1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * kernel/cpuset.c 4 * 5 * Processor and Memory placement constraints for sets of tasks. 6 * 7 * Copyright (C) 2003 BULL SA. 8 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 9 * Copyright (C) 2006 Google, Inc 10 * 11 * Portions derived from Patrick Mochel's sysfs code. 12 * sysfs is Copyright (c) 2001-3 Patrick Mochel 13 * 14 * 2003-10-10 Written by Simon Derr. 15 * 2003-10-22 Updates by Stephen Hemminger. 16 * 2004 May-July Rework by Paul Jackson. 17 * 2006 Rework by Paul Menage to use generic cgroups 18 * 2008 Rework of the scheduler domains and CPU hotplug handling 19 * by Max Krasnyansky 20 */ 21 #include "cpuset-internal.h" 22 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/kernel.h> 26 #include <linux/mempolicy.h> 27 #include <linux/mm.h> 28 #include <linux/memory.h> 29 #include <linux/export.h> 30 #include <linux/rcupdate.h> 31 #include <linux/sched.h> 32 #include <linux/sched/deadline.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/task.h> 35 #include <linux/security.h> 36 #include <linux/oom.h> 37 #include <linux/sched/isolation.h> 38 #include <linux/wait.h> 39 #include <linux/workqueue.h> 40 #include <linux/task_work.h> 41 42 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 43 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 44 45 /* 46 * There could be abnormal cpuset configurations for cpu or memory 47 * node binding, add this key to provide a quick low-cost judgment 48 * of the situation. 49 */ 50 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 51 52 static const char * const perr_strings[] = { 53 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive", 54 [PERR_INVPARENT] = "Parent is an invalid partition root", 55 [PERR_NOTPART] = "Parent is not a partition root", 56 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", 57 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", 58 [PERR_HOTPLUG] = "No cpu available due to hotplug", 59 [PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty", 60 [PERR_HKEEPING] = "partition config conflicts with housekeeping setup", 61 [PERR_ACCESS] = "Enable partition not permitted", 62 [PERR_REMOTE] = "Have remote partition underneath", 63 }; 64 65 /* 66 * For local partitions, update to subpartitions_cpus & isolated_cpus is done 67 * in update_parent_effective_cpumask(). For remote partitions, it is done in 68 * the remote_partition_*() and remote_cpus_update() helpers. 69 */ 70 /* 71 * Exclusive CPUs distributed out to local or remote sub-partitions of 72 * top_cpuset 73 */ 74 static cpumask_var_t subpartitions_cpus; 75 76 /* 77 * Exclusive CPUs in isolated partitions 78 */ 79 static cpumask_var_t isolated_cpus; 80 81 /* 82 * isolated_cpus updating flag (protected by cpuset_mutex) 83 * Set if isolated_cpus is going to be updated in the current 84 * cpuset_mutex crtical section. 85 */ 86 static bool isolated_cpus_updating; 87 88 /* 89 * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot 90 */ 91 static cpumask_var_t boot_hk_cpus; 92 static bool have_boot_isolcpus; 93 94 /* 95 * A flag to force sched domain rebuild at the end of an operation. 96 * It can be set in 97 * - update_partition_sd_lb() 98 * - update_cpumasks_hier() 99 * - cpuset_update_flag() 100 * - cpuset_hotplug_update_tasks() 101 * - cpuset_handle_hotplug() 102 * 103 * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock. 104 * 105 * Note that update_relax_domain_level() in cpuset-v1.c can still call 106 * rebuild_sched_domains_locked() directly without using this flag. 107 */ 108 static bool force_sd_rebuild; 109 110 /* 111 * Partition root states: 112 * 113 * 0 - member (not a partition root) 114 * 1 - partition root 115 * 2 - partition root without load balancing (isolated) 116 * -1 - invalid partition root 117 * -2 - invalid isolated partition root 118 * 119 * There are 2 types of partitions - local or remote. Local partitions are 120 * those whose parents are partition root themselves. Setting of 121 * cpuset.cpus.exclusive are optional in setting up local partitions. 122 * Remote partitions are those whose parents are not partition roots. Passing 123 * down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor 124 * nodes are mandatory in creating a remote partition. 125 * 126 * For simplicity, a local partition can be created under a local or remote 127 * partition but a remote partition cannot have any partition root in its 128 * ancestor chain except the cgroup root. 129 */ 130 #define PRS_MEMBER 0 131 #define PRS_ROOT 1 132 #define PRS_ISOLATED 2 133 #define PRS_INVALID_ROOT -1 134 #define PRS_INVALID_ISOLATED -2 135 136 /* 137 * Temporary cpumasks for working with partitions that are passed among 138 * functions to avoid memory allocation in inner functions. 139 */ 140 struct tmpmasks { 141 cpumask_var_t addmask, delmask; /* For partition root */ 142 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 143 }; 144 145 void inc_dl_tasks_cs(struct task_struct *p) 146 { 147 struct cpuset *cs = task_cs(p); 148 149 cs->nr_deadline_tasks++; 150 } 151 152 void dec_dl_tasks_cs(struct task_struct *p) 153 { 154 struct cpuset *cs = task_cs(p); 155 156 cs->nr_deadline_tasks--; 157 } 158 159 static inline bool is_partition_valid(const struct cpuset *cs) 160 { 161 return cs->partition_root_state > 0; 162 } 163 164 static inline bool is_partition_invalid(const struct cpuset *cs) 165 { 166 return cs->partition_root_state < 0; 167 } 168 169 static inline bool cs_is_member(const struct cpuset *cs) 170 { 171 return cs->partition_root_state == PRS_MEMBER; 172 } 173 174 /* 175 * Callers should hold callback_lock to modify partition_root_state. 176 */ 177 static inline void make_partition_invalid(struct cpuset *cs) 178 { 179 if (cs->partition_root_state > 0) 180 cs->partition_root_state = -cs->partition_root_state; 181 } 182 183 /* 184 * Send notification event of whenever partition_root_state changes. 185 */ 186 static inline void notify_partition_change(struct cpuset *cs, int old_prs) 187 { 188 if (old_prs == cs->partition_root_state) 189 return; 190 cgroup_file_notify(&cs->partition_file); 191 192 /* Reset prs_err if not invalid */ 193 if (is_partition_valid(cs)) 194 WRITE_ONCE(cs->prs_err, PERR_NONE); 195 } 196 197 /* 198 * The top_cpuset is always synchronized to cpu_active_mask and we should avoid 199 * using cpu_online_mask as much as possible. An active CPU is always an online 200 * CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ 201 * during hotplug operations. A CPU is marked active at the last stage of CPU 202 * bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code 203 * will be called to update the sched domains so that the scheduler can move 204 * a normal task to a newly active CPU or remove tasks away from a newly 205 * inactivated CPU. The online bit is set much earlier in the CPU bringup 206 * process and cleared much later in CPU teardown. 207 * 208 * If cpu_online_mask is used while a hotunplug operation is happening in 209 * parallel, we may leave an offline CPU in cpu_allowed or some other masks. 210 */ 211 static struct cpuset top_cpuset = { 212 .flags = BIT(CS_CPU_EXCLUSIVE) | 213 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE), 214 .partition_root_state = PRS_ROOT, 215 .relax_domain_level = -1, 216 .remote_partition = false, 217 }; 218 219 /* 220 * There are two global locks guarding cpuset structures - cpuset_mutex and 221 * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel 222 * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset 223 * structures. Note that cpuset_mutex needs to be a mutex as it is used in 224 * paths that rely on priority inheritance (e.g. scheduler - on RT) for 225 * correctness. 226 * 227 * A task must hold both locks to modify cpusets. If a task holds 228 * cpuset_mutex, it blocks others, ensuring that it is the only task able to 229 * also acquire callback_lock and be able to modify cpusets. It can perform 230 * various checks on the cpuset structure first, knowing nothing will change. 231 * It can also allocate memory while just holding cpuset_mutex. While it is 232 * performing these checks, various callback routines can briefly acquire 233 * callback_lock to query cpusets. Once it is ready to make the changes, it 234 * takes callback_lock, blocking everyone else. 235 * 236 * Calls to the kernel memory allocator can not be made while holding 237 * callback_lock, as that would risk double tripping on callback_lock 238 * from one of the callbacks into the cpuset code from within 239 * __alloc_pages(). 240 * 241 * If a task is only holding callback_lock, then it has read-only 242 * access to cpusets. 243 * 244 * Now, the task_struct fields mems_allowed and mempolicy may be changed 245 * by other task, we use alloc_lock in the task_struct fields to protect 246 * them. 247 * 248 * The cpuset_common_seq_show() handlers only hold callback_lock across 249 * small pieces of code, such as when reading out possibly multi-word 250 * cpumasks and nodemasks. 251 */ 252 253 static DEFINE_MUTEX(cpuset_mutex); 254 255 /** 256 * cpuset_lock - Acquire the global cpuset mutex 257 * 258 * This locks the global cpuset mutex to prevent modifications to cpuset 259 * hierarchy and configurations. This helper is not enough to make modification. 260 */ 261 void cpuset_lock(void) 262 { 263 mutex_lock(&cpuset_mutex); 264 } 265 266 void cpuset_unlock(void) 267 { 268 mutex_unlock(&cpuset_mutex); 269 } 270 271 /** 272 * cpuset_full_lock - Acquire full protection for cpuset modification 273 * 274 * Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex 275 * to safely modify cpuset data. 276 */ 277 void cpuset_full_lock(void) 278 { 279 cpus_read_lock(); 280 mutex_lock(&cpuset_mutex); 281 } 282 283 void cpuset_full_unlock(void) 284 { 285 mutex_unlock(&cpuset_mutex); 286 cpus_read_unlock(); 287 } 288 289 static DEFINE_SPINLOCK(callback_lock); 290 291 void cpuset_callback_lock_irq(void) 292 { 293 spin_lock_irq(&callback_lock); 294 } 295 296 void cpuset_callback_unlock_irq(void) 297 { 298 spin_unlock_irq(&callback_lock); 299 } 300 301 static struct workqueue_struct *cpuset_migrate_mm_wq; 302 303 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 304 305 static inline void check_insane_mems_config(nodemask_t *nodes) 306 { 307 if (!cpusets_insane_config() && 308 movable_only_nodes(nodes)) { 309 static_branch_enable_cpuslocked(&cpusets_insane_config_key); 310 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 311 "Cpuset allocations might fail even with a lot of memory available.\n", 312 nodemask_pr_args(nodes)); 313 } 314 } 315 316 /* 317 * decrease cs->attach_in_progress. 318 * wake_up cpuset_attach_wq if cs->attach_in_progress==0. 319 */ 320 static inline void dec_attach_in_progress_locked(struct cpuset *cs) 321 { 322 lockdep_assert_held(&cpuset_mutex); 323 324 cs->attach_in_progress--; 325 if (!cs->attach_in_progress) 326 wake_up(&cpuset_attach_wq); 327 } 328 329 static inline void dec_attach_in_progress(struct cpuset *cs) 330 { 331 mutex_lock(&cpuset_mutex); 332 dec_attach_in_progress_locked(cs); 333 mutex_unlock(&cpuset_mutex); 334 } 335 336 static inline bool cpuset_v2(void) 337 { 338 return !IS_ENABLED(CONFIG_CPUSETS_V1) || 339 cgroup_subsys_on_dfl(cpuset_cgrp_subsys); 340 } 341 342 /* 343 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 344 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 345 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 346 * With v2 behavior, "cpus" and "mems" are always what the users have 347 * requested and won't be changed by hotplug events. Only the effective 348 * cpus or mems will be affected. 349 */ 350 static inline bool is_in_v2_mode(void) 351 { 352 return cpuset_v2() || 353 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 354 } 355 356 static inline bool cpuset_is_populated(struct cpuset *cs) 357 { 358 lockdep_assert_held(&cpuset_mutex); 359 360 /* Cpusets in the process of attaching should be considered as populated */ 361 return cgroup_is_populated(cs->css.cgroup) || 362 cs->attach_in_progress; 363 } 364 365 /** 366 * partition_is_populated - check if partition has tasks 367 * @cs: partition root to be checked 368 * @excluded_child: a child cpuset to be excluded in task checking 369 * Return: true if there are tasks, false otherwise 370 * 371 * @cs should be a valid partition root or going to become a partition root. 372 * @excluded_child should be non-NULL when this cpuset is going to become a 373 * partition itself. 374 * 375 * Note that a remote partition is not allowed underneath a valid local 376 * or remote partition. So if a non-partition root child is populated, 377 * the whole partition is considered populated. 378 */ 379 static inline bool partition_is_populated(struct cpuset *cs, 380 struct cpuset *excluded_child) 381 { 382 struct cpuset *cp; 383 struct cgroup_subsys_state *pos_css; 384 385 /* 386 * We cannot call cs_is_populated(cs) directly, as 387 * nr_populated_domain_children may include populated 388 * csets from descendants that are partitions. 389 */ 390 if (cs->css.cgroup->nr_populated_csets || 391 cs->attach_in_progress) 392 return true; 393 394 rcu_read_lock(); 395 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 396 if (cp == cs || cp == excluded_child) 397 continue; 398 399 if (is_partition_valid(cp)) { 400 pos_css = css_rightmost_descendant(pos_css); 401 continue; 402 } 403 404 if (cpuset_is_populated(cp)) { 405 rcu_read_unlock(); 406 return true; 407 } 408 } 409 rcu_read_unlock(); 410 return false; 411 } 412 413 /* 414 * Return in pmask the portion of a task's cpusets's cpus_allowed that 415 * are online and are capable of running the task. If none are found, 416 * walk up the cpuset hierarchy until we find one that does have some 417 * appropriate cpus. 418 * 419 * One way or another, we guarantee to return some non-empty subset 420 * of cpu_active_mask. 421 * 422 * Call with callback_lock or cpuset_mutex held. 423 */ 424 static void guarantee_active_cpus(struct task_struct *tsk, 425 struct cpumask *pmask) 426 { 427 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 428 struct cpuset *cs; 429 430 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask))) 431 cpumask_copy(pmask, cpu_active_mask); 432 433 rcu_read_lock(); 434 cs = task_cs(tsk); 435 436 while (!cpumask_intersects(cs->effective_cpus, pmask)) 437 cs = parent_cs(cs); 438 439 cpumask_and(pmask, pmask, cs->effective_cpus); 440 rcu_read_unlock(); 441 } 442 443 /* 444 * Return in *pmask the portion of a cpusets's mems_allowed that 445 * are online, with memory. If none are online with memory, walk 446 * up the cpuset hierarchy until we find one that does have some 447 * online mems. The top cpuset always has some mems online. 448 * 449 * One way or another, we guarantee to return some non-empty subset 450 * of node_states[N_MEMORY]. 451 * 452 * Call with callback_lock or cpuset_mutex held. 453 */ 454 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 455 { 456 while (!nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY])) 457 cs = parent_cs(cs); 458 } 459 460 /** 461 * alloc_cpumasks - Allocate an array of cpumask variables 462 * @pmasks: Pointer to array of cpumask_var_t pointers 463 * @size: Number of cpumasks to allocate 464 * Return: 0 if successful, -ENOMEM otherwise. 465 * 466 * Allocates @size cpumasks and initializes them to empty. Returns 0 on 467 * success, -ENOMEM on allocation failure. On failure, any previously 468 * allocated cpumasks are freed. 469 */ 470 static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size) 471 { 472 int i; 473 474 for (i = 0; i < size; i++) { 475 if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) { 476 while (--i >= 0) 477 free_cpumask_var(*pmasks[i]); 478 return -ENOMEM; 479 } 480 } 481 return 0; 482 } 483 484 /** 485 * alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations. 486 * @tmp: Pointer to tmpmasks structure to populate 487 * Return: 0 on success, -ENOMEM on allocation failure 488 */ 489 static inline int alloc_tmpmasks(struct tmpmasks *tmp) 490 { 491 /* 492 * Array of pointers to the three cpumask_var_t fields in tmpmasks. 