1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * kernel/cpuset.c 4 * 5 * Processor and Memory placement constraints for sets of tasks. 6 * 7 * Copyright (C) 2003 BULL SA. 8 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 9 * Copyright (C) 2006 Google, Inc 10 * 11 * Portions derived from Patrick Mochel's sysfs code. 12 * sysfs is Copyright (c) 2001-3 Patrick Mochel 13 * 14 * 2003-10-10 Written by Simon Derr. 15 * 2003-10-22 Updates by Stephen Hemminger. 16 * 2004 May-July Rework by Paul Jackson. 17 * 2006 Rework by Paul Menage to use generic cgroups 18 * 2008 Rework of the scheduler domains and CPU hotplug handling 19 * by Max Krasnyansky 20 */ 21 #include "cpuset-internal.h" 22 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/kernel.h> 26 #include <linux/mempolicy.h> 27 #include <linux/mm.h> 28 #include <linux/memory.h> 29 #include <linux/rcupdate.h> 30 #include <linux/sched.h> 31 #include <linux/sched/deadline.h> 32 #include <linux/sched/mm.h> 33 #include <linux/sched/task.h> 34 #include <linux/security.h> 35 #include <linux/oom.h> 36 #include <linux/sched/isolation.h> 37 #include <linux/wait.h> 38 #include <linux/workqueue.h> 39 #include <linux/task_work.h> 40 41 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 42 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 43 44 /* 45 * There could be abnormal cpuset configurations for cpu or memory 46 * node binding, add this key to provide a quick low-cost judgment 47 * of the situation. 48 */ 49 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 50 51 static const char * const perr_strings[] = { 52 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive", 53 [PERR_INVPARENT] = "Parent is an invalid partition root", 54 [PERR_NOTPART] = "Parent is not a partition root", 55 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", 56 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", 57 [PERR_HOTPLUG] = "No cpu available due to hotplug", 58 [PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty", 59 [PERR_HKEEPING] = "partition config conflicts with housekeeping setup", 60 [PERR_ACCESS] = "Enable partition not permitted", 61 [PERR_REMOTE] = "Have remote partition underneath", 62 }; 63 64 /* 65 * For local partitions, update to subpartitions_cpus & isolated_cpus is done 66 * in update_parent_effective_cpumask(). For remote partitions, it is done in 67 * the remote_partition_*() and remote_cpus_update() helpers. 68 */ 69 /* 70 * Exclusive CPUs distributed out to local or remote sub-partitions of 71 * top_cpuset 72 */ 73 static cpumask_var_t subpartitions_cpus; 74 75 /* 76 * Exclusive CPUs in isolated partitions 77 */ 78 static cpumask_var_t isolated_cpus; 79 80 /* 81 * isolated_cpus updating flag (protected by cpuset_mutex) 82 * Set if isolated_cpus is going to be updated in the current 83 * cpuset_mutex crtical section. 84 */ 85 static bool isolated_cpus_updating; 86 87 /* 88 * A flag to force sched domain rebuild at the end of an operation. 89 * It can be set in 90 * - update_partition_sd_lb() 91 * - update_cpumasks_hier() 92 * - cpuset_update_flag() 93 * - cpuset_hotplug_update_tasks() 94 * - cpuset_handle_hotplug() 95 * 96 * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock. 97 * 98 * Note that update_relax_domain_level() in cpuset-v1.c can still call 99 * rebuild_sched_domains_locked() directly without using this flag. 100 */ 101 static bool force_sd_rebuild; 102 103 /* 104 * Partition root states: 105 * 106 * 0 - member (not a partition root) 107 * 1 - partition root 108 * 2 - partition root without load balancing (isolated) 109 * -1 - invalid partition root 110 * -2 - invalid isolated partition root 111 * 112 * There are 2 types of partitions - local or remote. Local partitions are 113 * those whose parents are partition root themselves. Setting of 114 * cpuset.cpus.exclusive are optional in setting up local partitions. 115 * Remote partitions are those whose parents are not partition roots. Passing 116 * down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor 117 * nodes are mandatory in creating a remote partition. 118 * 119 * For simplicity, a local partition can be created under a local or remote 120 * partition but a remote partition cannot have any partition root in its 121 * ancestor chain except the cgroup root. 122 * 123 * A valid partition can be formed by setting exclusive_cpus or cpus_allowed 124 * if exclusive_cpus is not set. In the case of partition with empty 125 * exclusive_cpus, all the conflicting exclusive CPUs specified in the 126 * following cpumasks of sibling cpusets will be removed from its 127 * cpus_allowed in determining its effective_xcpus. 128 * - effective_xcpus 129 * - exclusive_cpus 130 * 131 * The "cpuset.cpus.exclusive" control file should be used for setting up 132 * partition if the users want to get as many CPUs as possible. 133 */ 134 #define PRS_MEMBER 0 135 #define PRS_ROOT 1 136 #define PRS_ISOLATED 2 137 #define PRS_INVALID_ROOT -1 138 #define PRS_INVALID_ISOLATED -2 139 140 /* 141 * Temporary cpumasks for working with partitions that are passed among 142 * functions to avoid memory allocation in inner functions. 143 */ 144 struct tmpmasks { 145 cpumask_var_t addmask, delmask; /* For partition root */ 146 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 147 }; 148 149 void inc_dl_tasks_cs(struct task_struct *p) 150 { 151 struct cpuset *cs = task_cs(p); 152 153 cs->nr_deadline_tasks++; 154 } 155 156 void dec_dl_tasks_cs(struct task_struct *p) 157 { 158 struct cpuset *cs = task_cs(p); 159 160 cs->nr_deadline_tasks--; 161 } 162 163 static inline bool is_partition_valid(const struct cpuset *cs) 164 { 165 return cs->partition_root_state > 0; 166 } 167 168 static inline bool is_partition_invalid(const struct cpuset *cs) 169 { 170 return cs->partition_root_state < 0; 171 } 172 173 static inline bool cs_is_member(const struct cpuset *cs) 174 { 175 return cs->partition_root_state == PRS_MEMBER; 176 } 177 178 /* 179 * Callers should hold callback_lock to modify partition_root_state. 180 */ 181 static inline void make_partition_invalid(struct cpuset *cs) 182 { 183 if (cs->partition_root_state > 0) 184 cs->partition_root_state = -cs->partition_root_state; 185 } 186 187 /* 188 * Send notification event of whenever partition_root_state changes. 189 */ 190 static inline void notify_partition_change(struct cpuset *cs, int old_prs) 191 { 192 if (old_prs == cs->partition_root_state) 193 return; 194 cgroup_file_notify(&cs->partition_file); 195 196 /* Reset prs_err if not invalid */ 197 if (is_partition_valid(cs)) 198 WRITE_ONCE(cs->prs_err, PERR_NONE); 199 } 200 201 /* 202 * The top_cpuset is always synchronized to cpu_active_mask and we should avoid 203 * using cpu_online_mask as much as possible. An active CPU is always an online 204 * CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ 205 * during hotplug operations. A CPU is marked active at the last stage of CPU 206 * bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code 207 * will be called to update the sched domains so that the scheduler can move 208 * a normal task to a newly active CPU or remove tasks away from a newly 209 * inactivated CPU. The online bit is set much earlier in the CPU bringup 210 * process and cleared much later in CPU teardown. 211 * 212 * If cpu_online_mask is used while a hotunplug operation is happening in 213 * parallel, we may leave an offline CPU in cpu_allowed or some other masks. 214 */ 215 struct cpuset top_cpuset = { 216 .flags = BIT(CS_CPU_EXCLUSIVE) | 217 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE), 218 .partition_root_state = PRS_ROOT, 219 }; 220 221 /* 222 * There are two global locks guarding cpuset structures - cpuset_mutex and 223 * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel 224 * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset 225 * structures. Note that cpuset_mutex needs to be a mutex as it is used in 226 * paths that rely on priority inheritance (e.g. scheduler - on RT) for 227 * correctness. 228 * 229 * A task must hold both locks to modify cpusets. If a task holds 230 * cpuset_mutex, it blocks others, ensuring that it is the only task able to 231 * also acquire callback_lock and be able to modify cpusets. It can perform 232 * various checks on the cpuset structure first, knowing nothing will change. 233 * It can also allocate memory while just holding cpuset_mutex. While it is 234 * performing these checks, various callback routines can briefly acquire 235 * callback_lock to query cpusets. Once it is ready to make the changes, it 236 * takes callback_lock, blocking everyone else. 237 * 238 * Calls to the kernel memory allocator can not be made while holding 239 * callback_lock, as that would risk double tripping on callback_lock 240 * from one of the callbacks into the cpuset code from within 241 * __alloc_pages(). 242 * 243 * If a task is only holding callback_lock, then it has read-only 244 * access to cpusets. 245 * 246 * Now, the task_struct fields mems_allowed and mempolicy may be changed 247 * by other task, we use alloc_lock in the task_struct fields to protect 248 * them. 249 * 250 * The cpuset_common_seq_show() handlers only hold callback_lock across 251 * small pieces of code, such as when reading out possibly multi-word 252 * cpumasks and nodemasks. 253 */ 254 255 static DEFINE_MUTEX(cpuset_mutex); 256 257 /** 258 * cpuset_lock - Acquire the global cpuset mutex 259 * 260 * This locks the global cpuset mutex to prevent modifications to cpuset 261 * hierarchy and configurations. This helper is not enough to make modification. 262 */ 263 void cpuset_lock(void) 264 { 265 mutex_lock(&cpuset_mutex); 266 } 267 268 void cpuset_unlock(void) 269 { 270 mutex_unlock(&cpuset_mutex); 271 } 272 273 void lockdep_assert_cpuset_lock_held(void) 274 { 275 lockdep_assert_held(&cpuset_mutex); 276 } 277 278 /** 279 * cpuset_full_lock - Acquire full protection for cpuset modification 280 * 281 * Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex 282 * to safely modify cpuset data. 283 */ 284 void cpuset_full_lock(void) 285 { 286 cpus_read_lock(); 287 mutex_lock(&cpuset_mutex); 288 } 289 290 void cpuset_full_unlock(void) 291 { 292 mutex_unlock(&cpuset_mutex); 293 cpus_read_unlock(); 294 } 295 296 #ifdef CONFIG_LOCKDEP 297 bool lockdep_is_cpuset_held(void) 298 { 299 return lockdep_is_held(&cpuset_mutex); 300 } 301 #endif 302 303 static DEFINE_SPINLOCK(callback_lock); 304 305 void cpuset_callback_lock_irq(void) 306 { 307 spin_lock_irq(&callback_lock); 308 } 309 310 void cpuset_callback_unlock_irq(void) 311 { 312 spin_unlock_irq(&callback_lock); 313 } 314 315 static struct workqueue_struct *cpuset_migrate_mm_wq; 316 317 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 318 319 static inline void check_insane_mems_config(nodemask_t *nodes) 320 { 321 if (!cpusets_insane_config() && 322 movable_only_nodes(nodes)) { 323 static_branch_enable_cpuslocked(&cpusets_insane_config_key); 324 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 325 "Cpuset allocations might fail even with a lot of memory available.\n", 326 nodemask_pr_args(nodes)); 327 } 328 } 329 330 /* 331 * decrease cs->attach_in_progress. 332 * wake_up cpuset_attach_wq if cs->attach_in_progress==0. 333 */ 334 static inline void dec_attach_in_progress_locked(struct cpuset *cs) 335 { 336 lockdep_assert_cpuset_lock_held(); 337 338 cs->attach_in_progress--; 339 if (!cs->attach_in_progress) 340 wake_up(&cpuset_attach_wq); 341 } 342 343 static inline void dec_attach_in_progress(struct cpuset *cs) 344 { 345 mutex_lock(&cpuset_mutex); 346 dec_attach_in_progress_locked(cs); 347 mutex_unlock(&cpuset_mutex); 348 } 349 350 static inline bool cpuset_v2(void) 351 { 352 return !IS_ENABLED(CONFIG_CPUSETS_V1) || 353 cgroup_subsys_on_dfl(cpuset_cgrp_subsys); 354 } 355 356 /* 357 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 358 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 359 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 360 * With v2 behavior, "cpus" and "mems" are always what the users have 361 * requested and won't be changed by hotplug events. Only the effective 362 * cpus or mems will be affected. 363 */ 364 static inline bool is_in_v2_mode(void) 365 { 366 return cpuset_v2() || 367 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 368 } 369 370 /** 371 * partition_is_populated - check if partition has tasks 372 * @cs: partition root to be checked 373 * @excluded_child: a child cpuset to be excluded in task checking 374 * Return: true if there are tasks, false otherwise 375 * 376 * @cs should be a valid partition root or going to become a partition root. 377 * @excluded_child should be non-NULL when this cpuset is going to become a 378 * partition itself. 379 * 380 * Note that a remote partition is not allowed underneath a valid local 381 * or remote partition. So if a non-partition root child is populated, 382 * the whole partition is considered populated. 383 */ 384 static inline bool partition_is_populated(struct cpuset *cs, 385 struct cpuset *excluded_child) 386 { 387 struct cpuset *cp; 388 struct cgroup_subsys_state *pos_css; 389 390 /* 391 * We cannot call cs_is_populated(cs) directly, as 392 * nr_populated_domain_children may include populated 393 * csets from descendants that are partitions. 394 */ 395 if (cs->css.cgroup->nr_populated_csets || 396 cs->attach_in_progress) 397 return true; 398 399 rcu_read_lock(); 400 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 401 if (cp == cs || cp == excluded_child) 402 continue; 403 404 if (is_partition_valid(cp)) { 405 pos_css = css_rightmost_descendant(pos_css); 406 continue; 407 } 408 409 if (cpuset_is_populated(cp)) { 410 rcu_read_unlock(); 411 return true; 412 } 413 } 414 rcu_read_unlock(); 415 return false; 416 } 417 418 /* 419 * Return in pmask the portion of a task's cpusets's cpus_allowed that 420 * are online and are capable of running the task. If none are found, 421 * walk up the cpuset hierarchy until we find one that does have some 422 * appropriate cpus. 423 * 424 * One way or another, we guarantee to return some non-empty subset 425 * of cpu_active_mask. 426 * 427 * Call with callback_lock or cpuset_mutex held. 428 */ 429 static void guarantee_active_cpus(struct task_struct *tsk, 430 struct cpumask *pmask) 431 { 432 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 433 struct cpuset *cs; 434 435 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask))) 436 cpumask_copy(pmask, cpu_active_mask); 437 438 rcu_read_lock(); 439 cs = task_cs(tsk); 440 441 while (!cpumask_intersects(cs->effective_cpus, pmask)) 442 cs = parent_cs(cs); 443 444 cpumask_and(pmask, pmask, cs->effective_cpus); 445 rcu_read_unlock(); 446 } 447 448 /* 449 * Return in *pmask the portion of a cpusets's mems_allowed that 450 * are online, with memory. If none are online with memory, walk 451 * up the cpuset hierarchy until we find one that does have some 452 * online mems. The top cpuset always has some mems online. 453 * 454 * One way or another, we guarantee to return some non-empty subset 455 * of node_states[N_MEMORY]. 456 * 457 * Call with callback_lock or cpuset_mutex held. 458 */ 459 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 460 { 461 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 462 cs = parent_cs(cs); 463 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 464 } 465 466 /** 467 * alloc_cpumasks - Allocate an array of cpumask variables 468 * @pmasks: Pointer to array of cpumask_var_t pointers 469 * @size: Number of cpumasks to allocate 470 * Return: 0 if successful, -ENOMEM otherwise. 471 * 472 * Allocates @size cpumasks and initializes them to empty. Returns 0 on 473 * success, -ENOMEM on allocation failure. On failure, any previously 474 * allocated cpumasks are freed. 475 */ 476 static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size) 477 { 478 int i; 479 480 for (i = 0; i < size; i++) { 481 if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) { 482 while (--i >= 0) 483 free_cpumask_var(*pmasks[i]); 484 return -ENOMEM; 485 } 486 } 487 return 0; 488 } 489 490 /** 491 * alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations. 492 * @tmp: Pointer to tmpmasks structure to populate 493 * Return: 0 on success, -ENOMEM on allocation failure 494 */ 495 static inline int alloc_tmpmasks(struct tmpmasks *tmp) 496 { 497 /* 498 * Array of pointers to the three cpumask_var_t fields in tmpmasks. 