1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/cpumask.h> 27 #include <linux/cpuset.h> 28 #include <linux/err.h> 29 #include <linux/errno.h> 30 #include <linux/file.h> 31 #include <linux/fs.h> 32 #include <linux/init.h> 33 #include <linux/interrupt.h> 34 #include <linux/kernel.h> 35 #include <linux/kmod.h> 36 #include <linux/kthread.h> 37 #include <linux/list.h> 38 #include <linux/mempolicy.h> 39 #include <linux/mm.h> 40 #include <linux/memory.h> 41 #include <linux/export.h> 42 #include <linux/mount.h> 43 #include <linux/fs_context.h> 44 #include <linux/namei.h> 45 #include <linux/pagemap.h> 46 #include <linux/proc_fs.h> 47 #include <linux/rcupdate.h> 48 #include <linux/sched.h> 49 #include <linux/sched/deadline.h> 50 #include <linux/sched/mm.h> 51 #include <linux/sched/task.h> 52 #include <linux/seq_file.h> 53 #include <linux/security.h> 54 #include <linux/slab.h> 55 #include <linux/spinlock.h> 56 #include <linux/stat.h> 57 #include <linux/string.h> 58 #include <linux/time.h> 59 #include <linux/time64.h> 60 #include <linux/backing-dev.h> 61 #include <linux/sort.h> 62 #include <linux/oom.h> 63 #include <linux/sched/isolation.h> 64 #include <linux/uaccess.h> 65 #include <linux/atomic.h> 66 #include <linux/mutex.h> 67 #include <linux/cgroup.h> 68 #include <linux/wait.h> 69 70 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 71 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 72 73 /* 74 * There could be abnormal cpuset configurations for cpu or memory 75 * node binding, add this key to provide a quick low-cost judgment 76 * of the situation. 77 */ 78 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 79 80 /* See "Frequency meter" comments, below. */ 81 82 struct fmeter { 83 int cnt; /* unprocessed events count */ 84 int val; /* most recent output value */ 85 time64_t time; /* clock (secs) when val computed */ 86 spinlock_t lock; /* guards read or write of above */ 87 }; 88 89 /* 90 * Invalid partition error code 91 */ 92 enum prs_errcode { 93 PERR_NONE = 0, 94 PERR_INVCPUS, 95 PERR_INVPARENT, 96 PERR_NOTPART, 97 PERR_NOTEXCL, 98 PERR_NOCPUS, 99 PERR_HOTPLUG, 100 PERR_CPUSEMPTY, 101 }; 102 103 static const char * const perr_strings[] = { 104 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus", 105 [PERR_INVPARENT] = "Parent is an invalid partition root", 106 [PERR_NOTPART] = "Parent is not a partition root", 107 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", 108 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", 109 [PERR_HOTPLUG] = "No cpu available due to hotplug", 110 [PERR_CPUSEMPTY] = "cpuset.cpus is empty", 111 }; 112 113 struct cpuset { 114 struct cgroup_subsys_state css; 115 116 unsigned long flags; /* "unsigned long" so bitops work */ 117 118 /* 119 * On default hierarchy: 120 * 121 * The user-configured masks can only be changed by writing to 122 * cpuset.cpus and cpuset.mems, and won't be limited by the 123 * parent masks. 124 * 125 * The effective masks is the real masks that apply to the tasks 126 * in the cpuset. They may be changed if the configured masks are 127 * changed or hotplug happens. 128 * 129 * effective_mask == configured_mask & parent's effective_mask, 130 * and if it ends up empty, it will inherit the parent's mask. 131 * 132 * 133 * On legacy hierarchy: 134 * 135 * The user-configured masks are always the same with effective masks. 136 */ 137 138 /* user-configured CPUs and Memory Nodes allow to tasks */ 139 cpumask_var_t cpus_allowed; 140 nodemask_t mems_allowed; 141 142 /* effective CPUs and Memory Nodes allow to tasks */ 143 cpumask_var_t effective_cpus; 144 nodemask_t effective_mems; 145 146 /* 147 * CPUs allocated to child sub-partitions (default hierarchy only) 148 * - CPUs granted by the parent = effective_cpus U subparts_cpus 149 * - effective_cpus and subparts_cpus are mutually exclusive. 150 * 151 * effective_cpus contains only onlined CPUs, but subparts_cpus 152 * may have offlined ones. 153 */ 154 cpumask_var_t subparts_cpus; 155 156 /* 157 * This is old Memory Nodes tasks took on. 158 * 159 * - top_cpuset.old_mems_allowed is initialized to mems_allowed. 160 * - A new cpuset's old_mems_allowed is initialized when some 161 * task is moved into it. 162 * - old_mems_allowed is used in cpuset_migrate_mm() when we change 163 * cpuset.mems_allowed and have tasks' nodemask updated, and 164 * then old_mems_allowed is updated to mems_allowed. 165 */ 166 nodemask_t old_mems_allowed; 167 168 struct fmeter fmeter; /* memory_pressure filter */ 169 170 /* 171 * Tasks are being attached to this cpuset. Used to prevent 172 * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). 173 */ 174 int attach_in_progress; 175 176 /* partition number for rebuild_sched_domains() */ 177 int pn; 178 179 /* for custom sched domain */ 180 int relax_domain_level; 181 182 /* number of CPUs in subparts_cpus */ 183 int nr_subparts_cpus; 184 185 /* partition root state */ 186 int partition_root_state; 187 188 /* 189 * Default hierarchy only: 190 * use_parent_ecpus - set if using parent's effective_cpus 191 * child_ecpus_count - # of children with use_parent_ecpus set 192 */ 193 int use_parent_ecpus; 194 int child_ecpus_count; 195 196 /* Invalid partition error code, not lock protected */ 197 enum prs_errcode prs_err; 198 199 /* Handle for cpuset.cpus.partition */ 200 struct cgroup_file partition_file; 201 }; 202 203 /* 204 * Partition root states: 205 * 206 * 0 - member (not a partition root) 207 * 1 - partition root 208 * 2 - partition root without load balancing (isolated) 209 * -1 - invalid partition root 210 * -2 - invalid isolated partition root 211 */ 212 #define PRS_MEMBER 0 213 #define PRS_ROOT 1 214 #define PRS_ISOLATED 2 215 #define PRS_INVALID_ROOT -1 216 #define PRS_INVALID_ISOLATED -2 217 218 static inline bool is_prs_invalid(int prs_state) 219 { 220 return prs_state < 0; 221 } 222 223 /* 224 * Temporary cpumasks for working with partitions that are passed among 225 * functions to avoid memory allocation in inner functions. 226 */ 227 struct tmpmasks { 228 cpumask_var_t addmask, delmask; /* For partition root */ 229 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 230 }; 231 232 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) 233 { 234 return css ? container_of(css, struct cpuset, css) : NULL; 235 } 236 237 /* Retrieve the cpuset for a task */ 238 static inline struct cpuset *task_cs(struct task_struct *task) 239 { 240 return css_cs(task_css(task, cpuset_cgrp_id)); 241 } 242 243 static inline struct cpuset *parent_cs(struct cpuset *cs) 244 { 245 return css_cs(cs->css.parent); 246 } 247 248 /* bits in struct cpuset flags field */ 249 typedef enum { 250 CS_ONLINE, 251 CS_CPU_EXCLUSIVE, 252 CS_MEM_EXCLUSIVE, 253 CS_MEM_HARDWALL, 254 CS_MEMORY_MIGRATE, 255 CS_SCHED_LOAD_BALANCE, 256 CS_SPREAD_PAGE, 257 CS_SPREAD_SLAB, 258 } cpuset_flagbits_t; 259 260 /* convenient tests for these bits */ 261 static inline bool is_cpuset_online(struct cpuset *cs) 262 { 263 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css); 264 } 265 266 static inline int is_cpu_exclusive(const struct cpuset *cs) 267 { 268 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); 269 } 270 271 static inline int is_mem_exclusive(const struct cpuset *cs) 272 { 273 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); 274 } 275 276 static inline int is_mem_hardwall(const struct cpuset *cs) 277 { 278 return test_bit(CS_MEM_HARDWALL, &cs->flags); 279 } 280 281 static inline int is_sched_load_balance(const struct cpuset *cs) 282 { 283 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 284 } 285 286 static inline int is_memory_migrate(const struct cpuset *cs) 287 { 288 return test_bit(CS_MEMORY_MIGRATE, &cs->flags); 289 } 290 291 static inline int is_spread_page(const struct cpuset *cs) 292 { 293 return test_bit(CS_SPREAD_PAGE, &cs->flags); 294 } 295 296 static inline int is_spread_slab(const struct cpuset *cs) 297 { 298 return test_bit(CS_SPREAD_SLAB, &cs->flags); 299 } 300 301 static inline int is_partition_valid(const struct cpuset *cs) 302 { 303 return cs->partition_root_state > 0; 304 } 305 306 static inline int is_partition_invalid(const struct cpuset *cs) 307 { 308 return cs->partition_root_state < 0; 309 } 310 311 /* 312 * Callers should hold callback_lock to modify partition_root_state. 313 */ 314 static inline void make_partition_invalid(struct cpuset *cs) 315 { 316 if (is_partition_valid(cs)) 317 cs->partition_root_state = -cs->partition_root_state; 318 } 319 320 /* 321 * Send notification event of whenever partition_root_state changes. 322 */ 323 static inline void notify_partition_change(struct cpuset *cs, int old_prs) 324 { 325 if (old_prs == cs->partition_root_state) 326 return; 327 cgroup_file_notify(&cs->partition_file); 328 329 /* Reset prs_err if not invalid */ 330 if (is_partition_valid(cs)) 331 WRITE_ONCE(cs->prs_err, PERR_NONE); 332 } 333 334 static struct cpuset top_cpuset = { 335 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | 336 (1 << CS_MEM_EXCLUSIVE)), 337 .partition_root_state = PRS_ROOT, 338 }; 339 340 /** 341 * cpuset_for_each_child - traverse online children of a cpuset 342 * @child_cs: loop cursor pointing to the current child 343 * @pos_css: used for iteration 344 * @parent_cs: target cpuset to walk children of 345 * 346 * Walk @child_cs through the online children of @parent_cs. Must be used 347 * with RCU read locked. 348 */ 349 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ 350 css_for_each_child((pos_css), &(parent_cs)->css) \ 351 if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) 352 353 /** 354 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants 355 * @des_cs: loop cursor pointing to the current descendant 356 * @pos_css: used for iteration 357 * @root_cs: target cpuset to walk ancestor of 358 * 359 * Walk @des_cs through the online descendants of @root_cs. Must be used 360 * with RCU read locked. The caller may modify @pos_css by calling 361 * css_rightmost_descendant() to skip subtree. @root_cs is included in the 362 * iteration and the first node to be visited. 363 */ 364 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ 365 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ 366 if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) 367 368 /* 369 * There are two global locks guarding cpuset structures - cpuset_rwsem and 370 * callback_lock. We also require taking task_lock() when dereferencing a 371 * task's cpuset pointer. See "The task_lock() exception", at the end of this 372 * comment. The cpuset code uses only cpuset_rwsem write lock. Other 373 * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to 374 * prevent change to cpuset structures. 375 * 376 * A task must hold both locks to modify cpusets. If a task holds 377 * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it 378 * is the only task able to also acquire callback_lock and be able to 379 * modify cpusets. It can perform various checks on the cpuset structure 380 * first, knowing nothing will change. It can also allocate memory while 381 * just holding cpuset_rwsem. While it is performing these checks, various 382 * callback routines can briefly acquire callback_lock to query cpusets. 383 * Once it is ready to make the changes, it takes callback_lock, blocking 384 * everyone else. 385 * 386 * Calls to the kernel memory allocator can not be made while holding 387 * callback_lock, as that would risk double tripping on callback_lock 388 * from one of the callbacks into the cpuset code from within 389 * __alloc_pages(). 390 * 391 * If a task is only holding callback_lock, then it has read-only 392 * access to cpusets. 