1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/list.h> 37 #include <linux/mempolicy.h> 38 #include <linux/mm.h> 39 #include <linux/memory.h> 40 #include <linux/export.h> 41 #include <linux/mount.h> 42 #include <linux/fs_context.h> 43 #include <linux/namei.h> 44 #include <linux/pagemap.h> 45 #include <linux/proc_fs.h> 46 #include <linux/rcupdate.h> 47 #include <linux/sched.h> 48 #include <linux/sched/deadline.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sched/task.h> 51 #include <linux/seq_file.h> 52 #include <linux/security.h> 53 #include <linux/slab.h> 54 #include <linux/spinlock.h> 55 #include <linux/stat.h> 56 #include <linux/string.h> 57 #include <linux/time.h> 58 #include <linux/time64.h> 59 #include <linux/backing-dev.h> 60 #include <linux/sort.h> 61 #include <linux/oom.h> 62 #include <linux/sched/isolation.h> 63 #include <linux/uaccess.h> 64 #include <linux/atomic.h> 65 #include <linux/mutex.h> 66 #include <linux/cgroup.h> 67 #include <linux/wait.h> 68 69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 71 72 /* 73 * There could be abnormal cpuset configurations for cpu or memory 74 * node binding, add this key to provide a quick low-cost judgement 75 * of the situation. 76 */ 77 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 78 79 /* See "Frequency meter" comments, below. */ 80 81 struct fmeter { 82 int cnt; /* unprocessed events count */ 83 int val; /* most recent output value */ 84 time64_t time; /* clock (secs) when val computed */ 85 spinlock_t lock; /* guards read or write of above */ 86 }; 87 88 struct cpuset { 89 struct cgroup_subsys_state css; 90 91 unsigned long flags; /* "unsigned long" so bitops work */ 92 93 /* 94 * On default hierarchy: 95 * 96 * The user-configured masks can only be changed by writing to 97 * cpuset.cpus and cpuset.mems, and won't be limited by the 98 * parent masks. 99 * 100 * The effective masks is the real masks that apply to the tasks 101 * in the cpuset. They may be changed if the configured masks are 102 * changed or hotplug happens. 103 * 104 * effective_mask == configured_mask & parent's effective_mask, 105 * and if it ends up empty, it will inherit the parent's mask. 106 * 107 * 108 * On legacy hierarchy: 109 * 110 * The user-configured masks are always the same with effective masks. 111 */ 112 113 /* user-configured CPUs and Memory Nodes allow to tasks */ 114 cpumask_var_t cpus_allowed; 115 nodemask_t mems_allowed; 116 117 /* effective CPUs and Memory Nodes allow to tasks */ 118 cpumask_var_t effective_cpus; 119 nodemask_t effective_mems; 120 121 /* 122 * CPUs allocated to child sub-partitions (default hierarchy only) 123 * - CPUs granted by the parent = effective_cpus U subparts_cpus 124 * - effective_cpus and subparts_cpus are mutually exclusive. 125 * 126 * effective_cpus contains only onlined CPUs, but subparts_cpus 127 * may have offlined ones. 128 */ 129 cpumask_var_t subparts_cpus; 130 131 /* 132 * This is old Memory Nodes tasks took on. 133 * 134 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 135 * - A new cpuset's old_mems_allowed is initialized when some 136 * task is moved into it. 137 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 138 * cpuset.mems_allowed and have tasks' nodemask updated, and 139 * then old_mems_allowed is updated to mems_allowed. 140 */ 141 nodemask_t old_mems_allowed; 142 143 struct fmeter fmeter; /* memory_pressure filter */ 144 145 /* 146 * Tasks are being attached to this cpuset. Used to prevent 147 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 148 */ 149 int attach_in_progress; 150 151 /* partition number for rebuild_sched_domains() */ 152 int pn; 153 154 /* for custom sched domain */ 155 int relax_domain_level; 156 157 /* number of CPUs in subparts_cpus */ 158 int nr_subparts_cpus; 159 160 /* partition root state */ 161 int partition_root_state; 162 163 /* 164 * Default hierarchy only: 165 * use_parent_ecpus - set if using parent's effective_cpus 166 * child_ecpus_count - # of children with use_parent_ecpus set 167 */ 168 int use_parent_ecpus; 169 int child_ecpus_count; 170 171 /* Handle for cpuset.cpus.partition */ 172 struct cgroup_file partition_file; 173 }; 174 175 /* 176 * Partition root states: 177 * 178 * 0 - not a partition root 179 * 180 * 1 - partition root 181 * 182 * -1 - invalid partition root 183 * None of the cpus in cpus_allowed can be put into the parent's 184 * subparts_cpus. In this case, the cpuset is not a real partition 185 * root anymore. However, the CPU_EXCLUSIVE bit will still be set 186 * and the cpuset can be restored back to a partition root if the 187 * parent cpuset can give more CPUs back to this child cpuset. 188 */ 189 #define PRS_DISABLED 0 190 #define PRS_ENABLED 1 191 #define PRS_ERROR -1 192 193 /* 194 * Temporary cpumasks for working with partitions that are passed among 195 * functions to avoid memory allocation in inner functions. 196 */ 197 struct tmpmasks { 198 cpumask_var_t addmask, delmask; /* For partition root */ 199 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 200 }; 201 202 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 203 { 204 return css ? container_of(css, struct cpuset, css) : NULL; 205 } 206 207 /* Retrieve the cpuset for a task */ 208 static inline struct cpuset *task_cs(struct task_struct *task) 209 { 210 return css_cs(task_css(task, cpuset_cgrp_id)); 211 } 212 213 static inline struct cpuset *parent_cs(struct cpuset *cs) 214 { 215 return css_cs(cs->css.parent); 216 } 217 218 /* bits in struct cpuset flags field */ 219 typedef enum { 220 CS_ONLINE, 221 CS_CPU_EXCLUSIVE, 222 CS_MEM_EXCLUSIVE, 223 CS_MEM_HARDWALL, 224 CS_MEMORY_MIGRATE, 225 CS_SCHED_LOAD_BALANCE, 226 CS_SPREAD_PAGE, 227 CS_SPREAD_SLAB, 228 } cpuset_flagbits_t; 229 230 /* convenient tests for these bits */ 231 static inline bool is_cpuset_online(struct cpuset *cs) 232 { 233 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 234 } 235 236 static inline int is_cpu_exclusive(const struct cpuset *cs) 237 { 238 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 239 } 240 241 static inline int is_mem_exclusive(const struct cpuset *cs) 242 { 243 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 244 } 245 246 static inline int is_mem_hardwall(const struct cpuset *cs) 247 { 248 return test_bit(CS_MEM_HARDWALL, &cs->flags); 249 } 250 251 static inline int is_sched_load_balance(const struct cpuset *cs) 252 { 253 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 254 } 255 256 static inline int is_memory_migrate(const struct cpuset *cs) 257 { 258 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 259 } 260 261 static inline int is_spread_page(const struct cpuset *cs) 262 { 263 return test_bit(CS_SPREAD_PAGE, &cs->flags); 264 } 265 266 static inline int is_spread_slab(const struct cpuset *cs) 267 { 268 return test_bit(CS_SPREAD_SLAB, &cs->flags); 269 } 270 271 static inline int is_partition_root(const struct cpuset *cs) 272 { 273 return cs->partition_root_state > 0; 274 } 275 276 /* 277 * Send notification event of whenever partition_root_state changes. 278 */ 279 static inline void notify_partition_change(struct cpuset *cs, 280 int old_prs, int new_prs) 281 { 282 if (old_prs != new_prs) 283 cgroup_file_notify(&cs->partition_file); 284 } 285 286 static struct cpuset top_cpuset = { 287 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 288 (1 << CS_MEM_EXCLUSIVE)), 289 .partition_root_state = PRS_ENABLED, 290 }; 291 292 /** 293 * cpuset_for_each_child - traverse online children of a cpuset 294 * @child_cs: loop cursor pointing to the current child 295 * @pos_css: used for iteration 296 * @parent_cs: target cpuset to walk children of 297 * 298 * Walk @child_cs through the online children of @parent_cs. Must be used 299 * with RCU read locked. 300 */ 301 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 302 css_for_each_child((pos_css), &(parent_cs)->css) \ 303 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 304 305 /** 306 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 307 * @des_cs: loop cursor pointing to the current descendant 308 * @pos_css: used for iteration 309 * @root_cs: target cpuset to walk ancestor of 310 * 311 * Walk @des_cs through the online descendants of @root_cs. Must be used 312 * with RCU read locked. The caller may modify @pos_css by calling 313 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 314 * iteration and the first node to be visited. 315 */ 316 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 317 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 318 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 319 320 /* 321 * There are two global locks guarding cpuset structures - cpuset_rwsem and 322 * callback_lock. We also require taking task_lock() when dereferencing a 323 * task's cpuset pointer. See "The task_lock() exception", at the end of this 324 * comment. The cpuset code uses only cpuset_rwsem write lock. Other 325 * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to 326 * prevent change to cpuset structures. 327 * 328 * A task must hold both locks to modify cpusets. If a task holds 329 * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it 330 * is the only task able to also acquire callback_lock and be able to 331 * modify cpusets. It can perform various checks on the cpuset structure 332 * first, knowing nothing will change. It can also allocate memory while 333 * just holding cpuset_rwsem. While it is performing these checks, various 334 * callback routines can briefly acquire callback_lock to query cpusets. 335 * Once it is ready to make the changes, it takes callback_lock, blocking 336 * everyone else. 337 * 338 * Calls to the kernel memory allocator can not be made while holding 339 * callback_lock, as that would risk double tripping on callback_lock 340 * from one of the callbacks into the cpuset code from within 341 * __alloc_pages(). 342 * 343 * If a task is only holding callback_lock, then it has read-only 344 * access to cpusets. 345 * 346 * Now, the task_struct fields mems_allowed and mempolicy may be changed 347 * by other task, we use alloc_lock in the task_struct fields to protect 348 * them. 349 * 350 * The cpuset_common_file_read() handlers only hold callback_lock across 351 * small pieces of code, such as when reading out possibly multi-word 352 * cpumasks and nodemasks. 353 * 354 * Accessing a task's cpuset should be done in accordance with the 355 * guidelines for accessing subsystem state in kernel/cgroup.c 356 */ 357 358 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem); 359 360 void cpuset_read_lock(void) 361 { 362 percpu_down_read(&cpuset_rwsem); 363 } 364 365 void cpuset_read_unlock(void) 366 { 367 percpu_up_read(&cpuset_rwsem); 368 } 369 370 static DEFINE_SPINLOCK(callback_lock); 371 372 static struct workqueue_struct *cpuset_migrate_mm_wq; 373 374 /* 375 * CPU / memory hotplug is handled asynchronously. 376 */ 377 static void cpuset_hotplug_workfn(struct work_struct *work); 378 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 379 380 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 381 382 static inline void check_insane_mems_config(nodemask_t *nodes) 383 { 384 if (!cpusets_insane_config() && 385 movable_only_nodes(nodes)) { 386 static_branch_enable(&cpusets_insane_config_key); 387 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 388 "Cpuset allocations might fail even with a lot of memory available.\n", 389 nodemask_pr_args(nodes)); 390 } 391 } 392 393 /* 394 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 395 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 396 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 397 * With v2 behavior, "cpus" and "mems" are always what the users have 398 * requested and won't be changed by hotplug events. Only the effective 399 * cpus or mems will be affected. 400 */ 401 static inline bool is_in_v2_mode(void) 402 { 403 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 404 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 405 } 406 407 /* 408 * Return in pmask the portion of a task's cpusets's cpus_allowed that 409 * are online and are capable of running the task. If none are found, 410 * walk up the cpuset hierarchy until we find one that does have some 411 * appropriate cpus. 412 * 413 * One way or another, we guarantee to return some non-empty subset 414 * of cpu_online_mask. 415 * 416 * Call with callback_lock or cpuset_rwsem held. 417 */ 418 static void guarantee_online_cpus(struct task_struct *tsk, 419 struct cpumask *pmask) 420 { 421 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 422 struct cpuset *cs; 423 424 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) 425 cpumask_copy(pmask, cpu_online_mask); 426 427 rcu_read_lock(); 428 cs = task_cs(tsk); 429 430 while (!cpumask_intersects(cs->effective_cpus, pmask)) { 431 cs = parent_cs(cs); 432 if (unlikely(!cs)) { 433 /* 434 * The top cpuset doesn't have any online cpu as a 435 * consequence of a race between cpuset_hotplug_work 436 * and cpu hotplug notifier. But we know the top 437 * cpuset's effective_cpus is on its way to be 438 * identical to cpu_online_mask. 439 */ 440 goto out_unlock; 441 } 442 } 443 cpumask_and(pmask, pmask, cs->effective_cpus); 444 445 out_unlock: 446 rcu_read_unlock(); 447 } 448 449 /* 450 * Return in *pmask the portion of a cpusets's mems_allowed that 451 * are online, with memory. If none are online with memory, walk 452 * up the cpuset hierarchy until we find one that does have some 453 * online mems. The top cpuset always has some mems online. 454 * 455 * One way or another, we guarantee to return some non-empty subset 456 * of node_states[N_MEMORY]. 457 * 458 * Call with callback_lock or cpuset_rwsem held. 459 */ 460 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 461 { 462 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 463 cs = parent_cs(cs); 464 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 465 } 466 467 /* 468 * update task's spread flag if cpuset's page/slab spread flag is set 469 * 470 * Call with callback_lock or cpuset_rwsem held. 471 */ 472 static void cpuset_update_task_spread_flag(struct cpuset *cs, 473 struct task_struct *tsk) 474 { 475 if (is_spread_page(cs)) 476 task_set_spread_page(tsk); 477 else 478 task_clear_spread_page(tsk); 479 480 if (is_spread_slab(cs)) 481 task_set_spread_slab(tsk); 482 else 483 task_clear_spread_slab(tsk); 484 } 485 486 /* 487 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 488 * 489 * One cpuset is a subset of another if all its allowed CPUs and 490 * Memory Nodes are a subset of the other, and its exclusive flags 491 * are only set if the other's are set. Call holding cpuset_rwsem. 