 		.seq_show = cpuset_common_seq_show,
4050 		.private = FILE_EFFECTIVE_XCPULIST,
4051 		.flags = CFTYPE_NOT_ON_ROOT,
4052 	},
4053 
4054 	{
4055 		.name = "cpus.subpartitions",
4056 		.seq_show = cpuset_common_seq_show,
4057 		.private = FILE_SUBPARTS_CPULIST,
4058 		.flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
4059 	},
4060 
4061 	{
4062 		.name = "cpus.isolated",
4063 		.seq_show = cpuset_common_seq_show,
4064 		.private = FILE_ISOLATED_CPULIST,
4065 		.flags = CFTYPE_ONLY_ON_ROOT,
4066 	},
4067 
4068 	{ }	/* terminate */
4069 };
4070 
4071 
4072 /**
4073  * cpuset_css_alloc - Allocate a cpuset css
4074  * @parent_css: Parent css of the control group that the new cpuset will be
4075  *              part of
4076  * Return: cpuset css on success, -ENOMEM on failure.
4077  *
4078  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
4079  * top cpuset css otherwise.
4080  */
4081 static struct cgroup_subsys_state *
4082 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
4083 {
4084 	struct cpuset *cs;
4085 
4086 	if (!parent_css)
4087 		return &top_cpuset.css;
4088 
4089 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
4090 	if (!cs)
4091 		return ERR_PTR(-ENOMEM);
4092 
4093 	if (alloc_cpumasks(cs, NULL)) {
4094 		kfree(cs);
4095 		return ERR_PTR(-ENOMEM);
4096 	}
4097 
4098 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
4099 	fmeter_init(&cs->fmeter);
4100 	cs->relax_domain_level = -1;
4101 	INIT_LIST_HEAD(&cs->remote_sibling);
4102 
4103 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
4104 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
4105 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
4106 
4107 	return &cs->css;
4108 }
4109 
4110 static int cpuset_css_online(struct cgroup_subsys_state *css)
4111 {
4112 	struct cpuset *cs = css_cs(css);
4113 	struct cpuset *parent = parent_cs(cs);
4114 	struct cpuset *tmp_cs;
4115 	struct cgroup_subsys_state *pos_css;
4116 
4117 	if (!parent)
4118 		return 0;
4119 
4120 	cpus_read_lock();
4121 	mutex_lock(&cpuset_mutex);
4122 
4123 	set_bit(CS_ONLINE, &cs->flags);
4124 	if (is_spread_page(parent))
4125 		set_bit(CS_SPREAD_PAGE, &cs->flags);
4126 	if (is_spread_slab(parent))
4127 		set_bit(CS_SPREAD_SLAB, &cs->flags);
4128 	/*
4129 	 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
4130 	 */
4131 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
4132 	    !is_sched_load_balance(parent))
4133 		clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
4134 
4135 	cpuset_inc();
4136 
4137 	spin_lock_irq(&callback_lock);
4138 	if (is_in_v2_mode()) {
4139 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
4140 		cs->effective_mems = parent->effective_mems;
4141 		cs->use_parent_ecpus = true;
4142 		parent->child_ecpus_count++;
4143 	}
4144 	spin_unlock_irq(&callback_lock);
4145 
4146 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
4147 		goto out_unlock;
4148 
4149 	/*
4150 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
4151 	 * set.  This flag handling is implemented in cgroup core for
4152 	 * historical reasons - the flag may be specified during mount.
4153 	 *
4154 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
4155 	 * refuse to clone the configuration - thereby refusing the task to
4156 	 * be entered, and as a result refusing the sys_unshare() or
4157 	 * clone() which initiated it.  If this becomes a problem for some
4158 	 * users who wish to allow that scenario, then this could be
4159 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
4160 	 * (and likewise for mems) to the new cgroup.
4161 	 */
4162 	rcu_read_lock();
4163 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
4164 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
4165 			rcu_read_unlock();
4166 			goto out_unlock;
4167 		}
4168 	}
4169 	rcu_read_unlock();
4170 
4171 	spin_lock_irq(&callback_lock);
4172 	cs->mems_allowed = parent->mems_allowed;
4173 	cs->effective_mems = parent->mems_allowed;
4174 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
4175 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
4176 	spin_unlock_irq(&callback_lock);
4177 out_unlock:
4178 	mutex_unlock(&cpuset_mutex);
4179 	cpus_read_unlock();
4180 	return 0;
4181 }
4182 
4183 /*
4184  * If the cpuset being removed has its flag 'sched_load_balance'
4185  * enabled, then simulate turning sched_load_balance off, which
4186  * will call rebuild_sched_domains_locked(). That is not needed
4187  * in the default hierarchy where only changes in partition
4188  * will cause repartitioning.
4189  *
4190  * If the cpuset has the 'sched.partition' flag enabled, simulate
4191  * turning 'sched.partition" off.