493 * Note: Array size must match actual number of masks (3) 494 */ 495 cpumask_var_t *pmask[3] = { 496 &tmp->new_cpus, 497 &tmp->addmask, 498 &tmp->delmask 499 }; 500 501 return alloc_cpumasks(pmask, ARRAY_SIZE(pmask)); 502 } 503 504 /** 505 * free_tmpmasks - free cpumasks in a tmpmasks structure 506 * @tmp: the tmpmasks structure pointer 507 */ 508 static inline void free_tmpmasks(struct tmpmasks *tmp) 509 { 510 if (!tmp) 511 return; 512 513 free_cpumask_var(tmp->new_cpus); 514 free_cpumask_var(tmp->addmask); 515 free_cpumask_var(tmp->delmask); 516 } 517 518 /** 519 * dup_or_alloc_cpuset - Duplicate or allocate a new cpuset 520 * @cs: Source cpuset to duplicate (NULL for a fresh allocation) 521 * 522 * Creates a new cpuset by either: 523 * 1. Duplicating an existing cpuset (if @cs is non-NULL), or 524 * 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL) 525 * 526 * Return: Pointer to newly allocated cpuset on success, NULL on failure 527 */ 528 static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs) 529 { 530 struct cpuset *trial; 531 532 /* Allocate base structure */ 533 trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) : 534 kzalloc(sizeof(*cs), GFP_KERNEL); 535 if (!trial) 536 return NULL; 537 538 /* Setup cpumask pointer array */ 539 cpumask_var_t *pmask[4] = { 540 &trial->cpus_allowed, 541 &trial->effective_cpus, 542 &trial->effective_xcpus, 543 &trial->exclusive_cpus 544 }; 545 546 if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) { 547 kfree(trial); 548 return NULL; 549 } 550 551 /* Copy masks if duplicating */ 552 if (cs) { 553 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 554 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 555 cpumask_copy(trial->effective_xcpus, cs->effective_xcpus); 556 cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus); 557 } 558 559 return trial; 560 } 561 562 /** 563 * free_cpuset - free the cpuset 564 * @cs: the cpuset to be freed 565 */ 566 static inline void free_cpuset(struct cpuset *cs) 567 { 568 free_cpumask_var(cs->cpus_allowed); 569 free_cpumask_var(cs->effective_cpus); 570 free_cpumask_var(cs->effective_xcpus); 571 free_cpumask_var(cs->exclusive_cpus); 572 kfree(cs); 573 } 574 575 /* Return user specified exclusive CPUs */ 576 static inline struct cpumask *user_xcpus(struct cpuset *cs) 577 { 578 return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed 579 : cs->exclusive_cpus; 580 } 581 582 static inline bool xcpus_empty(struct cpuset *cs) 583 { 584 return cpumask_empty(cs->cpus_allowed) && 585 cpumask_empty(cs->exclusive_cpus); 586 } 587 588 /* 589 * cpusets_are_exclusive() - check if two cpusets are exclusive 590 * 591 * Return true if exclusive, false if not 592 */ 593 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2) 594 { 595 struct cpumask *xcpus1 = user_xcpus(cs1); 596 struct cpumask *xcpus2 = user_xcpus(cs2); 597 598 if (cpumask_intersects(xcpus1, xcpus2)) 599 return false; 600 return true; 601 } 602 603 /** 604 * cpus_excl_conflict - Check if two cpusets have exclusive CPU conflicts 605 * @cs1: first cpuset to check 606 * @cs2: second cpuset to check 607 * 608 * Returns: true if CPU exclusivity conflict exists, false otherwise 609 * 610 * Conflict detection rules: 611 * 1. If either cpuset is CPU exclusive, they must be mutually exclusive 612 * 2. exclusive_cpus masks cannot intersect between cpusets 613 * 3. The allowed CPUs of one cpuset cannot be a subset of another's exclusive CPUs 614 */ 615 static inline bool cpus_excl_conflict(struct cpuset *cs1, struct cpuset *cs2) 616 { 617 /* If either cpuset is exclusive, check if they are mutually exclusive */ 618 if (is_cpu_exclusive(cs1) || is_cpu_exclusive(cs2)) 619 return !cpusets_are_exclusive(cs1, cs2); 620 621 /* Exclusive_cpus cannot intersect */ 622 if (cpumask_intersects(cs1->exclusive_cpus, cs2->exclusive_cpus)) 623 return true; 624 625 /* The cpus_allowed of one cpuset cannot be a subset of another cpuset's exclusive_cpus */ 626 if (!cpumask_empty(cs1->cpus_allowed) && 627 cpumask_subset(cs1->cpus_allowed, cs2->exclusive_cpus)) 628 return true; 629 630 if (!cpumask_empty(cs2->cpus_allowed) && 631 cpumask_subset(cs2->cpus_allowed, cs1->exclusive_cpus)) 632 return true; 633 634 return false; 635 } 636 637 static inline bool mems_excl_conflict(struct cpuset *cs1, struct cpuset *cs2) 638 { 639 if ((is_mem_exclusive(cs1) || is_mem_exclusive(cs2))) 640 return nodes_intersects(cs1->mems_allowed, cs2->mems_allowed); 641 return false; 642 } 643 644 /* 645 * validate_change() - Used to validate that any proposed cpuset change 646 * follows the structural rules for cpusets. 647 * 648 * If we replaced the flag and mask values of the current cpuset 649 * (cur) with those values in the trial cpuset (trial), would 650 * our various subset and exclusive rules still be valid? Presumes 651 * cpuset_mutex held. 652 * 653 * 'cur' is the address of an actual, in-use cpuset. Operations 654 * such as list traversal that depend on the actual address of the 655 * cpuset in the list must use cur below, not trial. 656 * 657 * 'trial' is the address of bulk structure copy of cur, with 658 * perhaps one or more of the fields cpus_allowed, mems_allowed, 659 * or flags changed to new, trial values. 660 * 661 * Return 0 if valid, -errno if not. 662 */ 663 664 static int validate_change(struct cpuset *cur, struct cpuset *trial) 665 { 666 struct cgroup_subsys_state *css; 667 struct cpuset *c, *par; 668 int ret = 0; 669 670 rcu_read_lock(); 671 672 if (!is_in_v2_mode()) 673 ret = cpuset1_validate_change(cur, trial); 674 if (ret) 675 goto out; 676 677 /* Remaining checks don't apply to root cpuset */ 678 if (cur == &top_cpuset) 679 goto out; 680 681 par = parent_cs(cur); 682 683 /* 684 * Cpusets with tasks - existing or newly being attached - can't 685 * be changed to have empty cpus_allowed or mems_allowed. 686 */ 687 ret = -ENOSPC; 688 if (cpuset_is_populated(cur)) { 689 if (!cpumask_empty(cur->cpus_allowed) && 690 cpumask_empty(trial->cpus_allowed)) 691 goto out; 692 if (!nodes_empty(cur->mems_allowed) && 693 nodes_empty(trial->mems_allowed)) 694 goto out; 695 } 696 697 /* 698 * We can't shrink if we won't have enough room for SCHED_DEADLINE 699 * tasks. This check is not done when scheduling is disabled as the 700 * users should know what they are doing. 701 * 702 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns 703 * cpus_allowed. 704 * 705 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only 706 * for non-isolated partition root. At this point, the target 707 * effective_cpus isn't computed yet. user_xcpus() is the best 708 * approximation. 709 * 710 * TBD: May need to precompute the real effective_cpus here in case 711 * incorrect scheduling of SCHED_DEADLINE tasks in a partition 712 * becomes an issue. 713 */ 714 ret = -EBUSY; 715 if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) && 716 !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial))) 717 goto out; 718 719 /* 720 * If either I or some sibling (!= me) is exclusive, we can't 721 * overlap. exclusive_cpus cannot overlap with each other if set. 722 */ 723 ret = -EINVAL; 724 cpuset_for_each_child(c, css, par) { 725 if (c == cur) 726 continue; 727 if (cpus_excl_conflict(trial, c)) 728 goto out; 729 if (mems_excl_conflict(trial, c)) 730 goto out; 731 } 732 733 ret = 0; 734 out: 735 rcu_read_unlock(); 736 return ret; 737 } 738 739 #ifdef CONFIG_SMP 740 /* 741 * Helper routine for generate_sched_domains(). 742 * Do cpusets a, b have overlapping effective cpus_allowed masks? 743 */ 744 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 745 { 746 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 747 } 748 749 static void 750 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 751 { 752 if (dattr->relax_domain_level < c->relax_domain_level) 753 dattr->relax_domain_level = c->relax_domain_level; 754 return; 755 } 756 757 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 758 struct cpuset *root_cs) 759 { 760 struct cpuset *cp; 761 struct cgroup_subsys_state *pos_css; 762 763 rcu_read_lock(); 764 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 765 /* skip the whole subtree if @cp doesn't have any CPU */ 766 if (cpumask_empty(cp->cpus_allowed)) { 767 pos_css = css_rightmost_descendant(pos_css); 768 continue; 769 } 770 771 if (is_sched_load_balance(cp)) 772 update_domain_attr(dattr, cp); 773 } 774 rcu_read_unlock(); 775 } 776 777 /* Must be called with cpuset_mutex held. */ 778 static inline int nr_cpusets(void) 779 { 780 /* jump label reference count + the top-level cpuset */ 781 return static_key_count(&cpusets_enabled_key.key) + 1; 782 } 783 784 /* 785 * generate_sched_domains() 786 * 787 * This function builds a partial partition of the systems CPUs 788 * A 'partial partition' is a set of non-overlapping subsets whose 789 * union is a subset of that set. 790 * The output of this function needs to be passed to kernel/sched/core.c 791 * partition_sched_domains() routine, which will rebuild the scheduler's 792 * load balancing domains (sched domains) as specified by that partial 793 * partition. 794 * 795 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 796 * for a background explanation of this. 797 * 798 * Does not return errors, on the theory that the callers of this 799 * routine would rather not worry about failures to rebuild sched 800 * domains when operating in the severe memory shortage situations 801 * that could cause allocation failures below. 802 * 803 * Must be called with cpuset_mutex held. 804 * 805 * The three key local variables below are: 806 * cp - cpuset pointer, used (together with pos_css) to perform a 807 * top-down scan of all cpusets. For our purposes, rebuilding 808 * the schedulers sched domains, we can ignore !is_sched_load_ 809 * balance cpusets. 810 * csa - (for CpuSet Array) Array of pointers to all the cpusets 811 * that need to be load balanced, for convenient iterative 812 * access by the subsequent code that finds the best partition, 813 * i.e the set of domains (subsets) of CPUs such that the 814 * cpus_allowed of every cpuset marked is_sched_load_balance 815 * is a subset of one of these domains, while there are as 816 * many such domains as possible, each as small as possible. 817 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 818 * the kernel/sched/core.c routine partition_sched_domains() in a 819 * convenient format, that can be easily compared to the prior 820 * value to determine what partition elements (sched domains) 821 * were changed (added or removed.) 822 * 823 * Finding the best partition (set of domains): 824 * The double nested loops below over i, j scan over the load 825 * balanced cpusets (using the array of cpuset pointers in csa[]) 826 * looking for pairs of cpusets that have overlapping cpus_allowed 827 * and merging them using a union-find algorithm. 828 * 829 * The union of the cpus_allowed masks from the set of all cpusets 830 * having the same root then form the one element of the partition 831 * (one sched domain) to be passed to partition_sched_domains(). 832 * 833 */ 834 static int generate_sched_domains(cpumask_var_t **domains, 835 struct sched_domain_attr **attributes) 836 { 837 struct cpuset *cp; /* top-down scan of cpusets */ 838 struct cpuset **csa; /* array of all cpuset ptrs */ 839 int csn; /* how many cpuset ptrs in csa so far */ 840 int i, j; /* indices for partition finding loops */ 841 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 842 struct sched_domain_attr *dattr; /* attributes for custom domains */ 843 int ndoms = 0; /* number of sched domains in result */ 844 int nslot; /* next empty doms[] struct cpumask slot */ 845 struct cgroup_subsys_state *pos_css; 846 bool root_load_balance = is_sched_load_balance(&top_cpuset); 847 bool cgrpv2 = cpuset_v2(); 848 int nslot_update; 849 850 doms = NULL; 851 dattr = NULL; 852 csa = NULL; 853 854 /* Special case for the 99% of systems with one, full, sched domain */ 855 if (root_load_balance && cpumask_empty(subpartitions_cpus)) { 856 single_root_domain: 857 ndoms = 1; 858 doms = alloc_sched_domains(ndoms); 859 if (!doms) 860 goto done; 861 862 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 863 if (dattr) { 864 *dattr = SD_ATTR_INIT; 865 update_domain_attr_tree(dattr, &top_cpuset); 866 } 867 cpumask_and(doms[0], top_cpuset.effective_cpus, 868 housekeeping_cpumask(HK_TYPE_DOMAIN)); 869 870 goto done; 871 } 872 873 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 874 if (!csa) 875 goto done; 876 csn = 0; 877 878 rcu_read_lock(); 879 if (root_load_balance) 880 csa[csn++] = &top_cpuset; 881 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 882 if (cp == &top_cpuset) 883 continue; 884 885 if (cgrpv2) 886 goto v2; 887 888 /* 889 * v1: 890 * Continue traversing beyond @cp iff @cp has some CPUs and 891 * isn't load balancing. The former is obvious. The 892 * latter: All child cpusets contain a subset of the 893 * parent's cpus, so just skip them, and then we call 894 * update_domain_attr_tree() to calc relax_domain_level of 895 * the corresponding sched domain. 896 */ 897 if (!cpumask_empty(cp->cpus_allowed) && 898 !(is_sched_load_balance(cp) && 899 cpumask_intersects(cp->cpus_allowed, 900 housekeeping_cpumask(HK_TYPE_DOMAIN)))) 901 continue; 902 903 if (is_sched_load_balance(cp) && 904 !cpumask_empty(cp->effective_cpus)) 905 csa[csn++] = cp; 906 907 /* skip @cp's subtree */ 908 pos_css = css_rightmost_descendant(pos_css); 909 continue; 910 911 v2: 912 /* 913 * Only valid partition roots that are not isolated and with 914 * non-empty effective_cpus will be saved into csn[]. 915 */ 916 if ((cp->partition_root_state == PRS_ROOT) && 917 !cpumask_empty(cp->effective_cpus)) 918 csa[csn++] = cp; 919 920 /* 921 * Skip @cp's subtree if not a partition root and has no 922 * exclusive CPUs to be granted to child cpusets. 923 */ 924 if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus)) 925 pos_css = css_rightmost_descendant(pos_css); 926 } 927 rcu_read_unlock(); 928 929 /* 930 * If there are only isolated partitions underneath the cgroup root, 931 * we can optimize out unneeded sched domains scanning. 932 */ 933 if (root_load_balance && (csn == 1)) 934 goto single_root_domain; 935 936 for (i = 0; i < csn; i++) 937 uf_node_init(&csa[i]->node); 938 939 /* Merge overlapping cpusets */ 940 for (i = 0; i < csn; i++) { 941 for (j = i + 1; j < csn; j++) { 942 if (cpusets_overlap(csa[i], csa[j])) { 943 /* 944 * Cgroup v2 shouldn't pass down overlapping 945 * partition root cpusets. 946 */ 947 WARN_ON_ONCE(cgrpv2); 948 uf_union(&csa[i]->node, &csa[j]->node); 949 } 950 } 951 } 952 953 /* Count the total number of domains */ 954 for (i = 0; i < csn; i++) { 955 if (uf_find(&csa[i]->node) == &csa[i]->node) 956 ndoms++; 957 } 958 959 /* 960 * Now we know how many domains to create. 961 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 962 */ 963 doms = alloc_sched_domains(ndoms); 964 if (!doms) 965 goto done; 966 967 /* 968 * The rest of the code, including the scheduler, can deal with 969 * dattr==NULL case. No need to abort if alloc fails. 970 */ 971 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 972 GFP_KERNEL); 973 974 /* 975 * Cgroup v2 doesn't support domain attributes, just set all of them 976 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a 977 * subset of HK_TYPE_DOMAIN housekeeping CPUs. 978 */ 979 if (cgrpv2) { 980 for (i = 0; i < ndoms; i++) { 981 /* 982 * The top cpuset may contain some boot time isolated 983 * CPUs that need to be excluded from the sched domain. 984 */ 985 if (csa[i] == &top_cpuset) 986 cpumask_and(doms[i], csa[i]->effective_cpus, 987 housekeeping_cpumask(HK_TYPE_DOMAIN)); 988 else 989 cpumask_copy(doms[i], csa[i]->effective_cpus); 990 if (dattr) 991 dattr[i] = SD_ATTR_INIT; 992 } 993 goto done; 994 } 995 996 for (nslot = 0, i = 0; i < csn; i++) { 997 nslot_update = 0; 998 for (j = i; j < csn; j++) { 999 if (uf_find(&csa[j]->node) == &csa[i]->node) { 1000 struct cpumask *dp = doms[nslot]; 1001 1002 if (i == j) { 1003 nslot_update = 1; 1004 cpumask_clear(dp); 1005 if (dattr) 1006 *(dattr + nslot) = SD_ATTR_INIT; 1007 } 1008 cpumask_or(dp, dp, csa[j]->effective_cpus); 1009 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); 1010 if (dattr) 1011 update_domain_attr_tree(dattr + nslot, csa[j]); 1012 } 1013 } 1014 if (nslot_update) 1015 nslot++; 1016 } 1017 BUG_ON(nslot != ndoms); 1018 1019 done: 1020 kfree(csa); 1021 1022 /* 1023 * Fallback to the default domain if kmalloc() failed. 1024 * See comments in partition_sched_domains(). 1025 */ 1026 if (doms == NULL) 1027 ndoms = 1; 1028 1029 *domains = doms; 1030 *attributes = dattr; 1031 return ndoms; 1032 } 1033 1034 static void dl_update_tasks_root_domain(struct cpuset *cs) 1035 { 1036 struct css_task_iter it; 1037 struct task_struct *task; 1038 1039 if (cs->nr_deadline_tasks == 0) 1040 return; 1041 1042 css_task_iter_start(&cs->css, 0, &it); 1043 1044 while ((task = css_task_iter_next(&it))) 1045 dl_add_task_root_domain(task); 1046 1047 css_task_iter_end(&it); 1048 } 1049 1050 void dl_rebuild_rd_accounting(void) 1051 { 1052 struct cpuset *cs = NULL; 1053 struct cgroup_subsys_state *pos_css; 1054 int cpu; 1055 u64 cookie = ++dl_cookie; 1056 1057 lockdep_assert_held(&cpuset_mutex); 1058 lockdep_assert_cpus_held(); 1059 lockdep_assert_held(&sched_domains_mutex); 1060 1061 rcu_read_lock(); 1062 1063 for_each_possible_cpu(cpu) { 1064 if (dl_bw_visited(cpu, cookie)) 1065 continue; 1066 1067 dl_clear_root_domain_cpu(cpu); 1068 } 1069 1070 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1071 1072 if (cpumask_empty(cs->effective_cpus)) { 1073 pos_css = css_rightmost_descendant(pos_css); 1074 continue; 1075 } 1076 1077 css_get(&cs->css); 1078 1079 rcu_read_unlock(); 1080 1081 dl_update_tasks_root_domain(cs); 1082 1083 rcu_read_lock(); 1084 css_put(&cs->css); 1085 } 1086 rcu_read_unlock(); 1087 } 1088 1089 /* 1090 * Rebuild scheduler domains. 1091 * 1092 * If the flag 'sched_load_balance' of any cpuset with non-empty 1093 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1094 * which has that flag enabled, or if any cpuset with a non-empty 1095 * 'cpus' is removed, then call this routine to rebuild the 1096 * scheduler's dynamic sched domains. 1097 * 1098 * Call with cpuset_mutex held. Takes cpus_read_lock(). 1099 */ 1100 void rebuild_sched_domains_locked(void) 1101 { 1102 struct cgroup_subsys_state *pos_css; 1103 struct sched_domain_attr *attr; 1104 cpumask_var_t *doms; 1105 struct cpuset *cs; 1106 int ndoms; 1107 1108 lockdep_assert_cpus_held(); 1109 lockdep_assert_held(&cpuset_mutex); 1110 force_sd_rebuild = false; 1111 1112 /* 1113 * If we have raced with CPU hotplug, return early to avoid 1114 * passing doms with offlined cpu to partition_sched_domains(). 1115 * Anyways, cpuset_handle_hotplug() will rebuild sched domains. 1116 * 1117 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1118 * should be the same as the active CPUs, so checking only top_cpuset 1119 * is enough to detect racing CPU offlines. 1120 */ 1121 if (cpumask_empty(subpartitions_cpus) && 1122 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1123 return; 1124 1125 /* 1126 * With subpartition CPUs, however, the effective CPUs of a partition 1127 * root should be only a subset of the active CPUs. Since a CPU in any 1128 * partition root could be offlined, all must be checked. 