1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 #include "cgroup-internal.h" 25 #include "cpuset-internal.h" 26 27 #include <linux/init.h> 28 #include <linux/interrupt.h> 29 #include <linux/kernel.h> 30 #include <linux/mempolicy.h> 31 #include <linux/mm.h> 32 #include <linux/memory.h> 33 #include <linux/export.h> 34 #include <linux/rcupdate.h> 35 #include <linux/sched.h> 36 #include <linux/sched/deadline.h> 37 #include <linux/sched/mm.h> 38 #include <linux/sched/task.h> 39 #include <linux/security.h> 40 #include <linux/oom.h> 41 #include <linux/sched/isolation.h> 42 #include <linux/wait.h> 43 #include <linux/workqueue.h> 44 45 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 46 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 47 48 /* 49 * There could be abnormal cpuset configurations for cpu or memory 50 * node binding, add this key to provide a quick low-cost judgment 51 * of the situation. 52 */ 53 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 54 55 static const char * const perr_strings[] = { 56 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive", 57 [PERR_INVPARENT] = "Parent is an invalid partition root", 58 [PERR_NOTPART] = "Parent is not a partition root", 59 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", 60 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", 61 [PERR_HOTPLUG] = "No cpu available due to hotplug", 62 [PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty", 63 [PERR_HKEEPING] = "partition config conflicts with housekeeping setup", 64 [PERR_ACCESS] = "Enable partition not permitted", 65 }; 66 67 /* 68 * Exclusive CPUs distributed out to sub-partitions of top_cpuset 69 */ 70 static cpumask_var_t subpartitions_cpus; 71 72 /* 73 * Exclusive CPUs in isolated partitions 74 */ 75 static cpumask_var_t isolated_cpus; 76 77 /* 78 * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot 79 */ 80 static cpumask_var_t boot_hk_cpus; 81 static bool have_boot_isolcpus; 82 83 /* List of remote partition root children */ 84 static struct list_head remote_children; 85 86 /* 87 * A flag to force sched domain rebuild at the end of an operation while 88 * inhibiting it in the intermediate stages when set. Currently it is only 89 * set in hotplug code. 90 */ 91 static bool force_sd_rebuild; 92 93 /* 94 * Partition root states: 95 * 96 * 0 - member (not a partition root) 97 * 1 - partition root 98 * 2 - partition root without load balancing (isolated) 99 * -1 - invalid partition root 100 * -2 - invalid isolated partition root 101 * 102 * There are 2 types of partitions - local or remote. Local partitions are 103 * those whose parents are partition root themselves. Setting of 104 * cpuset.cpus.exclusive are optional in setting up local partitions. 105 * Remote partitions are those whose parents are not partition roots. Passing 106 * down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor 107 * nodes are mandatory in creating a remote partition. 108 * 109 * For simplicity, a local partition can be created under a local or remote 110 * partition but a remote partition cannot have any partition root in its 111 * ancestor chain except the cgroup root. 112 */ 113 #define PRS_MEMBER 0 114 #define PRS_ROOT 1 115 #define PRS_ISOLATED 2 116 #define PRS_INVALID_ROOT -1 117 #define PRS_INVALID_ISOLATED -2 118 119 static inline bool is_prs_invalid(int prs_state) 120 { 121 return prs_state < 0; 122 } 123 124 /* 125 * Temporary cpumasks for working with partitions that are passed among 126 * functions to avoid memory allocation in inner functions. 127 */ 128 struct tmpmasks { 129 cpumask_var_t addmask, delmask; /* For partition root */ 130 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 131 }; 132 133 void inc_dl_tasks_cs(struct task_struct *p) 134 { 135 struct cpuset *cs = task_cs(p); 136 137 cs->nr_deadline_tasks++; 138 } 139 140 void dec_dl_tasks_cs(struct task_struct *p) 141 { 142 struct cpuset *cs = task_cs(p); 143 144 cs->nr_deadline_tasks--; 145 } 146 147 static inline int is_partition_valid(const struct cpuset *cs) 148 { 149 return cs->partition_root_state > 0; 150 } 151 152 static inline int is_partition_invalid(const struct cpuset *cs) 153 { 154 return cs->partition_root_state < 0; 155 } 156 157 /* 158 * Callers should hold callback_lock to modify partition_root_state. 159 */ 160 static inline void make_partition_invalid(struct cpuset *cs) 161 { 162 if (cs->partition_root_state > 0) 163 cs->partition_root_state = -cs->partition_root_state; 164 } 165 166 /* 167 * Send notification event of whenever partition_root_state changes. 168 */ 169 static inline void notify_partition_change(struct cpuset *cs, int old_prs) 170 { 171 if (old_prs == cs->partition_root_state) 172 return; 173 cgroup_file_notify(&cs->partition_file); 174 175 /* Reset prs_err if not invalid */ 176 if (is_partition_valid(cs)) 177 WRITE_ONCE(cs->prs_err, PERR_NONE); 178 } 179 180 static struct cpuset top_cpuset = { 181 .flags = BIT(CS_ONLINE) | BIT(CS_CPU_EXCLUSIVE) | 182 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE), 183 .partition_root_state = PRS_ROOT, 184 .relax_domain_level = -1, 185 .remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling), 186 }; 187 188 /* 189 * There are two global locks guarding cpuset structures - cpuset_mutex and 190 * callback_lock. We also require taking task_lock() when dereferencing a 191 * task's cpuset pointer. See "The task_lock() exception", at the end of this 192 * comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems 193 * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset 194 * structures. Note that cpuset_mutex needs to be a mutex as it is used in 195 * paths that rely on priority inheritance (e.g. scheduler - on RT) for 196 * correctness. 197 * 198 * A task must hold both locks to modify cpusets. If a task holds 199 * cpuset_mutex, it blocks others, ensuring that it is the only task able to 200 * also acquire callback_lock and be able to modify cpusets. It can perform 201 * various checks on the cpuset structure first, knowing nothing will change. 202 * It can also allocate memory while just holding cpuset_mutex. While it is 203 * performing these checks, various callback routines can briefly acquire 204 * callback_lock to query cpusets. Once it is ready to make the changes, it 205 * takes callback_lock, blocking everyone else. 206 * 207 * Calls to the kernel memory allocator can not be made while holding 208 * callback_lock, as that would risk double tripping on callback_lock 209 * from one of the callbacks into the cpuset code from within 210 * __alloc_pages(). 211 * 212 * If a task is only holding callback_lock, then it has read-only 213 * access to cpusets. 214 * 215 * Now, the task_struct fields mems_allowed and mempolicy may be changed 216 * by other task, we use alloc_lock in the task_struct fields to protect 217 * them. 218 * 219 * The cpuset_common_seq_show() handlers only hold callback_lock across 220 * small pieces of code, such as when reading out possibly multi-word 221 * cpumasks and nodemasks. 222 * 223 * Accessing a task's cpuset should be done in accordance with the 224 * guidelines for accessing subsystem state in kernel/cgroup.c 225 */ 226 227 static DEFINE_MUTEX(cpuset_mutex); 228 229 void cpuset_lock(void) 230 { 231 mutex_lock(&cpuset_mutex); 232 } 233 234 void cpuset_unlock(void) 235 { 236 mutex_unlock(&cpuset_mutex); 237 } 238 239 static DEFINE_SPINLOCK(callback_lock); 240 241 void cpuset_callback_lock_irq(void) 242 { 243 spin_lock_irq(&callback_lock); 244 } 245 246 void cpuset_callback_unlock_irq(void) 247 { 248 spin_unlock_irq(&callback_lock); 249 } 250 251 static struct workqueue_struct *cpuset_migrate_mm_wq; 252 253 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 254 255 static inline void check_insane_mems_config(nodemask_t *nodes) 256 { 257 if (!cpusets_insane_config() && 258 movable_only_nodes(nodes)) { 259 static_branch_enable(&cpusets_insane_config_key); 260 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 261 "Cpuset allocations might fail even with a lot of memory available.\n", 262 nodemask_pr_args(nodes)); 263 } 264 } 265 266 /* 267 * decrease cs->attach_in_progress. 268 * wake_up cpuset_attach_wq if cs->attach_in_progress==0. 269 */ 270 static inline void dec_attach_in_progress_locked(struct cpuset *cs) 271 { 272 lockdep_assert_held(&cpuset_mutex); 273 274 cs->attach_in_progress--; 275 if (!cs->attach_in_progress) 276 wake_up(&cpuset_attach_wq); 277 } 278 279 static inline void dec_attach_in_progress(struct cpuset *cs) 280 { 281 mutex_lock(&cpuset_mutex); 282 dec_attach_in_progress_locked(cs); 283 mutex_unlock(&cpuset_mutex); 284 } 285 286 /* 287 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 288 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 289 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 290 * With v2 behavior, "cpus" and "mems" are always what the users have 291 * requested and won't be changed by hotplug events. Only the effective 292 * cpus or mems will be affected. 293 */ 294 static inline bool is_in_v2_mode(void) 295 { 296 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 297 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 298 } 299 300 /** 301 * partition_is_populated - check if partition has tasks 302 * @cs: partition root to be checked 303 * @excluded_child: a child cpuset to be excluded in task checking 304 * Return: true if there are tasks, false otherwise 305 * 306 * It is assumed that @cs is a valid partition root. @excluded_child should 307 * be non-NULL when this cpuset is going to become a partition itself. 308 */ 309 static inline bool partition_is_populated(struct cpuset *cs, 310 struct cpuset *excluded_child) 311 { 312 struct cgroup_subsys_state *css; 313 struct cpuset *child; 314 315 if (cs->css.cgroup->nr_populated_csets) 316 return true; 317 if (!excluded_child && !cs->nr_subparts) 318 return cgroup_is_populated(cs->css.cgroup); 319 320 rcu_read_lock(); 321 cpuset_for_each_child(child, css, cs) { 322 if (child == excluded_child) 323 continue; 324 if (is_partition_valid(child)) 325 continue; 326 if (cgroup_is_populated(child->css.cgroup)) { 327 rcu_read_unlock(); 328 return true; 329 } 330 } 331 rcu_read_unlock(); 332 return false; 333 } 334 335 /* 336 * Return in pmask the portion of a task's cpusets's cpus_allowed that 337 * are online and are capable of running the task. If none are found, 338 * walk up the cpuset hierarchy until we find one that does have some 339 * appropriate cpus. 340 * 341 * One way or another, we guarantee to return some non-empty subset 342 * of cpu_online_mask. 343 * 344 * Call with callback_lock or cpuset_mutex held. 345 */ 346 static void guarantee_online_cpus(struct task_struct *tsk, 347 struct cpumask *pmask) 348 { 349 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 350 struct cpuset *cs; 351 352 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) 353 cpumask_copy(pmask, cpu_online_mask); 354 355 rcu_read_lock(); 356 cs = task_cs(tsk); 357 358 while (!cpumask_intersects(cs->effective_cpus, pmask)) 359 cs = parent_cs(cs); 360 361 cpumask_and(pmask, pmask, cs->effective_cpus); 362 rcu_read_unlock(); 363 } 364 365 /* 366 * Return in *pmask the portion of a cpusets's mems_allowed that 367 * are online, with memory. If none are online with memory, walk 368 * up the cpuset hierarchy until we find one that does have some 369 * online mems. The top cpuset always has some mems online. 370 * 371 * One way or another, we guarantee to return some non-empty subset 372 * of node_states[N_MEMORY]. 373 * 374 * Call with callback_lock or cpuset_mutex held. 375 */ 376 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 377 { 378 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 379 cs = parent_cs(cs); 380 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 381 } 382 383 /** 384 * alloc_cpumasks - allocate three cpumasks for cpuset 385 * @cs: the cpuset that have cpumasks to be allocated. 386 * @tmp: the tmpmasks structure pointer 387 * Return: 0 if successful, -ENOMEM otherwise. 388 * 389 * Only one of the two input arguments should be non-NULL. 390 */ 391 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 392 { 393 cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4; 394 395 if (cs) { 396 pmask1 = &cs->cpus_allowed; 397 pmask2 = &cs->effective_cpus; 398 pmask3 = &cs->effective_xcpus; 399 pmask4 = &cs->exclusive_cpus; 400 } else { 401 pmask1 = &tmp->new_cpus; 402 pmask2 = &tmp->addmask; 403 pmask3 = &tmp->delmask; 404 pmask4 = NULL; 405 } 406 407 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 408 return -ENOMEM; 409 410 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 411 goto free_one; 412 413 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 414 goto free_two; 415 416 if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL)) 417 goto free_three; 418 419 420 return 0; 421 422 free_three: 423 free_cpumask_var(*pmask3); 424 free_two: 425 free_cpumask_var(*pmask2); 426 free_one: 427 free_cpumask_var(*pmask1); 428 return -ENOMEM; 429 } 430 431 /** 432 * free_cpumasks - free cpumasks in a tmpmasks structure 433 * @cs: the cpuset that have cpumasks to be free. 434 * @tmp: the tmpmasks structure pointer 435 */ 436 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 437 { 438 if (cs) { 439 free_cpumask_var(cs->cpus_allowed); 440 free_cpumask_var(cs->effective_cpus); 441 free_cpumask_var(cs->effective_xcpus); 442 free_cpumask_var(cs->exclusive_cpus); 443 } 444 if (tmp) { 445 free_cpumask_var(tmp->new_cpus); 446 free_cpumask_var(tmp->addmask); 447 free_cpumask_var(tmp->delmask); 448 } 449 } 450 451 /** 452 * alloc_trial_cpuset - allocate a trial cpuset 453 * @cs: the cpuset that the trial cpuset duplicates 454 */ 455 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 456 { 457 struct cpuset *trial; 458 459 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 460 if (!trial) 461 return NULL; 462 463 if (alloc_cpumasks(trial, NULL)) { 464 kfree(trial); 465 return NULL; 466 } 467 468 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 469 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 470 cpumask_copy(trial->effective_xcpus, cs->effective_xcpus); 471 cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus); 472 return trial; 473 } 474 475 /** 476 * free_cpuset - free the cpuset 477 * @cs: the cpuset to be freed 478 */ 479 static inline void free_cpuset(struct cpuset *cs) 480 { 481 free_cpumasks(cs, NULL); 482 kfree(cs); 483 } 484 485 /* Return user specified exclusive CPUs */ 486 static inline struct cpumask *user_xcpus(struct cpuset *cs) 487 { 488 return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed 489 : cs->exclusive_cpus; 490 } 491 492 static inline bool xcpus_empty(struct cpuset *cs) 493 { 494 return cpumask_empty(cs->cpus_allowed) && 495 cpumask_empty(cs->exclusive_cpus); 496 } 497 498 /* 499 * cpusets_are_exclusive() - check if two cpusets are exclusive 500 * 501 * Return true if exclusive, false if not 502 */ 503 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2) 504 { 505 struct cpumask *xcpus1 = user_xcpus(cs1); 506 struct cpumask *xcpus2 = user_xcpus(cs2); 507 508 if (cpumask_intersects(xcpus1, xcpus2)) 509 return false; 510 return true; 511 } 512 513 /* 514 * validate_change() - Used to validate that any proposed cpuset change 515 * follows the structural rules for cpusets. 516 * 517 * If we replaced the flag and mask values of the current cpuset 518 * (cur) with those values in the trial cpuset (trial), would 519 * our various subset and exclusive rules still be valid? Presumes 520 * cpuset_mutex held. 521 * 522 * 'cur' is the address of an actual, in-use cpuset. Operations 523 * such as list traversal that depend on the actual address of the 524 * cpuset in the list must use cur below, not trial. 525 * 526 * 'trial' is the address of bulk structure copy of cur, with 527 * perhaps one or more of the fields cpus_allowed, mems_allowed, 528 * or flags changed to new, trial values. 529 * 530 * Return 0 if valid, -errno if not. 531 */ 532 533 static int validate_change(struct cpuset *cur, struct cpuset *trial) 534 { 535 struct cgroup_subsys_state *css; 536 struct cpuset *c, *par; 537 int ret = 0; 538 539 rcu_read_lock(); 540 541 if (!is_in_v2_mode()) 542 ret = cpuset1_validate_change(cur, trial); 543 if (ret) 544 goto out; 545 546 /* Remaining checks don't apply to root cpuset */ 547 if (cur == &top_cpuset) 548 goto out; 549 550 par = parent_cs(cur); 551 552 /* 553 * Cpusets with tasks - existing or newly being attached - can't 554 * be changed to have empty cpus_allowed or mems_allowed. 