492 */ 493 494 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 495 { 496 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 497 nodes_subset(p->mems_allowed, q->mems_allowed) && 498 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 499 is_mem_exclusive(p) <= is_mem_exclusive(q); 500 } 501 502 /** 503 * alloc_cpumasks - allocate three cpumasks for cpuset 504 * @cs: the cpuset that have cpumasks to be allocated. 505 * @tmp: the tmpmasks structure pointer 506 * Return: 0 if successful, -ENOMEM otherwise. 507 * 508 * Only one of the two input arguments should be non-NULL. 509 */ 510 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 511 { 512 cpumask_var_t *pmask1, *pmask2, *pmask3; 513 514 if (cs) { 515 pmask1 = &cs->cpus_allowed; 516 pmask2 = &cs->effective_cpus; 517 pmask3 = &cs->subparts_cpus; 518 } else { 519 pmask1 = &tmp->new_cpus; 520 pmask2 = &tmp->addmask; 521 pmask3 = &tmp->delmask; 522 } 523 524 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 525 return -ENOMEM; 526 527 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 528 goto free_one; 529 530 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 531 goto free_two; 532 533 return 0; 534 535 free_two: 536 free_cpumask_var(*pmask2); 537 free_one: 538 free_cpumask_var(*pmask1); 539 return -ENOMEM; 540 } 541 542 /** 543 * free_cpumasks - free cpumasks in a tmpmasks structure 544 * @cs: the cpuset that have cpumasks to be free. 545 * @tmp: the tmpmasks structure pointer 546 */ 547 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 548 { 549 if (cs) { 550 free_cpumask_var(cs->cpus_allowed); 551 free_cpumask_var(cs->effective_cpus); 552 free_cpumask_var(cs->subparts_cpus); 553 } 554 if (tmp) { 555 free_cpumask_var(tmp->new_cpus); 556 free_cpumask_var(tmp->addmask); 557 free_cpumask_var(tmp->delmask); 558 } 559 } 560 561 /** 562 * alloc_trial_cpuset - allocate a trial cpuset 563 * @cs: the cpuset that the trial cpuset duplicates 564 */ 565 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 566 { 567 struct cpuset *trial; 568 569 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 570 if (!trial) 571 return NULL; 572 573 if (alloc_cpumasks(trial, NULL)) { 574 kfree(trial); 575 return NULL; 576 } 577 578 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 579 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 580 return trial; 581 } 582 583 /** 584 * free_cpuset - free the cpuset 585 * @cs: the cpuset to be freed 586 */ 587 static inline void free_cpuset(struct cpuset *cs) 588 { 589 free_cpumasks(cs, NULL); 590 kfree(cs); 591 } 592 593 /* 594 * validate_change() - Used to validate that any proposed cpuset change 595 * follows the structural rules for cpusets. 596 * 597 * If we replaced the flag and mask values of the current cpuset 598 * (cur) with those values in the trial cpuset (trial), would 599 * our various subset and exclusive rules still be valid? Presumes 600 * cpuset_rwsem held. 601 * 602 * 'cur' is the address of an actual, in-use cpuset. Operations 603 * such as list traversal that depend on the actual address of the 604 * cpuset in the list must use cur below, not trial. 605 * 606 * 'trial' is the address of bulk structure copy of cur, with 607 * perhaps one or more of the fields cpus_allowed, mems_allowed, 608 * or flags changed to new, trial values. 609 * 610 * Return 0 if valid, -errno if not. 611 */ 612 613 static int validate_change(struct cpuset *cur, struct cpuset *trial) 614 { 615 struct cgroup_subsys_state *css; 616 struct cpuset *c, *par; 617 int ret; 618 619 rcu_read_lock(); 620 621 /* Each of our child cpusets must be a subset of us */ 622 ret = -EBUSY; 623 cpuset_for_each_child(c, css, cur) 624 if (!is_cpuset_subset(c, trial)) 625 goto out; 626 627 /* Remaining checks don't apply to root cpuset */ 628 ret = 0; 629 if (cur == &top_cpuset) 630 goto out; 631 632 par = parent_cs(cur); 633 634 /* On legacy hierarchy, we must be a subset of our parent cpuset. */ 635 ret = -EACCES; 636 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par)) 637 goto out; 638 639 /* 640 * If either I or some sibling (!= me) is exclusive, we can't 641 * overlap 642 */ 643 ret = -EINVAL; 644 cpuset_for_each_child(c, css, par) { 645 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 646 c != cur && 647 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 648 goto out; 649 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 650 c != cur && 651 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 652 goto out; 653 } 654 655 /* 656 * Cpusets with tasks - existing or newly being attached - can't 657 * be changed to have empty cpus_allowed or mems_allowed. 658 */ 659 ret = -ENOSPC; 660 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 661 if (!cpumask_empty(cur->cpus_allowed) && 662 cpumask_empty(trial->cpus_allowed)) 663 goto out; 664 if (!nodes_empty(cur->mems_allowed) && 665 nodes_empty(trial->mems_allowed)) 666 goto out; 667 } 668 669 /* 670 * We can't shrink if we won't have enough room for SCHED_DEADLINE 671 * tasks. 672 */ 673 ret = -EBUSY; 674 if (is_cpu_exclusive(cur) && 675 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 676 trial->cpus_allowed)) 677 goto out; 678 679 ret = 0; 680 out: 681 rcu_read_unlock(); 682 return ret; 683 } 684 685 #ifdef CONFIG_SMP 686 /* 687 * Helper routine for generate_sched_domains(). 688 * Do cpusets a, b have overlapping effective cpus_allowed masks? 689 */ 690 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 691 { 692 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 693 } 694 695 static void 696 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 697 { 698 if (dattr->relax_domain_level < c->relax_domain_level) 699 dattr->relax_domain_level = c->relax_domain_level; 700 return; 701 } 702 703 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 704 struct cpuset *root_cs) 705 { 706 struct cpuset *cp; 707 struct cgroup_subsys_state *pos_css; 708 709 rcu_read_lock(); 710 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 711 /* skip the whole subtree if @cp doesn't have any CPU */ 712 if (cpumask_empty(cp->cpus_allowed)) { 713 pos_css = css_rightmost_descendant(pos_css); 714 continue; 715 } 716 717 if (is_sched_load_balance(cp)) 718 update_domain_attr(dattr, cp); 719 } 720 rcu_read_unlock(); 721 } 722 723 /* Must be called with cpuset_rwsem held. */ 724 static inline int nr_cpusets(void) 725 { 726 /* jump label reference count + the top-level cpuset */ 727 return static_key_count(&cpusets_enabled_key.key) + 1; 728 } 729 730 /* 731 * generate_sched_domains() 732 * 733 * This function builds a partial partition of the systems CPUs 734 * A 'partial partition' is a set of non-overlapping subsets whose 735 * union is a subset of that set. 736 * The output of this function needs to be passed to kernel/sched/core.c 737 * partition_sched_domains() routine, which will rebuild the scheduler's 738 * load balancing domains (sched domains) as specified by that partial 739 * partition. 740 * 741 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 742 * for a background explanation of this. 743 * 744 * Does not return errors, on the theory that the callers of this 745 * routine would rather not worry about failures to rebuild sched 746 * domains when operating in the severe memory shortage situations 747 * that could cause allocation failures below. 748 * 749 * Must be called with cpuset_rwsem held. 750 * 751 * The three key local variables below are: 752 * cp - cpuset pointer, used (together with pos_css) to perform a 753 * top-down scan of all cpusets. For our purposes, rebuilding 754 * the schedulers sched domains, we can ignore !is_sched_load_ 755 * balance cpusets. 756 * csa - (for CpuSet Array) Array of pointers to all the cpusets 757 * that need to be load balanced, for convenient iterative 758 * access by the subsequent code that finds the best partition, 759 * i.e the set of domains (subsets) of CPUs such that the 760 * cpus_allowed of every cpuset marked is_sched_load_balance 761 * is a subset of one of these domains, while there are as 762 * many such domains as possible, each as small as possible. 763 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 764 * the kernel/sched/core.c routine partition_sched_domains() in a 765 * convenient format, that can be easily compared to the prior 766 * value to determine what partition elements (sched domains) 767 * were changed (added or removed.) 768 * 769 * Finding the best partition (set of domains): 770 * The triple nested loops below over i, j, k scan over the 771 * load balanced cpusets (using the array of cpuset pointers in 772 * csa[]) looking for pairs of cpusets that have overlapping 773 * cpus_allowed, but which don't have the same 'pn' partition 774 * number and gives them in the same partition number. It keeps 775 * looping on the 'restart' label until it can no longer find 776 * any such pairs. 777 * 778 * The union of the cpus_allowed masks from the set of 779 * all cpusets having the same 'pn' value then form the one 780 * element of the partition (one sched domain) to be passed to 781 * partition_sched_domains(). 782 */ 783 static int generate_sched_domains(cpumask_var_t **domains, 784 struct sched_domain_attr **attributes) 785 { 786 struct cpuset *cp; /* top-down scan of cpusets */ 787 struct cpuset **csa; /* array of all cpuset ptrs */ 788 int csn; /* how many cpuset ptrs in csa so far */ 789 int i, j, k; /* indices for partition finding loops */ 790 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 791 struct sched_domain_attr *dattr; /* attributes for custom domains */ 792 int ndoms = 0; /* number of sched domains in result */ 793 int nslot; /* next empty doms[] struct cpumask slot */ 794 struct cgroup_subsys_state *pos_css; 795 bool root_load_balance = is_sched_load_balance(&top_cpuset); 796 797 doms = NULL; 798 dattr = NULL; 799 csa = NULL; 800 801 /* Special case for the 99% of systems with one, full, sched domain */ 802 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 803 ndoms = 1; 804 doms = alloc_sched_domains(ndoms); 805 if (!doms) 806 goto done; 807 808 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 809 if (dattr) { 810 *dattr = SD_ATTR_INIT; 811 update_domain_attr_tree(dattr, &top_cpuset); 812 } 813 cpumask_and(doms[0], top_cpuset.effective_cpus, 814 housekeeping_cpumask(HK_FLAG_DOMAIN)); 815 816 goto done; 817 } 818 819 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 820 if (!csa) 821 goto done; 822 csn = 0; 823 824 rcu_read_lock(); 825 if (root_load_balance) 826 csa[csn++] = &top_cpuset; 827 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 828 if (cp == &top_cpuset) 829 continue; 830 /* 831 * Continue traversing beyond @cp iff @cp has some CPUs and 832 * isn't load balancing. The former is obvious. The 833 * latter: All child cpusets contain a subset of the 834 * parent's cpus, so just skip them, and then we call 835 * update_domain_attr_tree() to calc relax_domain_level of 836 * the corresponding sched domain. 837 * 838 * If root is load-balancing, we can skip @cp if it 839 * is a subset of the root's effective_cpus. 840 */ 841 if (!cpumask_empty(cp->cpus_allowed) && 842 !(is_sched_load_balance(cp) && 843 cpumask_intersects(cp->cpus_allowed, 844 housekeeping_cpumask(HK_FLAG_DOMAIN)))) 845 continue; 846 847 if (root_load_balance && 848 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 849 continue; 850 851 if (is_sched_load_balance(cp) && 852 !cpumask_empty(cp->effective_cpus)) 853 csa[csn++] = cp; 854 855 /* skip @cp's subtree if not a partition root */ 856 if (!is_partition_root(cp)) 857 pos_css = css_rightmost_descendant(pos_css); 858 } 859 rcu_read_unlock(); 860 861 for (i = 0; i < csn; i++) 862 csa[i]->pn = i; 863 ndoms = csn; 864 865 restart: 866 /* Find the best partition (set of sched domains) */ 867 for (i = 0; i < csn; i++) { 868 struct cpuset *a = csa[i]; 869 int apn = a->pn; 870 871 for (j = 0; j < csn; j++) { 872 struct cpuset *b = csa[j]; 873 int bpn = b->pn; 874 875 if (apn != bpn && cpusets_overlap(a, b)) { 876 for (k = 0; k < csn; k++) { 877 struct cpuset *c = csa[k]; 878 879 if (c->pn == bpn) 880 c->pn = apn; 881 } 882 ndoms--; /* one less element */ 883 goto restart; 884 } 885 } 886 } 887 888 /* 889 * Now we know how many domains to create. 890 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 891 */ 892 doms = alloc_sched_domains(ndoms); 893 if (!doms) 894 goto done; 895 896 /* 897 * The rest of the code, including the scheduler, can deal with 898 * dattr==NULL case. No need to abort if alloc fails. 899 */ 900 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 901 GFP_KERNEL); 902 903 for (nslot = 0, i = 0; i < csn; i++) { 904 struct cpuset *a = csa[i]; 905 struct cpumask *dp; 906 int apn = a->pn; 907 908 if (apn < 0) { 909 /* Skip completed partitions */ 910 continue; 911 } 912 913 dp = doms[nslot]; 914 915 if (nslot == ndoms) { 916 static int warnings = 10; 917 if (warnings) { 918 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 919 nslot, ndoms, csn, i, apn); 920 warnings--; 921 } 922 continue; 923 } 924 925 cpumask_clear(dp); 926 if (dattr) 927 *(dattr + nslot) = SD_ATTR_INIT; 928 for (j = i; j < csn; j++) { 929 struct cpuset *b = csa[j]; 930 931 if (apn == b->pn) { 932 cpumask_or(dp, dp, b->effective_cpus); 933 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN)); 934 if (dattr) 935 update_domain_attr_tree(dattr + nslot, b); 936 937 /* Done with this partition */ 938 b->pn = -1; 939 } 940 } 941 nslot++; 942 } 943 BUG_ON(nslot != ndoms); 944 945 done: 946 kfree(csa); 947 948 /* 949 * Fallback to the default domain if kmalloc() failed. 950 * See comments in partition_sched_domains(). 