499 * Note: Array size must match actual number of masks (3) 500 */ 501 cpumask_var_t *pmask[3] = { 502 &tmp->new_cpus, 503 &tmp->addmask, 504 &tmp->delmask 505 }; 506 507 return alloc_cpumasks(pmask, ARRAY_SIZE(pmask)); 508 } 509 510 /** 511 * free_tmpmasks - free cpumasks in a tmpmasks structure 512 * @tmp: the tmpmasks structure pointer 513 */ 514 static inline void free_tmpmasks(struct tmpmasks *tmp) 515 { 516 if (!tmp) 517 return; 518 519 free_cpumask_var(tmp->new_cpus); 520 free_cpumask_var(tmp->addmask); 521 free_cpumask_var(tmp->delmask); 522 } 523 524 /** 525 * dup_or_alloc_cpuset - Duplicate or allocate a new cpuset 526 * @cs: Source cpuset to duplicate (NULL for a fresh allocation) 527 * 528 * Creates a new cpuset by either: 529 * 1. Duplicating an existing cpuset (if @cs is non-NULL), or 530 * 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL) 531 * 532 * Return: Pointer to newly allocated cpuset on success, NULL on failure 533 */ 534 static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs) 535 { 536 struct cpuset *trial; 537 538 /* Allocate base structure */ 539 trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) : 540 kzalloc(sizeof(*cs), GFP_KERNEL); 541 if (!trial) 542 return NULL; 543 544 /* Setup cpumask pointer array */ 545 cpumask_var_t *pmask[4] = { 546 &trial->cpus_allowed, 547 &trial->effective_cpus, 548 &trial->effective_xcpus, 549 &trial->exclusive_cpus 550 }; 551 552 if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) { 553 kfree(trial); 554 return NULL; 555 } 556 557 /* Copy masks if duplicating */ 558 if (cs) { 559 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 560 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 561 cpumask_copy(trial->effective_xcpus, cs->effective_xcpus); 562 cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus); 563 } 564 565 return trial; 566 } 567 568 /** 569 * free_cpuset - free the cpuset 570 * @cs: the cpuset to be freed 571 */ 572 static inline void free_cpuset(struct cpuset *cs) 573 { 574 free_cpumask_var(cs->cpus_allowed); 575 free_cpumask_var(cs->effective_cpus); 576 free_cpumask_var(cs->effective_xcpus); 577 free_cpumask_var(cs->exclusive_cpus); 578 kfree(cs); 579 } 580 581 /* Return user specified exclusive CPUs */ 582 static inline struct cpumask *user_xcpus(struct cpuset *cs) 583 { 584 return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed 585 : cs->exclusive_cpus; 586 } 587 588 static inline bool xcpus_empty(struct cpuset *cs) 589 { 590 return cpumask_empty(cs->cpus_allowed) && 591 cpumask_empty(cs->exclusive_cpus); 592 } 593 594 /* 595 * cpusets_are_exclusive() - check if two cpusets are exclusive 596 * 597 * Return true if exclusive, false if not 598 */ 599 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2) 600 { 601 struct cpumask *xcpus1 = user_xcpus(cs1); 602 struct cpumask *xcpus2 = user_xcpus(cs2); 603 604 if (cpumask_intersects(xcpus1, xcpus2)) 605 return false; 606 return true; 607 } 608 609 /** 610 * cpus_excl_conflict - Check if two cpusets have exclusive CPU conflicts 611 * @trial: the trial cpuset to be checked 612 * @sibling: a sibling cpuset to be checked against 613 * @xcpus_changed: set if exclusive_cpus has been set 614 * 615 * Returns: true if CPU exclusivity conflict exists, false otherwise 616 * 617 * Conflict detection rules: 618 * o cgroup v1 619 * See cpuset1_cpus_excl_conflict() 620 * o cgroup v2 621 * - The exclusive_cpus values cannot overlap. 622 * - New exclusive_cpus cannot be a superset of a sibling's cpus_allowed. 623 */ 624 static inline bool cpus_excl_conflict(struct cpuset *trial, struct cpuset *sibling, 625 bool xcpus_changed) 626 { 627 if (!cpuset_v2()) 628 return cpuset1_cpus_excl_conflict(trial, sibling); 629 630 /* The cpus_allowed of a sibling cpuset cannot be a subset of the new exclusive_cpus */ 631 if (xcpus_changed && !cpumask_empty(sibling->cpus_allowed) && 632 cpumask_subset(sibling->cpus_allowed, trial->exclusive_cpus)) 633 return true; 634 635 /* Exclusive_cpus cannot intersect */ 636 return cpumask_intersects(trial->exclusive_cpus, sibling->exclusive_cpus); 637 } 638 639 static inline bool mems_excl_conflict(struct cpuset *cs1, struct cpuset *cs2) 640 { 641 if ((is_mem_exclusive(cs1) || is_mem_exclusive(cs2))) 642 return nodes_intersects(cs1->mems_allowed, cs2->mems_allowed); 643 return false; 644 } 645 646 /* 647 * validate_change() - Used to validate that any proposed cpuset change 648 * follows the structural rules for cpusets. 649 * 650 * If we replaced the flag and mask values of the current cpuset 651 * (cur) with those values in the trial cpuset (trial), would 652 * our various subset and exclusive rules still be valid? Presumes 653 * cpuset_mutex held. 654 * 655 * 'cur' is the address of an actual, in-use cpuset. Operations 656 * such as list traversal that depend on the actual address of the 657 * cpuset in the list must use cur below, not trial. 658 * 659 * 'trial' is the address of bulk structure copy of cur, with 660 * perhaps one or more of the fields cpus_allowed, mems_allowed, 661 * or flags changed to new, trial values. 662 * 663 * Return 0 if valid, -errno if not. 664 */ 665 666 static int validate_change(struct cpuset *cur, struct cpuset *trial) 667 { 668 struct cgroup_subsys_state *css; 669 struct cpuset *c, *par; 670 bool xcpus_changed; 671 int ret = 0; 672 673 rcu_read_lock(); 674 675 if (!is_in_v2_mode()) 676 ret = cpuset1_validate_change(cur, trial); 677 if (ret) 678 goto out; 679 680 /* Remaining checks don't apply to root cpuset */ 681 if (cur == &top_cpuset) 682 goto out; 683 684 par = parent_cs(cur); 685 686 /* 687 * We can't shrink if we won't have enough room for SCHED_DEADLINE 688 * tasks. This check is not done when scheduling is disabled as the 689 * users should know what they are doing. 690 * 691 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns 692 * cpus_allowed. 693 * 694 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only 695 * for non-isolated partition root. At this point, the target 696 * effective_cpus isn't computed yet. user_xcpus() is the best 697 * approximation. 698 * 699 * TBD: May need to precompute the real effective_cpus here in case 700 * incorrect scheduling of SCHED_DEADLINE tasks in a partition 701 * becomes an issue. 702 */ 703 ret = -EBUSY; 704 if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) && 705 !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial))) 706 goto out; 707 708 /* 709 * If either I or some sibling (!= me) is exclusive, we can't 710 * overlap. exclusive_cpus cannot overlap with each other if set. 711 */ 712 ret = -EINVAL; 713 xcpus_changed = !cpumask_equal(cur->exclusive_cpus, trial->exclusive_cpus); 714 cpuset_for_each_child(c, css, par) { 715 if (c == cur) 716 continue; 717 if (cpus_excl_conflict(trial, c, xcpus_changed)) 718 goto out; 719 if (mems_excl_conflict(trial, c)) 720 goto out; 721 } 722 723 ret = 0; 724 out: 725 rcu_read_unlock(); 726 return ret; 727 } 728 729 #ifdef CONFIG_SMP 730 731 /* 732 * generate_sched_domains() 733 * 734 * This function builds a partial partition of the systems CPUs 735 * A 'partial partition' is a set of non-overlapping subsets whose 736 * union is a subset of that set. 737 * The output of this function needs to be passed to kernel/sched/core.c 738 * partition_sched_domains() routine, which will rebuild the scheduler's 739 * load balancing domains (sched domains) as specified by that partial 740 * partition. 741 * 742 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 743 * for a background explanation of this. 744 * 745 * Does not return errors, on the theory that the callers of this 746 * routine would rather not worry about failures to rebuild sched 747 * domains when operating in the severe memory shortage situations 748 * that could cause allocation failures below. 749 * 750 * Must be called with cpuset_mutex held. 751 * 752 * The three key local variables below are: 753 * cp - cpuset pointer, used (together with pos_css) to perform a 754 * top-down scan of all cpusets. For our purposes, rebuilding 755 * the schedulers sched domains, we can ignore !is_sched_load_ 756 * balance cpusets. 757 * csa - (for CpuSet Array) Array of pointers to all the cpusets 758 * that need to be load balanced, for convenient iterative 759 * access by the subsequent code that finds the best partition, 760 * i.e the set of domains (subsets) of CPUs such that the 761 * cpus_allowed of every cpuset marked is_sched_load_balance 762 * is a subset of one of these domains, while there are as 763 * many such domains as possible, each as small as possible. 764 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 765 * the kernel/sched/core.c routine partition_sched_domains() in a 766 * convenient format, that can be easily compared to the prior 767 * value to determine what partition elements (sched domains) 768 * were changed (added or removed.) 769 */ 770 static int generate_sched_domains(cpumask_var_t **domains, 771 struct sched_domain_attr **attributes) 772 { 773 struct cpuset *cp; /* top-down scan of cpusets */ 774 struct cpuset **csa; /* array of all cpuset ptrs */ 775 int i, j; /* indices for partition finding loops */ 776 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 777 struct sched_domain_attr *dattr; /* attributes for custom domains */ 778 int ndoms = 0; /* number of sched domains in result */ 779 struct cgroup_subsys_state *pos_css; 780 781 if (!cpuset_v2()) 782 return cpuset1_generate_sched_domains(domains, attributes); 783 784 doms = NULL; 785 dattr = NULL; 786 csa = NULL; 787 788 /* Special case for the 99% of systems with one, full, sched domain */ 789 if (cpumask_empty(subpartitions_cpus)) { 790 ndoms = 1; 791 /* !csa will be checked and can be correctly handled */ 792 goto generate_doms; 793 } 794 795 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 796 if (!csa) 797 goto done; 798 799 /* Find how many partitions and cache them to csa[] */ 800 rcu_read_lock(); 801 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 802 /* 803 * Only valid partition roots that are not isolated and with 804 * non-empty effective_cpus will be saved into csa[]. 805 */ 806 if ((cp->partition_root_state == PRS_ROOT) && 807 !cpumask_empty(cp->effective_cpus)) 808 csa[ndoms++] = cp; 809 810 /* 811 * Skip @cp's subtree if not a partition root and has no 812 * exclusive CPUs to be granted to child cpusets. 813 */ 814 if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus)) 815 pos_css = css_rightmost_descendant(pos_css); 816 } 817 rcu_read_unlock(); 818 819 for (i = 0; i < ndoms; i++) { 820 for (j = i + 1; j < ndoms; j++) { 821 if (cpusets_overlap(csa[i], csa[j])) 822 /* 823 * Cgroup v2 shouldn't pass down overlapping 824 * partition root cpusets. 825 */ 826 WARN_ON_ONCE(1); 827 } 828 } 829 830 generate_doms: 831 doms = alloc_sched_domains(ndoms); 832 if (!doms) 833 goto done; 834 835 /* 836 * The rest of the code, including the scheduler, can deal with 837 * dattr==NULL case. No need to abort if alloc fails. 838 */ 839 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 840 GFP_KERNEL); 841 842 /* 843 * Cgroup v2 doesn't support domain attributes, just set all of them 844 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a 845 * subset of HK_TYPE_DOMAIN housekeeping CPUs. 846 */ 847 for (i = 0; i < ndoms; i++) { 848 /* 849 * The top cpuset may contain some boot time isolated 850 * CPUs that need to be excluded from the sched domain. 851 */ 852 if (!csa || csa[i] == &top_cpuset) 853 cpumask_and(doms[i], top_cpuset.effective_cpus, 854 housekeeping_cpumask(HK_TYPE_DOMAIN)); 855 else 856 cpumask_copy(doms[i], csa[i]->effective_cpus); 857 if (dattr) 858 dattr[i] = SD_ATTR_INIT; 859 } 860 861 done: 862 kfree(csa); 863 864 /* 865 * Fallback to the default domain if kmalloc() failed. 866 * See comments in partition_sched_domains(). 867 */ 868 if (doms == NULL) 869 ndoms = 1; 870 871 *domains = doms; 872 *attributes = dattr; 873 return ndoms; 874 } 875 876 static void dl_update_tasks_root_domain(struct cpuset *cs) 877 { 878 struct css_task_iter it; 879 struct task_struct *task; 880 881 if (cs->nr_deadline_tasks == 0) 882 return; 883 884 css_task_iter_start(&cs->css, 0, &it); 885 886 while ((task = css_task_iter_next(&it))) 887 dl_add_task_root_domain(task); 888 889 css_task_iter_end(&it); 890 } 891 892 void dl_rebuild_rd_accounting(void) 893 { 894 struct cpuset *cs = NULL; 895 struct cgroup_subsys_state *pos_css; 896 int cpu; 897 u64 cookie = ++dl_cookie; 898 899 lockdep_assert_cpuset_lock_held(); 900 lockdep_assert_cpus_held(); 901 lockdep_assert_held(&sched_domains_mutex); 902 903 rcu_read_lock(); 904 905 for_each_possible_cpu(cpu) { 906 if (dl_bw_visited(cpu, cookie)) 907 continue; 908 909 dl_clear_root_domain_cpu(cpu); 910 } 911 912 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 913 914 if (cpumask_empty(cs->effective_cpus)) { 915 pos_css = css_rightmost_descendant(pos_css); 916 continue; 917 } 918 919 css_get(&cs->css); 920 921 rcu_read_unlock(); 922 923 dl_update_tasks_root_domain(cs); 924 925 rcu_read_lock(); 926 css_put(&cs->css); 927 } 928 rcu_read_unlock(); 929 } 930 931 /* 932 * Rebuild scheduler domains. 933 * 934 * If the flag 'sched_load_balance' of any cpuset with non-empty 935 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 936 * which has that flag enabled, or if any cpuset with a non-empty 937 * 'cpus' is removed, then call this routine to rebuild the 938 * scheduler's dynamic sched domains. 939 * 940 * Call with cpuset_mutex held. Takes cpus_read_lock(). 941 */ 942 void rebuild_sched_domains_locked(void) 943 { 944 struct sched_domain_attr *attr; 945 cpumask_var_t *doms; 946 int ndoms; 947 int i; 948 949 lockdep_assert_cpus_held(); 950 lockdep_assert_cpuset_lock_held(); 951 force_sd_rebuild = false; 952 953 /* Generate domain masks and attrs */ 954 ndoms = generate_sched_domains(&doms, &attr); 955 956 /* 957 * cpuset_hotplug_workfn is invoked synchronously now, thus this 958 * function should not race with CPU hotplug. And the effective CPUs 959 * must not include any offline CPUs. Passing an offline CPU in the 960 * doms to partition_sched_domains() will trigger a kernel panic. 961 * 962 * We perform a final check here: if the doms contains any 963 * offline CPUs, a warning is emitted and we return directly to 964 * prevent the panic. 965 */ 966 for (i = 0; i < ndoms; ++i) { 967 if (WARN_ON_ONCE(!cpumask_subset(doms[i], cpu_active_mask))) 968 return; 969 } 970 971 /* Have scheduler rebuild the domains */ 972 partition_sched_domains(ndoms, doms, attr); 973 } 974 #else /* !CONFIG_SMP */ 975 void rebuild_sched_domains_locked(void) 976 { 977 } 978 #endif /* CONFIG_SMP */ 979 980 static void rebuild_sched_domains_cpuslocked(void) 981 { 982 mutex_lock(&cpuset_mutex); 983 rebuild_sched_domains_locked(); 984 mutex_unlock(&cpuset_mutex); 985 } 986 987 void rebuild_sched_domains(void) 988 { 989 cpus_read_lock(); 990 rebuild_sched_domains_cpuslocked(); 991 cpus_read_unlock(); 992 } 993 994 void cpuset_reset_sched_domains(void) 995 { 996 mutex_lock(&cpuset_mutex); 997 partition_sched_domains(1, NULL, NULL); 998 mutex_unlock(&cpuset_mutex); 999 } 1000 1001 /** 1002 * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1003 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1004 * @new_cpus: the temp variable for the new effective_cpus mask 1005 * 1006 * Iterate through each task of @cs updating its cpus_allowed to the 1007 * effective cpuset's. As this function is called with cpuset_mutex held, 1008 * cpuset membership stays stable. 1009 * 1010 * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus 1011 * to make sure all offline CPUs are also included as hotplug code won't 1012 * update cpumasks for tasks in top_cpuset. 1013 * 1014 * As task_cpu_possible_mask() can be task dependent in arm64, we have to 1015 * do cpu masking per task instead of doing it once for all. 1016 */ 1017 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) 1018 { 1019 struct css_task_iter it; 1020 struct task_struct *task; 1021 bool top_cs = cs == &top_cpuset; 1022 1023 css_task_iter_start(&cs->css, 0, &it); 1024 while ((task = css_task_iter_next(&it))) { 1025 const struct cpumask *possible_mask = task_cpu_possible_mask(task); 1026 1027 if (top_cs) { 1028 /* 1029 * PF_KTHREAD tasks are handled by housekeeping. 1030 * PF_NO_SETAFFINITY tasks are ignored. 