1129 */ 1130 if (!cpumask_empty(subpartitions_cpus)) { 1131 rcu_read_lock(); 1132 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1133 if (!is_partition_valid(cs)) { 1134 pos_css = css_rightmost_descendant(pos_css); 1135 continue; 1136 } 1137 if (!cpumask_subset(cs->effective_cpus, 1138 cpu_active_mask)) { 1139 rcu_read_unlock(); 1140 return; 1141 } 1142 } 1143 rcu_read_unlock(); 1144 } 1145 1146 /* Generate domain masks and attrs */ 1147 ndoms = generate_sched_domains(&doms, &attr); 1148 1149 /* Have scheduler rebuild the domains */ 1150 partition_sched_domains(ndoms, doms, attr); 1151 } 1152 #else /* !CONFIG_SMP */ 1153 void rebuild_sched_domains_locked(void) 1154 { 1155 } 1156 #endif /* CONFIG_SMP */ 1157 1158 static void rebuild_sched_domains_cpuslocked(void) 1159 { 1160 mutex_lock(&cpuset_mutex); 1161 rebuild_sched_domains_locked(); 1162 mutex_unlock(&cpuset_mutex); 1163 } 1164 1165 void rebuild_sched_domains(void) 1166 { 1167 cpus_read_lock(); 1168 rebuild_sched_domains_cpuslocked(); 1169 cpus_read_unlock(); 1170 } 1171 1172 void cpuset_reset_sched_domains(void) 1173 { 1174 mutex_lock(&cpuset_mutex); 1175 partition_sched_domains(1, NULL, NULL); 1176 mutex_unlock(&cpuset_mutex); 1177 } 1178 1179 /** 1180 * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1181 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1182 * @new_cpus: the temp variable for the new effective_cpus mask 1183 * 1184 * Iterate through each task of @cs updating its cpus_allowed to the 1185 * effective cpuset's. As this function is called with cpuset_mutex held, 1186 * cpuset membership stays stable. 1187 * 1188 * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus 1189 * to make sure all offline CPUs are also included as hotplug code won't 1190 * update cpumasks for tasks in top_cpuset. 1191 * 1192 * As task_cpu_possible_mask() can be task dependent in arm64, we have to 1193 * do cpu masking per task instead of doing it once for all. 1194 */ 1195 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) 1196 { 1197 struct css_task_iter it; 1198 struct task_struct *task; 1199 bool top_cs = cs == &top_cpuset; 1200 1201 css_task_iter_start(&cs->css, 0, &it); 1202 while ((task = css_task_iter_next(&it))) { 1203 const struct cpumask *possible_mask = task_cpu_possible_mask(task); 1204 1205 if (top_cs) { 1206 /* 1207 * PF_NO_SETAFFINITY tasks are ignored. 1208 * All per cpu kthreads should have PF_NO_SETAFFINITY 1209 * flag set, see kthread_set_per_cpu(). 1210 */ 1211 if (task->flags & PF_NO_SETAFFINITY) 1212 continue; 1213 cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus); 1214 } else { 1215 cpumask_and(new_cpus, possible_mask, cs->effective_cpus); 1216 } 1217 set_cpus_allowed_ptr(task, new_cpus); 1218 } 1219 css_task_iter_end(&it); 1220 } 1221 1222 /** 1223 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1224 * @new_cpus: the temp variable for the new effective_cpus mask 1225 * @cs: the cpuset the need to recompute the new effective_cpus mask 1226 * @parent: the parent cpuset 1227 * 1228 * The result is valid only if the given cpuset isn't a partition root. 1229 */ 1230 static void compute_effective_cpumask(struct cpumask *new_cpus, 1231 struct cpuset *cs, struct cpuset *parent) 1232 { 1233 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1234 } 1235 1236 /* 1237 * Commands for update_parent_effective_cpumask 1238 */ 1239 enum partition_cmd { 1240 partcmd_enable, /* Enable partition root */ 1241 partcmd_enablei, /* Enable isolated partition root */ 1242 partcmd_disable, /* Disable partition root */ 1243 partcmd_update, /* Update parent's effective_cpus */ 1244 partcmd_invalidate, /* Make partition invalid */ 1245 }; 1246 1247 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1248 struct tmpmasks *tmp); 1249 1250 /* 1251 * Update partition exclusive flag 1252 * 1253 * Return: 0 if successful, an error code otherwise 1254 */ 1255 static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs) 1256 { 1257 bool exclusive = (new_prs > PRS_MEMBER); 1258 1259 if (exclusive && !is_cpu_exclusive(cs)) { 1260 if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1)) 1261 return PERR_NOTEXCL; 1262 } else if (!exclusive && is_cpu_exclusive(cs)) { 1263 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1264 cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1265 } 1266 return 0; 1267 } 1268 1269 /* 1270 * Update partition load balance flag and/or rebuild sched domain 1271 * 1272 * Changing load balance flag will automatically call 1273 * rebuild_sched_domains_locked(). 1274 * This function is for cgroup v2 only. 1275 */ 1276 static void update_partition_sd_lb(struct cpuset *cs, int old_prs) 1277 { 1278 int new_prs = cs->partition_root_state; 1279 bool rebuild_domains = (new_prs > 0) || (old_prs > 0); 1280 bool new_lb; 1281 1282 /* 1283 * If cs is not a valid partition root, the load balance state 1284 * will follow its parent. 1285 */ 1286 if (new_prs > 0) { 1287 new_lb = (new_prs != PRS_ISOLATED); 1288 } else { 1289 new_lb = is_sched_load_balance(parent_cs(cs)); 1290 } 1291 if (new_lb != !!is_sched_load_balance(cs)) { 1292 rebuild_domains = true; 1293 if (new_lb) 1294 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1295 else 1296 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1297 } 1298 1299 if (rebuild_domains) 1300 cpuset_force_rebuild(); 1301 } 1302 1303 /* 1304 * tasks_nocpu_error - Return true if tasks will have no effective_cpus 1305 */ 1306 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs, 1307 struct cpumask *xcpus) 1308 { 1309 /* 1310 * A populated partition (cs or parent) can't have empty effective_cpus 1311 */ 1312 return (cpumask_subset(parent->effective_cpus, xcpus) && 1313 partition_is_populated(parent, cs)) || 1314 (!cpumask_intersects(xcpus, cpu_active_mask) && 1315 partition_is_populated(cs, NULL)); 1316 } 1317 1318 static void reset_partition_data(struct cpuset *cs) 1319 { 1320 struct cpuset *parent = parent_cs(cs); 1321 1322 if (!cpuset_v2()) 1323 return; 1324 1325 lockdep_assert_held(&callback_lock); 1326 1327 if (cpumask_empty(cs->exclusive_cpus)) { 1328 cpumask_clear(cs->effective_xcpus); 1329 if (is_cpu_exclusive(cs)) 1330 clear_bit(CS_CPU_EXCLUSIVE, &cs->flags); 1331 } 1332 if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed)) 1333 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 1334 } 1335 1336 /* 1337 * isolated_cpus_update - Update the isolated_cpus mask 1338 * @old_prs: old partition_root_state 1339 * @new_prs: new partition_root_state 1340 * @xcpus: exclusive CPUs with state change 1341 */ 1342 static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus) 1343 { 1344 WARN_ON_ONCE(old_prs == new_prs); 1345 if (new_prs == PRS_ISOLATED) 1346 cpumask_or(isolated_cpus, isolated_cpus, xcpus); 1347 else 1348 cpumask_andnot(isolated_cpus, isolated_cpus, xcpus); 1349 1350 isolated_cpus_updating = true; 1351 } 1352 1353 /* 1354 * partition_xcpus_add - Add new exclusive CPUs to partition 1355 * @new_prs: new partition_root_state 1356 * @parent: parent cpuset 1357 * @xcpus: exclusive CPUs to be added 1358 * 1359 * Remote partition if parent == NULL 1360 */ 1361 static void partition_xcpus_add(int new_prs, struct cpuset *parent, 1362 struct cpumask *xcpus) 1363 { 1364 WARN_ON_ONCE(new_prs < 0); 1365 lockdep_assert_held(&callback_lock); 1366 if (!parent) 1367 parent = &top_cpuset; 1368 1369 1370 if (parent == &top_cpuset) 1371 cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus); 1372 1373 if (new_prs != parent->partition_root_state) 1374 isolated_cpus_update(parent->partition_root_state, new_prs, 1375 xcpus); 1376 1377 cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus); 1378 } 1379 1380 /* 1381 * partition_xcpus_del - Remove exclusive CPUs from partition 1382 * @old_prs: old partition_root_state 1383 * @parent: parent cpuset 1384 * @xcpus: exclusive CPUs to be removed 1385 * 1386 * Remote partition if parent == NULL 1387 */ 1388 static void partition_xcpus_del(int old_prs, struct cpuset *parent, 1389 struct cpumask *xcpus) 1390 { 1391 WARN_ON_ONCE(old_prs < 0); 1392 lockdep_assert_held(&callback_lock); 1393 if (!parent) 1394 parent = &top_cpuset; 1395 1396 if (parent == &top_cpuset) 1397 cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus); 1398 1399 if (old_prs != parent->partition_root_state) 1400 isolated_cpus_update(old_prs, parent->partition_root_state, 1401 xcpus); 1402 1403 cpumask_and(xcpus, xcpus, cpu_active_mask); 1404 cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus); 1405 } 1406 1407 /* 1408 * isolated_cpus_can_update - check for isolated & nohz_full conflicts 1409 * @add_cpus: cpu mask for cpus that are going to be isolated 1410 * @del_cpus: cpu mask for cpus that are no longer isolated, can be NULL 1411 * Return: false if there is conflict, true otherwise 1412 * 1413 * If nohz_full is enabled and we have isolated CPUs, their combination must 1414 * still leave housekeeping CPUs. 1415 * 1416 * TBD: Should consider merging this function into 1417 * prstate_housekeeping_conflict(). 1418 */ 1419 static bool isolated_cpus_can_update(struct cpumask *add_cpus, 1420 struct cpumask *del_cpus) 1421 { 1422 cpumask_var_t full_hk_cpus; 1423 int res = true; 1424 1425 if (!housekeeping_enabled(HK_TYPE_KERNEL_NOISE)) 1426 return true; 1427 1428 if (del_cpus && cpumask_weight_and(del_cpus, 1429 housekeeping_cpumask(HK_TYPE_KERNEL_NOISE))) 1430 return true; 1431 1432 if (!alloc_cpumask_var(&full_hk_cpus, GFP_KERNEL)) 1433 return false; 1434 1435 cpumask_and(full_hk_cpus, housekeeping_cpumask(HK_TYPE_KERNEL_NOISE), 1436 housekeeping_cpumask(HK_TYPE_DOMAIN)); 1437 cpumask_andnot(full_hk_cpus, full_hk_cpus, isolated_cpus); 1438 cpumask_and(full_hk_cpus, full_hk_cpus, cpu_active_mask); 1439 if (!cpumask_weight_andnot(full_hk_cpus, add_cpus)) 1440 res = false; 1441 1442 free_cpumask_var(full_hk_cpus); 1443 return res; 1444 } 1445 1446 /* 1447 * prstate_housekeeping_conflict - check for partition & housekeeping conflicts 1448 * @prstate: partition root state to be checked 1449 * @new_cpus: cpu mask 1450 * Return: true if there is conflict, false otherwise 1451 * 1452 * CPUs outside of boot_hk_cpus, if defined, can only be used in an 1453 * isolated partition. 1454 */ 1455 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus) 1456 { 1457 if (!have_boot_isolcpus) 1458 return false; 1459 1460 if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus)) 1461 return true; 1462 1463 return false; 1464 } 1465 1466 /* 1467 * update_isolation_cpumasks - Update external isolation related CPU masks 1468 * 1469 * The following external CPU masks will be updated if necessary: 1470 * - workqueue unbound cpumask 1471 */ 1472 static void update_isolation_cpumasks(void) 1473 { 1474 int ret; 1475 1476 if (!isolated_cpus_updating) 1477 return; 1478 1479 lockdep_assert_cpus_held(); 1480 1481 ret = workqueue_unbound_exclude_cpumask(isolated_cpus); 1482 WARN_ON_ONCE(ret < 0); 1483 1484 ret = tmigr_isolated_exclude_cpumask(isolated_cpus); 1485 WARN_ON_ONCE(ret < 0); 1486 1487 isolated_cpus_updating = false; 1488 } 1489 1490 /** 1491 * cpuset_cpu_is_isolated - Check if the given CPU is isolated 1492 * @cpu: the CPU number to be checked 1493 * Return: true if CPU is used in an isolated partition, false otherwise 1494 */ 1495 bool cpuset_cpu_is_isolated(int cpu) 1496 { 1497 return cpumask_test_cpu(cpu, isolated_cpus); 1498 } 1499 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated); 1500 1501 /** 1502 * rm_siblings_excl_cpus - Remove exclusive CPUs that are used by sibling cpusets 1503 * @parent: Parent cpuset containing all siblings 1504 * @cs: Current cpuset (will be skipped) 1505 * @excpus: exclusive effective CPU mask to modify 1506 * 1507 * This function ensures the given @excpus mask doesn't include any CPUs that 1508 * are exclusively allocated to sibling cpusets. It walks through all siblings 1509 * of @cs under @parent and removes their exclusive CPUs from @excpus. 1510 */ 1511 static int rm_siblings_excl_cpus(struct cpuset *parent, struct cpuset *cs, 1512 struct cpumask *excpus) 1513 { 1514 struct cgroup_subsys_state *css; 1515 struct cpuset *sibling; 1516 int retval = 0; 1517 1518 if (cpumask_empty(excpus)) 1519 return retval; 1520 1521 /* 1522 * Exclude exclusive CPUs from siblings 1523 */ 1524 rcu_read_lock(); 1525 cpuset_for_each_child(sibling, css, parent) { 1526 if (sibling == cs) 1527 continue; 1528 1529 if (cpumask_intersects(excpus, sibling->exclusive_cpus)) { 1530 cpumask_andnot(excpus, excpus, sibling->exclusive_cpus); 1531 retval++; 1532 continue; 1533 } 1534 if (cpumask_intersects(excpus, sibling->effective_xcpus)) { 1535 cpumask_andnot(excpus, excpus, sibling->effective_xcpus); 1536 retval++; 1537 } 1538 } 1539 rcu_read_unlock(); 1540 1541 return retval; 1542 } 1543 1544 /* 1545 * compute_excpus - compute effective exclusive CPUs 1546 * @cs: cpuset 1547 * @xcpus: effective exclusive CPUs value to be set 1548 * Return: 0 if there is no sibling conflict, > 0 otherwise 1549 * 1550 * If exclusive_cpus isn't explicitly set , we have to scan the sibling cpusets 1551 * and exclude their exclusive_cpus or effective_xcpus as well. 1552 */ 1553 static int compute_excpus(struct cpuset *cs, struct cpumask *excpus) 1554 { 1555 struct cpuset *parent = parent_cs(cs); 1556 1557 cpumask_and(excpus, user_xcpus(cs), parent->effective_xcpus); 1558 1559 if (!cpumask_empty(cs->exclusive_cpus)) 1560 return 0; 1561 1562 return rm_siblings_excl_cpus(parent, cs, excpus); 1563 } 1564 1565 /* 1566 * compute_trialcs_excpus - Compute effective exclusive CPUs for a trial cpuset 1567 * @trialcs: The trial cpuset containing the proposed new configuration 1568 * @cs: The original cpuset that the trial configuration is based on 1569 * Return: 0 if successful with no sibling conflict, >0 if a conflict is found 1570 * 1571 * Computes the effective_xcpus for a trial configuration. @cs is provided to represent 1572 * the real cs. 1573 */ 1574 static int compute_trialcs_excpus(struct cpuset *trialcs, struct cpuset *cs) 1575 { 1576 struct cpuset *parent = parent_cs(trialcs); 1577 struct cpumask *excpus = trialcs->effective_xcpus; 1578 1579 /* trialcs is member, cpuset.cpus has no impact to excpus */ 1580 if (cs_is_member(cs)) 1581 cpumask_and(excpus, trialcs->exclusive_cpus, 1582 parent->effective_xcpus); 1583 else 1584 cpumask_and(excpus, user_xcpus(trialcs), parent->effective_xcpus); 1585 1586 return rm_siblings_excl_cpus(parent, cs, excpus); 1587 } 1588 1589 static inline bool is_remote_partition(struct cpuset *cs) 1590 { 1591 return cs->remote_partition; 1592 } 1593 1594 static inline bool is_local_partition(struct cpuset *cs) 1595 { 1596 return is_partition_valid(cs) && !is_remote_partition(cs); 1597 } 1598 1599 /* 1600 * remote_partition_enable - Enable current cpuset as a remote partition root 1601 * @cs: the cpuset to update 1602 * @new_prs: new partition_root_state 1603 * @tmp: temporary masks 1604 * Return: 0 if successful, errcode if error 1605 * 1606 * Enable the current cpuset to become a remote partition root taking CPUs 1607 * directly from the top cpuset. cpuset_mutex must be held by the caller. 1608 */ 1609 static int remote_partition_enable(struct cpuset *cs, int new_prs, 1610 struct tmpmasks *tmp) 1611 { 1612 /* 1613 * The user must have sysadmin privilege. 1614 */ 1615 if (!capable(CAP_SYS_ADMIN)) 1616 return PERR_ACCESS; 1617 1618 /* 1619 * The requested exclusive_cpus must not be allocated to other 1620 * partitions and it can't use up all the root's effective_cpus. 1621 * 1622 * The effective_xcpus mask can contain offline CPUs, but there must 1623 * be at least one or more online CPUs present before it can be enabled. 1624 * 1625 * Note that creating a remote partition with any local partition root 1626 * above it or remote partition root underneath it is not allowed. 1627 */ 1628 compute_excpus(cs, tmp->new_cpus); 1629 WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus)); 1630 if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) || 1631 cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus)) 1632 return PERR_INVCPUS; 1633 if (((new_prs == PRS_ISOLATED) && 1634 !isolated_cpus_can_update(tmp->new_cpus, NULL)) || 1635 prstate_housekeeping_conflict(new_prs, tmp->new_cpus)) 1636 return PERR_HKEEPING; 1637 1638 spin_lock_irq(&callback_lock); 1639 partition_xcpus_add(new_prs, NULL, tmp->new_cpus); 1640 cs->remote_partition = true; 1641 cpumask_copy(cs->effective_xcpus, tmp->new_cpus); 1642 spin_unlock_irq(&callback_lock); 1643 update_isolation_cpumasks(); 1644 cpuset_force_rebuild(); 1645 cs->prs_err = 0; 1646 1647 /* 1648 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1649 */ 1650 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1651 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1652 return 0; 1653 } 1654 1655 /* 1656 * remote_partition_disable - Remove current cpuset from remote partition list 1657 * @cs: the cpuset to update 1658 * @tmp: temporary masks 1659 * 1660 * The effective_cpus is also updated. 1661 * 1662 * cpuset_mutex must be held by the caller. 1663 */ 1664 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp) 1665 { 1666 WARN_ON_ONCE(!is_remote_partition(cs)); 1667 /* 1668 * When a CPU is offlined, top_cpuset may end up with no available CPUs, 1669 * which should clear subpartitions_cpus. We should not emit a warning for this 1670 * scenario: the hierarchy is updated from top to bottom, so subpartitions_cpus 1671 * may already be cleared when disabling the partition. 1672 */ 1673 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus) && 1674 !cpumask_empty(subpartitions_cpus)); 1675 1676 spin_lock_irq(&callback_lock); 1677 cs->remote_partition = false; 1678 partition_xcpus_del(cs->partition_root_state, NULL, cs->effective_xcpus); 1679 if (cs->prs_err) 1680 cs->partition_root_state = -cs->partition_root_state; 1681 else 1682 cs->partition_root_state = PRS_MEMBER; 1683 1684 /* effective_xcpus may need to be changed */ 1685 compute_excpus(cs, cs->effective_xcpus); 1686 reset_partition_data(cs); 1687 spin_unlock_irq(&callback_lock); 1688 update_isolation_cpumasks(); 1689 cpuset_force_rebuild(); 1690 1691 /* 1692 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1693 */ 1694 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1695 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1696 } 1697 1698 /* 1699 * remote_cpus_update - cpus_exclusive change of remote partition 1700 * @cs: the cpuset to be updated 1701 * @xcpus: the new exclusive_cpus mask, if non-NULL 1702 * @excpus: the new effective_xcpus mask 1703 * @tmp: temporary masks 1704 * 1705 * top_cpuset and subpartitions_cpus will be updated or partition can be 1706 * invalidated. 