951 */ 952 if (doms == NULL) 953 ndoms = 1; 954 955 *domains = doms; 956 *attributes = dattr; 957 return ndoms; 958 } 959 960 static void update_tasks_root_domain(struct cpuset *cs) 961 { 962 struct css_task_iter it; 963 struct task_struct *task; 964 965 css_task_iter_start(&cs->css, 0, &it); 966 967 while ((task = css_task_iter_next(&it))) 968 dl_add_task_root_domain(task); 969 970 css_task_iter_end(&it); 971 } 972 973 static void rebuild_root_domains(void) 974 { 975 struct cpuset *cs = NULL; 976 struct cgroup_subsys_state *pos_css; 977 978 percpu_rwsem_assert_held(&cpuset_rwsem); 979 lockdep_assert_cpus_held(); 980 lockdep_assert_held(&sched_domains_mutex); 981 982 rcu_read_lock(); 983 984 /* 985 * Clear default root domain DL accounting, it will be computed again 986 * if a task belongs to it. 987 */ 988 dl_clear_root_domain(&def_root_domain); 989 990 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 991 992 if (cpumask_empty(cs->effective_cpus)) { 993 pos_css = css_rightmost_descendant(pos_css); 994 continue; 995 } 996 997 css_get(&cs->css); 998 999 rcu_read_unlock(); 1000 1001 update_tasks_root_domain(cs); 1002 1003 rcu_read_lock(); 1004 css_put(&cs->css); 1005 } 1006 rcu_read_unlock(); 1007 } 1008 1009 static void 1010 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1011 struct sched_domain_attr *dattr_new) 1012 { 1013 mutex_lock(&sched_domains_mutex); 1014 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 1015 rebuild_root_domains(); 1016 mutex_unlock(&sched_domains_mutex); 1017 } 1018 1019 /* 1020 * Rebuild scheduler domains. 1021 * 1022 * If the flag 'sched_load_balance' of any cpuset with non-empty 1023 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1024 * which has that flag enabled, or if any cpuset with a non-empty 1025 * 'cpus' is removed, then call this routine to rebuild the 1026 * scheduler's dynamic sched domains. 1027 * 1028 * Call with cpuset_rwsem held. Takes cpus_read_lock(). 1029 */ 1030 static void rebuild_sched_domains_locked(void) 1031 { 1032 struct cgroup_subsys_state *pos_css; 1033 struct sched_domain_attr *attr; 1034 cpumask_var_t *doms; 1035 struct cpuset *cs; 1036 int ndoms; 1037 1038 lockdep_assert_cpus_held(); 1039 percpu_rwsem_assert_held(&cpuset_rwsem); 1040 1041 /* 1042 * If we have raced with CPU hotplug, return early to avoid 1043 * passing doms with offlined cpu to partition_sched_domains(). 1044 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains. 1045 * 1046 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1047 * should be the same as the active CPUs, so checking only top_cpuset 1048 * is enough to detect racing CPU offlines. 1049 */ 1050 if (!top_cpuset.nr_subparts_cpus && 1051 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1052 return; 1053 1054 /* 1055 * With subpartition CPUs, however, the effective CPUs of a partition 1056 * root should be only a subset of the active CPUs. Since a CPU in any 1057 * partition root could be offlined, all must be checked. 1058 */ 1059 if (top_cpuset.nr_subparts_cpus) { 1060 rcu_read_lock(); 1061 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1062 if (!is_partition_root(cs)) { 1063 pos_css = css_rightmost_descendant(pos_css); 1064 continue; 1065 } 1066 if (!cpumask_subset(cs->effective_cpus, 1067 cpu_active_mask)) { 1068 rcu_read_unlock(); 1069 return; 1070 } 1071 } 1072 rcu_read_unlock(); 1073 } 1074 1075 /* Generate domain masks and attrs */ 1076 ndoms = generate_sched_domains(&doms, &attr); 1077 1078 /* Have scheduler rebuild the domains */ 1079 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1080 } 1081 #else /* !CONFIG_SMP */ 1082 static void rebuild_sched_domains_locked(void) 1083 { 1084 } 1085 #endif /* CONFIG_SMP */ 1086 1087 void rebuild_sched_domains(void) 1088 { 1089 cpus_read_lock(); 1090 percpu_down_write(&cpuset_rwsem); 1091 rebuild_sched_domains_locked(); 1092 percpu_up_write(&cpuset_rwsem); 1093 cpus_read_unlock(); 1094 } 1095 1096 /** 1097 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1098 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1099 * 1100 * Iterate through each task of @cs updating its cpus_allowed to the 1101 * effective cpuset's. As this function is called with cpuset_rwsem held, 1102 * cpuset membership stays stable. 1103 */ 1104 static void update_tasks_cpumask(struct cpuset *cs) 1105 { 1106 struct css_task_iter it; 1107 struct task_struct *task; 1108 1109 css_task_iter_start(&cs->css, 0, &it); 1110 while ((task = css_task_iter_next(&it))) 1111 set_cpus_allowed_ptr(task, cs->effective_cpus); 1112 css_task_iter_end(&it); 1113 } 1114 1115 /** 1116 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1117 * @new_cpus: the temp variable for the new effective_cpus mask 1118 * @cs: the cpuset the need to recompute the new effective_cpus mask 1119 * @parent: the parent cpuset 1120 * 1121 * If the parent has subpartition CPUs, include them in the list of 1122 * allowable CPUs in computing the new effective_cpus mask. Since offlined 1123 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 1124 * to mask those out. 1125 */ 1126 static void compute_effective_cpumask(struct cpumask *new_cpus, 1127 struct cpuset *cs, struct cpuset *parent) 1128 { 1129 if (parent->nr_subparts_cpus) { 1130 cpumask_or(new_cpus, parent->effective_cpus, 1131 parent->subparts_cpus); 1132 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 1133 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 1134 } else { 1135 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1136 } 1137 } 1138 1139 /* 1140 * Commands for update_parent_subparts_cpumask 1141 */ 1142 enum subparts_cmd { 1143 partcmd_enable, /* Enable partition root */ 1144 partcmd_disable, /* Disable partition root */ 1145 partcmd_update, /* Update parent's subparts_cpus */ 1146 }; 1147 1148 /** 1149 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1150 * @cpuset: The cpuset that requests change in partition root state 1151 * @cmd: Partition root state change command 1152 * @newmask: Optional new cpumask for partcmd_update 1153 * @tmp: Temporary addmask and delmask 1154 * Return: 0, 1 or an error code 1155 * 1156 * For partcmd_enable, the cpuset is being transformed from a non-partition 1157 * root to a partition root. The cpus_allowed mask of the given cpuset will 1158 * be put into parent's subparts_cpus and taken away from parent's 1159 * effective_cpus. The function will return 0 if all the CPUs listed in 1160 * cpus_allowed can be granted or an error code will be returned. 1161 * 1162 * For partcmd_disable, the cpuset is being transofrmed from a partition 1163 * root back to a non-partition root. Any CPUs in cpus_allowed that are in 1164 * parent's subparts_cpus will be taken away from that cpumask and put back 1165 * into parent's effective_cpus. 0 should always be returned. 1166 * 1167 * For partcmd_update, if the optional newmask is specified, the cpu 1168 * list is to be changed from cpus_allowed to newmask. Otherwise, 1169 * cpus_allowed is assumed to remain the same. The cpuset should either 1170 * be a partition root or an invalid partition root. The partition root 1171 * state may change if newmask is NULL and none of the requested CPUs can 1172 * be granted by the parent. The function will return 1 if changes to 1173 * parent's subparts_cpus and effective_cpus happen or 0 otherwise. 1174 * Error code should only be returned when newmask is non-NULL. 1175 * 1176 * The partcmd_enable and partcmd_disable commands are used by 1177 * update_prstate(). The partcmd_update command is used by 1178 * update_cpumasks_hier() with newmask NULL and update_cpumask() with 1179 * newmask set. 1180 * 1181 * The checking is more strict when enabling partition root than the 1182 * other two commands. 1183 * 1184 * Because of the implicit cpu exclusive nature of a partition root, 1185 * cpumask changes that violates the cpu exclusivity rule will not be 1186 * permitted when checked by validate_change(). The validate_change() 1187 * function will also prevent any changes to the cpu list if it is not 1188 * a superset of children's cpu lists. 1189 */ 1190 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd, 1191 struct cpumask *newmask, 1192 struct tmpmasks *tmp) 1193 { 1194 struct cpuset *parent = parent_cs(cpuset); 1195 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1196 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1197 int old_prs, new_prs; 1198 bool part_error = false; /* Partition error? */ 1199 1200 percpu_rwsem_assert_held(&cpuset_rwsem); 1201 1202 /* 1203 * The parent must be a partition root. 1204 * The new cpumask, if present, or the current cpus_allowed must 1205 * not be empty. 1206 */ 1207 if (!is_partition_root(parent) || 1208 (newmask && cpumask_empty(newmask)) || 1209 (!newmask && cpumask_empty(cpuset->cpus_allowed))) 1210 return -EINVAL; 1211 1212 /* 1213 * Enabling/disabling partition root is not allowed if there are 1214 * online children. 1215 */ 1216 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css)) 1217 return -EBUSY; 1218 1219 /* 1220 * Enabling partition root is not allowed if not all the CPUs 1221 * can be granted from parent's effective_cpus or at least one 1222 * CPU will be left after that. 1223 */ 1224 if ((cmd == partcmd_enable) && 1225 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) || 1226 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus))) 1227 return -EINVAL; 1228 1229 /* 1230 * A cpumask update cannot make parent's effective_cpus become empty. 1231 */ 1232 adding = deleting = false; 1233 old_prs = new_prs = cpuset->partition_root_state; 1234 if (cmd == partcmd_enable) { 1235 cpumask_copy(tmp->addmask, cpuset->cpus_allowed); 1236 adding = true; 1237 } else if (cmd == partcmd_disable) { 1238 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1239 parent->subparts_cpus); 1240 } else if (newmask) { 1241 /* 1242 * partcmd_update with newmask: 1243 * 1244 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1245 * addmask = newmask & parent->effective_cpus 1246 * & ~parent->subparts_cpus 1247 */ 1248 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask); 1249 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1250 parent->subparts_cpus); 1251 1252 cpumask_and(tmp->addmask, newmask, parent->effective_cpus); 1253 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1254 parent->subparts_cpus); 1255 /* 1256 * Return error if the new effective_cpus could become empty. 1257 */ 1258 if (adding && 1259 cpumask_equal(parent->effective_cpus, tmp->addmask)) { 1260 if (!deleting) 1261 return -EINVAL; 1262 /* 1263 * As some of the CPUs in subparts_cpus might have 1264 * been offlined, we need to compute the real delmask 1265 * to confirm that. 1266 */ 1267 if (!cpumask_and(tmp->addmask, tmp->delmask, 1268 cpu_active_mask)) 1269 return -EINVAL; 1270 cpumask_copy(tmp->addmask, parent->effective_cpus); 1271 } 1272 } else { 1273 /* 1274 * partcmd_update w/o newmask: 1275 * 1276 * addmask = cpus_allowed & parent->effective_cpus 1277 * 1278 * Note that parent's subparts_cpus may have been 1279 * pre-shrunk in case there is a change in the cpu list. 1280 * So no deletion is needed. 1281 */ 1282 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed, 1283 parent->effective_cpus); 1284 part_error = cpumask_equal(tmp->addmask, 1285 parent->effective_cpus); 1286 } 1287 1288 if (cmd == partcmd_update) { 1289 int prev_prs = cpuset->partition_root_state; 1290 1291 /* 1292 * Check for possible transition between PRS_ENABLED 1293 * and PRS_ERROR. 1294 */ 1295 switch (cpuset->partition_root_state) { 1296 case PRS_ENABLED: 1297 if (part_error) 1298 new_prs = PRS_ERROR; 1299 break; 1300 case PRS_ERROR: 1301 if (!part_error) 1302 new_prs = PRS_ENABLED; 1303 break; 1304 } 1305 /* 1306 * Set part_error if previously in invalid state. 1307 */ 1308 part_error = (prev_prs == PRS_ERROR); 1309 } 1310 1311 if (!part_error && (new_prs == PRS_ERROR)) 1312 return 0; /* Nothing need to be done */ 1313 1314 if (new_prs == PRS_ERROR) { 1315 /* 1316 * Remove all its cpus from parent's subparts_cpus. 1317 */ 1318 adding = false; 1319 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed, 1320 parent->subparts_cpus); 1321 } 1322 1323 if (!adding && !deleting && (new_prs == old_prs)) 1324 return 0; 1325 1326 /* 1327 * Change the parent's subparts_cpus. 1328 * Newly added CPUs will be removed from effective_cpus and 1329 * newly deleted ones will be added back to effective_cpus. 1330 */ 1331 spin_lock_irq(&callback_lock); 1332 if (adding) { 1333 cpumask_or(parent->subparts_cpus, 1334 parent->subparts_cpus, tmp->addmask); 1335 cpumask_andnot(parent->effective_cpus, 1336 parent->effective_cpus, tmp->addmask); 1337 } 1338 if (deleting) { 1339 cpumask_andnot(parent->subparts_cpus, 1340 parent->subparts_cpus, tmp->delmask); 1341 /* 1342 * Some of the CPUs in subparts_cpus might have been offlined. 1343 */ 1344 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1345 cpumask_or(parent->effective_cpus, 1346 parent->effective_cpus, tmp->delmask); 1347 } 1348 1349 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1350 1351 if (old_prs != new_prs) 1352 cpuset->partition_root_state = new_prs; 1353 1354 spin_unlock_irq(&callback_lock); 1355 notify_partition_change(cpuset, old_prs, new_prs); 1356 1357 return cmd == partcmd_update; 1358 } 1359 1360 /* 1361 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1362 * @cs: the cpuset to consider 1363 * @tmp: temp variables for calculating effective_cpus & partition setup 1364 * 1365 * When configured cpumask is changed, the effective cpumasks of this cpuset 1366 * and all its descendants need to be updated. 1367 * 1368 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 1369 * 1370 * Called with cpuset_rwsem held 1371 */ 1372 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp) 1373 { 1374 struct cpuset *cp; 1375 struct cgroup_subsys_state *pos_css; 1376 bool need_rebuild_sched_domains = false; 1377 int old_prs, new_prs; 1378 1379 rcu_read_lock(); 1380 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1381 struct cpuset *parent = parent_cs(cp); 1382 1383 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1384 1385 /* 1386 * If it becomes empty, inherit the effective mask of the 1387 * parent, which is guaranteed to have some CPUs. 1388 */ 1389 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1390 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1391 if (!cp->use_parent_ecpus) { 1392 cp->use_parent_ecpus = true; 1393 parent->child_ecpus_count++; 1394 } 1395 } else if (cp->use_parent_ecpus) { 1396 cp->use_parent_ecpus = false; 1397 WARN_ON_ONCE(!parent->child_ecpus_count); 1398 parent->child_ecpus_count--; 1399 } 1400 1401 /* 1402 * Skip the whole subtree if the cpumask remains the same 1403 * and has no partition root state. 