555 */ 556 ret = -ENOSPC; 557 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 558 if (!cpumask_empty(cur->cpus_allowed) && 559 cpumask_empty(trial->cpus_allowed)) 560 goto out; 561 if (!nodes_empty(cur->mems_allowed) && 562 nodes_empty(trial->mems_allowed)) 563 goto out; 564 } 565 566 /* 567 * We can't shrink if we won't have enough room for SCHED_DEADLINE 568 * tasks. 569 */ 570 ret = -EBUSY; 571 if (is_cpu_exclusive(cur) && 572 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 573 trial->cpus_allowed)) 574 goto out; 575 576 /* 577 * If either I or some sibling (!= me) is exclusive, we can't 578 * overlap. exclusive_cpus cannot overlap with each other if set. 579 */ 580 ret = -EINVAL; 581 cpuset_for_each_child(c, css, par) { 582 bool txset, cxset; /* Are exclusive_cpus set? */ 583 584 if (c == cur) 585 continue; 586 587 txset = !cpumask_empty(trial->exclusive_cpus); 588 cxset = !cpumask_empty(c->exclusive_cpus); 589 if (is_cpu_exclusive(trial) || is_cpu_exclusive(c) || 590 (txset && cxset)) { 591 if (!cpusets_are_exclusive(trial, c)) 592 goto out; 593 } else if (txset || cxset) { 594 struct cpumask *xcpus, *acpus; 595 596 /* 597 * When just one of the exclusive_cpus's is set, 598 * cpus_allowed of the other cpuset, if set, cannot be 599 * a subset of it or none of those CPUs will be 600 * available if these exclusive CPUs are activated. 601 */ 602 if (txset) { 603 xcpus = trial->exclusive_cpus; 604 acpus = c->cpus_allowed; 605 } else { 606 xcpus = c->exclusive_cpus; 607 acpus = trial->cpus_allowed; 608 } 609 if (!cpumask_empty(acpus) && cpumask_subset(acpus, xcpus)) 610 goto out; 611 } 612 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 613 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 614 goto out; 615 } 616 617 ret = 0; 618 out: 619 rcu_read_unlock(); 620 return ret; 621 } 622 623 #ifdef CONFIG_SMP 624 /* 625 * Helper routine for generate_sched_domains(). 626 * Do cpusets a, b have overlapping effective cpus_allowed masks? 627 */ 628 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 629 { 630 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 631 } 632 633 static void 634 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 635 { 636 if (dattr->relax_domain_level < c->relax_domain_level) 637 dattr->relax_domain_level = c->relax_domain_level; 638 return; 639 } 640 641 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 642 struct cpuset *root_cs) 643 { 644 struct cpuset *cp; 645 struct cgroup_subsys_state *pos_css; 646 647 rcu_read_lock(); 648 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 649 /* skip the whole subtree if @cp doesn't have any CPU */ 650 if (cpumask_empty(cp->cpus_allowed)) { 651 pos_css = css_rightmost_descendant(pos_css); 652 continue; 653 } 654 655 if (is_sched_load_balance(cp)) 656 update_domain_attr(dattr, cp); 657 } 658 rcu_read_unlock(); 659 } 660 661 /* Must be called with cpuset_mutex held. */ 662 static inline int nr_cpusets(void) 663 { 664 /* jump label reference count + the top-level cpuset */ 665 return static_key_count(&cpusets_enabled_key.key) + 1; 666 } 667 668 /* 669 * generate_sched_domains() 670 * 671 * This function builds a partial partition of the systems CPUs 672 * A 'partial partition' is a set of non-overlapping subsets whose 673 * union is a subset of that set. 674 * The output of this function needs to be passed to kernel/sched/core.c 675 * partition_sched_domains() routine, which will rebuild the scheduler's 676 * load balancing domains (sched domains) as specified by that partial 677 * partition. 678 * 679 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 680 * for a background explanation of this. 681 * 682 * Does not return errors, on the theory that the callers of this 683 * routine would rather not worry about failures to rebuild sched 684 * domains when operating in the severe memory shortage situations 685 * that could cause allocation failures below. 686 * 687 * Must be called with cpuset_mutex held. 688 * 689 * The three key local variables below are: 690 * cp - cpuset pointer, used (together with pos_css) to perform a 691 * top-down scan of all cpusets. For our purposes, rebuilding 692 * the schedulers sched domains, we can ignore !is_sched_load_ 693 * balance cpusets. 694 * csa - (for CpuSet Array) Array of pointers to all the cpusets 695 * that need to be load balanced, for convenient iterative 696 * access by the subsequent code that finds the best partition, 697 * i.e the set of domains (subsets) of CPUs such that the 698 * cpus_allowed of every cpuset marked is_sched_load_balance 699 * is a subset of one of these domains, while there are as 700 * many such domains as possible, each as small as possible. 701 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 702 * the kernel/sched/core.c routine partition_sched_domains() in a 703 * convenient format, that can be easily compared to the prior 704 * value to determine what partition elements (sched domains) 705 * were changed (added or removed.) 706 * 707 * Finding the best partition (set of domains): 708 * The double nested loops below over i, j scan over the load 709 * balanced cpusets (using the array of cpuset pointers in csa[]) 710 * looking for pairs of cpusets that have overlapping cpus_allowed 711 * and merging them using a union-find algorithm. 712 * 713 * The union of the cpus_allowed masks from the set of all cpusets 714 * having the same root then form the one element of the partition 715 * (one sched domain) to be passed to partition_sched_domains(). 716 * 717 */ 718 static int generate_sched_domains(cpumask_var_t **domains, 719 struct sched_domain_attr **attributes) 720 { 721 struct cpuset *cp; /* top-down scan of cpusets */ 722 struct cpuset **csa; /* array of all cpuset ptrs */ 723 int csn; /* how many cpuset ptrs in csa so far */ 724 int i, j; /* indices for partition finding loops */ 725 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 726 struct sched_domain_attr *dattr; /* attributes for custom domains */ 727 int ndoms = 0; /* number of sched domains in result */ 728 int nslot; /* next empty doms[] struct cpumask slot */ 729 struct cgroup_subsys_state *pos_css; 730 bool root_load_balance = is_sched_load_balance(&top_cpuset); 731 bool cgrpv2 = cgroup_subsys_on_dfl(cpuset_cgrp_subsys); 732 int nslot_update; 733 734 doms = NULL; 735 dattr = NULL; 736 csa = NULL; 737 738 /* Special case for the 99% of systems with one, full, sched domain */ 739 if (root_load_balance && cpumask_empty(subpartitions_cpus)) { 740 single_root_domain: 741 ndoms = 1; 742 doms = alloc_sched_domains(ndoms); 743 if (!doms) 744 goto done; 745 746 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 747 if (dattr) { 748 *dattr = SD_ATTR_INIT; 749 update_domain_attr_tree(dattr, &top_cpuset); 750 } 751 cpumask_and(doms[0], top_cpuset.effective_cpus, 752 housekeeping_cpumask(HK_TYPE_DOMAIN)); 753 754 goto done; 755 } 756 757 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 758 if (!csa) 759 goto done; 760 csn = 0; 761 762 rcu_read_lock(); 763 if (root_load_balance) 764 csa[csn++] = &top_cpuset; 765 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 766 if (cp == &top_cpuset) 767 continue; 768 769 if (cgrpv2) 770 goto v2; 771 772 /* 773 * v1: 774 * Continue traversing beyond @cp iff @cp has some CPUs and 775 * isn't load balancing. The former is obvious. The 776 * latter: All child cpusets contain a subset of the 777 * parent's cpus, so just skip them, and then we call 778 * update_domain_attr_tree() to calc relax_domain_level of 779 * the corresponding sched domain. 780 */ 781 if (!cpumask_empty(cp->cpus_allowed) && 782 !(is_sched_load_balance(cp) && 783 cpumask_intersects(cp->cpus_allowed, 784 housekeeping_cpumask(HK_TYPE_DOMAIN)))) 785 continue; 786 787 if (is_sched_load_balance(cp) && 788 !cpumask_empty(cp->effective_cpus)) 789 csa[csn++] = cp; 790 791 /* skip @cp's subtree */ 792 pos_css = css_rightmost_descendant(pos_css); 793 continue; 794 795 v2: 796 /* 797 * Only valid partition roots that are not isolated and with 798 * non-empty effective_cpus will be saved into csn[]. 799 */ 800 if ((cp->partition_root_state == PRS_ROOT) && 801 !cpumask_empty(cp->effective_cpus)) 802 csa[csn++] = cp; 803 804 /* 805 * Skip @cp's subtree if not a partition root and has no 806 * exclusive CPUs to be granted to child cpusets. 807 */ 808 if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus)) 809 pos_css = css_rightmost_descendant(pos_css); 810 } 811 rcu_read_unlock(); 812 813 /* 814 * If there are only isolated partitions underneath the cgroup root, 815 * we can optimize out unneeded sched domains scanning. 816 */ 817 if (root_load_balance && (csn == 1)) 818 goto single_root_domain; 819 820 for (i = 0; i < csn; i++) 821 uf_node_init(&csa[i]->node); 822 823 /* Merge overlapping cpusets */ 824 for (i = 0; i < csn; i++) { 825 for (j = i + 1; j < csn; j++) { 826 if (cpusets_overlap(csa[i], csa[j])) { 827 /* 828 * Cgroup v2 shouldn't pass down overlapping 829 * partition root cpusets. 830 */ 831 WARN_ON_ONCE(cgrpv2); 832 uf_union(&csa[i]->node, &csa[j]->node); 833 } 834 } 835 } 836 837 /* Count the total number of domains */ 838 for (i = 0; i < csn; i++) { 839 if (uf_find(&csa[i]->node) == &csa[i]->node) 840 ndoms++; 841 } 842 843 /* 844 * Now we know how many domains to create. 845 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 846 */ 847 doms = alloc_sched_domains(ndoms); 848 if (!doms) 849 goto done; 850 851 /* 852 * The rest of the code, including the scheduler, can deal with 853 * dattr==NULL case. No need to abort if alloc fails. 854 */ 855 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 856 GFP_KERNEL); 857 858 /* 859 * Cgroup v2 doesn't support domain attributes, just set all of them 860 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a 861 * subset of HK_TYPE_DOMAIN housekeeping CPUs. 862 */ 863 if (cgrpv2) { 864 for (i = 0; i < ndoms; i++) { 865 cpumask_copy(doms[i], csa[i]->effective_cpus); 866 if (dattr) 867 dattr[i] = SD_ATTR_INIT; 868 } 869 goto done; 870 } 871 872 for (nslot = 0, i = 0; i < csn; i++) { 873 nslot_update = 0; 874 for (j = i; j < csn; j++) { 875 if (uf_find(&csa[j]->node) == &csa[i]->node) { 876 struct cpumask *dp = doms[nslot]; 877 878 if (i == j) { 879 nslot_update = 1; 880 cpumask_clear(dp); 881 if (dattr) 882 *(dattr + nslot) = SD_ATTR_INIT; 883 } 884 cpumask_or(dp, dp, csa[j]->effective_cpus); 885 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); 886 if (dattr) 887 update_domain_attr_tree(dattr + nslot, csa[j]); 888 } 889 } 890 if (nslot_update) 891 nslot++; 892 } 893 BUG_ON(nslot != ndoms); 894 895 done: 896 kfree(csa); 897 898 /* 899 * Fallback to the default domain if kmalloc() failed. 900 * See comments in partition_sched_domains(). 901 */ 902 if (doms == NULL) 903 ndoms = 1; 904 905 *domains = doms; 906 *attributes = dattr; 907 return ndoms; 908 } 909 910 static void dl_update_tasks_root_domain(struct cpuset *cs) 911 { 912 struct css_task_iter it; 913 struct task_struct *task; 914 915 if (cs->nr_deadline_tasks == 0) 916 return; 917 918 css_task_iter_start(&cs->css, 0, &it); 919 920 while ((task = css_task_iter_next(&it))) 921 dl_add_task_root_domain(task); 922 923 css_task_iter_end(&it); 924 } 925 926 static void dl_rebuild_rd_accounting(void) 927 { 928 struct cpuset *cs = NULL; 929 struct cgroup_subsys_state *pos_css; 930 931 lockdep_assert_held(&cpuset_mutex); 932 lockdep_assert_cpus_held(); 933 lockdep_assert_held(&sched_domains_mutex); 934 935 rcu_read_lock(); 936 937 /* 938 * Clear default root domain DL accounting, it will be computed again 939 * if a task belongs to it. 940 */ 941 dl_clear_root_domain(&def_root_domain); 942 943 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 944 945 if (cpumask_empty(cs->effective_cpus)) { 946 pos_css = css_rightmost_descendant(pos_css); 947 continue; 948 } 949 950 css_get(&cs->css); 951 952 rcu_read_unlock(); 953 954 dl_update_tasks_root_domain(cs); 955 956 rcu_read_lock(); 957 css_put(&cs->css); 958 } 959 rcu_read_unlock(); 960 } 961 962 static void 963 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 964 struct sched_domain_attr *dattr_new) 965 { 966 mutex_lock(&sched_domains_mutex); 967 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 968 dl_rebuild_rd_accounting(); 969 mutex_unlock(&sched_domains_mutex); 970 } 971 972 /* 973 * Rebuild scheduler domains. 974 * 975 * If the flag 'sched_load_balance' of any cpuset with non-empty 976 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 977 * which has that flag enabled, or if any cpuset with a non-empty 978 * 'cpus' is removed, then call this routine to rebuild the 979 * scheduler's dynamic sched domains. 980 * 981 * Call with cpuset_mutex held. Takes cpus_read_lock(). 982 */ 983 void rebuild_sched_domains_locked(void) 984 { 985 struct cgroup_subsys_state *pos_css; 986 struct sched_domain_attr *attr; 987 cpumask_var_t *doms; 988 struct cpuset *cs; 989 int ndoms; 990 991 lockdep_assert_cpus_held(); 992 lockdep_assert_held(&cpuset_mutex); 993 994 /* 995 * If we have raced with CPU hotplug, return early to avoid 996 * passing doms with offlined cpu to partition_sched_domains(). 997 * Anyways, cpuset_handle_hotplug() will rebuild sched domains. 998 * 999 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1000 * should be the same as the active CPUs, so checking only top_cpuset 1001 * is enough to detect racing CPU offlines. 1002 */ 1003 if (cpumask_empty(subpartitions_cpus) && 1004 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1005 return; 1006 1007 /* 1008 * With subpartition CPUs, however, the effective CPUs of a partition 1009 * root should be only a subset of the active CPUs. Since a CPU in any 1010 * partition root could be offlined, all must be checked. 1011 */ 1012 if (!cpumask_empty(subpartitions_cpus)) { 1013 rcu_read_lock(); 1014 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1015 if (!is_partition_valid(cs)) { 1016 pos_css = css_rightmost_descendant(pos_css); 1017 continue; 1018 } 1019 if (!cpumask_subset(cs->effective_cpus, 1020 cpu_active_mask)) { 1021 rcu_read_unlock(); 1022 return; 1023 } 1024 } 1025 rcu_read_unlock(); 1026 } 1027 1028 /* Generate domain masks and attrs */ 1029 ndoms = generate_sched_domains(&doms, &attr); 1030 1031 /* Have scheduler rebuild the domains */ 1032 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1033 } 1034 #else /* !CONFIG_SMP */ 1035 void rebuild_sched_domains_locked(void) 1036 { 1037 } 1038 #endif /* CONFIG_SMP */ 1039 1040 static void rebuild_sched_domains_cpuslocked(void) 1041 { 1042 mutex_lock(&cpuset_mutex); 1043 rebuild_sched_domains_locked(); 1044 mutex_unlock(&cpuset_mutex); 1045 } 1046 1047 void rebuild_sched_domains(void) 1048 { 1049 cpus_read_lock(); 1050 rebuild_sched_domains_cpuslocked(); 1051 cpus_read_unlock(); 1052 } 1053 1054 /** 1055 * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1056 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1057 * @new_cpus: the temp variable for the new effective_cpus mask 1058 * 1059 * Iterate through each task of @cs updating its cpus_allowed to the 1060 * effective cpuset's. As this function is called with cpuset_mutex held, 1061 * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask() 1062 * is used instead of effective_cpus to make sure all offline CPUs are also 1063 * included as hotplug code won't update cpumasks for tasks in top_cpuset. 1064 */ 1065 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) 1066 { 1067 struct css_task_iter it; 1068 struct task_struct *task; 1069 bool top_cs = cs == &top_cpuset; 1070 1071 css_task_iter_start(&cs->css, 0, &it); 1072 while ((task = css_task_iter_next(&it))) { 1073 const struct cpumask *possible_mask = task_cpu_possible_mask(task); 1074 1075 if (top_cs) { 1076 /* 1077 * Percpu kthreads in top_cpuset are ignored 1078 */ 1079 if (kthread_is_per_cpu(task)) 1080 continue; 1081 cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus); 1082 } else { 1083 cpumask_and(new_cpus, possible_mask, cs->effective_cpus); 1084 } 1085 set_cpus_allowed_ptr(task, new_cpus); 1086 } 1087 css_task_iter_end(&it); 1088 } 1089 1090 /** 1091 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1092 * @new_cpus: the temp variable for the new effective_cpus mask 1093 * @cs: the cpuset the need to recompute the new effective_cpus mask 1094 * @parent: the parent cpuset 1095 * 1096 * The result is valid only if the given cpuset isn't a partition root. 1097 */ 1098 static void compute_effective_cpumask(struct cpumask *new_cpus, 1099 struct cpuset *cs, struct cpuset *parent) 1100 { 1101 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1102 } 1103 1104 /* 1105 * Commands for update_parent_effective_cpumask 1106 */ 1107 enum partition_cmd { 1108 partcmd_enable, /* Enable partition root */ 1109 partcmd_enablei, /* Enable isolated partition root */ 1110 partcmd_disable, /* Disable partition root */ 1111 partcmd_update, /* Update parent's effective_cpus */ 1112 partcmd_invalidate, /* Make partition invalid */ 1113 }; 1114 1115 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1116 struct tmpmasks *tmp); 1117 1118 /* 1119 * Update partition exclusive flag 1120 * 1121 * Return: 0 if successful, an error code otherwise 1122 */ 1123 static int update_partition_exclusive(struct cpuset *cs, int new_prs) 1124 { 1125 bool exclusive = (new_prs > PRS_MEMBER); 1126 1127 if (exclusive && !is_cpu_exclusive(cs)) { 1128 if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1)) 1129 return PERR_NOTEXCL; 1130 } else if (!exclusive && is_cpu_exclusive(cs)) { 1131 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1132 cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1133 } 1134 return 0; 1135 } 1136 1137 /* 1138 * Update partition load balance flag and/or rebuild sched domain 1139 * 1140 * Changing load balance flag will automatically call 1141 * rebuild_sched_domains_locked(). 