4192  */
4193 
4194 static void cpuset_css_offline(struct cgroup_subsys_state *css)
4195 {
4196 	struct cpuset *cs = css_cs(css);
4197 
4198 	cpus_read_lock();
4199 	mutex_lock(&cpuset_mutex);
4200 
4201 	if (is_partition_valid(cs))
4202 		update_prstate(cs, 0);
4203 
4204 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
4205 	    is_sched_load_balance(cs))
4206 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
4207 
4208 	if (cs->use_parent_ecpus) {
4209 		struct cpuset *parent = parent_cs(cs);
4210 
4211 		cs->use_parent_ecpus = false;
4212 		parent->child_ecpus_count--;
4213 	}
4214 
4215 	cpuset_dec();
4216 	clear_bit(CS_ONLINE, &cs->flags);
4217 
4218 	mutex_unlock(&cpuset_mutex);
4219 	cpus_read_unlock();
4220 }
4221 
4222 static void cpuset_css_free(struct cgroup_subsys_state *css)
4223 {
4224 	struct cpuset *cs = css_cs(css);
4225 
4226 	free_cpuset(cs);
4227 }
4228 
4229 static void cpuset_bind(struct cgroup_subsys_state *root_css)
4230 {
4231 	mutex_lock(&cpuset_mutex);
4232 	spin_lock_irq(&callback_lock);
4233 
4234 	if (is_in_v2_mode()) {
4235 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
4236 		cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
4237 		top_cpuset.mems_allowed = node_possible_map;
4238 	} else {
4239 		cpumask_copy(top_cpuset.cpus_allowed,
4240 			     top_cpuset.effective_cpus);
4241 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
4242 	}
4243 
4244 	spin_unlock_irq(&callback_lock);
4245 	mutex_unlock(&cpuset_mutex);
4246 }
4247 
4248 /*
4249  * In case the child is cloned into a cpuset different from its parent,
4250  * additional checks are done to see if the move is allowed.
4251  */
4252 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
4253 {
4254 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
4255 	bool same_cs;
4256 	int ret;
4257 
4258 	rcu_read_lock();
4259 	same_cs = (cs == task_cs(current));
4260 	rcu_read_unlock();
4261 
4262 	if (same_cs)
4263 		return 0;
4264 
4265 	lockdep_assert_held(&cgroup_mutex);
4266 	mutex_lock(&cpuset_mutex);
4267 
4268 	/* Check to see if task is allowed in the cpuset */
4269 	ret = cpuset_can_attach_check(cs);
4270 	if (ret)
4271 		goto out_unlock;
4272 
4273 	ret = task_can_attach(task);
4274 	if (ret)
4275 		goto out_unlock;
4276 
4277 	ret = security_task_setscheduler(task);
4278 	if (ret)
4279 		goto out_unlock;
4280 
4281 	/*
4282 	 * Mark attach is in progress.  This makes validate_change() fail
4283 	 * changes which zero cpus/mems_allowed.
4284 	 */
4285 	cs->attach_in_progress++;
4286 out_unlock:
4287 	mutex_unlock(&cpuset_mutex);
4288 	return ret;
4289 }
4290 
4291 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
4292 {
4293 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
4294 	bool same_cs;
4295 
4296 	rcu_read_lock();
4297 	same_cs = (cs == task_cs(current));
4298 	rcu_read_unlock();
4299 
4300 	if (same_cs)
4301 		return;
4302 
4303 	mutex_lock(&cpuset_mutex);
4304 	cs->attach_in_progress--;
4305 	if (!cs->attach_in_progress)
4306 		wake_up(&cpuset_attach_wq);
4307 	mutex_unlock(&cpuset_mutex);
4308 }
4309 
4310 /*
4311  * Make sure the new task conform to the current state of its parent,
4312  * which could have been changed by cpuset just after it inherits the
4313  * state from the parent and before it sits on the cgroup's task list.