1404 */ 1405 if (!cp->partition_root_state && 1406 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { 1407 pos_css = css_rightmost_descendant(pos_css); 1408 continue; 1409 } 1410 1411 /* 1412 * update_parent_subparts_cpumask() should have been called 1413 * for cs already in update_cpumask(). We should also call 1414 * update_tasks_cpumask() again for tasks in the parent 1415 * cpuset if the parent's subparts_cpus changes. 1416 */ 1417 old_prs = new_prs = cp->partition_root_state; 1418 if ((cp != cs) && old_prs) { 1419 switch (parent->partition_root_state) { 1420 case PRS_DISABLED: 1421 /* 1422 * If parent is not a partition root or an 1423 * invalid partition root, clear its state 1424 * and its CS_CPU_EXCLUSIVE flag. 1425 */ 1426 WARN_ON_ONCE(cp->partition_root_state 1427 != PRS_ERROR); 1428 new_prs = PRS_DISABLED; 1429 1430 /* 1431 * clear_bit() is an atomic operation and 1432 * readers aren't interested in the state 1433 * of CS_CPU_EXCLUSIVE anyway. So we can 1434 * just update the flag without holding 1435 * the callback_lock. 1436 */ 1437 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags); 1438 break; 1439 1440 case PRS_ENABLED: 1441 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp)) 1442 update_tasks_cpumask(parent); 1443 break; 1444 1445 case PRS_ERROR: 1446 /* 1447 * When parent is invalid, it has to be too. 1448 */ 1449 new_prs = PRS_ERROR; 1450 break; 1451 } 1452 } 1453 1454 if (!css_tryget_online(&cp->css)) 1455 continue; 1456 rcu_read_unlock(); 1457 1458 spin_lock_irq(&callback_lock); 1459 1460 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1461 if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) { 1462 cp->nr_subparts_cpus = 0; 1463 cpumask_clear(cp->subparts_cpus); 1464 } else if (cp->nr_subparts_cpus) { 1465 /* 1466 * Make sure that effective_cpus & subparts_cpus 1467 * are mutually exclusive. 1468 * 1469 * In the unlikely event that effective_cpus 1470 * becomes empty. we clear cp->nr_subparts_cpus and 1471 * let its child partition roots to compete for 1472 * CPUs again. 1473 */ 1474 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1475 cp->subparts_cpus); 1476 if (cpumask_empty(cp->effective_cpus)) { 1477 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1478 cpumask_clear(cp->subparts_cpus); 1479 cp->nr_subparts_cpus = 0; 1480 } else if (!cpumask_subset(cp->subparts_cpus, 1481 tmp->new_cpus)) { 1482 cpumask_andnot(cp->subparts_cpus, 1483 cp->subparts_cpus, tmp->new_cpus); 1484 cp->nr_subparts_cpus 1485 = cpumask_weight(cp->subparts_cpus); 1486 } 1487 } 1488 1489 if (new_prs != old_prs) 1490 cp->partition_root_state = new_prs; 1491 1492 spin_unlock_irq(&callback_lock); 1493 notify_partition_change(cp, old_prs, new_prs); 1494 1495 WARN_ON(!is_in_v2_mode() && 1496 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1497 1498 update_tasks_cpumask(cp); 1499 1500 /* 1501 * On legacy hierarchy, if the effective cpumask of any non- 1502 * empty cpuset is changed, we need to rebuild sched domains. 1503 * On default hierarchy, the cpuset needs to be a partition 1504 * root as well. 1505 */ 1506 if (!cpumask_empty(cp->cpus_allowed) && 1507 is_sched_load_balance(cp) && 1508 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1509 is_partition_root(cp))) 1510 need_rebuild_sched_domains = true; 1511 1512 rcu_read_lock(); 1513 css_put(&cp->css); 1514 } 1515 rcu_read_unlock(); 1516 1517 if (need_rebuild_sched_domains) 1518 rebuild_sched_domains_locked(); 1519 } 1520 1521 /** 1522 * update_sibling_cpumasks - Update siblings cpumasks 1523 * @parent: Parent cpuset 1524 * @cs: Current cpuset 1525 * @tmp: Temp variables 1526 */ 1527 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1528 struct tmpmasks *tmp) 1529 { 1530 struct cpuset *sibling; 1531 struct cgroup_subsys_state *pos_css; 1532 1533 /* 1534 * Check all its siblings and call update_cpumasks_hier() 1535 * if their use_parent_ecpus flag is set in order for them 1536 * to use the right effective_cpus value. 1537 */ 1538 rcu_read_lock(); 1539 cpuset_for_each_child(sibling, pos_css, parent) { 1540 if (sibling == cs) 1541 continue; 1542 if (!sibling->use_parent_ecpus) 1543 continue; 1544 1545 update_cpumasks_hier(sibling, tmp); 1546 } 1547 rcu_read_unlock(); 1548 } 1549 1550 /** 1551 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1552 * @cs: the cpuset to consider 1553 * @trialcs: trial cpuset 1554 * @buf: buffer of cpu numbers written to this cpuset 1555 */ 1556 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1557 const char *buf) 1558 { 1559 int retval; 1560 struct tmpmasks tmp; 1561 1562 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1563 if (cs == &top_cpuset) 1564 return -EACCES; 1565 1566 /* 1567 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1568 * Since cpulist_parse() fails on an empty mask, we special case 1569 * that parsing. The validate_change() call ensures that cpusets 1570 * with tasks have cpus. 1571 */ 1572 if (!*buf) { 1573 cpumask_clear(trialcs->cpus_allowed); 1574 } else { 1575 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1576 if (retval < 0) 1577 return retval; 1578 1579 if (!cpumask_subset(trialcs->cpus_allowed, 1580 top_cpuset.cpus_allowed)) 1581 return -EINVAL; 1582 } 1583 1584 /* Nothing to do if the cpus didn't change */ 1585 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1586 return 0; 1587 1588 retval = validate_change(cs, trialcs); 1589 if (retval < 0) 1590 return retval; 1591 1592 #ifdef CONFIG_CPUMASK_OFFSTACK 1593 /* 1594 * Use the cpumasks in trialcs for tmpmasks when they are pointers 1595 * to allocated cpumasks. 1596 */ 1597 tmp.addmask = trialcs->subparts_cpus; 1598 tmp.delmask = trialcs->effective_cpus; 1599 tmp.new_cpus = trialcs->cpus_allowed; 1600 #endif 1601 1602 if (cs->partition_root_state) { 1603 /* Cpumask of a partition root cannot be empty */ 1604 if (cpumask_empty(trialcs->cpus_allowed)) 1605 return -EINVAL; 1606 if (update_parent_subparts_cpumask(cs, partcmd_update, 1607 trialcs->cpus_allowed, &tmp) < 0) 1608 return -EINVAL; 1609 } 1610 1611 spin_lock_irq(&callback_lock); 1612 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1613 1614 /* 1615 * Make sure that subparts_cpus is a subset of cpus_allowed. 1616 */ 1617 if (cs->nr_subparts_cpus) { 1618 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus, 1619 cs->cpus_allowed); 1620 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1621 } 1622 spin_unlock_irq(&callback_lock); 1623 1624 update_cpumasks_hier(cs, &tmp); 1625 1626 if (cs->partition_root_state) { 1627 struct cpuset *parent = parent_cs(cs); 1628 1629 /* 1630 * For partition root, update the cpumasks of sibling 1631 * cpusets if they use parent's effective_cpus. 1632 */ 1633 if (parent->child_ecpus_count) 1634 update_sibling_cpumasks(parent, cs, &tmp); 1635 } 1636 return 0; 1637 } 1638 1639 /* 1640 * Migrate memory region from one set of nodes to another. This is 1641 * performed asynchronously as it can be called from process migration path 1642 * holding locks involved in process management. All mm migrations are 1643 * performed in the queued order and can be waited for by flushing 1644 * cpuset_migrate_mm_wq. 1645 */ 1646 1647 struct cpuset_migrate_mm_work { 1648 struct work_struct work; 1649 struct mm_struct *mm; 1650 nodemask_t from; 1651 nodemask_t to; 1652 }; 1653 1654 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1655 { 1656 struct cpuset_migrate_mm_work *mwork = 1657 container_of(work, struct cpuset_migrate_mm_work, work); 1658 1659 /* on a wq worker, no need to worry about %current's mems_allowed */ 1660 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1661 mmput(mwork->mm); 1662 kfree(mwork); 1663 } 1664 1665 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1666 const nodemask_t *to) 1667 { 1668 struct cpuset_migrate_mm_work *mwork; 1669 1670 if (nodes_equal(*from, *to)) { 1671 mmput(mm); 1672 return; 1673 } 1674 1675 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1676 if (mwork) { 1677 mwork->mm = mm; 1678 mwork->from = *from; 1679 mwork->to = *to; 1680 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1681 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1682 } else { 1683 mmput(mm); 1684 } 1685 } 1686 1687 static void cpuset_post_attach(void) 1688 { 1689 flush_workqueue(cpuset_migrate_mm_wq); 1690 } 1691 1692 /* 1693 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1694 * @tsk: the task to change 1695 * @newmems: new nodes that the task will be set 1696 * 1697 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1698 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1699 * parallel, it might temporarily see an empty intersection, which results in 1700 * a seqlock check and retry before OOM or allocation failure. 1701 */ 1702 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1703 nodemask_t *newmems) 1704 { 1705 task_lock(tsk); 1706 1707 local_irq_disable(); 1708 write_seqcount_begin(&tsk->mems_allowed_seq); 1709 1710 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1711 mpol_rebind_task(tsk, newmems); 1712 tsk->mems_allowed = *newmems; 1713 1714 write_seqcount_end(&tsk->mems_allowed_seq); 1715 local_irq_enable(); 1716 1717 task_unlock(tsk); 1718 } 1719 1720 static void *cpuset_being_rebound; 1721 1722 /** 1723 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1724 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1725 * 1726 * Iterate through each task of @cs updating its mems_allowed to the 1727 * effective cpuset's. As this function is called with cpuset_rwsem held, 1728 * cpuset membership stays stable. 1729 */ 1730 static void update_tasks_nodemask(struct cpuset *cs) 1731 { 1732 static nodemask_t newmems; /* protected by cpuset_rwsem */ 1733 struct css_task_iter it; 1734 struct task_struct *task; 1735 1736 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1737 1738 guarantee_online_mems(cs, &newmems); 1739 1740 /* 1741 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 1742 * take while holding tasklist_lock. Forks can happen - the 1743 * mpol_dup() cpuset_being_rebound check will catch such forks, 1744 * and rebind their vma mempolicies too. Because we still hold 1745 * the global cpuset_rwsem, we know that no other rebind effort 1746 * will be contending for the global variable cpuset_being_rebound. 1747 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1748 * is idempotent. Also migrate pages in each mm to new nodes. 1749 */ 1750 css_task_iter_start(&cs->css, 0, &it); 1751 while ((task = css_task_iter_next(&it))) { 1752 struct mm_struct *mm; 1753 bool migrate; 1754 1755 cpuset_change_task_nodemask(task, &newmems); 1756 1757 mm = get_task_mm(task); 1758 if (!mm) 1759 continue; 1760 1761 migrate = is_memory_migrate(cs); 1762 1763 mpol_rebind_mm(mm, &cs->mems_allowed); 1764 if (migrate) 1765 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1766 else 1767 mmput(mm); 1768 } 1769 css_task_iter_end(&it); 1770 1771 /* 1772 * All the tasks' nodemasks have been updated, update 1773 * cs->old_mems_allowed. 1774 */ 1775 cs->old_mems_allowed = newmems; 1776 1777 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 1778 cpuset_being_rebound = NULL; 1779 } 1780 1781 /* 1782 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 1783 * @cs: the cpuset to consider 1784 * @new_mems: a temp variable for calculating new effective_mems 1785 * 1786 * When configured nodemask is changed, the effective nodemasks of this cpuset 1787 * and all its descendants need to be updated. 1788 * 1789 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 1790 * 1791 * Called with cpuset_rwsem held 1792 */ 1793 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 1794 { 1795 struct cpuset *cp; 1796 struct cgroup_subsys_state *pos_css; 1797 1798 rcu_read_lock(); 1799 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1800 struct cpuset *parent = parent_cs(cp); 1801 1802 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 1803 1804 /* 1805 * If it becomes empty, inherit the effective mask of the 1806 * parent, which is guaranteed to have some MEMs. 1807 */ 1808 if (is_in_v2_mode() && nodes_empty(*new_mems)) 1809 *new_mems = parent->effective_mems; 1810 1811 /* Skip the whole subtree if the nodemask remains the same. */ 1812 if (nodes_equal(*new_mems, cp->effective_mems)) { 1813 pos_css = css_rightmost_descendant(pos_css); 1814 continue; 1815 } 1816 1817 if (!css_tryget_online(&cp->css)) 1818 continue; 1819 rcu_read_unlock(); 1820 1821 spin_lock_irq(&callback_lock); 1822 cp->effective_mems = *new_mems; 1823 spin_unlock_irq(&callback_lock); 1824 1825 WARN_ON(!is_in_v2_mode() && 1826 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 1827 1828 update_tasks_nodemask(cp); 1829 1830 rcu_read_lock(); 1831 css_put(&cp->css); 1832 } 1833 rcu_read_unlock(); 1834 } 1835 1836 /* 1837 * Handle user request to change the 'mems' memory placement 1838 * of a cpuset. Needs to validate the request, update the 1839 * cpusets mems_allowed, and for each task in the cpuset, 1840 * update mems_allowed and rebind task's mempolicy and any vma 1841 * mempolicies and if the cpuset is marked 'memory_migrate', 1842 * migrate the tasks pages to the new memory. 1843 * 1844 * Call with cpuset_rwsem held. May take callback_lock during call. 1845 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 1846 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 1847 * their mempolicies to the cpusets new mems_allowed. 1848 */ 1849 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 1850 const char *buf) 1851 { 1852 int retval; 1853 1854 /* 1855 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 1856 * it's read-only 1857 */ 1858 if (cs == &top_cpuset) { 1859 retval = -EACCES; 1860 goto done; 1861 } 1862 1863 /* 1864 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 1865 * Since nodelist_parse() fails on an empty mask, we special case 1866 * that parsing. The validate_change() call ensures that cpusets 1867 * with tasks have memory. 1868 */ 1869 if (!