xref: /linux/kernel/cgroup/cpuset.c (revision 3b0dec689a6301845761681b852f9538cb75a1d2)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 #include "cpuset-internal.h"
25 
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/kernel.h>
29 #include <linux/mempolicy.h>
30 #include <linux/mm.h>
31 #include <linux/memory.h>
32 #include <linux/export.h>
33 #include <linux/rcupdate.h>
34 #include <linux/sched.h>
35 #include <linux/sched/deadline.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/task.h>
38 #include <linux/security.h>
39 #include <linux/oom.h>
40 #include <linux/sched/isolation.h>
41 #include <linux/wait.h>
42 #include <linux/workqueue.h>
43 
44 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
45 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
46 
47 /*
48  * There could be abnormal cpuset configurations for cpu or memory
49  * node binding, add this key to provide a quick low-cost judgment
50  * of the situation.
51  */
52 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
53 
54 static const char * const perr_strings[] = {
55 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus.exclusive",
56 	[PERR_INVPARENT] = "Parent is an invalid partition root",
57 	[PERR_NOTPART]   = "Parent is not a partition root",
58 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
59 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
60 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
61 	[PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty",
62 	[PERR_HKEEPING]  = "partition config conflicts with housekeeping setup",
63 	[PERR_ACCESS]    = "Enable partition not permitted",
64 	[PERR_REMOTE]    = "Have remote partition underneath",
65 };
66 
67 /*
68  * For local partitions, update to subpartitions_cpus & isolated_cpus is done
69  * in update_parent_effective_cpumask(). For remote partitions, it is done in
70  * the remote_partition_*() and remote_cpus_update() helpers.
71  */
72 /*
73  * Exclusive CPUs distributed out to local or remote sub-partitions of
74  * top_cpuset
75  */
76 static cpumask_var_t	subpartitions_cpus;
77 
78 /*
79  * Exclusive CPUs in isolated partitions
80  */
81 static cpumask_var_t	isolated_cpus;
82 
83 /*
84  * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot
85  */
86 static cpumask_var_t	boot_hk_cpus;
87 static bool		have_boot_isolcpus;
88 
89 /* List of remote partition root children */
90 static struct list_head remote_children;
91 
92 /*
93  * A flag to force sched domain rebuild at the end of an operation.
94  * It can be set in
95  *  - update_partition_sd_lb()
96  *  - update_cpumasks_hier()
97  *  - cpuset_update_flag()
98  *  - cpuset_hotplug_update_tasks()
99  *  - cpuset_handle_hotplug()
100  *
101  * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock.
102  *
103  * Note that update_relax_domain_level() in cpuset-v1.c can still call
104  * rebuild_sched_domains_locked() directly without using this flag.
105  */
106 static bool force_sd_rebuild;
107 
108 /*
109  * Partition root states:
110  *
111  *   0 - member (not a partition root)
112  *   1 - partition root
113  *   2 - partition root without load balancing (isolated)
114  *  -1 - invalid partition root
115  *  -2 - invalid isolated partition root
116  *
117  *  There are 2 types of partitions - local or remote. Local partitions are
118  *  those whose parents are partition root themselves. Setting of
119  *  cpuset.cpus.exclusive are optional in setting up local partitions.
120  *  Remote partitions are those whose parents are not partition roots. Passing
121  *  down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor
122  *  nodes are mandatory in creating a remote partition.
123  *
124  *  For simplicity, a local partition can be created under a local or remote
125  *  partition but a remote partition cannot have any partition root in its
126  *  ancestor chain except the cgroup root.
127  */
128 #define PRS_MEMBER		0
129 #define PRS_ROOT		1
130 #define PRS_ISOLATED		2
131 #define PRS_INVALID_ROOT	-1
132 #define PRS_INVALID_ISOLATED	-2
133 
134 static inline bool is_prs_invalid(int prs_state)
135 {
136 	return prs_state < 0;
137 }
138 
139 /*
140  * Temporary cpumasks for working with partitions that are passed among
141  * functions to avoid memory allocation in inner functions.
142  */
143 struct tmpmasks {
144 	cpumask_var_t addmask, delmask;	/* For partition root */
145 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
146 };
147 
148 void inc_dl_tasks_cs(struct task_struct *p)
149 {
150 	struct cpuset *cs = task_cs(p);
151 
152 	cs->nr_deadline_tasks++;
153 }
154 
155 void dec_dl_tasks_cs(struct task_struct *p)
156 {
157 	struct cpuset *cs = task_cs(p);
158 
159 	cs->nr_deadline_tasks--;
160 }
161 
162 static inline int is_partition_valid(const struct cpuset *cs)
163 {
164 	return cs->partition_root_state > 0;
165 }
166 
167 static inline int is_partition_invalid(const struct cpuset *cs)
168 {
169 	return cs->partition_root_state < 0;
170 }
171 
172 /*
173  * Callers should hold callback_lock to modify partition_root_state.
174  */
175 static inline void make_partition_invalid(struct cpuset *cs)
176 {
177 	if (cs->partition_root_state > 0)
178 		cs->partition_root_state = -cs->partition_root_state;
179 }
180 
181 /*
182  * Send notification event of whenever partition_root_state changes.
183  */
184 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
185 {
186 	if (old_prs == cs->partition_root_state)
187 		return;
188 	cgroup_file_notify(&cs->partition_file);
189 
190 	/* Reset prs_err if not invalid */
191 	if (is_partition_valid(cs))
192 		WRITE_ONCE(cs->prs_err, PERR_NONE);
193 }
194 
195 /*
196  * The top_cpuset is always synchronized to cpu_active_mask and we should avoid
197  * using cpu_online_mask as much as possible. An active CPU is always an online
198  * CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ
199  * during hotplug operations. A CPU is marked active at the last stage of CPU
200  * bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code
201  * will be called to update the sched domains so that the scheduler can move
202  * a normal task to a newly active CPU or remove tasks away from a newly
203  * inactivated CPU. The online bit is set much earlier in the CPU bringup
204  * process and cleared much later in CPU teardown.
205  *
206  * If cpu_online_mask is used while a hotunplug operation is happening in
207  * parallel, we may leave an offline CPU in cpu_allowed or some other masks.
208  */
209 static struct cpuset top_cpuset = {
210 	.flags = BIT(CS_CPU_EXCLUSIVE) |
211 		 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE),
212 	.partition_root_state = PRS_ROOT,
213 	.relax_domain_level = -1,
214 	.remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling),
215 };
216 
217 /*
218  * There are two global locks guarding cpuset structures - cpuset_mutex and
219  * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel
220  * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
221  * structures. Note that cpuset_mutex needs to be a mutex as it is used in
222  * paths that rely on priority inheritance (e.g. scheduler - on RT) for
223  * correctness.
224  *
225  * A task must hold both locks to modify cpusets.  If a task holds
226  * cpuset_mutex, it blocks others, ensuring that it is the only task able to
227  * also acquire callback_lock and be able to modify cpusets.  It can perform
228  * various checks on the cpuset structure first, knowing nothing will change.
229  * It can also allocate memory while just holding cpuset_mutex.  While it is
230  * performing these checks, various callback routines can briefly acquire
231  * callback_lock to query cpusets.  Once it is ready to make the changes, it
232  * takes callback_lock, blocking everyone else.
233  *
234  * Calls to the kernel memory allocator can not be made while holding
235  * callback_lock, as that would risk double tripping on callback_lock
236  * from one of the callbacks into the cpuset code from within
237  * __alloc_pages().
238  *
239  * If a task is only holding callback_lock, then it has read-only
240  * access to cpusets.
241  *
242  * Now, the task_struct fields mems_allowed and mempolicy may be changed
243  * by other task, we use alloc_lock in the task_struct fields to protect
244  * them.
245  *
246  * The cpuset_common_seq_show() handlers only hold callback_lock across
247  * small pieces of code, such as when reading out possibly multi-word
248  * cpumasks and nodemasks.
249  */
250 
251 static DEFINE_MUTEX(cpuset_mutex);
252 
253 /**
254  * cpuset_lock - Acquire the global cpuset mutex
255  *
256  * This locks the global cpuset mutex to prevent modifications to cpuset
257  * hierarchy and configurations. This helper is not enough to make modification.
258  */
259 void cpuset_lock(void)
260 {
261 	mutex_lock(&cpuset_mutex);
262 }
263 
264 void cpuset_unlock(void)
265 {
266 	mutex_unlock(&cpuset_mutex);
267 }
268 
269 /**
270  * cpuset_full_lock - Acquire full protection for cpuset modification
271  *
272  * Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex
273  * to safely modify cpuset data.
274  */
275 void cpuset_full_lock(void)
276 {
277 	cpus_read_lock();
278 	mutex_lock(&cpuset_mutex);
279 }
280 
281 void cpuset_full_unlock(void)
282 {
283 	mutex_unlock(&cpuset_mutex);
284 	cpus_read_unlock();
285 }
286 
287 static DEFINE_SPINLOCK(callback_lock);
288 
289 void cpuset_callback_lock_irq(void)
290 {
291 	spin_lock_irq(&callback_lock);
292 }
293 
294 void cpuset_callback_unlock_irq(void)
295 {
296 	spin_unlock_irq(&callback_lock);
297 }
298 
299 static struct workqueue_struct *cpuset_migrate_mm_wq;
300 
301 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
302 
303 static inline void check_insane_mems_config(nodemask_t *nodes)
304 {
305 	if (!cpusets_insane_config() &&
306 		movable_only_nodes(nodes)) {
307 		static_branch_enable_cpuslocked(&cpusets_insane_config_key);
308 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
309 			"Cpuset allocations might fail even with a lot of memory available.\n",
310 			nodemask_pr_args(nodes));
311 	}
312 }
313 
314 /*
315  * decrease cs->attach_in_progress.
316  * wake_up cpuset_attach_wq if cs->attach_in_progress==0.
317  */
318 static inline void dec_attach_in_progress_locked(struct cpuset *cs)
319 {
320 	lockdep_assert_held(&cpuset_mutex);
321 
322 	cs->attach_in_progress--;
323 	if (!cs->attach_in_progress)
324 		wake_up(&cpuset_attach_wq);
325 }
326 
327 static inline void dec_attach_in_progress(struct cpuset *cs)
328 {
329 	mutex_lock(&cpuset_mutex);
330 	dec_attach_in_progress_locked(cs);
331 	mutex_unlock(&cpuset_mutex);
332 }
333 
334 static inline bool cpuset_v2(void)
335 {
336 	return !IS_ENABLED(CONFIG_CPUSETS_V1) ||
337 		cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
338 }
339 
340 /*
341  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
342  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
343  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
344  * With v2 behavior, "cpus" and "mems" are always what the users have
345  * requested and won't be changed by hotplug events. Only the effective
346  * cpus or mems will be affected.
347  */
348 static inline bool is_in_v2_mode(void)
349 {
350 	return cpuset_v2() ||
351 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
352 }
353 
354 /**
355  * partition_is_populated - check if partition has tasks
356  * @cs: partition root to be checked
357  * @excluded_child: a child cpuset to be excluded in task checking
358  * Return: true if there are tasks, false otherwise
359  *
360  * It is assumed that @cs is a valid partition root. @excluded_child should
361  * be non-NULL when this cpuset is going to become a partition itself.
362  */
363 static inline bool partition_is_populated(struct cpuset *cs,
364 					  struct cpuset *excluded_child)
365 {
366 	struct cgroup_subsys_state *css;
367 	struct cpuset *child;
368 
369 	if (cs->css.cgroup->nr_populated_csets)
370 		return true;
371 	if (!excluded_child && !cs->nr_subparts)
372 		return cgroup_is_populated(cs->css.cgroup);
373 
374 	rcu_read_lock();
375 	cpuset_for_each_child(child, css, cs) {
376 		if (child == excluded_child)
377 			continue;
378 		if (is_partition_valid(child))
379 			continue;
380 		if (cgroup_is_populated(child->css.cgroup)) {
381 			rcu_read_unlock();
382 			return true;
383 		}
384 	}
385 	rcu_read_unlock();
386 	return false;
387 }
388 
389 /*
390  * Return in pmask the portion of a task's cpusets's cpus_allowed that
391  * are online and are capable of running the task.  If none are found,
392  * walk up the cpuset hierarchy until we find one that does have some
393  * appropriate cpus.
394  *
395  * One way or another, we guarantee to return some non-empty subset
396  * of cpu_active_mask.
397  *
398  * Call with callback_lock or cpuset_mutex held.
399  */
400 static void guarantee_active_cpus(struct task_struct *tsk,
401 				  struct cpumask *pmask)
402 {
403 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
404 	struct cpuset *cs;
405 
406 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask)))
407 		cpumask_copy(pmask, cpu_active_mask);
408 
409 	rcu_read_lock();
410 	cs = task_cs(tsk);
411 
412 	while (!cpumask_intersects(cs->effective_cpus, pmask))
413 		cs = parent_cs(cs);
414 
415 	cpumask_and(pmask, pmask, cs->effective_cpus);
416 	rcu_read_unlock();
417 }
418 
419 /*
420  * Return in *pmask the portion of a cpusets's mems_allowed that
421  * are online, with memory.  If none are online with memory, walk
422  * up the cpuset hierarchy until we find one that does have some
423  * online mems.  The top cpuset always has some mems online.
424  *
425  * One way or another, we guarantee to return some non-empty subset
426  * of node_states[N_MEMORY].
427  *
428  * Call with callback_lock or cpuset_mutex held.
429  */
430 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
431 {
432 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
433 		cs = parent_cs(cs);
434 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
435 }
436 
437 /**
438  * alloc_cpumasks - Allocate an array of cpumask variables
439  * @pmasks: Pointer to array of cpumask_var_t pointers
440  * @size: Number of cpumasks to allocate
441  * Return: 0 if successful, -ENOMEM otherwise.
442  *
443  * Allocates @size cpumasks and initializes them to empty. Returns 0 on
444  * success, -ENOMEM on allocation failure. On failure, any previously
445  * allocated cpumasks are freed.
446  */
447 static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size)
448 {
449 	int i;
450 
451 	for (i = 0; i < size; i++) {
452 		if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) {
453 			while (--i >= 0)
454 				free_cpumask_var(*pmasks[i]);
455 			return -ENOMEM;
456 		}
457 	}
458 	return 0;
459 }
460 
461 /**
462  * alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations.
463  * @tmp: Pointer to tmpmasks structure to populate
464  * Return: 0 on success, -ENOMEM on allocation failure
465  */
466 static inline int alloc_tmpmasks(struct tmpmasks *tmp)
467 {
468 	/*
469 	 * Array of pointers to the three cpumask_var_t fields in tmpmasks.
470 	 * Note: Array size must match actual number of masks (3)
471 	 */
472 	cpumask_var_t *pmask[3] = {
473 		&tmp->new_cpus,
474 		&tmp->addmask,
475 		&tmp->delmask
476 	};
477 
478 	return alloc_cpumasks(pmask, ARRAY_SIZE(pmask));
479 }
480 
481 /**
482  * free_tmpmasks - free cpumasks in a tmpmasks structure
483  * @tmp: the tmpmasks structure pointer
484  */
485 static inline void free_tmpmasks(struct tmpmasks *tmp)
486 {
487 	free_cpumask_var(tmp->new_cpus);
488 	free_cpumask_var(tmp->addmask);
489 	free_cpumask_var(tmp->delmask);
490 }
491 
492 /**
493  * dup_or_alloc_cpuset - Duplicate or allocate a new cpuset
494  * @cs: Source cpuset to duplicate (NULL for a fresh allocation)
495  *
496  * Creates a new cpuset by either:
497  * 1. Duplicating an existing cpuset (if @cs is non-NULL), or
498  * 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL)
499  *
500  * Return: Pointer to newly allocated cpuset on success, NULL on failure
501  */
502 static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs)
503 {
504 	struct cpuset *trial;
505 
506 	/* Allocate base structure */
507 	trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) :
508 		     kzalloc(sizeof(*cs), GFP_KERNEL);
509 	if (!trial)
510 		return NULL;
511 
512 	/* Setup cpumask pointer array */
513 	cpumask_var_t *pmask[4] = {
514 		&trial->cpus_allowed,
515 		&trial->effective_cpus,
516 		&trial->effective_xcpus,
517 		&trial->exclusive_cpus
518 	};
519 
520 	if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) {
521 		kfree(trial);
522 		return NULL;
523 	}
524 
525 	/* Copy masks if duplicating */
526 	if (cs) {
527 		cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
528 		cpumask_copy(trial->effective_cpus, cs->effective_cpus);
529 		cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
530 		cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
531 	}
532 
533 	return trial;
534 }
535 
536 /**
537  * free_cpuset - free the cpuset
538  * @cs: the cpuset to be freed
539  */
540 static inline void free_cpuset(struct cpuset *cs)
541 {
542 	free_cpumask_var(cs->cpus_allowed);
543 	free_cpumask_var(cs->effective_cpus);
544 	free_cpumask_var(cs->effective_xcpus);
545 	free_cpumask_var(cs->exclusive_cpus);
546 	kfree(cs);
547 }
548 
549 /* Return user specified exclusive CPUs */
550 static inline struct cpumask *user_xcpus(struct cpuset *cs)
551 {
552 	return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed
553 						 : cs->exclusive_cpus;
554 }
555 
556 static inline bool xcpus_empty(struct cpuset *cs)
557 {
558 	return cpumask_empty(cs->cpus_allowed) &&
559 	       cpumask_empty(cs->exclusive_cpus);
560 }
561 
562 /*
563  * cpusets_are_exclusive() - check if two cpusets are exclusive
564  *
565  * Return true if exclusive, false if not
566  */
567 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
568 {
569 	struct cpumask *xcpus1 = user_xcpus(cs1);
570 	struct cpumask *xcpus2 = user_xcpus(cs2);
571 
572 	if (cpumask_intersects(xcpus1, xcpus2))
573 		return false;
574 	return true;
575 }
576 
577 /*
578  * validate_change() - Used to validate that any proposed cpuset change
579  *		       follows the structural rules for cpusets.
580  *
581  * If we replaced the flag and mask values of the current cpuset
582  * (cur) with those values in the trial cpuset (trial), would
583  * our various subset and exclusive rules still be valid?  Presumes
584  * cpuset_mutex held.
585  *
586  * 'cur' is the address of an actual, in-use cpuset.  Operations
587  * such as list traversal that depend on the actual address of the
588  * cpuset in the list must use cur below, not trial.
589  *
590  * 'trial' is the address of bulk structure copy of cur, with
591  * perhaps one or more of the fields cpus_allowed, mems_allowed,
592  * or flags changed to new, trial values.
593  *
594  * Return 0 if valid, -errno if not.