4314  */
4315 static void cpuset_fork(struct task_struct *task)
4316 {
4317 	struct cpuset *cs;
4318 	bool same_cs;
4319 
4320 	rcu_read_lock();
4321 	cs = task_cs(task);
4322 	same_cs = (cs == task_cs(current));
4323 	rcu_read_unlock();
4324 
4325 	if (same_cs) {
4326 		if (cs == &top_cpuset)
4327 			return;
4328 
4329 		set_cpus_allowed_ptr(task, current->cpus_ptr);
4330 		task->mems_allowed = current->mems_allowed;
4331 		return;
4332 	}
4333 
4334 	/* CLONE_INTO_CGROUP */
4335 	mutex_lock(&cpuset_mutex);
4336 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
4337 	cpuset_attach_task(cs, task);
4338 
4339 	cs->attach_in_progress--;
4340 	if (!cs->attach_in_progress)
4341 		wake_up(&cpuset_attach_wq);
4342 
4343 	mutex_unlock(&cpuset_mutex);
4344 }
4345 
4346 struct cgroup_subsys cpuset_cgrp_subsys = {
4347 	.css_alloc	= cpuset_css_alloc,
4348 	.css_online	= cpuset_css_online,
4349 	.css_offline	= cpuset_css_offline,
4350 	.css_free	= cpuset_css_free,
4351 	.can_attach	= cpuset_can_attach,
4352 	.cancel_attach	= cpuset_cancel_attach,
4353 	.attach		= cpuset_attach,
4354 	.post_attach	= cpuset_post_attach,
4355 	.bind		= cpuset_bind,
4356 	.can_fork	= cpuset_can_fork,
4357 	.cancel_fork	= cpuset_cancel_fork,
4358 	.fork		= cpuset_fork,
4359 	.legacy_cftypes	= legacy_files,
4360 	.dfl_cftypes	= dfl_files,
4361 	.early_init	= true,
4362 	.threaded	= true,
4363 };
4364 
4365 /**
4366  * cpuset_init - initialize cpusets at system boot
4367  *
4368  * Description: Initialize top_cpuset
4369  **/
4370 
4371 int __init cpuset_init(void)
4372 {
4373 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
4374 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
4375 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
4376 	BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
4377 	BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
4378 	BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
4379 
4380 	cpumask_setall(top_cpuset.cpus_allowed);
4381 	nodes_setall(top_cpuset.mems_allowed);
4382 	cpumask_setall(top_cpuset.effective_cpus);
4383 	cpumask_setall(top_cpuset.effective_xcpus);
4384 	cpumask_setall(top_cpuset.exclusive_cpus);
4385 	nodes_setall(top_cpuset.effective_mems);
4386 
4387 	fmeter_init(&top_cpuset.fmeter);
4388 	INIT_LIST_HEAD(&remote_children);
4389 
4390 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
4391 
4392 	return 0;
4393 }
4394 
4395 /*
4396  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
4397  * or memory nodes, we need to walk over the cpuset hierarchy,
4398  * removing that CPU or node from all cpusets.  If this removes the
4399  * last CPU or node from a cpuset, then move the tasks in the empty
4400  * cpuset to its next-highest non-empty parent.
4401  */
4402 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
4403 {
4404 	struct cpuset *parent;
4405 
4406 	/*
4407 	 * Find its next-highest non-empty parent, (top cpuset
4408 	 * has online cpus, so can't be empty).
4409 	 */
4410 	parent = parent_cs(cs);
4411 	while (cpumask_empty(parent->cpus_allowed) ||
4412 			nodes_empty(parent->mems_allowed))
4413 		parent = parent_cs(parent);
4414 
4415 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
4416 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
4417 		pr_cont_cgroup_name(cs->css.cgroup);
4418 		pr_cont("\n");
4419 	}
4420 }
4421 
4422 static void cpuset_migrate_tasks_workfn(struct work_struct *work)
4423 {
4424 	struct cpuset_remove_tasks_struct *s;
4425 
4426 	s = container_of(work, struct cpuset_remove_tasks_struct, work);
4427 	remove_tasks_in_empty_cpuset(s->cs);
4428 	css_put(&s->cs->css);
4429 	kfree(s);
4430 }
4431 
4432 static void
4433 hotplug_update_tasks_legacy(struct cpuset *cs,
4434 			    struct cpumask *new_cpus, nodemask_t *new_mems,
4435 			    bool cpus_updated, bool mems_updated)
4436 {
4437 	bool is_empty;
4438 
4439 	spin_lock_irq(&callback_lock);
4440 	cpumask_copy(cs->cpus_allowed, new_cpus);
4441 	cpumask_copy(cs->effective_cpus, new_cpus);
4442 	cs->mems_allowed = *new_mems;
4443 	cs->effective_mems = *new_mems;
4444 	spin_unlock_irq(&callback_lock);
4445 
4446 	/*
4447 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
4448 	 * as the tasks will be migrated to an ancestor.
4449 	 */
4450 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
4451 		update_tasks_cpumask(cs, new_cpus);
4452 	if (mems_updated && !nodes_empty(cs->mems_allowed))
4453 		update_tasks_nodemask(cs);
4454 
4455 	is_empty = cpumask_empty(cs->cpus_allowed) ||
4456 		   nodes_empty(cs->mems_allowed);
4457 
4458 	/*
4459 	 * Move tasks to the nearest ancestor with execution resources,
4460 	 * This is full cgroup operation which will also call back into
4461 	 * cpuset. Execute it asynchronously using workqueue.