*buf) { 1870 nodes_clear(trialcs->mems_allowed); 1871 } else { 1872 retval = nodelist_parse(buf, trialcs->mems_allowed); 1873 if (retval < 0) 1874 goto done; 1875 1876 if (!nodes_subset(trialcs->mems_allowed, 1877 top_cpuset.mems_allowed)) { 1878 retval = -EINVAL; 1879 goto done; 1880 } 1881 } 1882 1883 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 1884 retval = 0; /* Too easy - nothing to do */ 1885 goto done; 1886 } 1887 retval = validate_change(cs, trialcs); 1888 if (retval < 0) 1889 goto done; 1890 1891 check_insane_mems_config(&trialcs->mems_allowed); 1892 1893 spin_lock_irq(&callback_lock); 1894 cs->mems_allowed = trialcs->mems_allowed; 1895 spin_unlock_irq(&callback_lock); 1896 1897 /* use trialcs->mems_allowed as a temp variable */ 1898 update_nodemasks_hier(cs, &trialcs->mems_allowed); 1899 done: 1900 return retval; 1901 } 1902 1903 bool current_cpuset_is_being_rebound(void) 1904 { 1905 bool ret; 1906 1907 rcu_read_lock(); 1908 ret = task_cs(current) == cpuset_being_rebound; 1909 rcu_read_unlock(); 1910 1911 return ret; 1912 } 1913 1914 static int update_relax_domain_level(struct cpuset *cs, s64 val) 1915 { 1916 #ifdef CONFIG_SMP 1917 if (val < -1 || val >= sched_domain_level_max) 1918 return -EINVAL; 1919 #endif 1920 1921 if (val != cs->relax_domain_level) { 1922 cs->relax_domain_level = val; 1923 if (!cpumask_empty(cs->cpus_allowed) && 1924 is_sched_load_balance(cs)) 1925 rebuild_sched_domains_locked(); 1926 } 1927 1928 return 0; 1929 } 1930 1931 /** 1932 * update_tasks_flags - update the spread flags of tasks in the cpuset. 1933 * @cs: the cpuset in which each task's spread flags needs to be changed 1934 * 1935 * Iterate through each task of @cs updating its spread flags. As this 1936 * function is called with cpuset_rwsem held, cpuset membership stays 1937 * stable. 1938 */ 1939 static void update_tasks_flags(struct cpuset *cs) 1940 { 1941 struct css_task_iter it; 1942 struct task_struct *task; 1943 1944 css_task_iter_start(&cs->css, 0, &it); 1945 while ((task = css_task_iter_next(&it))) 1946 cpuset_update_task_spread_flag(cs, task); 1947 css_task_iter_end(&it); 1948 } 1949 1950 /* 1951 * update_flag - read a 0 or a 1 in a file and update associated flag 1952 * bit: the bit to update (see cpuset_flagbits_t) 1953 * cs: the cpuset to update 1954 * turning_on: whether the flag is being set or cleared 1955 * 1956 * Call with cpuset_rwsem held. 1957 */ 1958 1959 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1960 int turning_on) 1961 { 1962 struct cpuset *trialcs; 1963 int balance_flag_changed; 1964 int spread_flag_changed; 1965 int err; 1966 1967 trialcs = alloc_trial_cpuset(cs); 1968 if (!trialcs) 1969 return -ENOMEM; 1970 1971 if (turning_on) 1972 set_bit(bit, &trialcs->flags); 1973 else 1974 clear_bit(bit, &trialcs->flags); 1975 1976 err = validate_change(cs, trialcs); 1977 if (err < 0) 1978 goto out; 1979 1980 balance_flag_changed = (is_sched_load_balance(cs) != 1981 is_sched_load_balance(trialcs)); 1982 1983 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 1984 || (is_spread_page(cs) != is_spread_page(trialcs))); 1985 1986 spin_lock_irq(&callback_lock); 1987 cs->flags = trialcs->flags; 1988 spin_unlock_irq(&callback_lock); 1989 1990 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 1991 rebuild_sched_domains_locked(); 1992 1993 if (spread_flag_changed) 1994 update_tasks_flags(cs); 1995 out: 1996 free_cpuset(trialcs); 1997 return err; 1998 } 1999 2000 /* 2001 * update_prstate - update partititon_root_state 2002 * cs: the cpuset to update 2003 * new_prs: new partition root state 2004 * 2005 * Call with cpuset_rwsem held. 2006 */ 2007 static int update_prstate(struct cpuset *cs, int new_prs) 2008 { 2009 int err, old_prs = cs->partition_root_state; 2010 struct cpuset *parent = parent_cs(cs); 2011 struct tmpmasks tmpmask; 2012 2013 if (old_prs == new_prs) 2014 return 0; 2015 2016 /* 2017 * Cannot force a partial or invalid partition root to a full 2018 * partition root. 2019 */ 2020 if (new_prs && (old_prs == PRS_ERROR)) 2021 return -EINVAL; 2022 2023 if (alloc_cpumasks(NULL, &tmpmask)) 2024 return -ENOMEM; 2025 2026 err = -EINVAL; 2027 if (!old_prs) { 2028 /* 2029 * Turning on partition root requires setting the 2030 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed 2031 * cannot be NULL. 2032 */ 2033 if (cpumask_empty(cs->cpus_allowed)) 2034 goto out; 2035 2036 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); 2037 if (err) 2038 goto out; 2039 2040 err = update_parent_subparts_cpumask(cs, partcmd_enable, 2041 NULL, &tmpmask); 2042 if (err) { 2043 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2044 goto out; 2045 } 2046 } else { 2047 /* 2048 * Turning off partition root will clear the 2049 * CS_CPU_EXCLUSIVE bit. 2050 */ 2051 if (old_prs == PRS_ERROR) { 2052 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2053 err = 0; 2054 goto out; 2055 } 2056 2057 err = update_parent_subparts_cpumask(cs, partcmd_disable, 2058 NULL, &tmpmask); 2059 if (err) 2060 goto out; 2061 2062 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 2063 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2064 } 2065 2066 /* 2067 * Update cpumask of parent's tasks except when it is the top 2068 * cpuset as some system daemons cannot be mapped to other CPUs. 2069 */ 2070 if (parent != &top_cpuset) 2071 update_tasks_cpumask(parent); 2072 2073 if (parent->child_ecpus_count) 2074 update_sibling_cpumasks(parent, cs, &tmpmask); 2075 2076 rebuild_sched_domains_locked(); 2077 out: 2078 if (!err) { 2079 spin_lock_irq(&callback_lock); 2080 cs->partition_root_state = new_prs; 2081 spin_unlock_irq(&callback_lock); 2082 notify_partition_change(cs, old_prs, new_prs); 2083 } 2084 2085 free_cpumasks(NULL, &tmpmask); 2086 return err; 2087 } 2088 2089 /* 2090 * Frequency meter - How fast is some event occurring? 2091 * 2092 * These routines manage a digitally filtered, constant time based, 2093 * event frequency meter. There are four routines: 2094 * fmeter_init() - initialize a frequency meter. 2095 * fmeter_markevent() - called each time the event happens. 2096 * fmeter_getrate() - returns the recent rate of such events. 2097 * fmeter_update() - internal routine used to update fmeter. 2098 * 2099 * A common data structure is passed to each of these routines, 2100 * which is used to keep track of the state required to manage the 2101 * frequency meter and its digital filter. 2102 * 2103 * The filter works on the number of events marked per unit time. 2104 * The filter is single-pole low-pass recursive (IIR). The time unit 2105 * is 1 second. Arithmetic is done using 32-bit integers scaled to 2106 * simulate 3 decimal digits of precision (multiplied by 1000). 2107 * 2108 * With an FM_COEF of 933, and a time base of 1 second, the filter 2109 * has a half-life of 10 seconds, meaning that if the events quit 2110 * happening, then the rate returned from the fmeter_getrate() 2111 * will be cut in half each 10 seconds, until it converges to zero. 2112 * 2113 * It is not worth doing a real infinitely recursive filter. If more 2114 * than FM_MAXTICKS ticks have elapsed since the last filter event, 2115 * just compute FM_MAXTICKS ticks worth, by which point the level 2116 * will be stable. 2117 * 2118 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 2119 * arithmetic overflow in the fmeter_update() routine. 2120 * 2121 * Given the simple 32 bit integer arithmetic used, this meter works 2122 * best for reporting rates between one per millisecond (msec) and 2123 * one per 32 (approx) seconds. At constant rates faster than one 2124 * per msec it maxes out at values just under 1,000,000. At constant 2125 * rates between one per msec, and one per second it will stabilize 2126 * to a value N*1000, where N is the rate of events per second. 2127 * At constant rates between one per second and one per 32 seconds, 2128 * it will be choppy, moving up on the seconds that have an event, 2129 * and then decaying until the next event. At rates slower than 2130 * about one in 32 seconds, it decays all the way back to zero between 2131 * each event. 2132 */ 2133 2134 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 2135 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 2136 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 2137 #define FM_SCALE 1000 /* faux fixed point scale */ 2138 2139 /* Initialize a frequency meter */ 2140 static void fmeter_init(struct fmeter *fmp) 2141 { 2142 fmp->cnt = 0; 2143 fmp->val = 0; 2144 fmp->time = 0; 2145 spin_lock_init(&fmp->lock); 2146 } 2147 2148 /* Internal meter update - process cnt events and update value */ 2149 static void fmeter_update(struct fmeter *fmp) 2150 { 2151 time64_t now; 2152 u32 ticks; 2153 2154 now = ktime_get_seconds(); 2155 ticks = now - fmp->time; 2156 2157 if (ticks == 0) 2158 return; 2159 2160 ticks = min(FM_MAXTICKS, ticks); 2161 while (ticks-- > 0) 2162 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2163 fmp->time = now; 2164 2165 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2166 fmp->cnt = 0; 2167 } 2168 2169 /* Process any previous ticks, then bump cnt by one (times scale). */ 2170 static void fmeter_markevent(struct fmeter *fmp) 2171 { 2172 spin_lock(&fmp->lock); 2173 fmeter_update(fmp); 2174 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2175 spin_unlock(&fmp->lock); 2176 } 2177 2178 /* Process any previous ticks, then return current value. */ 2179 static int fmeter_getrate(struct fmeter *fmp) 2180 { 2181 int val; 2182 2183 spin_lock(&fmp->lock); 2184 fmeter_update(fmp); 2185 val = fmp->val; 2186 spin_unlock(&fmp->lock); 2187 return val; 2188 } 2189 2190 static struct cpuset *cpuset_attach_old_cs; 2191 2192 /* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */ 2193 static int cpuset_can_attach(struct cgroup_taskset *tset) 2194 { 2195 struct cgroup_subsys_state *css; 2196 struct cpuset *cs; 2197 struct task_struct *task; 2198 int ret; 2199 2200 /* used later by cpuset_attach() */ 2201 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2202 cs = css_cs(css); 2203 2204 percpu_down_write(&cpuset_rwsem); 2205 2206 /* allow moving tasks into an empty cpuset if on default hierarchy */ 2207 ret = -ENOSPC; 2208 if (!is_in_v2_mode() && 2209 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) 2210 goto out_unlock; 2211 2212 cgroup_taskset_for_each(task, css, tset) { 2213 ret = task_can_attach(task, cs->cpus_allowed); 2214 if (ret) 2215 goto out_unlock; 2216 ret = security_task_setscheduler(task); 2217 if (ret) 2218 goto out_unlock; 2219 } 2220 2221 /* 2222 * Mark attach is in progress. This makes validate_change() fail 2223 * changes which zero cpus/mems_allowed. 2224 */ 2225 cs->attach_in_progress++; 2226 ret = 0; 2227 out_unlock: 2228 percpu_up_write(&cpuset_rwsem); 2229 return ret; 2230 } 2231 2232 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2233 { 2234 struct cgroup_subsys_state *css; 2235 2236 cgroup_taskset_first(tset, &css); 2237 2238 percpu_down_write(&cpuset_rwsem); 2239 css_cs(css)->attach_in_progress--; 2240 percpu_up_write(&cpuset_rwsem); 2241 } 2242 2243 /* 2244 * Protected by cpuset_rwsem. cpus_attach is used only by cpuset_attach() 2245 * but we can't allocate it dynamically there. Define it global and 2246 * allocate from cpuset_init(). 2247 */ 2248 static cpumask_var_t cpus_attach; 2249 2250 static void cpuset_attach(struct cgroup_taskset *tset) 2251 { 2252 /* static buf protected by cpuset_rwsem */ 2253 static nodemask_t cpuset_attach_nodemask_to; 2254 struct task_struct *task; 2255 struct task_struct *leader; 2256 struct cgroup_subsys_state *css; 2257 struct cpuset *cs; 2258 struct cpuset *oldcs = cpuset_attach_old_cs; 2259 2260 cgroup_taskset_first(tset, &css); 2261 cs = css_cs(css); 2262 2263 percpu_down_write(&cpuset_rwsem); 2264 2265 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2266 2267 cgroup_taskset_for_each(task, css, tset) { 2268 if (cs != &top_cpuset) 2269 guarantee_online_cpus(task, cpus_attach); 2270 else 2271 cpumask_copy(cpus_attach, task_cpu_possible_mask(task)); 2272 /* 2273 * can_attach beforehand should guarantee that this doesn't 2274 * fail. TODO: have a better way to handle failure here 2275 */ 2276 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2277 2278 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2279 cpuset_update_task_spread_flag(cs, task); 2280 } 2281 2282 /* 2283 * Change mm for all threadgroup leaders. This is expensive and may 2284 * sleep and should be moved outside migration path proper. 