595  */
596 
597 static int validate_change(struct cpuset *cur, struct cpuset *trial)
598 {
599 	struct cgroup_subsys_state *css;
600 	struct cpuset *c, *par;
601 	int ret = 0;
602 
603 	rcu_read_lock();
604 
605 	if (!is_in_v2_mode())
606 		ret = cpuset1_validate_change(cur, trial);
607 	if (ret)
608 		goto out;
609 
610 	/* Remaining checks don't apply to root cpuset */
611 	if (cur == &top_cpuset)
612 		goto out;
613 
614 	par = parent_cs(cur);
615 
616 	/*
617 	 * Cpusets with tasks - existing or newly being attached - can't
618 	 * be changed to have empty cpus_allowed or mems_allowed.
619 	 */
620 	ret = -ENOSPC;
621 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
622 		if (!cpumask_empty(cur->cpus_allowed) &&
623 		    cpumask_empty(trial->cpus_allowed))
624 			goto out;
625 		if (!nodes_empty(cur->mems_allowed) &&
626 		    nodes_empty(trial->mems_allowed))
627 			goto out;
628 	}
629 
630 	/*
631 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
632 	 * tasks. This check is not done when scheduling is disabled as the
633 	 * users should know what they are doing.
634 	 *
635 	 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns
636 	 * cpus_allowed.
637 	 *
638 	 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only
639 	 * for non-isolated partition root. At this point, the target
640 	 * effective_cpus isn't computed yet. user_xcpus() is the best
641 	 * approximation.
642 	 *
643 	 * TBD: May need to precompute the real effective_cpus here in case
644 	 * incorrect scheduling of SCHED_DEADLINE tasks in a partition
645 	 * becomes an issue.
646 	 */
647 	ret = -EBUSY;
648 	if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) &&
649 	    !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial)))
650 		goto out;
651 
652 	/*
653 	 * If either I or some sibling (!= me) is exclusive, we can't
654 	 * overlap. exclusive_cpus cannot overlap with each other if set.
655 	 */
656 	ret = -EINVAL;
657 	cpuset_for_each_child(c, css, par) {
658 		bool txset, cxset;	/* Are exclusive_cpus set? */
659 
660 		if (c == cur)
661 			continue;
662 
663 		txset = !cpumask_empty(trial->exclusive_cpus);
664 		cxset = !cpumask_empty(c->exclusive_cpus);
665 		if (is_cpu_exclusive(trial) || is_cpu_exclusive(c) ||
666 		    (txset && cxset)) {
667 			if (!cpusets_are_exclusive(trial, c))
668 				goto out;
669 		} else if (txset || cxset) {
670 			struct cpumask *xcpus, *acpus;
671 
672 			/*
673 			 * When just one of the exclusive_cpus's is set,
674 			 * cpus_allowed of the other cpuset, if set, cannot be
675 			 * a subset of it or none of those CPUs will be
676 			 * available if these exclusive CPUs are activated.
677 			 */
678 			if (txset) {
679 				xcpus = trial->exclusive_cpus;
680 				acpus = c->cpus_allowed;
681 			} else {
682 				xcpus = c->exclusive_cpus;
683 				acpus = trial->cpus_allowed;
684 			}
685 			if (!cpumask_empty(acpus) && cpumask_subset(acpus, xcpus))
686 				goto out;
687 		}
688 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
689 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
690 			goto out;
691 	}
692 
693 	ret = 0;
694 out:
695 	rcu_read_unlock();
696 	return ret;
697 }
698 
699 #ifdef CONFIG_SMP
700 /*
701  * Helper routine for generate_sched_domains().
702  * Do cpusets a, b have overlapping effective cpus_allowed masks?
703  */
704 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
705 {
706 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
707 }
708 
709 static void
710 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
711 {
712 	if (dattr->relax_domain_level < c->relax_domain_level)
713 		dattr->relax_domain_level = c->relax_domain_level;
714 	return;
715 }
716 
717 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
718 				    struct cpuset *root_cs)
719 {
720 	struct cpuset *cp;
721 	struct cgroup_subsys_state *pos_css;
722 
723 	rcu_read_lock();
724 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
725 		/* skip the whole subtree if @cp doesn't have any CPU */
726 		if (cpumask_empty(cp->cpus_allowed)) {
727 			pos_css = css_rightmost_descendant(pos_css);
728 			continue;
729 		}
730 
731 		if (is_sched_load_balance(cp))
732 			update_domain_attr(dattr, cp);
733 	}
734 	rcu_read_unlock();
735 }
736 
737 /* Must be called with cpuset_mutex held.  */
738 static inline int nr_cpusets(void)
739 {
740 	/* jump label reference count + the top-level cpuset */
741 	return static_key_count(&cpusets_enabled_key.key) + 1;
742 }
743 
744 /*
745  * generate_sched_domains()
746  *
747  * This function builds a partial partition of the systems CPUs
748  * A 'partial partition' is a set of non-overlapping subsets whose
749  * union is a subset of that set.
750  * The output of this function needs to be passed to kernel/sched/core.c
751  * partition_sched_domains() routine, which will rebuild the scheduler's
752  * load balancing domains (sched domains) as specified by that partial
753  * partition.
754  *
755  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
756  * for a background explanation of this.
757  *
758  * Does not return errors, on the theory that the callers of this
759  * routine would rather not worry about failures to rebuild sched
760  * domains when operating in the severe memory shortage situations
761  * that could cause allocation failures below.
762  *
763  * Must be called with cpuset_mutex held.
764  *
765  * The three key local variables below are:
766  *    cp - cpuset pointer, used (together with pos_css) to perform a
767  *	   top-down scan of all cpusets. For our purposes, rebuilding
768  *	   the schedulers sched domains, we can ignore !is_sched_load_
769  *	   balance cpusets.
770  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
771  *	   that need to be load balanced, for convenient iterative
772  *	   access by the subsequent code that finds the best partition,
773  *	   i.e the set of domains (subsets) of CPUs such that the
774  *	   cpus_allowed of every cpuset marked is_sched_load_balance
775  *	   is a subset of one of these domains, while there are as
776  *	   many such domains as possible, each as small as possible.
777  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
778  *	   the kernel/sched/core.c routine partition_sched_domains() in a
779  *	   convenient format, that can be easily compared to the prior
780  *	   value to determine what partition elements (sched domains)
781  *	   were changed (added or removed.)
782  *
783  * Finding the best partition (set of domains):
784  *	The double nested loops below over i, j scan over the load
785  *	balanced cpusets (using the array of cpuset pointers in csa[])
786  *	looking for pairs of cpusets that have overlapping cpus_allowed
787  *	and merging them using a union-find algorithm.
788  *
789  *	The union of the cpus_allowed masks from the set of all cpusets
790  *	having the same root then form the one element of the partition
791  *	(one sched domain) to be passed to partition_sched_domains().
792  *
793  */
794 static int generate_sched_domains(cpumask_var_t **domains,
795 			struct sched_domain_attr **attributes)
796 {
797 	struct cpuset *cp;	/* top-down scan of cpusets */
798 	struct cpuset **csa;	/* array of all cpuset ptrs */
799 	int csn;		/* how many cpuset ptrs in csa so far */
800 	int i, j;		/* indices for partition finding loops */
801 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
802 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
803 	int ndoms = 0;		/* number of sched domains in result */
804 	int nslot;		/* next empty doms[] struct cpumask slot */
805 	struct cgroup_subsys_state *pos_css;
806 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
807 	bool cgrpv2 = cpuset_v2();
808 	int nslot_update;
809 
810 	doms = NULL;
811 	dattr = NULL;
812 	csa = NULL;
813 
814 	/* Special case for the 99% of systems with one, full, sched domain */
815 	if (root_load_balance && cpumask_empty(subpartitions_cpus)) {
816 single_root_domain:
817 		ndoms = 1;
818 		doms = alloc_sched_domains(ndoms);
819 		if (!doms)
820 			goto done;
821 
822 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
823 		if (dattr) {
824 			*dattr = SD_ATTR_INIT;
825 			update_domain_attr_tree(dattr, &top_cpuset);
826 		}
827 		cpumask_and(doms[0], top_cpuset.effective_cpus,
828 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
829 
830 		goto done;
831 	}
832 
833 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
834 	if (!csa)
835 		goto done;
836 	csn = 0;
837 
838 	rcu_read_lock();
839 	if (root_load_balance)
840 		csa[csn++] = &top_cpuset;
841 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
842 		if (cp == &top_cpuset)
843 			continue;
844 
845 		if (cgrpv2)
846 			goto v2;
847 
848 		/*
849 		 * v1:
850 		 * Continue traversing beyond @cp iff @cp has some CPUs and
851 		 * isn't load balancing.  The former is obvious.  The
852 		 * latter: All child cpusets contain a subset of the
853 		 * parent's cpus, so just skip them, and then we call
854 		 * update_domain_attr_tree() to calc relax_domain_level of
855 		 * the corresponding sched domain.
856 		 */
857 		if (!cpumask_empty(cp->cpus_allowed) &&
858 		    !(is_sched_load_balance(cp) &&
859 		      cpumask_intersects(cp->cpus_allowed,
860 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
861 			continue;
862 
863 		if (is_sched_load_balance(cp) &&
864 		    !cpumask_empty(cp->effective_cpus))
865 			csa[csn++] = cp;
866 
867 		/* skip @cp's subtree */
868 		pos_css = css_rightmost_descendant(pos_css);
869 		continue;
870 
871 v2:
872 		/*
873 		 * Only valid partition roots that are not isolated and with
874 		 * non-empty effective_cpus will be saved into csn[].
875 		 */
876 		if ((cp->partition_root_state == PRS_ROOT) &&
877 		    !cpumask_empty(cp->effective_cpus))
878 			csa[csn++] = cp;
879 
880 		/*
881 		 * Skip @cp's subtree if not a partition root and has no
882 		 * exclusive CPUs to be granted to child cpusets.
883 		 */
884 		if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus))
885 			pos_css = css_rightmost_descendant(pos_css);
886 	}
887 	rcu_read_unlock();
888 
889 	/*
890 	 * If there are only isolated partitions underneath the cgroup root,
891 	 * we can optimize out unneeded sched domains scanning.
892 	 */
893 	if (root_load_balance && (csn == 1))
894 		goto single_root_domain;
895 
896 	for (i = 0; i < csn; i++)
897 		uf_node_init(&csa[i]->node);
898 
899 	/* Merge overlapping cpusets */
900 	for (i = 0; i < csn; i++) {
901 		for (j = i + 1; j < csn; j++) {
902 			if (cpusets_overlap(csa[i], csa[j])) {
903 				/*
904 				 * Cgroup v2 shouldn't pass down overlapping
905 				 * partition root cpusets.
906 				 */
907 				WARN_ON_ONCE(cgrpv2);
908 				uf_union(&csa[i]->node, &csa[j]->node);
909 			}
910 		}
911 	}
912 
913 	/* Count the total number of domains */
914 	for (i = 0; i < csn; i++) {
915 		if (uf_find(&csa[i]->node) == &csa[i]->node)
916 			ndoms++;
917 	}
918 
919 	/*
920 	 * Now we know how many domains to create.
921 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
922 	 */
923 	doms = alloc_sched_domains(ndoms);
924 	if (!doms)
925 		goto done;
926 
927 	/*
928 	 * The rest of the code, including the scheduler, can deal with
929 	 * dattr==NULL case. No need to abort if alloc fails.
930 	 */
931 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
932 			      GFP_KERNEL);
933 
934 	/*
935 	 * Cgroup v2 doesn't support domain attributes, just set all of them
936 	 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a
937 	 * subset of HK_TYPE_DOMAIN housekeeping CPUs.
938 	 */
939 	if (cgrpv2) {
940 		for (i = 0; i < ndoms; i++) {
941 			/*
942 			 * The top cpuset may contain some boot time isolated
943 			 * CPUs that need to be excluded from the sched domain.
944 			 */
945 			if (csa[i] == &top_cpuset)
946 				cpumask_and(doms[i], csa[i]->effective_cpus,
947 					    housekeeping_cpumask(HK_TYPE_DOMAIN));
948 			else
949 				cpumask_copy(doms[i], csa[i]->effective_cpus);
950 			if (dattr)
951 				dattr[i] = SD_ATTR_INIT;
952 		}
953 		goto done;
954 	}
955 
956 	for (nslot = 0, i = 0; i < csn; i++) {
957 		nslot_update = 0;
958 		for (j = i; j < csn; j++) {
959 			if (uf_find(&csa[j]->node) == &csa[i]->node) {
960 				struct cpumask *dp = doms[nslot];
961 
962 				if (i == j) {
963 					nslot_update = 1;
964 					cpumask_clear(dp);
965 					if (dattr)
966 						*(dattr + nslot) = SD_ATTR_INIT;
967 				}
968 				cpumask_or(dp, dp, csa[j]->effective_cpus);
969 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
970 				if (dattr)
971 					update_domain_attr_tree(dattr + nslot, csa[j]);
972 			}
973 		}
974 		if (nslot_update)
975 			nslot++;
976 	}
977 	BUG_ON(nslot != ndoms);
978 
979 done:
980 	kfree(csa);
981 
982 	/*
983 	 * Fallback to the default domain if kmalloc() failed.
984 	 * See comments in partition_sched_domains().
985 	 */
986 	if (doms == NULL)
987 		ndoms = 1;
988 
989 	*domains    = doms;
990 	*attributes = dattr;
991 	return ndoms;
992 }
993 
994 static void dl_update_tasks_root_domain(struct cpuset *cs)
995 {
996 	struct css_task_iter it;
997 	struct task_struct *task;
998 
999 	if (cs->nr_deadline_tasks == 0)
1000 		return;
1001 
1002 	css_task_iter_start(&cs->css, 0, &it);
1003 
1004 	while ((task = css_task_iter_next(&it)))
1005 		dl_add_task_root_domain(task);
1006 
1007 	css_task_iter_end(&it);
1008 }
1009 
1010 void dl_rebuild_rd_accounting(void)
1011 {
1012 	struct cpuset *cs = NULL;
1013 	struct cgroup_subsys_state *pos_css;
1014 	int cpu;
1015 	u64 cookie = ++dl_cookie;
1016 
1017 	lockdep_assert_held(&cpuset_mutex);
1018 	lockdep_assert_cpus_held();
1019 	lockdep_assert_held(&sched_domains_mutex);
1020 
1021 	rcu_read_lock();
1022 
1023 	for_each_possible_cpu(cpu) {
1024 		if (dl_bw_visited(cpu, cookie))
1025 			continue;
1026 
1027 		dl_clear_root_domain_cpu(cpu);
1028 	}
1029 
1030 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1031 
1032 		if (cpumask_empty(cs->effective_cpus)) {
1033 			pos_css = css_rightmost_descendant(pos_css);
1034 			continue;
1035 		}
1036 
1037 		css_get(&cs->css);
1038 
1039 		rcu_read_unlock();
1040 
1041 		dl_update_tasks_root_domain(cs);
1042 
1043 		rcu_read_lock();
1044 		css_put(&cs->css);
1045 	}
1046 	rcu_read_unlock();
1047 }
1048 
1049 /*
1050  * Rebuild scheduler domains.
1051  *
1052  * If the flag 'sched_load_balance' of any cpuset with non-empty
1053  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1054  * which has that flag enabled, or if any cpuset with a non-empty
1055  * 'cpus' is removed, then call this routine to rebuild the
1056  * scheduler's dynamic sched domains.
1057  *
1058  * Call with cpuset_mutex held.  Takes cpus_read_lock().
1059  */
1060 void rebuild_sched_domains_locked(void)
1061 {
1062 	struct cgroup_subsys_state *pos_css;
1063 	struct sched_domain_attr *attr;
1064 	cpumask_var_t *doms;
1065 	struct cpuset *cs;
1066 	int ndoms;
1067 
1068 	lockdep_assert_cpus_held();
1069 	lockdep_assert_held(&cpuset_mutex);
1070 	force_sd_rebuild = false;
1071 
1072 	/*
1073 	 * If we have raced with CPU hotplug, return early to avoid
1074 	 * passing doms with offlined cpu to partition_sched_domains().
1075 	 * Anyways, cpuset_handle_hotplug() will rebuild sched domains.
1076 	 *
1077 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1078 	 * should be the same as the active CPUs, so checking only top_cpuset
1079 	 * is enough to detect racing CPU offlines.
1080 	 */
1081 	if (cpumask_empty(subpartitions_cpus) &&
1082 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1083 		return;
1084 
1085 	/*
1086 	 * With subpartition CPUs, however, the effective CPUs of a partition
1087 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1088 	 * partition root could be offlined, all must be checked.
1089 	 */
1090 	if (!cpumask_empty(subpartitions_cpus)) {
1091 		rcu_read_lock();
1092 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1093 			if (!is_partition_valid(cs)) {
1094 				pos_css = css_rightmost_descendant(pos_css);
1095 				continue;
1096 			}
1097 			if (!cpumask_subset(cs->effective_cpus,
1098 					    cpu_active_mask)) {
1099 				rcu_read_unlock();
1100 				return;
1101 			}
1102 		}
1103 		rcu_read_unlock();
1104 	}
1105 
1106 	/* Generate domain masks and attrs */
1107 	ndoms = generate_sched_domains(&doms, &attr);
1108 
1109 	/* Have scheduler rebuild the domains */
1110 	partition_sched_domains(ndoms, doms, attr);
1111 }
1112 #else /* !CONFIG_SMP */
1113 void rebuild_sched_domains_locked(void)
1114 {
1115 }
1116 #endif /* CONFIG_SMP */
1117 
1118 static void rebuild_sched_domains_cpuslocked(void)
1119 {
1120 	mutex_lock(&cpuset_mutex);
1121 	rebuild_sched_domains_locked();
1122 	mutex_unlock(&cpuset_mutex);
1123 }
1124 
1125 void rebuild_sched_domains(void)
1126 {
1127 	cpus_read_lock();
1128 	rebuild_sched_domains_cpuslocked();
1129 	cpus_read_unlock();
1130 }
1131 
1132 void cpuset_reset_sched_domains(void)
1133 {
1134 	mutex_lock(&cpuset_mutex);
1135 	partition_sched_domains(1, NULL, NULL);
1136 	mutex_unlock(&cpuset_mutex);
1137 }
1138 
1139 /**
1140  * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1141  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1142  * @new_cpus: the temp variable for the new effective_cpus mask
1143  *
1144  * Iterate through each task of @cs updating its cpus_allowed to the
1145  * effective cpuset's.  As this function is called with cpuset_mutex held,
1146  * cpuset membership stays stable.