1142 * This function is for cgroup v2 only. 1143 */ 1144 static void update_partition_sd_lb(struct cpuset *cs, int old_prs) 1145 { 1146 int new_prs = cs->partition_root_state; 1147 bool rebuild_domains = (new_prs > 0) || (old_prs > 0); 1148 bool new_lb; 1149 1150 /* 1151 * If cs is not a valid partition root, the load balance state 1152 * will follow its parent. 1153 */ 1154 if (new_prs > 0) { 1155 new_lb = (new_prs != PRS_ISOLATED); 1156 } else { 1157 new_lb = is_sched_load_balance(parent_cs(cs)); 1158 } 1159 if (new_lb != !!is_sched_load_balance(cs)) { 1160 rebuild_domains = true; 1161 if (new_lb) 1162 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1163 else 1164 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1165 } 1166 1167 if (rebuild_domains && !force_sd_rebuild) 1168 rebuild_sched_domains_locked(); 1169 } 1170 1171 /* 1172 * tasks_nocpu_error - Return true if tasks will have no effective_cpus 1173 */ 1174 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs, 1175 struct cpumask *xcpus) 1176 { 1177 /* 1178 * A populated partition (cs or parent) can't have empty effective_cpus 1179 */ 1180 return (cpumask_subset(parent->effective_cpus, xcpus) && 1181 partition_is_populated(parent, cs)) || 1182 (!cpumask_intersects(xcpus, cpu_active_mask) && 1183 partition_is_populated(cs, NULL)); 1184 } 1185 1186 static void reset_partition_data(struct cpuset *cs) 1187 { 1188 struct cpuset *parent = parent_cs(cs); 1189 1190 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 1191 return; 1192 1193 lockdep_assert_held(&callback_lock); 1194 1195 cs->nr_subparts = 0; 1196 if (cpumask_empty(cs->exclusive_cpus)) { 1197 cpumask_clear(cs->effective_xcpus); 1198 if (is_cpu_exclusive(cs)) 1199 clear_bit(CS_CPU_EXCLUSIVE, &cs->flags); 1200 } 1201 if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed)) 1202 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 1203 } 1204 1205 /* 1206 * partition_xcpus_newstate - Exclusive CPUs state change 1207 * @old_prs: old partition_root_state 1208 * @new_prs: new partition_root_state 1209 * @xcpus: exclusive CPUs with state change 1210 */ 1211 static void partition_xcpus_newstate(int old_prs, int new_prs, struct cpumask *xcpus) 1212 { 1213 WARN_ON_ONCE(old_prs == new_prs); 1214 if (new_prs == PRS_ISOLATED) 1215 cpumask_or(isolated_cpus, isolated_cpus, xcpus); 1216 else 1217 cpumask_andnot(isolated_cpus, isolated_cpus, xcpus); 1218 } 1219 1220 /* 1221 * partition_xcpus_add - Add new exclusive CPUs to partition 1222 * @new_prs: new partition_root_state 1223 * @parent: parent cpuset 1224 * @xcpus: exclusive CPUs to be added 1225 * Return: true if isolated_cpus modified, false otherwise 1226 * 1227 * Remote partition if parent == NULL 1228 */ 1229 static bool partition_xcpus_add(int new_prs, struct cpuset *parent, 1230 struct cpumask *xcpus) 1231 { 1232 bool isolcpus_updated; 1233 1234 WARN_ON_ONCE(new_prs < 0); 1235 lockdep_assert_held(&callback_lock); 1236 if (!parent) 1237 parent = &top_cpuset; 1238 1239 1240 if (parent == &top_cpuset) 1241 cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus); 1242 1243 isolcpus_updated = (new_prs != parent->partition_root_state); 1244 if (isolcpus_updated) 1245 partition_xcpus_newstate(parent->partition_root_state, new_prs, 1246 xcpus); 1247 1248 cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus); 1249 return isolcpus_updated; 1250 } 1251 1252 /* 1253 * partition_xcpus_del - Remove exclusive CPUs from partition 1254 * @old_prs: old partition_root_state 1255 * @parent: parent cpuset 1256 * @xcpus: exclusive CPUs to be removed 1257 * Return: true if isolated_cpus modified, false otherwise 1258 * 1259 * Remote partition if parent == NULL 1260 */ 1261 static bool partition_xcpus_del(int old_prs, struct cpuset *parent, 1262 struct cpumask *xcpus) 1263 { 1264 bool isolcpus_updated; 1265 1266 WARN_ON_ONCE(old_prs < 0); 1267 lockdep_assert_held(&callback_lock); 1268 if (!parent) 1269 parent = &top_cpuset; 1270 1271 if (parent == &top_cpuset) 1272 cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus); 1273 1274 isolcpus_updated = (old_prs != parent->partition_root_state); 1275 if (isolcpus_updated) 1276 partition_xcpus_newstate(old_prs, parent->partition_root_state, 1277 xcpus); 1278 1279 cpumask_and(xcpus, xcpus, cpu_active_mask); 1280 cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus); 1281 return isolcpus_updated; 1282 } 1283 1284 static void update_unbound_workqueue_cpumask(bool isolcpus_updated) 1285 { 1286 int ret; 1287 1288 lockdep_assert_cpus_held(); 1289 1290 if (!isolcpus_updated) 1291 return; 1292 1293 ret = workqueue_unbound_exclude_cpumask(isolated_cpus); 1294 WARN_ON_ONCE(ret < 0); 1295 } 1296 1297 /** 1298 * cpuset_cpu_is_isolated - Check if the given CPU is isolated 1299 * @cpu: the CPU number to be checked 1300 * Return: true if CPU is used in an isolated partition, false otherwise 1301 */ 1302 bool cpuset_cpu_is_isolated(int cpu) 1303 { 1304 return cpumask_test_cpu(cpu, isolated_cpus); 1305 } 1306 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated); 1307 1308 /* 1309 * compute_effective_exclusive_cpumask - compute effective exclusive CPUs 1310 * @cs: cpuset 1311 * @xcpus: effective exclusive CPUs value to be set 1312 * Return: true if xcpus is not empty, false otherwise. 1313 * 1314 * Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set), 1315 * it must be a subset of parent's effective_xcpus. 1316 */ 1317 static bool compute_effective_exclusive_cpumask(struct cpuset *cs, 1318 struct cpumask *xcpus) 1319 { 1320 struct cpuset *parent = parent_cs(cs); 1321 1322 if (!xcpus) 1323 xcpus = cs->effective_xcpus; 1324 1325 return cpumask_and(xcpus, user_xcpus(cs), parent->effective_xcpus); 1326 } 1327 1328 static inline bool is_remote_partition(struct cpuset *cs) 1329 { 1330 return !list_empty(&cs->remote_sibling); 1331 } 1332 1333 static inline bool is_local_partition(struct cpuset *cs) 1334 { 1335 return is_partition_valid(cs) && !is_remote_partition(cs); 1336 } 1337 1338 /* 1339 * remote_partition_enable - Enable current cpuset as a remote partition root 1340 * @cs: the cpuset to update 1341 * @new_prs: new partition_root_state 1342 * @tmp: temparary masks 1343 * Return: 0 if successful, errcode if error 1344 * 1345 * Enable the current cpuset to become a remote partition root taking CPUs 1346 * directly from the top cpuset. cpuset_mutex must be held by the caller. 1347 */ 1348 static int remote_partition_enable(struct cpuset *cs, int new_prs, 1349 struct tmpmasks *tmp) 1350 { 1351 bool isolcpus_updated; 1352 1353 /* 1354 * The user must have sysadmin privilege. 1355 */ 1356 if (!capable(CAP_SYS_ADMIN)) 1357 return PERR_ACCESS; 1358 1359 /* 1360 * The requested exclusive_cpus must not be allocated to other 1361 * partitions and it can't use up all the root's effective_cpus. 1362 * 1363 * Note that if there is any local partition root above it or 1364 * remote partition root underneath it, its exclusive_cpus must 1365 * have overlapped with subpartitions_cpus. 1366 */ 1367 compute_effective_exclusive_cpumask(cs, tmp->new_cpus); 1368 if (cpumask_empty(tmp->new_cpus) || 1369 cpumask_intersects(tmp->new_cpus, subpartitions_cpus) || 1370 cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus)) 1371 return PERR_INVCPUS; 1372 1373 spin_lock_irq(&callback_lock); 1374 isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus); 1375 list_add(&cs->remote_sibling, &remote_children); 1376 spin_unlock_irq(&callback_lock); 1377 update_unbound_workqueue_cpumask(isolcpus_updated); 1378 1379 /* 1380 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy. 1381 */ 1382 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1383 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1384 return 0; 1385 } 1386 1387 /* 1388 * remote_partition_disable - Remove current cpuset from remote partition list 1389 * @cs: the cpuset to update 1390 * @tmp: temparary masks 1391 * 1392 * The effective_cpus is also updated. 1393 * 1394 * cpuset_mutex must be held by the caller. 1395 */ 1396 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp) 1397 { 1398 bool isolcpus_updated; 1399 1400 compute_effective_exclusive_cpumask(cs, tmp->new_cpus); 1401 WARN_ON_ONCE(!is_remote_partition(cs)); 1402 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus)); 1403 1404 spin_lock_irq(&callback_lock); 1405 list_del_init(&cs->remote_sibling); 1406 isolcpus_updated = partition_xcpus_del(cs->partition_root_state, 1407 NULL, tmp->new_cpus); 1408 cs->partition_root_state = -cs->partition_root_state; 1409 if (!cs->prs_err) 1410 cs->prs_err = PERR_INVCPUS; 1411 reset_partition_data(cs); 1412 spin_unlock_irq(&callback_lock); 1413 update_unbound_workqueue_cpumask(isolcpus_updated); 1414 1415 /* 1416 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy. 1417 */ 1418 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1419 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1420 } 1421 1422 /* 1423 * remote_cpus_update - cpus_exclusive change of remote partition 1424 * @cs: the cpuset to be updated 1425 * @newmask: the new effective_xcpus mask 1426 * @tmp: temparary masks 1427 * 1428 * top_cpuset and subpartitions_cpus will be updated or partition can be 1429 * invalidated. 1430 */ 1431 static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask, 1432 struct tmpmasks *tmp) 1433 { 1434 bool adding, deleting; 1435 int prs = cs->partition_root_state; 1436 int isolcpus_updated = 0; 1437 1438 if (WARN_ON_ONCE(!is_remote_partition(cs))) 1439 return; 1440 1441 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); 1442 1443 if (cpumask_empty(newmask)) 1444 goto invalidate; 1445 1446 adding = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus); 1447 deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask); 1448 1449 /* 1450 * Additions of remote CPUs is only allowed if those CPUs are 1451 * not allocated to other partitions and there are effective_cpus 1452 * left in the top cpuset. 1453 */ 1454 if (adding && (!capable(CAP_SYS_ADMIN) || 1455 cpumask_intersects(tmp->addmask, subpartitions_cpus) || 1456 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))) 1457 goto invalidate; 1458 1459 spin_lock_irq(&callback_lock); 1460 if (adding) 1461 isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask); 1462 if (deleting) 1463 isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask); 1464 spin_unlock_irq(&callback_lock); 1465 update_unbound_workqueue_cpumask(isolcpus_updated); 1466 1467 /* 1468 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy. 1469 */ 1470 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1471 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1472 return; 1473 1474 invalidate: 1475 remote_partition_disable(cs, tmp); 1476 } 1477 1478 /* 1479 * remote_partition_check - check if a child remote partition needs update 1480 * @cs: the cpuset to be updated 1481 * @newmask: the new effective_xcpus mask 1482 * @delmask: temporary mask for deletion (not in tmp) 1483 * @tmp: temparary masks 1484 * 1485 * This should be called before the given cs has updated its cpus_allowed 1486 * and/or effective_xcpus. 1487 */ 1488 static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask, 1489 struct cpumask *delmask, struct tmpmasks *tmp) 1490 { 1491 struct cpuset *child, *next; 1492 int disable_cnt = 0; 1493 1494 /* 1495 * Compute the effective exclusive CPUs that will be deleted. 1496 */ 1497 if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) || 1498 !cpumask_intersects(delmask, subpartitions_cpus)) 1499 return; /* No deletion of exclusive CPUs in partitions */ 1500 1501 /* 1502 * Searching the remote children list to look for those that will 1503 * be impacted by the deletion of exclusive CPUs. 1504 * 1505 * Since a cpuset must be removed from the remote children list 1506 * before it can go offline and holding cpuset_mutex will prevent 1507 * any change in cpuset status. RCU read lock isn't needed. 1508 */ 1509 lockdep_assert_held(&cpuset_mutex); 1510 list_for_each_entry_safe(child, next, &remote_children, remote_sibling) 1511 if (cpumask_intersects(child->effective_cpus, delmask)) { 1512 remote_partition_disable(child, tmp); 1513 disable_cnt++; 1514 } 1515 if (disable_cnt && !force_sd_rebuild) 1516 rebuild_sched_domains_locked(); 1517 } 1518 1519 /* 1520 * prstate_housekeeping_conflict - check for partition & housekeeping conflicts 1521 * @prstate: partition root state to be checked 1522 * @new_cpus: cpu mask 1523 * Return: true if there is conflict, false otherwise 1524 * 1525 * CPUs outside of boot_hk_cpus, if defined, can only be used in an 1526 * isolated partition. 1527 */ 1528 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus) 1529 { 1530 if (!have_boot_isolcpus) 1531 return false; 1532 1533 if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus)) 1534 return true; 1535 1536 return false; 1537 } 1538 1539 /** 1540 * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset 1541 * @cs: The cpuset that requests change in partition root state 1542 * @cmd: Partition root state change command 1543 * @newmask: Optional new cpumask for partcmd_update 1544 * @tmp: Temporary addmask and delmask 1545 * Return: 0 or a partition root state error code 1546 * 1547 * For partcmd_enable*, the cpuset is being transformed from a non-partition 1548 * root to a partition root. The effective_xcpus (cpus_allowed if 1549 * effective_xcpus not set) mask of the given cpuset will be taken away from 1550 * parent's effective_cpus. The function will return 0 if all the CPUs listed 1551 * in effective_xcpus can be granted or an error code will be returned. 1552 * 1553 * For partcmd_disable, the cpuset is being transformed from a partition 1554 * root back to a non-partition root. Any CPUs in effective_xcpus will be 1555 * given back to parent's effective_cpus. 0 will always be returned. 1556 * 1557 * For partcmd_update, if the optional newmask is specified, the cpu list is 1558 * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is 1559 * assumed to remain the same. The cpuset should either be a valid or invalid 1560 * partition root. The partition root state may change from valid to invalid 1561 * or vice versa. An error code will be returned if transitioning from 1562 * invalid to valid violates the exclusivity rule. 1563 * 1564 * For partcmd_invalidate, the current partition will be made invalid. 1565 * 1566 * The partcmd_enable* and partcmd_disable commands are used by 1567 * update_prstate(). An error code may be returned and the caller will check 1568 * for error. 1569 * 1570 * The partcmd_update command is used by update_cpumasks_hier() with newmask 1571 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used 1572 * by update_cpumask() with NULL newmask. In both cases, the callers won't 1573 * check for error and so partition_root_state and prs_error will be updated 1574 * directly. 1575 */ 1576 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd, 1577 struct cpumask *newmask, 1578 struct tmpmasks *tmp) 1579 { 1580 struct cpuset *parent = parent_cs(cs); 1581 int adding; /* Adding cpus to parent's effective_cpus */ 1582 int deleting; /* Deleting cpus from parent's effective_cpus */ 1583 int old_prs, new_prs; 1584 int part_error = PERR_NONE; /* Partition error? */ 1585 int subparts_delta = 0; 1586 struct cpumask *xcpus; /* cs effective_xcpus */ 1587 int isolcpus_updated = 0; 1588 bool nocpu; 1589 1590 lockdep_assert_held(&cpuset_mutex); 1591 1592 /* 1593 * new_prs will only be changed for the partcmd_update and 1594 * partcmd_invalidate commands. 1595 */ 1596 adding = deleting = false; 1597 old_prs = new_prs = cs->partition_root_state; 1598 xcpus = user_xcpus(cs); 1599 1600 if (cmd == partcmd_invalidate) { 1601 if (is_prs_invalid(old_prs)) 1602 return 0; 1603 1604 /* 1605 * Make the current partition invalid. 