1031 */ 1032 if (task->flags & (PF_KTHREAD | PF_NO_SETAFFINITY)) 1033 continue; 1034 cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus); 1035 } else { 1036 cpumask_and(new_cpus, possible_mask, cs->effective_cpus); 1037 } 1038 set_cpus_allowed_ptr(task, new_cpus); 1039 } 1040 css_task_iter_end(&it); 1041 } 1042 1043 /** 1044 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1045 * @new_cpus: the temp variable for the new effective_cpus mask 1046 * @cs: the cpuset the need to recompute the new effective_cpus mask 1047 * @parent: the parent cpuset 1048 * 1049 * The result is valid only if the given cpuset isn't a partition root. 1050 */ 1051 static void compute_effective_cpumask(struct cpumask *new_cpus, 1052 struct cpuset *cs, struct cpuset *parent) 1053 { 1054 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1055 } 1056 1057 /* 1058 * Commands for update_parent_effective_cpumask 1059 */ 1060 enum partition_cmd { 1061 partcmd_enable, /* Enable partition root */ 1062 partcmd_enablei, /* Enable isolated partition root */ 1063 partcmd_disable, /* Disable partition root */ 1064 partcmd_update, /* Update parent's effective_cpus */ 1065 partcmd_invalidate, /* Make partition invalid */ 1066 }; 1067 1068 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1069 struct tmpmasks *tmp); 1070 1071 /* 1072 * Update partition exclusive flag 1073 * 1074 * Return: 0 if successful, an error code otherwise 1075 */ 1076 static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs) 1077 { 1078 bool exclusive = (new_prs > PRS_MEMBER); 1079 1080 if (exclusive && !is_cpu_exclusive(cs)) { 1081 if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1)) 1082 return PERR_NOTEXCL; 1083 } else if (!exclusive && is_cpu_exclusive(cs)) { 1084 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1085 cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1086 } 1087 return 0; 1088 } 1089 1090 /* 1091 * Update partition load balance flag and/or rebuild sched domain 1092 * 1093 * Changing load balance flag will automatically call 1094 * rebuild_sched_domains_locked(). 1095 * This function is for cgroup v2 only. 1096 */ 1097 static void update_partition_sd_lb(struct cpuset *cs, int old_prs) 1098 { 1099 int new_prs = cs->partition_root_state; 1100 bool rebuild_domains = (new_prs > 0) || (old_prs > 0); 1101 bool new_lb; 1102 1103 /* 1104 * If cs is not a valid partition root, the load balance state 1105 * will follow its parent. 1106 */ 1107 if (new_prs > 0) { 1108 new_lb = (new_prs != PRS_ISOLATED); 1109 } else { 1110 new_lb = is_sched_load_balance(parent_cs(cs)); 1111 } 1112 if (new_lb != !!is_sched_load_balance(cs)) { 1113 rebuild_domains = true; 1114 if (new_lb) 1115 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1116 else 1117 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1118 } 1119 1120 if (rebuild_domains) 1121 cpuset_force_rebuild(); 1122 } 1123 1124 /* 1125 * tasks_nocpu_error - Return true if tasks will have no effective_cpus 1126 */ 1127 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs, 1128 struct cpumask *xcpus) 1129 { 1130 /* 1131 * A populated partition (cs or parent) can't have empty effective_cpus 1132 */ 1133 return (cpumask_subset(parent->effective_cpus, xcpus) && 1134 partition_is_populated(parent, cs)) || 1135 (!cpumask_intersects(xcpus, cpu_active_mask) && 1136 partition_is_populated(cs, NULL)); 1137 } 1138 1139 static void reset_partition_data(struct cpuset *cs) 1140 { 1141 struct cpuset *parent = parent_cs(cs); 1142 1143 if (!cpuset_v2()) 1144 return; 1145 1146 lockdep_assert_held(&callback_lock); 1147 1148 if (cpumask_empty(cs->exclusive_cpus)) { 1149 cpumask_clear(cs->effective_xcpus); 1150 if (is_cpu_exclusive(cs)) 1151 clear_bit(CS_CPU_EXCLUSIVE, &cs->flags); 1152 } 1153 if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed)) 1154 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 1155 } 1156 1157 /* 1158 * isolated_cpus_update - Update the isolated_cpus mask 1159 * @old_prs: old partition_root_state 1160 * @new_prs: new partition_root_state 1161 * @xcpus: exclusive CPUs with state change 1162 */ 1163 static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus) 1164 { 1165 WARN_ON_ONCE(old_prs == new_prs); 1166 if (new_prs == PRS_ISOLATED) 1167 cpumask_or(isolated_cpus, isolated_cpus, xcpus); 1168 else 1169 cpumask_andnot(isolated_cpus, isolated_cpus, xcpus); 1170 1171 isolated_cpus_updating = true; 1172 } 1173 1174 /* 1175 * partition_xcpus_add - Add new exclusive CPUs to partition 1176 * @new_prs: new partition_root_state 1177 * @parent: parent cpuset 1178 * @xcpus: exclusive CPUs to be added 1179 * 1180 * Remote partition if parent == NULL 1181 */ 1182 static void partition_xcpus_add(int new_prs, struct cpuset *parent, 1183 struct cpumask *xcpus) 1184 { 1185 WARN_ON_ONCE(new_prs < 0); 1186 lockdep_assert_held(&callback_lock); 1187 if (!parent) 1188 parent = &top_cpuset; 1189 1190 1191 if (parent == &top_cpuset) 1192 cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus); 1193 1194 if (new_prs != parent->partition_root_state) 1195 isolated_cpus_update(parent->partition_root_state, new_prs, 1196 xcpus); 1197 1198 cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus); 1199 } 1200 1201 /* 1202 * partition_xcpus_del - Remove exclusive CPUs from partition 1203 * @old_prs: old partition_root_state 1204 * @parent: parent cpuset 1205 * @xcpus: exclusive CPUs to be removed 1206 * 1207 * Remote partition if parent == NULL 1208 */ 1209 static void partition_xcpus_del(int old_prs, struct cpuset *parent, 1210 struct cpumask *xcpus) 1211 { 1212 WARN_ON_ONCE(old_prs < 0); 1213 lockdep_assert_held(&callback_lock); 1214 if (!parent) 1215 parent = &top_cpuset; 1216 1217 if (parent == &top_cpuset) 1218 cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus); 1219 1220 if (old_prs != parent->partition_root_state) 1221 isolated_cpus_update(old_prs, parent->partition_root_state, 1222 xcpus); 1223 1224 cpumask_and(xcpus, xcpus, cpu_active_mask); 1225 cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus); 1226 } 1227 1228 /* 1229 * isolated_cpus_can_update - check for isolated & nohz_full conflicts 1230 * @add_cpus: cpu mask for cpus that are going to be isolated 1231 * @del_cpus: cpu mask for cpus that are no longer isolated, can be NULL 1232 * Return: false if there is conflict, true otherwise 1233 * 1234 * If nohz_full is enabled and we have isolated CPUs, their combination must 1235 * still leave housekeeping CPUs. 1236 * 1237 * TBD: Should consider merging this function into 1238 * prstate_housekeeping_conflict(). 1239 */ 1240 static bool isolated_cpus_can_update(struct cpumask *add_cpus, 1241 struct cpumask *del_cpus) 1242 { 1243 cpumask_var_t full_hk_cpus; 1244 int res = true; 1245 1246 if (!housekeeping_enabled(HK_TYPE_KERNEL_NOISE)) 1247 return true; 1248 1249 if (del_cpus && cpumask_weight_and(del_cpus, 1250 housekeeping_cpumask(HK_TYPE_KERNEL_NOISE))) 1251 return true; 1252 1253 if (!alloc_cpumask_var(&full_hk_cpus, GFP_KERNEL)) 1254 return false; 1255 1256 cpumask_and(full_hk_cpus, housekeeping_cpumask(HK_TYPE_KERNEL_NOISE), 1257 housekeeping_cpumask(HK_TYPE_DOMAIN)); 1258 cpumask_andnot(full_hk_cpus, full_hk_cpus, isolated_cpus); 1259 cpumask_and(full_hk_cpus, full_hk_cpus, cpu_active_mask); 1260 if (!cpumask_weight_andnot(full_hk_cpus, add_cpus)) 1261 res = false; 1262 1263 free_cpumask_var(full_hk_cpus); 1264 return res; 1265 } 1266 1267 /* 1268 * prstate_housekeeping_conflict - check for partition & housekeeping conflicts 1269 * @prstate: partition root state to be checked 1270 * @new_cpus: cpu mask 1271 * Return: true if there is conflict, false otherwise 1272 * 1273 * CPUs outside of HK_TYPE_DOMAIN_BOOT, if defined, can only be used in an 1274 * isolated partition. 1275 */ 1276 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus) 1277 { 1278 if (!housekeeping_enabled(HK_TYPE_DOMAIN_BOOT)) 1279 return false; 1280 1281 if ((prstate != PRS_ISOLATED) && 1282 !cpumask_subset(new_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN_BOOT))) 1283 return true; 1284 1285 return false; 1286 } 1287 1288 /* 1289 * update_isolation_cpumasks - Update external isolation related CPU masks 1290 * 1291 * The following external CPU masks will be updated if necessary: 1292 * - workqueue unbound cpumask 1293 */ 1294 static void update_isolation_cpumasks(void) 1295 { 1296 int ret; 1297 1298 if (!isolated_cpus_updating) 1299 return; 1300 1301 ret = housekeeping_update(isolated_cpus); 1302 WARN_ON_ONCE(ret < 0); 1303 1304 isolated_cpus_updating = false; 1305 } 1306 1307 /** 1308 * rm_siblings_excl_cpus - Remove exclusive CPUs that are used by sibling cpusets 1309 * @parent: Parent cpuset containing all siblings 1310 * @cs: Current cpuset (will be skipped) 1311 * @excpus: exclusive effective CPU mask to modify 1312 * 1313 * This function ensures the given @excpus mask doesn't include any CPUs that 1314 * are exclusively allocated to sibling cpusets. It walks through all siblings 1315 * of @cs under @parent and removes their exclusive CPUs from @excpus. 1316 */ 1317 static int rm_siblings_excl_cpus(struct cpuset *parent, struct cpuset *cs, 1318 struct cpumask *excpus) 1319 { 1320 struct cgroup_subsys_state *css; 1321 struct cpuset *sibling; 1322 int retval = 0; 1323 1324 if (cpumask_empty(excpus)) 1325 return 0; 1326 1327 /* 1328 * Remove exclusive CPUs from siblings 1329 */ 1330 rcu_read_lock(); 1331 cpuset_for_each_child(sibling, css, parent) { 1332 struct cpumask *sibling_xcpus; 1333 1334 if (sibling == cs) 1335 continue; 1336 1337 /* 1338 * If exclusive_cpus is defined, effective_xcpus will always 1339 * be a subset. Otherwise, effective_xcpus will only be set 1340 * in a valid partition root. 1341 */ 1342 sibling_xcpus = cpumask_empty(sibling->exclusive_cpus) 1343 ? sibling->effective_xcpus 1344 : sibling->exclusive_cpus; 1345 1346 if (cpumask_intersects(excpus, sibling_xcpus)) { 1347 cpumask_andnot(excpus, excpus, sibling_xcpus); 1348 retval++; 1349 } 1350 } 1351 rcu_read_unlock(); 1352 1353 return retval; 1354 } 1355 1356 /* 1357 * compute_excpus - compute effective exclusive CPUs 1358 * @cs: cpuset 1359 * @xcpus: effective exclusive CPUs value to be set 1360 * Return: 0 if there is no sibling conflict, > 0 otherwise 1361 * 1362 * If exclusive_cpus isn't explicitly set , we have to scan the sibling cpusets 1363 * and exclude their exclusive_cpus or effective_xcpus as well. 1364 */ 1365 static int compute_excpus(struct cpuset *cs, struct cpumask *excpus) 1366 { 1367 struct cpuset *parent = parent_cs(cs); 1368 1369 cpumask_and(excpus, user_xcpus(cs), parent->effective_xcpus); 1370 1371 if (!cpumask_empty(cs->exclusive_cpus)) 1372 return 0; 1373 1374 return rm_siblings_excl_cpus(parent, cs, excpus); 1375 } 1376 1377 /* 1378 * compute_trialcs_excpus - Compute effective exclusive CPUs for a trial cpuset 1379 * @trialcs: The trial cpuset containing the proposed new configuration 1380 * @cs: The original cpuset that the trial configuration is based on 1381 * Return: 0 if successful with no sibling conflict, >0 if a conflict is found 1382 * 1383 * Computes the effective_xcpus for a trial configuration. @cs is provided to represent 1384 * the real cs. 1385 */ 1386 static int compute_trialcs_excpus(struct cpuset *trialcs, struct cpuset *cs) 1387 { 1388 struct cpuset *parent = parent_cs(trialcs); 1389 struct cpumask *excpus = trialcs->effective_xcpus; 1390 1391 /* trialcs is member, cpuset.cpus has no impact to excpus */ 1392 if (cs_is_member(cs)) 1393 cpumask_and(excpus, trialcs->exclusive_cpus, 1394 parent->effective_xcpus); 1395 else 1396 cpumask_and(excpus, user_xcpus(trialcs), parent->effective_xcpus); 1397 1398 return rm_siblings_excl_cpus(parent, cs, excpus); 1399 } 1400 1401 static inline bool is_remote_partition(struct cpuset *cs) 1402 { 1403 return cs->remote_partition; 1404 } 1405 1406 static inline bool is_local_partition(struct cpuset *cs) 1407 { 1408 return is_partition_valid(cs) && !is_remote_partition(cs); 1409 } 1410 1411 /* 1412 * remote_partition_enable - Enable current cpuset as a remote partition root 1413 * @cs: the cpuset to update 1414 * @new_prs: new partition_root_state 1415 * @tmp: temporary masks 1416 * Return: 0 if successful, errcode if error 1417 * 1418 * Enable the current cpuset to become a remote partition root taking CPUs 1419 * directly from the top cpuset. cpuset_mutex must be held by the caller. 1420 */ 1421 static int remote_partition_enable(struct cpuset *cs, int new_prs, 1422 struct tmpmasks *tmp) 1423 { 1424 /* 1425 * The user must have sysadmin privilege. 1426 */ 1427 if (!capable(CAP_SYS_ADMIN)) 1428 return PERR_ACCESS; 1429 1430 /* 1431 * The requested exclusive_cpus must not be allocated to other 1432 * partitions and it can't use up all the root's effective_cpus. 1433 * 1434 * The effective_xcpus mask can contain offline CPUs, but there must 1435 * be at least one or more online CPUs present before it can be enabled. 1436 * 1437 * Note that creating a remote partition with any local partition root 1438 * above it or remote partition root underneath it is not allowed. 1439 */ 1440 compute_excpus(cs, tmp->new_cpus); 1441 WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus)); 1442 if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) || 1443 cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus)) 1444 return PERR_INVCPUS; 1445 if (((new_prs == PRS_ISOLATED) && 1446 !isolated_cpus_can_update(tmp->new_cpus, NULL)) || 1447 prstate_housekeeping_conflict(new_prs, tmp->new_cpus)) 1448 return PERR_HKEEPING; 1449 1450 spin_lock_irq(&callback_lock); 1451 partition_xcpus_add(new_prs, NULL, tmp->new_cpus); 1452 cs->remote_partition = true; 1453 cpumask_copy(cs->effective_xcpus, tmp->new_cpus); 1454 spin_unlock_irq(&callback_lock); 1455 update_isolation_cpumasks(); 1456 cpuset_force_rebuild(); 1457 cs->prs_err = 0; 1458 1459 /* 1460 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1461 */ 1462 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1463 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1464 return 0; 1465 } 1466 1467 /* 1468 * remote_partition_disable - Remove current cpuset from remote partition list 1469 * @cs: the cpuset to update 1470 * @tmp: temporary masks 1471 * 1472 * The effective_cpus is also updated. 1473 * 1474 * cpuset_mutex must be held by the caller. 1475 */ 1476 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp) 1477 { 1478 WARN_ON_ONCE(!is_remote_partition(cs)); 1479 /* 1480 * When a CPU is offlined, top_cpuset may end up with no available CPUs, 1481 * which should clear subpartitions_cpus. We should not emit a warning for this 1482 * scenario: the hierarchy is updated from top to bottom, so subpartitions_cpus 1483 * may already be cleared when disabling the partition. 1484 */ 1485 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus) && 1486 !cpumask_empty(subpartitions_cpus)); 1487 1488 spin_lock_irq(&callback_lock); 1489 cs->remote_partition = false; 1490 partition_xcpus_del(cs->partition_root_state, NULL, cs->effective_xcpus); 1491 if (cs->prs_err) 1492 cs->partition_root_state = -cs->partition_root_state; 1493 else 1494 cs->partition_root_state = PRS_MEMBER; 1495 1496 /* effective_xcpus may need to be changed */ 1497 compute_excpus(cs, cs->effective_xcpus); 1498 reset_partition_data(cs); 1499 spin_unlock_irq(&callback_lock); 1500 update_isolation_cpumasks(); 1501 cpuset_force_rebuild(); 1502 1503 /* 1504 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1505 */ 1506 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1507 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1508 } 1509 1510 /* 1511 * remote_cpus_update - cpus_exclusive change of remote partition 1512 * @cs: the cpuset to be updated 1513 * @xcpus: the new exclusive_cpus mask, if non-NULL 1514 * @excpus: the new effective_xcpus mask 1515 * @tmp: temporary masks 1516 * 1517 * top_cpuset and subpartitions_cpus will be updated or partition can be 1518 * invalidated. 1519 */ 1520 static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus, 1521 struct cpumask *excpus, struct tmpmasks *tmp) 1522 { 1523 bool adding, deleting; 1524 int prs = cs->partition_root_state; 1525 1526 if (WARN_ON_ONCE(!is_remote_partition(cs))) 1527 return; 1528 1529 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); 1530 1531 if (cpumask_empty(excpus)) { 1532 cs->prs_err = PERR_CPUSEMPTY; 1533 goto invalidate; 1534 } 1535 1536 adding = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus); 1537 deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus); 1538 1539 /* 1540 * Additions of remote CPUs is only allowed if those CPUs are 1541 * not allocated to other partitions and there are effective_cpus 1542 * left in the top cpuset. 1543 */ 1544 if (adding) { 1545 WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus)); 1546 if (!capable(CAP_SYS_ADMIN)) 1547 cs->prs_err = PERR_ACCESS; 1548 else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) || 1549 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)) 1550 cs->prs_err = PERR_NOCPUS; 1551 else if ((prs == PRS_ISOLATED) && 1552 !isolated_cpus_can_update(tmp->addmask, tmp->delmask)) 1553 cs->prs_err = PERR_HKEEPING; 1554 if (cs->prs_err) 1555 goto invalidate; 1556 } 1557 1558 spin_lock_irq(&callback_lock); 1559 if (adding) 1560 partition_xcpus_add(prs, NULL, tmp->addmask); 1561 if (deleting) 1562 partition_xcpus_del(prs, NULL, tmp->delmask); 1563 /* 1564 * Need to update effective_xcpus and exclusive_cpus now as 1565 * update_sibling_cpumasks() below may iterate back to the same cs. 1566 */ 1567 cpumask_copy(cs->effective_xcpus, excpus); 1568 if (xcpus) 1569 cpumask_copy(cs->exclusive_cpus, xcpus); 1570 spin_unlock_irq(&callback_lock); 1571 update_isolation_cpumasks(); 1572 if (adding || deleting) 1573 cpuset_force_rebuild(); 1574 1575 /* 1576 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1577 */ 1578 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1579 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1580 return; 1581 1582 invalidate: 1583 remote_partition_disable(cs, tmp); 1584 } 1585 1586 /** 1587 * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset 1588 * @cs: The cpuset that requests change in partition root state 1589 * @cmd: Partition root state change command 1590 * @newmask: Optional new cpumask for partcmd_update 1591 * @tmp: Temporary addmask and delmask 1592 * Return: 0 or a partition root state error code 1593 * 1594 * For partcmd_enable*, the cpuset is being transformed from a non-partition 1595 * root to a partition root. The effective_xcpus (cpus_allowed if 1596 * effective_xcpus not set) mask of the given cpuset will be taken away from 1597 * parent's effective_cpus. The function will return 0 if all the CPUs listed 1598 * in effective_xcpus can be granted or an error code will be returned. 