4462 	 */
4463 	if (is_empty && cs->css.cgroup->nr_populated_csets &&
4464 	    css_tryget_online(&cs->css)) {
4465 		struct cpuset_remove_tasks_struct *s;
4466 
4467 		s = kzalloc(sizeof(*s), GFP_KERNEL);
4468 		if (WARN_ON_ONCE(!s)) {
4469 			css_put(&cs->css);
4470 			return;
4471 		}
4472 
4473 		s->cs = cs;
4474 		INIT_WORK(&s->work, cpuset_migrate_tasks_workfn);
4475 		schedule_work(&s->work);
4476 	}
4477 }
4478 
4479 static void
4480 hotplug_update_tasks(struct cpuset *cs,
4481 		     struct cpumask *new_cpus, nodemask_t *new_mems,
4482 		     bool cpus_updated, bool mems_updated)
4483 {
4484 	/* A partition root is allowed to have empty effective cpus */
4485 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
4486 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
4487 	if (nodes_empty(*new_mems))
4488 		*new_mems = parent_cs(cs)->effective_mems;
4489 
4490 	spin_lock_irq(&callback_lock);
4491 	cpumask_copy(cs->effective_cpus, new_cpus);
4492 	cs->effective_mems = *new_mems;
4493 	spin_unlock_irq(&callback_lock);
4494 
4495 	if (cpus_updated)
4496 		update_tasks_cpumask(cs, new_cpus);
4497 	if (mems_updated)
4498 		update_tasks_nodemask(cs);
4499 }
4500 
4501 static bool force_rebuild;
4502 
4503 void cpuset_force_rebuild(void)
4504 {
4505 	force_rebuild = true;
4506 }
4507 
4508 /**
4509  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
4510  * @cs: cpuset in interest
4511  * @tmp: the tmpmasks structure pointer
4512  *
4513  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
4514  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
4515  * all its tasks are moved to the nearest ancestor with both resources.
4516  */
4517 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
4518 {
4519 	static cpumask_t new_cpus;
4520 	static nodemask_t new_mems;
4521 	bool cpus_updated;
4522 	bool mems_updated;
4523 	bool remote;
4524 	int partcmd = -1;
4525 	struct cpuset *parent;
4526 retry:
4527 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
4528 
4529 	mutex_lock(&cpuset_mutex);
4530 
4531 	/*
4532 	 * We have raced with task attaching. We wait until attaching
4533 	 * is finished, so we won't attach a task to an empty cpuset.
4534 	 */
4535 	if (cs->attach_in_progress) {
4536 		mutex_unlock(&cpuset_mutex);
4537 		goto retry;
4538 	}
4539 
4540 	parent = parent_cs(cs);
4541 	compute_effective_cpumask(&new_cpus, cs, parent);
4542 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
4543 
4544 	if (!tmp || !cs->partition_root_state)
4545 		goto update_tasks;
4546 
4547 	/*
4548 	 * Compute effective_cpus for valid partition root, may invalidate
4549 	 * child partition roots if necessary.
4550 	 */
4551 	remote = is_remote_partition(cs);
4552 	if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
4553 		compute_partition_effective_cpumask(cs, &new_cpus);
4554 
4555 	if (remote && cpumask_empty(&new_cpus) &&
4556 	    partition_is_populated(cs, NULL)) {
4557 		remote_partition_disable(cs, tmp);
4558 		compute_effective_cpumask(&new_cpus, cs, parent);
4559 		remote = false;
4560 		cpuset_force_rebuild();
4561 	}
4562 
4563 	/*
4564 	 * Force the partition to become invalid if either one of
4565 	 * the following conditions hold:
4566 	 * 1) empty effective cpus but not valid empty partition.
4567 	 * 2) parent is invalid or doesn't grant any cpus to child
4568 	 *    partitions.
4569 	 */
4570 	if (is_local_partition(cs) && (!is_partition_valid(parent) ||
4571 				tasks_nocpu_error(parent, cs, &new_cpus)))
4572 		partcmd = partcmd_invalidate;
4573 	/*
4574 	 * On the other hand, an invalid partition root may be transitioned
4575 	 * back to a regular one.
4576 	 */
4577 	else if (is_partition_valid(parent) && is_partition_invalid(cs))
4578 		partcmd = partcmd_update;
4579 
4580 	if (partcmd >= 0) {
4581 		update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
4582 		if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
4583 			compute_partition_effective_cpumask(cs, &new_cpus);
4584 			cpuset_force_rebuild();
4585 		}
4586 	}
4587 
4588 update_tasks:
4589 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
4590 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
4591 	if (!cpus_updated && !mems_updated)
4592 		goto unlock;	/* Hotplug doesn't affect this cpuset */
4593 
4594 	if (mems_updated)
4595 		check_insane_mems_config(&new_mems);
4596 
4597 	if (is_in_v2_mode())
4598 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
4599 				     cpus_updated, mems_updated);
4600 	else
4601 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
4602 					    cpus_updated, mems_updated);
4603 
4604 unlock:
4605 	mutex_unlock(&cpuset_mutex);
4606 }
4607 
4608 /**
4609  * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
4610  *
4611  * This function is called after either CPU or memory configuration has
4612  * changed and updates cpuset accordingly.  The top_cpuset is always
4613  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
4614  * order to make cpusets transparent (of no affect) on systems that are
4615  * actively using CPU hotplug but making no active use of cpusets.