1606 */ 1607 if (is_partition_valid(parent)) 1608 adding = cpumask_and(tmp->addmask, 1609 xcpus, parent->effective_xcpus); 1610 if (old_prs > 0) { 1611 new_prs = -old_prs; 1612 subparts_delta--; 1613 } 1614 goto write_error; 1615 } 1616 1617 /* 1618 * The parent must be a partition root. 1619 * The new cpumask, if present, or the current cpus_allowed must 1620 * not be empty. 1621 */ 1622 if (!is_partition_valid(parent)) { 1623 return is_partition_invalid(parent) 1624 ? PERR_INVPARENT : PERR_NOTPART; 1625 } 1626 if (!newmask && xcpus_empty(cs)) 1627 return PERR_CPUSEMPTY; 1628 1629 nocpu = tasks_nocpu_error(parent, cs, xcpus); 1630 1631 if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) { 1632 /* 1633 * Enabling partition root is not allowed if its 1634 * effective_xcpus is empty or doesn't overlap with 1635 * parent's effective_xcpus. 1636 */ 1637 if (cpumask_empty(xcpus) || 1638 !cpumask_intersects(xcpus, parent->effective_xcpus)) 1639 return PERR_INVCPUS; 1640 1641 if (prstate_housekeeping_conflict(new_prs, xcpus)) 1642 return PERR_HKEEPING; 1643 1644 /* 1645 * A parent can be left with no CPU as long as there is no 1646 * task directly associated with the parent partition. 1647 */ 1648 if (nocpu) 1649 return PERR_NOCPUS; 1650 1651 cpumask_copy(tmp->delmask, xcpus); 1652 deleting = true; 1653 subparts_delta++; 1654 new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED; 1655 } else if (cmd == partcmd_disable) { 1656 /* 1657 * May need to add cpus to parent's effective_cpus for 1658 * valid partition root. 1659 */ 1660 adding = !is_prs_invalid(old_prs) && 1661 cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus); 1662 if (adding) 1663 subparts_delta--; 1664 new_prs = PRS_MEMBER; 1665 } else if (newmask) { 1666 /* 1667 * Empty cpumask is not allowed 1668 */ 1669 if (cpumask_empty(newmask)) { 1670 part_error = PERR_CPUSEMPTY; 1671 goto write_error; 1672 } 1673 /* Check newmask again, whether cpus are available for parent/cs */ 1674 nocpu |= tasks_nocpu_error(parent, cs, newmask); 1675 1676 /* 1677 * partcmd_update with newmask: 1678 * 1679 * Compute add/delete mask to/from effective_cpus 1680 * 1681 * For valid partition: 1682 * addmask = exclusive_cpus & ~newmask 1683 * & parent->effective_xcpus 1684 * delmask = newmask & ~exclusive_cpus 1685 * & parent->effective_xcpus 1686 * 1687 * For invalid partition: 1688 * delmask = newmask & parent->effective_xcpus 1689 */ 1690 if (is_prs_invalid(old_prs)) { 1691 adding = false; 1692 deleting = cpumask_and(tmp->delmask, 1693 newmask, parent->effective_xcpus); 1694 } else { 1695 cpumask_andnot(tmp->addmask, xcpus, newmask); 1696 adding = cpumask_and(tmp->addmask, tmp->addmask, 1697 parent->effective_xcpus); 1698 1699 cpumask_andnot(tmp->delmask, newmask, xcpus); 1700 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1701 parent->effective_xcpus); 1702 } 1703 /* 1704 * Make partition invalid if parent's effective_cpus could 1705 * become empty and there are tasks in the parent. 1706 */ 1707 if (nocpu && (!adding || 1708 !cpumask_intersects(tmp->addmask, cpu_active_mask))) { 1709 part_error = PERR_NOCPUS; 1710 deleting = false; 1711 adding = cpumask_and(tmp->addmask, 1712 xcpus, parent->effective_xcpus); 1713 } 1714 } else { 1715 /* 1716 * partcmd_update w/o newmask 1717 * 1718 * delmask = effective_xcpus & parent->effective_cpus 1719 * 1720 * This can be called from: 1721 * 1) update_cpumasks_hier() 1722 * 2) cpuset_hotplug_update_tasks() 1723 * 1724 * Check to see if it can be transitioned from valid to 1725 * invalid partition or vice versa. 1726 * 1727 * A partition error happens when parent has tasks and all 1728 * its effective CPUs will have to be distributed out. 1729 */ 1730 WARN_ON_ONCE(!is_partition_valid(parent)); 1731 if (nocpu) { 1732 part_error = PERR_NOCPUS; 1733 if (is_partition_valid(cs)) 1734 adding = cpumask_and(tmp->addmask, 1735 xcpus, parent->effective_xcpus); 1736 } else if (is_partition_invalid(cs) && 1737 cpumask_subset(xcpus, parent->effective_xcpus)) { 1738 struct cgroup_subsys_state *css; 1739 struct cpuset *child; 1740 bool exclusive = true; 1741 1742 /* 1743 * Convert invalid partition to valid has to 1744 * pass the cpu exclusivity test. 1745 */ 1746 rcu_read_lock(); 1747 cpuset_for_each_child(child, css, parent) { 1748 if (child == cs) 1749 continue; 1750 if (!cpusets_are_exclusive(cs, child)) { 1751 exclusive = false; 1752 break; 1753 } 1754 } 1755 rcu_read_unlock(); 1756 if (exclusive) 1757 deleting = cpumask_and(tmp->delmask, 1758 xcpus, parent->effective_cpus); 1759 else 1760 part_error = PERR_NOTEXCL; 1761 } 1762 } 1763 1764 write_error: 1765 if (part_error) 1766 WRITE_ONCE(cs->prs_err, part_error); 1767 1768 if (cmd == partcmd_update) { 1769 /* 1770 * Check for possible transition between valid and invalid 1771 * partition root. 1772 */ 1773 switch (cs->partition_root_state) { 1774 case PRS_ROOT: 1775 case PRS_ISOLATED: 1776 if (part_error) { 1777 new_prs = -old_prs; 1778 subparts_delta--; 1779 } 1780 break; 1781 case PRS_INVALID_ROOT: 1782 case PRS_INVALID_ISOLATED: 1783 if (!part_error) { 1784 new_prs = -old_prs; 1785 subparts_delta++; 1786 } 1787 break; 1788 } 1789 } 1790 1791 if (!adding && !deleting && (new_prs == old_prs)) 1792 return 0; 1793 1794 /* 1795 * Transitioning between invalid to valid or vice versa may require 1796 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update, 1797 * validate_change() has already been successfully called and 1798 * CPU lists in cs haven't been updated yet. So defer it to later. 1799 */ 1800 if ((old_prs != new_prs) && (cmd != partcmd_update)) { 1801 int err = update_partition_exclusive(cs, new_prs); 1802 1803 if (err) 1804 return err; 1805 } 1806 1807 /* 1808 * Change the parent's effective_cpus & effective_xcpus (top cpuset 1809 * only). 1810 * 1811 * Newly added CPUs will be removed from effective_cpus and 1812 * newly deleted ones will be added back to effective_cpus. 1813 */ 1814 spin_lock_irq(&callback_lock); 1815 if (old_prs != new_prs) { 1816 cs->partition_root_state = new_prs; 1817 if (new_prs <= 0) 1818 cs->nr_subparts = 0; 1819 } 1820 /* 1821 * Adding to parent's effective_cpus means deletion CPUs from cs 1822 * and vice versa. 1823 */ 1824 if (adding) 1825 isolcpus_updated += partition_xcpus_del(old_prs, parent, 1826 tmp->addmask); 1827 if (deleting) 1828 isolcpus_updated += partition_xcpus_add(new_prs, parent, 1829 tmp->delmask); 1830 1831 if (is_partition_valid(parent)) { 1832 parent->nr_subparts += subparts_delta; 1833 WARN_ON_ONCE(parent->nr_subparts < 0); 1834 } 1835 spin_unlock_irq(&callback_lock); 1836 update_unbound_workqueue_cpumask(isolcpus_updated); 1837 1838 if ((old_prs != new_prs) && (cmd == partcmd_update)) 1839 update_partition_exclusive(cs, new_prs); 1840 1841 if (adding || deleting) { 1842 cpuset_update_tasks_cpumask(parent, tmp->addmask); 1843 update_sibling_cpumasks(parent, cs, tmp); 1844 } 1845 1846 /* 1847 * For partcmd_update without newmask, it is being called from 1848 * cpuset_handle_hotplug(). Update the load balance flag and 1849 * scheduling domain accordingly. 1850 */ 1851 if ((cmd == partcmd_update) && !newmask) 1852 update_partition_sd_lb(cs, old_prs); 1853 1854 notify_partition_change(cs, old_prs); 1855 return 0; 1856 } 1857 1858 /** 1859 * compute_partition_effective_cpumask - compute effective_cpus for partition 1860 * @cs: partition root cpuset 1861 * @new_ecpus: previously computed effective_cpus to be updated 1862 * 1863 * Compute the effective_cpus of a partition root by scanning effective_xcpus 1864 * of child partition roots and excluding their effective_xcpus. 1865 * 1866 * This has the side effect of invalidating valid child partition roots, 1867 * if necessary. Since it is called from either cpuset_hotplug_update_tasks() 1868 * or update_cpumasks_hier() where parent and children are modified 1869 * successively, we don't need to call update_parent_effective_cpumask() 1870 * and the child's effective_cpus will be updated in later iterations. 1871 * 1872 * Note that rcu_read_lock() is assumed to be held. 1873 */ 1874 static void compute_partition_effective_cpumask(struct cpuset *cs, 1875 struct cpumask *new_ecpus) 1876 { 1877 struct cgroup_subsys_state *css; 1878 struct cpuset *child; 1879 bool populated = partition_is_populated(cs, NULL); 1880 1881 /* 1882 * Check child partition roots to see if they should be 1883 * invalidated when 1884 * 1) child effective_xcpus not a subset of new 1885 * excluisve_cpus 1886 * 2) All the effective_cpus will be used up and cp 1887 * has tasks 1888 */ 1889 compute_effective_exclusive_cpumask(cs, new_ecpus); 1890 cpumask_and(new_ecpus, new_ecpus, cpu_active_mask); 1891 1892 rcu_read_lock(); 1893 cpuset_for_each_child(child, css, cs) { 1894 if (!is_partition_valid(child)) 1895 continue; 1896 1897 child->prs_err = 0; 1898 if (!cpumask_subset(child->effective_xcpus, 1899 cs->effective_xcpus)) 1900 child->prs_err = PERR_INVCPUS; 1901 else if (populated && 1902 cpumask_subset(new_ecpus, child->effective_xcpus)) 1903 child->prs_err = PERR_NOCPUS; 1904 1905 if (child->prs_err) { 1906 int old_prs = child->partition_root_state; 1907 1908 /* 1909 * Invalidate child partition 1910 */ 1911 spin_lock_irq(&callback_lock); 1912 make_partition_invalid(child); 1913 cs->nr_subparts--; 1914 child->nr_subparts = 0; 1915 spin_unlock_irq(&callback_lock); 1916 notify_partition_change(child, old_prs); 1917 continue; 1918 } 1919 cpumask_andnot(new_ecpus, new_ecpus, 1920 child->effective_xcpus); 1921 } 1922 rcu_read_unlock(); 1923 } 1924 1925 /* 1926 * update_cpumasks_hier() flags 1927 */ 1928 #define HIER_CHECKALL 0x01 /* Check all cpusets with no skipping */ 1929 #define HIER_NO_SD_REBUILD 0x02 /* Don't rebuild sched domains */ 1930 1931 /* 1932 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1933 * @cs: the cpuset to consider 1934 * @tmp: temp variables for calculating effective_cpus & partition setup 1935 * @force: don't skip any descendant cpusets if set 1936 * 1937 * When configured cpumask is changed, the effective cpumasks of this cpuset 1938 * and all its descendants need to be updated. 1939 * 1940 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 1941 * 1942 * Called with cpuset_mutex held 1943 */ 1944 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, 1945 int flags) 1946 { 1947 struct cpuset *cp; 1948 struct cgroup_subsys_state *pos_css; 1949 bool need_rebuild_sched_domains = false; 1950 int old_prs, new_prs; 1951 1952 rcu_read_lock(); 1953 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1954 struct cpuset *parent = parent_cs(cp); 1955 bool remote = is_remote_partition(cp); 1956 bool update_parent = false; 1957 1958 /* 1959 * Skip descendent remote partition that acquires CPUs 1960 * directly from top cpuset unless it is cs. 1961 */ 1962 if (remote && (cp != cs)) { 1963 pos_css = css_rightmost_descendant(pos_css); 1964 continue; 1965 } 1966 1967 /* 1968 * Update effective_xcpus if exclusive_cpus set. 1969 * The case when exclusive_cpus isn't set is handled later. 1970 */ 1971 if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) { 1972 spin_lock_irq(&callback_lock); 1973 compute_effective_exclusive_cpumask(cp, NULL); 1974 spin_unlock_irq(&callback_lock); 1975 } 1976 1977 old_prs = new_prs = cp->partition_root_state; 1978 if (remote || (is_partition_valid(parent) && 1979 is_partition_valid(cp))) 1980 compute_partition_effective_cpumask(cp, tmp->new_cpus); 1981 else 1982 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1983 1984 /* 1985 * A partition with no effective_cpus is allowed as long as 1986 * there is no task associated with it. Call 1987 * update_parent_effective_cpumask() to check it. 1988 */ 1989 if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) { 1990 update_parent = true; 1991 goto update_parent_effective; 1992 } 1993 1994 /* 1995 * If it becomes empty, inherit the effective mask of the 1996 * parent, which is guaranteed to have some CPUs unless 1997 * it is a partition root that has explicitly distributed 1998 * out all its CPUs. 1999 */ 2000 if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) 2001 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 2002 2003 if (remote) 2004 goto get_css; 2005 2006 /* 2007 * Skip the whole subtree if 2008 * 1) the cpumask remains the same, 2009 * 2) has no partition root state, 2010 * 3) HIER_CHECKALL flag not set, and 2011 * 4) for v2 load balance state same as its parent. 2012 */ 2013 if (!cp->partition_root_state && !(flags & HIER_CHECKALL) && 2014 cpumask_equal(tmp->new_cpus, cp->effective_cpus) && 2015 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 2016 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { 2017 pos_css = css_rightmost_descendant(pos_css); 2018 continue; 2019 } 2020 2021 update_parent_effective: 2022 /* 2023 * update_parent_effective_cpumask() should have been called 2024 * for cs already in update_cpumask(). We should also call 2025 * cpuset_update_tasks_cpumask() again for tasks in the parent 2026 * cpuset if the parent's effective_cpus changes. 2027 */ 2028 if ((cp != cs) && old_prs) { 2029 switch (parent->partition_root_state) { 2030 case PRS_ROOT: 2031 case PRS_ISOLATED: 2032 update_parent = true; 2033 break; 2034 2035 default: 2036 /* 2037 * When parent is not a partition root or is 2038 * invalid, child partition roots become 2039 * invalid too. 2040 */ 2041 if (is_partition_valid(cp)) 2042 new_prs = -cp->partition_root_state; 2043 WRITE_ONCE(cp->prs_err, 2044 is_partition_invalid(parent) 2045 ? PERR_INVPARENT : PERR_NOTPART); 2046 break; 2047 } 2048 } 2049 get_css: 2050 if (!css_tryget_online(&cp->css)) 2051 continue; 2052 rcu_read_unlock(); 2053 2054 if (update_parent) { 2055 update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp); 2056 /* 2057 * The cpuset partition_root_state may become 2058 * invalid. Capture it. 2059 */ 2060 new_prs = cp->partition_root_state; 2061 } 2062 2063 spin_lock_irq(&callback_lock); 2064 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 2065 cp->partition_root_state = new_prs; 2066 /* 2067 * Make sure effective_xcpus is properly set for a valid 2068 * partition root. 2069 */ 2070 if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus)) 2071 cpumask_and(cp->effective_xcpus, 2072 cp->cpus_allowed, parent->effective_xcpus); 2073 else if (new_prs < 0) 2074 reset_partition_data(cp); 2075 spin_unlock_irq(&callback_lock); 2076 2077 notify_partition_change(cp, old_prs); 2078 2079 WARN_ON(!is_in_v2_mode() && 2080 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 2081 2082 cpuset_update_tasks_cpumask(cp, cp->effective_cpus); 2083 2084 /* 2085 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE 2086 * from parent if current cpuset isn't a valid partition root 2087 * and their load balance states differ. 2088 */ 2089 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2090 !is_partition_valid(cp) && 2091 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { 2092 if (is_sched_load_balance(parent)) 2093 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2094 else 2095 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2096 } 2097 2098 /* 2099 * On legacy hierarchy, if the effective cpumask of any non- 2100 * empty cpuset is changed, we need to rebuild sched domains. 2101 * On default hierarchy, the cpuset needs to be a partition 2102 * root as well. 2103 */ 2104 if (!cpumask_empty(cp->cpus_allowed) && 2105 is_sched_load_balance(cp) && 2106 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 2107 is_partition_valid(cp))) 2108 need_rebuild_sched_domains = true; 2109 2110 rcu_read_lock(); 2111 css_put(&cp->css); 2112 } 2113 rcu_read_unlock(); 2114 2115 if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD) && 2116 !force_sd_rebuild) 2117 rebuild_sched_domains_locked(); 2118 } 2119 2120 /** 2121 * update_sibling_cpumasks - Update siblings cpumasks 2122 * @parent: Parent cpuset 2123 * @cs: Current cpuset 2124 * @tmp: Temp variables 2125 */ 2126 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 2127 struct tmpmasks *tmp) 2128 { 2129 struct cpuset *sibling; 2130 struct cgroup_subsys_state *pos_css; 2131 2132 lockdep_assert_held(&cpuset_mutex); 2133 2134 /* 2135 * Check all its siblings and call update_cpumasks_hier() 2136 * if their effective_cpus will need to be changed. 2137 * 2138 * It is possible a change in parent's effective_cpus 2139 * due to a change in a child partition's effective_xcpus will impact 2140 * its siblings even if they do not inherit parent's effective_cpus 2141 * directly. 