1147  *
1148  * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus
1149  * to make sure all offline CPUs are also included as hotplug code won't
1150  * update cpumasks for tasks in top_cpuset.
1151  *
1152  * As task_cpu_possible_mask() can be task dependent in arm64, we have to
1153  * do cpu masking per task instead of doing it once for all.
1154  */
1155 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1156 {
1157 	struct css_task_iter it;
1158 	struct task_struct *task;
1159 	bool top_cs = cs == &top_cpuset;
1160 
1161 	css_task_iter_start(&cs->css, 0, &it);
1162 	while ((task = css_task_iter_next(&it))) {
1163 		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1164 
1165 		if (top_cs) {
1166 			/*
1167 			 * PF_NO_SETAFFINITY tasks are ignored.
1168 			 * All per cpu kthreads should have PF_NO_SETAFFINITY
1169 			 * flag set, see kthread_set_per_cpu().
1170 			 */
1171 			if (task->flags & PF_NO_SETAFFINITY)
1172 				continue;
1173 			cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1174 		} else {
1175 			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1176 		}
1177 		set_cpus_allowed_ptr(task, new_cpus);
1178 	}
1179 	css_task_iter_end(&it);
1180 }
1181 
1182 /**
1183  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1184  * @new_cpus: the temp variable for the new effective_cpus mask
1185  * @cs: the cpuset the need to recompute the new effective_cpus mask
1186  * @parent: the parent cpuset
1187  *
1188  * The result is valid only if the given cpuset isn't a partition root.
1189  */
1190 static void compute_effective_cpumask(struct cpumask *new_cpus,
1191 				      struct cpuset *cs, struct cpuset *parent)
1192 {
1193 	cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1194 }
1195 
1196 /*
1197  * Commands for update_parent_effective_cpumask
1198  */
1199 enum partition_cmd {
1200 	partcmd_enable,		/* Enable partition root	  */
1201 	partcmd_enablei,	/* Enable isolated partition root */
1202 	partcmd_disable,	/* Disable partition root	  */
1203 	partcmd_update,		/* Update parent's effective_cpus */
1204 	partcmd_invalidate,	/* Make partition invalid	  */
1205 };
1206 
1207 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1208 				    struct tmpmasks *tmp);
1209 
1210 /*
1211  * Update partition exclusive flag
1212  *
1213  * Return: 0 if successful, an error code otherwise
1214  */
1215 static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs)
1216 {
1217 	bool exclusive = (new_prs > PRS_MEMBER);
1218 
1219 	if (exclusive && !is_cpu_exclusive(cs)) {
1220 		if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1221 			return PERR_NOTEXCL;
1222 	} else if (!exclusive && is_cpu_exclusive(cs)) {
1223 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1224 		cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1225 	}
1226 	return 0;
1227 }
1228 
1229 /*
1230  * Update partition load balance flag and/or rebuild sched domain
1231  *
1232  * Changing load balance flag will automatically call
1233  * rebuild_sched_domains_locked().
1234  * This function is for cgroup v2 only.
1235  */
1236 static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1237 {
1238 	int new_prs = cs->partition_root_state;
1239 	bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1240 	bool new_lb;
1241 
1242 	/*
1243 	 * If cs is not a valid partition root, the load balance state
1244 	 * will follow its parent.
1245 	 */
1246 	if (new_prs > 0) {
1247 		new_lb = (new_prs != PRS_ISOLATED);
1248 	} else {
1249 		new_lb = is_sched_load_balance(parent_cs(cs));
1250 	}
1251 	if (new_lb != !!is_sched_load_balance(cs)) {
1252 		rebuild_domains = true;
1253 		if (new_lb)
1254 			set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1255 		else
1256 			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1257 	}
1258 
1259 	if (rebuild_domains)
1260 		cpuset_force_rebuild();
1261 }
1262 
1263 /*
1264  * tasks_nocpu_error - Return true if tasks will have no effective_cpus
1265  */
1266 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1267 			      struct cpumask *xcpus)
1268 {
1269 	/*
1270 	 * A populated partition (cs or parent) can't have empty effective_cpus
1271 	 */
1272 	return (cpumask_subset(parent->effective_cpus, xcpus) &&
1273 		partition_is_populated(parent, cs)) ||
1274 	       (!cpumask_intersects(xcpus, cpu_active_mask) &&
1275 		partition_is_populated(cs, NULL));
1276 }
1277 
1278 static void reset_partition_data(struct cpuset *cs)
1279 {
1280 	struct cpuset *parent = parent_cs(cs);
1281 
1282 	if (!cpuset_v2())
1283 		return;
1284 
1285 	lockdep_assert_held(&callback_lock);
1286 
1287 	cs->nr_subparts = 0;
1288 	if (cpumask_empty(cs->exclusive_cpus)) {
1289 		cpumask_clear(cs->effective_xcpus);
1290 		if (is_cpu_exclusive(cs))
1291 			clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1292 	}
1293 	if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed))
1294 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1295 }
1296 
1297 /*
1298  * isolated_cpus_update - Update the isolated_cpus mask
1299  * @old_prs: old partition_root_state
1300  * @new_prs: new partition_root_state
1301  * @xcpus: exclusive CPUs with state change
1302  */
1303 static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus)
1304 {
1305 	WARN_ON_ONCE(old_prs == new_prs);
1306 	if (new_prs == PRS_ISOLATED)
1307 		cpumask_or(isolated_cpus, isolated_cpus, xcpus);
1308 	else
1309 		cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
1310 }
1311 
1312 /*
1313  * partition_xcpus_add - Add new exclusive CPUs to partition
1314  * @new_prs: new partition_root_state
1315  * @parent: parent cpuset
1316  * @xcpus: exclusive CPUs to be added
1317  * Return: true if isolated_cpus modified, false otherwise
1318  *
1319  * Remote partition if parent == NULL
1320  */
1321 static bool partition_xcpus_add(int new_prs, struct cpuset *parent,
1322 				struct cpumask *xcpus)
1323 {
1324 	bool isolcpus_updated;
1325 
1326 	WARN_ON_ONCE(new_prs < 0);
1327 	lockdep_assert_held(&callback_lock);
1328 	if (!parent)
1329 		parent = &top_cpuset;
1330 
1331 
1332 	if (parent == &top_cpuset)
1333 		cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
1334 
1335 	isolcpus_updated = (new_prs != parent->partition_root_state);
1336 	if (isolcpus_updated)
1337 		isolated_cpus_update(parent->partition_root_state, new_prs,
1338 				     xcpus);
1339 
1340 	cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
1341 	return isolcpus_updated;
1342 }
1343 
1344 /*
1345  * partition_xcpus_del - Remove exclusive CPUs from partition
1346  * @old_prs: old partition_root_state
1347  * @parent: parent cpuset
1348  * @xcpus: exclusive CPUs to be removed
1349  * Return: true if isolated_cpus modified, false otherwise
1350  *
1351  * Remote partition if parent == NULL
1352  */
1353 static bool partition_xcpus_del(int old_prs, struct cpuset *parent,
1354 				struct cpumask *xcpus)
1355 {
1356 	bool isolcpus_updated;
1357 
1358 	WARN_ON_ONCE(old_prs < 0);
1359 	lockdep_assert_held(&callback_lock);
1360 	if (!parent)
1361 		parent = &top_cpuset;
1362 
1363 	if (parent == &top_cpuset)
1364 		cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
1365 
1366 	isolcpus_updated = (old_prs != parent->partition_root_state);
1367 	if (isolcpus_updated)
1368 		isolated_cpus_update(old_prs, parent->partition_root_state,
1369 				     xcpus);
1370 
1371 	cpumask_and(xcpus, xcpus, cpu_active_mask);
1372 	cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
1373 	return isolcpus_updated;
1374 }
1375 
1376 static void update_unbound_workqueue_cpumask(bool isolcpus_updated)
1377 {
1378 	int ret;
1379 
1380 	lockdep_assert_cpus_held();
1381 
1382 	if (!isolcpus_updated)
1383 		return;
1384 
1385 	ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
1386 	WARN_ON_ONCE(ret < 0);
1387 }
1388 
1389 /**
1390  * cpuset_cpu_is_isolated - Check if the given CPU is isolated
1391  * @cpu: the CPU number to be checked
1392  * Return: true if CPU is used in an isolated partition, false otherwise
1393  */
1394 bool cpuset_cpu_is_isolated(int cpu)
1395 {
1396 	return cpumask_test_cpu(cpu, isolated_cpus);
1397 }
1398 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
1399 
1400 /*
1401  * compute_effective_exclusive_cpumask - compute effective exclusive CPUs
1402  * @cs: cpuset
1403  * @xcpus: effective exclusive CPUs value to be set
1404  * @real_cs: the real cpuset (can be NULL)
1405  * Return: 0 if there is no sibling conflict, > 0 otherwise
1406  *
1407  * If exclusive_cpus isn't explicitly set or a real_cs is provided, we have to
1408  * scan the sibling cpusets and exclude their exclusive_cpus or effective_xcpus
1409  * as well. The provision of real_cs means that a cpumask is being changed and
1410  * the given cs is a trial one.
1411  */
1412 static int compute_effective_exclusive_cpumask(struct cpuset *cs,
1413 					       struct cpumask *xcpus,
1414 					       struct cpuset *real_cs)
1415 {
1416 	struct cgroup_subsys_state *css;
1417 	struct cpuset *parent = parent_cs(cs);
1418 	struct cpuset *sibling;
1419 	int retval = 0;
1420 
1421 	if (!xcpus)
1422 		xcpus = cs->effective_xcpus;
1423 
1424 	cpumask_and(xcpus, user_xcpus(cs), parent->effective_xcpus);
1425 
1426 	if (!real_cs) {
1427 		if (!cpumask_empty(cs->exclusive_cpus))
1428 			return 0;
1429 	} else {
1430 		cs = real_cs;
1431 	}
1432 
1433 	/*
1434 	 * Exclude exclusive CPUs from siblings
1435 	 */
1436 	rcu_read_lock();
1437 	cpuset_for_each_child(sibling, css, parent) {
1438 		if (sibling == cs)
1439 			continue;
1440 
1441 		if (cpumask_intersects(xcpus, sibling->exclusive_cpus)) {
1442 			cpumask_andnot(xcpus, xcpus, sibling->exclusive_cpus);
1443 			retval++;
1444 			continue;
1445 		}
1446 		if (cpumask_intersects(xcpus, sibling->effective_xcpus)) {
1447 			cpumask_andnot(xcpus, xcpus, sibling->effective_xcpus);
1448 			retval++;
1449 		}
1450 	}
1451 	rcu_read_unlock();
1452 	return retval;
1453 }
1454 
1455 static inline bool is_remote_partition(struct cpuset *cs)
1456 {
1457 	return !list_empty(&cs->remote_sibling);
1458 }
1459 
1460 static inline bool is_local_partition(struct cpuset *cs)
1461 {
1462 	return is_partition_valid(cs) && !is_remote_partition(cs);
1463 }
1464 
1465 /*
1466  * remote_partition_enable - Enable current cpuset as a remote partition root
1467  * @cs: the cpuset to update
1468  * @new_prs: new partition_root_state
1469  * @tmp: temporary masks
1470  * Return: 0 if successful, errcode if error
1471  *
1472  * Enable the current cpuset to become a remote partition root taking CPUs
1473  * directly from the top cpuset. cpuset_mutex must be held by the caller.
1474  */
1475 static int remote_partition_enable(struct cpuset *cs, int new_prs,
1476 				   struct tmpmasks *tmp)
1477 {
1478 	bool isolcpus_updated;
1479 
1480 	/*
1481 	 * The user must have sysadmin privilege.
1482 	 */
1483 	if (!capable(CAP_SYS_ADMIN))
1484 		return PERR_ACCESS;
1485 
1486 	/*
1487 	 * The requested exclusive_cpus must not be allocated to other
1488 	 * partitions and it can't use up all the root's effective_cpus.
1489 	 *
1490 	 * The effective_xcpus mask can contain offline CPUs, but there must
1491 	 * be at least one or more online CPUs present before it can be enabled.
1492 	 *
1493 	 * Note that creating a remote partition with any local partition root
1494 	 * above it or remote partition root underneath it is not allowed.
1495 	 */
1496 	compute_effective_exclusive_cpumask(cs, tmp->new_cpus, NULL);
1497 	WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus));
1498 	if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) ||
1499 	    cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1500 		return PERR_INVCPUS;
1501 
1502 	spin_lock_irq(&callback_lock);
1503 	isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
1504 	list_add(&cs->remote_sibling, &remote_children);
1505 	cpumask_copy(cs->effective_xcpus, tmp->new_cpus);
1506 	spin_unlock_irq(&callback_lock);
1507 	update_unbound_workqueue_cpumask(isolcpus_updated);
1508 	cpuset_force_rebuild();
1509 	cs->prs_err = 0;
1510 
1511 	/*
1512 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1513 	 */
1514 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1515 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1516 	return 0;
1517 }
1518 
1519 /*
1520  * remote_partition_disable - Remove current cpuset from remote partition list
1521  * @cs: the cpuset to update
1522  * @tmp: temporary masks
1523  *
1524  * The effective_cpus is also updated.
1525  *
1526  * cpuset_mutex must be held by the caller.
1527  */
1528 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1529 {
1530 	bool isolcpus_updated;
1531 
1532 	WARN_ON_ONCE(!is_remote_partition(cs));
1533 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1534 
1535 	spin_lock_irq(&callback_lock);
1536 	list_del_init(&cs->remote_sibling);
1537 	isolcpus_updated = partition_xcpus_del(cs->partition_root_state,
1538 					       NULL, cs->effective_xcpus);
1539 	if (cs->prs_err)
1540 		cs->partition_root_state = -cs->partition_root_state;
1541 	else
1542 		cs->partition_root_state = PRS_MEMBER;
1543 
1544 	/* effective_xcpus may need to be changed */
1545 	compute_effective_exclusive_cpumask(cs, NULL, NULL);
1546 	reset_partition_data(cs);
1547 	spin_unlock_irq(&callback_lock);
1548 	update_unbound_workqueue_cpumask(isolcpus_updated);
1549 	cpuset_force_rebuild();
1550 
1551 	/*
1552 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1553 	 */
1554 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1555 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1556 }
1557 
1558 /*
1559  * remote_cpus_update - cpus_exclusive change of remote partition
1560  * @cs: the cpuset to be updated
1561  * @xcpus: the new exclusive_cpus mask, if non-NULL
1562  * @excpus: the new effective_xcpus mask
1563  * @tmp: temporary masks
1564  *
1565  * top_cpuset and subpartitions_cpus will be updated or partition can be
1566  * invalidated.
1567  */
1568 static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus,
1569 			       struct cpumask *excpus, struct tmpmasks *tmp)
1570 {
1571 	bool adding, deleting;
1572 	int prs = cs->partition_root_state;
1573 	int isolcpus_updated = 0;
1574 
1575 	if (WARN_ON_ONCE(!is_remote_partition(cs)))
1576 		return;
1577 
1578 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1579 
1580 	if (cpumask_empty(excpus)) {
1581 		cs->prs_err = PERR_CPUSEMPTY;
1582 		goto invalidate;
1583 	}
1584 
1585 	adding   = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus);
1586 	deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus);
1587 
1588 	/*
1589 	 * Additions of remote CPUs is only allowed if those CPUs are
1590 	 * not allocated to other partitions and there are effective_cpus
1591 	 * left in the top cpuset.
1592 	 */
1593 	if (adding) {
1594 		WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus));
1595 		if (!capable(CAP_SYS_ADMIN))
1596 			cs->prs_err = PERR_ACCESS;
1597 		else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1598 			 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask))
1599 			cs->prs_err = PERR_NOCPUS;
1600 		if (cs->prs_err)
1601 			goto invalidate;
1602 	}
1603 
1604 	spin_lock_irq(&callback_lock);
1605 	if (adding)
1606 		isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask);
1607 	if (deleting)
1608 		isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask);
1609 	/*
1610 	 * Need to update effective_xcpus and exclusive_cpus now as
1611 	 * update_sibling_cpumasks() below may iterate back to the same cs.
1612 	 */
1613 	cpumask_copy(cs->effective_xcpus, excpus);
1614 	if (xcpus)
1615 		cpumask_copy(cs->exclusive_cpus, xcpus);
1616 	spin_unlock_irq(&callback_lock);
1617 	update_unbound_workqueue_cpumask(isolcpus_updated);
1618 	if (adding || deleting)
1619 		cpuset_force_rebuild();
1620 
1621 	/*
1622 	 * Propagate changes in top_cpuset's effective_cpus down the hierarchy.
1623 	 */
1624 	cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1625 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1626 	return;
1627 
1628 invalidate:
1629 	remote_partition_disable(cs, tmp);
1630 }
1631 
1632 /*
1633  * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1634  * @prstate: partition root state to be checked
1635  * @new_cpus: cpu mask
1636  * Return: true if there is conflict, false otherwise
1637  *
1638  * CPUs outside of boot_hk_cpus, if defined, can only be used in an
1639  * isolated partition.
1640  */
1641 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1642 {
1643 	if (!have_boot_isolcpus)
1644 		return false;
1645 
1646 	if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus))
1647 		return true;
1648 
1649 	return false;
1650 }
1651 
1652 /**
1653  * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1654  * @cs:      The cpuset that requests change in partition root state
1655  * @cmd:     Partition root state change command
1656  * @newmask: Optional new cpumask for partcmd_update
1657  * @tmp:     Temporary addmask and delmask
1658  * Return:   0 or a partition root state error code
1659  *
1660  * For partcmd_enable*, the cpuset is being transformed from a non-partition
1661  * root to a partition root. The effective_xcpus (cpus_allowed if
1662  * effective_xcpus not set) mask of the given cpuset will be taken away from
1663  * parent's effective_cpus. The function will return 0 if all the CPUs listed
1664  * in effective_xcpus can be granted or an error code will be returned.
1665  *
1666  * For partcmd_disable, the cpuset is being transformed from a partition
1667  * root back to a non-partition root. Any CPUs in effective_xcpus will be
1668  * given back to parent's effective_cpus. 0 will always be returned.
1669  *
1670  * For partcmd_update, if the optional newmask is specified, the cpu list is
1671  * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1672  * assumed to remain the same. The cpuset should either be a valid or invalid
1673  * partition root. The partition root state may change from valid to invalid
1674  * or vice versa. An error code will be returned if transitioning from
1675  * invalid to valid violates the exclusivity rule.
1676  *
1677  * For partcmd_invalidate, the current partition will be made invalid.
1678  *
1679  * The partcmd_enable* and partcmd_disable commands are used by
1680  * update_prstate(). An error code may be returned and the caller will check
1681  * for error.