1707 */ 1708 static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus, 1709 struct cpumask *excpus, struct tmpmasks *tmp) 1710 { 1711 bool adding, deleting; 1712 int prs = cs->partition_root_state; 1713 1714 if (WARN_ON_ONCE(!is_remote_partition(cs))) 1715 return; 1716 1717 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); 1718 1719 if (cpumask_empty(excpus)) { 1720 cs->prs_err = PERR_CPUSEMPTY; 1721 goto invalidate; 1722 } 1723 1724 adding = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus); 1725 deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus); 1726 1727 /* 1728 * Additions of remote CPUs is only allowed if those CPUs are 1729 * not allocated to other partitions and there are effective_cpus 1730 * left in the top cpuset. 1731 */ 1732 if (adding) { 1733 WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus)); 1734 if (!capable(CAP_SYS_ADMIN)) 1735 cs->prs_err = PERR_ACCESS; 1736 else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) || 1737 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)) 1738 cs->prs_err = PERR_NOCPUS; 1739 else if ((prs == PRS_ISOLATED) && 1740 !isolated_cpus_can_update(tmp->addmask, tmp->delmask)) 1741 cs->prs_err = PERR_HKEEPING; 1742 if (cs->prs_err) 1743 goto invalidate; 1744 } 1745 1746 spin_lock_irq(&callback_lock); 1747 if (adding) 1748 partition_xcpus_add(prs, NULL, tmp->addmask); 1749 if (deleting) 1750 partition_xcpus_del(prs, NULL, tmp->delmask); 1751 /* 1752 * Need to update effective_xcpus and exclusive_cpus now as 1753 * update_sibling_cpumasks() below may iterate back to the same cs. 1754 */ 1755 cpumask_copy(cs->effective_xcpus, excpus); 1756 if (xcpus) 1757 cpumask_copy(cs->exclusive_cpus, xcpus); 1758 spin_unlock_irq(&callback_lock); 1759 update_isolation_cpumasks(); 1760 if (adding || deleting) 1761 cpuset_force_rebuild(); 1762 1763 /* 1764 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1765 */ 1766 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1767 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1768 return; 1769 1770 invalidate: 1771 remote_partition_disable(cs, tmp); 1772 } 1773 1774 /** 1775 * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset 1776 * @cs: The cpuset that requests change in partition root state 1777 * @cmd: Partition root state change command 1778 * @newmask: Optional new cpumask for partcmd_update 1779 * @tmp: Temporary addmask and delmask 1780 * Return: 0 or a partition root state error code 1781 * 1782 * For partcmd_enable*, the cpuset is being transformed from a non-partition 1783 * root to a partition root. The effective_xcpus (cpus_allowed if 1784 * effective_xcpus not set) mask of the given cpuset will be taken away from 1785 * parent's effective_cpus. The function will return 0 if all the CPUs listed 1786 * in effective_xcpus can be granted or an error code will be returned. 1787 * 1788 * For partcmd_disable, the cpuset is being transformed from a partition 1789 * root back to a non-partition root. Any CPUs in effective_xcpus will be 1790 * given back to parent's effective_cpus. 0 will always be returned. 1791 * 1792 * For partcmd_update, if the optional newmask is specified, the cpu list is 1793 * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is 1794 * assumed to remain the same. The cpuset should either be a valid or invalid 1795 * partition root. The partition root state may change from valid to invalid 1796 * or vice versa. An error code will be returned if transitioning from 1797 * invalid to valid violates the exclusivity rule. 1798 * 1799 * For partcmd_invalidate, the current partition will be made invalid. 1800 * 1801 * The partcmd_enable* and partcmd_disable commands are used by 1802 * update_prstate(). An error code may be returned and the caller will check 1803 * for error. 1804 * 1805 * The partcmd_update command is used by update_cpumasks_hier() with newmask 1806 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used 1807 * by update_cpumask() with NULL newmask. In both cases, the callers won't 1808 * check for error and so partition_root_state and prs_err will be updated 1809 * directly. 1810 */ 1811 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd, 1812 struct cpumask *newmask, 1813 struct tmpmasks *tmp) 1814 { 1815 struct cpuset *parent = parent_cs(cs); 1816 int adding; /* Adding cpus to parent's effective_cpus */ 1817 int deleting; /* Deleting cpus from parent's effective_cpus */ 1818 int old_prs, new_prs; 1819 int part_error = PERR_NONE; /* Partition error? */ 1820 struct cpumask *xcpus = user_xcpus(cs); 1821 int parent_prs = parent->partition_root_state; 1822 bool nocpu; 1823 1824 lockdep_assert_held(&cpuset_mutex); 1825 WARN_ON_ONCE(is_remote_partition(cs)); /* For local partition only */ 1826 1827 /* 1828 * new_prs will only be changed for the partcmd_update and 1829 * partcmd_invalidate commands. 1830 */ 1831 adding = deleting = false; 1832 old_prs = new_prs = cs->partition_root_state; 1833 1834 if (cmd == partcmd_invalidate) { 1835 if (is_partition_invalid(cs)) 1836 return 0; 1837 1838 /* 1839 * Make the current partition invalid. 1840 */ 1841 if (is_partition_valid(parent)) 1842 adding = cpumask_and(tmp->addmask, 1843 xcpus, parent->effective_xcpus); 1844 if (old_prs > 0) 1845 new_prs = -old_prs; 1846 1847 goto write_error; 1848 } 1849 1850 /* 1851 * The parent must be a partition root. 1852 * The new cpumask, if present, or the current cpus_allowed must 1853 * not be empty. 1854 */ 1855 if (!is_partition_valid(parent)) { 1856 return is_partition_invalid(parent) 1857 ? PERR_INVPARENT : PERR_NOTPART; 1858 } 1859 if (!newmask && xcpus_empty(cs)) 1860 return PERR_CPUSEMPTY; 1861 1862 nocpu = tasks_nocpu_error(parent, cs, xcpus); 1863 1864 if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) { 1865 /* 1866 * Need to call compute_excpus() in case 1867 * exclusive_cpus not set. Sibling conflict should only happen 1868 * if exclusive_cpus isn't set. 1869 */ 1870 xcpus = tmp->delmask; 1871 if (compute_excpus(cs, xcpus)) 1872 WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus)); 1873 new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED; 1874 1875 /* 1876 * Enabling partition root is not allowed if its 1877 * effective_xcpus is empty. 1878 */ 1879 if (cpumask_empty(xcpus)) 1880 return PERR_INVCPUS; 1881 1882 if (prstate_housekeeping_conflict(new_prs, xcpus)) 1883 return PERR_HKEEPING; 1884 1885 if ((new_prs == PRS_ISOLATED) && (new_prs != parent_prs) && 1886 !isolated_cpus_can_update(xcpus, NULL)) 1887 return PERR_HKEEPING; 1888 1889 if (tasks_nocpu_error(parent, cs, xcpus)) 1890 return PERR_NOCPUS; 1891 1892 /* 1893 * This function will only be called when all the preliminary 1894 * checks have passed. At this point, the following condition 1895 * should hold. 1896 * 1897 * (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus 1898 * 1899 * Warn if it is not the case. 1900 */ 1901 cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask); 1902 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus)); 1903 1904 deleting = true; 1905 } else if (cmd == partcmd_disable) { 1906 /* 1907 * May need to add cpus back to parent's effective_cpus 1908 * (and maybe removed from subpartitions_cpus/isolated_cpus) 1909 * for valid partition root. xcpus may contain CPUs that 1910 * shouldn't be removed from the two global cpumasks. 1911 */ 1912 if (is_partition_valid(cs)) { 1913 cpumask_copy(tmp->addmask, cs->effective_xcpus); 1914 adding = true; 1915 } 1916 new_prs = PRS_MEMBER; 1917 } else if (newmask) { 1918 /* 1919 * Empty cpumask is not allowed 1920 */ 1921 if (cpumask_empty(newmask)) { 1922 part_error = PERR_CPUSEMPTY; 1923 goto write_error; 1924 } 1925 1926 /* Check newmask again, whether cpus are available for parent/cs */ 1927 nocpu |= tasks_nocpu_error(parent, cs, newmask); 1928 1929 /* 1930 * partcmd_update with newmask: 1931 * 1932 * Compute add/delete mask to/from effective_cpus 1933 * 1934 * For valid partition: 1935 * addmask = exclusive_cpus & ~newmask 1936 * & parent->effective_xcpus 1937 * delmask = newmask & ~exclusive_cpus 1938 * & parent->effective_xcpus 1939 * 1940 * For invalid partition: 1941 * delmask = newmask & parent->effective_xcpus 1942 * The partition may become valid soon. 1943 */ 1944 if (is_partition_invalid(cs)) { 1945 adding = false; 1946 deleting = cpumask_and(tmp->delmask, 1947 newmask, parent->effective_xcpus); 1948 } else { 1949 cpumask_andnot(tmp->addmask, xcpus, newmask); 1950 adding = cpumask_and(tmp->addmask, tmp->addmask, 1951 parent->effective_xcpus); 1952 1953 cpumask_andnot(tmp->delmask, newmask, xcpus); 1954 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1955 parent->effective_xcpus); 1956 } 1957 1958 /* 1959 * TBD: Invalidate a currently valid child root partition may 1960 * still break isolated_cpus_can_update() rule if parent is an 1961 * isolated partition. 1962 */ 1963 if (is_partition_valid(cs) && (old_prs != parent_prs)) { 1964 if ((parent_prs == PRS_ROOT) && 1965 /* Adding to parent means removing isolated CPUs */ 1966 !isolated_cpus_can_update(tmp->delmask, tmp->addmask)) 1967 part_error = PERR_HKEEPING; 1968 if ((parent_prs == PRS_ISOLATED) && 1969 /* Adding to parent means adding isolated CPUs */ 1970 !isolated_cpus_can_update(tmp->addmask, tmp->delmask)) 1971 part_error = PERR_HKEEPING; 1972 } 1973 1974 /* 1975 * The new CPUs to be removed from parent's effective CPUs 1976 * must be present. 1977 */ 1978 if (deleting) { 1979 cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask); 1980 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus)); 1981 } 1982 1983 /* 1984 * Make partition invalid if parent's effective_cpus could 1985 * become empty and there are tasks in the parent. 1986 */ 1987 if (nocpu && (!adding || 1988 !cpumask_intersects(tmp->addmask, cpu_active_mask))) { 1989 part_error = PERR_NOCPUS; 1990 deleting = false; 1991 adding = cpumask_and(tmp->addmask, 1992 xcpus, parent->effective_xcpus); 1993 } 1994 } else { 1995 /* 1996 * partcmd_update w/o newmask 1997 * 1998 * delmask = effective_xcpus & parent->effective_cpus 1999 * 2000 * This can be called from: 2001 * 1) update_cpumasks_hier() 2002 * 2) cpuset_hotplug_update_tasks() 2003 * 2004 * Check to see if it can be transitioned from valid to 2005 * invalid partition or vice versa. 2006 * 2007 * A partition error happens when parent has tasks and all 2008 * its effective CPUs will have to be distributed out. 2009 */ 2010 if (nocpu) { 2011 part_error = PERR_NOCPUS; 2012 if (is_partition_valid(cs)) 2013 adding = cpumask_and(tmp->addmask, 2014 xcpus, parent->effective_xcpus); 2015 } else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) && 2016 cpumask_subset(xcpus, parent->effective_xcpus)) { 2017 struct cgroup_subsys_state *css; 2018 struct cpuset *child; 2019 bool exclusive = true; 2020 2021 /* 2022 * Convert invalid partition to valid has to 2023 * pass the cpu exclusivity test. 2024 */ 2025 rcu_read_lock(); 2026 cpuset_for_each_child(child, css, parent) { 2027 if (child == cs) 2028 continue; 2029 if (!cpusets_are_exclusive(cs, child)) { 2030 exclusive = false; 2031 break; 2032 } 2033 } 2034 rcu_read_unlock(); 2035 if (exclusive) 2036 deleting = cpumask_and(tmp->delmask, 2037 xcpus, parent->effective_cpus); 2038 else 2039 part_error = PERR_NOTEXCL; 2040 } 2041 } 2042 2043 write_error: 2044 if (part_error) 2045 WRITE_ONCE(cs->prs_err, part_error); 2046 2047 if (cmd == partcmd_update) { 2048 /* 2049 * Check for possible transition between valid and invalid 2050 * partition root. 2051 */ 2052 switch (cs->partition_root_state) { 2053 case PRS_ROOT: 2054 case PRS_ISOLATED: 2055 if (part_error) 2056 new_prs = -old_prs; 2057 break; 2058 case PRS_INVALID_ROOT: 2059 case PRS_INVALID_ISOLATED: 2060 if (!part_error) 2061 new_prs = -old_prs; 2062 break; 2063 } 2064 } 2065 2066 if (!adding && !deleting && (new_prs == old_prs)) 2067 return 0; 2068 2069 /* 2070 * Transitioning between invalid to valid or vice versa may require 2071 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update, 2072 * validate_change() has already been successfully called and 2073 * CPU lists in cs haven't been updated yet. So defer it to later. 2074 */ 2075 if ((old_prs != new_prs) && (cmd != partcmd_update)) { 2076 int err = update_partition_exclusive_flag(cs, new_prs); 2077 2078 if (err) 2079 return err; 2080 } 2081 2082 /* 2083 * Change the parent's effective_cpus & effective_xcpus (top cpuset 2084 * only). 2085 * 2086 * Newly added CPUs will be removed from effective_cpus and 2087 * newly deleted ones will be added back to effective_cpus. 2088 */ 2089 spin_lock_irq(&callback_lock); 2090 if (old_prs != new_prs) 2091 cs->partition_root_state = new_prs; 2092 2093 /* 2094 * Adding to parent's effective_cpus means deletion CPUs from cs 2095 * and vice versa. 2096 */ 2097 if (adding) 2098 partition_xcpus_del(old_prs, parent, tmp->addmask); 2099 if (deleting) 2100 partition_xcpus_add(new_prs, parent, tmp->delmask); 2101 2102 spin_unlock_irq(&callback_lock); 2103 update_isolation_cpumasks(); 2104 2105 if ((old_prs != new_prs) && (cmd == partcmd_update)) 2106 update_partition_exclusive_flag(cs, new_prs); 2107 2108 if (adding || deleting) { 2109 cpuset_update_tasks_cpumask(parent, tmp->addmask); 2110 update_sibling_cpumasks(parent, cs, tmp); 2111 } 2112 2113 /* 2114 * For partcmd_update without newmask, it is being called from 2115 * cpuset_handle_hotplug(). Update the load balance flag and 2116 * scheduling domain accordingly. 2117 */ 2118 if ((cmd == partcmd_update) && !newmask) 2119 update_partition_sd_lb(cs, old_prs); 2120 2121 notify_partition_change(cs, old_prs); 2122 return 0; 2123 } 2124 2125 /** 2126 * compute_partition_effective_cpumask - compute effective_cpus for partition 2127 * @cs: partition root cpuset 2128 * @new_ecpus: previously computed effective_cpus to be updated 2129 * 2130 * Compute the effective_cpus of a partition root by scanning effective_xcpus 2131 * of child partition roots and excluding their effective_xcpus. 2132 * 2133 * This has the side effect of invalidating valid child partition roots, 2134 * if necessary. Since it is called from either cpuset_hotplug_update_tasks() 2135 * or update_cpumasks_hier() where parent and children are modified 2136 * successively, we don't need to call update_parent_effective_cpumask() 2137 * and the child's effective_cpus will be updated in later iterations. 2138 * 2139 * Note that rcu_read_lock() is assumed to be held. 2140 */ 2141 static void compute_partition_effective_cpumask(struct cpuset *cs, 2142 struct cpumask *new_ecpus) 2143 { 2144 struct cgroup_subsys_state *css; 2145 struct cpuset *child; 2146 bool populated = partition_is_populated(cs, NULL); 2147 2148 /* 2149 * Check child partition roots to see if they should be 2150 * invalidated when 2151 * 1) child effective_xcpus not a subset of new 2152 * excluisve_cpus 2153 * 2) All the effective_cpus will be used up and cp 2154 * has tasks 2155 */ 2156 compute_excpus(cs, new_ecpus); 2157 cpumask_and(new_ecpus, new_ecpus, cpu_active_mask); 2158 2159 rcu_read_lock(); 2160 cpuset_for_each_child(child, css, cs) { 2161 if (!is_partition_valid(child)) 2162 continue; 2163 2164 /* 2165 * There shouldn't be a remote partition underneath another 2166 * partition root. 2167 */ 2168 WARN_ON_ONCE(is_remote_partition(child)); 2169 child->prs_err = 0; 2170 if (!cpumask_subset(child->effective_xcpus, 2171 cs->effective_xcpus)) 2172 child->prs_err = PERR_INVCPUS; 2173 else if (populated && 2174 cpumask_subset(new_ecpus, child->effective_xcpus)) 2175 child->prs_err = PERR_NOCPUS; 2176 2177 if (child->prs_err) { 2178 int old_prs = child->partition_root_state; 2179 2180 /* 2181 * Invalidate child partition 2182 */ 2183 spin_lock_irq(&callback_lock); 2184 make_partition_invalid(child); 2185 spin_unlock_irq(&callback_lock); 2186 notify_partition_change(child, old_prs); 2187 continue; 2188 } 2189 cpumask_andnot(new_ecpus, new_ecpus, 2190 child->effective_xcpus); 2191 } 2192 rcu_read_unlock(); 2193 } 2194 2195 /* 2196 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 2197 * @cs: the cpuset to consider 2198 * @tmp: temp variables for calculating effective_cpus & partition setup 2199 * @force: don't skip any descendant cpusets if set 2200 * 2201 * When configured cpumask is changed, the effective cpumasks of this cpuset 2202 * and all its descendants need to be updated. 2203 * 2204 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 2205 * 2206 * Called with cpuset_mutex held 2207 */ 2208 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, 2209 bool force) 2210 { 2211 struct cpuset *cp; 2212 struct cgroup_subsys_state *pos_css; 2213 int old_prs, new_prs; 2214 2215 rcu_read_lock(); 2216 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2217 struct cpuset *parent = parent_cs(cp); 2218 bool remote = is_remote_partition(cp); 2219 bool update_parent = false; 2220 2221 old_prs = new_prs = cp->partition_root_state; 2222 2223 /* 2224 * For child remote partition root (!= cs), we need to call 2225 * remote_cpus_update() if effective_xcpus will be changed. 2226 * Otherwise, we can skip the whole subtree. 2227 * 2228 * remote_cpus_update() will reuse tmp->new_cpus only after 2229 * its value is being processed. 