2142 * 2143 * The update_cpumasks_hier() function may sleep. So we have to 2144 * release the RCU read lock before calling it. HIER_NO_SD_REBUILD 2145 * flag is used to suppress rebuild of sched domains as the callers 2146 * will take care of that. 2147 */ 2148 rcu_read_lock(); 2149 cpuset_for_each_child(sibling, pos_css, parent) { 2150 if (sibling == cs) 2151 continue; 2152 if (!is_partition_valid(sibling)) { 2153 compute_effective_cpumask(tmp->new_cpus, sibling, 2154 parent); 2155 if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus)) 2156 continue; 2157 } 2158 if (!css_tryget_online(&sibling->css)) 2159 continue; 2160 2161 rcu_read_unlock(); 2162 update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD); 2163 rcu_read_lock(); 2164 css_put(&sibling->css); 2165 } 2166 rcu_read_unlock(); 2167 } 2168 2169 /** 2170 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 2171 * @cs: the cpuset to consider 2172 * @trialcs: trial cpuset 2173 * @buf: buffer of cpu numbers written to this cpuset 2174 */ 2175 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2176 const char *buf) 2177 { 2178 int retval; 2179 struct tmpmasks tmp; 2180 struct cpuset *parent = parent_cs(cs); 2181 bool invalidate = false; 2182 int hier_flags = 0; 2183 int old_prs = cs->partition_root_state; 2184 2185 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 2186 if (cs == &top_cpuset) 2187 return -EACCES; 2188 2189 /* 2190 * An empty cpus_allowed is ok only if the cpuset has no tasks. 2191 * Since cpulist_parse() fails on an empty mask, we special case 2192 * that parsing. The validate_change() call ensures that cpusets 2193 * with tasks have cpus. 2194 */ 2195 if (!*buf) { 2196 cpumask_clear(trialcs->cpus_allowed); 2197 if (cpumask_empty(trialcs->exclusive_cpus)) 2198 cpumask_clear(trialcs->effective_xcpus); 2199 } else { 2200 retval = cpulist_parse(buf, trialcs->cpus_allowed); 2201 if (retval < 0) 2202 return retval; 2203 2204 if (!cpumask_subset(trialcs->cpus_allowed, 2205 top_cpuset.cpus_allowed)) 2206 return -EINVAL; 2207 2208 /* 2209 * When exclusive_cpus isn't explicitly set, it is constrainted 2210 * by cpus_allowed and parent's effective_xcpus. Otherwise, 2211 * trialcs->effective_xcpus is used as a temporary cpumask 2212 * for checking validity of the partition root. 2213 */ 2214 if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs)) 2215 compute_effective_exclusive_cpumask(trialcs, NULL); 2216 } 2217 2218 /* Nothing to do if the cpus didn't change */ 2219 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 2220 return 0; 2221 2222 if (alloc_cpumasks(NULL, &tmp)) 2223 return -ENOMEM; 2224 2225 if (old_prs) { 2226 if (is_partition_valid(cs) && 2227 cpumask_empty(trialcs->effective_xcpus)) { 2228 invalidate = true; 2229 cs->prs_err = PERR_INVCPUS; 2230 } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) { 2231 invalidate = true; 2232 cs->prs_err = PERR_HKEEPING; 2233 } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) { 2234 invalidate = true; 2235 cs->prs_err = PERR_NOCPUS; 2236 } 2237 } 2238 2239 /* 2240 * Check all the descendants in update_cpumasks_hier() if 2241 * effective_xcpus is to be changed. 2242 */ 2243 if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus)) 2244 hier_flags = HIER_CHECKALL; 2245 2246 retval = validate_change(cs, trialcs); 2247 2248 if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { 2249 struct cgroup_subsys_state *css; 2250 struct cpuset *cp; 2251 2252 /* 2253 * The -EINVAL error code indicates that partition sibling 2254 * CPU exclusivity rule has been violated. We still allow 2255 * the cpumask change to proceed while invalidating the 2256 * partition. However, any conflicting sibling partitions 2257 * have to be marked as invalid too. 2258 */ 2259 invalidate = true; 2260 rcu_read_lock(); 2261 cpuset_for_each_child(cp, css, parent) { 2262 struct cpumask *xcpus = user_xcpus(trialcs); 2263 2264 if (is_partition_valid(cp) && 2265 cpumask_intersects(xcpus, cp->effective_xcpus)) { 2266 rcu_read_unlock(); 2267 update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp); 2268 rcu_read_lock(); 2269 } 2270 } 2271 rcu_read_unlock(); 2272 retval = 0; 2273 } 2274 2275 if (retval < 0) 2276 goto out_free; 2277 2278 if (is_partition_valid(cs) || 2279 (is_partition_invalid(cs) && !invalidate)) { 2280 struct cpumask *xcpus = trialcs->effective_xcpus; 2281 2282 if (cpumask_empty(xcpus) && is_partition_invalid(cs)) 2283 xcpus = trialcs->cpus_allowed; 2284 2285 /* 2286 * Call remote_cpus_update() to handle valid remote partition 2287 */ 2288 if (is_remote_partition(cs)) 2289 remote_cpus_update(cs, xcpus, &tmp); 2290 else if (invalidate) 2291 update_parent_effective_cpumask(cs, partcmd_invalidate, 2292 NULL, &tmp); 2293 else 2294 update_parent_effective_cpumask(cs, partcmd_update, 2295 xcpus, &tmp); 2296 } else if (!cpumask_empty(cs->exclusive_cpus)) { 2297 /* 2298 * Use trialcs->effective_cpus as a temp cpumask 2299 */ 2300 remote_partition_check(cs, trialcs->effective_xcpus, 2301 trialcs->effective_cpus, &tmp); 2302 } 2303 2304 spin_lock_irq(&callback_lock); 2305 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 2306 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2307 if ((old_prs > 0) && !is_partition_valid(cs)) 2308 reset_partition_data(cs); 2309 spin_unlock_irq(&callback_lock); 2310 2311 /* effective_cpus/effective_xcpus will be updated here */ 2312 update_cpumasks_hier(cs, &tmp, hier_flags); 2313 2314 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2315 if (cs->partition_root_state) 2316 update_partition_sd_lb(cs, old_prs); 2317 out_free: 2318 free_cpumasks(NULL, &tmp); 2319 return retval; 2320 } 2321 2322 /** 2323 * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset 2324 * @cs: the cpuset to consider 2325 * @trialcs: trial cpuset 2326 * @buf: buffer of cpu numbers written to this cpuset 2327 * 2328 * The tasks' cpumask will be updated if cs is a valid partition root. 2329 */ 2330 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2331 const char *buf) 2332 { 2333 int retval; 2334 struct tmpmasks tmp; 2335 struct cpuset *parent = parent_cs(cs); 2336 bool invalidate = false; 2337 int hier_flags = 0; 2338 int old_prs = cs->partition_root_state; 2339 2340 if (!*buf) { 2341 cpumask_clear(trialcs->exclusive_cpus); 2342 cpumask_clear(trialcs->effective_xcpus); 2343 } else { 2344 retval = cpulist_parse(buf, trialcs->exclusive_cpus); 2345 if (retval < 0) 2346 return retval; 2347 } 2348 2349 /* Nothing to do if the CPUs didn't change */ 2350 if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus)) 2351 return 0; 2352 2353 if (*buf) 2354 compute_effective_exclusive_cpumask(trialcs, NULL); 2355 2356 /* 2357 * Check all the descendants in update_cpumasks_hier() if 2358 * effective_xcpus is to be changed. 2359 */ 2360 if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus)) 2361 hier_flags = HIER_CHECKALL; 2362 2363 retval = validate_change(cs, trialcs); 2364 if (retval) 2365 return retval; 2366 2367 if (alloc_cpumasks(NULL, &tmp)) 2368 return -ENOMEM; 2369 2370 if (old_prs) { 2371 if (cpumask_empty(trialcs->effective_xcpus)) { 2372 invalidate = true; 2373 cs->prs_err = PERR_INVCPUS; 2374 } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) { 2375 invalidate = true; 2376 cs->prs_err = PERR_HKEEPING; 2377 } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) { 2378 invalidate = true; 2379 cs->prs_err = PERR_NOCPUS; 2380 } 2381 2382 if (is_remote_partition(cs)) { 2383 if (invalidate) 2384 remote_partition_disable(cs, &tmp); 2385 else 2386 remote_cpus_update(cs, trialcs->effective_xcpus, 2387 &tmp); 2388 } else if (invalidate) { 2389 update_parent_effective_cpumask(cs, partcmd_invalidate, 2390 NULL, &tmp); 2391 } else { 2392 update_parent_effective_cpumask(cs, partcmd_update, 2393 trialcs->effective_xcpus, &tmp); 2394 } 2395 } else if (!cpumask_empty(trialcs->exclusive_cpus)) { 2396 /* 2397 * Use trialcs->effective_cpus as a temp cpumask 2398 */ 2399 remote_partition_check(cs, trialcs->effective_xcpus, 2400 trialcs->effective_cpus, &tmp); 2401 } 2402 spin_lock_irq(&callback_lock); 2403 cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus); 2404 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2405 if ((old_prs > 0) && !is_partition_valid(cs)) 2406 reset_partition_data(cs); 2407 spin_unlock_irq(&callback_lock); 2408 2409 /* 2410 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus 2411 * of the subtree when it is a valid partition root or effective_xcpus 2412 * is updated. 2413 */ 2414 if (is_partition_valid(cs) || hier_flags) 2415 update_cpumasks_hier(cs, &tmp, hier_flags); 2416 2417 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2418 if (cs->partition_root_state) 2419 update_partition_sd_lb(cs, old_prs); 2420 2421 free_cpumasks(NULL, &tmp); 2422 return 0; 2423 } 2424 2425 /* 2426 * Migrate memory region from one set of nodes to another. This is 2427 * performed asynchronously as it can be called from process migration path 2428 * holding locks involved in process management. All mm migrations are 2429 * performed in the queued order and can be waited for by flushing 2430 * cpuset_migrate_mm_wq. 2431 */ 2432 2433 struct cpuset_migrate_mm_work { 2434 struct work_struct work; 2435 struct mm_struct *mm; 2436 nodemask_t from; 2437 nodemask_t to; 2438 }; 2439 2440 static void cpuset_migrate_mm_workfn(struct work_struct *work) 2441 { 2442 struct cpuset_migrate_mm_work *mwork = 2443 container_of(work, struct cpuset_migrate_mm_work, work); 2444 2445 /* on a wq worker, no need to worry about %current's mems_allowed */ 2446 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 2447 mmput(mwork->mm); 2448 kfree(mwork); 2449 } 2450 2451 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 2452 const nodemask_t *to) 2453 { 2454 struct cpuset_migrate_mm_work *mwork; 2455 2456 if (nodes_equal(*from, *to)) { 2457 mmput(mm); 2458 return; 2459 } 2460 2461 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 2462 if (mwork) { 2463 mwork->mm = mm; 2464 mwork->from = *from; 2465 mwork->to = *to; 2466 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 2467 queue_work(cpuset_migrate_mm_wq, &mwork->work); 2468 } else { 2469 mmput(mm); 2470 } 2471 } 2472 2473 static void cpuset_post_attach(void) 2474 { 2475 flush_workqueue(cpuset_migrate_mm_wq); 2476 } 2477 2478 /* 2479 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 2480 * @tsk: the task to change 2481 * @newmems: new nodes that the task will be set 2482 * 2483 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 2484 * and rebind an eventual tasks' mempolicy. If the task is allocating in 2485 * parallel, it might temporarily see an empty intersection, which results in 2486 * a seqlock check and retry before OOM or allocation failure. 2487 */ 2488 static void cpuset_change_task_nodemask(struct task_struct *tsk, 2489 nodemask_t *newmems) 2490 { 2491 task_lock(tsk); 2492 2493 local_irq_disable(); 2494 write_seqcount_begin(&tsk->mems_allowed_seq); 2495 2496 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 2497 mpol_rebind_task(tsk, newmems); 2498 tsk->mems_allowed = *newmems; 2499 2500 write_seqcount_end(&tsk->mems_allowed_seq); 2501 local_irq_enable(); 2502 2503 task_unlock(tsk); 2504 } 2505 2506 static void *cpuset_being_rebound; 2507 2508 /** 2509 * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 2510 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 2511 * 2512 * Iterate through each task of @cs updating its mems_allowed to the 2513 * effective cpuset's. As this function is called with cpuset_mutex held, 2514 * cpuset membership stays stable. 2515 */ 2516 void cpuset_update_tasks_nodemask(struct cpuset *cs) 2517 { 2518 static nodemask_t newmems; /* protected by cpuset_mutex */ 2519 struct css_task_iter it; 2520 struct task_struct *task; 2521 2522 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 2523 2524 guarantee_online_mems(cs, &newmems); 2525 2526 /* 2527 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 2528 * take while holding tasklist_lock. Forks can happen - the 2529 * mpol_dup() cpuset_being_rebound check will catch such forks, 2530 * and rebind their vma mempolicies too. Because we still hold 2531 * the global cpuset_mutex, we know that no other rebind effort 2532 * will be contending for the global variable cpuset_being_rebound. 2533 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 2534 * is idempotent. Also migrate pages in each mm to new nodes. 2535 */ 2536 css_task_iter_start(&cs->css, 0, &it); 2537 while ((task = css_task_iter_next(&it))) { 2538 struct mm_struct *mm; 2539 bool migrate; 2540 2541 cpuset_change_task_nodemask(task, &newmems); 2542 2543 mm = get_task_mm(task); 2544 if (!mm) 2545 continue; 2546 2547 migrate = is_memory_migrate(cs); 2548 2549 mpol_rebind_mm(mm, &cs->mems_allowed); 2550 if (migrate) 2551 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 2552 else 2553 mmput(mm); 2554 } 2555 css_task_iter_end(&it); 2556 2557 /* 2558 * All the tasks' nodemasks have been updated, update 2559 * cs->old_mems_allowed. 2560 */ 2561 cs->old_mems_allowed = newmems; 2562 2563 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 2564 cpuset_being_rebound = NULL; 2565 } 2566 2567 /* 2568 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 2569 * @cs: the cpuset to consider 2570 * @new_mems: a temp variable for calculating new effective_mems 2571 * 2572 * When configured nodemask is changed, the effective nodemasks of this cpuset 2573 * and all its descendants need to be updated. 2574 * 2575 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 2576 * 2577 * Called with cpuset_mutex held 2578 */ 2579 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 2580 { 2581 struct cpuset *cp; 2582 struct cgroup_subsys_state *pos_css; 2583 2584 rcu_read_lock(); 2585 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2586 struct cpuset *parent = parent_cs(cp); 2587 2588 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 2589 2590 /* 2591 * If it becomes empty, inherit the effective mask of the 2592 * parent, which is guaranteed to have some MEMs. 2593 */ 2594 if (is_in_v2_mode() && nodes_empty(*new_mems)) 2595 *new_mems = parent->effective_mems; 2596 2597 /* Skip the whole subtree if the nodemask remains the same. */ 2598 if (nodes_equal(*new_mems, cp->effective_mems)) { 2599 pos_css = css_rightmost_descendant(pos_css); 2600 continue; 2601 } 2602 2603 if (!css_tryget_online(&cp->css)) 2604 continue; 2605 rcu_read_unlock(); 2606 2607 spin_lock_irq(&callback_lock); 2608 cp->effective_mems = *new_mems; 2609 spin_unlock_irq(&callback_lock); 2610 2611 WARN_ON(!is_in_v2_mode() && 2612 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 2613 2614 cpuset_update_tasks_nodemask(cp); 2615 2616 rcu_read_lock(); 2617 css_put(&cp->css); 2618 } 2619 rcu_read_unlock(); 2620 } 2621 2622 /* 2623 * Handle user request to change the 'mems' memory placement 2624 * of a cpuset. Needs to validate the request, update the 2625 * cpusets mems_allowed, and for each task in the cpuset, 2626 * update mems_allowed and rebind task's mempolicy and any vma 2627 * mempolicies and if the cpuset is marked 'memory_migrate', 2628 * migrate the tasks pages to the new memory. 2629 * 2630 * Call with cpuset_mutex held. May take callback_lock during call. 2631 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 2632 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 2633 * their mempolicies to the cpusets new mems_allowed. 2634 */ 2635 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 2636 const char *buf) 2637 { 2638 int retval; 2639 2640 /* 2641 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 2642 * it's read-only 2643 */ 2644 if (cs == &top_cpuset) { 2645 retval = -EACCES; 2646 goto done; 2647 } 2648 2649 /* 2650 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 2651 * Since nodelist_parse() fails on an empty mask, we special case 2652 * that parsing. The validate_change() call ensures that cpusets 2653 * with tasks have memory. 2654 */ 2655 if (!