1682  *
1683  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1684  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1685  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1686  * check for error and so partition_root_state and prs_err will be updated
1687  * directly.
1688  */
1689 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1690 					   struct cpumask *newmask,
1691 					   struct tmpmasks *tmp)
1692 {
1693 	struct cpuset *parent = parent_cs(cs);
1694 	int adding;	/* Adding cpus to parent's effective_cpus	*/
1695 	int deleting;	/* Deleting cpus from parent's effective_cpus	*/
1696 	int old_prs, new_prs;
1697 	int part_error = PERR_NONE;	/* Partition error? */
1698 	int subparts_delta = 0;
1699 	int isolcpus_updated = 0;
1700 	struct cpumask *xcpus = user_xcpus(cs);
1701 	bool nocpu;
1702 
1703 	lockdep_assert_held(&cpuset_mutex);
1704 	WARN_ON_ONCE(is_remote_partition(cs));	/* For local partition only */
1705 
1706 	/*
1707 	 * new_prs will only be changed for the partcmd_update and
1708 	 * partcmd_invalidate commands.
1709 	 */
1710 	adding = deleting = false;
1711 	old_prs = new_prs = cs->partition_root_state;
1712 
1713 	if (cmd == partcmd_invalidate) {
1714 		if (is_prs_invalid(old_prs))
1715 			return 0;
1716 
1717 		/*
1718 		 * Make the current partition invalid.
1719 		 */
1720 		if (is_partition_valid(parent))
1721 			adding = cpumask_and(tmp->addmask,
1722 					     xcpus, parent->effective_xcpus);
1723 		if (old_prs > 0) {
1724 			new_prs = -old_prs;
1725 			subparts_delta--;
1726 		}
1727 		goto write_error;
1728 	}
1729 
1730 	/*
1731 	 * The parent must be a partition root.
1732 	 * The new cpumask, if present, or the current cpus_allowed must
1733 	 * not be empty.
1734 	 */
1735 	if (!is_partition_valid(parent)) {
1736 		return is_partition_invalid(parent)
1737 		       ? PERR_INVPARENT : PERR_NOTPART;
1738 	}
1739 	if (!newmask && xcpus_empty(cs))
1740 		return PERR_CPUSEMPTY;
1741 
1742 	nocpu = tasks_nocpu_error(parent, cs, xcpus);
1743 
1744 	if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
1745 		/*
1746 		 * Need to call compute_effective_exclusive_cpumask() in case
1747 		 * exclusive_cpus not set. Sibling conflict should only happen
1748 		 * if exclusive_cpus isn't set.
1749 		 */
1750 		xcpus = tmp->delmask;
1751 		if (compute_effective_exclusive_cpumask(cs, xcpus, NULL))
1752 			WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus));
1753 
1754 		/*
1755 		 * Enabling partition root is not allowed if its
1756 		 * effective_xcpus is empty.
1757 		 */
1758 		if (cpumask_empty(xcpus))
1759 			return PERR_INVCPUS;
1760 
1761 		if (prstate_housekeeping_conflict(new_prs, xcpus))
1762 			return PERR_HKEEPING;
1763 
1764 		/*
1765 		 * A parent can be left with no CPU as long as there is no
1766 		 * task directly associated with the parent partition.
1767 		 */
1768 		if (nocpu)
1769 			return PERR_NOCPUS;
1770 
1771 		/*
1772 		 * This function will only be called when all the preliminary
1773 		 * checks have passed. At this point, the following condition
1774 		 * should hold.
1775 		 *
1776 		 * (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus
1777 		 *
1778 		 * Warn if it is not the case.
1779 		 */
1780 		cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask);
1781 		WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
1782 
1783 		deleting = true;
1784 		subparts_delta++;
1785 		new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
1786 	} else if (cmd == partcmd_disable) {
1787 		/*
1788 		 * May need to add cpus back to parent's effective_cpus
1789 		 * (and maybe removed from subpartitions_cpus/isolated_cpus)
1790 		 * for valid partition root. xcpus may contain CPUs that
1791 		 * shouldn't be removed from the two global cpumasks.
1792 		 */
1793 		if (is_partition_valid(cs)) {
1794 			cpumask_copy(tmp->addmask, cs->effective_xcpus);
1795 			adding = true;
1796 			subparts_delta--;
1797 		}
1798 		new_prs = PRS_MEMBER;
1799 	} else if (newmask) {
1800 		/*
1801 		 * Empty cpumask is not allowed
1802 		 */
1803 		if (cpumask_empty(newmask)) {
1804 			part_error = PERR_CPUSEMPTY;
1805 			goto write_error;
1806 		}
1807 
1808 		/* Check newmask again, whether cpus are available for parent/cs */
1809 		nocpu |= tasks_nocpu_error(parent, cs, newmask);
1810 
1811 		/*
1812 		 * partcmd_update with newmask:
1813 		 *
1814 		 * Compute add/delete mask to/from effective_cpus
1815 		 *
1816 		 * For valid partition:
1817 		 *   addmask = exclusive_cpus & ~newmask
1818 		 *			      & parent->effective_xcpus
1819 		 *   delmask = newmask & ~exclusive_cpus
1820 		 *		       & parent->effective_xcpus
1821 		 *
1822 		 * For invalid partition:
1823 		 *   delmask = newmask & parent->effective_xcpus
1824 		 */
1825 		if (is_prs_invalid(old_prs)) {
1826 			adding = false;
1827 			deleting = cpumask_and(tmp->delmask,
1828 					newmask, parent->effective_xcpus);
1829 		} else {
1830 			cpumask_andnot(tmp->addmask, xcpus, newmask);
1831 			adding = cpumask_and(tmp->addmask, tmp->addmask,
1832 					     parent->effective_xcpus);
1833 
1834 			cpumask_andnot(tmp->delmask, newmask, xcpus);
1835 			deleting = cpumask_and(tmp->delmask, tmp->delmask,
1836 					       parent->effective_xcpus);
1837 		}
1838 		/*
1839 		 * The new CPUs to be removed from parent's effective CPUs
1840 		 * must be present.
1841 		 */
1842 		if (deleting) {
1843 			cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask);
1844 			WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus));
1845 		}
1846 
1847 		/*
1848 		 * Make partition invalid if parent's effective_cpus could
1849 		 * become empty and there are tasks in the parent.
1850 		 */
1851 		if (nocpu && (!adding ||
1852 		    !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
1853 			part_error = PERR_NOCPUS;
1854 			deleting = false;
1855 			adding = cpumask_and(tmp->addmask,
1856 					     xcpus, parent->effective_xcpus);
1857 		}
1858 	} else {
1859 		/*
1860 		 * partcmd_update w/o newmask
1861 		 *
1862 		 * delmask = effective_xcpus & parent->effective_cpus
1863 		 *
1864 		 * This can be called from:
1865 		 * 1) update_cpumasks_hier()
1866 		 * 2) cpuset_hotplug_update_tasks()
1867 		 *
1868 		 * Check to see if it can be transitioned from valid to
1869 		 * invalid partition or vice versa.
1870 		 *
1871 		 * A partition error happens when parent has tasks and all
1872 		 * its effective CPUs will have to be distributed out.
1873 		 */
1874 		WARN_ON_ONCE(!is_partition_valid(parent));
1875 		if (nocpu) {
1876 			part_error = PERR_NOCPUS;
1877 			if (is_partition_valid(cs))
1878 				adding = cpumask_and(tmp->addmask,
1879 						xcpus, parent->effective_xcpus);
1880 		} else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) &&
1881 			   cpumask_subset(xcpus, parent->effective_xcpus)) {
1882 			struct cgroup_subsys_state *css;
1883 			struct cpuset *child;
1884 			bool exclusive = true;
1885 
1886 			/*
1887 			 * Convert invalid partition to valid has to
1888 			 * pass the cpu exclusivity test.
1889 			 */
1890 			rcu_read_lock();
1891 			cpuset_for_each_child(child, css, parent) {
1892 				if (child == cs)
1893 					continue;
1894 				if (!cpusets_are_exclusive(cs, child)) {
1895 					exclusive = false;
1896 					break;
1897 				}
1898 			}
1899 			rcu_read_unlock();
1900 			if (exclusive)
1901 				deleting = cpumask_and(tmp->delmask,
1902 						xcpus, parent->effective_cpus);
1903 			else
1904 				part_error = PERR_NOTEXCL;
1905 		}
1906 	}
1907 
1908 write_error:
1909 	if (part_error)
1910 		WRITE_ONCE(cs->prs_err, part_error);
1911 
1912 	if (cmd == partcmd_update) {
1913 		/*
1914 		 * Check for possible transition between valid and invalid
1915 		 * partition root.
1916 		 */
1917 		switch (cs->partition_root_state) {
1918 		case PRS_ROOT:
1919 		case PRS_ISOLATED:
1920 			if (part_error) {
1921 				new_prs = -old_prs;
1922 				subparts_delta--;
1923 			}
1924 			break;
1925 		case PRS_INVALID_ROOT:
1926 		case PRS_INVALID_ISOLATED:
1927 			if (!part_error) {
1928 				new_prs = -old_prs;
1929 				subparts_delta++;
1930 			}
1931 			break;
1932 		}
1933 	}
1934 
1935 	if (!adding && !deleting && (new_prs == old_prs))
1936 		return 0;
1937 
1938 	/*
1939 	 * Transitioning between invalid to valid or vice versa may require
1940 	 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
1941 	 * validate_change() has already been successfully called and
1942 	 * CPU lists in cs haven't been updated yet. So defer it to later.
1943 	 */
1944 	if ((old_prs != new_prs) && (cmd != partcmd_update))  {
1945 		int err = update_partition_exclusive_flag(cs, new_prs);
1946 
1947 		if (err)
1948 			return err;
1949 	}
1950 
1951 	/*
1952 	 * Change the parent's effective_cpus & effective_xcpus (top cpuset
1953 	 * only).
1954 	 *
1955 	 * Newly added CPUs will be removed from effective_cpus and
1956 	 * newly deleted ones will be added back to effective_cpus.
1957 	 */
1958 	spin_lock_irq(&callback_lock);
1959 	if (old_prs != new_prs) {
1960 		cs->partition_root_state = new_prs;
1961 		if (new_prs <= 0)
1962 			cs->nr_subparts = 0;
1963 	}
1964 	/*
1965 	 * Adding to parent's effective_cpus means deletion CPUs from cs
1966 	 * and vice versa.
1967 	 */
1968 	if (adding)
1969 		isolcpus_updated += partition_xcpus_del(old_prs, parent,
1970 							tmp->addmask);
1971 	if (deleting)
1972 		isolcpus_updated += partition_xcpus_add(new_prs, parent,
1973 							tmp->delmask);
1974 
1975 	if (is_partition_valid(parent)) {
1976 		parent->nr_subparts += subparts_delta;
1977 		WARN_ON_ONCE(parent->nr_subparts < 0);
1978 	}
1979 	spin_unlock_irq(&callback_lock);
1980 	update_unbound_workqueue_cpumask(isolcpus_updated);
1981 
1982 	if ((old_prs != new_prs) && (cmd == partcmd_update))
1983 		update_partition_exclusive_flag(cs, new_prs);
1984 
1985 	if (adding || deleting) {
1986 		cpuset_update_tasks_cpumask(parent, tmp->addmask);
1987 		update_sibling_cpumasks(parent, cs, tmp);
1988 	}
1989 
1990 	/*
1991 	 * For partcmd_update without newmask, it is being called from
1992 	 * cpuset_handle_hotplug(). Update the load balance flag and
1993 	 * scheduling domain accordingly.
1994 	 */
1995 	if ((cmd == partcmd_update) && !newmask)
1996 		update_partition_sd_lb(cs, old_prs);
1997 
1998 	notify_partition_change(cs, old_prs);
1999 	return 0;
2000 }
2001 
2002 /**
2003  * compute_partition_effective_cpumask - compute effective_cpus for partition
2004  * @cs: partition root cpuset
2005  * @new_ecpus: previously computed effective_cpus to be updated
2006  *
2007  * Compute the effective_cpus of a partition root by scanning effective_xcpus
2008  * of child partition roots and excluding their effective_xcpus.
2009  *
2010  * This has the side effect of invalidating valid child partition roots,
2011  * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
2012  * or update_cpumasks_hier() where parent and children are modified
2013  * successively, we don't need to call update_parent_effective_cpumask()
2014  * and the child's effective_cpus will be updated in later iterations.
2015  *
2016  * Note that rcu_read_lock() is assumed to be held.
2017  */
2018 static void compute_partition_effective_cpumask(struct cpuset *cs,
2019 						struct cpumask *new_ecpus)
2020 {
2021 	struct cgroup_subsys_state *css;
2022 	struct cpuset *child;
2023 	bool populated = partition_is_populated(cs, NULL);
2024 
2025 	/*
2026 	 * Check child partition roots to see if they should be
2027 	 * invalidated when
2028 	 *  1) child effective_xcpus not a subset of new
2029 	 *     excluisve_cpus
2030 	 *  2) All the effective_cpus will be used up and cp
2031 	 *     has tasks
2032 	 */
2033 	compute_effective_exclusive_cpumask(cs, new_ecpus, NULL);
2034 	cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
2035 
2036 	rcu_read_lock();
2037 	cpuset_for_each_child(child, css, cs) {
2038 		if (!is_partition_valid(child))
2039 			continue;
2040 
2041 		/*
2042 		 * There shouldn't be a remote partition underneath another
2043 		 * partition root.
2044 		 */
2045 		WARN_ON_ONCE(is_remote_partition(child));
2046 		child->prs_err = 0;
2047 		if (!cpumask_subset(child->effective_xcpus,
2048 				    cs->effective_xcpus))
2049 			child->prs_err = PERR_INVCPUS;
2050 		else if (populated &&
2051 			 cpumask_subset(new_ecpus, child->effective_xcpus))
2052 			child->prs_err = PERR_NOCPUS;
2053 
2054 		if (child->prs_err) {
2055 			int old_prs = child->partition_root_state;
2056 
2057 			/*
2058 			 * Invalidate child partition
2059 			 */
2060 			spin_lock_irq(&callback_lock);
2061 			make_partition_invalid(child);
2062 			cs->nr_subparts--;
2063 			child->nr_subparts = 0;
2064 			spin_unlock_irq(&callback_lock);
2065 			notify_partition_change(child, old_prs);
2066 			continue;
2067 		}
2068 		cpumask_andnot(new_ecpus, new_ecpus,
2069 			       child->effective_xcpus);
2070 	}
2071 	rcu_read_unlock();
2072 }
2073 
2074 /*
2075  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
2076  * @cs:  the cpuset to consider
2077  * @tmp: temp variables for calculating effective_cpus & partition setup
2078  * @force: don't skip any descendant cpusets if set
2079  *
2080  * When configured cpumask is changed, the effective cpumasks of this cpuset
2081  * and all its descendants need to be updated.
2082  *
2083  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
2084  *
2085  * Called with cpuset_mutex held
2086  */
2087 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
2088 				 bool force)
2089 {
2090 	struct cpuset *cp;
2091 	struct cgroup_subsys_state *pos_css;
2092 	bool need_rebuild_sched_domains = false;
2093 	int old_prs, new_prs;
2094 
2095 	rcu_read_lock();
2096 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2097 		struct cpuset *parent = parent_cs(cp);
2098 		bool remote = is_remote_partition(cp);
2099 		bool update_parent = false;
2100 
2101 		old_prs = new_prs = cp->partition_root_state;
2102 
2103 		/*
2104 		 * For child remote partition root (!= cs), we need to call
2105 		 * remote_cpus_update() if effective_xcpus will be changed.
2106 		 * Otherwise, we can skip the whole subtree.
2107 		 *
2108 		 * remote_cpus_update() will reuse tmp->new_cpus only after
2109 		 * its value is being processed.
2110 		 */
2111 		if (remote && (cp != cs)) {
2112 			compute_effective_exclusive_cpumask(cp, tmp->new_cpus, NULL);
2113 			if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) {
2114 				pos_css = css_rightmost_descendant(pos_css);
2115 				continue;
2116 			}
2117 			rcu_read_unlock();
2118 			remote_cpus_update(cp, NULL, tmp->new_cpus, tmp);
2119 			rcu_read_lock();
2120 
2121 			/* Remote partition may be invalidated */
2122 			new_prs = cp->partition_root_state;
2123 			remote = (new_prs == old_prs);
2124 		}
2125 
2126 		if (remote || (is_partition_valid(parent) && is_partition_valid(cp)))
2127 			compute_partition_effective_cpumask(cp, tmp->new_cpus);
2128 		else
2129 			compute_effective_cpumask(tmp->new_cpus, cp, parent);
2130 
2131 		if (remote)
2132 			goto get_css;	/* Ready to update cpuset data */
2133 
2134 		/*
2135 		 * A partition with no effective_cpus is allowed as long as
2136 		 * there is no task associated with it. Call
2137 		 * update_parent_effective_cpumask() to check it.
2138 		 */
2139 		if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
2140 			update_parent = true;
2141 			goto update_parent_effective;
2142 		}
2143 
2144 		/*
2145 		 * If it becomes empty, inherit the effective mask of the
2146 		 * parent, which is guaranteed to have some CPUs unless
2147 		 * it is a partition root that has explicitly distributed
2148 		 * out all its CPUs.
2149 		 */
2150 		if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus))
2151 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2152 
2153 		/*
2154 		 * Skip the whole subtree if
2155 		 * 1) the cpumask remains the same,
2156 		 * 2) has no partition root state,
2157 		 * 3) force flag not set, and
2158 		 * 4) for v2 load balance state same as its parent.
2159 		 */
2160 		if (!cp->partition_root_state && !force &&
2161 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2162 		    (!cpuset_v2() ||
2163 		    (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2164 			pos_css = css_rightmost_descendant(pos_css);
2165 			continue;
2166 		}
2167 
2168 update_parent_effective:
2169 		/*
2170 		 * update_parent_effective_cpumask() should have been called
2171 		 * for cs already in update_cpumask(). We should also call
2172 		 * cpuset_update_tasks_cpumask() again for tasks in the parent
2173 		 * cpuset if the parent's effective_cpus changes.
2174 		 */
2175 		if ((cp != cs) && old_prs) {
2176 			switch (parent->partition_root_state) {
2177 			case PRS_ROOT:
2178 			case PRS_ISOLATED:
2179 				update_parent = true;
2180 				break;
2181 
2182 			default:
2183 				/*
2184 				 * When parent is not a partition root or is
2185 				 * invalid, child partition roots become
2186 				 * invalid too.