393 * 394 * Now, the task_struct fields mems_allowed and mempolicy may be changed 395 * by other task, we use alloc_lock in the task_struct fields to protect 396 * them. 397 * 398 * The cpuset_common_file_read() handlers only hold callback_lock across 399 * small pieces of code, such as when reading out possibly multi-word 400 * cpumasks and nodemasks. 401 * 402 * Accessing a task's cpuset should be done in accordance with the 403 * guidelines for accessing subsystem state in kernel/cgroup.c 404 */ 405 406 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem); 407 408 void cpuset_read_lock(void) 409 { 410 percpu_down_read(&cpuset_rwsem); 411 } 412 413 void cpuset_read_unlock(void) 414 { 415 percpu_up_read(&cpuset_rwsem); 416 } 417 418 static DEFINE_SPINLOCK(callback_lock); 419 420 static struct workqueue_struct *cpuset_migrate_mm_wq; 421 422 /* 423 * CPU / memory hotplug is handled asynchronously. 424 */ 425 static void cpuset_hotplug_workfn(struct work_struct *work); 426 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); 427 428 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 429 430 static inline void check_insane_mems_config(nodemask_t *nodes) 431 { 432 if (!cpusets_insane_config() && 433 movable_only_nodes(nodes)) { 434 static_branch_enable(&cpusets_insane_config_key); 435 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 436 "Cpuset allocations might fail even with a lot of memory available.\n", 437 nodemask_pr_args(nodes)); 438 } 439 } 440 441 /* 442 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 443 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 444 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 445 * With v2 behavior, "cpus" and "mems" are always what the users have 446 * requested and won't be changed by hotplug events. Only the effective 447 * cpus or mems will be affected. 448 */ 449 static inline bool is_in_v2_mode(void) 450 { 451 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 452 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 453 } 454 455 /** 456 * partition_is_populated - check if partition has tasks 457 * @cs: partition root to be checked 458 * @excluded_child: a child cpuset to be excluded in task checking 459 * Return: true if there are tasks, false otherwise 460 * 461 * It is assumed that @cs is a valid partition root. @excluded_child should 462 * be non-NULL when this cpuset is going to become a partition itself. 463 */ 464 static inline bool partition_is_populated(struct cpuset *cs, 465 struct cpuset *excluded_child) 466 { 467 struct cgroup_subsys_state *css; 468 struct cpuset *child; 469 470 if (cs->css.cgroup->nr_populated_csets) 471 return true; 472 if (!excluded_child && !cs->nr_subparts_cpus) 473 return cgroup_is_populated(cs->css.cgroup); 474 475 rcu_read_lock(); 476 cpuset_for_each_child(child, css, cs) { 477 if (child == excluded_child) 478 continue; 479 if (is_partition_valid(child)) 480 continue; 481 if (cgroup_is_populated(child->css.cgroup)) { 482 rcu_read_unlock(); 483 return true; 484 } 485 } 486 rcu_read_unlock(); 487 return false; 488 } 489 490 /* 491 * Return in pmask the portion of a task's cpusets's cpus_allowed that 492 * are online and are capable of running the task. If none are found, 493 * walk up the cpuset hierarchy until we find one that does have some 494 * appropriate cpus. 495 * 496 * One way or another, we guarantee to return some non-empty subset 497 * of cpu_online_mask. 498 * 499 * Call with callback_lock or cpuset_rwsem held. 500 */ 501 static void guarantee_online_cpus(struct task_struct *tsk, 502 struct cpumask *pmask) 503 { 504 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 505 struct cpuset *cs; 506 507 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) 508 cpumask_copy(pmask, cpu_online_mask); 509 510 rcu_read_lock(); 511 cs = task_cs(tsk); 512 513 while (!cpumask_intersects(cs->effective_cpus, pmask)) { 514 cs = parent_cs(cs); 515 if (unlikely(!cs)) { 516 /* 517 * The top cpuset doesn't have any online cpu as a 518 * consequence of a race between cpuset_hotplug_work 519 * and cpu hotplug notifier. But we know the top 520 * cpuset's effective_cpus is on its way to be 521 * identical to cpu_online_mask. 522 */ 523 goto out_unlock; 524 } 525 } 526 cpumask_and(pmask, pmask, cs->effective_cpus); 527 528 out_unlock: 529 rcu_read_unlock(); 530 } 531 532 /* 533 * Return in *pmask the portion of a cpusets's mems_allowed that 534 * are online, with memory. If none are online with memory, walk 535 * up the cpuset hierarchy until we find one that does have some 536 * online mems. The top cpuset always has some mems online. 537 * 538 * One way or another, we guarantee to return some non-empty subset 539 * of node_states[N_MEMORY]. 540 * 541 * Call with callback_lock or cpuset_rwsem held. 542 */ 543 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 544 { 545 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 546 cs = parent_cs(cs); 547 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 548 } 549 550 /* 551 * update task's spread flag if cpuset's page/slab spread flag is set 552 * 553 * Call with callback_lock or cpuset_rwsem held. The check can be skipped 554 * if on default hierarchy. 555 */ 556 static void cpuset_update_task_spread_flags(struct cpuset *cs, 557 struct task_struct *tsk) 558 { 559 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 560 return; 561 562 if (is_spread_page(cs)) 563 task_set_spread_page(tsk); 564 else 565 task_clear_spread_page(tsk); 566 567 if (is_spread_slab(cs)) 568 task_set_spread_slab(tsk); 569 else 570 task_clear_spread_slab(tsk); 571 } 572 573 /* 574 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? 575 * 576 * One cpuset is a subset of another if all its allowed CPUs and 577 * Memory Nodes are a subset of the other, and its exclusive flags 578 * are only set if the other's are set. Call holding cpuset_rwsem. 579 */ 580 581 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) 582 { 583 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && 584 nodes_subset(p->mems_allowed, q->mems_allowed) && 585 is_cpu_exclusive(p) <= is_cpu_exclusive(q) && 586 is_mem_exclusive(p) <= is_mem_exclusive(q); 587 } 588 589 /** 590 * alloc_cpumasks - allocate three cpumasks for cpuset 591 * @cs: the cpuset that have cpumasks to be allocated. 592 * @tmp: the tmpmasks structure pointer 593 * Return: 0 if successful, -ENOMEM otherwise. 594 * 595 * Only one of the two input arguments should be non-NULL. 596 */ 597 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 598 { 599 cpumask_var_t *pmask1, *pmask2, *pmask3; 600 601 if (cs) { 602 pmask1 = &cs->cpus_allowed; 603 pmask2 = &cs->effective_cpus; 604 pmask3 = &cs->subparts_cpus; 605 } else { 606 pmask1 = &tmp->new_cpus; 607 pmask2 = &tmp->addmask; 608 pmask3 = &tmp->delmask; 609 } 610 611 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 612 return -ENOMEM; 613 614 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 615 goto free_one; 616 617 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 618 goto free_two; 619 620 return 0; 621 622 free_two: 623 free_cpumask_var(*pmask2); 624 free_one: 625 free_cpumask_var(*pmask1); 626 return -ENOMEM; 627 } 628 629 /** 630 * free_cpumasks - free cpumasks in a tmpmasks structure 631 * @cs: the cpuset that have cpumasks to be free. 632 * @tmp: the tmpmasks structure pointer 633 */ 634 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 635 { 636 if (cs) { 637 free_cpumask_var(cs->cpus_allowed); 638 free_cpumask_var(cs->effective_cpus); 639 free_cpumask_var(cs->subparts_cpus); 640 } 641 if (tmp) { 642 free_cpumask_var(tmp->new_cpus); 643 free_cpumask_var(tmp->addmask); 644 free_cpumask_var(tmp->delmask); 645 } 646 } 647 648 /** 649 * alloc_trial_cpuset - allocate a trial cpuset 650 * @cs: the cpuset that the trial cpuset duplicates 651 */ 652 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 653 { 654 struct cpuset *trial; 655 656 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 657 if (!trial) 658 return NULL; 659 660 if (alloc_cpumasks(trial, NULL)) { 661 kfree(trial); 662 return NULL; 663 } 664 665 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 666 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 667 return trial; 668 } 669 670 /** 671 * free_cpuset - free the cpuset 672 * @cs: the cpuset to be freed 673 */ 674 static inline void free_cpuset(struct cpuset *cs) 675 { 676 free_cpumasks(cs, NULL); 677 kfree(cs); 678 } 679 680 /* 681 * validate_change_legacy() - Validate conditions specific to legacy (v1) 682 * behavior. 683 */ 684 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial) 685 { 686 struct cgroup_subsys_state *css; 687 struct cpuset *c, *par; 688 int ret; 689 690 WARN_ON_ONCE(!rcu_read_lock_held()); 691 692 /* Each of our child cpusets must be a subset of us */ 693 ret = -EBUSY; 694 cpuset_for_each_child(c, css, cur) 695 if (!is_cpuset_subset(c, trial)) 696 goto out; 697 698 /* On legacy hierarchy, we must be a subset of our parent cpuset. */ 699 ret = -EACCES; 700 par = parent_cs(cur); 701 if (par && !is_cpuset_subset(trial, par)) 702 goto out; 703 704 ret = 0; 705 out: 706 return ret; 707 } 708 709 /* 710 * validate_change() - Used to validate that any proposed cpuset change 711 * follows the structural rules for cpusets. 712 * 713 * If we replaced the flag and mask values of the current cpuset 714 * (cur) with those values in the trial cpuset (trial), would 715 * our various subset and exclusive rules still be valid? Presumes 716 * cpuset_rwsem held. 717 * 718 * 'cur' is the address of an actual, in-use cpuset. Operations 719 * such as list traversal that depend on the actual address of the 720 * cpuset in the list must use cur below, not trial. 721 * 722 * 'trial' is the address of bulk structure copy of cur, with 723 * perhaps one or more of the fields cpus_allowed, mems_allowed, 724 * or flags changed to new, trial values. 725 * 726 * Return 0 if valid, -errno if not. 727 */ 728 729 static int validate_change(struct cpuset *cur, struct cpuset *trial) 730 { 731 struct cgroup_subsys_state *css; 732 struct cpuset *c, *par; 733 int ret = 0; 734 735 rcu_read_lock(); 736 737 if (!is_in_v2_mode()) 738 ret = validate_change_legacy(cur, trial); 739 if (ret) 740 goto out; 741 742 /* Remaining checks don't apply to root cpuset */ 743 if (cur == &top_cpuset) 744 goto out; 745 746 par = parent_cs(cur); 747 748 /* 749 * Cpusets with tasks - existing or newly being attached - can't 750 * be changed to have empty cpus_allowed or mems_allowed. 751 */ 752 ret = -ENOSPC; 753 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 754 if (!cpumask_empty(cur->cpus_allowed) && 755 cpumask_empty(trial->cpus_allowed)) 756 goto out; 757 if (!nodes_empty(cur->mems_allowed) && 758 nodes_empty(trial->mems_allowed)) 759 goto out; 760 } 761 762 /* 763 * We can't shrink if we won't have enough room for SCHED_DEADLINE 764 * tasks. 765 */ 766 ret = -EBUSY; 767 if (is_cpu_exclusive(cur) && 768 !cpuset_cpumask_can_shrink(cur->cpus_allowed, 769 trial->cpus_allowed)) 770 goto out; 771 772 /* 773 * If either I or some sibling (!= me) is exclusive, we can't 774 * overlap 775 */ 776 ret = -EINVAL; 777 cpuset_for_each_child(c, css, par) { 778 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && 779 c != cur && 780 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) 781 goto out; 782 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 783 c != cur && 784 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 785 goto out; 786 } 787 788 ret = 0; 789 out: 790 rcu_read_unlock(); 791 return ret; 792 } 793 794 #ifdef CONFIG_SMP 795 /* 796 * Helper routine for generate_sched_domains(). 797 * Do cpusets a, b have overlapping effective cpus_allowed masks? 