*buf) { 2656 nodes_clear(trialcs->mems_allowed); 2657 } else { 2658 retval = nodelist_parse(buf, trialcs->mems_allowed); 2659 if (retval < 0) 2660 goto done; 2661 2662 if (!nodes_subset(trialcs->mems_allowed, 2663 top_cpuset.mems_allowed)) { 2664 retval = -EINVAL; 2665 goto done; 2666 } 2667 } 2668 2669 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 2670 retval = 0; /* Too easy - nothing to do */ 2671 goto done; 2672 } 2673 retval = validate_change(cs, trialcs); 2674 if (retval < 0) 2675 goto done; 2676 2677 check_insane_mems_config(&trialcs->mems_allowed); 2678 2679 spin_lock_irq(&callback_lock); 2680 cs->mems_allowed = trialcs->mems_allowed; 2681 spin_unlock_irq(&callback_lock); 2682 2683 /* use trialcs->mems_allowed as a temp variable */ 2684 update_nodemasks_hier(cs, &trialcs->mems_allowed); 2685 done: 2686 return retval; 2687 } 2688 2689 bool current_cpuset_is_being_rebound(void) 2690 { 2691 bool ret; 2692 2693 rcu_read_lock(); 2694 ret = task_cs(current) == cpuset_being_rebound; 2695 rcu_read_unlock(); 2696 2697 return ret; 2698 } 2699 2700 /* 2701 * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag 2702 * bit: the bit to update (see cpuset_flagbits_t) 2703 * cs: the cpuset to update 2704 * turning_on: whether the flag is being set or cleared 2705 * 2706 * Call with cpuset_mutex held. 2707 */ 2708 2709 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 2710 int turning_on) 2711 { 2712 struct cpuset *trialcs; 2713 int balance_flag_changed; 2714 int spread_flag_changed; 2715 int err; 2716 2717 trialcs = alloc_trial_cpuset(cs); 2718 if (!trialcs) 2719 return -ENOMEM; 2720 2721 if (turning_on) 2722 set_bit(bit, &trialcs->flags); 2723 else 2724 clear_bit(bit, &trialcs->flags); 2725 2726 err = validate_change(cs, trialcs); 2727 if (err < 0) 2728 goto out; 2729 2730 balance_flag_changed = (is_sched_load_balance(cs) != 2731 is_sched_load_balance(trialcs)); 2732 2733 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 2734 || (is_spread_page(cs) != is_spread_page(trialcs))); 2735 2736 spin_lock_irq(&callback_lock); 2737 cs->flags = trialcs->flags; 2738 spin_unlock_irq(&callback_lock); 2739 2740 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed && 2741 !force_sd_rebuild) 2742 rebuild_sched_domains_locked(); 2743 2744 if (spread_flag_changed) 2745 cpuset1_update_tasks_flags(cs); 2746 out: 2747 free_cpuset(trialcs); 2748 return err; 2749 } 2750 2751 /** 2752 * update_prstate - update partition_root_state 2753 * @cs: the cpuset to update 2754 * @new_prs: new partition root state 2755 * Return: 0 if successful, != 0 if error 2756 * 2757 * Call with cpuset_mutex held. 2758 */ 2759 static int update_prstate(struct cpuset *cs, int new_prs) 2760 { 2761 int err = PERR_NONE, old_prs = cs->partition_root_state; 2762 struct cpuset *parent = parent_cs(cs); 2763 struct tmpmasks tmpmask; 2764 bool new_xcpus_state = false; 2765 2766 if (old_prs == new_prs) 2767 return 0; 2768 2769 /* 2770 * Treat a previously invalid partition root as if it is a "member". 2771 */ 2772 if (new_prs && is_prs_invalid(old_prs)) 2773 old_prs = PRS_MEMBER; 2774 2775 if (alloc_cpumasks(NULL, &tmpmask)) 2776 return -ENOMEM; 2777 2778 /* 2779 * Setup effective_xcpus if not properly set yet, it will be cleared 2780 * later if partition becomes invalid. 2781 */ 2782 if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) { 2783 spin_lock_irq(&callback_lock); 2784 cpumask_and(cs->effective_xcpus, 2785 cs->cpus_allowed, parent->effective_xcpus); 2786 spin_unlock_irq(&callback_lock); 2787 } 2788 2789 err = update_partition_exclusive(cs, new_prs); 2790 if (err) 2791 goto out; 2792 2793 if (!old_prs) { 2794 /* 2795 * cpus_allowed and exclusive_cpus cannot be both empty. 2796 */ 2797 if (xcpus_empty(cs)) { 2798 err = PERR_CPUSEMPTY; 2799 goto out; 2800 } 2801 2802 /* 2803 * If parent is valid partition, enable local partiion. 2804 * Otherwise, enable a remote partition. 2805 */ 2806 if (is_partition_valid(parent)) { 2807 enum partition_cmd cmd = (new_prs == PRS_ROOT) 2808 ? partcmd_enable : partcmd_enablei; 2809 2810 err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask); 2811 } else { 2812 err = remote_partition_enable(cs, new_prs, &tmpmask); 2813 } 2814 } else if (old_prs && new_prs) { 2815 /* 2816 * A change in load balance state only, no change in cpumasks. 2817 */ 2818 new_xcpus_state = true; 2819 } else { 2820 /* 2821 * Switching back to member is always allowed even if it 2822 * disables child partitions. 2823 */ 2824 if (is_remote_partition(cs)) 2825 remote_partition_disable(cs, &tmpmask); 2826 else 2827 update_parent_effective_cpumask(cs, partcmd_disable, 2828 NULL, &tmpmask); 2829 2830 /* 2831 * Invalidation of child partitions will be done in 2832 * update_cpumasks_hier(). 2833 */ 2834 } 2835 out: 2836 /* 2837 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error 2838 * happens. 2839 */ 2840 if (err) { 2841 new_prs = -new_prs; 2842 update_partition_exclusive(cs, new_prs); 2843 } 2844 2845 spin_lock_irq(&callback_lock); 2846 cs->partition_root_state = new_prs; 2847 WRITE_ONCE(cs->prs_err, err); 2848 if (!is_partition_valid(cs)) 2849 reset_partition_data(cs); 2850 else if (new_xcpus_state) 2851 partition_xcpus_newstate(old_prs, new_prs, cs->effective_xcpus); 2852 spin_unlock_irq(&callback_lock); 2853 update_unbound_workqueue_cpumask(new_xcpus_state); 2854 2855 /* Force update if switching back to member */ 2856 update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0); 2857 2858 /* Update sched domains and load balance flag */ 2859 update_partition_sd_lb(cs, old_prs); 2860 2861 notify_partition_change(cs, old_prs); 2862 free_cpumasks(NULL, &tmpmask); 2863 return 0; 2864 } 2865 2866 static struct cpuset *cpuset_attach_old_cs; 2867 2868 /* 2869 * Check to see if a cpuset can accept a new task 2870 * For v1, cpus_allowed and mems_allowed can't be empty. 2871 * For v2, effective_cpus can't be empty. 2872 * Note that in v1, effective_cpus = cpus_allowed. 2873 */ 2874 static int cpuset_can_attach_check(struct cpuset *cs) 2875 { 2876 if (cpumask_empty(cs->effective_cpus) || 2877 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) 2878 return -ENOSPC; 2879 return 0; 2880 } 2881 2882 static void reset_migrate_dl_data(struct cpuset *cs) 2883 { 2884 cs->nr_migrate_dl_tasks = 0; 2885 cs->sum_migrate_dl_bw = 0; 2886 } 2887 2888 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 2889 static int cpuset_can_attach(struct cgroup_taskset *tset) 2890 { 2891 struct cgroup_subsys_state *css; 2892 struct cpuset *cs, *oldcs; 2893 struct task_struct *task; 2894 bool cpus_updated, mems_updated; 2895 int ret; 2896 2897 /* used later by cpuset_attach() */ 2898 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2899 oldcs = cpuset_attach_old_cs; 2900 cs = css_cs(css); 2901 2902 mutex_lock(&cpuset_mutex); 2903 2904 /* Check to see if task is allowed in the cpuset */ 2905 ret = cpuset_can_attach_check(cs); 2906 if (ret) 2907 goto out_unlock; 2908 2909 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); 2910 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 2911 2912 cgroup_taskset_for_each(task, css, tset) { 2913 ret = task_can_attach(task); 2914 if (ret) 2915 goto out_unlock; 2916 2917 /* 2918 * Skip rights over task check in v2 when nothing changes, 2919 * migration permission derives from hierarchy ownership in 2920 * cgroup_procs_write_permission()). 2921 */ 2922 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 2923 (cpus_updated || mems_updated)) { 2924 ret = security_task_setscheduler(task); 2925 if (ret) 2926 goto out_unlock; 2927 } 2928 2929 if (dl_task(task)) { 2930 cs->nr_migrate_dl_tasks++; 2931 cs->sum_migrate_dl_bw += task->dl.dl_bw; 2932 } 2933 } 2934 2935 if (!cs->nr_migrate_dl_tasks) 2936 goto out_success; 2937 2938 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { 2939 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); 2940 2941 if (unlikely(cpu >= nr_cpu_ids)) { 2942 reset_migrate_dl_data(cs); 2943 ret = -EINVAL; 2944 goto out_unlock; 2945 } 2946 2947 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); 2948 if (ret) { 2949 reset_migrate_dl_data(cs); 2950 goto out_unlock; 2951 } 2952 } 2953 2954 out_success: 2955 /* 2956 * Mark attach is in progress. This makes validate_change() fail 2957 * changes which zero cpus/mems_allowed. 2958 */ 2959 cs->attach_in_progress++; 2960 out_unlock: 2961 mutex_unlock(&cpuset_mutex); 2962 return ret; 2963 } 2964 2965 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2966 { 2967 struct cgroup_subsys_state *css; 2968 struct cpuset *cs; 2969 2970 cgroup_taskset_first(tset, &css); 2971 cs = css_cs(css); 2972 2973 mutex_lock(&cpuset_mutex); 2974 dec_attach_in_progress_locked(cs); 2975 2976 if (cs->nr_migrate_dl_tasks) { 2977 int cpu = cpumask_any(cs->effective_cpus); 2978 2979 dl_bw_free(cpu, cs->sum_migrate_dl_bw); 2980 reset_migrate_dl_data(cs); 2981 } 2982 2983 mutex_unlock(&cpuset_mutex); 2984 } 2985 2986 /* 2987 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() 2988 * but we can't allocate it dynamically there. Define it global and 2989 * allocate from cpuset_init(). 2990 */ 2991 static cpumask_var_t cpus_attach; 2992 static nodemask_t cpuset_attach_nodemask_to; 2993 2994 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) 2995 { 2996 lockdep_assert_held(&cpuset_mutex); 2997 2998 if (cs != &top_cpuset) 2999 guarantee_online_cpus(task, cpus_attach); 3000 else 3001 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), 3002 subpartitions_cpus); 3003 /* 3004 * can_attach beforehand should guarantee that this doesn't 3005 * fail. TODO: have a better way to handle failure here 3006 */ 3007 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 3008 3009 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 3010 cpuset1_update_task_spread_flags(cs, task); 3011 } 3012 3013 static void cpuset_attach(struct cgroup_taskset *tset) 3014 { 3015 struct task_struct *task; 3016 struct task_struct *leader; 3017 struct cgroup_subsys_state *css; 3018 struct cpuset *cs; 3019 struct cpuset *oldcs = cpuset_attach_old_cs; 3020 bool cpus_updated, mems_updated; 3021 3022 cgroup_taskset_first(tset, &css); 3023 cs = css_cs(css); 3024 3025 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ 3026 mutex_lock(&cpuset_mutex); 3027 cpus_updated = !cpumask_equal(cs->effective_cpus, 3028 oldcs->effective_cpus); 3029 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 3030 3031 /* 3032 * In the default hierarchy, enabling cpuset in the child cgroups 3033 * will trigger a number of cpuset_attach() calls with no change 3034 * in effective cpus and mems. In that case, we can optimize out 3035 * by skipping the task iteration and update. 3036 */ 3037 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 3038 !cpus_updated && !mems_updated) { 3039 cpuset_attach_nodemask_to = cs->effective_mems; 3040 goto out; 3041 } 3042 3043 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3044 3045 cgroup_taskset_for_each(task, css, tset) 3046 cpuset_attach_task(cs, task); 3047 3048 /* 3049 * Change mm for all threadgroup leaders. This is expensive and may 3050 * sleep and should be moved outside migration path proper. Skip it 3051 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is 3052 * not set. 3053 */ 3054 cpuset_attach_nodemask_to = cs->effective_mems; 3055 if (!is_memory_migrate(cs) && !mems_updated) 3056 goto out; 3057 3058 cgroup_taskset_for_each_leader(leader, css, tset) { 3059 struct mm_struct *mm = get_task_mm(leader); 3060 3061 if (mm) { 3062 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 3063 3064 /* 3065 * old_mems_allowed is the same with mems_allowed 3066 * here, except if this task is being moved 3067 * automatically due to hotplug. In that case 3068 * @mems_allowed has been updated and is empty, so 3069 * @old_mems_allowed is the right nodesets that we 3070 * migrate mm from. 3071 */ 3072 if (is_memory_migrate(cs)) 3073 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 3074 &cpuset_attach_nodemask_to); 3075 else 3076 mmput(mm); 3077 } 3078 } 3079 3080 out: 3081 cs->old_mems_allowed = cpuset_attach_nodemask_to; 3082 3083 if (cs->nr_migrate_dl_tasks) { 3084 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; 3085 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; 3086 reset_migrate_dl_data(cs); 3087 } 3088 3089 dec_attach_in_progress_locked(cs); 3090 3091 mutex_unlock(&cpuset_mutex); 3092 } 3093 3094 /* 3095 * Common handling for a write to a "cpus" or "mems" file. 3096 */ 3097 ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 3098 char *buf, size_t nbytes, loff_t off) 3099 { 3100 struct cpuset *cs = css_cs(of_css(of)); 3101 struct cpuset *trialcs; 3102 int retval = -ENODEV; 3103 3104 buf = strstrip(buf); 3105 3106 /* 3107 * CPU or memory hotunplug may leave @cs w/o any execution 3108 * resources, in which case the hotplug code asynchronously updates 3109 * configuration and transfers all tasks to the nearest ancestor 3110 * which can execute. 3111 * 3112 * As writes to "cpus" or "mems" may restore @cs's execution 3113 * resources, wait for the previously scheduled operations before 3114 * proceeding, so that we don't end up keep removing tasks added 3115 * after execution capability is restored. 3116 * 3117 * cpuset_handle_hotplug may call back into cgroup core asynchronously 3118 * via cgroup_transfer_tasks() and waiting for it from a cgroupfs 3119 * operation like this one can lead to a deadlock through kernfs 3120 * active_ref protection. Let's break the protection. Losing the 3121 * protection is okay as we check whether @cs is online after 3122 * grabbing cpuset_mutex anyway. This only happens on the legacy 3123 * hierarchies. 3124 */ 3125 css_get(&cs->css); 3126 kernfs_break_active_protection(of->kn); 3127 3128 cpus_read_lock(); 3129 mutex_lock(&cpuset_mutex); 3130 if (!is_cpuset_online(cs)) 3131 goto out_unlock; 3132 3133 trialcs = alloc_trial_cpuset(cs); 3134 if (!trialcs) { 3135 retval = -ENOMEM; 3136 goto out_unlock; 3137 } 3138 3139 switch (of_cft(of)->private) { 3140 case FILE_CPULIST: 3141 retval = update_cpumask(cs, trialcs, buf); 3142 break; 3143 case FILE_EXCLUSIVE_CPULIST: 3144 retval = update_exclusive_cpumask(cs, trialcs, buf); 3145 break; 3146 case FILE_MEMLIST: 3147 retval = update_nodemask(cs, trialcs, buf); 3148 break; 3149 default: 3150 retval = -EINVAL; 3151 break; 3152 } 3153 3154 free_cpuset(trialcs); 3155 out_unlock: 3156 mutex_unlock(&cpuset_mutex); 3157 cpus_read_unlock(); 3158 kernfs_unbreak_active_protection(of->kn); 3159 css_put(&cs->css); 3160 flush_workqueue(cpuset_migrate_mm_wq); 3161 return retval ?: nbytes; 3162 } 3163 3164 /* 3165 * These ascii lists should be read in a single call, by using a user 3166 * buffer large enough to hold the entire map. If read in smaller 3167 * chunks, there is no guarantee of atomicity. Since the display format 3168 * used, list of ranges of sequential numbers, is variable length, 3169 * and since these maps can change value dynamically, one could read 3170 * gibberish by doing partial reads while a list was changing. 3171 */ 3172 int cpuset_common_seq_show(struct seq_file *sf, void *v) 3173 { 3174 struct cpuset *cs = css_cs(seq_css(sf)); 3175 cpuset_filetype_t type = seq_cft(sf)->private; 3176 int ret = 0; 3177 3178 spin_lock_irq(&callback_lock); 3179 3180 switch (type) { 3181 case FILE_CPULIST: 3182 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 3183 break; 3184 case FILE_MEMLIST: 3185 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 3186 break; 3187 case FILE_EFFECTIVE_CPULIST: 3188 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 3189 break; 3190 case FILE_EFFECTIVE_MEMLIST: 3191 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 3192 break; 3193 case FILE_EXCLUSIVE_CPULIST: 3194 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus)); 3195 break; 3196 case FILE_EFFECTIVE_XCPULIST: 3197 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus)); 3198 break; 3199 case FILE_SUBPARTS_CPULIST: 3200 seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus)); 3201 break; 3202 case FILE_ISOLATED_CPULIST: 3203 seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus)); 3204 break; 3205 default: 3206 ret = -EINVAL; 3207 } 3208 3209 spin_unlock_irq(&callback_lock); 3210 return ret; 3211 } 3212 3213 static int sched_partition_show(struct seq_file *seq, void *v) 3214 { 3215 struct cpuset *cs = css_cs(seq_css(seq)); 3216 const char *err, *type = NULL; 3217 3218 switch (cs->partition_root_state) { 3219 case PRS_ROOT: 3220 seq_puts(seq, "root\n"); 3221 break; 3222 case PRS_ISOLATED: 3223 seq_puts(seq, "isolated\n"); 3224 break; 3225 case PRS_MEMBER: 3226 seq_puts(seq, "member\n"); 3227 break; 3228 case PRS_INVALID_ROOT: 3229 type = "root"; 3230 fallthrough; 3231 case PRS_INVALID_ISOLATED: 3232 if (!type) 3233 type = "isolated"; 3234 err = perr_strings[READ_ONCE(cs->prs_err)]; 3235 if (err) 3236 seq_printf(seq, "%s invalid (%s)\n", type, err); 3237 else 3238 seq_printf(seq, "%s invalid\n", type); 3239 break; 3240 } 3241 return 0; 3242 } 3243 3244 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 3245 size_t nbytes, loff_t off) 3246 { 3247 struct cpuset *cs = css_cs(of_css(of)); 3248 int val; 3249 int retval = -ENODEV; 3250 3251 buf = strstrip(buf); 3252 3253 if (!strcmp(buf, "root")) 3254 val = PRS_ROOT; 3255 else if (!strcmp(buf, "member")) 3256 val = PRS_MEMBER; 3257 else if (!strcmp(buf, "isolated")) 3258 val = PRS_ISOLATED; 3259 else 3260 return -EINVAL; 3261 3262 css_get(&cs->css); 3263 cpus_read_lock(); 3264 mutex_lock(&cpuset_mutex); 3265 if (!is_cpuset_online(cs)) 3266 goto out_unlock; 3267 3268 retval = update_prstate(cs, val); 3269 out_unlock: 3270 mutex_unlock(&cpuset_mutex); 3271 cpus_read_unlock(); 3272 css_put(&cs->css); 3273 return retval ?: nbytes; 3274 } 3275 3276 /* 3277 * This is currently a minimal set for the default hierarchy. It can be 3278 * expanded later on by migrating more features and control files from v1. 