2187 				 */
2188 				if (is_partition_valid(cp))
2189 					new_prs = -cp->partition_root_state;
2190 				WRITE_ONCE(cp->prs_err,
2191 					   is_partition_invalid(parent)
2192 					   ? PERR_INVPARENT : PERR_NOTPART);
2193 				break;
2194 			}
2195 		}
2196 get_css:
2197 		if (!css_tryget_online(&cp->css))
2198 			continue;
2199 		rcu_read_unlock();
2200 
2201 		if (update_parent) {
2202 			update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
2203 			/*
2204 			 * The cpuset partition_root_state may become
2205 			 * invalid. Capture it.
2206 			 */
2207 			new_prs = cp->partition_root_state;
2208 		}
2209 
2210 		spin_lock_irq(&callback_lock);
2211 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2212 		cp->partition_root_state = new_prs;
2213 		if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs))
2214 			compute_effective_exclusive_cpumask(cp, NULL, NULL);
2215 
2216 		/*
2217 		 * Make sure effective_xcpus is properly set for a valid
2218 		 * partition root.
2219 		 */
2220 		if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2221 			cpumask_and(cp->effective_xcpus,
2222 				    cp->cpus_allowed, parent->effective_xcpus);
2223 		else if (new_prs < 0)
2224 			reset_partition_data(cp);
2225 		spin_unlock_irq(&callback_lock);
2226 
2227 		notify_partition_change(cp, old_prs);
2228 
2229 		WARN_ON(!is_in_v2_mode() &&
2230 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2231 
2232 		cpuset_update_tasks_cpumask(cp, cp->effective_cpus);
2233 
2234 		/*
2235 		 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2236 		 * from parent if current cpuset isn't a valid partition root
2237 		 * and their load balance states differ.
2238 		 */
2239 		if (cpuset_v2() && !is_partition_valid(cp) &&
2240 		    (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2241 			if (is_sched_load_balance(parent))
2242 				set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2243 			else
2244 				clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2245 		}
2246 
2247 		/*
2248 		 * On legacy hierarchy, if the effective cpumask of any non-
2249 		 * empty cpuset is changed, we need to rebuild sched domains.
2250 		 * On default hierarchy, the cpuset needs to be a partition
2251 		 * root as well.
2252 		 */
2253 		if (!cpumask_empty(cp->cpus_allowed) &&
2254 		    is_sched_load_balance(cp) &&
2255 		   (!cpuset_v2() || is_partition_valid(cp)))
2256 			need_rebuild_sched_domains = true;
2257 
2258 		rcu_read_lock();
2259 		css_put(&cp->css);
2260 	}
2261 	rcu_read_unlock();
2262 
2263 	if (need_rebuild_sched_domains)
2264 		cpuset_force_rebuild();
2265 }
2266 
2267 /**
2268  * update_sibling_cpumasks - Update siblings cpumasks
2269  * @parent:  Parent cpuset
2270  * @cs:      Current cpuset
2271  * @tmp:     Temp variables
2272  */
2273 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2274 				    struct tmpmasks *tmp)
2275 {
2276 	struct cpuset *sibling;
2277 	struct cgroup_subsys_state *pos_css;
2278 
2279 	lockdep_assert_held(&cpuset_mutex);
2280 
2281 	/*
2282 	 * Check all its siblings and call update_cpumasks_hier()
2283 	 * if their effective_cpus will need to be changed.
2284 	 *
2285 	 * It is possible a change in parent's effective_cpus
2286 	 * due to a change in a child partition's effective_xcpus will impact
2287 	 * its siblings even if they do not inherit parent's effective_cpus
2288 	 * directly.
2289 	 *
2290 	 * The update_cpumasks_hier() function may sleep. So we have to
2291 	 * release the RCU read lock before calling it.
2292 	 */
2293 	rcu_read_lock();
2294 	cpuset_for_each_child(sibling, pos_css, parent) {
2295 		if (sibling == cs)
2296 			continue;
2297 		if (!is_partition_valid(sibling)) {
2298 			compute_effective_cpumask(tmp->new_cpus, sibling,
2299 						  parent);
2300 			if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2301 				continue;
2302 		} else if (is_remote_partition(sibling)) {
2303 			/*
2304 			 * Change in a sibling cpuset won't affect a remote
2305 			 * partition root.
2306 			 */
2307 			continue;
2308 		}
2309 
2310 		if (!css_tryget_online(&sibling->css))
2311 			continue;
2312 
2313 		rcu_read_unlock();
2314 		update_cpumasks_hier(sibling, tmp, false);
2315 		rcu_read_lock();
2316 		css_put(&sibling->css);
2317 	}
2318 	rcu_read_unlock();
2319 }
2320 
2321 /**
2322  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2323  * @cs: the cpuset to consider
2324  * @trialcs: trial cpuset
2325  * @buf: buffer of cpu numbers written to this cpuset
2326  */
2327 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2328 			  const char *buf)
2329 {
2330 	int retval;
2331 	struct tmpmasks tmp;
2332 	struct cpuset *parent = parent_cs(cs);
2333 	bool invalidate = false;
2334 	bool force = false;
2335 	int old_prs = cs->partition_root_state;
2336 
2337 	/* top_cpuset.cpus_allowed tracks cpu_active_mask; it's read-only */
2338 	if (cs == &top_cpuset)
2339 		return -EACCES;
2340 
2341 	/*
2342 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
2343 	 * Since cpulist_parse() fails on an empty mask, we special case
2344 	 * that parsing.  The validate_change() call ensures that cpusets
2345 	 * with tasks have cpus.
2346 	 */
2347 	if (!*buf) {
2348 		cpumask_clear(trialcs->cpus_allowed);
2349 		if (cpumask_empty(trialcs->exclusive_cpus))
2350 			cpumask_clear(trialcs->effective_xcpus);
2351 	} else {
2352 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
2353 		if (retval < 0)
2354 			return retval;
2355 
2356 		if (!cpumask_subset(trialcs->cpus_allowed,
2357 				    top_cpuset.cpus_allowed))
2358 			return -EINVAL;
2359 
2360 		/*
2361 		 * When exclusive_cpus isn't explicitly set, it is constrained
2362 		 * by cpus_allowed and parent's effective_xcpus. Otherwise,
2363 		 * trialcs->effective_xcpus is used as a temporary cpumask
2364 		 * for checking validity of the partition root.
2365 		 */
2366 		trialcs->partition_root_state = PRS_MEMBER;
2367 		if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs))
2368 			compute_effective_exclusive_cpumask(trialcs, NULL, cs);
2369 	}
2370 
2371 	/* Nothing to do if the cpus didn't change */
2372 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2373 		return 0;
2374 
2375 	if (alloc_tmpmasks(&tmp))
2376 		return -ENOMEM;
2377 
2378 	if (old_prs) {
2379 		if (is_partition_valid(cs) &&
2380 		    cpumask_empty(trialcs->effective_xcpus)) {
2381 			invalidate = true;
2382 			cs->prs_err = PERR_INVCPUS;
2383 		} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2384 			invalidate = true;
2385 			cs->prs_err = PERR_HKEEPING;
2386 		} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2387 			invalidate = true;
2388 			cs->prs_err = PERR_NOCPUS;
2389 		}
2390 	}
2391 
2392 	/*
2393 	 * Check all the descendants in update_cpumasks_hier() if
2394 	 * effective_xcpus is to be changed.
2395 	 */
2396 	force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2397 
2398 	retval = validate_change(cs, trialcs);
2399 
2400 	if ((retval == -EINVAL) && cpuset_v2()) {
2401 		struct cgroup_subsys_state *css;
2402 		struct cpuset *cp;
2403 
2404 		/*
2405 		 * The -EINVAL error code indicates that partition sibling
2406 		 * CPU exclusivity rule has been violated. We still allow
2407 		 * the cpumask change to proceed while invalidating the
2408 		 * partition. However, any conflicting sibling partitions
2409 		 * have to be marked as invalid too.
2410 		 */
2411 		invalidate = true;
2412 		rcu_read_lock();
2413 		cpuset_for_each_child(cp, css, parent) {
2414 			struct cpumask *xcpus = user_xcpus(trialcs);
2415 
2416 			if (is_partition_valid(cp) &&
2417 			    cpumask_intersects(xcpus, cp->effective_xcpus)) {
2418 				rcu_read_unlock();
2419 				update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp);
2420 				rcu_read_lock();
2421 			}
2422 		}
2423 		rcu_read_unlock();
2424 		retval = 0;
2425 	}
2426 
2427 	if (retval < 0)
2428 		goto out_free;
2429 
2430 	if (is_partition_valid(cs) ||
2431 	   (is_partition_invalid(cs) && !invalidate)) {
2432 		struct cpumask *xcpus = trialcs->effective_xcpus;
2433 
2434 		if (cpumask_empty(xcpus) && is_partition_invalid(cs))
2435 			xcpus = trialcs->cpus_allowed;
2436 
2437 		/*
2438 		 * Call remote_cpus_update() to handle valid remote partition
2439 		 */
2440 		if (is_remote_partition(cs))
2441 			remote_cpus_update(cs, NULL, xcpus, &tmp);
2442 		else if (invalidate)
2443 			update_parent_effective_cpumask(cs, partcmd_invalidate,
2444 							NULL, &tmp);
2445 		else
2446 			update_parent_effective_cpumask(cs, partcmd_update,
2447 							xcpus, &tmp);
2448 	}
2449 
2450 	spin_lock_irq(&callback_lock);
2451 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2452 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2453 	if ((old_prs > 0) && !is_partition_valid(cs))
2454 		reset_partition_data(cs);
2455 	spin_unlock_irq(&callback_lock);
2456 
2457 	/* effective_cpus/effective_xcpus will be updated here */
2458 	update_cpumasks_hier(cs, &tmp, force);
2459 
2460 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2461 	if (cs->partition_root_state)
2462 		update_partition_sd_lb(cs, old_prs);
2463 out_free:
2464 	free_tmpmasks(&tmp);
2465 	return retval;
2466 }
2467 
2468 /**
2469  * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2470  * @cs: the cpuset to consider
2471  * @trialcs: trial cpuset
2472  * @buf: buffer of cpu numbers written to this cpuset
2473  *
2474  * The tasks' cpumask will be updated if cs is a valid partition root.
2475  */
2476 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2477 				    const char *buf)
2478 {
2479 	int retval;
2480 	struct tmpmasks tmp;
2481 	struct cpuset *parent = parent_cs(cs);
2482 	bool invalidate = false;
2483 	bool force = false;
2484 	int old_prs = cs->partition_root_state;
2485 
2486 	if (!*buf) {
2487 		cpumask_clear(trialcs->exclusive_cpus);
2488 		cpumask_clear(trialcs->effective_xcpus);
2489 	} else {
2490 		retval = cpulist_parse(buf, trialcs->exclusive_cpus);
2491 		if (retval < 0)
2492 			return retval;
2493 	}
2494 
2495 	/* Nothing to do if the CPUs didn't change */
2496 	if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2497 		return 0;
2498 
2499 	if (*buf) {
2500 		trialcs->partition_root_state = PRS_MEMBER;
2501 		/*
2502 		 * Reject the change if there is exclusive CPUs conflict with
2503 		 * the siblings.
2504 		 */
2505 		if (compute_effective_exclusive_cpumask(trialcs, NULL, cs))
2506 			return -EINVAL;
2507 	}
2508 
2509 	/*
2510 	 * Check all the descendants in update_cpumasks_hier() if
2511 	 * effective_xcpus is to be changed.
2512 	 */
2513 	force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus);
2514 
2515 	retval = validate_change(cs, trialcs);
2516 	if (retval)
2517 		return retval;
2518 
2519 	if (alloc_tmpmasks(&tmp))
2520 		return -ENOMEM;
2521 
2522 	if (old_prs) {
2523 		if (cpumask_empty(trialcs->effective_xcpus)) {
2524 			invalidate = true;
2525 			cs->prs_err = PERR_INVCPUS;
2526 		} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2527 			invalidate = true;
2528 			cs->prs_err = PERR_HKEEPING;
2529 		} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2530 			invalidate = true;
2531 			cs->prs_err = PERR_NOCPUS;
2532 		}
2533 
2534 		if (is_remote_partition(cs)) {
2535 			if (invalidate)
2536 				remote_partition_disable(cs, &tmp);
2537 			else
2538 				remote_cpus_update(cs, trialcs->exclusive_cpus,
2539 						   trialcs->effective_xcpus, &tmp);
2540 		} else if (invalidate) {
2541 			update_parent_effective_cpumask(cs, partcmd_invalidate,
2542 							NULL, &tmp);
2543 		} else {
2544 			update_parent_effective_cpumask(cs, partcmd_update,
2545 						trialcs->effective_xcpus, &tmp);
2546 		}
2547 	}
2548 	spin_lock_irq(&callback_lock);
2549 	cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2550 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2551 	if ((old_prs > 0) && !is_partition_valid(cs))
2552 		reset_partition_data(cs);
2553 	spin_unlock_irq(&callback_lock);
2554 
2555 	/*
2556 	 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2557 	 * of the subtree when it is a valid partition root or effective_xcpus
2558 	 * is updated.
2559 	 */
2560 	if (is_partition_valid(cs) || force)
2561 		update_cpumasks_hier(cs, &tmp, force);
2562 
2563 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2564 	if (cs->partition_root_state)
2565 		update_partition_sd_lb(cs, old_prs);
2566 
2567 	free_tmpmasks(&tmp);
2568 	return 0;
2569 }
2570 
2571 /*
2572  * Migrate memory region from one set of nodes to another.  This is
2573  * performed asynchronously as it can be called from process migration path
2574  * holding locks involved in process management.  All mm migrations are
2575  * performed in the queued order and can be waited for by flushing
2576  * cpuset_migrate_mm_wq.
2577  */
2578 
2579 struct cpuset_migrate_mm_work {
2580 	struct work_struct	work;
2581 	struct mm_struct	*mm;
2582 	nodemask_t		from;
2583 	nodemask_t		to;
2584 };
2585 
2586 static void cpuset_migrate_mm_workfn(struct work_struct *work)
2587 {
2588 	struct cpuset_migrate_mm_work *mwork =
2589 		container_of(work, struct cpuset_migrate_mm_work, work);
2590 
2591 	/* on a wq worker, no need to worry about %current's mems_allowed */
2592 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2593 	mmput(mwork->mm);
2594 	kfree(mwork);
2595 }
2596 
2597 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2598 							const nodemask_t *to)
2599 {
2600 	struct cpuset_migrate_mm_work *mwork;
2601 
2602 	if (nodes_equal(*from, *to)) {
2603 		mmput(mm);
2604 		return;
2605 	}
2606 
2607 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2608 	if (mwork) {
2609 		mwork->mm = mm;
2610 		mwork->from = *from;
2611 		mwork->to = *to;
2612 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2613 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
2614 	} else {
2615 		mmput(mm);
2616 	}
2617 }
2618 
2619 static void cpuset_post_attach(void)
2620 {
2621 	flush_workqueue(cpuset_migrate_mm_wq);
2622 }
2623 
2624 /*
2625  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2626  * @tsk: the task to change
2627  * @newmems: new nodes that the task will be set
2628  *
2629  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2630  * and rebind an eventual tasks' mempolicy. If the task is allocating in
2631  * parallel, it might temporarily see an empty intersection, which results in
2632  * a seqlock check and retry before OOM or allocation failure.
2633  */
2634 static void cpuset_change_task_nodemask(struct task_struct *tsk,
2635 					nodemask_t *newmems)
2636 {
2637 	task_lock(tsk);
2638 
2639 	local_irq_disable();
2640 	write_seqcount_begin(&tsk->mems_allowed_seq);
2641 
2642 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2643 	mpol_rebind_task(tsk, newmems);
2644 	tsk->mems_allowed = *newmems;
2645 
2646 	write_seqcount_end(&tsk->mems_allowed_seq);
2647 	local_irq_enable();
2648 
2649 	task_unlock(tsk);
2650 }
2651 
2652 static void *cpuset_being_rebound;
2653 
2654 /**
2655  * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2656  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2657  *
2658  * Iterate through each task of @cs updating its mems_allowed to the
2659  * effective cpuset's.  As this function is called with cpuset_mutex held,
2660  * cpuset membership stays stable.
2661  */
2662 void cpuset_update_tasks_nodemask(struct cpuset *cs)
2663 {
2664 	static nodemask_t newmems;	/* protected by cpuset_mutex */
2665 	struct css_task_iter it;
2666 	struct task_struct *task;
2667 
2668 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
2669 
2670 	guarantee_online_mems(cs, &newmems);
2671 
2672 	/*
2673 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2674 	 * take while holding tasklist_lock.  Forks can happen - the
2675 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
2676 	 * and rebind their vma mempolicies too.  Because we still hold
2677 	 * the global cpuset_mutex, we know that no other rebind effort
2678 	 * will be contending for the global variable cpuset_being_rebound.
2679 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2680 	 * is idempotent.  Also migrate pages in each mm to new nodes.
2681 	 */
2682 	css_task_iter_start(&cs->css, 0, &it);
2683 	while ((task = css_task_iter_next(&it))) {
2684 		struct mm_struct *mm;
2685 		bool migrate;
2686 
2687 		cpuset_change_task_nodemask(task, &newmems);
2688 
2689 		mm = get_task_mm(task);
2690 		if (!mm)
2691 			continue;
2692 
2693 		migrate = is_memory_migrate(cs);
2694 
2695 		mpol_rebind_mm(mm, &cs->mems_allowed);
2696 		if (migrate)
2697 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2698 		else
2699 			mmput(mm);
2700 	}
2701 	css_task_iter_end(&it);
2702 
2703 	/*
2704 	 * All the tasks' nodemasks have been updated, update
2705 	 * cs->old_mems_allowed.
2706 	 */
2707 	cs->old_mems_allowed = newmems;
2708 
2709 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2710 	cpuset_being_rebound = NULL;
2711 }
2712 
2713 /*
2714  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2715  * @cs: the cpuset to consider
2716  * @new_mems: a temp variable for calculating new effective_mems
2717  *
2718  * When configured nodemask is changed, the effective nodemasks of this cpuset
2719  * and all its descendants need to be updated.
2720  *
2721  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2722  *
2723  * Called with cpuset_mutex held
2724  */
2725 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2726 {
2727 	struct cpuset *cp;
2728 	struct cgroup_subsys_state *pos_css;
2729 
2730 	rcu_read_lock();
2731 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2732 		struct cpuset *parent = parent_cs(cp);
2733 
2734 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2735 
2736 		/*
2737 		 * If it becomes empty, inherit the effective mask of the
2738 		 * parent, which is guaranteed to have some MEMs.