2230 */ 2231 if (remote && (cp != cs)) { 2232 compute_excpus(cp, tmp->new_cpus); 2233 if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) { 2234 pos_css = css_rightmost_descendant(pos_css); 2235 continue; 2236 } 2237 rcu_read_unlock(); 2238 remote_cpus_update(cp, NULL, tmp->new_cpus, tmp); 2239 rcu_read_lock(); 2240 2241 /* Remote partition may be invalidated */ 2242 new_prs = cp->partition_root_state; 2243 remote = (new_prs == old_prs); 2244 } 2245 2246 if (remote || (is_partition_valid(parent) && is_partition_valid(cp))) 2247 compute_partition_effective_cpumask(cp, tmp->new_cpus); 2248 else 2249 compute_effective_cpumask(tmp->new_cpus, cp, parent); 2250 2251 if (remote) 2252 goto get_css; /* Ready to update cpuset data */ 2253 2254 /* 2255 * A partition with no effective_cpus is allowed as long as 2256 * there is no task associated with it. Call 2257 * update_parent_effective_cpumask() to check it. 2258 */ 2259 if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) { 2260 update_parent = true; 2261 goto update_parent_effective; 2262 } 2263 2264 /* 2265 * If it becomes empty, inherit the effective mask of the 2266 * parent, which is guaranteed to have some CPUs unless 2267 * it is a partition root that has explicitly distributed 2268 * out all its CPUs. 2269 */ 2270 if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) 2271 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 2272 2273 /* 2274 * Skip the whole subtree if 2275 * 1) the cpumask remains the same, 2276 * 2) has no partition root state, 2277 * 3) force flag not set, and 2278 * 4) for v2 load balance state same as its parent. 2279 */ 2280 if (!cp->partition_root_state && !force && 2281 cpumask_equal(tmp->new_cpus, cp->effective_cpus) && 2282 (!cpuset_v2() || 2283 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { 2284 pos_css = css_rightmost_descendant(pos_css); 2285 continue; 2286 } 2287 2288 update_parent_effective: 2289 /* 2290 * update_parent_effective_cpumask() should have been called 2291 * for cs already in update_cpumask(). We should also call 2292 * cpuset_update_tasks_cpumask() again for tasks in the parent 2293 * cpuset if the parent's effective_cpus changes. 2294 */ 2295 if ((cp != cs) && old_prs) { 2296 switch (parent->partition_root_state) { 2297 case PRS_ROOT: 2298 case PRS_ISOLATED: 2299 update_parent = true; 2300 break; 2301 2302 default: 2303 /* 2304 * When parent is not a partition root or is 2305 * invalid, child partition roots become 2306 * invalid too. 2307 */ 2308 if (is_partition_valid(cp)) 2309 new_prs = -cp->partition_root_state; 2310 WRITE_ONCE(cp->prs_err, 2311 is_partition_invalid(parent) 2312 ? PERR_INVPARENT : PERR_NOTPART); 2313 break; 2314 } 2315 } 2316 get_css: 2317 if (!css_tryget_online(&cp->css)) 2318 continue; 2319 rcu_read_unlock(); 2320 2321 if (update_parent) { 2322 update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp); 2323 /* 2324 * The cpuset partition_root_state may become 2325 * invalid. Capture it. 2326 */ 2327 new_prs = cp->partition_root_state; 2328 } 2329 2330 spin_lock_irq(&callback_lock); 2331 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 2332 cp->partition_root_state = new_prs; 2333 if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) 2334 compute_excpus(cp, cp->effective_xcpus); 2335 2336 /* 2337 * Make sure effective_xcpus is properly set for a valid 2338 * partition root. 2339 */ 2340 if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus)) 2341 cpumask_and(cp->effective_xcpus, 2342 cp->cpus_allowed, parent->effective_xcpus); 2343 else if (new_prs < 0) 2344 reset_partition_data(cp); 2345 spin_unlock_irq(&callback_lock); 2346 2347 notify_partition_change(cp, old_prs); 2348 2349 WARN_ON(!is_in_v2_mode() && 2350 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 2351 2352 cpuset_update_tasks_cpumask(cp, cp->effective_cpus); 2353 2354 /* 2355 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE 2356 * from parent if current cpuset isn't a valid partition root 2357 * and their load balance states differ. 2358 */ 2359 if (cpuset_v2() && !is_partition_valid(cp) && 2360 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { 2361 if (is_sched_load_balance(parent)) 2362 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2363 else 2364 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2365 } 2366 2367 /* 2368 * On legacy hierarchy, if the effective cpumask of any non- 2369 * empty cpuset is changed, we need to rebuild sched domains. 2370 * On default hierarchy, the cpuset needs to be a partition 2371 * root as well. 2372 */ 2373 if (!cpumask_empty(cp->cpus_allowed) && 2374 is_sched_load_balance(cp) && 2375 (!cpuset_v2() || is_partition_valid(cp))) 2376 cpuset_force_rebuild(); 2377 2378 rcu_read_lock(); 2379 css_put(&cp->css); 2380 } 2381 rcu_read_unlock(); 2382 } 2383 2384 /** 2385 * update_sibling_cpumasks - Update siblings cpumasks 2386 * @parent: Parent cpuset 2387 * @cs: Current cpuset 2388 * @tmp: Temp variables 2389 */ 2390 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 2391 struct tmpmasks *tmp) 2392 { 2393 struct cpuset *sibling; 2394 struct cgroup_subsys_state *pos_css; 2395 2396 lockdep_assert_held(&cpuset_mutex); 2397 2398 /* 2399 * Check all its siblings and call update_cpumasks_hier() 2400 * if their effective_cpus will need to be changed. 2401 * 2402 * It is possible a change in parent's effective_cpus 2403 * due to a change in a child partition's effective_xcpus will impact 2404 * its siblings even if they do not inherit parent's effective_cpus 2405 * directly. 2406 * 2407 * The update_cpumasks_hier() function may sleep. So we have to 2408 * release the RCU read lock before calling it. 2409 */ 2410 rcu_read_lock(); 2411 cpuset_for_each_child(sibling, pos_css, parent) { 2412 if (sibling == cs) 2413 continue; 2414 if (!is_partition_valid(sibling)) { 2415 compute_effective_cpumask(tmp->new_cpus, sibling, 2416 parent); 2417 if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus)) 2418 continue; 2419 } else if (is_remote_partition(sibling)) { 2420 /* 2421 * Change in a sibling cpuset won't affect a remote 2422 * partition root. 2423 */ 2424 continue; 2425 } 2426 2427 if (!css_tryget_online(&sibling->css)) 2428 continue; 2429 2430 rcu_read_unlock(); 2431 update_cpumasks_hier(sibling, tmp, false); 2432 rcu_read_lock(); 2433 css_put(&sibling->css); 2434 } 2435 rcu_read_unlock(); 2436 } 2437 2438 static int parse_cpuset_cpulist(const char *buf, struct cpumask *out_mask) 2439 { 2440 int retval; 2441 2442 retval = cpulist_parse(buf, out_mask); 2443 if (retval < 0) 2444 return retval; 2445 if (!cpumask_subset(out_mask, top_cpuset.cpus_allowed)) 2446 return -EINVAL; 2447 2448 return 0; 2449 } 2450 2451 /** 2452 * validate_partition - Validate a cpuset partition configuration 2453 * @cs: The cpuset to validate 2454 * @trialcs: The trial cpuset containing proposed configuration changes 2455 * 2456 * If any validation check fails, the appropriate error code is set in the 2457 * cpuset's prs_err field. 2458 * 2459 * Return: PRS error code (0 if valid, non-zero error code if invalid) 2460 */ 2461 static enum prs_errcode validate_partition(struct cpuset *cs, struct cpuset *trialcs) 2462 { 2463 struct cpuset *parent = parent_cs(cs); 2464 2465 if (cs_is_member(trialcs)) 2466 return PERR_NONE; 2467 2468 if (cpumask_empty(trialcs->effective_xcpus)) 2469 return PERR_INVCPUS; 2470 2471 if (prstate_housekeeping_conflict(trialcs->partition_root_state, 2472 trialcs->effective_xcpus)) 2473 return PERR_HKEEPING; 2474 2475 if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) 2476 return PERR_NOCPUS; 2477 2478 return PERR_NONE; 2479 } 2480 2481 static int cpus_allowed_validate_change(struct cpuset *cs, struct cpuset *trialcs, 2482 struct tmpmasks *tmp) 2483 { 2484 int retval; 2485 struct cpuset *parent = parent_cs(cs); 2486 2487 retval = validate_change(cs, trialcs); 2488 2489 if ((retval == -EINVAL) && cpuset_v2()) { 2490 struct cgroup_subsys_state *css; 2491 struct cpuset *cp; 2492 2493 /* 2494 * The -EINVAL error code indicates that partition sibling 2495 * CPU exclusivity rule has been violated. We still allow 2496 * the cpumask change to proceed while invalidating the 2497 * partition. However, any conflicting sibling partitions 2498 * have to be marked as invalid too. 2499 */ 2500 trialcs->prs_err = PERR_NOTEXCL; 2501 rcu_read_lock(); 2502 cpuset_for_each_child(cp, css, parent) { 2503 struct cpumask *xcpus = user_xcpus(trialcs); 2504 2505 if (is_partition_valid(cp) && 2506 cpumask_intersects(xcpus, cp->effective_xcpus)) { 2507 rcu_read_unlock(); 2508 update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, tmp); 2509 rcu_read_lock(); 2510 } 2511 } 2512 rcu_read_unlock(); 2513 retval = 0; 2514 } 2515 return retval; 2516 } 2517 2518 /** 2519 * partition_cpus_change - Handle partition state changes due to CPU mask updates 2520 * @cs: The target cpuset being modified 2521 * @trialcs: The trial cpuset containing proposed configuration changes 2522 * @tmp: Temporary masks for intermediate calculations 2523 * 2524 * This function handles partition state transitions triggered by CPU mask changes. 2525 * CPU modifications may cause a partition to be disabled or require state updates. 2526 */ 2527 static void partition_cpus_change(struct cpuset *cs, struct cpuset *trialcs, 2528 struct tmpmasks *tmp) 2529 { 2530 enum prs_errcode prs_err; 2531 2532 if (cs_is_member(cs)) 2533 return; 2534 2535 prs_err = validate_partition(cs, trialcs); 2536 if (prs_err) 2537 trialcs->prs_err = cs->prs_err = prs_err; 2538 2539 if (is_remote_partition(cs)) { 2540 if (trialcs->prs_err) 2541 remote_partition_disable(cs, tmp); 2542 else 2543 remote_cpus_update(cs, trialcs->exclusive_cpus, 2544 trialcs->effective_xcpus, tmp); 2545 } else { 2546 if (trialcs->prs_err) 2547 update_parent_effective_cpumask(cs, partcmd_invalidate, 2548 NULL, tmp); 2549 else 2550 update_parent_effective_cpumask(cs, partcmd_update, 2551 trialcs->effective_xcpus, tmp); 2552 } 2553 } 2554 2555 /** 2556 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 2557 * @cs: the cpuset to consider 2558 * @trialcs: trial cpuset 2559 * @buf: buffer of cpu numbers written to this cpuset 2560 */ 2561 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2562 const char *buf) 2563 { 2564 int retval; 2565 struct tmpmasks tmp; 2566 bool force = false; 2567 int old_prs = cs->partition_root_state; 2568 2569 retval = parse_cpuset_cpulist(buf, trialcs->cpus_allowed); 2570 if (retval < 0) 2571 return retval; 2572 2573 /* Nothing to do if the cpus didn't change */ 2574 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 2575 return 0; 2576 2577 if (alloc_tmpmasks(&tmp)) 2578 return -ENOMEM; 2579 2580 compute_trialcs_excpus(trialcs, cs); 2581 trialcs->prs_err = PERR_NONE; 2582 2583 retval = cpus_allowed_validate_change(cs, trialcs, &tmp); 2584 if (retval < 0) 2585 goto out_free; 2586 2587 /* 2588 * Check all the descendants in update_cpumasks_hier() if 2589 * effective_xcpus is to be changed. 2590 */ 2591 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); 2592 2593 partition_cpus_change(cs, trialcs, &tmp); 2594 2595 spin_lock_irq(&callback_lock); 2596 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 2597 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2598 if ((old_prs > 0) && !is_partition_valid(cs)) 2599 reset_partition_data(cs); 2600 spin_unlock_irq(&callback_lock); 2601 2602 /* effective_cpus/effective_xcpus will be updated here */ 2603 update_cpumasks_hier(cs, &tmp, force); 2604 2605 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2606 if (cs->partition_root_state) 2607 update_partition_sd_lb(cs, old_prs); 2608 out_free: 2609 free_tmpmasks(&tmp); 2610 return retval; 2611 } 2612 2613 /** 2614 * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset 2615 * @cs: the cpuset to consider 2616 * @trialcs: trial cpuset 2617 * @buf: buffer of cpu numbers written to this cpuset 2618 * 2619 * The tasks' cpumask will be updated if cs is a valid partition root. 2620 */ 2621 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2622 const char *buf) 2623 { 2624 int retval; 2625 struct tmpmasks tmp; 2626 bool force = false; 2627 int old_prs = cs->partition_root_state; 2628 2629 retval = parse_cpuset_cpulist(buf, trialcs->exclusive_cpus); 2630 if (retval < 0) 2631 return retval; 2632 2633 /* Nothing to do if the CPUs didn't change */ 2634 if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus)) 2635 return 0; 2636 2637 /* 2638 * Reject the change if there is exclusive CPUs conflict with 2639 * the siblings. 2640 */ 2641 if (compute_trialcs_excpus(trialcs, cs)) 2642 return -EINVAL; 2643 2644 /* 2645 * Check all the descendants in update_cpumasks_hier() if 2646 * effective_xcpus is to be changed. 2647 */ 2648 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); 2649 2650 retval = validate_change(cs, trialcs); 2651 if (retval) 2652 return retval; 2653 2654 if (alloc_tmpmasks(&tmp)) 2655 return -ENOMEM; 2656 2657 trialcs->prs_err = PERR_NONE; 2658 partition_cpus_change(cs, trialcs, &tmp); 2659 2660 spin_lock_irq(&callback_lock); 2661 cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus); 2662 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2663 if ((old_prs > 0) && !is_partition_valid(cs)) 2664 reset_partition_data(cs); 2665 spin_unlock_irq(&callback_lock); 2666 2667 /* 2668 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus 2669 * of the subtree when it is a valid partition root or effective_xcpus 2670 * is updated. 2671 */ 2672 if (is_partition_valid(cs) || force) 2673 update_cpumasks_hier(cs, &tmp, force); 2674 2675 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2676 if (cs->partition_root_state) 2677 update_partition_sd_lb(cs, old_prs); 2678 2679 free_tmpmasks(&tmp); 2680 return 0; 2681 } 2682 2683 /* 2684 * Migrate memory region from one set of nodes to another. This is 2685 * performed asynchronously as it can be called from process migration path 2686 * holding locks involved in process management. All mm migrations are 2687 * performed in the queued order and can be waited for by flushing 2688 * cpuset_migrate_mm_wq. 2689 */ 2690 2691 struct cpuset_migrate_mm_work { 2692 struct work_struct work; 2693 struct mm_struct *mm; 2694 nodemask_t from; 2695 nodemask_t to; 2696 }; 2697 2698 static void cpuset_migrate_mm_workfn(struct work_struct *work) 2699 { 2700 struct cpuset_migrate_mm_work *mwork = 2701 container_of(work, struct cpuset_migrate_mm_work, work); 2702 2703 /* on a wq worker, no need to worry about %current's mems_allowed */ 2704 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 2705 mmput(mwork->mm); 2706 kfree(mwork); 2707 } 2708 2709 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 2710 const nodemask_t *to) 2711 { 2712 struct cpuset_migrate_mm_work *mwork; 2713 2714 if (nodes_equal(*from, *to)) { 2715 mmput(mm); 2716 return; 2717 } 2718 2719 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 2720 if (mwork) { 2721 mwork->mm = mm; 2722 mwork->from = *from; 2723 mwork->to = *to; 2724 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 2725 queue_work(cpuset_migrate_mm_wq, &mwork->work); 2726 } else { 2727 mmput(mm); 2728 } 2729 } 2730 2731 static void flush_migrate_mm_task_workfn(struct callback_head *head) 2732 { 2733 flush_workqueue(cpuset_migrate_mm_wq); 2734 kfree(head); 2735 } 2736 2737 static void schedule_flush_migrate_mm(void) 2738 { 2739 struct callback_head *flush_cb; 2740 2741 flush_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL); 2742 if (!flush_cb) 2743 return; 2744 2745 init_task_work(flush_cb, flush_migrate_mm_task_workfn); 2746 2747 if (task_work_add(current, flush_cb, TWA_RESUME)) 2748 kfree(flush_cb); 2749 } 2750 2751 /* 2752 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 2753 * @tsk: the task to change 2754 * @newmems: new nodes that the task will be set 2755 * 2756 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 2757 * and rebind an eventual tasks' mempolicy. If the task is allocating in 2758 * parallel, it might temporarily see an empty intersection, which results in 2759 * a seqlock check and retry before OOM or allocation failure. 2760 */ 2761 static void cpuset_change_task_nodemask(struct task_struct *tsk, 2762 nodemask_t *newmems) 2763 { 2764 task_lock(tsk); 2765 2766 local_irq_disable(); 2767 write_seqcount_begin(&tsk->mems_allowed_seq); 2768 2769 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 2770 mpol_rebind_task(tsk, newmems); 2771 tsk->mems_allowed = *newmems; 2772 2773 write_seqcount_end(&tsk->mems_allowed_seq); 2774 local_irq_enable(); 2775 2776 task_unlock(tsk); 2777 } 2778 2779 static void *cpuset_being_rebound; 2780 2781 /** 2782 * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 2783 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 2784 * 2785 * Iterate through each task of @cs updating its mems_allowed to the 2786 * effective cpuset's. As this function is called with cpuset_mutex held, 2787 * cpuset membership stays stable. 2788 */ 2789 void cpuset_update_tasks_nodemask(struct cpuset *cs) 2790 { 2791 static nodemask_t newmems; /* protected by cpuset_mutex */ 2792 struct css_task_iter it; 2793 struct task_struct *task; 2794 2795 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 2796 2797 guarantee_online_mems(cs, &newmems); 2798 2799 /* 2800 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 2801 * take while holding tasklist_lock. Forks can happen - the 2802 * mpol_dup() cpuset_being_rebound check will catch such forks, 2803 * and rebind their vma mempolicies too. Because we still hold 2804 * the global cpuset_mutex, we know that no other rebind effort 2805 * will be contending for the global variable cpuset_being_rebound. 2806 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 2807 * is idempotent. Also migrate pages in each mm to new nodes. 2808 */ 2809 css_task_iter_start(&cs->css, 0, &it); 2810 while ((task = css_task_iter_next(&it))) { 2811 struct mm_struct *mm; 2812 bool migrate; 2813 2814 cpuset_change_task_nodemask(task, &newmems); 2815 2816 mm = get_task_mm(task); 2817 if (!mm) 2818 continue; 2819 2820 migrate = is_memory_migrate(cs); 2821 2822 mpol_rebind_mm(mm, &cs->mems_allowed); 2823 if (migrate) 2824 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 2825 else 2826 mmput(mm); 2827 } 2828 css_task_iter_end(&it); 2829 2830 /* 2831 * All the tasks' nodemasks have been updated, update 2832 * cs->old_mems_allowed. 2833 */ 2834 cs->old_mems_allowed = newmems; 2835 2836 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 2837 cpuset_being_rebound = NULL; 2838 } 2839 2840 /* 2841 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 2842 * @cs: the cpuset to consider 2843 * @new_mems: a temp variable for calculating new effective_mems 2844 * 2845 * When configured nodemask is changed, the effective nodemasks of this cpuset 2846 * and all its descendants need to be updated. 