798 */ 799 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 800 { 801 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 802 } 803 804 static void 805 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 806 { 807 if (dattr->relax_domain_level < c->relax_domain_level) 808 dattr->relax_domain_level = c->relax_domain_level; 809 return; 810 } 811 812 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 813 struct cpuset *root_cs) 814 { 815 struct cpuset *cp; 816 struct cgroup_subsys_state *pos_css; 817 818 rcu_read_lock(); 819 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 820 /* skip the whole subtree if @cp doesn't have any CPU */ 821 if (cpumask_empty(cp->cpus_allowed)) { 822 pos_css = css_rightmost_descendant(pos_css); 823 continue; 824 } 825 826 if (is_sched_load_balance(cp)) 827 update_domain_attr(dattr, cp); 828 } 829 rcu_read_unlock(); 830 } 831 832 /* Must be called with cpuset_rwsem held. */ 833 static inline int nr_cpusets(void) 834 { 835 /* jump label reference count + the top-level cpuset */ 836 return static_key_count(&cpusets_enabled_key.key) + 1; 837 } 838 839 /* 840 * generate_sched_domains() 841 * 842 * This function builds a partial partition of the systems CPUs 843 * A 'partial partition' is a set of non-overlapping subsets whose 844 * union is a subset of that set. 845 * The output of this function needs to be passed to kernel/sched/core.c 846 * partition_sched_domains() routine, which will rebuild the scheduler's 847 * load balancing domains (sched domains) as specified by that partial 848 * partition. 849 * 850 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 851 * for a background explanation of this. 852 * 853 * Does not return errors, on the theory that the callers of this 854 * routine would rather not worry about failures to rebuild sched 855 * domains when operating in the severe memory shortage situations 856 * that could cause allocation failures below. 857 * 858 * Must be called with cpuset_rwsem held. 859 * 860 * The three key local variables below are: 861 * cp - cpuset pointer, used (together with pos_css) to perform a 862 * top-down scan of all cpusets. For our purposes, rebuilding 863 * the schedulers sched domains, we can ignore !is_sched_load_ 864 * balance cpusets. 865 * csa - (for CpuSet Array) Array of pointers to all the cpusets 866 * that need to be load balanced, for convenient iterative 867 * access by the subsequent code that finds the best partition, 868 * i.e the set of domains (subsets) of CPUs such that the 869 * cpus_allowed of every cpuset marked is_sched_load_balance 870 * is a subset of one of these domains, while there are as 871 * many such domains as possible, each as small as possible. 872 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 873 * the kernel/sched/core.c routine partition_sched_domains() in a 874 * convenient format, that can be easily compared to the prior 875 * value to determine what partition elements (sched domains) 876 * were changed (added or removed.) 877 * 878 * Finding the best partition (set of domains): 879 * The triple nested loops below over i, j, k scan over the 880 * load balanced cpusets (using the array of cpuset pointers in 881 * csa[]) looking for pairs of cpusets that have overlapping 882 * cpus_allowed, but which don't have the same 'pn' partition 883 * number and gives them in the same partition number. It keeps 884 * looping on the 'restart' label until it can no longer find 885 * any such pairs. 886 * 887 * The union of the cpus_allowed masks from the set of 888 * all cpusets having the same 'pn' value then form the one 889 * element of the partition (one sched domain) to be passed to 890 * partition_sched_domains(). 891 */ 892 static int generate_sched_domains(cpumask_var_t **domains, 893 struct sched_domain_attr **attributes) 894 { 895 struct cpuset *cp; /* top-down scan of cpusets */ 896 struct cpuset **csa; /* array of all cpuset ptrs */ 897 int csn; /* how many cpuset ptrs in csa so far */ 898 int i, j, k; /* indices for partition finding loops */ 899 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 900 struct sched_domain_attr *dattr; /* attributes for custom domains */ 901 int ndoms = 0; /* number of sched domains in result */ 902 int nslot; /* next empty doms[] struct cpumask slot */ 903 struct cgroup_subsys_state *pos_css; 904 bool root_load_balance = is_sched_load_balance(&top_cpuset); 905 906 doms = NULL; 907 dattr = NULL; 908 csa = NULL; 909 910 /* Special case for the 99% of systems with one, full, sched domain */ 911 if (root_load_balance && !top_cpuset.nr_subparts_cpus) { 912 ndoms = 1; 913 doms = alloc_sched_domains(ndoms); 914 if (!doms) 915 goto done; 916 917 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 918 if (dattr) { 919 *dattr = SD_ATTR_INIT; 920 update_domain_attr_tree(dattr, &top_cpuset); 921 } 922 cpumask_and(doms[0], top_cpuset.effective_cpus, 923 housekeeping_cpumask(HK_TYPE_DOMAIN)); 924 925 goto done; 926 } 927 928 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 929 if (!csa) 930 goto done; 931 csn = 0; 932 933 rcu_read_lock(); 934 if (root_load_balance) 935 csa[csn++] = &top_cpuset; 936 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 937 if (cp == &top_cpuset) 938 continue; 939 /* 940 * Continue traversing beyond @cp iff @cp has some CPUs and 941 * isn't load balancing. The former is obvious. The 942 * latter: All child cpusets contain a subset of the 943 * parent's cpus, so just skip them, and then we call 944 * update_domain_attr_tree() to calc relax_domain_level of 945 * the corresponding sched domain. 946 * 947 * If root is load-balancing, we can skip @cp if it 948 * is a subset of the root's effective_cpus. 949 */ 950 if (!cpumask_empty(cp->cpus_allowed) && 951 !(is_sched_load_balance(cp) && 952 cpumask_intersects(cp->cpus_allowed, 953 housekeeping_cpumask(HK_TYPE_DOMAIN)))) 954 continue; 955 956 if (root_load_balance && 957 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus)) 958 continue; 959 960 if (is_sched_load_balance(cp) && 961 !cpumask_empty(cp->effective_cpus)) 962 csa[csn++] = cp; 963 964 /* skip @cp's subtree if not a partition root */ 965 if (!is_partition_valid(cp)) 966 pos_css = css_rightmost_descendant(pos_css); 967 } 968 rcu_read_unlock(); 969 970 for (i = 0; i < csn; i++) 971 csa[i]->pn = i; 972 ndoms = csn; 973 974 restart: 975 /* Find the best partition (set of sched domains) */ 976 for (i = 0; i < csn; i++) { 977 struct cpuset *a = csa[i]; 978 int apn = a->pn; 979 980 for (j = 0; j < csn; j++) { 981 struct cpuset *b = csa[j]; 982 int bpn = b->pn; 983 984 if (apn != bpn && cpusets_overlap(a, b)) { 985 for (k = 0; k < csn; k++) { 986 struct cpuset *c = csa[k]; 987 988 if (c->pn == bpn) 989 c->pn = apn; 990 } 991 ndoms--; /* one less element */ 992 goto restart; 993 } 994 } 995 } 996 997 /* 998 * Now we know how many domains to create. 999 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 1000 */ 1001 doms = alloc_sched_domains(ndoms); 1002 if (!doms) 1003 goto done; 1004 1005 /* 1006 * The rest of the code, including the scheduler, can deal with 1007 * dattr==NULL case. No need to abort if alloc fails. 1008 */ 1009 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 1010 GFP_KERNEL); 1011 1012 for (nslot = 0, i = 0; i < csn; i++) { 1013 struct cpuset *a = csa[i]; 1014 struct cpumask *dp; 1015 int apn = a->pn; 1016 1017 if (apn < 0) { 1018 /* Skip completed partitions */ 1019 continue; 1020 } 1021 1022 dp = doms[nslot]; 1023 1024 if (nslot == ndoms) { 1025 static int warnings = 10; 1026 if (warnings) { 1027 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", 1028 nslot, ndoms, csn, i, apn); 1029 warnings--; 1030 } 1031 continue; 1032 } 1033 1034 cpumask_clear(dp); 1035 if (dattr) 1036 *(dattr + nslot) = SD_ATTR_INIT; 1037 for (j = i; j < csn; j++) { 1038 struct cpuset *b = csa[j]; 1039 1040 if (apn == b->pn) { 1041 cpumask_or(dp, dp, b->effective_cpus); 1042 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); 1043 if (dattr) 1044 update_domain_attr_tree(dattr + nslot, b); 1045 1046 /* Done with this partition */ 1047 b->pn = -1; 1048 } 1049 } 1050 nslot++; 1051 } 1052 BUG_ON(nslot != ndoms); 1053 1054 done: 1055 kfree(csa); 1056 1057 /* 1058 * Fallback to the default domain if kmalloc() failed. 1059 * See comments in partition_sched_domains(). 1060 */ 1061 if (doms == NULL) 1062 ndoms = 1; 1063 1064 *domains = doms; 1065 *attributes = dattr; 1066 return ndoms; 1067 } 1068 1069 static void update_tasks_root_domain(struct cpuset *cs) 1070 { 1071 struct css_task_iter it; 1072 struct task_struct *task; 1073 1074 css_task_iter_start(&cs->css, 0, &it); 1075 1076 while ((task = css_task_iter_next(&it))) 1077 dl_add_task_root_domain(task); 1078 1079 css_task_iter_end(&it); 1080 } 1081 1082 static void rebuild_root_domains(void) 1083 { 1084 struct cpuset *cs = NULL; 1085 struct cgroup_subsys_state *pos_css; 1086 1087 percpu_rwsem_assert_held(&cpuset_rwsem); 1088 lockdep_assert_cpus_held(); 1089 lockdep_assert_held(&sched_domains_mutex); 1090 1091 rcu_read_lock(); 1092 1093 /* 1094 * Clear default root domain DL accounting, it will be computed again 1095 * if a task belongs to it. 1096 */ 1097 dl_clear_root_domain(&def_root_domain); 1098 1099 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1100 1101 if (cpumask_empty(cs->effective_cpus)) { 1102 pos_css = css_rightmost_descendant(pos_css); 1103 continue; 1104 } 1105 1106 css_get(&cs->css); 1107 1108 rcu_read_unlock(); 1109 1110 update_tasks_root_domain(cs); 1111 1112 rcu_read_lock(); 1113 css_put(&cs->css); 1114 } 1115 rcu_read_unlock(); 1116 } 1117 1118 static void 1119 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1120 struct sched_domain_attr *dattr_new) 1121 { 1122 mutex_lock(&sched_domains_mutex); 1123 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 1124 rebuild_root_domains(); 1125 mutex_unlock(&sched_domains_mutex); 1126 } 1127 1128 /* 1129 * Rebuild scheduler domains. 1130 * 1131 * If the flag 'sched_load_balance' of any cpuset with non-empty 1132 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1133 * which has that flag enabled, or if any cpuset with a non-empty 1134 * 'cpus' is removed, then call this routine to rebuild the 1135 * scheduler's dynamic sched domains. 1136 * 1137 * Call with cpuset_rwsem held. Takes cpus_read_lock(). 1138 */ 1139 static void rebuild_sched_domains_locked(void) 1140 { 1141 struct cgroup_subsys_state *pos_css; 1142 struct sched_domain_attr *attr; 1143 cpumask_var_t *doms; 1144 struct cpuset *cs; 1145 int ndoms; 1146 1147 lockdep_assert_cpus_held(); 1148 percpu_rwsem_assert_held(&cpuset_rwsem); 1149 1150 /* 1151 * If we have raced with CPU hotplug, return early to avoid 1152 * passing doms with offlined cpu to partition_sched_domains(). 1153 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains. 1154 * 1155 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1156 * should be the same as the active CPUs, so checking only top_cpuset 1157 * is enough to detect racing CPU offlines. 1158 */ 1159 if (!top_cpuset.nr_subparts_cpus && 1160 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1161 return; 1162 1163 /* 1164 * With subpartition CPUs, however, the effective CPUs of a partition 1165 * root should be only a subset of the active CPUs. Since a CPU in any 1166 * partition root could be offlined, all must be checked. 