2285 */ 2286 cpuset_attach_nodemask_to = cs->effective_mems; 2287 cgroup_taskset_for_each_leader(leader, css, tset) { 2288 struct mm_struct *mm = get_task_mm(leader); 2289 2290 if (mm) { 2291 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2292 2293 /* 2294 * old_mems_allowed is the same with mems_allowed 2295 * here, except if this task is being moved 2296 * automatically due to hotplug. In that case 2297 * @mems_allowed has been updated and is empty, so 2298 * @old_mems_allowed is the right nodesets that we 2299 * migrate mm from. 2300 */ 2301 if (is_memory_migrate(cs)) 2302 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2303 &cpuset_attach_nodemask_to); 2304 else 2305 mmput(mm); 2306 } 2307 } 2308 2309 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2310 2311 cs->attach_in_progress--; 2312 if (!cs->attach_in_progress) 2313 wake_up(&cpuset_attach_wq); 2314 2315 percpu_up_write(&cpuset_rwsem); 2316 } 2317 2318 /* The various types of files and directories in a cpuset file system */ 2319 2320 typedef enum { 2321 FILE_MEMORY_MIGRATE, 2322 FILE_CPULIST, 2323 FILE_MEMLIST, 2324 FILE_EFFECTIVE_CPULIST, 2325 FILE_EFFECTIVE_MEMLIST, 2326 FILE_SUBPARTS_CPULIST, 2327 FILE_CPU_EXCLUSIVE, 2328 FILE_MEM_EXCLUSIVE, 2329 FILE_MEM_HARDWALL, 2330 FILE_SCHED_LOAD_BALANCE, 2331 FILE_PARTITION_ROOT, 2332 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2333 FILE_MEMORY_PRESSURE_ENABLED, 2334 FILE_MEMORY_PRESSURE, 2335 FILE_SPREAD_PAGE, 2336 FILE_SPREAD_SLAB, 2337 } cpuset_filetype_t; 2338 2339 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2340 u64 val) 2341 { 2342 struct cpuset *cs = css_cs(css); 2343 cpuset_filetype_t type = cft->private; 2344 int retval = 0; 2345 2346 cpus_read_lock(); 2347 percpu_down_write(&cpuset_rwsem); 2348 if (!is_cpuset_online(cs)) { 2349 retval = -ENODEV; 2350 goto out_unlock; 2351 } 2352 2353 switch (type) { 2354 case FILE_CPU_EXCLUSIVE: 2355 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2356 break; 2357 case FILE_MEM_EXCLUSIVE: 2358 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2359 break; 2360 case FILE_MEM_HARDWALL: 2361 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2362 break; 2363 case FILE_SCHED_LOAD_BALANCE: 2364 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2365 break; 2366 case FILE_MEMORY_MIGRATE: 2367 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2368 break; 2369 case FILE_MEMORY_PRESSURE_ENABLED: 2370 cpuset_memory_pressure_enabled = !!val; 2371 break; 2372 case FILE_SPREAD_PAGE: 2373 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2374 break; 2375 case FILE_SPREAD_SLAB: 2376 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2377 break; 2378 default: 2379 retval = -EINVAL; 2380 break; 2381 } 2382 out_unlock: 2383 percpu_up_write(&cpuset_rwsem); 2384 cpus_read_unlock(); 2385 return retval; 2386 } 2387 2388 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2389 s64 val) 2390 { 2391 struct cpuset *cs = css_cs(css); 2392 cpuset_filetype_t type = cft->private; 2393 int retval = -ENODEV; 2394 2395 cpus_read_lock(); 2396 percpu_down_write(&cpuset_rwsem); 2397 if (!is_cpuset_online(cs)) 2398 goto out_unlock; 2399 2400 switch (type) { 2401 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2402 retval = update_relax_domain_level(cs, val); 2403 break; 2404 default: 2405 retval = -EINVAL; 2406 break; 2407 } 2408 out_unlock: 2409 percpu_up_write(&cpuset_rwsem); 2410 cpus_read_unlock(); 2411 return retval; 2412 } 2413 2414 /* 2415 * Common handling for a write to a "cpus" or "mems" file. 2416 */ 2417 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2418 char *buf, size_t nbytes, loff_t off) 2419 { 2420 struct cpuset *cs = css_cs(of_css(of)); 2421 struct cpuset *trialcs; 2422 int retval = -ENODEV; 2423 2424 buf = strstrip(buf); 2425 2426 /* 2427 * CPU or memory hotunplug may leave @cs w/o any execution 2428 * resources, in which case the hotplug code asynchronously updates 2429 * configuration and transfers all tasks to the nearest ancestor 2430 * which can execute. 2431 * 2432 * As writes to "cpus" or "mems" may restore @cs's execution 2433 * resources, wait for the previously scheduled operations before 2434 * proceeding, so that we don't end up keep removing tasks added 2435 * after execution capability is restored. 2436 * 2437 * cpuset_hotplug_work calls back into cgroup core via 2438 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2439 * operation like this one can lead to a deadlock through kernfs 2440 * active_ref protection. Let's break the protection. Losing the 2441 * protection is okay as we check whether @cs is online after 2442 * grabbing cpuset_rwsem anyway. This only happens on the legacy 2443 * hierarchies. 2444 */ 2445 css_get(&cs->css); 2446 kernfs_break_active_protection(of->kn); 2447 flush_work(&cpuset_hotplug_work); 2448 2449 cpus_read_lock(); 2450 percpu_down_write(&cpuset_rwsem); 2451 if (!is_cpuset_online(cs)) 2452 goto out_unlock; 2453 2454 trialcs = alloc_trial_cpuset(cs); 2455 if (!trialcs) { 2456 retval = -ENOMEM; 2457 goto out_unlock; 2458 } 2459 2460 switch (of_cft(of)->private) { 2461 case FILE_CPULIST: 2462 retval = update_cpumask(cs, trialcs, buf); 2463 break; 2464 case FILE_MEMLIST: 2465 retval = update_nodemask(cs, trialcs, buf); 2466 break; 2467 default: 2468 retval = -EINVAL; 2469 break; 2470 } 2471 2472 free_cpuset(trialcs); 2473 out_unlock: 2474 percpu_up_write(&cpuset_rwsem); 2475 cpus_read_unlock(); 2476 kernfs_unbreak_active_protection(of->kn); 2477 css_put(&cs->css); 2478 flush_workqueue(cpuset_migrate_mm_wq); 2479 return retval ?: nbytes; 2480 } 2481 2482 /* 2483 * These ascii lists should be read in a single call, by using a user 2484 * buffer large enough to hold the entire map. If read in smaller 2485 * chunks, there is no guarantee of atomicity. Since the display format 2486 * used, list of ranges of sequential numbers, is variable length, 2487 * and since these maps can change value dynamically, one could read 2488 * gibberish by doing partial reads while a list was changing. 2489 */ 2490 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2491 { 2492 struct cpuset *cs = css_cs(seq_css(sf)); 2493 cpuset_filetype_t type = seq_cft(sf)->private; 2494 int ret = 0; 2495 2496 spin_lock_irq(&callback_lock); 2497 2498 switch (type) { 2499 case FILE_CPULIST: 2500 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2501 break; 2502 case FILE_MEMLIST: 2503 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2504 break; 2505 case FILE_EFFECTIVE_CPULIST: 2506 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2507 break; 2508 case FILE_EFFECTIVE_MEMLIST: 2509 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2510 break; 2511 case FILE_SUBPARTS_CPULIST: 2512 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2513 break; 2514 default: 2515 ret = -EINVAL; 2516 } 2517 2518 spin_unlock_irq(&callback_lock); 2519 return ret; 2520 } 2521 2522 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2523 { 2524 struct cpuset *cs = css_cs(css); 2525 cpuset_filetype_t type = cft->private; 2526 switch (type) { 2527 case FILE_CPU_EXCLUSIVE: 2528 return is_cpu_exclusive(cs); 2529 case FILE_MEM_EXCLUSIVE: 2530 return is_mem_exclusive(cs); 2531 case FILE_MEM_HARDWALL: 2532 return is_mem_hardwall(cs); 2533 case FILE_SCHED_LOAD_BALANCE: 2534 return is_sched_load_balance(cs); 2535 case FILE_MEMORY_MIGRATE: 2536 return is_memory_migrate(cs); 2537 case FILE_MEMORY_PRESSURE_ENABLED: 2538 return cpuset_memory_pressure_enabled; 2539 case FILE_MEMORY_PRESSURE: 2540 return fmeter_getrate(&cs->fmeter); 2541 case FILE_SPREAD_PAGE: 2542 return is_spread_page(cs); 2543 case FILE_SPREAD_SLAB: 2544 return is_spread_slab(cs); 2545 default: 2546 BUG(); 2547 } 2548 2549 /* Unreachable but makes gcc happy */ 2550 return 0; 2551 } 2552 2553 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2554 { 2555 struct cpuset *cs = css_cs(css); 2556 cpuset_filetype_t type = cft->private; 2557 switch (type) { 2558 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2559 return cs->relax_domain_level; 2560 default: 2561 BUG(); 2562 } 2563 2564 /* Unreachable but makes gcc happy */ 2565 return 0; 2566 } 2567 2568 static int sched_partition_show(struct seq_file *seq, void *v) 2569 { 2570 struct cpuset *cs = css_cs(seq_css(seq)); 2571 2572 switch (cs->partition_root_state) { 2573 case PRS_ENABLED: 2574 seq_puts(seq, "root\n"); 2575 break; 2576 case PRS_DISABLED: 2577 seq_puts(seq, "member\n"); 2578 break; 2579 case PRS_ERROR: 2580 seq_puts(seq, "root invalid\n"); 2581 break; 2582 } 2583 return 0; 2584 } 2585 2586 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 2587 size_t nbytes, loff_t off) 2588 { 2589 struct cpuset *cs = css_cs(of_css(of)); 2590 int val; 2591 int retval = -ENODEV; 2592 2593 buf = strstrip(buf); 2594 2595 /* 2596 * Convert "root" to ENABLED, and convert "member" to DISABLED. 2597 */ 2598 if (!strcmp(buf, "root")) 2599 val = PRS_ENABLED; 2600 else if (!strcmp(buf, "member")) 2601 val = PRS_DISABLED; 2602 else 2603 return -EINVAL; 2604 2605 css_get(&cs->css); 2606 cpus_read_lock(); 2607 percpu_down_write(&cpuset_rwsem); 2608 if (!is_cpuset_online(cs)) 2609 goto out_unlock; 2610 2611 retval = update_prstate(cs, val); 2612 out_unlock: 2613 percpu_up_write(&cpuset_rwsem); 2614 cpus_read_unlock(); 2615 css_put(&cs->css); 2616 return retval ?: nbytes; 2617 } 2618 2619 /* 2620 * for the common functions, 'private' gives the type of file 2621 */ 2622 2623 static struct cftype legacy_files[] = { 2624 { 2625 .name = "cpus", 2626 .seq_show = cpuset_common_seq_show, 2627 .write = cpuset_write_resmask, 2628 .max_write_len = (100U + 6 * NR_CPUS), 2629 .private = FILE_CPULIST, 2630 }, 2631 2632 { 2633 .name = "mems", 2634 .seq_show = cpuset_common_seq_show, 2635 .write = cpuset_write_resmask, 2636 .max_write_len = (100U + 6 * MAX_NUMNODES), 2637 .private = FILE_MEMLIST, 2638 }, 2639 2640 { 2641 .name = "effective_cpus", 2642 .seq_show = cpuset_common_seq_show, 2643 .private = FILE_EFFECTIVE_CPULIST, 2644 }, 2645 2646 { 2647 .name = "effective_mems", 2648 .seq_show = cpuset_common_seq_show, 2649 .private = FILE_EFFECTIVE_MEMLIST, 2650 }, 2651 2652 { 2653 .name = "cpu_exclusive", 2654 .read_u64 = cpuset_read_u64, 2655 .write_u64 = cpuset_write_u64, 2656 .private = FILE_CPU_EXCLUSIVE, 2657 }, 2658 2659 { 2660 .name = "mem_exclusive", 2661 .read_u64 = cpuset_read_u64, 2662 .write_u64 = cpuset_write_u64, 2663 .private = FILE_MEM_EXCLUSIVE, 2664 }, 2665 2666 { 2667 .name = "mem_hardwall", 2668 .read_u64 = cpuset_read_u64, 2669 .write_u64 = cpuset_write_u64, 2670 .private = FILE_MEM_HARDWALL, 2671 }, 2672 2673 { 2674 .name = "sched_load_balance", 2675 .read_u64 = cpuset_read_u64, 2676 .write_u64 = cpuset_write_u64, 2677 .private = FILE_SCHED_LOAD_BALANCE, 2678 }, 2679 2680 { 2681 .name = "sched_relax_domain_level", 2682 .read_s64 = cpuset_read_s64, 2683 .write_s64 = cpuset_write_s64, 2684 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 2685 }, 2686 2687 { 2688 .name = "memory_migrate", 2689 .read_u64 = cpuset_read_u64, 2690 .write_u64 = cpuset_write_u64, 2691 .private = FILE_MEMORY_MIGRATE, 2692 }, 2693 2694 { 2695 .name = "memory_pressure", 2696 .read_u64 = cpuset_read_u64, 2697 .private = FILE_MEMORY_PRESSURE, 2698 }, 2699 2700 { 2701 .name = "memory_spread_page", 2702 .read_u64 = cpuset_read_u64, 2703 .write_u64 = cpuset_write_u64, 2704 .private = FILE_SPREAD_PAGE, 2705 }, 2706 2707 { 2708 .name = "memory_spread_slab", 2709 .read_u64 = cpuset_read_u64, 2710 .write_u64 = cpuset_write_u64, 2711 .private = FILE_SPREAD_SLAB, 2712 }, 2713 2714 { 2715 .name = "memory_pressure_enabled", 2716 .flags = CFTYPE_ONLY_ON_ROOT, 2717 .read_u64 = cpuset_read_u64, 2718 .write_u64 = cpuset_write_u64, 2719 .private = FILE_MEMORY_PRESSURE_ENABLED, 2720 }, 2721 2722 { } /* terminate */ 2723 }; 2724 2725 /* 2726 * This is currently a minimal set for the default hierarchy. It can be 2727 * expanded later on by migrating more features and control files from v1. 2728 */ 2729 static struct cftype dfl_files[] = { 2730 { 2731 .name = "cpus", 2732 .seq_show = cpuset_common_seq_show, 2733 .write = cpuset_write_resmask, 2734 .max_write_len = (100U + 6 * NR_CPUS), 2735 .private = FILE_CPULIST, 2736 .flags = CFTYPE_NOT_ON_ROOT, 2737 }, 2738 2739 { 2740 .name = "mems", 2741 .seq_show = cpuset_common_seq_show, 2742 .write = cpuset_write_resmask, 2743 .max_write_len = (100U + 6 * MAX_NUMNODES), 2744 .private = FILE_MEMLIST, 2745 .flags = CFTYPE_NOT_ON_ROOT, 2746 }, 2747 2748 { 2749 .name = "cpus.effective", 2750 .seq_show = cpuset_common_seq_show, 2751 .private = FILE_EFFECTIVE_CPULIST, 2752 }, 2753 2754 { 2755 .name = "mems.effective", 2756 .seq_show = cpuset_common_seq_show, 2757 .private = FILE_EFFECTIVE_MEMLIST, 2758 }, 2759 2760 { 2761 .name = "cpus.partition", 2762 .seq_show = sched_partition_show, 2763 .write = sched_partition_write, 2764 .private = FILE_PARTITION_ROOT, 2765 .flags = CFTYPE_NOT_ON_ROOT, 2766 .file_offset = offsetof(struct cpuset, partition_file), 2767 }, 2768 2769 { 2770 .name = "cpus.subpartitions", 2771 .seq_show = cpuset_common_seq_show, 2772 .private = FILE_SUBPARTS_CPULIST, 2773 .flags = CFTYPE_DEBUG, 2774 }, 2775 2776 { } /* terminate */ 2777 }; 2778 2779 2780 /* 2781 * cpuset_css_alloc - allocate a cpuset css 2782 * cgrp: control group that the new cpuset will be part of 2783 */ 2784 2785 static struct cgroup_subsys_state * 2786 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 2787 { 2788 struct cpuset *cs; 2789 2790 if (!parent_css) 2791 return &top_cpuset.css; 2792 2793 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 2794 if (!cs) 2795 return ERR_PTR(-ENOMEM); 2796 2797 if (alloc_cpumasks(cs, NULL)) { 2798 kfree(cs); 2799 return ERR_PTR(-ENOMEM); 2800 } 2801 2802 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 2803 nodes_clear(cs->mems_allowed); 2804 nodes_clear(cs->effective_mems); 2805 fmeter_init(&cs->fmeter); 2806 cs->relax_domain_level = -1; 2807 2808 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 2809 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 2810 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 2811 2812 return &cs->css; 2813 } 2814 2815 static int cpuset_css_online(struct cgroup_subsys_state *css) 2816 { 2817 struct cpuset *cs = css_cs(css); 2818 struct cpuset *parent = parent_cs(cs); 2819 struct cpuset *tmp_cs; 2820 struct cgroup_subsys_state *pos_css; 2821 2822 if (!parent) 2823 return 0; 2824 2825 cpus_read_lock(); 2826 percpu_down_write(&cpuset_rwsem); 2827 2828 set_bit(CS_ONLINE, &cs->flags); 2829 if (is_spread_page(parent)) 2830 set_bit(CS_SPREAD_PAGE, &cs->flags); 2831 if (is_spread_slab(parent)) 2832 set_bit(CS_SPREAD_SLAB, &cs->flags); 2833 2834 cpuset_inc(); 2835 2836 spin_lock_irq(&callback_lock); 2837 if (is_in_v2_mode()) { 2838 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 2839 cs->effective_mems = parent->effective_mems; 2840 cs->use_parent_ecpus = true; 2841 parent->child_ecpus_count++; 2842 } 2843 spin_unlock_irq(&callback_lock); 2844 2845 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 2846 goto out_unlock; 2847 2848 /* 2849 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 2850 * set. This flag handling is implemented in cgroup core for 2851 * histrical reasons - the flag may be specified during mount. 2852 * 2853 * Currently, if any sibling cpusets have exclusive cpus or mem, we 2854 * refuse to clone the configuration - thereby refusing the task to 2855 * be entered, and as a result refusing the sys_unshare() or 2856 * clone() which initiated it. If this becomes a problem for some 2857 * users who wish to allow that scenario, then this could be 2858 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 2859 * (and likewise for mems) to the new cgroup. 2860 */ 2861 rcu_read_lock(); 2862 cpuset_for_each_child(tmp_cs, pos_css, parent) { 2863 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 2864 rcu_read_unlock(); 2865 goto out_unlock; 2866 } 2867 } 2868 rcu_read_unlock(); 2869 2870 spin_lock_irq(&callback_lock); 2871 cs->mems_allowed = parent->mems_allowed; 2872 cs->effective_mems = parent->mems_allowed; 2873 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 2874 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 2875 spin_unlock_irq(&callback_lock); 2876 out_unlock: 2877 percpu_up_write(&cpuset_rwsem); 2878 cpus_read_unlock(); 2879 return 0; 2880 } 2881 2882 /* 2883 * If the cpuset being removed has its flag 'sched_load_balance' 2884 * enabled, then simulate turning sched_load_balance off, which 2885 * will call rebuild_sched_domains_locked(). That is not needed 2886 * in the default hierarchy where only changes in partition 2887 * will cause repartitioning. 