2847 * 2848 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 2849 * 2850 * Called with cpuset_mutex held 2851 */ 2852 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 2853 { 2854 struct cpuset *cp; 2855 struct cgroup_subsys_state *pos_css; 2856 2857 rcu_read_lock(); 2858 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2859 struct cpuset *parent = parent_cs(cp); 2860 2861 bool has_mems = nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 2862 2863 /* 2864 * If it becomes empty, inherit the effective mask of the 2865 * parent, which is guaranteed to have some MEMs. 2866 */ 2867 if (is_in_v2_mode() && !has_mems) 2868 *new_mems = parent->effective_mems; 2869 2870 /* Skip the whole subtree if the nodemask remains the same. */ 2871 if (nodes_equal(*new_mems, cp->effective_mems)) { 2872 pos_css = css_rightmost_descendant(pos_css); 2873 continue; 2874 } 2875 2876 if (!css_tryget_online(&cp->css)) 2877 continue; 2878 rcu_read_unlock(); 2879 2880 spin_lock_irq(&callback_lock); 2881 cp->effective_mems = *new_mems; 2882 spin_unlock_irq(&callback_lock); 2883 2884 WARN_ON(!is_in_v2_mode() && 2885 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 2886 2887 cpuset_update_tasks_nodemask(cp); 2888 2889 rcu_read_lock(); 2890 css_put(&cp->css); 2891 } 2892 rcu_read_unlock(); 2893 } 2894 2895 /* 2896 * Handle user request to change the 'mems' memory placement 2897 * of a cpuset. Needs to validate the request, update the 2898 * cpusets mems_allowed, and for each task in the cpuset, 2899 * update mems_allowed and rebind task's mempolicy and any vma 2900 * mempolicies and if the cpuset is marked 'memory_migrate', 2901 * migrate the tasks pages to the new memory. 2902 * 2903 * Call with cpuset_mutex held. May take callback_lock during call. 2904 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 2905 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 2906 * their mempolicies to the cpusets new mems_allowed. 2907 */ 2908 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 2909 const char *buf) 2910 { 2911 int retval; 2912 2913 /* 2914 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 2915 * The validate_change() call ensures that cpusets with tasks have memory. 2916 */ 2917 retval = nodelist_parse(buf, trialcs->mems_allowed); 2918 if (retval < 0) 2919 return retval; 2920 2921 if (!nodes_subset(trialcs->mems_allowed, 2922 top_cpuset.mems_allowed)) 2923 return -EINVAL; 2924 2925 /* No change? nothing to do */ 2926 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) 2927 return 0; 2928 2929 retval = validate_change(cs, trialcs); 2930 if (retval < 0) 2931 return retval; 2932 2933 check_insane_mems_config(&trialcs->mems_allowed); 2934 2935 spin_lock_irq(&callback_lock); 2936 cs->mems_allowed = trialcs->mems_allowed; 2937 spin_unlock_irq(&callback_lock); 2938 2939 /* use trialcs->mems_allowed as a temp variable */ 2940 update_nodemasks_hier(cs, &trialcs->mems_allowed); 2941 return 0; 2942 } 2943 2944 bool current_cpuset_is_being_rebound(void) 2945 { 2946 bool ret; 2947 2948 rcu_read_lock(); 2949 ret = task_cs(current) == cpuset_being_rebound; 2950 rcu_read_unlock(); 2951 2952 return ret; 2953 } 2954 2955 /* 2956 * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag 2957 * bit: the bit to update (see cpuset_flagbits_t) 2958 * cs: the cpuset to update 2959 * turning_on: whether the flag is being set or cleared 2960 * 2961 * Call with cpuset_mutex held. 2962 */ 2963 2964 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 2965 int turning_on) 2966 { 2967 struct cpuset *trialcs; 2968 int balance_flag_changed; 2969 int spread_flag_changed; 2970 int err; 2971 2972 trialcs = dup_or_alloc_cpuset(cs); 2973 if (!trialcs) 2974 return -ENOMEM; 2975 2976 if (turning_on) 2977 set_bit(bit, &trialcs->flags); 2978 else 2979 clear_bit(bit, &trialcs->flags); 2980 2981 err = validate_change(cs, trialcs); 2982 if (err < 0) 2983 goto out; 2984 2985 balance_flag_changed = (is_sched_load_balance(cs) != 2986 is_sched_load_balance(trialcs)); 2987 2988 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 2989 || (is_spread_page(cs) != is_spread_page(trialcs))); 2990 2991 spin_lock_irq(&callback_lock); 2992 cs->flags = trialcs->flags; 2993 spin_unlock_irq(&callback_lock); 2994 2995 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) { 2996 if (cpuset_v2()) 2997 cpuset_force_rebuild(); 2998 else 2999 rebuild_sched_domains_locked(); 3000 } 3001 3002 if (spread_flag_changed) 3003 cpuset1_update_tasks_flags(cs); 3004 out: 3005 free_cpuset(trialcs); 3006 return err; 3007 } 3008 3009 /** 3010 * update_prstate - update partition_root_state 3011 * @cs: the cpuset to update 3012 * @new_prs: new partition root state 3013 * Return: 0 if successful, != 0 if error 3014 * 3015 * Call with cpuset_mutex held. 3016 */ 3017 static int update_prstate(struct cpuset *cs, int new_prs) 3018 { 3019 int err = PERR_NONE, old_prs = cs->partition_root_state; 3020 struct cpuset *parent = parent_cs(cs); 3021 struct tmpmasks tmpmask; 3022 bool isolcpus_updated = false; 3023 3024 if (old_prs == new_prs) 3025 return 0; 3026 3027 /* 3028 * Treat a previously invalid partition root as if it is a "member". 3029 */ 3030 if (new_prs && is_partition_invalid(cs)) 3031 old_prs = PRS_MEMBER; 3032 3033 if (alloc_tmpmasks(&tmpmask)) 3034 return -ENOMEM; 3035 3036 err = update_partition_exclusive_flag(cs, new_prs); 3037 if (err) 3038 goto out; 3039 3040 if (!old_prs) { 3041 /* 3042 * cpus_allowed and exclusive_cpus cannot be both empty. 3043 */ 3044 if (xcpus_empty(cs)) { 3045 err = PERR_CPUSEMPTY; 3046 goto out; 3047 } 3048 3049 /* 3050 * We don't support the creation of a new local partition with 3051 * a remote partition underneath it. This unsupported 3052 * setting can happen only if parent is the top_cpuset because 3053 * a remote partition cannot be created underneath an existing 3054 * local or remote partition. 3055 */ 3056 if ((parent == &top_cpuset) && 3057 cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) { 3058 err = PERR_REMOTE; 3059 goto out; 3060 } 3061 3062 /* 3063 * If parent is valid partition, enable local partiion. 3064 * Otherwise, enable a remote partition. 3065 */ 3066 if (is_partition_valid(parent)) { 3067 enum partition_cmd cmd = (new_prs == PRS_ROOT) 3068 ? partcmd_enable : partcmd_enablei; 3069 3070 err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask); 3071 } else { 3072 err = remote_partition_enable(cs, new_prs, &tmpmask); 3073 } 3074 } else if (old_prs && new_prs) { 3075 /* 3076 * A change in load balance state only, no change in cpumasks. 3077 * Need to update isolated_cpus. 3078 */ 3079 if (((new_prs == PRS_ISOLATED) && 3080 !isolated_cpus_can_update(cs->effective_xcpus, NULL)) || 3081 prstate_housekeeping_conflict(new_prs, cs->effective_xcpus)) 3082 err = PERR_HKEEPING; 3083 else 3084 isolcpus_updated = true; 3085 } else { 3086 /* 3087 * Switching back to member is always allowed even if it 3088 * disables child partitions. 3089 */ 3090 if (is_remote_partition(cs)) 3091 remote_partition_disable(cs, &tmpmask); 3092 else 3093 update_parent_effective_cpumask(cs, partcmd_disable, 3094 NULL, &tmpmask); 3095 3096 /* 3097 * Invalidation of child partitions will be done in 3098 * update_cpumasks_hier(). 3099 */ 3100 } 3101 out: 3102 /* 3103 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error 3104 * happens. 3105 */ 3106 if (err) { 3107 new_prs = -new_prs; 3108 update_partition_exclusive_flag(cs, new_prs); 3109 } 3110 3111 spin_lock_irq(&callback_lock); 3112 cs->partition_root_state = new_prs; 3113 WRITE_ONCE(cs->prs_err, err); 3114 if (!is_partition_valid(cs)) 3115 reset_partition_data(cs); 3116 else if (isolcpus_updated) 3117 isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus); 3118 spin_unlock_irq(&callback_lock); 3119 update_isolation_cpumasks(); 3120 3121 /* Force update if switching back to member & update effective_xcpus */ 3122 update_cpumasks_hier(cs, &tmpmask, !new_prs); 3123 3124 /* A newly created partition must have effective_xcpus set */ 3125 WARN_ON_ONCE(!old_prs && (new_prs > 0) 3126 && cpumask_empty(cs->effective_xcpus)); 3127 3128 /* Update sched domains and load balance flag */ 3129 update_partition_sd_lb(cs, old_prs); 3130 3131 notify_partition_change(cs, old_prs); 3132 if (force_sd_rebuild) 3133 rebuild_sched_domains_locked(); 3134 free_tmpmasks(&tmpmask); 3135 return 0; 3136 } 3137 3138 static struct cpuset *cpuset_attach_old_cs; 3139 3140 /* 3141 * Check to see if a cpuset can accept a new task 3142 * For v1, cpus_allowed and mems_allowed can't be empty. 3143 * For v2, effective_cpus can't be empty. 3144 * Note that in v1, effective_cpus = cpus_allowed. 3145 */ 3146 static int cpuset_can_attach_check(struct cpuset *cs) 3147 { 3148 if (cpumask_empty(cs->effective_cpus) || 3149 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) 3150 return -ENOSPC; 3151 return 0; 3152 } 3153 3154 static void reset_migrate_dl_data(struct cpuset *cs) 3155 { 3156 cs->nr_migrate_dl_tasks = 0; 3157 cs->sum_migrate_dl_bw = 0; 3158 } 3159 3160 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 3161 static int cpuset_can_attach(struct cgroup_taskset *tset) 3162 { 3163 struct cgroup_subsys_state *css; 3164 struct cpuset *cs, *oldcs; 3165 struct task_struct *task; 3166 bool cpus_updated, mems_updated; 3167 int ret; 3168 3169 /* used later by cpuset_attach() */ 3170 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 3171 oldcs = cpuset_attach_old_cs; 3172 cs = css_cs(css); 3173 3174 mutex_lock(&cpuset_mutex); 3175 3176 /* Check to see if task is allowed in the cpuset */ 3177 ret = cpuset_can_attach_check(cs); 3178 if (ret) 3179 goto out_unlock; 3180 3181 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); 3182 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 3183 3184 cgroup_taskset_for_each(task, css, tset) { 3185 ret = task_can_attach(task); 3186 if (ret) 3187 goto out_unlock; 3188 3189 /* 3190 * Skip rights over task check in v2 when nothing changes, 3191 * migration permission derives from hierarchy ownership in 3192 * cgroup_procs_write_permission()). 3193 */ 3194 if (!cpuset_v2() || (cpus_updated || mems_updated)) { 3195 ret = security_task_setscheduler(task); 3196 if (ret) 3197 goto out_unlock; 3198 } 3199 3200 if (dl_task(task)) { 3201 cs->nr_migrate_dl_tasks++; 3202 cs->sum_migrate_dl_bw += task->dl.dl_bw; 3203 } 3204 } 3205 3206 if (!cs->nr_migrate_dl_tasks) 3207 goto out_success; 3208 3209 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { 3210 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); 3211 3212 if (unlikely(cpu >= nr_cpu_ids)) { 3213 reset_migrate_dl_data(cs); 3214 ret = -EINVAL; 3215 goto out_unlock; 3216 } 3217 3218 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); 3219 if (ret) { 3220 reset_migrate_dl_data(cs); 3221 goto out_unlock; 3222 } 3223 } 3224 3225 out_success: 3226 /* 3227 * Mark attach is in progress. This makes validate_change() fail 3228 * changes which zero cpus/mems_allowed. 3229 */ 3230 cs->attach_in_progress++; 3231 out_unlock: 3232 mutex_unlock(&cpuset_mutex); 3233 return ret; 3234 } 3235 3236 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 3237 { 3238 struct cgroup_subsys_state *css; 3239 struct cpuset *cs; 3240 3241 cgroup_taskset_first(tset, &css); 3242 cs = css_cs(css); 3243 3244 mutex_lock(&cpuset_mutex); 3245 dec_attach_in_progress_locked(cs); 3246 3247 if (cs->nr_migrate_dl_tasks) { 3248 int cpu = cpumask_any(cs->effective_cpus); 3249 3250 dl_bw_free(cpu, cs->sum_migrate_dl_bw); 3251 reset_migrate_dl_data(cs); 3252 } 3253 3254 mutex_unlock(&cpuset_mutex); 3255 } 3256 3257 /* 3258 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() 3259 * but we can't allocate it dynamically there. Define it global and 3260 * allocate from cpuset_init(). 3261 */ 3262 static cpumask_var_t cpus_attach; 3263 static nodemask_t cpuset_attach_nodemask_to; 3264 3265 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) 3266 { 3267 lockdep_assert_held(&cpuset_mutex); 3268 3269 if (cs != &top_cpuset) 3270 guarantee_active_cpus(task, cpus_attach); 3271 else 3272 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), 3273 subpartitions_cpus); 3274 /* 3275 * can_attach beforehand should guarantee that this doesn't 3276 * fail. TODO: have a better way to handle failure here 3277 */ 3278 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 3279 3280 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 3281 cpuset1_update_task_spread_flags(cs, task); 3282 } 3283 3284 static void cpuset_attach(struct cgroup_taskset *tset) 3285 { 3286 struct task_struct *task; 3287 struct task_struct *leader; 3288 struct cgroup_subsys_state *css; 3289 struct cpuset *cs; 3290 struct cpuset *oldcs = cpuset_attach_old_cs; 3291 bool cpus_updated, mems_updated; 3292 bool queue_task_work = false; 3293 3294 cgroup_taskset_first(tset, &css); 3295 cs = css_cs(css); 3296 3297 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ 3298 mutex_lock(&cpuset_mutex); 3299 cpus_updated = !cpumask_equal(cs->effective_cpus, 3300 oldcs->effective_cpus); 3301 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 3302 3303 /* 3304 * In the default hierarchy, enabling cpuset in the child cgroups 3305 * will trigger a number of cpuset_attach() calls with no change 3306 * in effective cpus and mems. In that case, we can optimize out 3307 * by skipping the task iteration and update. 3308 */ 3309 if (cpuset_v2() && !cpus_updated && !mems_updated) { 3310 cpuset_attach_nodemask_to = cs->effective_mems; 3311 goto out; 3312 } 3313 3314 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3315 3316 cgroup_taskset_for_each(task, css, tset) 3317 cpuset_attach_task(cs, task); 3318 3319 /* 3320 * Change mm for all threadgroup leaders. This is expensive and may 3321 * sleep and should be moved outside migration path proper. Skip it 3322 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is 3323 * not set. 3324 */ 3325 cpuset_attach_nodemask_to = cs->effective_mems; 3326 if (!is_memory_migrate(cs) && !mems_updated) 3327 goto out; 3328 3329 cgroup_taskset_for_each_leader(leader, css, tset) { 3330 struct mm_struct *mm = get_task_mm(leader); 3331 3332 if (mm) { 3333 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 3334 3335 /* 3336 * old_mems_allowed is the same with mems_allowed 3337 * here, except if this task is being moved 3338 * automatically due to hotplug. In that case 3339 * @mems_allowed has been updated and is empty, so 3340 * @old_mems_allowed is the right nodesets that we 3341 * migrate mm from. 3342 */ 3343 if (is_memory_migrate(cs)) { 3344 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 3345 &cpuset_attach_nodemask_to); 3346 queue_task_work = true; 3347 } else 3348 mmput(mm); 3349 } 3350 } 3351 3352 out: 3353 if (queue_task_work) 3354 schedule_flush_migrate_mm(); 3355 cs->old_mems_allowed = cpuset_attach_nodemask_to; 3356 3357 if (cs->nr_migrate_dl_tasks) { 3358 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; 3359 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; 3360 reset_migrate_dl_data(cs); 3361 } 3362 3363 dec_attach_in_progress_locked(cs); 3364 3365 mutex_unlock(&cpuset_mutex); 3366 } 3367 3368 /* 3369 * Common handling for a write to a "cpus" or "mems" file. 3370 */ 3371 ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 3372 char *buf, size_t nbytes, loff_t off) 3373 { 3374 struct cpuset *cs = css_cs(of_css(of)); 3375 struct cpuset *trialcs; 3376 int retval = -ENODEV; 3377 3378 /* root is read-only */ 3379 if (cs == &top_cpuset) 3380 return -EACCES; 3381 3382 buf = strstrip(buf); 3383 cpuset_full_lock(); 3384 if (!is_cpuset_online(cs)) 3385 goto out_unlock; 3386 3387 trialcs = dup_or_alloc_cpuset(cs); 3388 if (!trialcs) { 3389 retval = -ENOMEM; 3390 goto out_unlock; 3391 } 3392 3393 switch (of_cft(of)->private) { 3394 case FILE_CPULIST: 3395 retval = update_cpumask(cs, trialcs, buf); 3396 break; 3397 case FILE_EXCLUSIVE_CPULIST: 3398 retval = update_exclusive_cpumask(cs, trialcs, buf); 3399 break; 3400 case FILE_MEMLIST: 3401 retval = update_nodemask(cs, trialcs, buf); 3402 break; 3403 default: 3404 retval = -EINVAL; 3405 break; 3406 } 3407 3408 free_cpuset(trialcs); 3409 if (force_sd_rebuild) 3410 rebuild_sched_domains_locked(); 3411 out_unlock: 3412 cpuset_full_unlock(); 3413 if (of_cft(of)->private == FILE_MEMLIST) 3414 schedule_flush_migrate_mm(); 3415 return retval ?: nbytes; 3416 } 3417 3418 /* 3419 * These ascii lists should be read in a single call, by using a user 3420 * buffer large enough to hold the entire map. If read in smaller 3421 * chunks, there is no guarantee of atomicity. Since the display format 3422 * used, list of ranges of sequential numbers, is variable length, 3423 * and since these maps can change value dynamically, one could read 3424 * gibberish by doing partial reads while a list was changing. 