1599 * 1600 * For partcmd_disable, the cpuset is being transformed from a partition 1601 * root back to a non-partition root. Any CPUs in effective_xcpus will be 1602 * given back to parent's effective_cpus. 0 will always be returned. 1603 * 1604 * For partcmd_update, if the optional newmask is specified, the cpu list is 1605 * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is 1606 * assumed to remain the same. The cpuset should either be a valid or invalid 1607 * partition root. The partition root state may change from valid to invalid 1608 * or vice versa. An error code will be returned if transitioning from 1609 * invalid to valid violates the exclusivity rule. 1610 * 1611 * For partcmd_invalidate, the current partition will be made invalid. 1612 * 1613 * The partcmd_enable* and partcmd_disable commands are used by 1614 * update_prstate(). An error code may be returned and the caller will check 1615 * for error. 1616 * 1617 * The partcmd_update command is used by update_cpumasks_hier() with newmask 1618 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used 1619 * by update_cpumask() with NULL newmask. In both cases, the callers won't 1620 * check for error and so partition_root_state and prs_err will be updated 1621 * directly. 1622 */ 1623 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd, 1624 struct cpumask *newmask, 1625 struct tmpmasks *tmp) 1626 { 1627 struct cpuset *parent = parent_cs(cs); 1628 int adding; /* Adding cpus to parent's effective_cpus */ 1629 int deleting; /* Deleting cpus from parent's effective_cpus */ 1630 int old_prs, new_prs; 1631 int part_error = PERR_NONE; /* Partition error? */ 1632 struct cpumask *xcpus = user_xcpus(cs); 1633 int parent_prs = parent->partition_root_state; 1634 bool nocpu; 1635 1636 lockdep_assert_cpuset_lock_held(); 1637 WARN_ON_ONCE(is_remote_partition(cs)); /* For local partition only */ 1638 1639 /* 1640 * new_prs will only be changed for the partcmd_update and 1641 * partcmd_invalidate commands. 1642 */ 1643 adding = deleting = false; 1644 old_prs = new_prs = cs->partition_root_state; 1645 1646 if (cmd == partcmd_invalidate) { 1647 if (is_partition_invalid(cs)) 1648 return 0; 1649 1650 /* 1651 * Make the current partition invalid. 1652 */ 1653 if (is_partition_valid(parent)) 1654 adding = cpumask_and(tmp->addmask, 1655 xcpus, parent->effective_xcpus); 1656 if (old_prs > 0) 1657 new_prs = -old_prs; 1658 1659 goto write_error; 1660 } 1661 1662 /* 1663 * The parent must be a partition root. 1664 * The new cpumask, if present, or the current cpus_allowed must 1665 * not be empty. 1666 */ 1667 if (!is_partition_valid(parent)) { 1668 return is_partition_invalid(parent) 1669 ? PERR_INVPARENT : PERR_NOTPART; 1670 } 1671 if (!newmask && xcpus_empty(cs)) 1672 return PERR_CPUSEMPTY; 1673 1674 nocpu = tasks_nocpu_error(parent, cs, xcpus); 1675 1676 if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) { 1677 /* 1678 * Need to call compute_excpus() in case 1679 * exclusive_cpus not set. Sibling conflict should only happen 1680 * if exclusive_cpus isn't set. 1681 */ 1682 xcpus = tmp->delmask; 1683 if (compute_excpus(cs, xcpus)) 1684 WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus)); 1685 new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED; 1686 1687 /* 1688 * Enabling partition root is not allowed if its 1689 * effective_xcpus is empty. 1690 */ 1691 if (cpumask_empty(xcpus)) 1692 return PERR_INVCPUS; 1693 1694 if (prstate_housekeeping_conflict(new_prs, xcpus)) 1695 return PERR_HKEEPING; 1696 1697 if ((new_prs == PRS_ISOLATED) && (new_prs != parent_prs) && 1698 !isolated_cpus_can_update(xcpus, NULL)) 1699 return PERR_HKEEPING; 1700 1701 if (tasks_nocpu_error(parent, cs, xcpus)) 1702 return PERR_NOCPUS; 1703 1704 /* 1705 * This function will only be called when all the preliminary 1706 * checks have passed. At this point, the following condition 1707 * should hold. 1708 * 1709 * (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus 1710 * 1711 * Warn if it is not the case. 1712 */ 1713 cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask); 1714 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus)); 1715 1716 deleting = true; 1717 } else if (cmd == partcmd_disable) { 1718 /* 1719 * May need to add cpus back to parent's effective_cpus 1720 * (and maybe removed from subpartitions_cpus/isolated_cpus) 1721 * for valid partition root. xcpus may contain CPUs that 1722 * shouldn't be removed from the two global cpumasks. 1723 */ 1724 if (is_partition_valid(cs)) { 1725 cpumask_copy(tmp->addmask, cs->effective_xcpus); 1726 adding = true; 1727 } 1728 new_prs = PRS_MEMBER; 1729 } else if (newmask) { 1730 /* 1731 * Empty cpumask is not allowed 1732 */ 1733 if (cpumask_empty(newmask)) { 1734 part_error = PERR_CPUSEMPTY; 1735 goto write_error; 1736 } 1737 1738 /* Check newmask again, whether cpus are available for parent/cs */ 1739 nocpu |= tasks_nocpu_error(parent, cs, newmask); 1740 1741 /* 1742 * partcmd_update with newmask: 1743 * 1744 * Compute add/delete mask to/from effective_cpus 1745 * 1746 * For valid partition: 1747 * addmask = exclusive_cpus & ~newmask 1748 * & parent->effective_xcpus 1749 * delmask = newmask & ~exclusive_cpus 1750 * & parent->effective_xcpus 1751 * 1752 * For invalid partition: 1753 * delmask = newmask & parent->effective_xcpus 1754 * The partition may become valid soon. 1755 */ 1756 if (is_partition_invalid(cs)) { 1757 adding = false; 1758 deleting = cpumask_and(tmp->delmask, 1759 newmask, parent->effective_xcpus); 1760 } else { 1761 cpumask_andnot(tmp->addmask, xcpus, newmask); 1762 adding = cpumask_and(tmp->addmask, tmp->addmask, 1763 parent->effective_xcpus); 1764 1765 cpumask_andnot(tmp->delmask, newmask, xcpus); 1766 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1767 parent->effective_xcpus); 1768 } 1769 1770 /* 1771 * TBD: Invalidate a currently valid child root partition may 1772 * still break isolated_cpus_can_update() rule if parent is an 1773 * isolated partition. 1774 */ 1775 if (is_partition_valid(cs) && (old_prs != parent_prs)) { 1776 if ((parent_prs == PRS_ROOT) && 1777 /* Adding to parent means removing isolated CPUs */ 1778 !isolated_cpus_can_update(tmp->delmask, tmp->addmask)) 1779 part_error = PERR_HKEEPING; 1780 if ((parent_prs == PRS_ISOLATED) && 1781 /* Adding to parent means adding isolated CPUs */ 1782 !isolated_cpus_can_update(tmp->addmask, tmp->delmask)) 1783 part_error = PERR_HKEEPING; 1784 } 1785 1786 /* 1787 * The new CPUs to be removed from parent's effective CPUs 1788 * must be present. 1789 */ 1790 if (deleting) { 1791 cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask); 1792 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus)); 1793 } 1794 1795 /* 1796 * Make partition invalid if parent's effective_cpus could 1797 * become empty and there are tasks in the parent. 1798 */ 1799 if (nocpu && (!adding || 1800 !cpumask_intersects(tmp->addmask, cpu_active_mask))) { 1801 part_error = PERR_NOCPUS; 1802 deleting = false; 1803 adding = cpumask_and(tmp->addmask, 1804 xcpus, parent->effective_xcpus); 1805 } 1806 } else { 1807 /* 1808 * partcmd_update w/o newmask 1809 * 1810 * delmask = effective_xcpus & parent->effective_cpus 1811 * 1812 * This can be called from: 1813 * 1) update_cpumasks_hier() 1814 * 2) cpuset_hotplug_update_tasks() 1815 * 1816 * Check to see if it can be transitioned from valid to 1817 * invalid partition or vice versa. 1818 * 1819 * A partition error happens when parent has tasks and all 1820 * its effective CPUs will have to be distributed out. 1821 */ 1822 if (nocpu) { 1823 part_error = PERR_NOCPUS; 1824 if (is_partition_valid(cs)) 1825 adding = cpumask_and(tmp->addmask, 1826 xcpus, parent->effective_xcpus); 1827 } else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) && 1828 cpumask_subset(xcpus, parent->effective_xcpus)) { 1829 struct cgroup_subsys_state *css; 1830 struct cpuset *child; 1831 bool exclusive = true; 1832 1833 /* 1834 * Convert invalid partition to valid has to 1835 * pass the cpu exclusivity test. 1836 */ 1837 rcu_read_lock(); 1838 cpuset_for_each_child(child, css, parent) { 1839 if (child == cs) 1840 continue; 1841 if (!cpusets_are_exclusive(cs, child)) { 1842 exclusive = false; 1843 break; 1844 } 1845 } 1846 rcu_read_unlock(); 1847 if (exclusive) 1848 deleting = cpumask_and(tmp->delmask, 1849 xcpus, parent->effective_cpus); 1850 else 1851 part_error = PERR_NOTEXCL; 1852 } 1853 } 1854 1855 write_error: 1856 if (part_error) 1857 WRITE_ONCE(cs->prs_err, part_error); 1858 1859 if (cmd == partcmd_update) { 1860 /* 1861 * Check for possible transition between valid and invalid 1862 * partition root. 1863 */ 1864 switch (cs->partition_root_state) { 1865 case PRS_ROOT: 1866 case PRS_ISOLATED: 1867 if (part_error) 1868 new_prs = -old_prs; 1869 break; 1870 case PRS_INVALID_ROOT: 1871 case PRS_INVALID_ISOLATED: 1872 if (!part_error) 1873 new_prs = -old_prs; 1874 break; 1875 } 1876 } 1877 1878 if (!adding && !deleting && (new_prs == old_prs)) 1879 return 0; 1880 1881 /* 1882 * Transitioning between invalid to valid or vice versa may require 1883 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update, 1884 * validate_change() has already been successfully called and 1885 * CPU lists in cs haven't been updated yet. So defer it to later. 1886 */ 1887 if ((old_prs != new_prs) && (cmd != partcmd_update)) { 1888 int err = update_partition_exclusive_flag(cs, new_prs); 1889 1890 if (err) 1891 return err; 1892 } 1893 1894 /* 1895 * Change the parent's effective_cpus & effective_xcpus (top cpuset 1896 * only). 1897 * 1898 * Newly added CPUs will be removed from effective_cpus and 1899 * newly deleted ones will be added back to effective_cpus. 1900 */ 1901 spin_lock_irq(&callback_lock); 1902 if (old_prs != new_prs) 1903 cs->partition_root_state = new_prs; 1904 1905 /* 1906 * Adding to parent's effective_cpus means deletion CPUs from cs 1907 * and vice versa. 1908 */ 1909 if (adding) 1910 partition_xcpus_del(old_prs, parent, tmp->addmask); 1911 if (deleting) 1912 partition_xcpus_add(new_prs, parent, tmp->delmask); 1913 1914 spin_unlock_irq(&callback_lock); 1915 update_isolation_cpumasks(); 1916 1917 if ((old_prs != new_prs) && (cmd == partcmd_update)) 1918 update_partition_exclusive_flag(cs, new_prs); 1919 1920 if (adding || deleting) { 1921 cpuset_update_tasks_cpumask(parent, tmp->addmask); 1922 update_sibling_cpumasks(parent, cs, tmp); 1923 } 1924 1925 /* 1926 * For partcmd_update without newmask, it is being called from 1927 * cpuset_handle_hotplug(). Update the load balance flag and 1928 * scheduling domain accordingly. 1929 */ 1930 if ((cmd == partcmd_update) && !newmask) 1931 update_partition_sd_lb(cs, old_prs); 1932 1933 notify_partition_change(cs, old_prs); 1934 return 0; 1935 } 1936 1937 /** 1938 * compute_partition_effective_cpumask - compute effective_cpus for partition 1939 * @cs: partition root cpuset 1940 * @new_ecpus: previously computed effective_cpus to be updated 1941 * 1942 * Compute the effective_cpus of a partition root by scanning effective_xcpus 1943 * of child partition roots and excluding their effective_xcpus. 1944 * 1945 * This has the side effect of invalidating valid child partition roots, 1946 * if necessary. Since it is called from either cpuset_hotplug_update_tasks() 1947 * or update_cpumasks_hier() where parent and children are modified 1948 * successively, we don't need to call update_parent_effective_cpumask() 1949 * and the child's effective_cpus will be updated in later iterations. 1950 * 1951 * Note that rcu_read_lock() is assumed to be held. 1952 */ 1953 static void compute_partition_effective_cpumask(struct cpuset *cs, 1954 struct cpumask *new_ecpus) 1955 { 1956 struct cgroup_subsys_state *css; 1957 struct cpuset *child; 1958 bool populated = partition_is_populated(cs, NULL); 1959 1960 /* 1961 * Check child partition roots to see if they should be 1962 * invalidated when 1963 * 1) child effective_xcpus not a subset of new 1964 * excluisve_cpus 1965 * 2) All the effective_cpus will be used up and cp 1966 * has tasks 1967 */ 1968 compute_excpus(cs, new_ecpus); 1969 cpumask_and(new_ecpus, new_ecpus, cpu_active_mask); 1970 1971 rcu_read_lock(); 1972 cpuset_for_each_child(child, css, cs) { 1973 if (!is_partition_valid(child)) 1974 continue; 1975 1976 /* 1977 * There shouldn't be a remote partition underneath another 1978 * partition root. 1979 */ 1980 WARN_ON_ONCE(is_remote_partition(child)); 1981 child->prs_err = 0; 1982 if (!cpumask_subset(child->effective_xcpus, 1983 cs->effective_xcpus)) 1984 child->prs_err = PERR_INVCPUS; 1985 else if (populated && 1986 cpumask_subset(new_ecpus, child->effective_xcpus)) 1987 child->prs_err = PERR_NOCPUS; 1988 1989 if (child->prs_err) { 1990 int old_prs = child->partition_root_state; 1991 1992 /* 1993 * Invalidate child partition 1994 */ 1995 spin_lock_irq(&callback_lock); 1996 make_partition_invalid(child); 1997 spin_unlock_irq(&callback_lock); 1998 notify_partition_change(child, old_prs); 1999 continue; 2000 } 2001 cpumask_andnot(new_ecpus, new_ecpus, 2002 child->effective_xcpus); 2003 } 2004 rcu_read_unlock(); 2005 } 2006 2007 /* 2008 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 2009 * @cs: the cpuset to consider 2010 * @tmp: temp variables for calculating effective_cpus & partition setup 2011 * @force: don't skip any descendant cpusets if set 2012 * 2013 * When configured cpumask is changed, the effective cpumasks of this cpuset 2014 * and all its descendants need to be updated. 2015 * 2016 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 2017 * 2018 * Called with cpuset_mutex held 2019 */ 2020 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, 2021 bool force) 2022 { 2023 struct cpuset *cp; 2024 struct cgroup_subsys_state *pos_css; 2025 int old_prs, new_prs; 2026 2027 rcu_read_lock(); 2028 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2029 struct cpuset *parent = parent_cs(cp); 2030 bool remote = is_remote_partition(cp); 2031 bool update_parent = false; 2032 2033 old_prs = new_prs = cp->partition_root_state; 2034 2035 /* 2036 * For child remote partition root (!= cs), we need to call 2037 * remote_cpus_update() if effective_xcpus will be changed. 2038 * Otherwise, we can skip the whole subtree. 2039 * 2040 * remote_cpus_update() will reuse tmp->new_cpus only after 2041 * its value is being processed. 2042 */ 2043 if (remote && (cp != cs)) { 2044 compute_excpus(cp, tmp->new_cpus); 2045 if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) { 2046 pos_css = css_rightmost_descendant(pos_css); 2047 continue; 2048 } 2049 rcu_read_unlock(); 2050 remote_cpus_update(cp, NULL, tmp->new_cpus, tmp); 2051 rcu_read_lock(); 2052 2053 /* Remote partition may be invalidated */ 2054 new_prs = cp->partition_root_state; 2055 remote = (new_prs == old_prs); 2056 } 2057 2058 if (remote || (is_partition_valid(parent) && is_partition_valid(cp))) 2059 compute_partition_effective_cpumask(cp, tmp->new_cpus); 2060 else 2061 compute_effective_cpumask(tmp->new_cpus, cp, parent); 2062 2063 if (remote) 2064 goto get_css; /* Ready to update cpuset data */ 2065 2066 /* 2067 * A partition with no effective_cpus is allowed as long as 2068 * there is no task associated with it. Call 2069 * update_parent_effective_cpumask() to check it. 2070 */ 2071 if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) { 2072 update_parent = true; 2073 goto update_parent_effective; 2074 } 2075 2076 /* 2077 * If it becomes empty, inherit the effective mask of the 2078 * parent, which is guaranteed to have some CPUs unless 2079 * it is a partition root that has explicitly distributed 2080 * out all its CPUs. 2081 */ 2082 if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) 2083 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 2084 2085 /* 2086 * Skip the whole subtree if 2087 * 1) the cpumask remains the same, 2088 * 2) has no partition root state, 2089 * 3) force flag not set, and 2090 * 4) for v2 load balance state same as its parent. 