2739 		 */
2740 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2741 			*new_mems = parent->effective_mems;
2742 
2743 		/* Skip the whole subtree if the nodemask remains the same. */
2744 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2745 			pos_css = css_rightmost_descendant(pos_css);
2746 			continue;
2747 		}
2748 
2749 		if (!css_tryget_online(&cp->css))
2750 			continue;
2751 		rcu_read_unlock();
2752 
2753 		spin_lock_irq(&callback_lock);
2754 		cp->effective_mems = *new_mems;
2755 		spin_unlock_irq(&callback_lock);
2756 
2757 		WARN_ON(!is_in_v2_mode() &&
2758 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2759 
2760 		cpuset_update_tasks_nodemask(cp);
2761 
2762 		rcu_read_lock();
2763 		css_put(&cp->css);
2764 	}
2765 	rcu_read_unlock();
2766 }
2767 
2768 /*
2769  * Handle user request to change the 'mems' memory placement
2770  * of a cpuset.  Needs to validate the request, update the
2771  * cpusets mems_allowed, and for each task in the cpuset,
2772  * update mems_allowed and rebind task's mempolicy and any vma
2773  * mempolicies and if the cpuset is marked 'memory_migrate',
2774  * migrate the tasks pages to the new memory.
2775  *
2776  * Call with cpuset_mutex held. May take callback_lock during call.
2777  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2778  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2779  * their mempolicies to the cpusets new mems_allowed.
2780  */
2781 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2782 			   const char *buf)
2783 {
2784 	int retval;
2785 
2786 	/*
2787 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2788 	 * it's read-only
2789 	 */
2790 	if (cs == &top_cpuset) {
2791 		retval = -EACCES;
2792 		goto done;
2793 	}
2794 
2795 	/*
2796 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2797 	 * Since nodelist_parse() fails on an empty mask, we special case
2798 	 * that parsing.  The validate_change() call ensures that cpusets
2799 	 * with tasks have memory.
2800 	 */
2801 	if (!*buf) {
2802 		nodes_clear(trialcs->mems_allowed);
2803 	} else {
2804 		retval = nodelist_parse(buf, trialcs->mems_allowed);
2805 		if (retval < 0)
2806 			goto done;
2807 
2808 		if (!nodes_subset(trialcs->mems_allowed,
2809 				  top_cpuset.mems_allowed)) {
2810 			retval = -EINVAL;
2811 			goto done;
2812 		}
2813 	}
2814 
2815 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2816 		retval = 0;		/* Too easy - nothing to do */
2817 		goto done;
2818 	}
2819 	retval = validate_change(cs, trialcs);
2820 	if (retval < 0)
2821 		goto done;
2822 
2823 	check_insane_mems_config(&trialcs->mems_allowed);
2824 
2825 	spin_lock_irq(&callback_lock);
2826 	cs->mems_allowed = trialcs->mems_allowed;
2827 	spin_unlock_irq(&callback_lock);
2828 
2829 	/* use trialcs->mems_allowed as a temp variable */
2830 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2831 done:
2832 	return retval;
2833 }
2834 
2835 bool current_cpuset_is_being_rebound(void)
2836 {
2837 	bool ret;
2838 
2839 	rcu_read_lock();
2840 	ret = task_cs(current) == cpuset_being_rebound;
2841 	rcu_read_unlock();
2842 
2843 	return ret;
2844 }
2845 
2846 /*
2847  * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag
2848  * bit:		the bit to update (see cpuset_flagbits_t)
2849  * cs:		the cpuset to update
2850  * turning_on: 	whether the flag is being set or cleared
2851  *
2852  * Call with cpuset_mutex held.
2853  */
2854 
2855 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2856 		       int turning_on)
2857 {
2858 	struct cpuset *trialcs;
2859 	int balance_flag_changed;
2860 	int spread_flag_changed;
2861 	int err;
2862 
2863 	trialcs = dup_or_alloc_cpuset(cs);
2864 	if (!trialcs)
2865 		return -ENOMEM;
2866 
2867 	if (turning_on)
2868 		set_bit(bit, &trialcs->flags);
2869 	else
2870 		clear_bit(bit, &trialcs->flags);
2871 
2872 	err = validate_change(cs, trialcs);
2873 	if (err < 0)
2874 		goto out;
2875 
2876 	balance_flag_changed = (is_sched_load_balance(cs) !=
2877 				is_sched_load_balance(trialcs));
2878 
2879 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2880 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2881 
2882 	spin_lock_irq(&callback_lock);
2883 	cs->flags = trialcs->flags;
2884 	spin_unlock_irq(&callback_lock);
2885 
2886 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) {
2887 		if (cpuset_v2())
2888 			cpuset_force_rebuild();
2889 		else
2890 			rebuild_sched_domains_locked();
2891 	}
2892 
2893 	if (spread_flag_changed)
2894 		cpuset1_update_tasks_flags(cs);
2895 out:
2896 	free_cpuset(trialcs);
2897 	return err;
2898 }
2899 
2900 /**
2901  * update_prstate - update partition_root_state
2902  * @cs: the cpuset to update
2903  * @new_prs: new partition root state
2904  * Return: 0 if successful, != 0 if error
2905  *
2906  * Call with cpuset_mutex held.
2907  */
2908 static int update_prstate(struct cpuset *cs, int new_prs)
2909 {
2910 	int err = PERR_NONE, old_prs = cs->partition_root_state;
2911 	struct cpuset *parent = parent_cs(cs);
2912 	struct tmpmasks tmpmask;
2913 	bool isolcpus_updated = false;
2914 
2915 	if (old_prs == new_prs)
2916 		return 0;
2917 
2918 	/*
2919 	 * Treat a previously invalid partition root as if it is a "member".
2920 	 */
2921 	if (new_prs && is_prs_invalid(old_prs))
2922 		old_prs = PRS_MEMBER;
2923 
2924 	if (alloc_tmpmasks(&tmpmask))
2925 		return -ENOMEM;
2926 
2927 	err = update_partition_exclusive_flag(cs, new_prs);
2928 	if (err)
2929 		goto out;
2930 
2931 	if (!old_prs) {
2932 		/*
2933 		 * cpus_allowed and exclusive_cpus cannot be both empty.
2934 		 */
2935 		if (xcpus_empty(cs)) {
2936 			err = PERR_CPUSEMPTY;
2937 			goto out;
2938 		}
2939 
2940 		/*
2941 		 * We don't support the creation of a new local partition with
2942 		 * a remote partition underneath it. This unsupported
2943 		 * setting can happen only if parent is the top_cpuset because
2944 		 * a remote partition cannot be created underneath an existing
2945 		 * local or remote partition.
2946 		 */
2947 		if ((parent == &top_cpuset) &&
2948 		    cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) {
2949 			err = PERR_REMOTE;
2950 			goto out;
2951 		}
2952 
2953 		/*
2954 		 * If parent is valid partition, enable local partiion.
2955 		 * Otherwise, enable a remote partition.
2956 		 */
2957 		if (is_partition_valid(parent)) {
2958 			enum partition_cmd cmd = (new_prs == PRS_ROOT)
2959 					       ? partcmd_enable : partcmd_enablei;
2960 
2961 			err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
2962 		} else {
2963 			err = remote_partition_enable(cs, new_prs, &tmpmask);
2964 		}
2965 	} else if (old_prs && new_prs) {
2966 		/*
2967 		 * A change in load balance state only, no change in cpumasks.
2968 		 * Need to update isolated_cpus.
2969 		 */
2970 		isolcpus_updated = true;
2971 	} else {
2972 		/*
2973 		 * Switching back to member is always allowed even if it
2974 		 * disables child partitions.
2975 		 */
2976 		if (is_remote_partition(cs))
2977 			remote_partition_disable(cs, &tmpmask);
2978 		else
2979 			update_parent_effective_cpumask(cs, partcmd_disable,
2980 							NULL, &tmpmask);
2981 
2982 		/*
2983 		 * Invalidation of child partitions will be done in
2984 		 * update_cpumasks_hier().
2985 		 */
2986 	}
2987 out:
2988 	/*
2989 	 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
2990 	 * happens.
2991 	 */
2992 	if (err) {
2993 		new_prs = -new_prs;
2994 		update_partition_exclusive_flag(cs, new_prs);
2995 	}
2996 
2997 	spin_lock_irq(&callback_lock);
2998 	cs->partition_root_state = new_prs;
2999 	WRITE_ONCE(cs->prs_err, err);
3000 	if (!is_partition_valid(cs))
3001 		reset_partition_data(cs);
3002 	else if (isolcpus_updated)
3003 		isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus);
3004 	spin_unlock_irq(&callback_lock);
3005 	update_unbound_workqueue_cpumask(isolcpus_updated);
3006 
3007 	/* Force update if switching back to member & update effective_xcpus */
3008 	update_cpumasks_hier(cs, &tmpmask, !new_prs);
3009 
3010 	/* A newly created partition must have effective_xcpus set */
3011 	WARN_ON_ONCE(!old_prs && (new_prs > 0)
3012 			      && cpumask_empty(cs->effective_xcpus));
3013 
3014 	/* Update sched domains and load balance flag */
3015 	update_partition_sd_lb(cs, old_prs);
3016 
3017 	notify_partition_change(cs, old_prs);
3018 	if (force_sd_rebuild)
3019 		rebuild_sched_domains_locked();
3020 	free_tmpmasks(&tmpmask);
3021 	return 0;
3022 }
3023 
3024 static struct cpuset *cpuset_attach_old_cs;
3025 
3026 /*
3027  * Check to see if a cpuset can accept a new task
3028  * For v1, cpus_allowed and mems_allowed can't be empty.
3029  * For v2, effective_cpus can't be empty.
3030  * Note that in v1, effective_cpus = cpus_allowed.
3031  */
3032 static int cpuset_can_attach_check(struct cpuset *cs)
3033 {
3034 	if (cpumask_empty(cs->effective_cpus) ||
3035 	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
3036 		return -ENOSPC;
3037 	return 0;
3038 }
3039 
3040 static void reset_migrate_dl_data(struct cpuset *cs)
3041 {
3042 	cs->nr_migrate_dl_tasks = 0;
3043 	cs->sum_migrate_dl_bw = 0;
3044 }
3045 
3046 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
3047 static int cpuset_can_attach(struct cgroup_taskset *tset)
3048 {
3049 	struct cgroup_subsys_state *css;
3050 	struct cpuset *cs, *oldcs;
3051 	struct task_struct *task;
3052 	bool cpus_updated, mems_updated;
3053 	int ret;
3054 
3055 	/* used later by cpuset_attach() */
3056 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
3057 	oldcs = cpuset_attach_old_cs;
3058 	cs = css_cs(css);
3059 
3060 	mutex_lock(&cpuset_mutex);
3061 
3062 	/* Check to see if task is allowed in the cpuset */
3063 	ret = cpuset_can_attach_check(cs);
3064 	if (ret)
3065 		goto out_unlock;
3066 
3067 	cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
3068 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3069 
3070 	cgroup_taskset_for_each(task, css, tset) {
3071 		ret = task_can_attach(task);
3072 		if (ret)
3073 			goto out_unlock;
3074 
3075 		/*
3076 		 * Skip rights over task check in v2 when nothing changes,
3077 		 * migration permission derives from hierarchy ownership in
3078 		 * cgroup_procs_write_permission()).
3079 		 */
3080 		if (!cpuset_v2() || (cpus_updated || mems_updated)) {
3081 			ret = security_task_setscheduler(task);
3082 			if (ret)
3083 				goto out_unlock;
3084 		}
3085 
3086 		if (dl_task(task)) {
3087 			cs->nr_migrate_dl_tasks++;
3088 			cs->sum_migrate_dl_bw += task->dl.dl_bw;
3089 		}
3090 	}
3091 
3092 	if (!cs->nr_migrate_dl_tasks)
3093 		goto out_success;
3094 
3095 	if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
3096 		int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
3097 
3098 		if (unlikely(cpu >= nr_cpu_ids)) {
3099 			reset_migrate_dl_data(cs);
3100 			ret = -EINVAL;
3101 			goto out_unlock;
3102 		}
3103 
3104 		ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
3105 		if (ret) {
3106 			reset_migrate_dl_data(cs);
3107 			goto out_unlock;
3108 		}
3109 	}
3110 
3111 out_success:
3112 	/*
3113 	 * Mark attach is in progress.  This makes validate_change() fail
3114 	 * changes which zero cpus/mems_allowed.
3115 	 */
3116 	cs->attach_in_progress++;
3117 out_unlock:
3118 	mutex_unlock(&cpuset_mutex);
3119 	return ret;
3120 }
3121 
3122 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
3123 {
3124 	struct cgroup_subsys_state *css;
3125 	struct cpuset *cs;
3126 
3127 	cgroup_taskset_first(tset, &css);
3128 	cs = css_cs(css);
3129 
3130 	mutex_lock(&cpuset_mutex);
3131 	dec_attach_in_progress_locked(cs);
3132 
3133 	if (cs->nr_migrate_dl_tasks) {
3134 		int cpu = cpumask_any(cs->effective_cpus);
3135 
3136 		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
3137 		reset_migrate_dl_data(cs);
3138 	}
3139 
3140 	mutex_unlock(&cpuset_mutex);
3141 }
3142 
3143 /*
3144  * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
3145  * but we can't allocate it dynamically there.  Define it global and
3146  * allocate from cpuset_init().
3147  */
3148 static cpumask_var_t cpus_attach;
3149 static nodemask_t cpuset_attach_nodemask_to;
3150 
3151 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
3152 {
3153 	lockdep_assert_held(&cpuset_mutex);
3154 
3155 	if (cs != &top_cpuset)
3156 		guarantee_active_cpus(task, cpus_attach);
3157 	else
3158 		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3159 			       subpartitions_cpus);
3160 	/*
3161 	 * can_attach beforehand should guarantee that this doesn't
3162 	 * fail.  TODO: have a better way to handle failure here
3163 	 */
3164 	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
3165 
3166 	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3167 	cpuset1_update_task_spread_flags(cs, task);
3168 }
3169 
3170 static void cpuset_attach(struct cgroup_taskset *tset)
3171 {
3172 	struct task_struct *task;
3173 	struct task_struct *leader;
3174 	struct cgroup_subsys_state *css;
3175 	struct cpuset *cs;
3176 	struct cpuset *oldcs = cpuset_attach_old_cs;
3177 	bool cpus_updated, mems_updated;
3178 
3179 	cgroup_taskset_first(tset, &css);
3180 	cs = css_cs(css);
3181 
3182 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
3183 	mutex_lock(&cpuset_mutex);
3184 	cpus_updated = !cpumask_equal(cs->effective_cpus,
3185 				      oldcs->effective_cpus);
3186 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3187 
3188 	/*
3189 	 * In the default hierarchy, enabling cpuset in the child cgroups
3190 	 * will trigger a number of cpuset_attach() calls with no change
3191 	 * in effective cpus and mems. In that case, we can optimize out
3192 	 * by skipping the task iteration and update.
3193 	 */
3194 	if (cpuset_v2() && !cpus_updated && !mems_updated) {
3195 		cpuset_attach_nodemask_to = cs->effective_mems;
3196 		goto out;
3197 	}
3198 
3199 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3200 
3201 	cgroup_taskset_for_each(task, css, tset)
3202 		cpuset_attach_task(cs, task);
3203 
3204 	/*
3205 	 * Change mm for all threadgroup leaders. This is expensive and may
3206 	 * sleep and should be moved outside migration path proper. Skip it
3207 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3208 	 * not set.
3209 	 */
3210 	cpuset_attach_nodemask_to = cs->effective_mems;
3211 	if (!is_memory_migrate(cs) && !mems_updated)
3212 		goto out;
3213 
3214 	cgroup_taskset_for_each_leader(leader, css, tset) {
3215 		struct mm_struct *mm = get_task_mm(leader);
3216 
3217 		if (mm) {
3218 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3219 
3220 			/*
3221 			 * old_mems_allowed is the same with mems_allowed
3222 			 * here, except if this task is being moved
3223 			 * automatically due to hotplug.  In that case
3224 			 * @mems_allowed has been updated and is empty, so
3225 			 * @old_mems_allowed is the right nodesets that we
3226 			 * migrate mm from.
3227 			 */
3228 			if (is_memory_migrate(cs))
3229 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3230 						  &cpuset_attach_nodemask_to);
3231 			else
3232 				mmput(mm);
3233 		}
3234 	}
3235 
3236 out:
3237 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
3238 
3239 	if (cs->nr_migrate_dl_tasks) {
3240 		cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3241 		oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3242 		reset_migrate_dl_data(cs);
3243 	}
3244 
3245 	dec_attach_in_progress_locked(cs);
3246 
3247 	mutex_unlock(&cpuset_mutex);
3248 }
3249 
3250 /*
3251  * Common handling for a write to a "cpus" or "mems" file.
3252  */
3253 ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3254 				    char *buf, size_t nbytes, loff_t off)
3255 {
3256 	struct cpuset *cs = css_cs(of_css(of));
3257 	struct cpuset *trialcs;
3258 	int retval = -ENODEV;
3259 
3260 	buf = strstrip(buf);
3261 	cpuset_full_lock();
3262 	if (!is_cpuset_online(cs))
3263 		goto out_unlock;
3264 
3265 	trialcs = dup_or_alloc_cpuset(cs);
3266 	if (!trialcs) {
3267 		retval = -ENOMEM;
3268 		goto out_unlock;
3269 	}
3270 
3271 	switch (of_cft(of)->private) {
3272 	case FILE_CPULIST:
3273 		retval = update_cpumask(cs, trialcs, buf);
3274 		break;
3275 	case FILE_EXCLUSIVE_CPULIST:
3276 		retval = update_exclusive_cpumask(cs, trialcs, buf);
3277 		break;
3278 	case FILE_MEMLIST:
3279 		retval = update_nodemask(cs, trialcs, buf);
3280 		break;
3281 	default:
3282 		retval = -EINVAL;
3283 		break;
3284 	}
3285 
3286 	free_cpuset(trialcs);
3287 	if (force_sd_rebuild)
3288 		rebuild_sched_domains_locked();
3289 out_unlock:
3290 	cpuset_full_unlock();
3291 	flush_workqueue(cpuset_migrate_mm_wq);
3292 	return retval ?: nbytes;
3293 }
3294 
3295 /*
3296  * These ascii lists should be read in a single call, by using a user
3297  * buffer large enough to hold the entire map.  If read in smaller
3298  * chunks, there is no guarantee of atomicity.  Since the display format
3299  * used, list of ranges of sequential numbers, is variable length,
3300  * and since these maps can change value dynamically, one could read
3301  * gibberish by doing partial reads while a list was changing.