3425 */ 3426 int cpuset_common_seq_show(struct seq_file *sf, void *v) 3427 { 3428 struct cpuset *cs = css_cs(seq_css(sf)); 3429 cpuset_filetype_t type = seq_cft(sf)->private; 3430 int ret = 0; 3431 3432 spin_lock_irq(&callback_lock); 3433 3434 switch (type) { 3435 case FILE_CPULIST: 3436 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 3437 break; 3438 case FILE_MEMLIST: 3439 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 3440 break; 3441 case FILE_EFFECTIVE_CPULIST: 3442 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 3443 break; 3444 case FILE_EFFECTIVE_MEMLIST: 3445 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 3446 break; 3447 case FILE_EXCLUSIVE_CPULIST: 3448 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus)); 3449 break; 3450 case FILE_EFFECTIVE_XCPULIST: 3451 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus)); 3452 break; 3453 case FILE_SUBPARTS_CPULIST: 3454 seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus)); 3455 break; 3456 case FILE_ISOLATED_CPULIST: 3457 seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus)); 3458 break; 3459 default: 3460 ret = -EINVAL; 3461 } 3462 3463 spin_unlock_irq(&callback_lock); 3464 return ret; 3465 } 3466 3467 static int cpuset_partition_show(struct seq_file *seq, void *v) 3468 { 3469 struct cpuset *cs = css_cs(seq_css(seq)); 3470 const char *err, *type = NULL; 3471 3472 switch (cs->partition_root_state) { 3473 case PRS_ROOT: 3474 seq_puts(seq, "root\n"); 3475 break; 3476 case PRS_ISOLATED: 3477 seq_puts(seq, "isolated\n"); 3478 break; 3479 case PRS_MEMBER: 3480 seq_puts(seq, "member\n"); 3481 break; 3482 case PRS_INVALID_ROOT: 3483 type = "root"; 3484 fallthrough; 3485 case PRS_INVALID_ISOLATED: 3486 if (!type) 3487 type = "isolated"; 3488 err = perr_strings[READ_ONCE(cs->prs_err)]; 3489 if (err) 3490 seq_printf(seq, "%s invalid (%s)\n", type, err); 3491 else 3492 seq_printf(seq, "%s invalid\n", type); 3493 break; 3494 } 3495 return 0; 3496 } 3497 3498 static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf, 3499 size_t nbytes, loff_t off) 3500 { 3501 struct cpuset *cs = css_cs(of_css(of)); 3502 int val; 3503 int retval = -ENODEV; 3504 3505 buf = strstrip(buf); 3506 3507 if (!strcmp(buf, "root")) 3508 val = PRS_ROOT; 3509 else if (!strcmp(buf, "member")) 3510 val = PRS_MEMBER; 3511 else if (!strcmp(buf, "isolated")) 3512 val = PRS_ISOLATED; 3513 else 3514 return -EINVAL; 3515 3516 cpuset_full_lock(); 3517 if (is_cpuset_online(cs)) 3518 retval = update_prstate(cs, val); 3519 cpuset_full_unlock(); 3520 return retval ?: nbytes; 3521 } 3522 3523 /* 3524 * This is currently a minimal set for the default hierarchy. It can be 3525 * expanded later on by migrating more features and control files from v1. 3526 */ 3527 static struct cftype dfl_files[] = { 3528 { 3529 .name = "cpus", 3530 .seq_show = cpuset_common_seq_show, 3531 .write = cpuset_write_resmask, 3532 .max_write_len = (100U + 6 * NR_CPUS), 3533 .private = FILE_CPULIST, 3534 .flags = CFTYPE_NOT_ON_ROOT, 3535 }, 3536 3537 { 3538 .name = "mems", 3539 .seq_show = cpuset_common_seq_show, 3540 .write = cpuset_write_resmask, 3541 .max_write_len = (100U + 6 * MAX_NUMNODES), 3542 .private = FILE_MEMLIST, 3543 .flags = CFTYPE_NOT_ON_ROOT, 3544 }, 3545 3546 { 3547 .name = "cpus.effective", 3548 .seq_show = cpuset_common_seq_show, 3549 .private = FILE_EFFECTIVE_CPULIST, 3550 }, 3551 3552 { 3553 .name = "mems.effective", 3554 .seq_show = cpuset_common_seq_show, 3555 .private = FILE_EFFECTIVE_MEMLIST, 3556 }, 3557 3558 { 3559 .name = "cpus.partition", 3560 .seq_show = cpuset_partition_show, 3561 .write = cpuset_partition_write, 3562 .private = FILE_PARTITION_ROOT, 3563 .flags = CFTYPE_NOT_ON_ROOT, 3564 .file_offset = offsetof(struct cpuset, partition_file), 3565 }, 3566 3567 { 3568 .name = "cpus.exclusive", 3569 .seq_show = cpuset_common_seq_show, 3570 .write = cpuset_write_resmask, 3571 .max_write_len = (100U + 6 * NR_CPUS), 3572 .private = FILE_EXCLUSIVE_CPULIST, 3573 .flags = CFTYPE_NOT_ON_ROOT, 3574 }, 3575 3576 { 3577 .name = "cpus.exclusive.effective", 3578 .seq_show = cpuset_common_seq_show, 3579 .private = FILE_EFFECTIVE_XCPULIST, 3580 .flags = CFTYPE_NOT_ON_ROOT, 3581 }, 3582 3583 { 3584 .name = "cpus.subpartitions", 3585 .seq_show = cpuset_common_seq_show, 3586 .private = FILE_SUBPARTS_CPULIST, 3587 .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG, 3588 }, 3589 3590 { 3591 .name = "cpus.isolated", 3592 .seq_show = cpuset_common_seq_show, 3593 .private = FILE_ISOLATED_CPULIST, 3594 .flags = CFTYPE_ONLY_ON_ROOT, 3595 }, 3596 3597 { } /* terminate */ 3598 }; 3599 3600 3601 /** 3602 * cpuset_css_alloc - Allocate a cpuset css 3603 * @parent_css: Parent css of the control group that the new cpuset will be 3604 * part of 3605 * Return: cpuset css on success, -ENOMEM on failure. 3606 * 3607 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return 3608 * top cpuset css otherwise. 3609 */ 3610 static struct cgroup_subsys_state * 3611 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 3612 { 3613 struct cpuset *cs; 3614 3615 if (!parent_css) 3616 return &top_cpuset.css; 3617 3618 cs = dup_or_alloc_cpuset(NULL); 3619 if (!cs) 3620 return ERR_PTR(-ENOMEM); 3621 3622 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3623 fmeter_init(&cs->fmeter); 3624 cs->relax_domain_level = -1; 3625 3626 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 3627 if (cpuset_v2()) 3628 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 3629 3630 return &cs->css; 3631 } 3632 3633 static int cpuset_css_online(struct cgroup_subsys_state *css) 3634 { 3635 struct cpuset *cs = css_cs(css); 3636 struct cpuset *parent = parent_cs(cs); 3637 struct cpuset *tmp_cs; 3638 struct cgroup_subsys_state *pos_css; 3639 3640 if (!parent) 3641 return 0; 3642 3643 cpuset_full_lock(); 3644 if (is_spread_page(parent)) 3645 set_bit(CS_SPREAD_PAGE, &cs->flags); 3646 if (is_spread_slab(parent)) 3647 set_bit(CS_SPREAD_SLAB, &cs->flags); 3648 /* 3649 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated 3650 */ 3651 if (cpuset_v2() && !is_sched_load_balance(parent)) 3652 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3653 3654 cpuset_inc(); 3655 3656 spin_lock_irq(&callback_lock); 3657 if (is_in_v2_mode()) { 3658 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 3659 cs->effective_mems = parent->effective_mems; 3660 } 3661 spin_unlock_irq(&callback_lock); 3662 3663 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 3664 goto out_unlock; 3665 3666 /* 3667 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 3668 * set. This flag handling is implemented in cgroup core for 3669 * historical reasons - the flag may be specified during mount. 3670 * 3671 * Currently, if any sibling cpusets have exclusive cpus or mem, we 3672 * refuse to clone the configuration - thereby refusing the task to 3673 * be entered, and as a result refusing the sys_unshare() or 3674 * clone() which initiated it. If this becomes a problem for some 3675 * users who wish to allow that scenario, then this could be 3676 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 3677 * (and likewise for mems) to the new cgroup. 3678 */ 3679 rcu_read_lock(); 3680 cpuset_for_each_child(tmp_cs, pos_css, parent) { 3681 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 3682 rcu_read_unlock(); 3683 goto out_unlock; 3684 } 3685 } 3686 rcu_read_unlock(); 3687 3688 spin_lock_irq(&callback_lock); 3689 cs->mems_allowed = parent->mems_allowed; 3690 cs->effective_mems = parent->mems_allowed; 3691 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 3692 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 3693 spin_unlock_irq(&callback_lock); 3694 out_unlock: 3695 cpuset_full_unlock(); 3696 return 0; 3697 } 3698 3699 /* 3700 * If the cpuset being removed has its flag 'sched_load_balance' 3701 * enabled, then simulate turning sched_load_balance off, which 3702 * will call rebuild_sched_domains_locked(). That is not needed 3703 * in the default hierarchy where only changes in partition 3704 * will cause repartitioning. 3705 */ 3706 static void cpuset_css_offline(struct cgroup_subsys_state *css) 3707 { 3708 struct cpuset *cs = css_cs(css); 3709 3710 cpuset_full_lock(); 3711 if (!cpuset_v2() && is_sched_load_balance(cs)) 3712 cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 3713 3714 cpuset_dec(); 3715 cpuset_full_unlock(); 3716 } 3717 3718 /* 3719 * If a dying cpuset has the 'cpus.partition' enabled, turn it off by 3720 * changing it back to member to free its exclusive CPUs back to the pool to 3721 * be used by other online cpusets. 3722 */ 3723 static void cpuset_css_killed(struct cgroup_subsys_state *css) 3724 { 3725 struct cpuset *cs = css_cs(css); 3726 3727 cpuset_full_lock(); 3728 /* Reset valid partition back to member */ 3729 if (is_partition_valid(cs)) 3730 update_prstate(cs, PRS_MEMBER); 3731 cpuset_full_unlock(); 3732 } 3733 3734 static void cpuset_css_free(struct cgroup_subsys_state *css) 3735 { 3736 struct cpuset *cs = css_cs(css); 3737 3738 free_cpuset(cs); 3739 } 3740 3741 static void cpuset_bind(struct cgroup_subsys_state *root_css) 3742 { 3743 mutex_lock(&cpuset_mutex); 3744 spin_lock_irq(&callback_lock); 3745 3746 if (is_in_v2_mode()) { 3747 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 3748 cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask); 3749 top_cpuset.mems_allowed = node_possible_map; 3750 } else { 3751 cpumask_copy(top_cpuset.cpus_allowed, 3752 top_cpuset.effective_cpus); 3753 top_cpuset.mems_allowed = top_cpuset.effective_mems; 3754 } 3755 3756 spin_unlock_irq(&callback_lock); 3757 mutex_unlock(&cpuset_mutex); 3758 } 3759 3760 /* 3761 * In case the child is cloned into a cpuset different from its parent, 3762 * additional checks are done to see if the move is allowed. 3763 */ 3764 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) 3765 { 3766 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3767 bool same_cs; 3768 int ret; 3769 3770 rcu_read_lock(); 3771 same_cs = (cs == task_cs(current)); 3772 rcu_read_unlock(); 3773 3774 if (same_cs) 3775 return 0; 3776 3777 lockdep_assert_held(&cgroup_mutex); 3778 mutex_lock(&cpuset_mutex); 3779 3780 /* Check to see if task is allowed in the cpuset */ 3781 ret = cpuset_can_attach_check(cs); 3782 if (ret) 3783 goto out_unlock; 3784 3785 ret = task_can_attach(task); 3786 if (ret) 3787 goto out_unlock; 3788 3789 ret = security_task_setscheduler(task); 3790 if (ret) 3791 goto out_unlock; 3792 3793 /* 3794 * Mark attach is in progress. This makes validate_change() fail 3795 * changes which zero cpus/mems_allowed. 3796 */ 3797 cs->attach_in_progress++; 3798 out_unlock: 3799 mutex_unlock(&cpuset_mutex); 3800 return ret; 3801 } 3802 3803 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) 3804 { 3805 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3806 bool same_cs; 3807 3808 rcu_read_lock(); 3809 same_cs = (cs == task_cs(current)); 3810 rcu_read_unlock(); 3811 3812 if (same_cs) 3813 return; 3814 3815 dec_attach_in_progress(cs); 3816 } 3817 3818 /* 3819 * Make sure the new task conform to the current state of its parent, 3820 * which could have been changed by cpuset just after it inherits the 3821 * state from the parent and before it sits on the cgroup's task list. 3822 */ 3823 static void cpuset_fork(struct task_struct *task) 3824 { 3825 struct cpuset *cs; 3826 bool same_cs; 3827 3828 rcu_read_lock(); 3829 cs = task_cs(task); 3830 same_cs = (cs == task_cs(current)); 3831 rcu_read_unlock(); 3832 3833 if (same_cs) { 3834 if (cs == &top_cpuset) 3835 return; 3836 3837 set_cpus_allowed_ptr(task, current->cpus_ptr); 3838 task->mems_allowed = current->mems_allowed; 3839 return; 3840 } 3841 3842 /* CLONE_INTO_CGROUP */ 3843 mutex_lock(&cpuset_mutex); 3844 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3845 cpuset_attach_task(cs, task); 3846 3847 dec_attach_in_progress_locked(cs); 3848 mutex_unlock(&cpuset_mutex); 3849 } 3850 3851 struct cgroup_subsys cpuset_cgrp_subsys = { 3852 .css_alloc = cpuset_css_alloc, 3853 .css_online = cpuset_css_online, 3854 .css_offline = cpuset_css_offline, 3855 .css_killed = cpuset_css_killed, 3856 .css_free = cpuset_css_free, 3857 .can_attach = cpuset_can_attach, 3858 .cancel_attach = cpuset_cancel_attach, 3859 .attach = cpuset_attach, 3860 .bind = cpuset_bind, 3861 .can_fork = cpuset_can_fork, 3862 .cancel_fork = cpuset_cancel_fork, 3863 .fork = cpuset_fork, 3864 #ifdef CONFIG_CPUSETS_V1 3865 .legacy_cftypes = cpuset1_files, 3866 #endif 3867 .dfl_cftypes = dfl_files, 3868 .early_init = true, 3869 .threaded = true, 3870 }; 3871 3872 /** 3873 * cpuset_init - initialize cpusets at system boot 3874 * 3875 * Description: Initialize top_cpuset 3876 **/ 3877 3878 int __init cpuset_init(void) 3879 { 3880 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 3881 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 3882 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL)); 3883 BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL)); 3884 BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL)); 3885 BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL)); 3886 3887 cpumask_setall(top_cpuset.cpus_allowed); 3888 nodes_setall(top_cpuset.mems_allowed); 3889 cpumask_setall(top_cpuset.effective_cpus); 3890 cpumask_setall(top_cpuset.effective_xcpus); 3891 cpumask_setall(top_cpuset.exclusive_cpus); 3892 nodes_setall(top_cpuset.effective_mems); 3893 3894 fmeter_init(&top_cpuset.fmeter); 3895 3896 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 3897 3898 have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN); 3899 if (have_boot_isolcpus) { 3900 BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL)); 3901 cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN)); 3902 cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus); 3903 } 3904 3905 return 0; 3906 } 3907 3908 static void 3909 hotplug_update_tasks(struct cpuset *cs, 3910 struct cpumask *new_cpus, nodemask_t *new_mems, 3911 bool cpus_updated, bool mems_updated) 3912 { 3913 /* A partition root is allowed to have empty effective cpus */ 3914 if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) 3915 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3916 if (nodes_empty(*new_mems)) 3917 *new_mems = parent_cs(cs)->effective_mems; 3918 3919 spin_lock_irq(&callback_lock); 3920 cpumask_copy(cs->effective_cpus, new_cpus); 3921 cs->effective_mems = *new_mems; 3922 spin_unlock_irq(&callback_lock); 3923 3924 if (cpus_updated) 3925 cpuset_update_tasks_cpumask(cs, new_cpus); 3926 if (mems_updated) 3927 cpuset_update_tasks_nodemask(cs); 3928 } 3929 3930 void cpuset_force_rebuild(void) 3931 { 3932 force_sd_rebuild = true; 3933 } 3934 3935 /** 3936 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3937 * @cs: cpuset in interest 3938 * @tmp: the tmpmasks structure pointer 3939 * 3940 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3941 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3942 * all its tasks are moved to the nearest ancestor with both resources. 3943 */ 3944 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3945 { 3946 static cpumask_t new_cpus; 3947 static nodemask_t new_mems; 3948 bool cpus_updated; 3949 bool mems_updated; 3950 bool remote; 3951 int partcmd = -1; 3952 struct cpuset *parent; 3953 retry: 3954 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3955 3956 mutex_lock(&cpuset_mutex); 3957 3958 /* 3959 * We have raced with task attaching. We wait until attaching 3960 * is finished, so we won't attach a task to an empty cpuset. 3961 */ 3962 if (cs->attach_in_progress) { 3963 mutex_unlock(&cpuset_mutex); 3964 goto retry; 3965 } 3966 3967 parent = parent_cs(cs); 3968 compute_effective_cpumask(&new_cpus, cs, parent); 3969 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3970 3971 if (!tmp || !cs->partition_root_state) 3972 goto update_tasks; 3973 3974 /* 3975 * Compute effective_cpus for valid partition root, may invalidate 3976 * child partition roots if necessary. 3977 */ 3978 remote = is_remote_partition(cs); 3979 if (remote || (is_partition_valid(cs) && is_partition_valid(parent))) 3980 compute_partition_effective_cpumask(cs, &new_cpus); 3981 3982 if (remote && (cpumask_empty(subpartitions_cpus) || 3983 (cpumask_empty(&new_cpus) && 3984 partition_is_populated(cs, NULL)))) { 3985 cs->prs_err = PERR_HOTPLUG; 3986 remote_partition_disable(cs, tmp); 3987 compute_effective_cpumask(&new_cpus, cs, parent); 3988 remote = false; 3989 } 3990 3991 /* 3992 * Force the partition to become invalid if either one of 3993 * the following conditions hold: 3994 * 1) empty effective cpus but not valid empty partition. 3995 * 2) parent is invalid or doesn't grant any cpus to child 3996 * partitions. 3997 * 3) subpartitions_cpus is empty. 3998 */ 3999 if (is_local_partition(cs) && 4000 (!is_partition_valid(parent) || 4001 tasks_nocpu_error(parent, cs, &new_cpus) || 4002 cpumask_empty(subpartitions_cpus))) 4003 partcmd = partcmd_invalidate; 4004 /* 4005 * On the other hand, an invalid partition root may be transitioned 4006 * back to a regular one with a non-empty effective xcpus. 4007 */ 4008 else if (is_partition_valid(parent) && is_partition_invalid(cs) && 4009 !cpumask_empty(cs->effective_xcpus)) 4010 partcmd = partcmd_update; 4011 4012 if (partcmd >= 0) { 4013 update_parent_effective_cpumask(cs, partcmd, NULL, tmp); 4014 if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) { 4015 compute_partition_effective_cpumask(cs, &new_cpus); 4016 cpuset_force_rebuild(); 4017 } 4018 } 4019 4020 update_tasks: 4021 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 4022 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 4023 if (!cpus_updated && !mems_updated) 4024 goto unlock; /* Hotplug doesn't affect this cpuset */ 4025 4026 if (mems_updated) 4027 check_insane_mems_config(&new_mems); 4028 4029 if (is_in_v2_mode()) 4030 hotplug_update_tasks(cs, &new_cpus, &new_mems, 4031 cpus_updated, mems_updated); 4032 else 4033 cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems, 4034 cpus_updated, mems_updated); 4035 4036 unlock: 4037 mutex_unlock(&cpuset_mutex); 4038 } 4039 4040 /** 4041 * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset 4042 * 4043 * This function is called after either CPU or memory configuration has 4044 * changed and updates cpuset accordingly. The top_cpuset is always 4045 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 4046 * order to make cpusets transparent (of no affect) on systems that are 4047 * actively using CPU hotplug but making no active use of cpusets. 4048 * 4049 * Non-root cpusets are only affected by offlining. If any CPUs or memory 4050 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 4051 * all descendants. 4052 * 4053 * Note that CPU offlining during suspend is ignored. We don't modify 4054 * cpusets across suspend/resume cycles at all. 4055 * 4056 * CPU / memory hotplug is handled synchronously. 