2091 */ 2092 if (!cp->partition_root_state && !force && 2093 cpumask_equal(tmp->new_cpus, cp->effective_cpus) && 2094 (!cpuset_v2() || 2095 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { 2096 pos_css = css_rightmost_descendant(pos_css); 2097 continue; 2098 } 2099 2100 update_parent_effective: 2101 /* 2102 * update_parent_effective_cpumask() should have been called 2103 * for cs already in update_cpumask(). We should also call 2104 * cpuset_update_tasks_cpumask() again for tasks in the parent 2105 * cpuset if the parent's effective_cpus changes. 2106 */ 2107 if ((cp != cs) && old_prs) { 2108 switch (parent->partition_root_state) { 2109 case PRS_ROOT: 2110 case PRS_ISOLATED: 2111 update_parent = true; 2112 break; 2113 2114 default: 2115 /* 2116 * When parent is not a partition root or is 2117 * invalid, child partition roots become 2118 * invalid too. 2119 */ 2120 if (is_partition_valid(cp)) 2121 new_prs = -cp->partition_root_state; 2122 WRITE_ONCE(cp->prs_err, 2123 is_partition_invalid(parent) 2124 ? PERR_INVPARENT : PERR_NOTPART); 2125 break; 2126 } 2127 } 2128 get_css: 2129 if (!css_tryget_online(&cp->css)) 2130 continue; 2131 rcu_read_unlock(); 2132 2133 if (update_parent) { 2134 update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp); 2135 /* 2136 * The cpuset partition_root_state may become 2137 * invalid. Capture it. 2138 */ 2139 new_prs = cp->partition_root_state; 2140 } 2141 2142 spin_lock_irq(&callback_lock); 2143 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 2144 cp->partition_root_state = new_prs; 2145 /* 2146 * Need to compute effective_xcpus if either exclusive_cpus 2147 * is non-empty or it is a valid partition root. 2148 */ 2149 if ((new_prs > 0) || !cpumask_empty(cp->exclusive_cpus)) 2150 compute_excpus(cp, cp->effective_xcpus); 2151 if (new_prs <= 0) 2152 reset_partition_data(cp); 2153 spin_unlock_irq(&callback_lock); 2154 2155 notify_partition_change(cp, old_prs); 2156 2157 WARN_ON(!is_in_v2_mode() && 2158 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 2159 2160 cpuset_update_tasks_cpumask(cp, cp->effective_cpus); 2161 2162 /* 2163 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE 2164 * from parent if current cpuset isn't a valid partition root 2165 * and their load balance states differ. 2166 */ 2167 if (cpuset_v2() && !is_partition_valid(cp) && 2168 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { 2169 if (is_sched_load_balance(parent)) 2170 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2171 else 2172 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2173 } 2174 2175 /* 2176 * On legacy hierarchy, if the effective cpumask of any non- 2177 * empty cpuset is changed, we need to rebuild sched domains. 2178 * On default hierarchy, the cpuset needs to be a partition 2179 * root as well. 2180 */ 2181 if (!cpumask_empty(cp->cpus_allowed) && 2182 is_sched_load_balance(cp) && 2183 (!cpuset_v2() || is_partition_valid(cp))) 2184 cpuset_force_rebuild(); 2185 2186 rcu_read_lock(); 2187 css_put(&cp->css); 2188 } 2189 rcu_read_unlock(); 2190 } 2191 2192 /** 2193 * update_sibling_cpumasks - Update siblings cpumasks 2194 * @parent: Parent cpuset 2195 * @cs: Current cpuset 2196 * @tmp: Temp variables 2197 */ 2198 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 2199 struct tmpmasks *tmp) 2200 { 2201 struct cpuset *sibling; 2202 struct cgroup_subsys_state *pos_css; 2203 2204 lockdep_assert_cpuset_lock_held(); 2205 2206 /* 2207 * Check all its siblings and call update_cpumasks_hier() 2208 * if their effective_cpus will need to be changed. 2209 * 2210 * It is possible a change in parent's effective_cpus 2211 * due to a change in a child partition's effective_xcpus will impact 2212 * its siblings even if they do not inherit parent's effective_cpus 2213 * directly. It should not impact valid partition. 2214 * 2215 * The update_cpumasks_hier() function may sleep. So we have to 2216 * release the RCU read lock before calling it. 2217 */ 2218 rcu_read_lock(); 2219 cpuset_for_each_child(sibling, pos_css, parent) { 2220 if (sibling == cs || is_partition_valid(sibling)) 2221 continue; 2222 2223 compute_effective_cpumask(tmp->new_cpus, sibling, 2224 parent); 2225 if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus)) 2226 continue; 2227 2228 if (!css_tryget_online(&sibling->css)) 2229 continue; 2230 2231 rcu_read_unlock(); 2232 update_cpumasks_hier(sibling, tmp, false); 2233 rcu_read_lock(); 2234 css_put(&sibling->css); 2235 } 2236 rcu_read_unlock(); 2237 } 2238 2239 static int parse_cpuset_cpulist(const char *buf, struct cpumask *out_mask) 2240 { 2241 int retval; 2242 2243 retval = cpulist_parse(buf, out_mask); 2244 if (retval < 0) 2245 return retval; 2246 if (!cpumask_subset(out_mask, top_cpuset.cpus_allowed)) 2247 return -EINVAL; 2248 2249 return 0; 2250 } 2251 2252 /** 2253 * validate_partition - Validate a cpuset partition configuration 2254 * @cs: The cpuset to validate 2255 * @trialcs: The trial cpuset containing proposed configuration changes 2256 * 2257 * If any validation check fails, the appropriate error code is set in the 2258 * cpuset's prs_err field. 2259 * 2260 * Return: PRS error code (0 if valid, non-zero error code if invalid) 2261 */ 2262 static enum prs_errcode validate_partition(struct cpuset *cs, struct cpuset *trialcs) 2263 { 2264 struct cpuset *parent = parent_cs(cs); 2265 2266 if (cs_is_member(trialcs)) 2267 return PERR_NONE; 2268 2269 if (cpumask_empty(trialcs->effective_xcpus)) 2270 return PERR_INVCPUS; 2271 2272 if (prstate_housekeeping_conflict(trialcs->partition_root_state, 2273 trialcs->effective_xcpus)) 2274 return PERR_HKEEPING; 2275 2276 if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) 2277 return PERR_NOCPUS; 2278 2279 return PERR_NONE; 2280 } 2281 2282 /** 2283 * partition_cpus_change - Handle partition state changes due to CPU mask updates 2284 * @cs: The target cpuset being modified 2285 * @trialcs: The trial cpuset containing proposed configuration changes 2286 * @tmp: Temporary masks for intermediate calculations 2287 * 2288 * This function handles partition state transitions triggered by CPU mask changes. 2289 * CPU modifications may cause a partition to be disabled or require state updates. 2290 */ 2291 static void partition_cpus_change(struct cpuset *cs, struct cpuset *trialcs, 2292 struct tmpmasks *tmp) 2293 { 2294 enum prs_errcode prs_err; 2295 2296 if (cs_is_member(cs)) 2297 return; 2298 2299 prs_err = validate_partition(cs, trialcs); 2300 if (prs_err) 2301 trialcs->prs_err = cs->prs_err = prs_err; 2302 2303 if (is_remote_partition(cs)) { 2304 if (trialcs->prs_err) 2305 remote_partition_disable(cs, tmp); 2306 else 2307 remote_cpus_update(cs, trialcs->exclusive_cpus, 2308 trialcs->effective_xcpus, tmp); 2309 } else { 2310 if (trialcs->prs_err) 2311 update_parent_effective_cpumask(cs, partcmd_invalidate, 2312 NULL, tmp); 2313 else 2314 update_parent_effective_cpumask(cs, partcmd_update, 2315 trialcs->effective_xcpus, tmp); 2316 } 2317 } 2318 2319 /** 2320 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 2321 * @cs: the cpuset to consider 2322 * @trialcs: trial cpuset 2323 * @buf: buffer of cpu numbers written to this cpuset 2324 */ 2325 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2326 const char *buf) 2327 { 2328 int retval; 2329 struct tmpmasks tmp; 2330 bool force = false; 2331 int old_prs = cs->partition_root_state; 2332 2333 retval = parse_cpuset_cpulist(buf, trialcs->cpus_allowed); 2334 if (retval < 0) 2335 return retval; 2336 2337 /* Nothing to do if the cpus didn't change */ 2338 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 2339 return 0; 2340 2341 compute_trialcs_excpus(trialcs, cs); 2342 trialcs->prs_err = PERR_NONE; 2343 2344 retval = validate_change(cs, trialcs); 2345 if (retval < 0) 2346 return retval; 2347 2348 if (alloc_tmpmasks(&tmp)) 2349 return -ENOMEM; 2350 2351 /* 2352 * Check all the descendants in update_cpumasks_hier() if 2353 * effective_xcpus is to be changed. 2354 */ 2355 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); 2356 2357 partition_cpus_change(cs, trialcs, &tmp); 2358 2359 spin_lock_irq(&callback_lock); 2360 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 2361 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2362 if ((old_prs > 0) && !is_partition_valid(cs)) 2363 reset_partition_data(cs); 2364 spin_unlock_irq(&callback_lock); 2365 2366 /* effective_cpus/effective_xcpus will be updated here */ 2367 update_cpumasks_hier(cs, &tmp, force); 2368 2369 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2370 if (cs->partition_root_state) 2371 update_partition_sd_lb(cs, old_prs); 2372 2373 free_tmpmasks(&tmp); 2374 return retval; 2375 } 2376 2377 /** 2378 * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset 2379 * @cs: the cpuset to consider 2380 * @trialcs: trial cpuset 2381 * @buf: buffer of cpu numbers written to this cpuset 2382 * 2383 * The tasks' cpumask will be updated if cs is a valid partition root. 2384 */ 2385 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2386 const char *buf) 2387 { 2388 int retval; 2389 struct tmpmasks tmp; 2390 bool force = false; 2391 int old_prs = cs->partition_root_state; 2392 2393 retval = parse_cpuset_cpulist(buf, trialcs->exclusive_cpus); 2394 if (retval < 0) 2395 return retval; 2396 2397 /* Nothing to do if the CPUs didn't change */ 2398 if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus)) 2399 return 0; 2400 2401 /* 2402 * Reject the change if there is exclusive CPUs conflict with 2403 * the siblings. 2404 */ 2405 if (compute_trialcs_excpus(trialcs, cs)) 2406 return -EINVAL; 2407 2408 /* 2409 * Check all the descendants in update_cpumasks_hier() if 2410 * effective_xcpus is to be changed. 2411 */ 2412 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); 2413 2414 retval = validate_change(cs, trialcs); 2415 if (retval) 2416 return retval; 2417 2418 if (alloc_tmpmasks(&tmp)) 2419 return -ENOMEM; 2420 2421 trialcs->prs_err = PERR_NONE; 2422 partition_cpus_change(cs, trialcs, &tmp); 2423 2424 spin_lock_irq(&callback_lock); 2425 cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus); 2426 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2427 if ((old_prs > 0) && !is_partition_valid(cs)) 2428 reset_partition_data(cs); 2429 spin_unlock_irq(&callback_lock); 2430 2431 /* 2432 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus 2433 * of the subtree when it is a valid partition root or effective_xcpus 2434 * is updated. 2435 */ 2436 if (is_partition_valid(cs) || force) 2437 update_cpumasks_hier(cs, &tmp, force); 2438 2439 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2440 if (cs->partition_root_state) 2441 update_partition_sd_lb(cs, old_prs); 2442 2443 free_tmpmasks(&tmp); 2444 return 0; 2445 } 2446 2447 /* 2448 * Migrate memory region from one set of nodes to another. This is 2449 * performed asynchronously as it can be called from process migration path 2450 * holding locks involved in process management. All mm migrations are 2451 * performed in the queued order and can be waited for by flushing 2452 * cpuset_migrate_mm_wq. 2453 */ 2454 2455 struct cpuset_migrate_mm_work { 2456 struct work_struct work; 2457 struct mm_struct *mm; 2458 nodemask_t from; 2459 nodemask_t to; 2460 }; 2461 2462 static void cpuset_migrate_mm_workfn(struct work_struct *work) 2463 { 2464 struct cpuset_migrate_mm_work *mwork = 2465 container_of(work, struct cpuset_migrate_mm_work, work); 2466 2467 /* on a wq worker, no need to worry about %current's mems_allowed */ 2468 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 2469 mmput(mwork->mm); 2470 kfree(mwork); 2471 } 2472 2473 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 2474 const nodemask_t *to) 2475 { 2476 struct cpuset_migrate_mm_work *mwork; 2477 2478 if (nodes_equal(*from, *to)) { 2479 mmput(mm); 2480 return; 2481 } 2482 2483 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 2484 if (mwork) { 2485 mwork->mm = mm; 2486 mwork->from = *from; 2487 mwork->to = *to; 2488 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 2489 queue_work(cpuset_migrate_mm_wq, &mwork->work); 2490 } else { 2491 mmput(mm); 2492 } 2493 } 2494 2495 static void flush_migrate_mm_task_workfn(struct callback_head *head) 2496 { 2497 flush_workqueue(cpuset_migrate_mm_wq); 2498 kfree(head); 2499 } 2500 2501 static void schedule_flush_migrate_mm(void) 2502 { 2503 struct callback_head *flush_cb; 2504 2505 flush_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL); 2506 if (!flush_cb) 2507 return; 2508 2509 init_task_work(flush_cb, flush_migrate_mm_task_workfn); 2510 2511 if (task_work_add(current, flush_cb, TWA_RESUME)) 2512 kfree(flush_cb); 2513 } 2514 2515 /* 2516 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 2517 * @tsk: the task to change 2518 * @newmems: new nodes that the task will be set 2519 * 2520 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 2521 * and rebind an eventual tasks' mempolicy. If the task is allocating in 2522 * parallel, it might temporarily see an empty intersection, which results in 2523 * a seqlock check and retry before OOM or allocation failure. 2524 */ 2525 static void cpuset_change_task_nodemask(struct task_struct *tsk, 2526 nodemask_t *newmems) 2527 { 2528 task_lock(tsk); 2529 2530 local_irq_disable(); 2531 write_seqcount_begin(&tsk->mems_allowed_seq); 2532 2533 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 2534 mpol_rebind_task(tsk, newmems); 2535 tsk->mems_allowed = *newmems; 2536 2537 write_seqcount_end(&tsk->mems_allowed_seq); 2538 local_irq_enable(); 2539 2540 task_unlock(tsk); 2541 } 2542 2543 static void *cpuset_being_rebound; 2544 2545 /** 2546 * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 2547 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 2548 * 2549 * Iterate through each task of @cs updating its mems_allowed to the 2550 * effective cpuset's. As this function is called with cpuset_mutex held, 2551 * cpuset membership stays stable. 2552 */ 2553 void cpuset_update_tasks_nodemask(struct cpuset *cs) 2554 { 2555 static nodemask_t newmems; /* protected by cpuset_mutex */ 2556 struct css_task_iter it; 2557 struct task_struct *task; 2558 2559 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 2560 2561 guarantee_online_mems(cs, &newmems); 2562 2563 /* 2564 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 2565 * take while holding tasklist_lock. Forks can happen - the 2566 * mpol_dup() cpuset_being_rebound check will catch such forks, 2567 * and rebind their vma mempolicies too. Because we still hold 2568 * the global cpuset_mutex, we know that no other rebind effort 2569 * will be contending for the global variable cpuset_being_rebound. 2570 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 2571 * is idempotent. Also migrate pages in each mm to new nodes. 2572 */ 2573 css_task_iter_start(&cs->css, 0, &it); 2574 while ((task = css_task_iter_next(&it))) { 2575 struct mm_struct *mm; 2576 bool migrate; 2577 2578 cpuset_change_task_nodemask(task, &newmems); 2579 2580 mm = get_task_mm(task); 2581 if (!mm) 2582 continue; 2583 2584 migrate = is_memory_migrate(cs); 2585 2586 mpol_rebind_mm(mm, &cs->mems_allowed); 2587 if (migrate) 2588 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 2589 else 2590 mmput(mm); 2591 } 2592 css_task_iter_end(&it); 2593 2594 /* 2595 * All the tasks' nodemasks have been updated, update 2596 * cs->old_mems_allowed. 2597 */ 2598 cs->old_mems_allowed = newmems; 2599 2600 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 2601 cpuset_being_rebound = NULL; 2602 } 2603 2604 /* 2605 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 2606 * @cs: the cpuset to consider 2607 * @new_mems: a temp variable for calculating new effective_mems 2608 * 2609 * When configured nodemask is changed, the effective nodemasks of this cpuset 2610 * and all its descendants need to be updated. 2611 * 2612 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 2613 * 2614 * Called with cpuset_mutex held 2615 */ 2616 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 2617 { 2618 struct cpuset *cp; 2619 struct cgroup_subsys_state *pos_css; 2620 2621 rcu_read_lock(); 2622 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2623 struct cpuset *parent = parent_cs(cp); 2624 2625 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 2626 2627 /* 2628 * If it becomes empty, inherit the effective mask of the 2629 * parent, which is guaranteed to have some MEMs. 2630 */ 2631 if (is_in_v2_mode() && nodes_empty(*new_mems)) 2632 *new_mems = parent->effective_mems; 2633 2634 /* Skip the whole subtree if the nodemask remains the same. */ 2635 if (nodes_equal(*new_mems, cp->effective_mems)) { 2636 pos_css = css_rightmost_descendant(pos_css); 2637 continue; 2638 } 2639 2640 if (!css_tryget_online(&cp->css)) 2641 continue; 2642 rcu_read_unlock(); 2643 2644 spin_lock_irq(&callback_lock); 2645 cp->effective_mems = *new_mems; 2646 spin_unlock_irq(&callback_lock); 2647 2648 WARN_ON(!is_in_v2_mode() && 2649 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 2650 2651 cpuset_update_tasks_nodemask(cp); 2652 2653 rcu_read_lock(); 2654 css_put(&cp->css); 2655 } 2656 rcu_read_unlock(); 2657 } 2658 2659 /* 2660 * Handle user request to change the 'mems' memory placement 2661 * of a cpuset. Needs to validate the request, update the 2662 * cpusets mems_allowed, and for each task in the cpuset, 2663 * update mems_allowed and rebind task's mempolicy and any vma 2664 * mempolicies and if the cpuset is marked 'memory_migrate', 2665 * migrate the tasks pages to the new memory. 