3302  */
3303 int cpuset_common_seq_show(struct seq_file *sf, void *v)
3304 {
3305 	struct cpuset *cs = css_cs(seq_css(sf));
3306 	cpuset_filetype_t type = seq_cft(sf)->private;
3307 	int ret = 0;
3308 
3309 	spin_lock_irq(&callback_lock);
3310 
3311 	switch (type) {
3312 	case FILE_CPULIST:
3313 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3314 		break;
3315 	case FILE_MEMLIST:
3316 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3317 		break;
3318 	case FILE_EFFECTIVE_CPULIST:
3319 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3320 		break;
3321 	case FILE_EFFECTIVE_MEMLIST:
3322 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3323 		break;
3324 	case FILE_EXCLUSIVE_CPULIST:
3325 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3326 		break;
3327 	case FILE_EFFECTIVE_XCPULIST:
3328 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3329 		break;
3330 	case FILE_SUBPARTS_CPULIST:
3331 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3332 		break;
3333 	case FILE_ISOLATED_CPULIST:
3334 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
3335 		break;
3336 	default:
3337 		ret = -EINVAL;
3338 	}
3339 
3340 	spin_unlock_irq(&callback_lock);
3341 	return ret;
3342 }
3343 
3344 static int cpuset_partition_show(struct seq_file *seq, void *v)
3345 {
3346 	struct cpuset *cs = css_cs(seq_css(seq));
3347 	const char *err, *type = NULL;
3348 
3349 	switch (cs->partition_root_state) {
3350 	case PRS_ROOT:
3351 		seq_puts(seq, "root\n");
3352 		break;
3353 	case PRS_ISOLATED:
3354 		seq_puts(seq, "isolated\n");
3355 		break;
3356 	case PRS_MEMBER:
3357 		seq_puts(seq, "member\n");
3358 		break;
3359 	case PRS_INVALID_ROOT:
3360 		type = "root";
3361 		fallthrough;
3362 	case PRS_INVALID_ISOLATED:
3363 		if (!type)
3364 			type = "isolated";
3365 		err = perr_strings[READ_ONCE(cs->prs_err)];
3366 		if (err)
3367 			seq_printf(seq, "%s invalid (%s)\n", type, err);
3368 		else
3369 			seq_printf(seq, "%s invalid\n", type);
3370 		break;
3371 	}
3372 	return 0;
3373 }
3374 
3375 static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf,
3376 				     size_t nbytes, loff_t off)
3377 {
3378 	struct cpuset *cs = css_cs(of_css(of));
3379 	int val;
3380 	int retval = -ENODEV;
3381 
3382 	buf = strstrip(buf);
3383 
3384 	if (!strcmp(buf, "root"))
3385 		val = PRS_ROOT;
3386 	else if (!strcmp(buf, "member"))
3387 		val = PRS_MEMBER;
3388 	else if (!strcmp(buf, "isolated"))
3389 		val = PRS_ISOLATED;
3390 	else
3391 		return -EINVAL;
3392 
3393 	cpuset_full_lock();
3394 	if (is_cpuset_online(cs))
3395 		retval = update_prstate(cs, val);
3396 	cpuset_full_unlock();
3397 	return retval ?: nbytes;
3398 }
3399 
3400 /*
3401  * This is currently a minimal set for the default hierarchy. It can be
3402  * expanded later on by migrating more features and control files from v1.
3403  */
3404 static struct cftype dfl_files[] = {
3405 	{
3406 		.name = "cpus",
3407 		.seq_show = cpuset_common_seq_show,
3408 		.write = cpuset_write_resmask,
3409 		.max_write_len = (100U + 6 * NR_CPUS),
3410 		.private = FILE_CPULIST,
3411 		.flags = CFTYPE_NOT_ON_ROOT,
3412 	},
3413 
3414 	{
3415 		.name = "mems",
3416 		.seq_show = cpuset_common_seq_show,
3417 		.write = cpuset_write_resmask,
3418 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3419 		.private = FILE_MEMLIST,
3420 		.flags = CFTYPE_NOT_ON_ROOT,
3421 	},
3422 
3423 	{
3424 		.name = "cpus.effective",
3425 		.seq_show = cpuset_common_seq_show,
3426 		.private = FILE_EFFECTIVE_CPULIST,
3427 	},
3428 
3429 	{
3430 		.name = "mems.effective",
3431 		.seq_show = cpuset_common_seq_show,
3432 		.private = FILE_EFFECTIVE_MEMLIST,
3433 	},
3434 
3435 	{
3436 		.name = "cpus.partition",
3437 		.seq_show = cpuset_partition_show,
3438 		.write = cpuset_partition_write,
3439 		.private = FILE_PARTITION_ROOT,
3440 		.flags = CFTYPE_NOT_ON_ROOT,
3441 		.file_offset = offsetof(struct cpuset, partition_file),
3442 	},
3443 
3444 	{
3445 		.name = "cpus.exclusive",
3446 		.seq_show = cpuset_common_seq_show,
3447 		.write = cpuset_write_resmask,
3448 		.max_write_len = (100U + 6 * NR_CPUS),
3449 		.private = FILE_EXCLUSIVE_CPULIST,
3450 		.flags = CFTYPE_NOT_ON_ROOT,
3451 	},
3452 
3453 	{
3454 		.name = "cpus.exclusive.effective",
3455 		.seq_show = cpuset_common_seq_show,
3456 		.private = FILE_EFFECTIVE_XCPULIST,
3457 		.flags = CFTYPE_NOT_ON_ROOT,
3458 	},
3459 
3460 	{
3461 		.name = "cpus.subpartitions",
3462 		.seq_show = cpuset_common_seq_show,
3463 		.private = FILE_SUBPARTS_CPULIST,
3464 		.flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
3465 	},
3466 
3467 	{
3468 		.name = "cpus.isolated",
3469 		.seq_show = cpuset_common_seq_show,
3470 		.private = FILE_ISOLATED_CPULIST,
3471 		.flags = CFTYPE_ONLY_ON_ROOT,
3472 	},
3473 
3474 	{ }	/* terminate */
3475 };
3476 
3477 
3478 /**
3479  * cpuset_css_alloc - Allocate a cpuset css
3480  * @parent_css: Parent css of the control group that the new cpuset will be
3481  *              part of
3482  * Return: cpuset css on success, -ENOMEM on failure.
3483  *
3484  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3485  * top cpuset css otherwise.
3486  */
3487 static struct cgroup_subsys_state *
3488 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3489 {
3490 	struct cpuset *cs;
3491 
3492 	if (!parent_css)
3493 		return &top_cpuset.css;
3494 
3495 	cs = dup_or_alloc_cpuset(NULL);
3496 	if (!cs)
3497 		return ERR_PTR(-ENOMEM);
3498 
3499 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3500 	fmeter_init(&cs->fmeter);
3501 	cs->relax_domain_level = -1;
3502 	INIT_LIST_HEAD(&cs->remote_sibling);
3503 
3504 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3505 	if (cpuset_v2())
3506 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3507 
3508 	return &cs->css;
3509 }
3510 
3511 static int cpuset_css_online(struct cgroup_subsys_state *css)
3512 {
3513 	struct cpuset *cs = css_cs(css);
3514 	struct cpuset *parent = parent_cs(cs);
3515 	struct cpuset *tmp_cs;
3516 	struct cgroup_subsys_state *pos_css;
3517 
3518 	if (!parent)
3519 		return 0;
3520 
3521 	cpuset_full_lock();
3522 	if (is_spread_page(parent))
3523 		set_bit(CS_SPREAD_PAGE, &cs->flags);
3524 	if (is_spread_slab(parent))
3525 		set_bit(CS_SPREAD_SLAB, &cs->flags);
3526 	/*
3527 	 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
3528 	 */
3529 	if (cpuset_v2() && !is_sched_load_balance(parent))
3530 		clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3531 
3532 	cpuset_inc();
3533 
3534 	spin_lock_irq(&callback_lock);
3535 	if (is_in_v2_mode()) {
3536 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3537 		cs->effective_mems = parent->effective_mems;
3538 	}
3539 	spin_unlock_irq(&callback_lock);
3540 
3541 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3542 		goto out_unlock;
3543 
3544 	/*
3545 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3546 	 * set.  This flag handling is implemented in cgroup core for
3547 	 * historical reasons - the flag may be specified during mount.
3548 	 *
3549 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3550 	 * refuse to clone the configuration - thereby refusing the task to
3551 	 * be entered, and as a result refusing the sys_unshare() or
3552 	 * clone() which initiated it.  If this becomes a problem for some
3553 	 * users who wish to allow that scenario, then this could be
3554 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3555 	 * (and likewise for mems) to the new cgroup.
3556 	 */
3557 	rcu_read_lock();
3558 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3559 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3560 			rcu_read_unlock();
3561 			goto out_unlock;
3562 		}
3563 	}
3564 	rcu_read_unlock();
3565 
3566 	spin_lock_irq(&callback_lock);
3567 	cs->mems_allowed = parent->mems_allowed;
3568 	cs->effective_mems = parent->mems_allowed;
3569 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3570 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3571 	spin_unlock_irq(&callback_lock);
3572 out_unlock:
3573 	cpuset_full_unlock();
3574 	return 0;
3575 }
3576 
3577 /*
3578  * If the cpuset being removed has its flag 'sched_load_balance'
3579  * enabled, then simulate turning sched_load_balance off, which
3580  * will call rebuild_sched_domains_locked(). That is not needed
3581  * in the default hierarchy where only changes in partition
3582  * will cause repartitioning.
3583  */
3584 static void cpuset_css_offline(struct cgroup_subsys_state *css)
3585 {
3586 	struct cpuset *cs = css_cs(css);
3587 
3588 	cpuset_full_lock();
3589 	if (!cpuset_v2() && is_sched_load_balance(cs))
3590 		cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3591 
3592 	cpuset_dec();
3593 	cpuset_full_unlock();
3594 }
3595 
3596 /*
3597  * If a dying cpuset has the 'cpus.partition' enabled, turn it off by
3598  * changing it back to member to free its exclusive CPUs back to the pool to
3599  * be used by other online cpusets.
3600  */
3601 static void cpuset_css_killed(struct cgroup_subsys_state *css)
3602 {
3603 	struct cpuset *cs = css_cs(css);
3604 
3605 	cpuset_full_lock();
3606 	/* Reset valid partition back to member */
3607 	if (is_partition_valid(cs))
3608 		update_prstate(cs, PRS_MEMBER);
3609 	cpuset_full_unlock();
3610 }
3611 
3612 static void cpuset_css_free(struct cgroup_subsys_state *css)
3613 {
3614 	struct cpuset *cs = css_cs(css);
3615 
3616 	free_cpuset(cs);
3617 }
3618 
3619 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3620 {
3621 	mutex_lock(&cpuset_mutex);
3622 	spin_lock_irq(&callback_lock);
3623 
3624 	if (is_in_v2_mode()) {
3625 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3626 		cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
3627 		top_cpuset.mems_allowed = node_possible_map;
3628 	} else {
3629 		cpumask_copy(top_cpuset.cpus_allowed,
3630 			     top_cpuset.effective_cpus);
3631 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
3632 	}
3633 
3634 	spin_unlock_irq(&callback_lock);
3635 	mutex_unlock(&cpuset_mutex);
3636 }
3637 
3638 /*
3639  * In case the child is cloned into a cpuset different from its parent,
3640  * additional checks are done to see if the move is allowed.
3641  */
3642 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
3643 {
3644 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3645 	bool same_cs;
3646 	int ret;
3647 
3648 	rcu_read_lock();
3649 	same_cs = (cs == task_cs(current));
3650 	rcu_read_unlock();
3651 
3652 	if (same_cs)
3653 		return 0;
3654 
3655 	lockdep_assert_held(&cgroup_mutex);
3656 	mutex_lock(&cpuset_mutex);
3657 
3658 	/* Check to see if task is allowed in the cpuset */
3659 	ret = cpuset_can_attach_check(cs);
3660 	if (ret)
3661 		goto out_unlock;
3662 
3663 	ret = task_can_attach(task);
3664 	if (ret)
3665 		goto out_unlock;
3666 
3667 	ret = security_task_setscheduler(task);
3668 	if (ret)
3669 		goto out_unlock;
3670 
3671 	/*
3672 	 * Mark attach is in progress.  This makes validate_change() fail
3673 	 * changes which zero cpus/mems_allowed.
3674 	 */
3675 	cs->attach_in_progress++;
3676 out_unlock:
3677 	mutex_unlock(&cpuset_mutex);
3678 	return ret;
3679 }
3680 
3681 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
3682 {
3683 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
3684 	bool same_cs;
3685 
3686 	rcu_read_lock();
3687 	same_cs = (cs == task_cs(current));
3688 	rcu_read_unlock();
3689 
3690 	if (same_cs)
3691 		return;
3692 
3693 	dec_attach_in_progress(cs);
3694 }
3695 
3696 /*
3697  * Make sure the new task conform to the current state of its parent,
3698  * which could have been changed by cpuset just after it inherits the
3699  * state from the parent and before it sits on the cgroup's task list.
3700  */
3701 static void cpuset_fork(struct task_struct *task)
3702 {
3703 	struct cpuset *cs;
3704 	bool same_cs;
3705 
3706 	rcu_read_lock();
3707 	cs = task_cs(task);
3708 	same_cs = (cs == task_cs(current));
3709 	rcu_read_unlock();
3710 
3711 	if (same_cs) {
3712 		if (cs == &top_cpuset)
3713 			return;
3714 
3715 		set_cpus_allowed_ptr(task, current->cpus_ptr);
3716 		task->mems_allowed = current->mems_allowed;
3717 		return;
3718 	}
3719 
3720 	/* CLONE_INTO_CGROUP */
3721 	mutex_lock(&cpuset_mutex);
3722 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3723 	cpuset_attach_task(cs, task);
3724 
3725 	dec_attach_in_progress_locked(cs);
3726 	mutex_unlock(&cpuset_mutex);
3727 }
3728 
3729 struct cgroup_subsys cpuset_cgrp_subsys = {
3730 	.css_alloc	= cpuset_css_alloc,
3731 	.css_online	= cpuset_css_online,
3732 	.css_offline	= cpuset_css_offline,
3733 	.css_killed	= cpuset_css_killed,
3734 	.css_free	= cpuset_css_free,
3735 	.can_attach	= cpuset_can_attach,
3736 	.cancel_attach	= cpuset_cancel_attach,
3737 	.attach		= cpuset_attach,
3738 	.post_attach	= cpuset_post_attach,
3739 	.bind		= cpuset_bind,
3740 	.can_fork	= cpuset_can_fork,
3741 	.cancel_fork	= cpuset_cancel_fork,
3742 	.fork		= cpuset_fork,
3743 #ifdef CONFIG_CPUSETS_V1
3744 	.legacy_cftypes	= cpuset1_files,
3745 #endif
3746 	.dfl_cftypes	= dfl_files,
3747 	.early_init	= true,
3748 	.threaded	= true,
3749 };
3750 
3751 /**
3752  * cpuset_init - initialize cpusets at system boot
3753  *
3754  * Description: Initialize top_cpuset
3755  **/
3756 
3757 int __init cpuset_init(void)
3758 {
3759 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3760 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3761 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
3762 	BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
3763 	BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
3764 	BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
3765 
3766 	cpumask_setall(top_cpuset.cpus_allowed);
3767 	nodes_setall(top_cpuset.mems_allowed);
3768 	cpumask_setall(top_cpuset.effective_cpus);
3769 	cpumask_setall(top_cpuset.effective_xcpus);
3770 	cpumask_setall(top_cpuset.exclusive_cpus);
3771 	nodes_setall(top_cpuset.effective_mems);
3772 
3773 	fmeter_init(&top_cpuset.fmeter);
3774 	INIT_LIST_HEAD(&remote_children);
3775 
3776 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3777 
3778 	have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN);
3779 	if (have_boot_isolcpus) {
3780 		BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL));
3781 		cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN));
3782 		cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus);
3783 	}
3784 
3785 	return 0;
3786 }
3787 
3788 static void
3789 hotplug_update_tasks(struct cpuset *cs,
3790 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3791 		     bool cpus_updated, bool mems_updated)
3792 {
3793 	/* A partition root is allowed to have empty effective cpus */
3794 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3795 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3796 	if (nodes_empty(*new_mems))
3797 		*new_mems = parent_cs(cs)->effective_mems;
3798 
3799 	spin_lock_irq(&callback_lock);
3800 	cpumask_copy(cs->effective_cpus, new_cpus);
3801 	cs->effective_mems = *new_mems;
3802 	spin_unlock_irq(&callback_lock);
3803 
3804 	if (cpus_updated)
3805 		cpuset_update_tasks_cpumask(cs, new_cpus);
3806 	if (mems_updated)
3807 		cpuset_update_tasks_nodemask(cs);
3808 }
3809 
3810 void cpuset_force_rebuild(void)
3811 {
3812 	force_sd_rebuild = true;
3813 }
3814 
3815 /**
3816  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3817  * @cs: cpuset in interest
3818  * @tmp: the tmpmasks structure pointer
3819  *
3820  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3821  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3822  * all its tasks are moved to the nearest ancestor with both resources.
3823  */
3824 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3825 {
3826 	static cpumask_t new_cpus;
3827 	static nodemask_t new_mems;
3828 	bool cpus_updated;
3829 	bool mems_updated;
3830 	bool remote;
3831 	int partcmd = -1;
3832 	struct cpuset *parent;
3833 retry:
3834 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3835 
3836 	mutex_lock(&cpuset_mutex);
3837 
3838 	/*
3839 	 * We have raced with task attaching. We wait until attaching
3840 	 * is finished, so we won't attach a task to an empty cpuset.
3841 	 */
3842 	if (cs->attach_in_progress) {
3843 		mutex_unlock(&cpuset_mutex);
3844 		goto retry;
3845 	}
3846 
3847 	parent = parent_cs(cs);
3848 	compute_effective_cpumask(&new_cpus, cs, parent);
3849 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3850 
3851 	if (!tmp || !cs->partition_root_state)
3852 		goto update_tasks;
3853 
3854 	/*
3855 	 * Compute effective_cpus for valid partition root, may invalidate
3856 	 * child partition roots if necessary.
3857 	 */
3858 	remote = is_remote_partition(cs);
3859 	if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
3860 		compute_partition_effective_cpumask(cs, &new_cpus);
3861 
3862 	if (remote && cpumask_empty(&new_cpus) &&
3863 	    partition_is_populated(cs, NULL)) {
3864 		cs->prs_err = PERR_HOTPLUG;
3865 		remote_partition_disable(cs, tmp);
3866 		compute_effective_cpumask(&new_cpus, cs, parent);
3867 		remote = false;
3868 	}
3869 
3870 	/*
3871 	 * Force the partition to become invalid if either one of
3872 	 * the following conditions hold:
3873 	 * 1) empty effective cpus but not valid empty partition.