1167 */ 1168 if (top_cpuset.nr_subparts_cpus) { 1169 rcu_read_lock(); 1170 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1171 if (!is_partition_valid(cs)) { 1172 pos_css = css_rightmost_descendant(pos_css); 1173 continue; 1174 } 1175 if (!cpumask_subset(cs->effective_cpus, 1176 cpu_active_mask)) { 1177 rcu_read_unlock(); 1178 return; 1179 } 1180 } 1181 rcu_read_unlock(); 1182 } 1183 1184 /* Generate domain masks and attrs */ 1185 ndoms = generate_sched_domains(&doms, &attr); 1186 1187 /* Have scheduler rebuild the domains */ 1188 partition_and_rebuild_sched_domains(ndoms, doms, attr); 1189 } 1190 #else /* !CONFIG_SMP */ 1191 static void rebuild_sched_domains_locked(void) 1192 { 1193 } 1194 #endif /* CONFIG_SMP */ 1195 1196 void rebuild_sched_domains(void) 1197 { 1198 cpus_read_lock(); 1199 percpu_down_write(&cpuset_rwsem); 1200 rebuild_sched_domains_locked(); 1201 percpu_up_write(&cpuset_rwsem); 1202 cpus_read_unlock(); 1203 } 1204 1205 /** 1206 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1207 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1208 * @new_cpus: the temp variable for the new effective_cpus mask 1209 * 1210 * Iterate through each task of @cs updating its cpus_allowed to the 1211 * effective cpuset's. As this function is called with cpuset_rwsem held, 1212 * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask() 1213 * is used instead of effective_cpus to make sure all offline CPUs are also 1214 * included as hotplug code won't update cpumasks for tasks in top_cpuset. 1215 */ 1216 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) 1217 { 1218 struct css_task_iter it; 1219 struct task_struct *task; 1220 bool top_cs = cs == &top_cpuset; 1221 1222 css_task_iter_start(&cs->css, 0, &it); 1223 while ((task = css_task_iter_next(&it))) { 1224 const struct cpumask *possible_mask = task_cpu_possible_mask(task); 1225 1226 if (top_cs) { 1227 /* 1228 * Percpu kthreads in top_cpuset are ignored 1229 */ 1230 if ((task->flags & PF_KTHREAD) && kthread_is_per_cpu(task)) 1231 continue; 1232 cpumask_andnot(new_cpus, possible_mask, cs->subparts_cpus); 1233 } else { 1234 cpumask_and(new_cpus, possible_mask, cs->effective_cpus); 1235 } 1236 set_cpus_allowed_ptr(task, new_cpus); 1237 } 1238 css_task_iter_end(&it); 1239 } 1240 1241 /** 1242 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1243 * @new_cpus: the temp variable for the new effective_cpus mask 1244 * @cs: the cpuset the need to recompute the new effective_cpus mask 1245 * @parent: the parent cpuset 1246 * 1247 * If the parent has subpartition CPUs, include them in the list of 1248 * allowable CPUs in computing the new effective_cpus mask. Since offlined 1249 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask 1250 * to mask those out. 1251 */ 1252 static void compute_effective_cpumask(struct cpumask *new_cpus, 1253 struct cpuset *cs, struct cpuset *parent) 1254 { 1255 if (parent->nr_subparts_cpus) { 1256 cpumask_or(new_cpus, parent->effective_cpus, 1257 parent->subparts_cpus); 1258 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed); 1259 cpumask_and(new_cpus, new_cpus, cpu_active_mask); 1260 } else { 1261 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1262 } 1263 } 1264 1265 /* 1266 * Commands for update_parent_subparts_cpumask 1267 */ 1268 enum subparts_cmd { 1269 partcmd_enable, /* Enable partition root */ 1270 partcmd_disable, /* Disable partition root */ 1271 partcmd_update, /* Update parent's subparts_cpus */ 1272 partcmd_invalidate, /* Make partition invalid */ 1273 }; 1274 1275 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 1276 int turning_on); 1277 /** 1278 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset 1279 * @cs: The cpuset that requests change in partition root state 1280 * @cmd: Partition root state change command 1281 * @newmask: Optional new cpumask for partcmd_update 1282 * @tmp: Temporary addmask and delmask 1283 * Return: 0 or a partition root state error code 1284 * 1285 * For partcmd_enable, the cpuset is being transformed from a non-partition 1286 * root to a partition root. The cpus_allowed mask of the given cpuset will 1287 * be put into parent's subparts_cpus and taken away from parent's 1288 * effective_cpus. The function will return 0 if all the CPUs listed in 1289 * cpus_allowed can be granted or an error code will be returned. 1290 * 1291 * For partcmd_disable, the cpuset is being transformed from a partition 1292 * root back to a non-partition root. Any CPUs in cpus_allowed that are in 1293 * parent's subparts_cpus will be taken away from that cpumask and put back 1294 * into parent's effective_cpus. 0 will always be returned. 1295 * 1296 * For partcmd_update, if the optional newmask is specified, the cpu list is 1297 * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is 1298 * assumed to remain the same. The cpuset should either be a valid or invalid 1299 * partition root. The partition root state may change from valid to invalid 1300 * or vice versa. An error code will only be returned if transitioning from 1301 * invalid to valid violates the exclusivity rule. 1302 * 1303 * For partcmd_invalidate, the current partition will be made invalid. 1304 * 1305 * The partcmd_enable and partcmd_disable commands are used by 1306 * update_prstate(). An error code may be returned and the caller will check 1307 * for error. 1308 * 1309 * The partcmd_update command is used by update_cpumasks_hier() with newmask 1310 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used 1311 * by update_cpumask() with NULL newmask. In both cases, the callers won't 1312 * check for error and so partition_root_state and prs_error will be updated 1313 * directly. 1314 */ 1315 static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd, 1316 struct cpumask *newmask, 1317 struct tmpmasks *tmp) 1318 { 1319 struct cpuset *parent = parent_cs(cs); 1320 int adding; /* Moving cpus from effective_cpus to subparts_cpus */ 1321 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */ 1322 int old_prs, new_prs; 1323 int part_error = PERR_NONE; /* Partition error? */ 1324 1325 percpu_rwsem_assert_held(&cpuset_rwsem); 1326 1327 /* 1328 * The parent must be a partition root. 1329 * The new cpumask, if present, or the current cpus_allowed must 1330 * not be empty. 1331 */ 1332 if (!is_partition_valid(parent)) { 1333 return is_partition_invalid(parent) 1334 ? PERR_INVPARENT : PERR_NOTPART; 1335 } 1336 if ((newmask && cpumask_empty(newmask)) || 1337 (!newmask && cpumask_empty(cs->cpus_allowed))) 1338 return PERR_CPUSEMPTY; 1339 1340 /* 1341 * new_prs will only be changed for the partcmd_update and 1342 * partcmd_invalidate commands. 1343 */ 1344 adding = deleting = false; 1345 old_prs = new_prs = cs->partition_root_state; 1346 if (cmd == partcmd_enable) { 1347 /* 1348 * Enabling partition root is not allowed if cpus_allowed 1349 * doesn't overlap parent's cpus_allowed. 1350 */ 1351 if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed)) 1352 return PERR_INVCPUS; 1353 1354 /* 1355 * A parent can be left with no CPU as long as there is no 1356 * task directly associated with the parent partition. 1357 */ 1358 if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) && 1359 partition_is_populated(parent, cs)) 1360 return PERR_NOCPUS; 1361 1362 cpumask_copy(tmp->addmask, cs->cpus_allowed); 1363 adding = true; 1364 } else if (cmd == partcmd_disable) { 1365 /* 1366 * Need to remove cpus from parent's subparts_cpus for valid 1367 * partition root. 1368 */ 1369 deleting = !is_prs_invalid(old_prs) && 1370 cpumask_and(tmp->delmask, cs->cpus_allowed, 1371 parent->subparts_cpus); 1372 } else if (cmd == partcmd_invalidate) { 1373 if (is_prs_invalid(old_prs)) 1374 return 0; 1375 1376 /* 1377 * Make the current partition invalid. It is assumed that 1378 * invalidation is caused by violating cpu exclusivity rule. 1379 */ 1380 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1381 parent->subparts_cpus); 1382 if (old_prs > 0) { 1383 new_prs = -old_prs; 1384 part_error = PERR_NOTEXCL; 1385 } 1386 } else if (newmask) { 1387 /* 1388 * partcmd_update with newmask: 1389 * 1390 * Compute add/delete mask to/from subparts_cpus 1391 * 1392 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus 1393 * addmask = newmask & parent->cpus_allowed 1394 * & ~parent->subparts_cpus 1395 */ 1396 cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask); 1397 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1398 parent->subparts_cpus); 1399 1400 cpumask_and(tmp->addmask, newmask, parent->cpus_allowed); 1401 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1402 parent->subparts_cpus); 1403 /* 1404 * Make partition invalid if parent's effective_cpus could 1405 * become empty and there are tasks in the parent. 1406 */ 1407 if (adding && 1408 cpumask_subset(parent->effective_cpus, tmp->addmask) && 1409 !cpumask_intersects(tmp->delmask, cpu_active_mask) && 1410 partition_is_populated(parent, cs)) { 1411 part_error = PERR_NOCPUS; 1412 adding = false; 1413 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1414 parent->subparts_cpus); 1415 } 1416 } else { 1417 /* 1418 * partcmd_update w/o newmask: 1419 * 1420 * delmask = cpus_allowed & parent->subparts_cpus 1421 * addmask = cpus_allowed & parent->cpus_allowed 1422 * & ~parent->subparts_cpus 1423 * 1424 * This gets invoked either due to a hotplug event or from 1425 * update_cpumasks_hier(). This can cause the state of a 1426 * partition root to transition from valid to invalid or vice 1427 * versa. So we still need to compute the addmask and delmask. 1428 1429 * A partition error happens when: 1430 * 1) Cpuset is valid partition, but parent does not distribute 1431 * out any CPUs. 1432 * 2) Parent has tasks and all its effective CPUs will have 1433 * to be distributed out. 1434 */ 1435 cpumask_and(tmp->addmask, cs->cpus_allowed, 1436 parent->cpus_allowed); 1437 adding = cpumask_andnot(tmp->addmask, tmp->addmask, 1438 parent->subparts_cpus); 1439 1440 if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) || 1441 (adding && 1442 cpumask_subset(parent->effective_cpus, tmp->addmask) && 1443 partition_is_populated(parent, cs))) { 1444 part_error = PERR_NOCPUS; 1445 adding = false; 1446 } 1447 1448 if (part_error && is_partition_valid(cs) && 1449 parent->nr_subparts_cpus) 1450 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed, 1451 parent->subparts_cpus); 1452 } 1453 if (part_error) 1454 WRITE_ONCE(cs->prs_err, part_error); 1455 1456 if (cmd == partcmd_update) { 1457 /* 1458 * Check for possible transition between valid and invalid 1459 * partition root. 1460 */ 1461 switch (cs->partition_root_state) { 1462 case PRS_ROOT: 1463 case PRS_ISOLATED: 1464 if (part_error) 1465 new_prs = -old_prs; 1466 break; 1467 case PRS_INVALID_ROOT: 1468 case PRS_INVALID_ISOLATED: 1469 if (!part_error) 1470 new_prs = -old_prs; 1471 break; 1472 } 1473 } 1474 1475 if (!adding && !deleting && (new_prs == old_prs)) 1476 return 0; 1477 1478 /* 1479 * Transitioning between invalid to valid or vice versa may require 1480 * changing CS_CPU_EXCLUSIVE and CS_SCHED_LOAD_BALANCE. 1481 */ 1482 if (old_prs != new_prs) { 1483 if (is_prs_invalid(old_prs) && !is_cpu_exclusive(cs) && 1484 (update_flag(CS_CPU_EXCLUSIVE, cs, 1) < 0)) 1485 return PERR_NOTEXCL; 1486 if (is_prs_invalid(new_prs) && is_cpu_exclusive(cs)) 1487 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1488 } 1489 1490 /* 1491 * Change the parent's subparts_cpus. 1492 * Newly added CPUs will be removed from effective_cpus and 1493 * newly deleted ones will be added back to effective_cpus. 1494 */ 1495 spin_lock_irq(&callback_lock); 1496 if (adding) { 1497 cpumask_or(parent->subparts_cpus, 1498 parent->subparts_cpus, tmp->addmask); 1499 cpumask_andnot(parent->effective_cpus, 1500 parent->effective_cpus, tmp->addmask); 1501 } 1502 if (deleting) { 1503 cpumask_andnot(parent->subparts_cpus, 1504 parent->subparts_cpus, tmp->delmask); 1505 /* 1506 * Some of the CPUs in subparts_cpus might have been offlined. 