2666 * 2667 * Call with cpuset_mutex held. May take callback_lock during call. 2668 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 2669 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 2670 * their mempolicies to the cpusets new mems_allowed. 2671 */ 2672 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 2673 const char *buf) 2674 { 2675 int retval; 2676 2677 /* 2678 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 2679 * The validate_change() call ensures that cpusets with tasks have memory. 2680 */ 2681 retval = nodelist_parse(buf, trialcs->mems_allowed); 2682 if (retval < 0) 2683 return retval; 2684 2685 if (!nodes_subset(trialcs->mems_allowed, 2686 top_cpuset.mems_allowed)) 2687 return -EINVAL; 2688 2689 /* No change? nothing to do */ 2690 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) 2691 return 0; 2692 2693 retval = validate_change(cs, trialcs); 2694 if (retval < 0) 2695 return retval; 2696 2697 check_insane_mems_config(&trialcs->mems_allowed); 2698 2699 spin_lock_irq(&callback_lock); 2700 cs->mems_allowed = trialcs->mems_allowed; 2701 spin_unlock_irq(&callback_lock); 2702 2703 /* use trialcs->mems_allowed as a temp variable */ 2704 update_nodemasks_hier(cs, &trialcs->mems_allowed); 2705 return 0; 2706 } 2707 2708 bool current_cpuset_is_being_rebound(void) 2709 { 2710 bool ret; 2711 2712 rcu_read_lock(); 2713 ret = task_cs(current) == cpuset_being_rebound; 2714 rcu_read_unlock(); 2715 2716 return ret; 2717 } 2718 2719 /* 2720 * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag 2721 * bit: the bit to update (see cpuset_flagbits_t) 2722 * cs: the cpuset to update 2723 * turning_on: whether the flag is being set or cleared 2724 * 2725 * Call with cpuset_mutex held. 2726 */ 2727 2728 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 2729 int turning_on) 2730 { 2731 struct cpuset *trialcs; 2732 int balance_flag_changed; 2733 int spread_flag_changed; 2734 int err; 2735 2736 trialcs = dup_or_alloc_cpuset(cs); 2737 if (!trialcs) 2738 return -ENOMEM; 2739 2740 if (turning_on) 2741 set_bit(bit, &trialcs->flags); 2742 else 2743 clear_bit(bit, &trialcs->flags); 2744 2745 err = validate_change(cs, trialcs); 2746 if (err < 0) 2747 goto out; 2748 2749 balance_flag_changed = (is_sched_load_balance(cs) != 2750 is_sched_load_balance(trialcs)); 2751 2752 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 2753 || (is_spread_page(cs) != is_spread_page(trialcs))); 2754 2755 spin_lock_irq(&callback_lock); 2756 cs->flags = trialcs->flags; 2757 spin_unlock_irq(&callback_lock); 2758 2759 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) { 2760 if (cpuset_v2()) 2761 cpuset_force_rebuild(); 2762 else 2763 rebuild_sched_domains_locked(); 2764 } 2765 2766 if (spread_flag_changed) 2767 cpuset1_update_tasks_flags(cs); 2768 out: 2769 free_cpuset(trialcs); 2770 return err; 2771 } 2772 2773 /** 2774 * update_prstate - update partition_root_state 2775 * @cs: the cpuset to update 2776 * @new_prs: new partition root state 2777 * Return: 0 if successful, != 0 if error 2778 * 2779 * Call with cpuset_mutex held. 2780 */ 2781 static int update_prstate(struct cpuset *cs, int new_prs) 2782 { 2783 int err = PERR_NONE, old_prs = cs->partition_root_state; 2784 struct cpuset *parent = parent_cs(cs); 2785 struct tmpmasks tmpmask; 2786 bool isolcpus_updated = false; 2787 2788 if (old_prs == new_prs) 2789 return 0; 2790 2791 /* 2792 * Treat a previously invalid partition root as if it is a "member". 2793 */ 2794 if (new_prs && is_partition_invalid(cs)) 2795 old_prs = PRS_MEMBER; 2796 2797 if (alloc_tmpmasks(&tmpmask)) 2798 return -ENOMEM; 2799 2800 err = update_partition_exclusive_flag(cs, new_prs); 2801 if (err) 2802 goto out; 2803 2804 if (!old_prs) { 2805 /* 2806 * cpus_allowed and exclusive_cpus cannot be both empty. 2807 */ 2808 if (xcpus_empty(cs)) { 2809 err = PERR_CPUSEMPTY; 2810 goto out; 2811 } 2812 2813 /* 2814 * We don't support the creation of a new local partition with 2815 * a remote partition underneath it. This unsupported 2816 * setting can happen only if parent is the top_cpuset because 2817 * a remote partition cannot be created underneath an existing 2818 * local or remote partition. 2819 */ 2820 if ((parent == &top_cpuset) && 2821 cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) { 2822 err = PERR_REMOTE; 2823 goto out; 2824 } 2825 2826 /* 2827 * If parent is valid partition, enable local partiion. 2828 * Otherwise, enable a remote partition. 2829 */ 2830 if (is_partition_valid(parent)) { 2831 enum partition_cmd cmd = (new_prs == PRS_ROOT) 2832 ? partcmd_enable : partcmd_enablei; 2833 2834 err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask); 2835 } else { 2836 err = remote_partition_enable(cs, new_prs, &tmpmask); 2837 } 2838 } else if (old_prs && new_prs) { 2839 /* 2840 * A change in load balance state only, no change in cpumasks. 2841 * Need to update isolated_cpus. 2842 */ 2843 if (((new_prs == PRS_ISOLATED) && 2844 !isolated_cpus_can_update(cs->effective_xcpus, NULL)) || 2845 prstate_housekeeping_conflict(new_prs, cs->effective_xcpus)) 2846 err = PERR_HKEEPING; 2847 else 2848 isolcpus_updated = true; 2849 } else { 2850 /* 2851 * Switching back to member is always allowed even if it 2852 * disables child partitions. 2853 */ 2854 if (is_remote_partition(cs)) 2855 remote_partition_disable(cs, &tmpmask); 2856 else 2857 update_parent_effective_cpumask(cs, partcmd_disable, 2858 NULL, &tmpmask); 2859 2860 /* 2861 * Invalidation of child partitions will be done in 2862 * update_cpumasks_hier(). 2863 */ 2864 } 2865 out: 2866 /* 2867 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error 2868 * happens. 2869 */ 2870 if (err) { 2871 new_prs = -new_prs; 2872 update_partition_exclusive_flag(cs, new_prs); 2873 } 2874 2875 spin_lock_irq(&callback_lock); 2876 cs->partition_root_state = new_prs; 2877 WRITE_ONCE(cs->prs_err, err); 2878 if (!is_partition_valid(cs)) 2879 reset_partition_data(cs); 2880 else if (isolcpus_updated) 2881 isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus); 2882 spin_unlock_irq(&callback_lock); 2883 update_isolation_cpumasks(); 2884 2885 /* Force update if switching back to member & update effective_xcpus */ 2886 update_cpumasks_hier(cs, &tmpmask, !new_prs); 2887 2888 /* A newly created partition must have effective_xcpus set */ 2889 WARN_ON_ONCE(!old_prs && (new_prs > 0) 2890 && cpumask_empty(cs->effective_xcpus)); 2891 2892 /* Update sched domains and load balance flag */ 2893 update_partition_sd_lb(cs, old_prs); 2894 2895 notify_partition_change(cs, old_prs); 2896 if (force_sd_rebuild) 2897 rebuild_sched_domains_locked(); 2898 free_tmpmasks(&tmpmask); 2899 return 0; 2900 } 2901 2902 static struct cpuset *cpuset_attach_old_cs; 2903 2904 /* 2905 * Check to see if a cpuset can accept a new task 2906 * For v1, cpus_allowed and mems_allowed can't be empty. 2907 * For v2, effective_cpus can't be empty. 2908 * Note that in v1, effective_cpus = cpus_allowed. 2909 */ 2910 static int cpuset_can_attach_check(struct cpuset *cs) 2911 { 2912 if (cpumask_empty(cs->effective_cpus) || 2913 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) 2914 return -ENOSPC; 2915 return 0; 2916 } 2917 2918 static void reset_migrate_dl_data(struct cpuset *cs) 2919 { 2920 cs->nr_migrate_dl_tasks = 0; 2921 cs->sum_migrate_dl_bw = 0; 2922 } 2923 2924 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 2925 static int cpuset_can_attach(struct cgroup_taskset *tset) 2926 { 2927 struct cgroup_subsys_state *css; 2928 struct cpuset *cs, *oldcs; 2929 struct task_struct *task; 2930 bool cpus_updated, mems_updated; 2931 int ret; 2932 2933 /* used later by cpuset_attach() */ 2934 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2935 oldcs = cpuset_attach_old_cs; 2936 cs = css_cs(css); 2937 2938 mutex_lock(&cpuset_mutex); 2939 2940 /* Check to see if task is allowed in the cpuset */ 2941 ret = cpuset_can_attach_check(cs); 2942 if (ret) 2943 goto out_unlock; 2944 2945 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); 2946 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 2947 2948 cgroup_taskset_for_each(task, css, tset) { 2949 ret = task_can_attach(task); 2950 if (ret) 2951 goto out_unlock; 2952 2953 /* 2954 * Skip rights over task check in v2 when nothing changes, 2955 * migration permission derives from hierarchy ownership in 2956 * cgroup_procs_write_permission()). 2957 */ 2958 if (!cpuset_v2() || (cpus_updated || mems_updated)) { 2959 ret = security_task_setscheduler(task); 2960 if (ret) 2961 goto out_unlock; 2962 } 2963 2964 if (dl_task(task)) { 2965 cs->nr_migrate_dl_tasks++; 2966 cs->sum_migrate_dl_bw += task->dl.dl_bw; 2967 } 2968 } 2969 2970 if (!cs->nr_migrate_dl_tasks) 2971 goto out_success; 2972 2973 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { 2974 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); 2975 2976 if (unlikely(cpu >= nr_cpu_ids)) { 2977 reset_migrate_dl_data(cs); 2978 ret = -EINVAL; 2979 goto out_unlock; 2980 } 2981 2982 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); 2983 if (ret) { 2984 reset_migrate_dl_data(cs); 2985 goto out_unlock; 2986 } 2987 } 2988 2989 out_success: 2990 /* 2991 * Mark attach is in progress. This makes validate_change() fail 2992 * changes which zero cpus/mems_allowed. 2993 */ 2994 cs->attach_in_progress++; 2995 out_unlock: 2996 mutex_unlock(&cpuset_mutex); 2997 return ret; 2998 } 2999 3000 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 3001 { 3002 struct cgroup_subsys_state *css; 3003 struct cpuset *cs; 3004 3005 cgroup_taskset_first(tset, &css); 3006 cs = css_cs(css); 3007 3008 mutex_lock(&cpuset_mutex); 3009 dec_attach_in_progress_locked(cs); 3010 3011 if (cs->nr_migrate_dl_tasks) { 3012 int cpu = cpumask_any(cs->effective_cpus); 3013 3014 dl_bw_free(cpu, cs->sum_migrate_dl_bw); 3015 reset_migrate_dl_data(cs); 3016 } 3017 3018 mutex_unlock(&cpuset_mutex); 3019 } 3020 3021 /* 3022 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() 3023 * but we can't allocate it dynamically there. Define it global and 3024 * allocate from cpuset_init(). 3025 */ 3026 static cpumask_var_t cpus_attach; 3027 static nodemask_t cpuset_attach_nodemask_to; 3028 3029 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) 3030 { 3031 lockdep_assert_cpuset_lock_held(); 3032 3033 if (cs != &top_cpuset) 3034 guarantee_active_cpus(task, cpus_attach); 3035 else 3036 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), 3037 subpartitions_cpus); 3038 /* 3039 * can_attach beforehand should guarantee that this doesn't 3040 * fail. TODO: have a better way to handle failure here 3041 */ 3042 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 3043 3044 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 3045 cpuset1_update_task_spread_flags(cs, task); 3046 } 3047 3048 static void cpuset_attach(struct cgroup_taskset *tset) 3049 { 3050 struct task_struct *task; 3051 struct task_struct *leader; 3052 struct cgroup_subsys_state *css; 3053 struct cpuset *cs; 3054 struct cpuset *oldcs = cpuset_attach_old_cs; 3055 bool cpus_updated, mems_updated; 3056 bool queue_task_work = false; 3057 3058 cgroup_taskset_first(tset, &css); 3059 cs = css_cs(css); 3060 3061 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ 3062 mutex_lock(&cpuset_mutex); 3063 cpus_updated = !cpumask_equal(cs->effective_cpus, 3064 oldcs->effective_cpus); 3065 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 3066 3067 /* 3068 * In the default hierarchy, enabling cpuset in the child cgroups 3069 * will trigger a number of cpuset_attach() calls with no change 3070 * in effective cpus and mems. In that case, we can optimize out 3071 * by skipping the task iteration and update. 3072 */ 3073 if (cpuset_v2() && !cpus_updated && !mems_updated) { 3074 cpuset_attach_nodemask_to = cs->effective_mems; 3075 goto out; 3076 } 3077 3078 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3079 3080 cgroup_taskset_for_each(task, css, tset) 3081 cpuset_attach_task(cs, task); 3082 3083 /* 3084 * Change mm for all threadgroup leaders. This is expensive and may 3085 * sleep and should be moved outside migration path proper. Skip it 3086 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is 3087 * not set. 3088 */ 3089 cpuset_attach_nodemask_to = cs->effective_mems; 3090 if (!is_memory_migrate(cs) && !mems_updated) 3091 goto out; 3092 3093 cgroup_taskset_for_each_leader(leader, css, tset) { 3094 struct mm_struct *mm = get_task_mm(leader); 3095 3096 if (mm) { 3097 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 3098 3099 /* 3100 * old_mems_allowed is the same with mems_allowed 3101 * here, except if this task is being moved 3102 * automatically due to hotplug. In that case 3103 * @mems_allowed has been updated and is empty, so 3104 * @old_mems_allowed is the right nodesets that we 3105 * migrate mm from. 3106 */ 3107 if (is_memory_migrate(cs)) { 3108 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 3109 &cpuset_attach_nodemask_to); 3110 queue_task_work = true; 3111 } else 3112 mmput(mm); 3113 } 3114 } 3115 3116 out: 3117 if (queue_task_work) 3118 schedule_flush_migrate_mm(); 3119 cs->old_mems_allowed = cpuset_attach_nodemask_to; 3120 3121 if (cs->nr_migrate_dl_tasks) { 3122 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; 3123 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; 3124 reset_migrate_dl_data(cs); 3125 } 3126 3127 dec_attach_in_progress_locked(cs); 3128 3129 mutex_unlock(&cpuset_mutex); 3130 } 3131 3132 /* 3133 * Common handling for a write to a "cpus" or "mems" file. 3134 */ 3135 ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 3136 char *buf, size_t nbytes, loff_t off) 3137 { 3138 struct cpuset *cs = css_cs(of_css(of)); 3139 struct cpuset *trialcs; 3140 int retval = -ENODEV; 3141 3142 /* root is read-only */ 3143 if (cs == &top_cpuset) 3144 return -EACCES; 3145 3146 buf = strstrip(buf); 3147 cpuset_full_lock(); 3148 if (!is_cpuset_online(cs)) 3149 goto out_unlock; 3150 3151 trialcs = dup_or_alloc_cpuset(cs); 3152 if (!trialcs) { 3153 retval = -ENOMEM; 3154 goto out_unlock; 3155 } 3156 3157 switch (of_cft(of)->private) { 3158 case FILE_CPULIST: 3159 retval = update_cpumask(cs, trialcs, buf); 3160 break; 3161 case FILE_EXCLUSIVE_CPULIST: 3162 retval = update_exclusive_cpumask(cs, trialcs, buf); 3163 break; 3164 case FILE_MEMLIST: 3165 retval = update_nodemask(cs, trialcs, buf); 3166 break; 3167 default: 3168 retval = -EINVAL; 3169 break; 3170 } 3171 3172 free_cpuset(trialcs); 3173 if (force_sd_rebuild) 3174 rebuild_sched_domains_locked(); 3175 out_unlock: 3176 cpuset_full_unlock(); 3177 if (of_cft(of)->private == FILE_MEMLIST) 3178 schedule_flush_migrate_mm(); 3179 return retval ?: nbytes; 3180 } 3181 3182 /* 3183 * These ascii lists should be read in a single call, by using a user 3184 * buffer large enough to hold the entire map. If read in smaller 3185 * chunks, there is no guarantee of atomicity. Since the display format 3186 * used, list of ranges of sequential numbers, is variable length, 3187 * and since these maps can change value dynamically, one could read 3188 * gibberish by doing partial reads while a list was changing. 