3279 */ 3280 static struct cftype dfl_files[] = { 3281 { 3282 .name = "cpus", 3283 .seq_show = cpuset_common_seq_show, 3284 .write = cpuset_write_resmask, 3285 .max_write_len = (100U + 6 * NR_CPUS), 3286 .private = FILE_CPULIST, 3287 .flags = CFTYPE_NOT_ON_ROOT, 3288 }, 3289 3290 { 3291 .name = "mems", 3292 .seq_show = cpuset_common_seq_show, 3293 .write = cpuset_write_resmask, 3294 .max_write_len = (100U + 6 * MAX_NUMNODES), 3295 .private = FILE_MEMLIST, 3296 .flags = CFTYPE_NOT_ON_ROOT, 3297 }, 3298 3299 { 3300 .name = "cpus.effective", 3301 .seq_show = cpuset_common_seq_show, 3302 .private = FILE_EFFECTIVE_CPULIST, 3303 }, 3304 3305 { 3306 .name = "mems.effective", 3307 .seq_show = cpuset_common_seq_show, 3308 .private = FILE_EFFECTIVE_MEMLIST, 3309 }, 3310 3311 { 3312 .name = "cpus.partition", 3313 .seq_show = sched_partition_show, 3314 .write = sched_partition_write, 3315 .private = FILE_PARTITION_ROOT, 3316 .flags = CFTYPE_NOT_ON_ROOT, 3317 .file_offset = offsetof(struct cpuset, partition_file), 3318 }, 3319 3320 { 3321 .name = "cpus.exclusive", 3322 .seq_show = cpuset_common_seq_show, 3323 .write = cpuset_write_resmask, 3324 .max_write_len = (100U + 6 * NR_CPUS), 3325 .private = FILE_EXCLUSIVE_CPULIST, 3326 .flags = CFTYPE_NOT_ON_ROOT, 3327 }, 3328 3329 { 3330 .name = "cpus.exclusive.effective", 3331 .seq_show = cpuset_common_seq_show, 3332 .private = FILE_EFFECTIVE_XCPULIST, 3333 .flags = CFTYPE_NOT_ON_ROOT, 3334 }, 3335 3336 { 3337 .name = "cpus.subpartitions", 3338 .seq_show = cpuset_common_seq_show, 3339 .private = FILE_SUBPARTS_CPULIST, 3340 .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG, 3341 }, 3342 3343 { 3344 .name = "cpus.isolated", 3345 .seq_show = cpuset_common_seq_show, 3346 .private = FILE_ISOLATED_CPULIST, 3347 .flags = CFTYPE_ONLY_ON_ROOT, 3348 }, 3349 3350 { } /* terminate */ 3351 }; 3352 3353 3354 /** 3355 * cpuset_css_alloc - Allocate a cpuset css 3356 * @parent_css: Parent css of the control group that the new cpuset will be 3357 * part of 3358 * Return: cpuset css on success, -ENOMEM on failure. 3359 * 3360 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return 3361 * top cpuset css otherwise. 3362 */ 3363 static struct cgroup_subsys_state * 3364 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 3365 { 3366 struct cpuset *cs; 3367 3368 if (!parent_css) 3369 return &top_cpuset.css; 3370 3371 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 3372 if (!cs) 3373 return ERR_PTR(-ENOMEM); 3374 3375 if (alloc_cpumasks(cs, NULL)) { 3376 kfree(cs); 3377 return ERR_PTR(-ENOMEM); 3378 } 3379 3380 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3381 fmeter_init(&cs->fmeter); 3382 cs->relax_domain_level = -1; 3383 INIT_LIST_HEAD(&cs->remote_sibling); 3384 3385 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 3386 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 3387 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 3388 3389 return &cs->css; 3390 } 3391 3392 static int cpuset_css_online(struct cgroup_subsys_state *css) 3393 { 3394 struct cpuset *cs = css_cs(css); 3395 struct cpuset *parent = parent_cs(cs); 3396 struct cpuset *tmp_cs; 3397 struct cgroup_subsys_state *pos_css; 3398 3399 if (!parent) 3400 return 0; 3401 3402 cpus_read_lock(); 3403 mutex_lock(&cpuset_mutex); 3404 3405 set_bit(CS_ONLINE, &cs->flags); 3406 if (is_spread_page(parent)) 3407 set_bit(CS_SPREAD_PAGE, &cs->flags); 3408 if (is_spread_slab(parent)) 3409 set_bit(CS_SPREAD_SLAB, &cs->flags); 3410 /* 3411 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated 3412 */ 3413 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 3414 !is_sched_load_balance(parent)) 3415 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3416 3417 cpuset_inc(); 3418 3419 spin_lock_irq(&callback_lock); 3420 if (is_in_v2_mode()) { 3421 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 3422 cs->effective_mems = parent->effective_mems; 3423 } 3424 spin_unlock_irq(&callback_lock); 3425 3426 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 3427 goto out_unlock; 3428 3429 /* 3430 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 3431 * set. This flag handling is implemented in cgroup core for 3432 * historical reasons - the flag may be specified during mount. 3433 * 3434 * Currently, if any sibling cpusets have exclusive cpus or mem, we 3435 * refuse to clone the configuration - thereby refusing the task to 3436 * be entered, and as a result refusing the sys_unshare() or 3437 * clone() which initiated it. If this becomes a problem for some 3438 * users who wish to allow that scenario, then this could be 3439 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 3440 * (and likewise for mems) to the new cgroup. 3441 */ 3442 rcu_read_lock(); 3443 cpuset_for_each_child(tmp_cs, pos_css, parent) { 3444 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 3445 rcu_read_unlock(); 3446 goto out_unlock; 3447 } 3448 } 3449 rcu_read_unlock(); 3450 3451 spin_lock_irq(&callback_lock); 3452 cs->mems_allowed = parent->mems_allowed; 3453 cs->effective_mems = parent->mems_allowed; 3454 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 3455 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 3456 spin_unlock_irq(&callback_lock); 3457 out_unlock: 3458 mutex_unlock(&cpuset_mutex); 3459 cpus_read_unlock(); 3460 return 0; 3461 } 3462 3463 /* 3464 * If the cpuset being removed has its flag 'sched_load_balance' 3465 * enabled, then simulate turning sched_load_balance off, which 3466 * will call rebuild_sched_domains_locked(). That is not needed 3467 * in the default hierarchy where only changes in partition 3468 * will cause repartitioning. 3469 * 3470 * If the cpuset has the 'sched.partition' flag enabled, simulate 3471 * turning 'sched.partition" off. 3472 */ 3473 3474 static void cpuset_css_offline(struct cgroup_subsys_state *css) 3475 { 3476 struct cpuset *cs = css_cs(css); 3477 3478 cpus_read_lock(); 3479 mutex_lock(&cpuset_mutex); 3480 3481 if (is_partition_valid(cs)) 3482 update_prstate(cs, 0); 3483 3484 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 3485 is_sched_load_balance(cs)) 3486 cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 3487 3488 cpuset_dec(); 3489 clear_bit(CS_ONLINE, &cs->flags); 3490 3491 mutex_unlock(&cpuset_mutex); 3492 cpus_read_unlock(); 3493 } 3494 3495 static void cpuset_css_free(struct cgroup_subsys_state *css) 3496 { 3497 struct cpuset *cs = css_cs(css); 3498 3499 free_cpuset(cs); 3500 } 3501 3502 static void cpuset_bind(struct cgroup_subsys_state *root_css) 3503 { 3504 mutex_lock(&cpuset_mutex); 3505 spin_lock_irq(&callback_lock); 3506 3507 if (is_in_v2_mode()) { 3508 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 3509 cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask); 3510 top_cpuset.mems_allowed = node_possible_map; 3511 } else { 3512 cpumask_copy(top_cpuset.cpus_allowed, 3513 top_cpuset.effective_cpus); 3514 top_cpuset.mems_allowed = top_cpuset.effective_mems; 3515 } 3516 3517 spin_unlock_irq(&callback_lock); 3518 mutex_unlock(&cpuset_mutex); 3519 } 3520 3521 /* 3522 * In case the child is cloned into a cpuset different from its parent, 3523 * additional checks are done to see if the move is allowed. 3524 */ 3525 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) 3526 { 3527 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3528 bool same_cs; 3529 int ret; 3530 3531 rcu_read_lock(); 3532 same_cs = (cs == task_cs(current)); 3533 rcu_read_unlock(); 3534 3535 if (same_cs) 3536 return 0; 3537 3538 lockdep_assert_held(&cgroup_mutex); 3539 mutex_lock(&cpuset_mutex); 3540 3541 /* Check to see if task is allowed in the cpuset */ 3542 ret = cpuset_can_attach_check(cs); 3543 if (ret) 3544 goto out_unlock; 3545 3546 ret = task_can_attach(task); 3547 if (ret) 3548 goto out_unlock; 3549 3550 ret = security_task_setscheduler(task); 3551 if (ret) 3552 goto out_unlock; 3553 3554 /* 3555 * Mark attach is in progress. This makes validate_change() fail 3556 * changes which zero cpus/mems_allowed. 3557 */ 3558 cs->attach_in_progress++; 3559 out_unlock: 3560 mutex_unlock(&cpuset_mutex); 3561 return ret; 3562 } 3563 3564 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) 3565 { 3566 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3567 bool same_cs; 3568 3569 rcu_read_lock(); 3570 same_cs = (cs == task_cs(current)); 3571 rcu_read_unlock(); 3572 3573 if (same_cs) 3574 return; 3575 3576 dec_attach_in_progress(cs); 3577 } 3578 3579 /* 3580 * Make sure the new task conform to the current state of its parent, 3581 * which could have been changed by cpuset just after it inherits the 3582 * state from the parent and before it sits on the cgroup's task list. 3583 */ 3584 static void cpuset_fork(struct task_struct *task) 3585 { 3586 struct cpuset *cs; 3587 bool same_cs; 3588 3589 rcu_read_lock(); 3590 cs = task_cs(task); 3591 same_cs = (cs == task_cs(current)); 3592 rcu_read_unlock(); 3593 3594 if (same_cs) { 3595 if (cs == &top_cpuset) 3596 return; 3597 3598 set_cpus_allowed_ptr(task, current->cpus_ptr); 3599 task->mems_allowed = current->mems_allowed; 3600 return; 3601 } 3602 3603 /* CLONE_INTO_CGROUP */ 3604 mutex_lock(&cpuset_mutex); 3605 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3606 cpuset_attach_task(cs, task); 3607 3608 dec_attach_in_progress_locked(cs); 3609 mutex_unlock(&cpuset_mutex); 3610 } 3611 3612 struct cgroup_subsys cpuset_cgrp_subsys = { 3613 .css_alloc = cpuset_css_alloc, 3614 .css_online = cpuset_css_online, 3615 .css_offline = cpuset_css_offline, 3616 .css_free = cpuset_css_free, 3617 .can_attach = cpuset_can_attach, 3618 .cancel_attach = cpuset_cancel_attach, 3619 .attach = cpuset_attach, 3620 .post_attach = cpuset_post_attach, 3621 .bind = cpuset_bind, 3622 .can_fork = cpuset_can_fork, 3623 .cancel_fork = cpuset_cancel_fork, 3624 .fork = cpuset_fork, 3625 #ifdef CONFIG_CPUSETS_V1 3626 .legacy_cftypes = cpuset1_files, 3627 #endif 3628 .dfl_cftypes = dfl_files, 3629 .early_init = true, 3630 .threaded = true, 3631 }; 3632 3633 /** 3634 * cpuset_init - initialize cpusets at system boot 3635 * 3636 * Description: Initialize top_cpuset 3637 **/ 3638 3639 int __init cpuset_init(void) 3640 { 3641 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 3642 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 3643 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL)); 3644 BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL)); 3645 BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL)); 3646 BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL)); 3647 3648 cpumask_setall(top_cpuset.cpus_allowed); 3649 nodes_setall(top_cpuset.mems_allowed); 3650 cpumask_setall(top_cpuset.effective_cpus); 3651 cpumask_setall(top_cpuset.effective_xcpus); 3652 cpumask_setall(top_cpuset.exclusive_cpus); 3653 nodes_setall(top_cpuset.effective_mems); 3654 3655 fmeter_init(&top_cpuset.fmeter); 3656 INIT_LIST_HEAD(&remote_children); 3657 3658 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 3659 3660 have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN); 3661 if (have_boot_isolcpus) { 3662 BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL)); 3663 cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN)); 3664 cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus); 3665 } 3666 3667 return 0; 3668 } 3669 3670 static void 3671 hotplug_update_tasks(struct cpuset *cs, 3672 struct cpumask *new_cpus, nodemask_t *new_mems, 3673 bool cpus_updated, bool mems_updated) 3674 { 3675 /* A partition root is allowed to have empty effective cpus */ 3676 if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) 3677 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3678 if (nodes_empty(*new_mems)) 3679 *new_mems = parent_cs(cs)->effective_mems; 3680 3681 spin_lock_irq(&callback_lock); 3682 cpumask_copy(cs->effective_cpus, new_cpus); 3683 cs->effective_mems = *new_mems; 3684 spin_unlock_irq(&callback_lock); 3685 3686 if (cpus_updated) 3687 cpuset_update_tasks_cpumask(cs, new_cpus); 3688 if (mems_updated) 3689 cpuset_update_tasks_nodemask(cs); 3690 } 3691 3692 void cpuset_force_rebuild(void) 3693 { 3694 force_sd_rebuild = true; 3695 } 3696 3697 /** 3698 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3699 * @cs: cpuset in interest 3700 * @tmp: the tmpmasks structure pointer 3701 * 3702 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3703 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3704 * all its tasks are moved to the nearest ancestor with both resources. 3705 */ 3706 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3707 { 3708 static cpumask_t new_cpus; 3709 static nodemask_t new_mems; 3710 bool cpus_updated; 3711 bool mems_updated; 3712 bool remote; 3713 int partcmd = -1; 3714 struct cpuset *parent; 3715 retry: 3716 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3717 3718 mutex_lock(&cpuset_mutex); 3719 3720 /* 3721 * We have raced with task attaching. We wait until attaching 3722 * is finished, so we won't attach a task to an empty cpuset. 3723 */ 3724 if (cs->attach_in_progress) { 3725 mutex_unlock(&cpuset_mutex); 3726 goto retry; 3727 } 3728 3729 parent = parent_cs(cs); 3730 compute_effective_cpumask(&new_cpus, cs, parent); 3731 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3732 3733 if (!tmp || !cs->partition_root_state) 3734 goto update_tasks; 3735 3736 /* 3737 * Compute effective_cpus for valid partition root, may invalidate 3738 * child partition roots if necessary. 3739 */ 3740 remote = is_remote_partition(cs); 3741 if (remote || (is_partition_valid(cs) && is_partition_valid(parent))) 3742 compute_partition_effective_cpumask(cs, &new_cpus); 3743 3744 if (remote && cpumask_empty(&new_cpus) && 3745 partition_is_populated(cs, NULL)) { 3746 remote_partition_disable(cs, tmp); 3747 compute_effective_cpumask(&new_cpus, cs, parent); 3748 remote = false; 3749 cpuset_force_rebuild(); 3750 } 3751 3752 /* 3753 * Force the partition to become invalid if either one of 3754 * the following conditions hold: 3755 * 1) empty effective cpus but not valid empty partition. 3756 * 2) parent is invalid or doesn't grant any cpus to child 3757 * partitions. 3758 */ 3759 if (is_local_partition(cs) && (!is_partition_valid(parent) || 3760 tasks_nocpu_error(parent, cs, &new_cpus))) 3761 partcmd = partcmd_invalidate; 3762 /* 3763 * On the other hand, an invalid partition root may be transitioned 3764 * back to a regular one. 3765 */ 3766 else if (is_partition_valid(parent) && is_partition_invalid(cs)) 3767 partcmd = partcmd_update; 3768 3769 if (partcmd >= 0) { 3770 update_parent_effective_cpumask(cs, partcmd, NULL, tmp); 3771 if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) { 3772 compute_partition_effective_cpumask(cs, &new_cpus); 3773 cpuset_force_rebuild(); 3774 } 3775 } 3776 3777 update_tasks: 3778 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3779 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3780 if (!cpus_updated && !mems_updated) 3781 goto unlock; /* Hotplug doesn't affect this cpuset */ 3782 3783 if (mems_updated) 3784 check_insane_mems_config(&new_mems); 3785 3786 if (is_in_v2_mode()) 3787 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3788 cpus_updated, mems_updated); 3789 else 3790 cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems, 3791 cpus_updated, mems_updated); 3792 3793 unlock: 3794 mutex_unlock(&cpuset_mutex); 3795 } 3796 3797 /** 3798 * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset 3799 * 3800 * This function is called after either CPU or memory configuration has 3801 * changed and updates cpuset accordingly. The top_cpuset is always 3802 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3803 * order to make cpusets transparent (of no affect) on systems that are 3804 * actively using CPU hotplug but making no active use of cpusets. 3805 * 3806 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3807 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3808 * all descendants. 3809 * 3810 * Note that CPU offlining during suspend is ignored. We don't modify 3811 * cpusets across suspend/resume cycles at all. 3812 * 3813 * CPU / memory hotplug is handled synchronously. 