1507 */ 1508 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask); 1509 cpumask_or(parent->effective_cpus, 1510 parent->effective_cpus, tmp->delmask); 1511 } 1512 1513 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus); 1514 1515 if (old_prs != new_prs) 1516 cs->partition_root_state = new_prs; 1517 1518 spin_unlock_irq(&callback_lock); 1519 1520 if (adding || deleting) 1521 update_tasks_cpumask(parent, tmp->addmask); 1522 1523 /* 1524 * Set or clear CS_SCHED_LOAD_BALANCE when partcmd_update, if necessary. 1525 * rebuild_sched_domains_locked() may be called. 1526 */ 1527 if (old_prs != new_prs) { 1528 if (old_prs == PRS_ISOLATED) 1529 update_flag(CS_SCHED_LOAD_BALANCE, cs, 1); 1530 else if (new_prs == PRS_ISOLATED) 1531 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 1532 } 1533 notify_partition_change(cs, old_prs); 1534 return 0; 1535 } 1536 1537 /* 1538 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 1539 * @cs: the cpuset to consider 1540 * @tmp: temp variables for calculating effective_cpus & partition setup 1541 * @force: don't skip any descendant cpusets if set 1542 * 1543 * When configured cpumask is changed, the effective cpumasks of this cpuset 1544 * and all its descendants need to be updated. 1545 * 1546 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 1547 * 1548 * Called with cpuset_rwsem held 1549 */ 1550 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, 1551 bool force) 1552 { 1553 struct cpuset *cp; 1554 struct cgroup_subsys_state *pos_css; 1555 bool need_rebuild_sched_domains = false; 1556 int old_prs, new_prs; 1557 1558 rcu_read_lock(); 1559 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 1560 struct cpuset *parent = parent_cs(cp); 1561 bool update_parent = false; 1562 1563 compute_effective_cpumask(tmp->new_cpus, cp, parent); 1564 1565 /* 1566 * If it becomes empty, inherit the effective mask of the 1567 * parent, which is guaranteed to have some CPUs unless 1568 * it is a partition root that has explicitly distributed 1569 * out all its CPUs. 1570 */ 1571 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) { 1572 if (is_partition_valid(cp) && 1573 cpumask_equal(cp->cpus_allowed, cp->subparts_cpus)) 1574 goto update_parent_subparts; 1575 1576 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 1577 if (!cp->use_parent_ecpus) { 1578 cp->use_parent_ecpus = true; 1579 parent->child_ecpus_count++; 1580 } 1581 } else if (cp->use_parent_ecpus) { 1582 cp->use_parent_ecpus = false; 1583 WARN_ON_ONCE(!parent->child_ecpus_count); 1584 parent->child_ecpus_count--; 1585 } 1586 1587 /* 1588 * Skip the whole subtree if the cpumask remains the same 1589 * and has no partition root state and force flag not set. 1590 */ 1591 if (!cp->partition_root_state && !force && 1592 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) { 1593 pos_css = css_rightmost_descendant(pos_css); 1594 continue; 1595 } 1596 1597 update_parent_subparts: 1598 /* 1599 * update_parent_subparts_cpumask() should have been called 1600 * for cs already in update_cpumask(). We should also call 1601 * update_tasks_cpumask() again for tasks in the parent 1602 * cpuset if the parent's subparts_cpus changes. 1603 */ 1604 old_prs = new_prs = cp->partition_root_state; 1605 if ((cp != cs) && old_prs) { 1606 switch (parent->partition_root_state) { 1607 case PRS_ROOT: 1608 case PRS_ISOLATED: 1609 update_parent = true; 1610 break; 1611 1612 default: 1613 /* 1614 * When parent is not a partition root or is 1615 * invalid, child partition roots become 1616 * invalid too. 1617 */ 1618 if (is_partition_valid(cp)) 1619 new_prs = -cp->partition_root_state; 1620 WRITE_ONCE(cp->prs_err, 1621 is_partition_invalid(parent) 1622 ? PERR_INVPARENT : PERR_NOTPART); 1623 break; 1624 } 1625 } 1626 1627 if (!css_tryget_online(&cp->css)) 1628 continue; 1629 rcu_read_unlock(); 1630 1631 if (update_parent) { 1632 update_parent_subparts_cpumask(cp, partcmd_update, NULL, 1633 tmp); 1634 /* 1635 * The cpuset partition_root_state may become 1636 * invalid. Capture it. 1637 */ 1638 new_prs = cp->partition_root_state; 1639 } 1640 1641 spin_lock_irq(&callback_lock); 1642 1643 if (cp->nr_subparts_cpus && !is_partition_valid(cp)) { 1644 /* 1645 * Put all active subparts_cpus back to effective_cpus. 1646 */ 1647 cpumask_or(tmp->new_cpus, tmp->new_cpus, 1648 cp->subparts_cpus); 1649 cpumask_and(tmp->new_cpus, tmp->new_cpus, 1650 cpu_active_mask); 1651 cp->nr_subparts_cpus = 0; 1652 cpumask_clear(cp->subparts_cpus); 1653 } 1654 1655 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 1656 if (cp->nr_subparts_cpus) { 1657 /* 1658 * Make sure that effective_cpus & subparts_cpus 1659 * are mutually exclusive. 1660 */ 1661 cpumask_andnot(cp->effective_cpus, cp->effective_cpus, 1662 cp->subparts_cpus); 1663 } 1664 1665 cp->partition_root_state = new_prs; 1666 spin_unlock_irq(&callback_lock); 1667 1668 notify_partition_change(cp, old_prs); 1669 1670 WARN_ON(!is_in_v2_mode() && 1671 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 1672 1673 update_tasks_cpumask(cp, tmp->new_cpus); 1674 1675 /* 1676 * On legacy hierarchy, if the effective cpumask of any non- 1677 * empty cpuset is changed, we need to rebuild sched domains. 1678 * On default hierarchy, the cpuset needs to be a partition 1679 * root as well. 1680 */ 1681 if (!cpumask_empty(cp->cpus_allowed) && 1682 is_sched_load_balance(cp) && 1683 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) || 1684 is_partition_valid(cp))) 1685 need_rebuild_sched_domains = true; 1686 1687 rcu_read_lock(); 1688 css_put(&cp->css); 1689 } 1690 rcu_read_unlock(); 1691 1692 if (need_rebuild_sched_domains) 1693 rebuild_sched_domains_locked(); 1694 } 1695 1696 /** 1697 * update_sibling_cpumasks - Update siblings cpumasks 1698 * @parent: Parent cpuset 1699 * @cs: Current cpuset 1700 * @tmp: Temp variables 1701 */ 1702 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1703 struct tmpmasks *tmp) 1704 { 1705 struct cpuset *sibling; 1706 struct cgroup_subsys_state *pos_css; 1707 1708 percpu_rwsem_assert_held(&cpuset_rwsem); 1709 1710 /* 1711 * Check all its siblings and call update_cpumasks_hier() 1712 * if their use_parent_ecpus flag is set in order for them 1713 * to use the right effective_cpus value. 1714 * 1715 * The update_cpumasks_hier() function may sleep. So we have to 1716 * release the RCU read lock before calling it. 1717 */ 1718 rcu_read_lock(); 1719 cpuset_for_each_child(sibling, pos_css, parent) { 1720 if (sibling == cs) 1721 continue; 1722 if (!sibling->use_parent_ecpus) 1723 continue; 1724 if (!css_tryget_online(&sibling->css)) 1725 continue; 1726 1727 rcu_read_unlock(); 1728 update_cpumasks_hier(sibling, tmp, false); 1729 rcu_read_lock(); 1730 css_put(&sibling->css); 1731 } 1732 rcu_read_unlock(); 1733 } 1734 1735 /** 1736 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 1737 * @cs: the cpuset to consider 1738 * @trialcs: trial cpuset 1739 * @buf: buffer of cpu numbers written to this cpuset 1740 */ 1741 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 1742 const char *buf) 1743 { 1744 int retval; 1745 struct tmpmasks tmp; 1746 bool invalidate = false; 1747 1748 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 1749 if (cs == &top_cpuset) 1750 return -EACCES; 1751 1752 /* 1753 * An empty cpus_allowed is ok only if the cpuset has no tasks. 1754 * Since cpulist_parse() fails on an empty mask, we special case 1755 * that parsing. The validate_change() call ensures that cpusets 1756 * with tasks have cpus. 1757 */ 1758 if (!*buf) { 1759 cpumask_clear(trialcs->cpus_allowed); 1760 } else { 1761 retval = cpulist_parse(buf, trialcs->cpus_allowed); 1762 if (retval < 0) 1763 return retval; 1764 1765 if (!cpumask_subset(trialcs->cpus_allowed, 1766 top_cpuset.cpus_allowed)) 1767 return -EINVAL; 1768 } 1769 1770 /* Nothing to do if the cpus didn't change */ 1771 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 1772 return 0; 1773 1774 #ifdef CONFIG_CPUMASK_OFFSTACK 1775 /* 1776 * Use the cpumasks in trialcs for tmpmasks when they are pointers 1777 * to allocated cpumasks. 1778 * 1779 * Note that update_parent_subparts_cpumask() uses only addmask & 1780 * delmask, but not new_cpus. 1781 */ 1782 tmp.addmask = trialcs->subparts_cpus; 1783 tmp.delmask = trialcs->effective_cpus; 1784 tmp.new_cpus = NULL; 1785 #endif 1786 1787 retval = validate_change(cs, trialcs); 1788 1789 if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { 1790 struct cpuset *cp, *parent; 1791 struct cgroup_subsys_state *css; 1792 1793 /* 1794 * The -EINVAL error code indicates that partition sibling 1795 * CPU exclusivity rule has been violated. We still allow 1796 * the cpumask change to proceed while invalidating the 1797 * partition. However, any conflicting sibling partitions 1798 * have to be marked as invalid too. 1799 */ 1800 invalidate = true; 1801 rcu_read_lock(); 1802 parent = parent_cs(cs); 1803 cpuset_for_each_child(cp, css, parent) 1804 if (is_partition_valid(cp) && 1805 cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) { 1806 rcu_read_unlock(); 1807 update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp); 1808 rcu_read_lock(); 1809 } 1810 rcu_read_unlock(); 1811 retval = 0; 1812 } 1813 if (retval < 0) 1814 return retval; 1815 1816 if (cs->partition_root_state) { 1817 if (invalidate) 1818 update_parent_subparts_cpumask(cs, partcmd_invalidate, 1819 NULL, &tmp); 1820 else 1821 update_parent_subparts_cpumask(cs, partcmd_update, 1822 trialcs->cpus_allowed, &tmp); 1823 } 1824 1825 compute_effective_cpumask(trialcs->effective_cpus, trialcs, 1826 parent_cs(cs)); 1827 spin_lock_irq(&callback_lock); 1828 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 1829 1830 /* 1831 * Make sure that subparts_cpus, if not empty, is a subset of 1832 * cpus_allowed. Clear subparts_cpus if partition not valid or 1833 * empty effective cpus with tasks. 1834 */ 1835 if (cs->nr_subparts_cpus) { 1836 if (!is_partition_valid(cs) || 1837 (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) && 1838 partition_is_populated(cs, NULL))) { 1839 cs->nr_subparts_cpus = 0; 1840 cpumask_clear(cs->subparts_cpus); 1841 } else { 1842 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, 1843 cs->cpus_allowed); 1844 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus); 1845 } 1846 } 1847 spin_unlock_irq(&callback_lock); 1848 1849 #ifdef CONFIG_CPUMASK_OFFSTACK 1850 /* Now trialcs->cpus_allowed is available */ 1851 tmp.new_cpus = trialcs->cpus_allowed; 1852 #endif 1853 1854 /* effective_cpus will be updated here */ 1855 update_cpumasks_hier(cs, &tmp, false); 1856 1857 if (cs->partition_root_state) { 1858 struct cpuset *parent = parent_cs(cs); 1859 1860 /* 1861 * For partition root, update the cpumasks of sibling 1862 * cpusets if they use parent's effective_cpus. 1863 */ 1864 if (parent->child_ecpus_count) 1865 update_sibling_cpumasks(parent, cs, &tmp); 1866 } 1867 return 0; 1868 } 1869 1870 /* 1871 * Migrate memory region from one set of nodes to another. This is 1872 * performed asynchronously as it can be called from process migration path 1873 * holding locks involved in process management. All mm migrations are 1874 * performed in the queued order and can be waited for by flushing 1875 * cpuset_migrate_mm_wq. 1876 */ 1877 1878 struct cpuset_migrate_mm_work { 1879 struct work_struct work; 1880 struct mm_struct *mm; 1881 nodemask_t from; 1882 nodemask_t to; 1883 }; 1884 1885 static void cpuset_migrate_mm_workfn(struct work_struct *work) 1886 { 1887 struct cpuset_migrate_mm_work *mwork = 1888 container_of(work, struct cpuset_migrate_mm_work, work); 1889 1890 /* on a wq worker, no need to worry about %current's mems_allowed */ 1891 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 1892 mmput(mwork->mm); 1893 kfree(mwork); 1894 } 1895 1896 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 1897 const nodemask_t *to) 1898 { 1899 struct cpuset_migrate_mm_work *mwork; 1900 1901 if (nodes_equal(*from, *to)) { 1902 mmput(mm); 1903 return; 1904 } 1905 1906 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 1907 if (mwork) { 1908 mwork->mm = mm; 1909 mwork->from = *from; 1910 mwork->to = *to; 1911 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 1912 queue_work(cpuset_migrate_mm_wq, &mwork->work); 1913 } else { 1914 mmput(mm); 1915 } 1916 } 1917 1918 static void cpuset_post_attach(void) 1919 { 1920 flush_workqueue(cpuset_migrate_mm_wq); 1921 } 1922 1923 /* 1924 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 1925 * @tsk: the task to change 1926 * @newmems: new nodes that the task will be set 1927 * 1928 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 1929 * and rebind an eventual tasks' mempolicy. If the task is allocating in 1930 * parallel, it might temporarily see an empty intersection, which results in 1931 * a seqlock check and retry before OOM or allocation failure. 