3189 */ 3190 int cpuset_common_seq_show(struct seq_file *sf, void *v) 3191 { 3192 struct cpuset *cs = css_cs(seq_css(sf)); 3193 cpuset_filetype_t type = seq_cft(sf)->private; 3194 int ret = 0; 3195 3196 spin_lock_irq(&callback_lock); 3197 3198 switch (type) { 3199 case FILE_CPULIST: 3200 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 3201 break; 3202 case FILE_MEMLIST: 3203 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 3204 break; 3205 case FILE_EFFECTIVE_CPULIST: 3206 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 3207 break; 3208 case FILE_EFFECTIVE_MEMLIST: 3209 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 3210 break; 3211 case FILE_EXCLUSIVE_CPULIST: 3212 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus)); 3213 break; 3214 case FILE_EFFECTIVE_XCPULIST: 3215 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus)); 3216 break; 3217 case FILE_SUBPARTS_CPULIST: 3218 seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus)); 3219 break; 3220 case FILE_ISOLATED_CPULIST: 3221 seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus)); 3222 break; 3223 default: 3224 ret = -EINVAL; 3225 } 3226 3227 spin_unlock_irq(&callback_lock); 3228 return ret; 3229 } 3230 3231 static int cpuset_partition_show(struct seq_file *seq, void *v) 3232 { 3233 struct cpuset *cs = css_cs(seq_css(seq)); 3234 const char *err, *type = NULL; 3235 3236 switch (cs->partition_root_state) { 3237 case PRS_ROOT: 3238 seq_puts(seq, "root\n"); 3239 break; 3240 case PRS_ISOLATED: 3241 seq_puts(seq, "isolated\n"); 3242 break; 3243 case PRS_MEMBER: 3244 seq_puts(seq, "member\n"); 3245 break; 3246 case PRS_INVALID_ROOT: 3247 type = "root"; 3248 fallthrough; 3249 case PRS_INVALID_ISOLATED: 3250 if (!type) 3251 type = "isolated"; 3252 err = perr_strings[READ_ONCE(cs->prs_err)]; 3253 if (err) 3254 seq_printf(seq, "%s invalid (%s)\n", type, err); 3255 else 3256 seq_printf(seq, "%s invalid\n", type); 3257 break; 3258 } 3259 return 0; 3260 } 3261 3262 static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf, 3263 size_t nbytes, loff_t off) 3264 { 3265 struct cpuset *cs = css_cs(of_css(of)); 3266 int val; 3267 int retval = -ENODEV; 3268 3269 buf = strstrip(buf); 3270 3271 if (!strcmp(buf, "root")) 3272 val = PRS_ROOT; 3273 else if (!strcmp(buf, "member")) 3274 val = PRS_MEMBER; 3275 else if (!strcmp(buf, "isolated")) 3276 val = PRS_ISOLATED; 3277 else 3278 return -EINVAL; 3279 3280 cpuset_full_lock(); 3281 if (is_cpuset_online(cs)) 3282 retval = update_prstate(cs, val); 3283 cpuset_full_unlock(); 3284 return retval ?: nbytes; 3285 } 3286 3287 /* 3288 * This is currently a minimal set for the default hierarchy. It can be 3289 * expanded later on by migrating more features and control files from v1. 3290 */ 3291 static struct cftype dfl_files[] = { 3292 { 3293 .name = "cpus", 3294 .seq_show = cpuset_common_seq_show, 3295 .write = cpuset_write_resmask, 3296 .max_write_len = (100U + 6 * NR_CPUS), 3297 .private = FILE_CPULIST, 3298 .flags = CFTYPE_NOT_ON_ROOT, 3299 }, 3300 3301 { 3302 .name = "mems", 3303 .seq_show = cpuset_common_seq_show, 3304 .write = cpuset_write_resmask, 3305 .max_write_len = (100U + 6 * MAX_NUMNODES), 3306 .private = FILE_MEMLIST, 3307 .flags = CFTYPE_NOT_ON_ROOT, 3308 }, 3309 3310 { 3311 .name = "cpus.effective", 3312 .seq_show = cpuset_common_seq_show, 3313 .private = FILE_EFFECTIVE_CPULIST, 3314 }, 3315 3316 { 3317 .name = "mems.effective", 3318 .seq_show = cpuset_common_seq_show, 3319 .private = FILE_EFFECTIVE_MEMLIST, 3320 }, 3321 3322 { 3323 .name = "cpus.partition", 3324 .seq_show = cpuset_partition_show, 3325 .write = cpuset_partition_write, 3326 .private = FILE_PARTITION_ROOT, 3327 .flags = CFTYPE_NOT_ON_ROOT, 3328 .file_offset = offsetof(struct cpuset, partition_file), 3329 }, 3330 3331 { 3332 .name = "cpus.exclusive", 3333 .seq_show = cpuset_common_seq_show, 3334 .write = cpuset_write_resmask, 3335 .max_write_len = (100U + 6 * NR_CPUS), 3336 .private = FILE_EXCLUSIVE_CPULIST, 3337 .flags = CFTYPE_NOT_ON_ROOT, 3338 }, 3339 3340 { 3341 .name = "cpus.exclusive.effective", 3342 .seq_show = cpuset_common_seq_show, 3343 .private = FILE_EFFECTIVE_XCPULIST, 3344 .flags = CFTYPE_NOT_ON_ROOT, 3345 }, 3346 3347 { 3348 .name = "cpus.subpartitions", 3349 .seq_show = cpuset_common_seq_show, 3350 .private = FILE_SUBPARTS_CPULIST, 3351 .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG, 3352 }, 3353 3354 { 3355 .name = "cpus.isolated", 3356 .seq_show = cpuset_common_seq_show, 3357 .private = FILE_ISOLATED_CPULIST, 3358 .flags = CFTYPE_ONLY_ON_ROOT, 3359 }, 3360 3361 { } /* terminate */ 3362 }; 3363 3364 3365 /** 3366 * cpuset_css_alloc - Allocate a cpuset css 3367 * @parent_css: Parent css of the control group that the new cpuset will be 3368 * part of 3369 * Return: cpuset css on success, -ENOMEM on failure. 3370 * 3371 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return 3372 * top cpuset css otherwise. 3373 */ 3374 static struct cgroup_subsys_state * 3375 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 3376 { 3377 struct cpuset *cs; 3378 3379 if (!parent_css) 3380 return &top_cpuset.css; 3381 3382 cs = dup_or_alloc_cpuset(NULL); 3383 if (!cs) 3384 return ERR_PTR(-ENOMEM); 3385 3386 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3387 cpuset1_init(cs); 3388 3389 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 3390 if (cpuset_v2()) 3391 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 3392 3393 return &cs->css; 3394 } 3395 3396 static int cpuset_css_online(struct cgroup_subsys_state *css) 3397 { 3398 struct cpuset *cs = css_cs(css); 3399 struct cpuset *parent = parent_cs(cs); 3400 3401 if (!parent) 3402 return 0; 3403 3404 cpuset_full_lock(); 3405 /* 3406 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated 3407 */ 3408 if (cpuset_v2() && !is_sched_load_balance(parent)) 3409 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3410 3411 cpuset_inc(); 3412 3413 spin_lock_irq(&callback_lock); 3414 if (is_in_v2_mode()) { 3415 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 3416 cs->effective_mems = parent->effective_mems; 3417 } 3418 spin_unlock_irq(&callback_lock); 3419 cpuset1_online_css(css); 3420 3421 cpuset_full_unlock(); 3422 return 0; 3423 } 3424 3425 /* 3426 * If the cpuset being removed has its flag 'sched_load_balance' 3427 * enabled, then simulate turning sched_load_balance off, which 3428 * will call rebuild_sched_domains_locked(). That is not needed 3429 * in the default hierarchy where only changes in partition 3430 * will cause repartitioning. 3431 */ 3432 static void cpuset_css_offline(struct cgroup_subsys_state *css) 3433 { 3434 struct cpuset *cs = css_cs(css); 3435 3436 cpuset_full_lock(); 3437 if (!cpuset_v2() && is_sched_load_balance(cs)) 3438 cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 3439 3440 cpuset_dec(); 3441 cpuset_full_unlock(); 3442 } 3443 3444 /* 3445 * If a dying cpuset has the 'cpus.partition' enabled, turn it off by 3446 * changing it back to member to free its exclusive CPUs back to the pool to 3447 * be used by other online cpusets. 3448 */ 3449 static void cpuset_css_killed(struct cgroup_subsys_state *css) 3450 { 3451 struct cpuset *cs = css_cs(css); 3452 3453 cpuset_full_lock(); 3454 /* Reset valid partition back to member */ 3455 if (is_partition_valid(cs)) 3456 update_prstate(cs, PRS_MEMBER); 3457 cpuset_full_unlock(); 3458 } 3459 3460 static void cpuset_css_free(struct cgroup_subsys_state *css) 3461 { 3462 struct cpuset *cs = css_cs(css); 3463 3464 free_cpuset(cs); 3465 } 3466 3467 static void cpuset_bind(struct cgroup_subsys_state *root_css) 3468 { 3469 mutex_lock(&cpuset_mutex); 3470 spin_lock_irq(&callback_lock); 3471 3472 if (is_in_v2_mode()) { 3473 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 3474 cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask); 3475 top_cpuset.mems_allowed = node_possible_map; 3476 } else { 3477 cpumask_copy(top_cpuset.cpus_allowed, 3478 top_cpuset.effective_cpus); 3479 top_cpuset.mems_allowed = top_cpuset.effective_mems; 3480 } 3481 3482 spin_unlock_irq(&callback_lock); 3483 mutex_unlock(&cpuset_mutex); 3484 } 3485 3486 /* 3487 * In case the child is cloned into a cpuset different from its parent, 3488 * additional checks are done to see if the move is allowed. 3489 */ 3490 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) 3491 { 3492 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3493 bool same_cs; 3494 int ret; 3495 3496 rcu_read_lock(); 3497 same_cs = (cs == task_cs(current)); 3498 rcu_read_unlock(); 3499 3500 if (same_cs) 3501 return 0; 3502 3503 lockdep_assert_held(&cgroup_mutex); 3504 mutex_lock(&cpuset_mutex); 3505 3506 /* Check to see if task is allowed in the cpuset */ 3507 ret = cpuset_can_attach_check(cs); 3508 if (ret) 3509 goto out_unlock; 3510 3511 ret = task_can_attach(task); 3512 if (ret) 3513 goto out_unlock; 3514 3515 ret = security_task_setscheduler(task); 3516 if (ret) 3517 goto out_unlock; 3518 3519 /* 3520 * Mark attach is in progress. This makes validate_change() fail 3521 * changes which zero cpus/mems_allowed. 3522 */ 3523 cs->attach_in_progress++; 3524 out_unlock: 3525 mutex_unlock(&cpuset_mutex); 3526 return ret; 3527 } 3528 3529 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) 3530 { 3531 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3532 bool same_cs; 3533 3534 rcu_read_lock(); 3535 same_cs = (cs == task_cs(current)); 3536 rcu_read_unlock(); 3537 3538 if (same_cs) 3539 return; 3540 3541 dec_attach_in_progress(cs); 3542 } 3543 3544 /* 3545 * Make sure the new task conform to the current state of its parent, 3546 * which could have been changed by cpuset just after it inherits the 3547 * state from the parent and before it sits on the cgroup's task list. 3548 */ 3549 static void cpuset_fork(struct task_struct *task) 3550 { 3551 struct cpuset *cs; 3552 bool same_cs; 3553 3554 rcu_read_lock(); 3555 cs = task_cs(task); 3556 same_cs = (cs == task_cs(current)); 3557 rcu_read_unlock(); 3558 3559 if (same_cs) { 3560 if (cs == &top_cpuset) 3561 return; 3562 3563 set_cpus_allowed_ptr(task, current->cpus_ptr); 3564 task->mems_allowed = current->mems_allowed; 3565 return; 3566 } 3567 3568 /* CLONE_INTO_CGROUP */ 3569 mutex_lock(&cpuset_mutex); 3570 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3571 cpuset_attach_task(cs, task); 3572 3573 dec_attach_in_progress_locked(cs); 3574 mutex_unlock(&cpuset_mutex); 3575 } 3576 3577 struct cgroup_subsys cpuset_cgrp_subsys = { 3578 .css_alloc = cpuset_css_alloc, 3579 .css_online = cpuset_css_online, 3580 .css_offline = cpuset_css_offline, 3581 .css_killed = cpuset_css_killed, 3582 .css_free = cpuset_css_free, 3583 .can_attach = cpuset_can_attach, 3584 .cancel_attach = cpuset_cancel_attach, 3585 .attach = cpuset_attach, 3586 .bind = cpuset_bind, 3587 .can_fork = cpuset_can_fork, 3588 .cancel_fork = cpuset_cancel_fork, 3589 .fork = cpuset_fork, 3590 #ifdef CONFIG_CPUSETS_V1 3591 .legacy_cftypes = cpuset1_files, 3592 #endif 3593 .dfl_cftypes = dfl_files, 3594 .early_init = true, 3595 .threaded = true, 3596 }; 3597 3598 /** 3599 * cpuset_init - initialize cpusets at system boot 3600 * 3601 * Description: Initialize top_cpuset 3602 **/ 3603 3604 int __init cpuset_init(void) 3605 { 3606 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 3607 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 3608 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL)); 3609 BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL)); 3610 BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL)); 3611 BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL)); 3612 3613 cpumask_setall(top_cpuset.cpus_allowed); 3614 nodes_setall(top_cpuset.mems_allowed); 3615 cpumask_setall(top_cpuset.effective_cpus); 3616 cpumask_setall(top_cpuset.effective_xcpus); 3617 cpumask_setall(top_cpuset.exclusive_cpus); 3618 nodes_setall(top_cpuset.effective_mems); 3619 3620 cpuset1_init(&top_cpuset); 3621 3622 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 3623 3624 if (housekeeping_enabled(HK_TYPE_DOMAIN_BOOT)) 3625 cpumask_andnot(isolated_cpus, cpu_possible_mask, 3626 housekeeping_cpumask(HK_TYPE_DOMAIN_BOOT)); 3627 3628 return 0; 3629 } 3630 3631 static void 3632 hotplug_update_tasks(struct cpuset *cs, 3633 struct cpumask *new_cpus, nodemask_t *new_mems, 3634 bool cpus_updated, bool mems_updated) 3635 { 3636 /* A partition root is allowed to have empty effective cpus */ 3637 if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) 3638 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3639 if (nodes_empty(*new_mems)) 3640 *new_mems = parent_cs(cs)->effective_mems; 3641 3642 spin_lock_irq(&callback_lock); 3643 cpumask_copy(cs->effective_cpus, new_cpus); 3644 cs->effective_mems = *new_mems; 3645 spin_unlock_irq(&callback_lock); 3646 3647 if (cpus_updated) 3648 cpuset_update_tasks_cpumask(cs, new_cpus); 3649 if (mems_updated) 3650 cpuset_update_tasks_nodemask(cs); 3651 } 3652 3653 void cpuset_force_rebuild(void) 3654 { 3655 force_sd_rebuild = true; 3656 } 3657 3658 /** 3659 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3660 * @cs: cpuset in interest 3661 * @tmp: the tmpmasks structure pointer 3662 * 3663 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3664 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3665 * all its tasks are moved to the nearest ancestor with both resources. 3666 */ 3667 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3668 { 3669 static cpumask_t new_cpus; 3670 static nodemask_t new_mems; 3671 bool cpus_updated; 3672 bool mems_updated; 3673 bool remote; 3674 int partcmd = -1; 3675 struct cpuset *parent; 3676 retry: 3677 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3678 3679 mutex_lock(&cpuset_mutex); 3680 3681 /* 3682 * We have raced with task attaching. We wait until attaching 3683 * is finished, so we won't attach a task to an empty cpuset. 3684 */ 3685 if (cs->attach_in_progress) { 3686 mutex_unlock(&cpuset_mutex); 3687 goto retry; 3688 } 3689 3690 parent = parent_cs(cs); 3691 compute_effective_cpumask(&new_cpus, cs, parent); 3692 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3693 3694 if (!tmp || !cs->partition_root_state) 3695 goto update_tasks; 3696 3697 /* 3698 * Compute effective_cpus for valid partition root, may invalidate 3699 * child partition roots if necessary. 3700 */ 3701 remote = is_remote_partition(cs); 3702 if (remote || (is_partition_valid(cs) && is_partition_valid(parent))) 3703 compute_partition_effective_cpumask(cs, &new_cpus); 3704 3705 if (remote && (cpumask_empty(subpartitions_cpus) || 3706 (cpumask_empty(&new_cpus) && 3707 partition_is_populated(cs, NULL)))) { 3708 cs->prs_err = PERR_HOTPLUG; 3709 remote_partition_disable(cs, tmp); 3710 compute_effective_cpumask(&new_cpus, cs, parent); 3711 remote = false; 3712 } 3713 3714 /* 3715 * Force the partition to become invalid if either one of 3716 * the following conditions hold: 3717 * 1) empty effective cpus but not valid empty partition. 3718 * 2) parent is invalid or doesn't grant any cpus to child 3719 * partitions. 3720 * 3) subpartitions_cpus is empty. 3721 */ 3722 if (is_local_partition(cs) && 3723 (!is_partition_valid(parent) || 3724 tasks_nocpu_error(parent, cs, &new_cpus) || 3725 cpumask_empty(subpartitions_cpus))) 3726 partcmd = partcmd_invalidate; 3727 /* 3728 * On the other hand, an invalid partition root may be transitioned 3729 * back to a regular one with a non-empty effective xcpus. 3730 */ 3731 else if (is_partition_valid(parent) && is_partition_invalid(cs) && 3732 !cpumask_empty(cs->effective_xcpus)) 3733 partcmd = partcmd_update; 3734 3735 if (partcmd >= 0) { 3736 update_parent_effective_cpumask(cs, partcmd, NULL, tmp); 3737 if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) { 3738 compute_partition_effective_cpumask(cs, &new_cpus); 3739 cpuset_force_rebuild(); 3740 } 3741 } 3742 3743 update_tasks: 3744 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3745 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3746 if (!cpus_updated && !mems_updated) 3747 goto unlock; /* Hotplug doesn't affect this cpuset */ 3748 3749 if (mems_updated) 3750 check_insane_mems_config(&new_mems); 3751 3752 if (is_in_v2_mode()) 3753 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3754 cpus_updated, mems_updated); 3755 else 3756 cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems, 3757 cpus_updated, mems_updated); 3758 3759 unlock: 3760 mutex_unlock(&cpuset_mutex); 3761 } 3762 3763 /** 3764 * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset 3765 * 3766 * This function is called after either CPU or memory configuration has 3767 * changed and updates cpuset accordingly. The top_cpuset is always 3768 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3769 * order to make cpusets transparent (of no affect) on systems that are 3770 * actively using CPU hotplug but making no active use of cpusets. 3771 * 3772 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3773 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3774 * all descendants. 3775 * 3776 * Note that CPU offlining during suspend is ignored. We don't modify 3777 * cpusets across suspend/resume cycles at all. 3778 * 3779 * CPU / memory hotplug is handled synchronously. 