4616  *
4617  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
4618  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
4619  * all descendants.
4620  *
4621  * Note that CPU offlining during suspend is ignored.  We don't modify
4622  * cpusets across suspend/resume cycles at all.
4623  *
4624  * CPU / memory hotplug is handled synchronously.
4625  */
4626 static void cpuset_handle_hotplug(void)
4627 {
4628 	static cpumask_t new_cpus;
4629 	static nodemask_t new_mems;
4630 	bool cpus_updated, mems_updated;
4631 	bool on_dfl = is_in_v2_mode();
4632 	struct tmpmasks tmp, *ptmp = NULL;
4633 
4634 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
4635 		ptmp = &tmp;
4636 
4637 	lockdep_assert_cpus_held();
4638 	mutex_lock(&cpuset_mutex);
4639 
4640 	/* fetch the available cpus/mems and find out which changed how */
4641 	cpumask_copy(&new_cpus, cpu_active_mask);
4642 	new_mems = node_states[N_MEMORY];
4643 
4644 	/*
4645 	 * If subpartitions_cpus is populated, it is likely that the check
4646 	 * below will produce a false positive on cpus_updated when the cpu
4647 	 * list isn't changed. It is extra work, but it is better to be safe.
4648 	 */
4649 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
4650 		       !cpumask_empty(subpartitions_cpus);
4651 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
4652 
4653 	/*
4654 	 * In the rare case that hotplug removes all the cpus in
4655 	 * subpartitions_cpus, we assumed that cpus are updated.
4656 	 */
4657 	if (!cpus_updated && !cpumask_empty(subpartitions_cpus))
4658 		cpus_updated = true;
4659 
4660 	/* For v1, synchronize cpus_allowed to cpu_active_mask */
4661 	if (cpus_updated) {
4662 		spin_lock_irq(&callback_lock);
4663 		if (!on_dfl)
4664 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
4665 		/*
4666 		 * Make sure that CPUs allocated to child partitions
4667 		 * do not show up in effective_cpus. If no CPU is left,
4668 		 * we clear the subpartitions_cpus & let the child partitions
4669 		 * fight for the CPUs again.
4670 		 */
4671 		if (!cpumask_empty(subpartitions_cpus)) {
4672 			if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
4673 				top_cpuset.nr_subparts = 0;
4674 				cpumask_clear(subpartitions_cpus);
4675 			} else {
4676 				cpumask_andnot(&new_cpus, &new_cpus,
4677 					       subpartitions_cpus);
4678 			}
4679 		}
4680 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
4681 		spin_unlock_irq(&callback_lock);
4682 		/* we don't mess with cpumasks of tasks in top_cpuset */
4683 	}
4684 
4685 	/* synchronize mems_allowed to N_MEMORY */
4686 	if (mems_updated) {
4687 		spin_lock_irq(&callback_lock);
4688 		if (!on_dfl)
4689 			top_cpuset.mems_allowed = new_mems;
4690 		top_cpuset.effective_mems = new_mems;
4691 		spin_unlock_irq(&callback_lock);
4692 		update_tasks_nodemask(&top_cpuset);
4693 	}
4694 
4695 	mutex_unlock(&cpuset_mutex);
4696 
4697 	/* if cpus or mems changed, we need to propagate to descendants */
4698 	if (cpus_updated || mems_updated) {
4699 		struct cpuset *cs;
4700 		struct cgroup_subsys_state *pos_css;
4701 
4702 		rcu_read_lock();
4703 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
4704 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
4705 				continue;
4706 			rcu_read_unlock();
4707 
4708 			cpuset_hotplug_update_tasks(cs, ptmp);
4709 
4710 			rcu_read_lock();
4711 			css_put(&cs->css);
4712 		}
4713 		rcu_read_unlock();
4714 	}
4715 
4716 	/* rebuild sched domains if cpus_allowed has changed */
4717 	if (cpus_updated || force_rebuild) {
4718 		force_rebuild = false;
4719 		rebuild_sched_domains_cpuslocked();
4720 	}
4721 
4722 	free_cpumasks(NULL, ptmp);
4723 }
4724 
4725 void cpuset_update_active_cpus(void)
4726 {
4727 	/*
4728 	 * We're inside cpu hotplug critical region which usually nests
4729 	 * inside cgroup synchronization.  Bounce actual hotplug processing
4730 	 * to a work item to avoid reverse locking order.
4731 	 */
4732 	cpuset_handle_hotplug();
4733 }
4734 
4735 /*
4736  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
4737  * Call this routine anytime after node_states[N_MEMORY] changes.