1932 */ 1933 static void cpuset_change_task_nodemask(struct task_struct *tsk, 1934 nodemask_t *newmems) 1935 { 1936 task_lock(tsk); 1937 1938 local_irq_disable(); 1939 write_seqcount_begin(&tsk->mems_allowed_seq); 1940 1941 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 1942 mpol_rebind_task(tsk, newmems); 1943 tsk->mems_allowed = *newmems; 1944 1945 write_seqcount_end(&tsk->mems_allowed_seq); 1946 local_irq_enable(); 1947 1948 task_unlock(tsk); 1949 } 1950 1951 static void *cpuset_being_rebound; 1952 1953 /** 1954 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 1955 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 1956 * 1957 * Iterate through each task of @cs updating its mems_allowed to the 1958 * effective cpuset's. As this function is called with cpuset_rwsem held, 1959 * cpuset membership stays stable. 1960 */ 1961 static void update_tasks_nodemask(struct cpuset *cs) 1962 { 1963 static nodemask_t newmems; /* protected by cpuset_rwsem */ 1964 struct css_task_iter it; 1965 struct task_struct *task; 1966 1967 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 1968 1969 guarantee_online_mems(cs, &newmems); 1970 1971 /* 1972 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 1973 * take while holding tasklist_lock. Forks can happen - the 1974 * mpol_dup() cpuset_being_rebound check will catch such forks, 1975 * and rebind their vma mempolicies too. Because we still hold 1976 * the global cpuset_rwsem, we know that no other rebind effort 1977 * will be contending for the global variable cpuset_being_rebound. 1978 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 1979 * is idempotent. Also migrate pages in each mm to new nodes. 1980 */ 1981 css_task_iter_start(&cs->css, 0, &it); 1982 while ((task = css_task_iter_next(&it))) { 1983 struct mm_struct *mm; 1984 bool migrate; 1985 1986 cpuset_change_task_nodemask(task, &newmems); 1987 1988 mm = get_task_mm(task); 1989 if (!mm) 1990 continue; 1991 1992 migrate = is_memory_migrate(cs); 1993 1994 mpol_rebind_mm(mm, &cs->mems_allowed); 1995 if (migrate) 1996 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 1997 else 1998 mmput(mm); 1999 } 2000 css_task_iter_end(&it); 2001 2002 /* 2003 * All the tasks' nodemasks have been updated, update 2004 * cs->old_mems_allowed. 2005 */ 2006 cs->old_mems_allowed = newmems; 2007 2008 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 2009 cpuset_being_rebound = NULL; 2010 } 2011 2012 /* 2013 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 2014 * @cs: the cpuset to consider 2015 * @new_mems: a temp variable for calculating new effective_mems 2016 * 2017 * When configured nodemask is changed, the effective nodemasks of this cpuset 2018 * and all its descendants need to be updated. 2019 * 2020 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 2021 * 2022 * Called with cpuset_rwsem held 2023 */ 2024 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 2025 { 2026 struct cpuset *cp; 2027 struct cgroup_subsys_state *pos_css; 2028 2029 rcu_read_lock(); 2030 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2031 struct cpuset *parent = parent_cs(cp); 2032 2033 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 2034 2035 /* 2036 * If it becomes empty, inherit the effective mask of the 2037 * parent, which is guaranteed to have some MEMs. 2038 */ 2039 if (is_in_v2_mode() && nodes_empty(*new_mems)) 2040 *new_mems = parent->effective_mems; 2041 2042 /* Skip the whole subtree if the nodemask remains the same. */ 2043 if (nodes_equal(*new_mems, cp->effective_mems)) { 2044 pos_css = css_rightmost_descendant(pos_css); 2045 continue; 2046 } 2047 2048 if (!css_tryget_online(&cp->css)) 2049 continue; 2050 rcu_read_unlock(); 2051 2052 spin_lock_irq(&callback_lock); 2053 cp->effective_mems = *new_mems; 2054 spin_unlock_irq(&callback_lock); 2055 2056 WARN_ON(!is_in_v2_mode() && 2057 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 2058 2059 update_tasks_nodemask(cp); 2060 2061 rcu_read_lock(); 2062 css_put(&cp->css); 2063 } 2064 rcu_read_unlock(); 2065 } 2066 2067 /* 2068 * Handle user request to change the 'mems' memory placement 2069 * of a cpuset. Needs to validate the request, update the 2070 * cpusets mems_allowed, and for each task in the cpuset, 2071 * update mems_allowed and rebind task's mempolicy and any vma 2072 * mempolicies and if the cpuset is marked 'memory_migrate', 2073 * migrate the tasks pages to the new memory. 2074 * 2075 * Call with cpuset_rwsem held. May take callback_lock during call. 2076 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 2077 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 2078 * their mempolicies to the cpusets new mems_allowed. 2079 */ 2080 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 2081 const char *buf) 2082 { 2083 int retval; 2084 2085 /* 2086 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 2087 * it's read-only 2088 */ 2089 if (cs == &top_cpuset) { 2090 retval = -EACCES; 2091 goto done; 2092 } 2093 2094 /* 2095 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 2096 * Since nodelist_parse() fails on an empty mask, we special case 2097 * that parsing. The validate_change() call ensures that cpusets 2098 * with tasks have memory. 2099 */ 2100 if (!*buf) { 2101 nodes_clear(trialcs->mems_allowed); 2102 } else { 2103 retval = nodelist_parse(buf, trialcs->mems_allowed); 2104 if (retval < 0) 2105 goto done; 2106 2107 if (!nodes_subset(trialcs->mems_allowed, 2108 top_cpuset.mems_allowed)) { 2109 retval = -EINVAL; 2110 goto done; 2111 } 2112 } 2113 2114 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 2115 retval = 0; /* Too easy - nothing to do */ 2116 goto done; 2117 } 2118 retval = validate_change(cs, trialcs); 2119 if (retval < 0) 2120 goto done; 2121 2122 check_insane_mems_config(&trialcs->mems_allowed); 2123 2124 spin_lock_irq(&callback_lock); 2125 cs->mems_allowed = trialcs->mems_allowed; 2126 spin_unlock_irq(&callback_lock); 2127 2128 /* use trialcs->mems_allowed as a temp variable */ 2129 update_nodemasks_hier(cs, &trialcs->mems_allowed); 2130 done: 2131 return retval; 2132 } 2133 2134 bool current_cpuset_is_being_rebound(void) 2135 { 2136 bool ret; 2137 2138 rcu_read_lock(); 2139 ret = task_cs(current) == cpuset_being_rebound; 2140 rcu_read_unlock(); 2141 2142 return ret; 2143 } 2144 2145 static int update_relax_domain_level(struct cpuset *cs, s64 val) 2146 { 2147 #ifdef CONFIG_SMP 2148 if (val < -1 || val >= sched_domain_level_max) 2149 return -EINVAL; 2150 #endif 2151 2152 if (val != cs->relax_domain_level) { 2153 cs->relax_domain_level = val; 2154 if (!cpumask_empty(cs->cpus_allowed) && 2155 is_sched_load_balance(cs)) 2156 rebuild_sched_domains_locked(); 2157 } 2158 2159 return 0; 2160 } 2161 2162 /** 2163 * update_tasks_flags - update the spread flags of tasks in the cpuset. 2164 * @cs: the cpuset in which each task's spread flags needs to be changed 2165 * 2166 * Iterate through each task of @cs updating its spread flags. As this 2167 * function is called with cpuset_rwsem held, cpuset membership stays 2168 * stable. 2169 */ 2170 static void update_tasks_flags(struct cpuset *cs) 2171 { 2172 struct css_task_iter it; 2173 struct task_struct *task; 2174 2175 css_task_iter_start(&cs->css, 0, &it); 2176 while ((task = css_task_iter_next(&it))) 2177 cpuset_update_task_spread_flags(cs, task); 2178 css_task_iter_end(&it); 2179 } 2180 2181 /* 2182 * update_flag - read a 0 or a 1 in a file and update associated flag 2183 * bit: the bit to update (see cpuset_flagbits_t) 2184 * cs: the cpuset to update 2185 * turning_on: whether the flag is being set or cleared 2186 * 2187 * Call with cpuset_rwsem held. 2188 */ 2189 2190 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 2191 int turning_on) 2192 { 2193 struct cpuset *trialcs; 2194 int balance_flag_changed; 2195 int spread_flag_changed; 2196 int err; 2197 2198 trialcs = alloc_trial_cpuset(cs); 2199 if (!trialcs) 2200 return -ENOMEM; 2201 2202 if (turning_on) 2203 set_bit(bit, &trialcs->flags); 2204 else 2205 clear_bit(bit, &trialcs->flags); 2206 2207 err = validate_change(cs, trialcs); 2208 if (err < 0) 2209 goto out; 2210 2211 balance_flag_changed = (is_sched_load_balance(cs) != 2212 is_sched_load_balance(trialcs)); 2213 2214 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 2215 || (is_spread_page(cs) != is_spread_page(trialcs))); 2216 2217 spin_lock_irq(&callback_lock); 2218 cs->flags = trialcs->flags; 2219 spin_unlock_irq(&callback_lock); 2220 2221 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) 2222 rebuild_sched_domains_locked(); 2223 2224 if (spread_flag_changed) 2225 update_tasks_flags(cs); 2226 out: 2227 free_cpuset(trialcs); 2228 return err; 2229 } 2230 2231 /** 2232 * update_prstate - update partition_root_state 2233 * @cs: the cpuset to update 2234 * @new_prs: new partition root state 2235 * Return: 0 if successful, != 0 if error 2236 * 2237 * Call with cpuset_rwsem held. 2238 */ 2239 static int update_prstate(struct cpuset *cs, int new_prs) 2240 { 2241 int err = PERR_NONE, old_prs = cs->partition_root_state; 2242 bool sched_domain_rebuilt = false; 2243 struct cpuset *parent = parent_cs(cs); 2244 struct tmpmasks tmpmask; 2245 2246 if (old_prs == new_prs) 2247 return 0; 2248 2249 /* 2250 * For a previously invalid partition root, leave it at being 2251 * invalid if new_prs is not "member". 2252 */ 2253 if (new_prs && is_prs_invalid(old_prs)) { 2254 cs->partition_root_state = -new_prs; 2255 return 0; 2256 } 2257 2258 if (alloc_cpumasks(NULL, &tmpmask)) 2259 return -ENOMEM; 2260 2261 if (!old_prs) { 2262 /* 2263 * Turning on partition root requires setting the 2264 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed 2265 * cannot be empty. 2266 */ 2267 if (cpumask_empty(cs->cpus_allowed)) { 2268 err = PERR_CPUSEMPTY; 2269 goto out; 2270 } 2271 2272 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1); 2273 if (err) { 2274 err = PERR_NOTEXCL; 2275 goto out; 2276 } 2277 2278 err = update_parent_subparts_cpumask(cs, partcmd_enable, 2279 NULL, &tmpmask); 2280 if (err) { 2281 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2282 goto out; 2283 } 2284 2285 if (new_prs == PRS_ISOLATED) { 2286 /* 2287 * Disable the load balance flag should not return an 2288 * error unless the system is running out of memory. 2289 */ 2290 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 2291 sched_domain_rebuilt = true; 2292 } 2293 } else if (old_prs && new_prs) { 2294 /* 2295 * A change in load balance state only, no change in cpumasks. 