3780 */ 3781 static void cpuset_handle_hotplug(void) 3782 { 3783 static cpumask_t new_cpus; 3784 static nodemask_t new_mems; 3785 bool cpus_updated, mems_updated; 3786 bool on_dfl = is_in_v2_mode(); 3787 struct tmpmasks tmp, *ptmp = NULL; 3788 3789 if (on_dfl && !alloc_tmpmasks(&tmp)) 3790 ptmp = &tmp; 3791 3792 lockdep_assert_cpus_held(); 3793 mutex_lock(&cpuset_mutex); 3794 3795 /* fetch the available cpus/mems and find out which changed how */ 3796 cpumask_copy(&new_cpus, cpu_active_mask); 3797 new_mems = node_states[N_MEMORY]; 3798 3799 /* 3800 * If subpartitions_cpus is populated, it is likely that the check 3801 * below will produce a false positive on cpus_updated when the cpu 3802 * list isn't changed. It is extra work, but it is better to be safe. 3803 */ 3804 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) || 3805 !cpumask_empty(subpartitions_cpus); 3806 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3807 3808 /* For v1, synchronize cpus_allowed to cpu_active_mask */ 3809 if (cpus_updated) { 3810 cpuset_force_rebuild(); 3811 spin_lock_irq(&callback_lock); 3812 if (!on_dfl) 3813 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3814 /* 3815 * Make sure that CPUs allocated to child partitions 3816 * do not show up in effective_cpus. If no CPU is left, 3817 * we clear the subpartitions_cpus & let the child partitions 3818 * fight for the CPUs again. 3819 */ 3820 if (!cpumask_empty(subpartitions_cpus)) { 3821 if (cpumask_subset(&new_cpus, subpartitions_cpus)) { 3822 cpumask_clear(subpartitions_cpus); 3823 } else { 3824 cpumask_andnot(&new_cpus, &new_cpus, 3825 subpartitions_cpus); 3826 } 3827 } 3828 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3829 spin_unlock_irq(&callback_lock); 3830 /* we don't mess with cpumasks of tasks in top_cpuset */ 3831 } 3832 3833 /* synchronize mems_allowed to N_MEMORY */ 3834 if (mems_updated) { 3835 spin_lock_irq(&callback_lock); 3836 if (!on_dfl) 3837 top_cpuset.mems_allowed = new_mems; 3838 top_cpuset.effective_mems = new_mems; 3839 spin_unlock_irq(&callback_lock); 3840 cpuset_update_tasks_nodemask(&top_cpuset); 3841 } 3842 3843 mutex_unlock(&cpuset_mutex); 3844 3845 /* if cpus or mems changed, we need to propagate to descendants */ 3846 if (cpus_updated || mems_updated) { 3847 struct cpuset *cs; 3848 struct cgroup_subsys_state *pos_css; 3849 3850 rcu_read_lock(); 3851 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3852 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3853 continue; 3854 rcu_read_unlock(); 3855 3856 cpuset_hotplug_update_tasks(cs, ptmp); 3857 3858 rcu_read_lock(); 3859 css_put(&cs->css); 3860 } 3861 rcu_read_unlock(); 3862 } 3863 3864 /* rebuild sched domains if necessary */ 3865 if (force_sd_rebuild) 3866 rebuild_sched_domains_cpuslocked(); 3867 3868 free_tmpmasks(ptmp); 3869 } 3870 3871 void cpuset_update_active_cpus(void) 3872 { 3873 /* 3874 * We're inside cpu hotplug critical region which usually nests 3875 * inside cgroup synchronization. Bounce actual hotplug processing 3876 * to a work item to avoid reverse locking order. 3877 */ 3878 cpuset_handle_hotplug(); 3879 } 3880 3881 /* 3882 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3883 * Call this routine anytime after node_states[N_MEMORY] changes. 3884 * See cpuset_update_active_cpus() for CPU hotplug handling. 3885 */ 3886 static int cpuset_track_online_nodes(struct notifier_block *self, 3887 unsigned long action, void *arg) 3888 { 3889 cpuset_handle_hotplug(); 3890 return NOTIFY_OK; 3891 } 3892 3893 /** 3894 * cpuset_init_smp - initialize cpus_allowed 3895 * 3896 * Description: Finish top cpuset after cpu, node maps are initialized 3897 */ 3898 void __init cpuset_init_smp(void) 3899 { 3900 /* 3901 * cpus_allowd/mems_allowed set to v2 values in the initial 3902 * cpuset_bind() call will be reset to v1 values in another 3903 * cpuset_bind() call when v1 cpuset is mounted. 3904 */ 3905 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3906 3907 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3908 top_cpuset.effective_mems = node_states[N_MEMORY]; 3909 3910 hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); 3911 3912 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3913 BUG_ON(!cpuset_migrate_mm_wq); 3914 } 3915 3916 /* 3917 * Return cpus_allowed mask from a task's cpuset. 3918 */ 3919 static void __cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) 3920 { 3921 struct cpuset *cs; 3922 3923 cs = task_cs(tsk); 3924 if (cs != &top_cpuset) 3925 guarantee_active_cpus(tsk, pmask); 3926 /* 3927 * Tasks in the top cpuset won't get update to their cpumasks 3928 * when a hotplug online/offline event happens. So we include all 3929 * offline cpus in the allowed cpu list. 3930 */ 3931 if ((cs == &top_cpuset) || cpumask_empty(pmask)) { 3932 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3933 3934 /* 3935 * We first exclude cpus allocated to partitions. If there is no 3936 * allowable online cpu left, we fall back to all possible cpus. 3937 */ 3938 cpumask_andnot(pmask, possible_mask, subpartitions_cpus); 3939 if (!cpumask_intersects(pmask, cpu_active_mask)) 3940 cpumask_copy(pmask, possible_mask); 3941 } 3942 } 3943 3944 /** 3945 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a task's cpuset. 3946 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3947 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3948 * 3949 * Similir to cpuset_cpus_allowed() except that the caller must have acquired 3950 * cpuset_mutex. 3951 */ 3952 void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) 3953 { 3954 lockdep_assert_cpuset_lock_held(); 3955 __cpuset_cpus_allowed_locked(tsk, pmask); 3956 } 3957 3958 /** 3959 * cpuset_cpus_allowed - return cpus_allowed mask from a task's cpuset. 3960 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3961 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3962 * 3963 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3964 * attached to the specified @tsk. Guaranteed to return some non-empty 3965 * subset of cpu_active_mask, even if this means going outside the 3966 * tasks cpuset, except when the task is in the top cpuset. 3967 **/ 3968 3969 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3970 { 3971 unsigned long flags; 3972 3973 spin_lock_irqsave(&callback_lock, flags); 3974 __cpuset_cpus_allowed_locked(tsk, pmask); 3975 spin_unlock_irqrestore(&callback_lock, flags); 3976 } 3977 3978 /** 3979 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3980 * @tsk: pointer to task_struct with which the scheduler is struggling 3981 * 3982 * Description: In the case that the scheduler cannot find an allowed cpu in 3983 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 3984 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 3985 * which will not contain a sane cpumask during cases such as cpu hotplugging. 3986 * This is the absolute last resort for the scheduler and it is only used if 3987 * _every_ other avenue has been traveled. 3988 * 3989 * Returns true if the affinity of @tsk was changed, false otherwise. 3990 **/ 3991 3992 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3993 { 3994 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3995 const struct cpumask *cs_mask; 3996 bool changed = false; 3997 3998 rcu_read_lock(); 3999 cs_mask = task_cs(tsk)->cpus_allowed; 4000 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 4001 set_cpus_allowed_force(tsk, cs_mask); 4002 changed = true; 4003 } 4004 rcu_read_unlock(); 4005 4006 /* 4007 * We own tsk->cpus_allowed, nobody can change it under us. 4008 * 4009 * But we used cs && cs->cpus_allowed lockless and thus can 4010 * race with cgroup_attach_task() or update_cpumask() and get 4011 * the wrong tsk->cpus_allowed. However, both cases imply the 4012 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 4013 * which takes task_rq_lock(). 4014 * 4015 * If we are called after it dropped the lock we must see all 4016 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 4017 * set any mask even if it is not right from task_cs() pov, 4018 * the pending set_cpus_allowed_ptr() will fix things. 4019 * 4020 * select_fallback_rq() will fix things ups and set cpu_possible_mask 4021 * if required. 4022 */ 4023 return changed; 4024 } 4025 4026 void __init cpuset_init_current_mems_allowed(void) 4027 { 4028 nodes_setall(current->mems_allowed); 4029 } 4030 4031 /** 4032 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 4033 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 4034 * 4035 * Description: Returns the nodemask_t mems_allowed of the cpuset 4036 * attached to the specified @tsk. Guaranteed to return some non-empty 4037 * subset of node_states[N_MEMORY], even if this means going outside the 4038 * tasks cpuset. 4039 **/ 4040 4041 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 4042 { 4043 nodemask_t mask; 4044 unsigned long flags; 4045 4046 spin_lock_irqsave(&callback_lock, flags); 4047 guarantee_online_mems(task_cs(tsk), &mask); 4048 spin_unlock_irqrestore(&callback_lock, flags); 4049 4050 return mask; 4051 } 4052 4053 /** 4054 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 4055 * @nodemask: the nodemask to be checked 4056 * 4057 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 4058 */ 4059 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 4060 { 4061 return nodes_intersects(*nodemask, current->mems_allowed); 4062 } 4063 4064 /* 4065 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 4066 * mem_hardwall ancestor to the specified cpuset. Call holding 4067 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 4068 * (an unusual configuration), then returns the root cpuset. 4069 */ 4070 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 4071 { 4072 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 4073 cs = parent_cs(cs); 4074 return cs; 4075 } 4076 4077 /* 4078 * cpuset_current_node_allowed - Can current task allocate on a memory node? 4079 * @node: is this an allowed node? 4080 * @gfp_mask: memory allocation flags 4081 * 4082 * If we're in interrupt, yes, we can always allocate. If @node is set in 4083 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 4084 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 4085 * yes. If current has access to memory reserves as an oom victim, yes. 4086 * Otherwise, no. 4087 * 4088 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 4089 * and do not allow allocations outside the current tasks cpuset 4090 * unless the task has been OOM killed. 4091 * GFP_KERNEL allocations are not so marked, so can escape to the 4092 * nearest enclosing hardwalled ancestor cpuset. 4093 * 4094 * Scanning up parent cpusets requires callback_lock. The 4095 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 4096 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 4097 * current tasks mems_allowed came up empty on the first pass over 4098 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 4099 * cpuset are short of memory, might require taking the callback_lock. 4100 * 4101 * The first call here from mm/page_alloc:get_page_from_freelist() 4102 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 4103 * so no allocation on a node outside the cpuset is allowed (unless 4104 * in interrupt, of course). 4105 * 4106 * The second pass through get_page_from_freelist() doesn't even call 4107 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 4108 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 4109 * in alloc_flags. That logic and the checks below have the combined 4110 * affect that: 4111 * in_interrupt - any node ok (current task context irrelevant) 4112 * GFP_ATOMIC - any node ok 4113 * tsk_is_oom_victim - any node ok 4114 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 4115 * GFP_USER - only nodes in current tasks mems allowed ok. 4116 */ 4117 bool cpuset_current_node_allowed(int node, gfp_t gfp_mask) 4118 { 4119 struct cpuset *cs; /* current cpuset ancestors */ 4120 bool allowed; /* is allocation in zone z allowed? */ 4121 unsigned long flags; 4122 4123 if (in_interrupt()) 4124 return true; 4125 if (node_isset(node, current->mems_allowed)) 4126 return true; 4127 /* 4128 * Allow tasks that have access to memory reserves because they have 4129 * been OOM killed to get memory anywhere. 4130 */ 4131 if (unlikely(tsk_is_oom_victim(current))) 4132 return true; 4133 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 4134 return false; 4135 4136 if (current->flags & PF_EXITING) /* Let dying task have memory */ 4137 return true; 4138 4139 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 4140 spin_lock_irqsave(&callback_lock, flags); 4141 4142 cs = nearest_hardwall_ancestor(task_cs(current)); 4143 allowed = node_isset(node, cs->mems_allowed); 4144 4145 spin_unlock_irqrestore(&callback_lock, flags); 4146 return allowed; 4147 } 4148 4149 bool cpuset_node_allowed(struct cgroup *cgroup, int nid) 4150 { 4151 struct cgroup_subsys_state *css; 4152 struct cpuset *cs; 4153 bool allowed; 4154 4155 /* 4156 * In v1, mem_cgroup and cpuset are unlikely in the same hierarchy 4157 * and mems_allowed is likely to be empty even if we could get to it, 4158 * so return true to avoid taking a global lock on the empty check. 4159 */ 4160 if (!cpuset_v2()) 4161 return true; 4162 4163 css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys); 4164 if (!css) 4165 return true; 4166 4167 /* 4168 * Normally, accessing effective_mems would require the cpuset_mutex 4169 * or callback_lock - but node_isset is atomic and the reference 4170 * taken via cgroup_get_e_css is sufficient to protect css. 4171 * 4172 * Since this interface is intended for use by migration paths, we 4173 * relax locking here to avoid taking global locks - while accepting 4174 * there may be rare scenarios where the result may be innaccurate. 4175 * 4176 * Reclaim and migration are subject to these same race conditions, and 4177 * cannot make strong isolation guarantees, so this is acceptable. 4178 */ 4179 cs = container_of(css, struct cpuset, css); 4180 allowed = node_isset(nid, cs->effective_mems); 4181 css_put(css); 4182 return allowed; 4183 } 4184 4185 /** 4186 * cpuset_spread_node() - On which node to begin search for a page 4187 * @rotor: round robin rotor 4188 * 4189 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 4190 * tasks in a cpuset with is_spread_page or is_spread_slab set), 4191 * and if the memory allocation used cpuset_mem_spread_node() 4192 * to determine on which node to start looking, as it will for 4193 * certain page cache or slab cache pages such as used for file 4194 * system buffers and inode caches, then instead of starting on the 4195 * local node to look for a free page, rather spread the starting 4196 * node around the tasks mems_allowed nodes. 4197 * 4198 * We don't have to worry about the returned node being offline 4199 * because "it can't happen", and even if it did, it would be ok. 4200 * 4201 * The routines calling guarantee_online_mems() are careful to 4202 * only set nodes in task->mems_allowed that are online. So it 4203 * should not be possible for the following code to return an 4204 * offline node. But if it did, that would be ok, as this routine 4205 * is not returning the node where the allocation must be, only 4206 * the node where the search should start. The zonelist passed to 4207 * __alloc_pages() will include all nodes. If the slab allocator 4208 * is passed an offline node, it will fall back to the local node. 4209 * See kmem_cache_alloc_node(). 4210 */ 4211 static int cpuset_spread_node(int *rotor) 4212 { 4213 return *rotor = next_node_in(*rotor, current->mems_allowed); 4214 } 4215 4216 /** 4217 * cpuset_mem_spread_node() - On which node to begin search for a file page 4218 */ 4219 int cpuset_mem_spread_node(void) 4220 { 4221 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 4222 current->cpuset_mem_spread_rotor = 4223 node_random(¤t->mems_allowed); 4224 4225 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 4226 } 4227 4228 /** 4229 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 4230 * @tsk1: pointer to task_struct of some task. 4231 * @tsk2: pointer to task_struct of some other task. 4232 * 4233 * Description: Return true if @tsk1's mems_allowed intersects the 4234 * mems_allowed of @tsk2. Used by the OOM killer to determine if 4235 * one of the task's memory usage might impact the memory available 4236 * to the other. 4237 **/ 4238 4239 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 4240 const struct task_struct *tsk2) 4241 { 4242 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 4243 } 4244 4245 /** 4246 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 4247 * 4248 * Description: Prints current's name, cpuset name, and cached copy of its 4249 * mems_allowed to the kernel log. 4250 */ 4251 void cpuset_print_current_mems_allowed(void) 4252 { 4253 struct cgroup *cgrp; 4254 4255 rcu_read_lock(); 4256 4257 cgrp = task_cs(current)->css.cgroup; 4258 pr_cont(",cpuset="); 4259 pr_cont_cgroup_name(cgrp); 4260 pr_cont(",mems_allowed=%*pbl", 4261 nodemask_pr_args(¤t->mems_allowed)); 4262 4263 rcu_read_unlock(); 4264 } 4265 4266 /* Display task mems_allowed in /proc/<pid>/status file. */ 4267 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 4268 { 4269 seq_printf(m, "Mems_allowed:\t%*pb\n", 4270 nodemask_pr_args(&task->mems_allowed)); 4271 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 4272 nodemask_pr_args(&task->mems_allowed)); 4273 } 4274