4738  * See cpuset_update_active_cpus() for CPU hotplug handling.
4739  */
4740 static int cpuset_track_online_nodes(struct notifier_block *self,
4741 				unsigned long action, void *arg)
4742 {
4743 	cpuset_handle_hotplug();
4744 	return NOTIFY_OK;
4745 }
4746 
4747 /**
4748  * cpuset_init_smp - initialize cpus_allowed
4749  *
4750  * Description: Finish top cpuset after cpu, node maps are initialized
4751  */
4752 void __init cpuset_init_smp(void)
4753 {
4754 	/*
4755 	 * cpus_allowd/mems_allowed set to v2 values in the initial
4756 	 * cpuset_bind() call will be reset to v1 values in another
4757 	 * cpuset_bind() call when v1 cpuset is mounted.
4758 	 */
4759 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4760 
4761 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
4762 	top_cpuset.effective_mems = node_states[N_MEMORY];
4763 
4764 	hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
4765 
4766 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
4767 	BUG_ON(!cpuset_migrate_mm_wq);
4768 }
4769 
4770 /**
4771  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
4772  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4773  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4774  *
4775  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
4776  * attached to the specified @tsk.  Guaranteed to return some non-empty
4777  * subset of cpu_online_mask, even if this means going outside the
4778  * tasks cpuset, except when the task is in the top cpuset.
4779  **/
4780 
4781 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
4782 {
4783 	unsigned long flags;
4784 	struct cpuset *cs;
4785 
4786 	spin_lock_irqsave(&callback_lock, flags);
4787 	rcu_read_lock();
4788 
4789 	cs = task_cs(tsk);
4790 	if (cs != &top_cpuset)
4791 		guarantee_online_cpus(tsk, pmask);
4792 	/*
4793 	 * Tasks in the top cpuset won't get update to their cpumasks
4794 	 * when a hotplug online/offline event happens. So we include all
4795 	 * offline cpus in the allowed cpu list.
4796 	 */
4797 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
4798 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4799 
4800 		/*
4801 		 * We first exclude cpus allocated to partitions. If there is no
4802 		 * allowable online cpu left, we fall back to all possible cpus.
4803 		 */
4804 		cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
4805 		if (!cpumask_intersects(pmask, cpu_online_mask))
4806 			cpumask_copy(pmask, possible_mask);
4807 	}
4808 
4809 	rcu_read_unlock();
4810 	spin_unlock_irqrestore(&callback_lock, flags);
4811 }
4812 
4813 /**
4814  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
4815  * @tsk: pointer to task_struct with which the scheduler is struggling
4816  *
4817  * Description: In the case that the scheduler cannot find an allowed cpu in
4818  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
4819  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
4820  * which will not contain a sane cpumask during cases such as cpu hotplugging.
4821  * This is the absolute last resort for the scheduler and it is only used if
4822  * _every_ other avenue has been traveled.
4823  *
4824  * Returns true if the affinity of @tsk was changed, false otherwise.
4825  **/
4826 
4827 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4828 {
4829 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4830 	const struct cpumask *cs_mask;
4831 	bool changed = false;
4832 
4833 	rcu_read_lock();
4834 	cs_mask = task_cs(tsk)->cpus_allowed;
4835 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4836 		do_set_cpus_allowed(tsk, cs_mask);
4837 		changed = true;
4838 	}
4839 	rcu_read_unlock();
4840 
4841 	/*
4842 	 * We own tsk->cpus_allowed, nobody can change it under us.
4843 	 *
4844 	 * But we used cs && cs->cpus_allowed lockless and thus can
4845 	 * race with cgroup_attach_task() or update_cpumask() and get
4846 	 * the wrong tsk->cpus_allowed. However, both cases imply the
4847 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4848 	 * which takes task_rq_lock().
4849 	 *
4850 	 * If we are called after it dropped the lock we must see all
4851 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4852 	 * set any mask even if it is not right from task_cs() pov,
4853 	 * the pending set_cpus_allowed_ptr() will fix things.
4854 	 *
4855 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4856 	 * if required.
4857 	 */
4858 	return changed;
4859 }
4860 
4861 void __init cpuset_init_current_mems_allowed(void)
4862 {
4863 	nodes_setall(current->mems_allowed);
4864 }
4865 
4866 /**
4867  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4868  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4869  *
4870  * Description: Returns the nodemask_t mems_allowed of the cpuset
4871  * attached to the specified @tsk.  Guaranteed to return some non-empty
4872  * subset of node_states[N_MEMORY], even if this means going outside the
4873  * tasks cpuset.