3874 	 * 2) parent is invalid or doesn't grant any cpus to child
3875 	 *    partitions.
3876 	 */
3877 	if (is_local_partition(cs) && (!is_partition_valid(parent) ||
3878 				tasks_nocpu_error(parent, cs, &new_cpus)))
3879 		partcmd = partcmd_invalidate;
3880 	/*
3881 	 * On the other hand, an invalid partition root may be transitioned
3882 	 * back to a regular one with a non-empty effective xcpus.
3883 	 */
3884 	else if (is_partition_valid(parent) && is_partition_invalid(cs) &&
3885 		 !cpumask_empty(cs->effective_xcpus))
3886 		partcmd = partcmd_update;
3887 
3888 	if (partcmd >= 0) {
3889 		update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
3890 		if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
3891 			compute_partition_effective_cpumask(cs, &new_cpus);
3892 			cpuset_force_rebuild();
3893 		}
3894 	}
3895 
3896 update_tasks:
3897 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3898 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3899 	if (!cpus_updated && !mems_updated)
3900 		goto unlock;	/* Hotplug doesn't affect this cpuset */
3901 
3902 	if (mems_updated)
3903 		check_insane_mems_config(&new_mems);
3904 
3905 	if (is_in_v2_mode())
3906 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3907 				     cpus_updated, mems_updated);
3908 	else
3909 		cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems,
3910 					    cpus_updated, mems_updated);
3911 
3912 unlock:
3913 	mutex_unlock(&cpuset_mutex);
3914 }
3915 
3916 /**
3917  * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset
3918  *
3919  * This function is called after either CPU or memory configuration has
3920  * changed and updates cpuset accordingly.  The top_cpuset is always
3921  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3922  * order to make cpusets transparent (of no affect) on systems that are
3923  * actively using CPU hotplug but making no active use of cpusets.
3924  *
3925  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3926  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3927  * all descendants.
3928  *
3929  * Note that CPU offlining during suspend is ignored.  We don't modify
3930  * cpusets across suspend/resume cycles at all.
3931  *
3932  * CPU / memory hotplug is handled synchronously.
3933  */
3934 static void cpuset_handle_hotplug(void)
3935 {
3936 	static cpumask_t new_cpus;
3937 	static nodemask_t new_mems;
3938 	bool cpus_updated, mems_updated;
3939 	bool on_dfl = is_in_v2_mode();
3940 	struct tmpmasks tmp, *ptmp = NULL;
3941 
3942 	if (on_dfl && !alloc_tmpmasks(&tmp))
3943 		ptmp = &tmp;
3944 
3945 	lockdep_assert_cpus_held();
3946 	mutex_lock(&cpuset_mutex);
3947 
3948 	/* fetch the available cpus/mems and find out which changed how */
3949 	cpumask_copy(&new_cpus, cpu_active_mask);
3950 	new_mems = node_states[N_MEMORY];
3951 
3952 	/*
3953 	 * If subpartitions_cpus is populated, it is likely that the check
3954 	 * below will produce a false positive on cpus_updated when the cpu
3955 	 * list isn't changed. It is extra work, but it is better to be safe.
3956 	 */
3957 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
3958 		       !cpumask_empty(subpartitions_cpus);
3959 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3960 
3961 	/* For v1, synchronize cpus_allowed to cpu_active_mask */
3962 	if (cpus_updated) {
3963 		cpuset_force_rebuild();
3964 		spin_lock_irq(&callback_lock);
3965 		if (!on_dfl)
3966 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3967 		/*
3968 		 * Make sure that CPUs allocated to child partitions
3969 		 * do not show up in effective_cpus. If no CPU is left,
3970 		 * we clear the subpartitions_cpus & let the child partitions
3971 		 * fight for the CPUs again.
3972 		 */
3973 		if (!cpumask_empty(subpartitions_cpus)) {
3974 			if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
3975 				top_cpuset.nr_subparts = 0;
3976 				cpumask_clear(subpartitions_cpus);
3977 			} else {
3978 				cpumask_andnot(&new_cpus, &new_cpus,
3979 					       subpartitions_cpus);
3980 			}
3981 		}
3982 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3983 		spin_unlock_irq(&callback_lock);
3984 		/* we don't mess with cpumasks of tasks in top_cpuset */
3985 	}
3986 
3987 	/* synchronize mems_allowed to N_MEMORY */
3988 	if (mems_updated) {
3989 		spin_lock_irq(&callback_lock);
3990 		if (!on_dfl)
3991 			top_cpuset.mems_allowed = new_mems;
3992 		top_cpuset.effective_mems = new_mems;
3993 		spin_unlock_irq(&callback_lock);
3994 		cpuset_update_tasks_nodemask(&top_cpuset);
3995 	}
3996 
3997 	mutex_unlock(&cpuset_mutex);
3998 
3999 	/* if cpus or mems changed, we need to propagate to descendants */
4000 	if (cpus_updated || mems_updated) {
4001 		struct cpuset *cs;
4002 		struct cgroup_subsys_state *pos_css;
4003 
4004 		rcu_read_lock();
4005 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
4006 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
4007 				continue;
4008 			rcu_read_unlock();
4009 
4010 			cpuset_hotplug_update_tasks(cs, ptmp);
4011 
4012 			rcu_read_lock();
4013 			css_put(&cs->css);
4014 		}
4015 		rcu_read_unlock();
4016 	}
4017 
4018 	/* rebuild sched domains if necessary */
4019 	if (force_sd_rebuild)
4020 		rebuild_sched_domains_cpuslocked();
4021 
4022 	free_tmpmasks(ptmp);
4023 }
4024 
4025 void cpuset_update_active_cpus(void)
4026 {
4027 	/*
4028 	 * We're inside cpu hotplug critical region which usually nests
4029 	 * inside cgroup synchronization.  Bounce actual hotplug processing
4030 	 * to a work item to avoid reverse locking order.
4031 	 */
4032 	cpuset_handle_hotplug();
4033 }
4034 
4035 /*
4036  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
4037  * Call this routine anytime after node_states[N_MEMORY] changes.
4038  * See cpuset_update_active_cpus() for CPU hotplug handling.
4039  */
4040 static int cpuset_track_online_nodes(struct notifier_block *self,
4041 				unsigned long action, void *arg)
4042 {
4043 	cpuset_handle_hotplug();
4044 	return NOTIFY_OK;
4045 }
4046 
4047 /**
4048  * cpuset_init_smp - initialize cpus_allowed
4049  *
4050  * Description: Finish top cpuset after cpu, node maps are initialized
4051  */
4052 void __init cpuset_init_smp(void)
4053 {
4054 	/*
4055 	 * cpus_allowd/mems_allowed set to v2 values in the initial
4056 	 * cpuset_bind() call will be reset to v1 values in another
4057 	 * cpuset_bind() call when v1 cpuset is mounted.
4058 	 */
4059 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4060 
4061 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
4062 	top_cpuset.effective_mems = node_states[N_MEMORY];
4063 
4064 	hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
4065 
4066 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
4067 	BUG_ON(!cpuset_migrate_mm_wq);
4068 }
4069 
4070 /**
4071  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
4072  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4073  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4074  *
4075  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
4076  * attached to the specified @tsk.  Guaranteed to return some non-empty
4077  * subset of cpu_active_mask, even if this means going outside the
4078  * tasks cpuset, except when the task is in the top cpuset.
4079  **/
4080 
4081 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
4082 {
4083 	unsigned long flags;
4084 	struct cpuset *cs;
4085 
4086 	spin_lock_irqsave(&callback_lock, flags);
4087 	rcu_read_lock();
4088 
4089 	cs = task_cs(tsk);
4090 	if (cs != &top_cpuset)
4091 		guarantee_active_cpus(tsk, pmask);
4092 	/*
4093 	 * Tasks in the top cpuset won't get update to their cpumasks
4094 	 * when a hotplug online/offline event happens. So we include all
4095 	 * offline cpus in the allowed cpu list.
4096 	 */
4097 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
4098 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4099 
4100 		/*
4101 		 * We first exclude cpus allocated to partitions. If there is no
4102 		 * allowable online cpu left, we fall back to all possible cpus.
4103 		 */
4104 		cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
4105 		if (!cpumask_intersects(pmask, cpu_active_mask))
4106 			cpumask_copy(pmask, possible_mask);
4107 	}
4108 
4109 	rcu_read_unlock();
4110 	spin_unlock_irqrestore(&callback_lock, flags);
4111 }
4112 
4113 /**
4114  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
4115  * @tsk: pointer to task_struct with which the scheduler is struggling
4116  *
4117  * Description: In the case that the scheduler cannot find an allowed cpu in
4118  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
4119  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
4120  * which will not contain a sane cpumask during cases such as cpu hotplugging.
4121  * This is the absolute last resort for the scheduler and it is only used if
4122  * _every_ other avenue has been traveled.
4123  *
4124  * Returns true if the affinity of @tsk was changed, false otherwise.
4125  **/
4126 
4127 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4128 {
4129 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4130 	const struct cpumask *cs_mask;
4131 	bool changed = false;
4132 
4133 	rcu_read_lock();
4134 	cs_mask = task_cs(tsk)->cpus_allowed;
4135 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4136 		do_set_cpus_allowed(tsk, cs_mask);
4137 		changed = true;
4138 	}
4139 	rcu_read_unlock();
4140 
4141 	/*
4142 	 * We own tsk->cpus_allowed, nobody can change it under us.
4143 	 *
4144 	 * But we used cs && cs->cpus_allowed lockless and thus can
4145 	 * race with cgroup_attach_task() or update_cpumask() and get
4146 	 * the wrong tsk->cpus_allowed. However, both cases imply the
4147 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4148 	 * which takes task_rq_lock().
4149 	 *
4150 	 * If we are called after it dropped the lock we must see all
4151 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4152 	 * set any mask even if it is not right from task_cs() pov,
4153 	 * the pending set_cpus_allowed_ptr() will fix things.
4154 	 *
4155 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4156 	 * if required.
4157 	 */
4158 	return changed;
4159 }
4160 
4161 void __init cpuset_init_current_mems_allowed(void)
4162 {
4163 	nodes_setall(current->mems_allowed);
4164 }
4165 
4166 /**
4167  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4168  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4169  *
4170  * Description: Returns the nodemask_t mems_allowed of the cpuset
4171  * attached to the specified @tsk.  Guaranteed to return some non-empty
4172  * subset of node_states[N_MEMORY], even if this means going outside the
4173  * tasks cpuset.
4174  **/
4175 
4176 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4177 {
4178 	nodemask_t mask;
4179 	unsigned long flags;
4180 
4181 	spin_lock_irqsave(&callback_lock, flags);
4182 	rcu_read_lock();
4183 	guarantee_online_mems(task_cs(tsk), &mask);
4184 	rcu_read_unlock();
4185 	spin_unlock_irqrestore(&callback_lock, flags);
4186 
4187 	return mask;
4188 }
4189 
4190 /**
4191  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4192  * @nodemask: the nodemask to be checked
4193  *
4194  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4195  */
4196 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4197 {
4198 	return nodes_intersects(*nodemask, current->mems_allowed);
4199 }
4200 
4201 /*
4202  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4203  * mem_hardwall ancestor to the specified cpuset.  Call holding
4204  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
4205  * (an unusual configuration), then returns the root cpuset.
4206  */
4207 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4208 {
4209 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4210 		cs = parent_cs(cs);
4211 	return cs;
4212 }
4213 
4214 /*
4215  * cpuset_current_node_allowed - Can current task allocate on a memory node?
4216  * @node: is this an allowed node?
4217  * @gfp_mask: memory allocation flags
4218  *
4219  * If we're in interrupt, yes, we can always allocate.  If @node is set in
4220  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
4221  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4222  * yes.  If current has access to memory reserves as an oom victim, yes.
4223  * Otherwise, no.
4224  *
4225  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4226  * and do not allow allocations outside the current tasks cpuset
4227  * unless the task has been OOM killed.
4228  * GFP_KERNEL allocations are not so marked, so can escape to the
4229  * nearest enclosing hardwalled ancestor cpuset.
4230  *
4231  * Scanning up parent cpusets requires callback_lock.  The
4232  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4233  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4234  * current tasks mems_allowed came up empty on the first pass over
4235  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
4236  * cpuset are short of memory, might require taking the callback_lock.
4237  *
4238  * The first call here from mm/page_alloc:get_page_from_freelist()
4239  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4240  * so no allocation on a node outside the cpuset is allowed (unless
4241  * in interrupt, of course).
4242  *
4243  * The second pass through get_page_from_freelist() doesn't even call
4244  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
4245  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4246  * in alloc_flags.  That logic and the checks below have the combined
4247  * affect that:
4248  *	in_interrupt - any node ok (current task context irrelevant)
4249  *	GFP_ATOMIC   - any node ok
4250  *	tsk_is_oom_victim   - any node ok
4251  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
4252  *	GFP_USER     - only nodes in current tasks mems allowed ok.
4253  */
4254 bool cpuset_current_node_allowed(int node, gfp_t gfp_mask)
4255 {
4256 	struct cpuset *cs;		/* current cpuset ancestors */
4257 	bool allowed;			/* is allocation in zone z allowed? */
4258 	unsigned long flags;
4259 
4260 	if (in_interrupt())
4261 		return true;
4262 	if (node_isset(node, current->mems_allowed))
4263 		return true;
4264 	/*
4265 	 * Allow tasks that have access to memory reserves because they have
4266 	 * been OOM killed to get memory anywhere.
4267 	 */
4268 	if (unlikely(tsk_is_oom_victim(current)))
4269 		return true;
4270 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4271 		return false;
4272 
4273 	if (current->flags & PF_EXITING) /* Let dying task have memory */
4274 		return true;
4275 
4276 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4277 	spin_lock_irqsave(&callback_lock, flags);
4278 
4279 	rcu_read_lock();
4280 	cs = nearest_hardwall_ancestor(task_cs(current));
4281 	allowed = node_isset(node, cs->mems_allowed);
4282 	rcu_read_unlock();
4283 
4284 	spin_unlock_irqrestore(&callback_lock, flags);
4285 	return allowed;
4286 }
4287 
4288 bool cpuset_node_allowed(struct cgroup *cgroup, int nid)
4289 {
4290 	struct cgroup_subsys_state *css;
4291 	struct cpuset *cs;
4292 	bool allowed;
4293 
4294 	/*
4295 	 * In v1, mem_cgroup and cpuset are unlikely in the same hierarchy
4296 	 * and mems_allowed is likely to be empty even if we could get to it,
4297 	 * so return true to avoid taking a global lock on the empty check.
4298 	 */
4299 	if (!cpuset_v2())
4300 		return true;
4301 
4302 	css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys);
4303 	if (!css)
4304 		return true;
4305 
4306 	/*
4307 	 * Normally, accessing effective_mems would require the cpuset_mutex
4308 	 * or callback_lock - but node_isset is atomic and the reference
4309 	 * taken via cgroup_get_e_css is sufficient to protect css.
4310 	 *
4311 	 * Since this interface is intended for use by migration paths, we
4312 	 * relax locking here to avoid taking global locks - while accepting
4313 	 * there may be rare scenarios where the result may be innaccurate.
4314 	 *
4315 	 * Reclaim and migration are subject to these same race conditions, and
4316 	 * cannot make strong isolation guarantees, so this is acceptable.
4317 	 */
4318 	cs = container_of(css, struct cpuset, css);
4319 	allowed = node_isset(nid, cs->effective_mems);
4320 	css_put(css);
4321 	return allowed;
4322 }
4323 
4324 /**
4325  * cpuset_spread_node() - On which node to begin search for a page
4326  * @rotor: round robin rotor
4327  *
4328  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4329  * tasks in a cpuset with is_spread_page or is_spread_slab set),
4330  * and if the memory allocation used cpuset_mem_spread_node()
4331  * to determine on which node to start looking, as it will for
4332  * certain page cache or slab cache pages such as used for file
4333  * system buffers and inode caches, then instead of starting on the
4334  * local node to look for a free page, rather spread the starting
4335  * node around the tasks mems_allowed nodes.
4336  *
4337  * We don't have to worry about the returned node being offline
4338  * because "it can't happen", and even if it did, it would be ok.
4339  *
4340  * The routines calling guarantee_online_mems() are careful to
4341  * only set nodes in task->mems_allowed that are online.  So it
4342  * should not be possible for the following code to return an
4343  * offline node.  But if it did, that would be ok, as this routine
4344  * is not returning the node where the allocation must be, only
4345  * the node where the search should start.  The zonelist passed to
4346  * __alloc_pages() will include all nodes.  If the slab allocator
4347  * is passed an offline node, it will fall back to the local node.
4348  * See kmem_cache_alloc_node().
4349  */
4350 static int cpuset_spread_node(int *rotor)
4351 {
4352 	return *rotor = next_node_in(*rotor, current->mems_allowed);
4353 }
4354 
4355 /**
4356  * cpuset_mem_spread_node() - On which node to begin search for a file page
4357  */
4358 int cpuset_mem_spread_node(void)
4359 {
4360 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4361 		current->cpuset_mem_spread_rotor =
4362 			node_random(&current->mems_allowed);
4363 
4364 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4365 }
4366 
4367 /**
4368  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4369  * @tsk1: pointer to task_struct of some task.
4370  * @tsk2: pointer to task_struct of some other task.
4371  *
4372  * Description: Return true if @tsk1's mems_allowed intersects the
4373  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
4374  * one of the task's memory usage might impact the memory available
4375  * to the other.
4376  **/
4377 
4378 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4379 				   const struct task_struct *tsk2)
4380 {
4381 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4382 }
4383 
4384 /**
4385  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4386  *
4387  * Description: Prints current's name, cpuset name, and cached copy of its
4388  * mems_allowed to the kernel log.
4389  */
4390 void cpuset_print_current_mems_allowed(void)
4391 {
4392 	struct cgroup *cgrp;
4393 
4394 	rcu_read_lock();
4395 
4396 	cgrp = task_cs(current)->css.cgroup;
4397 	pr_cont(",cpuset=");
4398 	pr_cont_cgroup_name(cgrp);
4399 	pr_cont(",mems_allowed=%*pbl",
4400 		nodemask_pr_args(&current->mems_allowed));
4401 
4402 	rcu_read_unlock();
4403 }
4404 
4405 /* Display task mems_allowed in /proc/<pid>/status file. */
4406 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4407 {
4408 	seq_printf(m, "Mems_allowed:\t%*pb\n",
4409 		   nodemask_pr_args(&task->mems_allowed));
4410 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4411 		   nodemask_pr_args(&task->mems_allowed));
4412 }
4413