2888 * 2889 * If the cpuset has the 'sched.partition' flag enabled, simulate 2890 * turning 'sched.partition" off. 2891 */ 2892 2893 static void cpuset_css_offline(struct cgroup_subsys_state *css) 2894 { 2895 struct cpuset *cs = css_cs(css); 2896 2897 cpus_read_lock(); 2898 percpu_down_write(&cpuset_rwsem); 2899 2900 if (is_partition_root(cs)) 2901 update_prstate(cs, 0); 2902 2903 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2904 is_sched_load_balance(cs)) 2905 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2906 2907 if (cs->use_parent_ecpus) { 2908 struct cpuset *parent = parent_cs(cs); 2909 2910 cs->use_parent_ecpus = false; 2911 parent->child_ecpus_count--; 2912 } 2913 2914 cpuset_dec(); 2915 clear_bit(CS_ONLINE, &cs->flags); 2916 2917 percpu_up_write(&cpuset_rwsem); 2918 cpus_read_unlock(); 2919 } 2920 2921 static void cpuset_css_free(struct cgroup_subsys_state *css) 2922 { 2923 struct cpuset *cs = css_cs(css); 2924 2925 free_cpuset(cs); 2926 } 2927 2928 static void cpuset_bind(struct cgroup_subsys_state *root_css) 2929 { 2930 percpu_down_write(&cpuset_rwsem); 2931 spin_lock_irq(&callback_lock); 2932 2933 if (is_in_v2_mode()) { 2934 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 2935 top_cpuset.mems_allowed = node_possible_map; 2936 } else { 2937 cpumask_copy(top_cpuset.cpus_allowed, 2938 top_cpuset.effective_cpus); 2939 top_cpuset.mems_allowed = top_cpuset.effective_mems; 2940 } 2941 2942 spin_unlock_irq(&callback_lock); 2943 percpu_up_write(&cpuset_rwsem); 2944 } 2945 2946 /* 2947 * Make sure the new task conform to the current state of its parent, 2948 * which could have been changed by cpuset just after it inherits the 2949 * state from the parent and before it sits on the cgroup's task list. 2950 */ 2951 static void cpuset_fork(struct task_struct *task) 2952 { 2953 if (task_css_is_root(task, cpuset_cgrp_id)) 2954 return; 2955 2956 set_cpus_allowed_ptr(task, current->cpus_ptr); 2957 task->mems_allowed = current->mems_allowed; 2958 } 2959 2960 struct cgroup_subsys cpuset_cgrp_subsys = { 2961 .css_alloc = cpuset_css_alloc, 2962 .css_online = cpuset_css_online, 2963 .css_offline = cpuset_css_offline, 2964 .css_free = cpuset_css_free, 2965 .can_attach = cpuset_can_attach, 2966 .cancel_attach = cpuset_cancel_attach, 2967 .attach = cpuset_attach, 2968 .post_attach = cpuset_post_attach, 2969 .bind = cpuset_bind, 2970 .fork = cpuset_fork, 2971 .legacy_cftypes = legacy_files, 2972 .dfl_cftypes = dfl_files, 2973 .early_init = true, 2974 .threaded = true, 2975 }; 2976 2977 /** 2978 * cpuset_init - initialize cpusets at system boot 2979 * 2980 * Description: Initialize top_cpuset 2981 **/ 2982 2983 int __init cpuset_init(void) 2984 { 2985 BUG_ON(percpu_init_rwsem(&cpuset_rwsem)); 2986 2987 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 2988 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 2989 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 2990 2991 cpumask_setall(top_cpuset.cpus_allowed); 2992 nodes_setall(top_cpuset.mems_allowed); 2993 cpumask_setall(top_cpuset.effective_cpus); 2994 nodes_setall(top_cpuset.effective_mems); 2995 2996 fmeter_init(&top_cpuset.fmeter); 2997 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 2998 top_cpuset.relax_domain_level = -1; 2999 3000 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 3001 3002 return 0; 3003 } 3004 3005 /* 3006 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 3007 * or memory nodes, we need to walk over the cpuset hierarchy, 3008 * removing that CPU or node from all cpusets. If this removes the 3009 * last CPU or node from a cpuset, then move the tasks in the empty 3010 * cpuset to its next-highest non-empty parent. 3011 */ 3012 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 3013 { 3014 struct cpuset *parent; 3015 3016 /* 3017 * Find its next-highest non-empty parent, (top cpuset 3018 * has online cpus, so can't be empty). 3019 */ 3020 parent = parent_cs(cs); 3021 while (cpumask_empty(parent->cpus_allowed) || 3022 nodes_empty(parent->mems_allowed)) 3023 parent = parent_cs(parent); 3024 3025 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 3026 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 3027 pr_cont_cgroup_name(cs->css.cgroup); 3028 pr_cont("\n"); 3029 } 3030 } 3031 3032 static void 3033 hotplug_update_tasks_legacy(struct cpuset *cs, 3034 struct cpumask *new_cpus, nodemask_t *new_mems, 3035 bool cpus_updated, bool mems_updated) 3036 { 3037 bool is_empty; 3038 3039 spin_lock_irq(&callback_lock); 3040 cpumask_copy(cs->cpus_allowed, new_cpus); 3041 cpumask_copy(cs->effective_cpus, new_cpus); 3042 cs->mems_allowed = *new_mems; 3043 cs->effective_mems = *new_mems; 3044 spin_unlock_irq(&callback_lock); 3045 3046 /* 3047 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 3048 * as the tasks will be migratecd to an ancestor. 3049 */ 3050 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 3051 update_tasks_cpumask(cs); 3052 if (mems_updated && !nodes_empty(cs->mems_allowed)) 3053 update_tasks_nodemask(cs); 3054 3055 is_empty = cpumask_empty(cs->cpus_allowed) || 3056 nodes_empty(cs->mems_allowed); 3057 3058 percpu_up_write(&cpuset_rwsem); 3059 3060 /* 3061 * Move tasks to the nearest ancestor with execution resources, 3062 * This is full cgroup operation which will also call back into 3063 * cpuset. Should be done outside any lock. 3064 */ 3065 if (is_empty) 3066 remove_tasks_in_empty_cpuset(cs); 3067 3068 percpu_down_write(&cpuset_rwsem); 3069 } 3070 3071 static void 3072 hotplug_update_tasks(struct cpuset *cs, 3073 struct cpumask *new_cpus, nodemask_t *new_mems, 3074 bool cpus_updated, bool mems_updated) 3075 { 3076 if (cpumask_empty(new_cpus)) 3077 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3078 if (nodes_empty(*new_mems)) 3079 *new_mems = parent_cs(cs)->effective_mems; 3080 3081 spin_lock_irq(&callback_lock); 3082 cpumask_copy(cs->effective_cpus, new_cpus); 3083 cs->effective_mems = *new_mems; 3084 spin_unlock_irq(&callback_lock); 3085 3086 if (cpus_updated) 3087 update_tasks_cpumask(cs); 3088 if (mems_updated) 3089 update_tasks_nodemask(cs); 3090 } 3091 3092 static bool force_rebuild; 3093 3094 void cpuset_force_rebuild(void) 3095 { 3096 force_rebuild = true; 3097 } 3098 3099 /** 3100 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3101 * @cs: cpuset in interest 3102 * @tmp: the tmpmasks structure pointer 3103 * 3104 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3105 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3106 * all its tasks are moved to the nearest ancestor with both resources. 3107 */ 3108 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3109 { 3110 static cpumask_t new_cpus; 3111 static nodemask_t new_mems; 3112 bool cpus_updated; 3113 bool mems_updated; 3114 struct cpuset *parent; 3115 retry: 3116 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3117 3118 percpu_down_write(&cpuset_rwsem); 3119 3120 /* 3121 * We have raced with task attaching. We wait until attaching 3122 * is finished, so we won't attach a task to an empty cpuset. 3123 */ 3124 if (cs->attach_in_progress) { 3125 percpu_up_write(&cpuset_rwsem); 3126 goto retry; 3127 } 3128 3129 parent = parent_cs(cs); 3130 compute_effective_cpumask(&new_cpus, cs, parent); 3131 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3132 3133 if (cs->nr_subparts_cpus) 3134 /* 3135 * Make sure that CPUs allocated to child partitions 3136 * do not show up in effective_cpus. 3137 */ 3138 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 3139 3140 if (!tmp || !cs->partition_root_state) 3141 goto update_tasks; 3142 3143 /* 3144 * In the unlikely event that a partition root has empty 3145 * effective_cpus or its parent becomes erroneous, we have to 3146 * transition it to the erroneous state. 3147 */ 3148 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) || 3149 (parent->partition_root_state == PRS_ERROR))) { 3150 if (cs->nr_subparts_cpus) { 3151 spin_lock_irq(&callback_lock); 3152 cs->nr_subparts_cpus = 0; 3153 cpumask_clear(cs->subparts_cpus); 3154 spin_unlock_irq(&callback_lock); 3155 compute_effective_cpumask(&new_cpus, cs, parent); 3156 } 3157 3158 /* 3159 * If the effective_cpus is empty because the child 3160 * partitions take away all the CPUs, we can keep 3161 * the current partition and let the child partitions 3162 * fight for available CPUs. 3163 */ 3164 if ((parent->partition_root_state == PRS_ERROR) || 3165 cpumask_empty(&new_cpus)) { 3166 int old_prs; 3167 3168 update_parent_subparts_cpumask(cs, partcmd_disable, 3169 NULL, tmp); 3170 old_prs = cs->partition_root_state; 3171 if (old_prs != PRS_ERROR) { 3172 spin_lock_irq(&callback_lock); 3173 cs->partition_root_state = PRS_ERROR; 3174 spin_unlock_irq(&callback_lock); 3175 notify_partition_change(cs, old_prs, PRS_ERROR); 3176 } 3177 } 3178 cpuset_force_rebuild(); 3179 } 3180 3181 /* 3182 * On the other hand, an erroneous partition root may be transitioned 3183 * back to a regular one or a partition root with no CPU allocated 3184 * from the parent may change to erroneous. 3185 */ 3186 if (is_partition_root(parent) && 3187 ((cs->partition_root_state == PRS_ERROR) || 3188 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) && 3189 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp)) 3190 cpuset_force_rebuild(); 3191 3192 update_tasks: 3193 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3194 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3195 3196 if (mems_updated) 3197 check_insane_mems_config(&new_mems); 3198 3199 if (is_in_v2_mode()) 3200 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3201 cpus_updated, mems_updated); 3202 else 3203 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3204 cpus_updated, mems_updated); 3205 3206 percpu_up_write(&cpuset_rwsem); 3207 } 3208 3209 /** 3210 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3211 * 3212 * This function is called after either CPU or memory configuration has 3213 * changed and updates cpuset accordingly. The top_cpuset is always 3214 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3215 * order to make cpusets transparent (of no affect) on systems that are 3216 * actively using CPU hotplug but making no active use of cpusets. 3217 * 3218 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3219 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3220 * all descendants. 3221 * 3222 * Note that CPU offlining during suspend is ignored. We don't modify 3223 * cpusets across suspend/resume cycles at all. 3224 */ 3225 static void cpuset_hotplug_workfn(struct work_struct *work) 3226 { 3227 static cpumask_t new_cpus; 3228 static nodemask_t new_mems; 3229 bool cpus_updated, mems_updated; 3230 bool on_dfl = is_in_v2_mode(); 3231 struct tmpmasks tmp, *ptmp = NULL; 3232 3233 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3234 ptmp = &tmp; 3235 3236 percpu_down_write(&cpuset_rwsem); 3237 3238 /* fetch the available cpus/mems and find out which changed how */ 3239 cpumask_copy(&new_cpus, cpu_active_mask); 3240 new_mems = node_states[N_MEMORY]; 3241 3242 /* 3243 * If subparts_cpus is populated, it is likely that the check below 3244 * will produce a false positive on cpus_updated when the cpu list 3245 * isn't changed. It is extra work, but it is better to be safe. 3246 */ 3247 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3248 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3249 3250 /* 3251 * In the rare case that hotplug removes all the cpus in subparts_cpus, 3252 * we assumed that cpus are updated. 3253 */ 3254 if (!cpus_updated && top_cpuset.nr_subparts_cpus) 3255 cpus_updated = true; 3256 3257 /* synchronize cpus_allowed to cpu_active_mask */ 3258 if (cpus_updated) { 3259 spin_lock_irq(&callback_lock); 3260 if (!on_dfl) 3261 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3262 /* 3263 * Make sure that CPUs allocated to child partitions 3264 * do not show up in effective_cpus. If no CPU is left, 3265 * we clear the subparts_cpus & let the child partitions 3266 * fight for the CPUs again. 3267 */ 3268 if (top_cpuset.nr_subparts_cpus) { 3269 if (cpumask_subset(&new_cpus, 3270 top_cpuset.subparts_cpus)) { 3271 top_cpuset.nr_subparts_cpus = 0; 3272 cpumask_clear(top_cpuset.subparts_cpus); 3273 } else { 3274 cpumask_andnot(&new_cpus, &new_cpus, 3275 top_cpuset.subparts_cpus); 3276 } 3277 } 3278 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3279 spin_unlock_irq(&callback_lock); 3280 /* we don't mess with cpumasks of tasks in top_cpuset */ 3281 } 3282 3283 /* synchronize mems_allowed to N_MEMORY */ 3284 if (mems_updated) { 3285 spin_lock_irq(&callback_lock); 3286 if (!on_dfl) 3287 top_cpuset.mems_allowed = new_mems; 3288 top_cpuset.effective_mems = new_mems; 3289 spin_unlock_irq(&callback_lock); 3290 update_tasks_nodemask(&top_cpuset); 3291 } 3292 3293 percpu_up_write(&cpuset_rwsem); 3294 3295 /* if cpus or mems changed, we need to propagate to descendants */ 3296 if (cpus_updated || mems_updated) { 3297 struct cpuset *cs; 3298 struct cgroup_subsys_state *pos_css; 3299 3300 rcu_read_lock(); 3301 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3302 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3303 continue; 3304 rcu_read_unlock(); 3305 3306 cpuset_hotplug_update_tasks(cs, ptmp); 3307 3308 rcu_read_lock(); 3309 css_put(&cs->css); 3310 } 3311 rcu_read_unlock(); 3312 } 3313 3314 /* rebuild sched domains if cpus_allowed has changed */ 3315 if (cpus_updated || force_rebuild) { 3316 force_rebuild = false; 3317 rebuild_sched_domains(); 3318 } 3319 3320 free_cpumasks(NULL, ptmp); 3321 } 3322 3323 void cpuset_update_active_cpus(void) 3324 { 3325 /* 3326 * We're inside cpu hotplug critical region which usually nests 3327 * inside cgroup synchronization. Bounce actual hotplug processing 3328 * to a work item to avoid reverse locking order. 3329 */ 3330 schedule_work(&cpuset_hotplug_work); 3331 } 3332 3333 void cpuset_wait_for_hotplug(void) 3334 { 3335 flush_work(&cpuset_hotplug_work); 3336 } 3337 3338 /* 3339 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3340 * Call this routine anytime after node_states[N_MEMORY] changes. 