4874  **/
4875 
4876 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4877 {
4878 	nodemask_t mask;
4879 	unsigned long flags;
4880 
4881 	spin_lock_irqsave(&callback_lock, flags);
4882 	rcu_read_lock();
4883 	guarantee_online_mems(task_cs(tsk), &mask);
4884 	rcu_read_unlock();
4885 	spin_unlock_irqrestore(&callback_lock, flags);
4886 
4887 	return mask;
4888 }
4889 
4890 /**
4891  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4892  * @nodemask: the nodemask to be checked
4893  *
4894  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4895  */
4896 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4897 {
4898 	return nodes_intersects(*nodemask, current->mems_allowed);
4899 }
4900 
4901 /*
4902  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4903  * mem_hardwall ancestor to the specified cpuset.  Call holding
4904  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
4905  * (an unusual configuration), then returns the root cpuset.
4906  */
4907 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4908 {
4909 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4910 		cs = parent_cs(cs);
4911 	return cs;
4912 }
4913 
4914 /*
4915  * cpuset_node_allowed - Can we allocate on a memory node?
4916  * @node: is this an allowed node?
4917  * @gfp_mask: memory allocation flags
4918  *
4919  * If we're in interrupt, yes, we can always allocate.  If @node is set in
4920  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
4921  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4922  * yes.  If current has access to memory reserves as an oom victim, yes.
4923  * Otherwise, no.
4924  *
4925  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4926  * and do not allow allocations outside the current tasks cpuset
4927  * unless the task has been OOM killed.
4928  * GFP_KERNEL allocations are not so marked, so can escape to the
4929  * nearest enclosing hardwalled ancestor cpuset.
4930  *
4931  * Scanning up parent cpusets requires callback_lock.  The
4932  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4933  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4934  * current tasks mems_allowed came up empty on the first pass over
4935  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
4936  * cpuset are short of memory, might require taking the callback_lock.
4937  *
4938  * The first call here from mm/page_alloc:get_page_from_freelist()
4939  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4940  * so no allocation on a node outside the cpuset is allowed (unless
4941  * in interrupt, of course).
4942  *
4943  * The second pass through get_page_from_freelist() doesn't even call
4944  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
4945  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4946  * in alloc_flags.  That logic and the checks below have the combined
4947  * affect that:
4948  *	in_interrupt - any node ok (current task context irrelevant)
4949  *	GFP_ATOMIC   - any node ok
4950  *	tsk_is_oom_victim   - any node ok
4951  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
4952  *	GFP_USER     - only nodes in current tasks mems allowed ok.
4953  */
4954 bool cpuset_node_allowed(int node, gfp_t gfp_mask)
4955 {
4956 	struct cpuset *cs;		/* current cpuset ancestors */
4957 	bool allowed;			/* is allocation in zone z allowed? */
4958 	unsigned long flags;
4959 
4960 	if (in_interrupt())
4961 		return true;
4962 	if (node_isset(node, current->mems_allowed))
4963 		return true;
4964 	/*
4965 	 * Allow tasks that have access to memory reserves because they have
4966 	 * been OOM killed to get memory anywhere.
4967 	 */
4968 	if (unlikely(tsk_is_oom_victim(current)))
4969 		return true;
4970 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4971 		return false;
4972 
4973 	if (current->flags & PF_EXITING) /* Let dying task have memory */
4974 		return true;
4975 
4976 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4977 	spin_lock_irqsave(&callback_lock, flags);
4978 
4979 	rcu_read_lock();
4980 	cs = nearest_hardwall_ancestor(task_cs(current));
4981 	allowed = node_isset(node, cs->mems_allowed);
4982 	rcu_read_unlock();
4983 
4984 	spin_unlock_irqrestore(&callback_lock, flags);
4985 	return allowed;
4986 }
4987 
4988 /**
4989  * cpuset_spread_node() - On which node to begin search for a page
4990  * @rotor: round robin rotor
4991  *
4992  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4993  * tasks in a cpuset with is_spread_page or is_spread_slab set),
4994  * and if the memory allocation used cpuset_mem_spread_node()
4995  * to determine on which node to start looking, as it will for
4996  * certain page cache or slab cache pages such as used for file
4997  * system buffers and inode caches, then instead of starting on the
4998  * local node to look for a free page, rather spread the starting
4999  * node around the tasks mems_allowed nodes.
5000  *
5001  * We don't have to worry about the returned node being offline
5002  * because "it can't happen", and even if it did, it would be ok.
5003  *
5004  * The routines calling guarantee_online_mems() are careful to
5005  * only set nodes in task->mems_allowed that are online.  So it
5006  * should not be possible for the following code to return an
5007  * offline node.  But if it did, that would be ok, as this routine
5008  * is not returning the node where the allocation must be, only
5009  * the node where the search should start.  The zonelist passed to
5010  * __alloc_pages() will include all nodes.  If the slab allocator
5011  * is passed an offline node, it will fall back to the local node.
5012  * See kmem_cache_alloc_node().