4057 */ 4058 static void cpuset_handle_hotplug(void) 4059 { 4060 static cpumask_t new_cpus; 4061 static nodemask_t new_mems; 4062 bool cpus_updated, mems_updated; 4063 bool on_dfl = is_in_v2_mode(); 4064 struct tmpmasks tmp, *ptmp = NULL; 4065 4066 if (on_dfl && !alloc_tmpmasks(&tmp)) 4067 ptmp = &tmp; 4068 4069 lockdep_assert_cpus_held(); 4070 mutex_lock(&cpuset_mutex); 4071 4072 /* fetch the available cpus/mems and find out which changed how */ 4073 cpumask_copy(&new_cpus, cpu_active_mask); 4074 new_mems = node_states[N_MEMORY]; 4075 4076 /* 4077 * If subpartitions_cpus is populated, it is likely that the check 4078 * below will produce a false positive on cpus_updated when the cpu 4079 * list isn't changed. It is extra work, but it is better to be safe. 4080 */ 4081 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) || 4082 !cpumask_empty(subpartitions_cpus); 4083 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 4084 4085 /* For v1, synchronize cpus_allowed to cpu_active_mask */ 4086 if (cpus_updated) { 4087 cpuset_force_rebuild(); 4088 spin_lock_irq(&callback_lock); 4089 if (!on_dfl) 4090 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 4091 /* 4092 * Make sure that CPUs allocated to child partitions 4093 * do not show up in effective_cpus. If no CPU is left, 4094 * we clear the subpartitions_cpus & let the child partitions 4095 * fight for the CPUs again. 4096 */ 4097 if (!cpumask_empty(subpartitions_cpus)) { 4098 if (cpumask_subset(&new_cpus, subpartitions_cpus)) { 4099 cpumask_clear(subpartitions_cpus); 4100 } else { 4101 cpumask_andnot(&new_cpus, &new_cpus, 4102 subpartitions_cpus); 4103 } 4104 } 4105 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 4106 spin_unlock_irq(&callback_lock); 4107 /* we don't mess with cpumasks of tasks in top_cpuset */ 4108 } 4109 4110 /* synchronize mems_allowed to N_MEMORY */ 4111 if (mems_updated) { 4112 spin_lock_irq(&callback_lock); 4113 if (!on_dfl) 4114 top_cpuset.mems_allowed = new_mems; 4115 top_cpuset.effective_mems = new_mems; 4116 spin_unlock_irq(&callback_lock); 4117 cpuset_update_tasks_nodemask(&top_cpuset); 4118 } 4119 4120 mutex_unlock(&cpuset_mutex); 4121 4122 /* if cpus or mems changed, we need to propagate to descendants */ 4123 if (cpus_updated || mems_updated) { 4124 struct cpuset *cs; 4125 struct cgroup_subsys_state *pos_css; 4126 4127 rcu_read_lock(); 4128 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 4129 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 4130 continue; 4131 rcu_read_unlock(); 4132 4133 cpuset_hotplug_update_tasks(cs, ptmp); 4134 4135 rcu_read_lock(); 4136 css_put(&cs->css); 4137 } 4138 rcu_read_unlock(); 4139 } 4140 4141 /* rebuild sched domains if necessary */ 4142 if (force_sd_rebuild) 4143 rebuild_sched_domains_cpuslocked(); 4144 4145 free_tmpmasks(ptmp); 4146 } 4147 4148 void cpuset_update_active_cpus(void) 4149 { 4150 /* 4151 * We're inside cpu hotplug critical region which usually nests 4152 * inside cgroup synchronization. Bounce actual hotplug processing 4153 * to a work item to avoid reverse locking order. 4154 */ 4155 cpuset_handle_hotplug(); 4156 } 4157 4158 /* 4159 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 4160 * Call this routine anytime after node_states[N_MEMORY] changes. 4161 * See cpuset_update_active_cpus() for CPU hotplug handling. 4162 */ 4163 static int cpuset_track_online_nodes(struct notifier_block *self, 4164 unsigned long action, void *arg) 4165 { 4166 cpuset_handle_hotplug(); 4167 return NOTIFY_OK; 4168 } 4169 4170 /** 4171 * cpuset_init_smp - initialize cpus_allowed 4172 * 4173 * Description: Finish top cpuset after cpu, node maps are initialized 4174 */ 4175 void __init cpuset_init_smp(void) 4176 { 4177 /* 4178 * cpus_allowd/mems_allowed set to v2 values in the initial 4179 * cpuset_bind() call will be reset to v1 values in another 4180 * cpuset_bind() call when v1 cpuset is mounted. 4181 */ 4182 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 4183 4184 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 4185 top_cpuset.effective_mems = node_states[N_MEMORY]; 4186 4187 hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); 4188 4189 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 4190 BUG_ON(!cpuset_migrate_mm_wq); 4191 } 4192 4193 /* 4194 * Return cpus_allowed mask from a task's cpuset. 4195 */ 4196 static void __cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) 4197 { 4198 struct cpuset *cs; 4199 4200 cs = task_cs(tsk); 4201 if (cs != &top_cpuset) 4202 guarantee_active_cpus(tsk, pmask); 4203 /* 4204 * Tasks in the top cpuset won't get update to their cpumasks 4205 * when a hotplug online/offline event happens. So we include all 4206 * offline cpus in the allowed cpu list. 4207 */ 4208 if ((cs == &top_cpuset) || cpumask_empty(pmask)) { 4209 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 4210 4211 /* 4212 * We first exclude cpus allocated to partitions. If there is no 4213 * allowable online cpu left, we fall back to all possible cpus. 4214 */ 4215 cpumask_andnot(pmask, possible_mask, subpartitions_cpus); 4216 if (!cpumask_intersects(pmask, cpu_active_mask)) 4217 cpumask_copy(pmask, possible_mask); 4218 } 4219 } 4220 4221 /** 4222 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a task's cpuset. 4223 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 4224 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 4225 * 4226 * Similir to cpuset_cpus_allowed() except that the caller must have acquired 4227 * cpuset_mutex. 4228 */ 4229 void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) 4230 { 4231 lockdep_assert_held(&cpuset_mutex); 4232 __cpuset_cpus_allowed_locked(tsk, pmask); 4233 } 4234 4235 /** 4236 * cpuset_cpus_allowed - return cpus_allowed mask from a task's cpuset. 4237 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 4238 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 4239 * 4240 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 4241 * attached to the specified @tsk. Guaranteed to return some non-empty 4242 * subset of cpu_active_mask, even if this means going outside the 4243 * tasks cpuset, except when the task is in the top cpuset. 4244 **/ 4245 4246 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 4247 { 4248 unsigned long flags; 4249 4250 spin_lock_irqsave(&callback_lock, flags); 4251 __cpuset_cpus_allowed_locked(tsk, pmask); 4252 spin_unlock_irqrestore(&callback_lock, flags); 4253 } 4254 4255 /** 4256 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 4257 * @tsk: pointer to task_struct with which the scheduler is struggling 4258 * 4259 * Description: In the case that the scheduler cannot find an allowed cpu in 4260 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 4261 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 4262 * which will not contain a sane cpumask during cases such as cpu hotplugging. 4263 * This is the absolute last resort for the scheduler and it is only used if 4264 * _every_ other avenue has been traveled. 4265 * 4266 * Returns true if the affinity of @tsk was changed, false otherwise. 4267 **/ 4268 4269 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 4270 { 4271 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 4272 const struct cpumask *cs_mask; 4273 bool changed = false; 4274 4275 rcu_read_lock(); 4276 cs_mask = task_cs(tsk)->cpus_allowed; 4277 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 4278 set_cpus_allowed_force(tsk, cs_mask); 4279 changed = true; 4280 } 4281 rcu_read_unlock(); 4282 4283 /* 4284 * We own tsk->cpus_allowed, nobody can change it under us. 4285 * 4286 * But we used cs && cs->cpus_allowed lockless and thus can 4287 * race with cgroup_attach_task() or update_cpumask() and get 4288 * the wrong tsk->cpus_allowed. However, both cases imply the 4289 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 4290 * which takes task_rq_lock(). 4291 * 4292 * If we are called after it dropped the lock we must see all 4293 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 4294 * set any mask even if it is not right from task_cs() pov, 4295 * the pending set_cpus_allowed_ptr() will fix things. 4296 * 4297 * select_fallback_rq() will fix things ups and set cpu_possible_mask 4298 * if required. 4299 */ 4300 return changed; 4301 } 4302 4303 void __init cpuset_init_current_mems_allowed(void) 4304 { 4305 nodes_setall(current->mems_allowed); 4306 } 4307 4308 /** 4309 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 4310 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 4311 * 4312 * Description: Returns the nodemask_t mems_allowed of the cpuset 4313 * attached to the specified @tsk. Guaranteed to return some non-empty 4314 * subset of node_states[N_MEMORY], even if this means going outside the 4315 * tasks cpuset. 4316 **/ 4317 4318 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 4319 { 4320 nodemask_t mask; 4321 unsigned long flags; 4322 4323 spin_lock_irqsave(&callback_lock, flags); 4324 guarantee_online_mems(task_cs(tsk), &mask); 4325 spin_unlock_irqrestore(&callback_lock, flags); 4326 4327 return mask; 4328 } 4329 4330 /** 4331 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 4332 * @nodemask: the nodemask to be checked 4333 * 4334 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 4335 */ 4336 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 4337 { 4338 return nodes_intersects(*nodemask, current->mems_allowed); 4339 } 4340 4341 /* 4342 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 4343 * mem_hardwall ancestor to the specified cpuset. Call holding 4344 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 4345 * (an unusual configuration), then returns the root cpuset. 4346 */ 4347 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 4348 { 4349 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 4350 cs = parent_cs(cs); 4351 return cs; 4352 } 4353 4354 /* 4355 * cpuset_current_node_allowed - Can current task allocate on a memory node? 4356 * @node: is this an allowed node? 4357 * @gfp_mask: memory allocation flags 4358 * 4359 * If we're in interrupt, yes, we can always allocate. If @node is set in 4360 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 4361 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 4362 * yes. If current has access to memory reserves as an oom victim, yes. 4363 * Otherwise, no. 4364 * 4365 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 4366 * and do not allow allocations outside the current tasks cpuset 4367 * unless the task has been OOM killed. 4368 * GFP_KERNEL allocations are not so marked, so can escape to the 4369 * nearest enclosing hardwalled ancestor cpuset. 4370 * 4371 * Scanning up parent cpusets requires callback_lock. The 4372 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 4373 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 4374 * current tasks mems_allowed came up empty on the first pass over 4375 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 4376 * cpuset are short of memory, might require taking the callback_lock. 4377 * 4378 * The first call here from mm/page_alloc:get_page_from_freelist() 4379 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 4380 * so no allocation on a node outside the cpuset is allowed (unless 4381 * in interrupt, of course). 4382 * 4383 * The second pass through get_page_from_freelist() doesn't even call 4384 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 4385 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 4386 * in alloc_flags. That logic and the checks below have the combined 4387 * affect that: 4388 * in_interrupt - any node ok (current task context irrelevant) 4389 * GFP_ATOMIC - any node ok 4390 * tsk_is_oom_victim - any node ok 4391 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 4392 * GFP_USER - only nodes in current tasks mems allowed ok. 4393 */ 4394 bool cpuset_current_node_allowed(int node, gfp_t gfp_mask) 4395 { 4396 struct cpuset *cs; /* current cpuset ancestors */ 4397 bool allowed; /* is allocation in zone z allowed? */ 4398 unsigned long flags; 4399 4400 if (in_interrupt()) 4401 return true; 4402 if (node_isset(node, current->mems_allowed)) 4403 return true; 4404 /* 4405 * Allow tasks that have access to memory reserves because they have 4406 * been OOM killed to get memory anywhere. 4407 */ 4408 if (unlikely(tsk_is_oom_victim(current))) 4409 return true; 4410 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 4411 return false; 4412 4413 if (current->flags & PF_EXITING) /* Let dying task have memory */ 4414 return true; 4415 4416 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 4417 spin_lock_irqsave(&callback_lock, flags); 4418 4419 cs = nearest_hardwall_ancestor(task_cs(current)); 4420 allowed = node_isset(node, cs->mems_allowed); 4421 4422 spin_unlock_irqrestore(&callback_lock, flags); 4423 return allowed; 4424 } 4425 4426 /** 4427 * cpuset_nodes_allowed - return effective_mems mask from a cgroup cpuset. 4428 * @cgroup: pointer to struct cgroup. 4429 * @mask: pointer to struct nodemask_t to be returned. 4430 * 4431 * Returns effective_mems mask from a cgroup cpuset if it is cgroup v2 and 4432 * has cpuset subsys. Otherwise, returns node_states[N_MEMORY]. 4433 * 4434 * This function intentionally avoids taking the cpuset_mutex or callback_lock 4435 * when accessing effective_mems. This is because the obtained effective_mems 4436 * is stale immediately after the query anyway (e.g., effective_mems is updated 4437 * immediately after releasing the lock but before returning). 4438 * 4439 * As a result, returned @mask may be empty because cs->effective_mems can be 4440 * rebound during this call. Besides, nodes in @mask are not guaranteed to be 4441 * online due to hot plugins. Callers should check the mask for validity on 4442 * return based on its subsequent use. 4443 **/ 4444 void cpuset_nodes_allowed(struct cgroup *cgroup, nodemask_t *mask) 4445 { 4446 struct cgroup_subsys_state *css; 4447 struct cpuset *cs; 4448 4449 /* 4450 * In v1, mem_cgroup and cpuset are unlikely in the same hierarchy 4451 * and mems_allowed is likely to be empty even if we could get to it, 4452 * so return directly to avoid taking a global lock on the empty check. 4453 */ 4454 if (!cgroup || !cpuset_v2()) { 4455 nodes_copy(*mask, node_states[N_MEMORY]); 4456 return; 4457 } 4458 4459 css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys); 4460 if (!css) { 4461 nodes_copy(*mask, node_states[N_MEMORY]); 4462 return; 4463 } 4464 4465 /* 4466 * The reference taken via cgroup_get_e_css is sufficient to 4467 * protect css, but it does not imply safe accesses to effective_mems. 4468 * 4469 * Normally, accessing effective_mems would require the cpuset_mutex 4470 * or callback_lock - but the correctness of this information is stale 4471 * immediately after the query anyway. We do not acquire the lock 4472 * during this process to save lock contention in exchange for racing 4473 * against mems_allowed rebinds. 4474 */ 4475 cs = container_of(css, struct cpuset, css); 4476 nodes_copy(*mask, cs->effective_mems); 4477 css_put(css); 4478 } 4479 4480 /** 4481 * cpuset_spread_node() - On which node to begin search for a page 4482 * @rotor: round robin rotor 4483 * 4484 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 4485 * tasks in a cpuset with is_spread_page or is_spread_slab set), 4486 * and if the memory allocation used cpuset_mem_spread_node() 4487 * to determine on which node to start looking, as it will for 4488 * certain page cache or slab cache pages such as used for file 4489 * system buffers and inode caches, then instead of starting on the 4490 * local node to look for a free page, rather spread the starting 4491 * node around the tasks mems_allowed nodes. 4492 * 4493 * We don't have to worry about the returned node being offline 4494 * because "it can't happen", and even if it did, it would be ok. 4495 * 4496 * The routines calling guarantee_online_mems() are careful to 4497 * only set nodes in task->mems_allowed that are online. So it 4498 * should not be possible for the following code to return an 4499 * offline node. But if it did, that would be ok, as this routine 4500 * is not returning the node where the allocation must be, only 4501 * the node where the search should start. The zonelist passed to 4502 * __alloc_pages() will include all nodes. If the slab allocator 4503 * is passed an offline node, it will fall back to the local node. 4504 * See kmem_cache_alloc_node(). 4505 */ 4506 static int cpuset_spread_node(int *rotor) 4507 { 4508 return *rotor = next_node_in(*rotor, current->mems_allowed); 4509 } 4510 4511 /** 4512 * cpuset_mem_spread_node() - On which node to begin search for a file page 4513 */ 4514 int cpuset_mem_spread_node(void) 4515 { 4516 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 4517 current->cpuset_mem_spread_rotor = 4518 node_random(¤t->mems_allowed); 4519 4520 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 4521 } 4522 4523 /** 4524 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 4525 * @tsk1: pointer to task_struct of some task. 4526 * @tsk2: pointer to task_struct of some other task. 4527 * 4528 * Description: Return true if @tsk1's mems_allowed intersects the 4529 * mems_allowed of @tsk2. Used by the OOM killer to determine if 4530 * one of the task's memory usage might impact the memory available 4531 * to the other. 4532 **/ 4533 4534 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 4535 const struct task_struct *tsk2) 4536 { 4537 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 4538 } 4539 4540 /** 4541 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 4542 * 4543 * Description: Prints current's name, cpuset name, and cached copy of its 4544 * mems_allowed to the kernel log. 4545 */ 4546 void cpuset_print_current_mems_allowed(void) 4547 { 4548 struct cgroup *cgrp; 4549 4550 rcu_read_lock(); 4551 4552 cgrp = task_cs(current)->css.cgroup; 4553 pr_cont(",cpuset="); 4554 pr_cont_cgroup_name(cgrp); 4555 pr_cont(",mems_allowed=%*pbl", 4556 nodemask_pr_args(¤t->mems_allowed)); 4557 4558 rcu_read_unlock(); 4559 } 4560 4561 /* Display task mems_allowed in /proc/<pid>/status file. */ 4562 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 4563 { 4564 seq_printf(m, "Mems_allowed:\t%*pb\n", 4565 nodemask_pr_args(&task->mems_allowed)); 4566 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 4567 nodemask_pr_args(&task->mems_allowed)); 4568 } 4569