2296 */ 2297 update_flag(CS_SCHED_LOAD_BALANCE, cs, (new_prs != PRS_ISOLATED)); 2298 sched_domain_rebuilt = true; 2299 goto out; /* Sched domain is rebuilt in update_flag() */ 2300 } else { 2301 /* 2302 * Switching back to member is always allowed even if it 2303 * disables child partitions. 2304 */ 2305 update_parent_subparts_cpumask(cs, partcmd_disable, NULL, 2306 &tmpmask); 2307 2308 /* 2309 * If there are child partitions, they will all become invalid. 2310 */ 2311 if (unlikely(cs->nr_subparts_cpus)) { 2312 spin_lock_irq(&callback_lock); 2313 cs->nr_subparts_cpus = 0; 2314 cpumask_clear(cs->subparts_cpus); 2315 compute_effective_cpumask(cs->effective_cpus, cs, parent); 2316 spin_unlock_irq(&callback_lock); 2317 } 2318 2319 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 2320 update_flag(CS_CPU_EXCLUSIVE, cs, 0); 2321 2322 if (!is_sched_load_balance(cs)) { 2323 /* Make sure load balance is on */ 2324 update_flag(CS_SCHED_LOAD_BALANCE, cs, 1); 2325 sched_domain_rebuilt = true; 2326 } 2327 } 2328 2329 update_tasks_cpumask(parent, tmpmask.new_cpus); 2330 2331 if (parent->child_ecpus_count) 2332 update_sibling_cpumasks(parent, cs, &tmpmask); 2333 2334 if (!sched_domain_rebuilt) 2335 rebuild_sched_domains_locked(); 2336 out: 2337 /* 2338 * Make partition invalid if an error happen 2339 */ 2340 if (err) 2341 new_prs = -new_prs; 2342 spin_lock_irq(&callback_lock); 2343 cs->partition_root_state = new_prs; 2344 WRITE_ONCE(cs->prs_err, err); 2345 spin_unlock_irq(&callback_lock); 2346 /* 2347 * Update child cpusets, if present. 2348 * Force update if switching back to member. 2349 */ 2350 if (!list_empty(&cs->css.children)) 2351 update_cpumasks_hier(cs, &tmpmask, !new_prs); 2352 2353 notify_partition_change(cs, old_prs); 2354 free_cpumasks(NULL, &tmpmask); 2355 return 0; 2356 } 2357 2358 /* 2359 * Frequency meter - How fast is some event occurring? 2360 * 2361 * These routines manage a digitally filtered, constant time based, 2362 * event frequency meter. There are four routines: 2363 * fmeter_init() - initialize a frequency meter. 2364 * fmeter_markevent() - called each time the event happens. 2365 * fmeter_getrate() - returns the recent rate of such events. 2366 * fmeter_update() - internal routine used to update fmeter. 2367 * 2368 * A common data structure is passed to each of these routines, 2369 * which is used to keep track of the state required to manage the 2370 * frequency meter and its digital filter. 2371 * 2372 * The filter works on the number of events marked per unit time. 2373 * The filter is single-pole low-pass recursive (IIR). The time unit 2374 * is 1 second. Arithmetic is done using 32-bit integers scaled to 2375 * simulate 3 decimal digits of precision (multiplied by 1000). 2376 * 2377 * With an FM_COEF of 933, and a time base of 1 second, the filter 2378 * has a half-life of 10 seconds, meaning that if the events quit 2379 * happening, then the rate returned from the fmeter_getrate() 2380 * will be cut in half each 10 seconds, until it converges to zero. 2381 * 2382 * It is not worth doing a real infinitely recursive filter. If more 2383 * than FM_MAXTICKS ticks have elapsed since the last filter event, 2384 * just compute FM_MAXTICKS ticks worth, by which point the level 2385 * will be stable. 2386 * 2387 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid 2388 * arithmetic overflow in the fmeter_update() routine. 2389 * 2390 * Given the simple 32 bit integer arithmetic used, this meter works 2391 * best for reporting rates between one per millisecond (msec) and 2392 * one per 32 (approx) seconds. At constant rates faster than one 2393 * per msec it maxes out at values just under 1,000,000. At constant 2394 * rates between one per msec, and one per second it will stabilize 2395 * to a value N*1000, where N is the rate of events per second. 2396 * At constant rates between one per second and one per 32 seconds, 2397 * it will be choppy, moving up on the seconds that have an event, 2398 * and then decaying until the next event. At rates slower than 2399 * about one in 32 seconds, it decays all the way back to zero between 2400 * each event. 2401 */ 2402 2403 #define FM_COEF 933 /* coefficient for half-life of 10 secs */ 2404 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ 2405 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ 2406 #define FM_SCALE 1000 /* faux fixed point scale */ 2407 2408 /* Initialize a frequency meter */ 2409 static void fmeter_init(struct fmeter *fmp) 2410 { 2411 fmp->cnt = 0; 2412 fmp->val = 0; 2413 fmp->time = 0; 2414 spin_lock_init(&fmp->lock); 2415 } 2416 2417 /* Internal meter update - process cnt events and update value */ 2418 static void fmeter_update(struct fmeter *fmp) 2419 { 2420 time64_t now; 2421 u32 ticks; 2422 2423 now = ktime_get_seconds(); 2424 ticks = now - fmp->time; 2425 2426 if (ticks == 0) 2427 return; 2428 2429 ticks = min(FM_MAXTICKS, ticks); 2430 while (ticks-- > 0) 2431 fmp->val = (FM_COEF * fmp->val) / FM_SCALE; 2432 fmp->time = now; 2433 2434 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; 2435 fmp->cnt = 0; 2436 } 2437 2438 /* Process any previous ticks, then bump cnt by one (times scale). */ 2439 static void fmeter_markevent(struct fmeter *fmp) 2440 { 2441 spin_lock(&fmp->lock); 2442 fmeter_update(fmp); 2443 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); 2444 spin_unlock(&fmp->lock); 2445 } 2446 2447 /* Process any previous ticks, then return current value. */ 2448 static int fmeter_getrate(struct fmeter *fmp) 2449 { 2450 int val; 2451 2452 spin_lock(&fmp->lock); 2453 fmeter_update(fmp); 2454 val = fmp->val; 2455 spin_unlock(&fmp->lock); 2456 return val; 2457 } 2458 2459 static struct cpuset *cpuset_attach_old_cs; 2460 2461 /* 2462 * Check to see if a cpuset can accept a new task 2463 * For v1, cpus_allowed and mems_allowed can't be empty. 2464 * For v2, effective_cpus can't be empty. 2465 * Note that in v1, effective_cpus = cpus_allowed. 2466 */ 2467 static int cpuset_can_attach_check(struct cpuset *cs) 2468 { 2469 if (cpumask_empty(cs->effective_cpus) || 2470 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) 2471 return -ENOSPC; 2472 return 0; 2473 } 2474 2475 /* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */ 2476 static int cpuset_can_attach(struct cgroup_taskset *tset) 2477 { 2478 struct cgroup_subsys_state *css; 2479 struct cpuset *cs; 2480 struct task_struct *task; 2481 int ret; 2482 2483 /* used later by cpuset_attach() */ 2484 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2485 cs = css_cs(css); 2486 2487 percpu_down_write(&cpuset_rwsem); 2488 2489 /* Check to see if task is allowed in the cpuset */ 2490 ret = cpuset_can_attach_check(cs); 2491 if (ret) 2492 goto out_unlock; 2493 2494 cgroup_taskset_for_each(task, css, tset) { 2495 ret = task_can_attach(task, cs->effective_cpus); 2496 if (ret) 2497 goto out_unlock; 2498 ret = security_task_setscheduler(task); 2499 if (ret) 2500 goto out_unlock; 2501 } 2502 2503 /* 2504 * Mark attach is in progress. This makes validate_change() fail 2505 * changes which zero cpus/mems_allowed. 2506 */ 2507 cs->attach_in_progress++; 2508 out_unlock: 2509 percpu_up_write(&cpuset_rwsem); 2510 return ret; 2511 } 2512 2513 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 2514 { 2515 struct cgroup_subsys_state *css; 2516 struct cpuset *cs; 2517 2518 cgroup_taskset_first(tset, &css); 2519 cs = css_cs(css); 2520 2521 percpu_down_write(&cpuset_rwsem); 2522 cs->attach_in_progress--; 2523 if (!cs->attach_in_progress) 2524 wake_up(&cpuset_attach_wq); 2525 percpu_up_write(&cpuset_rwsem); 2526 } 2527 2528 /* 2529 * Protected by cpuset_rwsem. cpus_attach is used only by cpuset_attach_task() 2530 * but we can't allocate it dynamically there. Define it global and 2531 * allocate from cpuset_init(). 2532 */ 2533 static cpumask_var_t cpus_attach; 2534 static nodemask_t cpuset_attach_nodemask_to; 2535 2536 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) 2537 { 2538 percpu_rwsem_assert_held(&cpuset_rwsem); 2539 2540 if (cs != &top_cpuset) 2541 guarantee_online_cpus(task, cpus_attach); 2542 else 2543 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), 2544 cs->subparts_cpus); 2545 /* 2546 * can_attach beforehand should guarantee that this doesn't 2547 * fail. TODO: have a better way to handle failure here 2548 */ 2549 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 2550 2551 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 2552 cpuset_update_task_spread_flags(cs, task); 2553 } 2554 2555 static void cpuset_attach(struct cgroup_taskset *tset) 2556 { 2557 struct task_struct *task; 2558 struct task_struct *leader; 2559 struct cgroup_subsys_state *css; 2560 struct cpuset *cs; 2561 struct cpuset *oldcs = cpuset_attach_old_cs; 2562 bool cpus_updated, mems_updated; 2563 2564 cgroup_taskset_first(tset, &css); 2565 cs = css_cs(css); 2566 2567 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ 2568 percpu_down_write(&cpuset_rwsem); 2569 cpus_updated = !cpumask_equal(cs->effective_cpus, 2570 oldcs->effective_cpus); 2571 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 2572 2573 /* 2574 * In the default hierarchy, enabling cpuset in the child cgroups 2575 * will trigger a number of cpuset_attach() calls with no change 2576 * in effective cpus and mems. In that case, we can optimize out 2577 * by skipping the task iteration and update. 2578 */ 2579 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 2580 !cpus_updated && !mems_updated) { 2581 cpuset_attach_nodemask_to = cs->effective_mems; 2582 goto out; 2583 } 2584 2585 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 2586 2587 cgroup_taskset_for_each(task, css, tset) 2588 cpuset_attach_task(cs, task); 2589 2590 /* 2591 * Change mm for all threadgroup leaders. This is expensive and may 2592 * sleep and should be moved outside migration path proper. Skip it 2593 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is 2594 * not set. 2595 */ 2596 cpuset_attach_nodemask_to = cs->effective_mems; 2597 if (!is_memory_migrate(cs) && !mems_updated) 2598 goto out; 2599 2600 cgroup_taskset_for_each_leader(leader, css, tset) { 2601 struct mm_struct *mm = get_task_mm(leader); 2602 2603 if (mm) { 2604 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 2605 2606 /* 2607 * old_mems_allowed is the same with mems_allowed 2608 * here, except if this task is being moved 2609 * automatically due to hotplug. In that case 2610 * @mems_allowed has been updated and is empty, so 2611 * @old_mems_allowed is the right nodesets that we 2612 * migrate mm from. 2613 */ 2614 if (is_memory_migrate(cs)) 2615 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 2616 &cpuset_attach_nodemask_to); 2617 else 2618 mmput(mm); 2619 } 2620 } 2621 2622 out: 2623 cs->old_mems_allowed = cpuset_attach_nodemask_to; 2624 2625 cs->attach_in_progress--; 2626 if (!cs->attach_in_progress) 2627 wake_up(&cpuset_attach_wq); 2628 2629 percpu_up_write(&cpuset_rwsem); 2630 } 2631 2632 /* The various types of files and directories in a cpuset file system */ 2633 2634 typedef enum { 2635 FILE_MEMORY_MIGRATE, 2636 FILE_CPULIST, 2637 FILE_MEMLIST, 2638 FILE_EFFECTIVE_CPULIST, 2639 FILE_EFFECTIVE_MEMLIST, 2640 FILE_SUBPARTS_CPULIST, 2641 FILE_CPU_EXCLUSIVE, 2642 FILE_MEM_EXCLUSIVE, 2643 FILE_MEM_HARDWALL, 2644 FILE_SCHED_LOAD_BALANCE, 2645 FILE_PARTITION_ROOT, 2646 FILE_SCHED_RELAX_DOMAIN_LEVEL, 2647 FILE_MEMORY_PRESSURE_ENABLED, 2648 FILE_MEMORY_PRESSURE, 2649 FILE_SPREAD_PAGE, 2650 FILE_SPREAD_SLAB, 2651 } cpuset_filetype_t; 2652 2653 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, 2654 u64 val) 2655 { 2656 struct cpuset *cs = css_cs(css); 2657 cpuset_filetype_t type = cft->private; 2658 int retval = 0; 2659 2660 cpus_read_lock(); 2661 percpu_down_write(&cpuset_rwsem); 2662 if (!is_cpuset_online(cs)) { 2663 retval = -ENODEV; 2664 goto