3814 */ 3815 static void cpuset_handle_hotplug(void) 3816 { 3817 static cpumask_t new_cpus; 3818 static nodemask_t new_mems; 3819 bool cpus_updated, mems_updated; 3820 bool on_dfl = is_in_v2_mode(); 3821 struct tmpmasks tmp, *ptmp = NULL; 3822 3823 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3824 ptmp = &tmp; 3825 3826 lockdep_assert_cpus_held(); 3827 mutex_lock(&cpuset_mutex); 3828 3829 /* fetch the available cpus/mems and find out which changed how */ 3830 cpumask_copy(&new_cpus, cpu_active_mask); 3831 new_mems = node_states[N_MEMORY]; 3832 3833 /* 3834 * If subpartitions_cpus is populated, it is likely that the check 3835 * below will produce a false positive on cpus_updated when the cpu 3836 * list isn't changed. It is extra work, but it is better to be safe. 3837 */ 3838 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) || 3839 !cpumask_empty(subpartitions_cpus); 3840 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3841 3842 /* For v1, synchronize cpus_allowed to cpu_active_mask */ 3843 if (cpus_updated) { 3844 cpuset_force_rebuild(); 3845 spin_lock_irq(&callback_lock); 3846 if (!on_dfl) 3847 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3848 /* 3849 * Make sure that CPUs allocated to child partitions 3850 * do not show up in effective_cpus. If no CPU is left, 3851 * we clear the subpartitions_cpus & let the child partitions 3852 * fight for the CPUs again. 3853 */ 3854 if (!cpumask_empty(subpartitions_cpus)) { 3855 if (cpumask_subset(&new_cpus, subpartitions_cpus)) { 3856 top_cpuset.nr_subparts = 0; 3857 cpumask_clear(subpartitions_cpus); 3858 } else { 3859 cpumask_andnot(&new_cpus, &new_cpus, 3860 subpartitions_cpus); 3861 } 3862 } 3863 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3864 spin_unlock_irq(&callback_lock); 3865 /* we don't mess with cpumasks of tasks in top_cpuset */ 3866 } 3867 3868 /* synchronize mems_allowed to N_MEMORY */ 3869 if (mems_updated) { 3870 spin_lock_irq(&callback_lock); 3871 if (!on_dfl) 3872 top_cpuset.mems_allowed = new_mems; 3873 top_cpuset.effective_mems = new_mems; 3874 spin_unlock_irq(&callback_lock); 3875 cpuset_update_tasks_nodemask(&top_cpuset); 3876 } 3877 3878 mutex_unlock(&cpuset_mutex); 3879 3880 /* if cpus or mems changed, we need to propagate to descendants */ 3881 if (cpus_updated || mems_updated) { 3882 struct cpuset *cs; 3883 struct cgroup_subsys_state *pos_css; 3884 3885 rcu_read_lock(); 3886 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3887 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3888 continue; 3889 rcu_read_unlock(); 3890 3891 cpuset_hotplug_update_tasks(cs, ptmp); 3892 3893 rcu_read_lock(); 3894 css_put(&cs->css); 3895 } 3896 rcu_read_unlock(); 3897 } 3898 3899 /* rebuild sched domains if cpus_allowed has changed */ 3900 if (force_sd_rebuild) { 3901 force_sd_rebuild = false; 3902 rebuild_sched_domains_cpuslocked(); 3903 } 3904 3905 free_cpumasks(NULL, ptmp); 3906 } 3907 3908 void cpuset_update_active_cpus(void) 3909 { 3910 /* 3911 * We're inside cpu hotplug critical region which usually nests 3912 * inside cgroup synchronization. Bounce actual hotplug processing 3913 * to a work item to avoid reverse locking order. 3914 */ 3915 cpuset_handle_hotplug(); 3916 } 3917 3918 /* 3919 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3920 * Call this routine anytime after node_states[N_MEMORY] changes. 3921 * See cpuset_update_active_cpus() for CPU hotplug handling. 3922 */ 3923 static int cpuset_track_online_nodes(struct notifier_block *self, 3924 unsigned long action, void *arg) 3925 { 3926 cpuset_handle_hotplug(); 3927 return NOTIFY_OK; 3928 } 3929 3930 /** 3931 * cpuset_init_smp - initialize cpus_allowed 3932 * 3933 * Description: Finish top cpuset after cpu, node maps are initialized 3934 */ 3935 void __init cpuset_init_smp(void) 3936 { 3937 /* 3938 * cpus_allowd/mems_allowed set to v2 values in the initial 3939 * cpuset_bind() call will be reset to v1 values in another 3940 * cpuset_bind() call when v1 cpuset is mounted. 3941 */ 3942 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3943 3944 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3945 top_cpuset.effective_mems = node_states[N_MEMORY]; 3946 3947 hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); 3948 3949 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3950 BUG_ON(!cpuset_migrate_mm_wq); 3951 } 3952 3953 /** 3954 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3955 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3956 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3957 * 3958 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3959 * attached to the specified @tsk. Guaranteed to return some non-empty 3960 * subset of cpu_online_mask, even if this means going outside the 3961 * tasks cpuset, except when the task is in the top cpuset. 3962 **/ 3963 3964 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3965 { 3966 unsigned long flags; 3967 struct cpuset *cs; 3968 3969 spin_lock_irqsave(&callback_lock, flags); 3970 rcu_read_lock(); 3971 3972 cs = task_cs(tsk); 3973 if (cs != &top_cpuset) 3974 guarantee_online_cpus(tsk, pmask); 3975 /* 3976 * Tasks in the top cpuset won't get update to their cpumasks 3977 * when a hotplug online/offline event happens. So we include all 3978 * offline cpus in the allowed cpu list. 3979 */ 3980 if ((cs == &top_cpuset) || cpumask_empty(pmask)) { 3981 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3982 3983 /* 3984 * We first exclude cpus allocated to partitions. If there is no 3985 * allowable online cpu left, we fall back to all possible cpus. 3986 */ 3987 cpumask_andnot(pmask, possible_mask, subpartitions_cpus); 3988 if (!cpumask_intersects(pmask, cpu_online_mask)) 3989 cpumask_copy(pmask, possible_mask); 3990 } 3991 3992 rcu_read_unlock(); 3993 spin_unlock_irqrestore(&callback_lock, flags); 3994 } 3995 3996 /** 3997 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3998 * @tsk: pointer to task_struct with which the scheduler is struggling 3999 * 4000 * Description: In the case that the scheduler cannot find an allowed cpu in 4001 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 4002 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 4003 * which will not contain a sane cpumask during cases such as cpu hotplugging. 4004 * This is the absolute last resort for the scheduler and it is only used if 4005 * _every_ other avenue has been traveled. 4006 * 4007 * Returns true if the affinity of @tsk was changed, false otherwise. 4008 **/ 4009 4010 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 4011 { 4012 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 4013 const struct cpumask *cs_mask; 4014 bool changed = false; 4015 4016 rcu_read_lock(); 4017 cs_mask = task_cs(tsk)->cpus_allowed; 4018 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 4019 do_set_cpus_allowed(tsk, cs_mask); 4020 changed = true; 4021 } 4022 rcu_read_unlock(); 4023 4024 /* 4025 * We own tsk->cpus_allowed, nobody can change it under us. 4026 * 4027 * But we used cs && cs->cpus_allowed lockless and thus can 4028 * race with cgroup_attach_task() or update_cpumask() and get 4029 * the wrong tsk->cpus_allowed. However, both cases imply the 4030 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 4031 * which takes task_rq_lock(). 4032 * 4033 * If we are called after it dropped the lock we must see all 4034 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 4035 * set any mask even if it is not right from task_cs() pov, 4036 * the pending set_cpus_allowed_ptr() will fix things. 4037 * 4038 * select_fallback_rq() will fix things ups and set cpu_possible_mask 4039 * if required. 4040 */ 4041 return changed; 4042 } 4043 4044 void __init cpuset_init_current_mems_allowed(void) 4045 { 4046 nodes_setall(current->mems_allowed); 4047 } 4048 4049 /** 4050 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 4051 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 4052 * 4053 * Description: Returns the nodemask_t mems_allowed of the cpuset 4054 * attached to the specified @tsk. Guaranteed to return some non-empty 4055 * subset of node_states[N_MEMORY], even if this means going outside the 4056 * tasks cpuset. 4057 **/ 4058 4059 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 4060 { 4061 nodemask_t mask; 4062 unsigned long flags; 4063 4064 spin_lock_irqsave(&callback_lock, flags); 4065 rcu_read_lock(); 4066 guarantee_online_mems(task_cs(tsk), &mask); 4067 rcu_read_unlock(); 4068 spin_unlock_irqrestore(&callback_lock, flags); 4069 4070 return mask; 4071 } 4072 4073 /** 4074 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 4075 * @nodemask: the nodemask to be checked 4076 * 4077 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 4078 */ 4079 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 4080 { 4081 return nodes_intersects(*nodemask, current->mems_allowed); 4082 } 4083 4084 /* 4085 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 4086 * mem_hardwall ancestor to the specified cpuset. Call holding 4087 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 4088 * (an unusual configuration), then returns the root cpuset. 4089 */ 4090 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 4091 { 4092 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 4093 cs = parent_cs(cs); 4094 return cs; 4095 } 4096 4097 /* 4098 * cpuset_node_allowed - Can we allocate on a memory node? 4099 * @node: is this an allowed node? 4100 * @gfp_mask: memory allocation flags 4101 * 4102 * If we're in interrupt, yes, we can always allocate. If @node is set in 4103 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 4104 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 4105 * yes. If current has access to memory reserves as an oom victim, yes. 4106 * Otherwise, no. 4107 * 4108 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 4109 * and do not allow allocations outside the current tasks cpuset 4110 * unless the task has been OOM killed. 4111 * GFP_KERNEL allocations are not so marked, so can escape to the 4112 * nearest enclosing hardwalled ancestor cpuset. 4113 * 4114 * Scanning up parent cpusets requires callback_lock. The 4115 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 4116 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 4117 * current tasks mems_allowed came up empty on the first pass over 4118 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 4119 * cpuset are short of memory, might require taking the callback_lock. 4120 * 4121 * The first call here from mm/page_alloc:get_page_from_freelist() 4122 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 4123 * so no allocation on a node outside the cpuset is allowed (unless 4124 * in interrupt, of course). 4125 * 4126 * The second pass through get_page_from_freelist() doesn't even call 4127 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 4128 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 4129 * in alloc_flags. That logic and the checks below have the combined 4130 * affect that: 4131 * in_interrupt - any node ok (current task context irrelevant) 4132 * GFP_ATOMIC - any node ok 4133 * tsk_is_oom_victim - any node ok 4134 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 4135 * GFP_USER - only nodes in current tasks mems allowed ok. 4136 */ 4137 bool cpuset_node_allowed(int node, gfp_t gfp_mask) 4138 { 4139 struct cpuset *cs; /* current cpuset ancestors */ 4140 bool allowed; /* is allocation in zone z allowed? */ 4141 unsigned long flags; 4142 4143 if (in_interrupt()) 4144 return true; 4145 if (node_isset(node, current->mems_allowed)) 4146 return true; 4147 /* 4148 * Allow tasks that have access to memory reserves because they have 4149 * been OOM killed to get memory anywhere. 4150 */ 4151 if (unlikely(tsk_is_oom_victim(current))) 4152 return true; 4153 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 4154 return false; 4155 4156 if (current->flags & PF_EXITING) /* Let dying task have memory */ 4157 return true; 4158 4159 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 4160 spin_lock_irqsave(&callback_lock, flags); 4161 4162 rcu_read_lock(); 4163 cs = nearest_hardwall_ancestor(task_cs(current)); 4164 allowed = node_isset(node, cs->mems_allowed); 4165 rcu_read_unlock(); 4166 4167 spin_unlock_irqrestore(&callback_lock, flags); 4168 return allowed; 4169 } 4170 4171 /** 4172 * cpuset_spread_node() - On which node to begin search for a page 4173 * @rotor: round robin rotor 4174 * 4175 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 4176 * tasks in a cpuset with is_spread_page or is_spread_slab set), 4177 * and if the memory allocation used cpuset_mem_spread_node() 4178 * to determine on which node to start looking, as it will for 4179 * certain page cache or slab cache pages such as used for file 4180 * system buffers and inode caches, then instead of starting on the 4181 * local node to look for a free page, rather spread the starting 4182 * node around the tasks mems_allowed nodes. 4183 * 4184 * We don't have to worry about the returned node being offline 4185 * because "it can't happen", and even if it did, it would be ok. 4186 * 4187 * The routines calling guarantee_online_mems() are careful to 4188 * only set nodes in task->mems_allowed that are online. So it 4189 * should not be possible for the following code to return an 4190 * offline node. But if it did, that would be ok, as this routine 4191 * is not returning the node where the allocation must be, only 4192 * the node where the search should start. The zonelist passed to 4193 * __alloc_pages() will include all nodes. If the slab allocator 4194 * is passed an offline node, it will fall back to the local node. 4195 * See kmem_cache_alloc_node(). 4196 */ 4197 static int cpuset_spread_node(int *rotor) 4198 { 4199 return *rotor = next_node_in(*rotor, current->mems_allowed); 4200 } 4201 4202 /** 4203 * cpuset_mem_spread_node() - On which node to begin search for a file page 4204 */ 4205 int cpuset_mem_spread_node(void) 4206 { 4207 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 4208 current->cpuset_mem_spread_rotor = 4209 node_random(¤t->mems_allowed); 4210 4211 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 4212 } 4213 4214 /** 4215 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 4216 * @tsk1: pointer to task_struct of some task. 4217 * @tsk2: pointer to task_struct of some other task. 4218 * 4219 * Description: Return true if @tsk1's mems_allowed intersects the 4220 * mems_allowed of @tsk2. Used by the OOM killer to determine if 4221 * one of the task's memory usage might impact the memory available 4222 * to the other. 4223 **/ 4224 4225 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 4226 const struct task_struct *tsk2) 4227 { 4228 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 4229 } 4230 4231 /** 4232 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 4233 * 4234 * Description: Prints current's name, cpuset name, and cached copy of its 4235 * mems_allowed to the kernel log. 4236 */ 4237 void cpuset_print_current_mems_allowed(void) 4238 { 4239 struct cgroup *cgrp; 4240 4241 rcu_read_lock(); 4242 4243 cgrp = task_cs(current)->css.cgroup; 4244 pr_cont(",cpuset="); 4245 pr_cont_cgroup_name(cgrp); 4246 pr_cont(",mems_allowed=%*pbl", 4247 nodemask_pr_args(¤t->mems_allowed)); 4248 4249 rcu_read_unlock(); 4250 } 4251 4252 #ifdef CONFIG_PROC_PID_CPUSET 4253 /* 4254 * proc_cpuset_show() 4255 * - Print tasks cpuset path into seq_file. 4256 * - Used for /proc/<pid>/cpuset. 4257 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 4258 * doesn't really matter if tsk->cpuset changes after we read it, 4259 * and we take cpuset_mutex, keeping cpuset_attach() from changing it 4260 * anyway. 4261 */ 4262 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 4263 struct pid *pid, struct task_struct *tsk) 4264 { 4265 char *buf; 4266 struct cgroup_subsys_state *css; 4267 int retval; 4268 4269 retval = -ENOMEM; 4270 buf = kmalloc(PATH_MAX, GFP_KERNEL); 4271 if (!buf) 4272 goto out; 4273 4274 rcu_read_lock(); 4275 spin_lock_irq(&css_set_lock); 4276 css = task_css(tsk, cpuset_cgrp_id); 4277 retval = cgroup_path_ns_locked(css->cgroup, buf, PATH_MAX, 4278 current->nsproxy->cgroup_ns); 4279 spin_unlock_irq(&css_set_lock); 4280 rcu_read_unlock(); 4281 4282 if (retval == -E2BIG) 4283 retval = -ENAMETOOLONG; 4284 if (retval < 0) 4285 goto out_free; 4286 seq_puts(m, buf); 4287 seq_putc(m, '\n'); 4288 retval = 0; 4289 out_free: 4290 kfree(buf); 4291 out: 4292 return retval; 4293 } 4294 #endif /* CONFIG_PROC_PID_CPUSET */ 4295 4296 /* Display task mems_allowed in /proc/<pid>/status file. */ 4297 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 4298 { 4299 seq_printf(m, "Mems_allowed:\t%*pb\n", 4300 nodemask_pr_args(&task->mems_allowed)); 4301 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 4302 nodemask_pr_args(&task->mems_allowed)); 4303 } 4304