3341 * See cpuset_update_active_cpus() for CPU hotplug handling. 3342 */ 3343 static int cpuset_track_online_nodes(struct notifier_block *self, 3344 unsigned long action, void *arg) 3345 { 3346 schedule_work(&cpuset_hotplug_work); 3347 return NOTIFY_OK; 3348 } 3349 3350 static struct notifier_block cpuset_track_online_nodes_nb = { 3351 .notifier_call = cpuset_track_online_nodes, 3352 .priority = 10, /* ??! */ 3353 }; 3354 3355 /** 3356 * cpuset_init_smp - initialize cpus_allowed 3357 * 3358 * Description: Finish top cpuset after cpu, node maps are initialized 3359 */ 3360 void __init cpuset_init_smp(void) 3361 { 3362 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); 3363 top_cpuset.mems_allowed = node_states[N_MEMORY]; 3364 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3365 3366 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3367 top_cpuset.effective_mems = node_states[N_MEMORY]; 3368 3369 register_hotmemory_notifier(&cpuset_track_online_nodes_nb); 3370 3371 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3372 BUG_ON(!cpuset_migrate_mm_wq); 3373 } 3374 3375 /** 3376 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3377 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3378 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3379 * 3380 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3381 * attached to the specified @tsk. Guaranteed to return some non-empty 3382 * subset of cpu_online_mask, even if this means going outside the 3383 * tasks cpuset. 3384 **/ 3385 3386 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3387 { 3388 unsigned long flags; 3389 3390 spin_lock_irqsave(&callback_lock, flags); 3391 guarantee_online_cpus(tsk, pmask); 3392 spin_unlock_irqrestore(&callback_lock, flags); 3393 } 3394 3395 /** 3396 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3397 * @tsk: pointer to task_struct with which the scheduler is struggling 3398 * 3399 * Description: In the case that the scheduler cannot find an allowed cpu in 3400 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 3401 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 3402 * which will not contain a sane cpumask during cases such as cpu hotplugging. 3403 * This is the absolute last resort for the scheduler and it is only used if 3404 * _every_ other avenue has been traveled. 3405 * 3406 * Returns true if the affinity of @tsk was changed, false otherwise. 3407 **/ 3408 3409 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3410 { 3411 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3412 const struct cpumask *cs_mask; 3413 bool changed = false; 3414 3415 rcu_read_lock(); 3416 cs_mask = task_cs(tsk)->cpus_allowed; 3417 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 3418 do_set_cpus_allowed(tsk, cs_mask); 3419 changed = true; 3420 } 3421 rcu_read_unlock(); 3422 3423 /* 3424 * We own tsk->cpus_allowed, nobody can change it under us. 3425 * 3426 * But we used cs && cs->cpus_allowed lockless and thus can 3427 * race with cgroup_attach_task() or update_cpumask() and get 3428 * the wrong tsk->cpus_allowed. However, both cases imply the 3429 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 3430 * which takes task_rq_lock(). 3431 * 3432 * If we are called after it dropped the lock we must see all 3433 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 3434 * set any mask even if it is not right from task_cs() pov, 3435 * the pending set_cpus_allowed_ptr() will fix things. 3436 * 3437 * select_fallback_rq() will fix things ups and set cpu_possible_mask 3438 * if required. 3439 */ 3440 return changed; 3441 } 3442 3443 void __init cpuset_init_current_mems_allowed(void) 3444 { 3445 nodes_setall(current->mems_allowed); 3446 } 3447 3448 /** 3449 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 3450 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 3451 * 3452 * Description: Returns the nodemask_t mems_allowed of the cpuset 3453 * attached to the specified @tsk. Guaranteed to return some non-empty 3454 * subset of node_states[N_MEMORY], even if this means going outside the 3455 * tasks cpuset. 3456 **/ 3457 3458 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 3459 { 3460 nodemask_t mask; 3461 unsigned long flags; 3462 3463 spin_lock_irqsave(&callback_lock, flags); 3464 rcu_read_lock(); 3465 guarantee_online_mems(task_cs(tsk), &mask); 3466 rcu_read_unlock(); 3467 spin_unlock_irqrestore(&callback_lock, flags); 3468 3469 return mask; 3470 } 3471 3472 /** 3473 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 3474 * @nodemask: the nodemask to be checked 3475 * 3476 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 3477 */ 3478 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 3479 { 3480 return nodes_intersects(*nodemask, current->mems_allowed); 3481 } 3482 3483 /* 3484 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 3485 * mem_hardwall ancestor to the specified cpuset. Call holding 3486 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 3487 * (an unusual configuration), then returns the root cpuset. 3488 */ 3489 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 3490 { 3491 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 3492 cs = parent_cs(cs); 3493 return cs; 3494 } 3495 3496 /** 3497 * cpuset_node_allowed - Can we allocate on a memory node? 3498 * @node: is this an allowed node? 3499 * @gfp_mask: memory allocation flags 3500 * 3501 * If we're in interrupt, yes, we can always allocate. If @node is set in 3502 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 3503 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 3504 * yes. If current has access to memory reserves as an oom victim, yes. 3505 * Otherwise, no. 3506 * 3507 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 3508 * and do not allow allocations outside the current tasks cpuset 3509 * unless the task has been OOM killed. 3510 * GFP_KERNEL allocations are not so marked, so can escape to the 3511 * nearest enclosing hardwalled ancestor cpuset. 3512 * 3513 * Scanning up parent cpusets requires callback_lock. The 3514 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 3515 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 3516 * current tasks mems_allowed came up empty on the first pass over 3517 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 3518 * cpuset are short of memory, might require taking the callback_lock. 3519 * 3520 * The first call here from mm/page_alloc:get_page_from_freelist() 3521 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 3522 * so no allocation on a node outside the cpuset is allowed (unless 3523 * in interrupt, of course). 3524 * 3525 * The second pass through get_page_from_freelist() doesn't even call 3526 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 3527 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 3528 * in alloc_flags. That logic and the checks below have the combined 3529 * affect that: 3530 * in_interrupt - any node ok (current task context irrelevant) 3531 * GFP_ATOMIC - any node ok 3532 * tsk_is_oom_victim - any node ok 3533 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 3534 * GFP_USER - only nodes in current tasks mems allowed ok. 3535 */ 3536 bool __cpuset_node_allowed(int node, gfp_t gfp_mask) 3537 { 3538 struct cpuset *cs; /* current cpuset ancestors */ 3539 int allowed; /* is allocation in zone z allowed? */ 3540 unsigned long flags; 3541 3542 if (in_interrupt()) 3543 return true; 3544 if (node_isset(node, current->mems_allowed)) 3545 return true; 3546 /* 3547 * Allow tasks that have access to memory reserves because they have 3548 * been OOM killed to get memory anywhere. 3549 */ 3550 if (unlikely(tsk_is_oom_victim(current))) 3551 return true; 3552 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 3553 return false; 3554 3555 if (current->flags & PF_EXITING) /* Let dying task have memory */ 3556 return true; 3557 3558 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 3559 spin_lock_irqsave(&callback_lock, flags); 3560 3561 rcu_read_lock(); 3562 cs = nearest_hardwall_ancestor(task_cs(current)); 3563 allowed = node_isset(node, cs->mems_allowed); 3564 rcu_read_unlock(); 3565 3566 spin_unlock_irqrestore(&callback_lock, flags); 3567 return allowed; 3568 } 3569 3570 /** 3571 * cpuset_mem_spread_node() - On which node to begin search for a file page 3572 * cpuset_slab_spread_node() - On which node to begin search for a slab page 3573 * 3574 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 3575 * tasks in a cpuset with is_spread_page or is_spread_slab set), 3576 * and if the memory allocation used cpuset_mem_spread_node() 3577 * to determine on which node to start looking, as it will for 3578 * certain page cache or slab cache pages such as used for file 3579 * system buffers and inode caches, then instead of starting on the 3580 * local node to look for a free page, rather spread the starting 3581 * node around the tasks mems_allowed nodes. 3582 * 3583 * We don't have to worry about the returned node being offline 3584 * because "it can't happen", and even if it did, it would be ok. 3585 * 3586 * The routines calling guarantee_online_mems() are careful to 3587 * only set nodes in task->mems_allowed that are online. So it 3588 * should not be possible for the following code to return an 3589 * offline node. But if it did, that would be ok, as this routine 3590 * is not returning the node where the allocation must be, only 3591 * the node where the search should start. The zonelist passed to 3592 * __alloc_pages() will include all nodes. If the slab allocator 3593 * is passed an offline node, it will fall back to the local node. 3594 * See kmem_cache_alloc_node(). 3595 */ 3596 3597 static int cpuset_spread_node(int *rotor) 3598 { 3599 return *rotor = next_node_in(*rotor, current->mems_allowed); 3600 } 3601 3602 int cpuset_mem_spread_node(void) 3603 { 3604 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 3605 current->cpuset_mem_spread_rotor = 3606 node_random(¤t->mems_allowed); 3607 3608 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 3609 } 3610 3611 int cpuset_slab_spread_node(void) 3612 { 3613 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 3614 current->cpuset_slab_spread_rotor = 3615 node_random(¤t->mems_allowed); 3616 3617 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 3618 } 3619 3620 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 3621 3622 /** 3623 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 3624 * @tsk1: pointer to task_struct of some task. 3625 * @tsk2: pointer to task_struct of some other task. 3626 * 3627 * Description: Return true if @tsk1's mems_allowed intersects the 3628 * mems_allowed of @tsk2. Used by the OOM killer to determine if 3629 * one of the task's memory usage might impact the memory available 3630 * to the other. 3631 **/ 3632 3633 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 3634 const struct task_struct *tsk2) 3635 { 3636 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 3637 } 3638 3639 /** 3640 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 3641 * 3642 * Description: Prints current's name, cpuset name, and cached copy of its 3643 * mems_allowed to the kernel log. 3644 */ 3645 void cpuset_print_current_mems_allowed(void) 3646 { 3647 struct cgroup *cgrp; 3648 3649 rcu_read_lock(); 3650 3651 cgrp = task_cs(current)->css.cgroup; 3652 pr_cont(",cpuset="); 3653 pr_cont_cgroup_name(cgrp); 3654 pr_cont(",mems_allowed=%*pbl", 3655 nodemask_pr_args(¤t->mems_allowed)); 3656 3657 rcu_read_unlock(); 3658 } 3659 3660 /* 3661 * Collection of memory_pressure is suppressed unless 3662 * this flag is enabled by writing "1" to the special 3663 * cpuset file 'memory_pressure_enabled' in the root cpuset. 3664 */ 3665 3666 int cpuset_memory_pressure_enabled __read_mostly; 3667 3668 /** 3669 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 3670 * 3671 * Keep a running average of the rate of synchronous (direct) 3672 * page reclaim efforts initiated by tasks in each cpuset. 3673 * 3674 * This represents the rate at which some task in the cpuset 3675 * ran low on memory on all nodes it was allowed to use, and 3676 * had to enter the kernels page reclaim code in an effort to 3677 * create more free memory by tossing clean pages or swapping 3678 * or writing dirty pages. 3679 * 3680 * Display to user space in the per-cpuset read-only file 3681 * "memory_pressure". Value displayed is an integer 3682 * representing the recent rate of entry into the synchronous 3683 * (direct) page reclaim by any task attached to the cpuset. 3684 **/ 3685 3686 void __cpuset_memory_pressure_bump(void) 3687 { 3688 rcu_read_lock(); 3689 fmeter_markevent(&task_cs(current)->fmeter); 3690 rcu_read_unlock(); 3691 } 3692 3693 #ifdef CONFIG_PROC_PID_CPUSET 3694 /* 3695 * proc_cpuset_show() 3696 * - Print tasks cpuset path into seq_file. 3697 * - Used for /proc/<pid>/cpuset. 3698 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 3699 * doesn't really matter if tsk->cpuset changes after we read it, 3700 * and we take cpuset_rwsem, keeping cpuset_attach() from changing it 3701 * anyway. 3702 */ 3703 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 3704 struct pid *pid, struct task_struct *tsk) 3705 { 3706 char *buf; 3707 struct cgroup_subsys_state *css; 3708 int retval; 3709 3710 retval = -ENOMEM; 3711 buf = kmalloc(PATH_MAX, GFP_KERNEL); 3712 if (!buf) 3713 goto out; 3714 3715 css = task_get_css(tsk, cpuset_cgrp_id); 3716 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 3717 current->nsproxy->cgroup_ns); 3718 css_put(css); 3719 if (retval >= PATH_MAX) 3720 retval = -ENAMETOOLONG; 3721 if (retval < 0) 3722 goto out_free; 3723 seq_puts(m, buf); 3724 seq_putc(m, '\n'); 3725 retval = 0; 3726 out_free: 3727 kfree(buf); 3728 out: 3729 return retval; 3730 } 3731 #endif /* CONFIG_PROC_PID_CPUSET */ 3732 3733 /* Display task mems_allowed in /proc/<pid>/status file. */ 3734 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 3735 { 3736 seq_printf(m, "Mems_allowed:\t%*pb\n", 3737 nodemask_pr_args(&task->mems_allowed)); 3738 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 3739 nodemask_pr_args(&task->mems_allowed)); 3740 } 3741