5013  */
5014 static int cpuset_spread_node(int *rotor)
5015 {
5016 	return *rotor = next_node_in(*rotor, current->mems_allowed);
5017 }
5018 
5019 /**
5020  * cpuset_mem_spread_node() - On which node to begin search for a file page
5021  */
5022 int cpuset_mem_spread_node(void)
5023 {
5024 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
5025 		current->cpuset_mem_spread_rotor =
5026 			node_random(&current->mems_allowed);
5027 
5028 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
5029 }
5030 
5031 /**
5032  * cpuset_slab_spread_node() - On which node to begin search for a slab page
5033  */
5034 int cpuset_slab_spread_node(void)
5035 {
5036 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
5037 		current->cpuset_slab_spread_rotor =
5038 			node_random(&current->mems_allowed);
5039 
5040 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
5041 }
5042 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
5043 
5044 /**
5045  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
5046  * @tsk1: pointer to task_struct of some task.
5047  * @tsk2: pointer to task_struct of some other task.
5048  *
5049  * Description: Return true if @tsk1's mems_allowed intersects the
5050  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
5051  * one of the task's memory usage might impact the memory available
5052  * to the other.
5053  **/
5054 
5055 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
5056 				   const struct task_struct *tsk2)
5057 {
5058 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
5059 }
5060 
5061 /**
5062  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
5063  *
5064  * Description: Prints current's name, cpuset name, and cached copy of its
5065  * mems_allowed to the kernel log.
5066  */
5067 void cpuset_print_current_mems_allowed(void)
5068 {
5069 	struct cgroup *cgrp;
5070 
5071 	rcu_read_lock();
5072 
5073 	cgrp = task_cs(current)->css.cgroup;
5074 	pr_cont(",cpuset=");
5075 	pr_cont_cgroup_name(cgrp);
5076 	pr_cont(",mems_allowed=%*pbl",
5077 		nodemask_pr_args(&current->mems_allowed));
5078 
5079 	rcu_read_unlock();
5080 }
5081 
5082 /*
5083  * Collection of memory_pressure is suppressed unless
5084  * this flag is enabled by writing "1" to the special
5085  * cpuset file 'memory_pressure_enabled' in the root cpuset.
5086  */
5087 
5088 int cpuset_memory_pressure_enabled __read_mostly;
5089 
5090 /*
5091  * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
5092  *
5093  * Keep a running average of the rate of synchronous (direct)
5094  * page reclaim efforts initiated by tasks in each cpuset.
5095  *
5096  * This represents the rate at which some task in the cpuset
5097  * ran low on memory on all nodes it was allowed to use, and
5098  * had to enter the kernels page reclaim code in an effort to
5099  * create more free memory by tossing clean pages or swapping
5100  * or writing dirty pages.
5101  *
5102  * Display to user space in the per-cpuset read-only file
5103  * "memory_pressure".  Value displayed is an integer
5104  * representing the recent rate of entry into the synchronous
5105  * (direct) page reclaim by any task attached to the cpuset.
5106  */
5107 
5108 void __cpuset_memory_pressure_bump(void)
5109 {
5110 	rcu_read_lock();
5111 	fmeter_markevent(&task_cs(current)->fmeter);
5112 	rcu_read_unlock();
5113 }
5114 
5115 #ifdef CONFIG_PROC_PID_CPUSET
5116 /*
5117  * proc_cpuset_show()
5118  *  - Print tasks cpuset path into seq_file.
5119  *  - Used for /proc/<pid>/cpuset.
5120  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
5121  *    doesn't really matter if tsk->cpuset changes after we read it,
5122  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
5123  *    anyway.
5124  */
5125 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
5126 		     struct pid *pid, struct task_struct *tsk)
5127 {
5128 	char *buf;
5129 	struct cgroup_subsys_state *css;
5130 	int retval;
5131 
5132 	retval = -ENOMEM;
5133 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5134 	if (!buf)
5135 		goto out;
5136 
5137 	rcu_read_lock();
5138 	spin_lock_irq(&css_set_lock);
5139 	css = task_css(tsk, cpuset_cgrp_id);
5140 	retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX,
5141 				       current->nsproxy->cgroup_ns);
5142 	spin_unlock_irq(&css_set_lock);
5143 	rcu_read_unlock();
5144 
5145 	if (retval == -E2BIG)
5146 		retval = -ENAMETOOLONG;
5147 	if (retval < 0)
5148 		goto out_free;
5149 	seq_puts(m, buf);
5150 	seq_putc(m, '\n');
5151 	retval = 0;
5152 out_free:
5153 	kfree(buf);
5154 out:
5155 	return retval;
5156 }
5157 #endif /* CONFIG_PROC_PID_CPUSET */
5158 
5159 /* Display task mems_allowed in /proc/<pid>/status file. */
5160 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
5161 {
5162 	seq_printf(m, "Mems_allowed:\t%*pb\n",
5163 		   nodemask_pr_args(&task->mems_allowed));
5164 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
5165 		   nodemask_pr_args(&task->mems_allowed));
5166 }
5167