out_unlock; 2665 } 2666 2667 switch (type) { 2668 case FILE_CPU_EXCLUSIVE: 2669 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); 2670 break; 2671 case FILE_MEM_EXCLUSIVE: 2672 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); 2673 break; 2674 case FILE_MEM_HARDWALL: 2675 retval = update_flag(CS_MEM_HARDWALL, cs, val); 2676 break; 2677 case FILE_SCHED_LOAD_BALANCE: 2678 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); 2679 break; 2680 case FILE_MEMORY_MIGRATE: 2681 retval = update_flag(CS_MEMORY_MIGRATE, cs, val); 2682 break; 2683 case FILE_MEMORY_PRESSURE_ENABLED: 2684 cpuset_memory_pressure_enabled = !!val; 2685 break; 2686 case FILE_SPREAD_PAGE: 2687 retval = update_flag(CS_SPREAD_PAGE, cs, val); 2688 break; 2689 case FILE_SPREAD_SLAB: 2690 retval = update_flag(CS_SPREAD_SLAB, cs, val); 2691 break; 2692 default: 2693 retval = -EINVAL; 2694 break; 2695 } 2696 out_unlock: 2697 percpu_up_write(&cpuset_rwsem); 2698 cpus_read_unlock(); 2699 return retval; 2700 } 2701 2702 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, 2703 s64 val) 2704 { 2705 struct cpuset *cs = css_cs(css); 2706 cpuset_filetype_t type = cft->private; 2707 int retval = -ENODEV; 2708 2709 cpus_read_lock(); 2710 percpu_down_write(&cpuset_rwsem); 2711 if (!is_cpuset_online(cs)) 2712 goto out_unlock; 2713 2714 switch (type) { 2715 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2716 retval = update_relax_domain_level(cs, val); 2717 break; 2718 default: 2719 retval = -EINVAL; 2720 break; 2721 } 2722 out_unlock: 2723 percpu_up_write(&cpuset_rwsem); 2724 cpus_read_unlock(); 2725 return retval; 2726 } 2727 2728 /* 2729 * Common handling for a write to a "cpus" or "mems" file. 2730 */ 2731 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 2732 char *buf, size_t nbytes, loff_t off) 2733 { 2734 struct cpuset *cs = css_cs(of_css(of)); 2735 struct cpuset *trialcs; 2736 int retval = -ENODEV; 2737 2738 buf = strstrip(buf); 2739 2740 /* 2741 * CPU or memory hotunplug may leave @cs w/o any execution 2742 * resources, in which case the hotplug code asynchronously updates 2743 * configuration and transfers all tasks to the nearest ancestor 2744 * which can execute. 2745 * 2746 * As writes to "cpus" or "mems" may restore @cs's execution 2747 * resources, wait for the previously scheduled operations before 2748 * proceeding, so that we don't end up keep removing tasks added 2749 * after execution capability is restored. 2750 * 2751 * cpuset_hotplug_work calls back into cgroup core via 2752 * cgroup_transfer_tasks() and waiting for it from a cgroupfs 2753 * operation like this one can lead to a deadlock through kernfs 2754 * active_ref protection. Let's break the protection. Losing the 2755 * protection is okay as we check whether @cs is online after 2756 * grabbing cpuset_rwsem anyway. This only happens on the legacy 2757 * hierarchies. 2758 */ 2759 css_get(&cs->css); 2760 kernfs_break_active_protection(of->kn); 2761 flush_work(&cpuset_hotplug_work); 2762 2763 cpus_read_lock(); 2764 percpu_down_write(&cpuset_rwsem); 2765 if (!is_cpuset_online(cs)) 2766 goto out_unlock; 2767 2768 trialcs = alloc_trial_cpuset(cs); 2769 if (!trialcs) { 2770 retval = -ENOMEM; 2771 goto out_unlock; 2772 } 2773 2774 switch (of_cft(of)->private) { 2775 case FILE_CPULIST: 2776 retval = update_cpumask(cs, trialcs, buf); 2777 break; 2778 case FILE_MEMLIST: 2779 retval = update_nodemask(cs, trialcs, buf); 2780 break; 2781 default: 2782 retval = -EINVAL; 2783 break; 2784 } 2785 2786 free_cpuset(trialcs); 2787 out_unlock: 2788 percpu_up_write(&cpuset_rwsem); 2789 cpus_read_unlock(); 2790 kernfs_unbreak_active_protection(of->kn); 2791 css_put(&cs->css); 2792 flush_workqueue(cpuset_migrate_mm_wq); 2793 return retval ?: nbytes; 2794 } 2795 2796 /* 2797 * These ascii lists should be read in a single call, by using a user 2798 * buffer large enough to hold the entire map. If read in smaller 2799 * chunks, there is no guarantee of atomicity. Since the display format 2800 * used, list of ranges of sequential numbers, is variable length, 2801 * and since these maps can change value dynamically, one could read 2802 * gibberish by doing partial reads while a list was changing. 2803 */ 2804 static int cpuset_common_seq_show(struct seq_file *sf, void *v) 2805 { 2806 struct cpuset *cs = css_cs(seq_css(sf)); 2807 cpuset_filetype_t type = seq_cft(sf)->private; 2808 int ret = 0; 2809 2810 spin_lock_irq(&callback_lock); 2811 2812 switch (type) { 2813 case FILE_CPULIST: 2814 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 2815 break; 2816 case FILE_MEMLIST: 2817 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 2818 break; 2819 case FILE_EFFECTIVE_CPULIST: 2820 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 2821 break; 2822 case FILE_EFFECTIVE_MEMLIST: 2823 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 2824 break; 2825 case FILE_SUBPARTS_CPULIST: 2826 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus)); 2827 break; 2828 default: 2829 ret = -EINVAL; 2830 } 2831 2832 spin_unlock_irq(&callback_lock); 2833 return ret; 2834 } 2835 2836 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) 2837 { 2838 struct cpuset *cs = css_cs(css); 2839 cpuset_filetype_t type = cft->private; 2840 switch (type) { 2841 case FILE_CPU_EXCLUSIVE: 2842 return is_cpu_exclusive(cs); 2843 case FILE_MEM_EXCLUSIVE: 2844 return is_mem_exclusive(cs); 2845 case FILE_MEM_HARDWALL: 2846 return is_mem_hardwall(cs); 2847 case FILE_SCHED_LOAD_BALANCE: 2848 return is_sched_load_balance(cs); 2849 case FILE_MEMORY_MIGRATE: 2850 return is_memory_migrate(cs); 2851 case FILE_MEMORY_PRESSURE_ENABLED: 2852 return cpuset_memory_pressure_enabled; 2853 case FILE_MEMORY_PRESSURE: 2854 return fmeter_getrate(&cs->fmeter); 2855 case FILE_SPREAD_PAGE: 2856 return is_spread_page(cs); 2857 case FILE_SPREAD_SLAB: 2858 return is_spread_slab(cs); 2859 default: 2860 BUG(); 2861 } 2862 2863 /* Unreachable but makes gcc happy */ 2864 return 0; 2865 } 2866 2867 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) 2868 { 2869 struct cpuset *cs = css_cs(css); 2870 cpuset_filetype_t type = cft->private; 2871 switch (type) { 2872 case FILE_SCHED_RELAX_DOMAIN_LEVEL: 2873 return cs->relax_domain_level; 2874 default: 2875 BUG(); 2876 } 2877 2878 /* Unreachable but makes gcc happy */ 2879 return 0; 2880 } 2881 2882 static int sched_partition_show(struct seq_file *seq, void *v) 2883 { 2884 struct cpuset *cs = css_cs(seq_css(seq)); 2885 const char *err, *type = NULL; 2886 2887 switch (cs->partition_root_state) { 2888 case PRS_ROOT: 2889 seq_puts(seq, "root\n"); 2890 break; 2891 case PRS_ISOLATED: 2892 seq_puts(seq, "isolated\n"); 2893 break; 2894 case PRS_MEMBER: 2895 seq_puts(seq, "member\n"); 2896 break; 2897 case PRS_INVALID_ROOT: 2898 type = "root"; 2899 fallthrough; 2900 case PRS_INVALID_ISOLATED: 2901 if (!type) 2902 type = "isolated"; 2903 err = perr_strings[READ_ONCE(cs->prs_err)]; 2904 if (err) 2905 seq_printf(seq, "%s invalid (%s)\n", type, err); 2906 else 2907 seq_printf(seq, "%s invalid\n", type); 2908 break; 2909 } 2910 return 0; 2911 } 2912 2913 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf, 2914 size_t nbytes, loff_t off) 2915 { 2916 struct cpuset *cs = css_cs(of_css(of)); 2917 int val; 2918 int retval = -ENODEV; 2919 2920 buf = strstrip(buf); 2921 2922 /* 2923 * Convert "root" to ENABLED, and convert "member" to DISABLED. 2924 */ 2925 if (!strcmp(buf, "root")) 2926 val = PRS_ROOT; 2927 else if (!strcmp(buf, "member")) 2928 val = PRS_MEMBER; 2929 else if (!strcmp(buf, "isolated")) 2930 val = PRS_ISOLATED; 2931 else 2932 return -EINVAL; 2933 2934 css_get(&cs->css); 2935 cpus_read_lock(); 2936 percpu_down_write(&cpuset_rwsem); 2937 if (!is_cpuset_online(cs)) 2938 goto out_unlock; 2939 2940 retval = update_prstate(cs, val); 2941 out_unlock: 2942 percpu_up_write(&cpuset_rwsem); 2943 cpus_read_unlock(); 2944 css_put(&cs->css); 2945 return retval ?: nbytes; 2946 } 2947 2948 /* 2949 * for the common functions, 'private' gives the type of file 2950 */ 2951 2952 static struct cftype legacy_files[] = { 2953 { 2954 .name = "cpus", 2955 .seq_show = cpuset_common_seq_show, 2956 .write = cpuset_write_resmask, 2957 .max_write_len = (100U + 6 * NR_CPUS), 2958 .private = FILE_CPULIST, 2959 }, 2960 2961 { 2962 .name = "mems", 2963 .seq_show = cpuset_common_seq_show, 2964 .write = cpuset_write_resmask, 2965 .max_write_len = (100U + 6 * MAX_NUMNODES), 2966 .private = FILE_MEMLIST, 2967 }, 2968 2969 { 2970 .name = "effective_cpus", 2971 .seq_show = cpuset_common_seq_show, 2972 .private = FILE_EFFECTIVE_CPULIST, 2973 }, 2974 2975 { 2976 .name = "effective_mems", 2977 .seq_show = cpuset_common_seq_show, 2978 .private = FILE_EFFECTIVE_MEMLIST, 2979 }, 2980 2981 { 2982 .name = "cpu_exclusive", 2983 .read_u64 = cpuset_read_u64, 2984 .write_u64 = cpuset_write_u64, 2985 .private = FILE_CPU_EXCLUSIVE, 2986 }, 2987 2988 { 2989 .name = "mem_exclusive", 2990 .read_u64 = cpuset_read_u64, 2991 .write_u64 = cpuset_write_u64, 2992 .private = FILE_MEM_EXCLUSIVE, 2993 }, 2994 2995 { 2996 .name = "mem_hardwall", 2997 .read_u64 = cpuset_read_u64, 2998 .write_u64 = cpuset_write_u64, 2999 .private = FILE_MEM_HARDWALL, 3000 }, 3001 3002 { 3003 .name = "sched_load_balance", 3004 .read_u64 = cpuset_read_u64, 3005 .write_u64 = cpuset_write_u64, 3006 .private = FILE_SCHED_LOAD_BALANCE, 3007 }, 3008 3009 { 3010 .name = "sched_relax_domain_level", 3011 .read_s64 = cpuset_read_s64, 3012 .write_s64 = cpuset_write_s64, 3013 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, 3014 }, 3015 3016 { 3017 .name = "memory_migrate", 3018 .read_u64 = cpuset_read_u64, 3019 .write_u64 = cpuset_write_u64, 3020 .private = FILE_MEMORY_MIGRATE, 3021 }, 3022 3023 { 3024 .name = "memory_pressure", 3025 .read_u64 = cpuset_read_u64, 3026 .private = FILE_MEMORY_PRESSURE, 3027 }, 3028 3029 { 3030 .name = "memory_spread_page", 3031 .read_u64 = cpuset_read_u64, 3032 .write_u64 = cpuset_write_u64, 3033 .private = FILE_SPREAD_PAGE, 3034 }, 3035 3036 { 3037 .name = "memory_spread_slab", 3038 .read_u64 = cpuset_read_u64, 3039 .write_u64 = cpuset_write_u64, 3040 .private = FILE_SPREAD_SLAB, 3041 }, 3042 3043 { 3044 .name = "memory_pressure_enabled", 3045 .flags = CFTYPE_ONLY_ON_ROOT, 3046 .read_u64 = cpuset_read_u64, 3047 .write_u64 = cpuset_write_u64, 3048 .private = FILE_MEMORY_PRESSURE_ENABLED, 3049 }, 3050 3051 { } /* terminate */ 3052 }; 3053 3054 /* 3055 * This is currently a minimal set for the default hierarchy. It can be 3056 * expanded later on by migrating more features and control files from v1. 3057 */ 3058 static struct cftype dfl_files[] = { 3059 { 3060 .name = "cpus", 3061 .seq_show = cpuset_common_seq_show, 3062 .write = cpuset_write_resmask, 3063 .max_write_len = (100U + 6 * NR_CPUS), 3064 .private = FILE_CPULIST, 3065 .flags = CFTYPE_NOT_ON_ROOT, 3066 }, 3067 3068 { 3069 .name = "mems", 3070 .seq_show = cpuset_common_seq_show, 3071 .write = cpuset_write_resmask, 3072 .max_write_len = (100U + 6 * MAX_NUMNODES), 3073 .private = FILE_MEMLIST, 3074 .flags = CFTYPE_NOT_ON_ROOT, 3075 }, 3076 3077 { 3078 .name = "cpus.effective", 3079 .seq_show = cpuset_common_seq_show, 3080 .private = FILE_EFFECTIVE_CPULIST, 3081 }, 3082 3083 { 3084 .name = "mems.effective", 3085 .seq_show = cpuset_common_seq_show, 3086 .private = FILE_EFFECTIVE_MEMLIST, 3087 }, 3088 3089 { 3090 .name = "cpus.partition", 3091 .seq_show = sched_partition_show, 3092 .write = sched_partition_write, 3093 .private = FILE_PARTITION_ROOT, 3094 .flags = CFTYPE_NOT_ON_ROOT, 3095 .file_offset = offsetof(struct cpuset, partition_file), 3096 }, 3097 3098 { 3099 .name = "cpus.subpartitions", 3100 .seq_show = cpuset_common_seq_show, 3101 .private = FILE_SUBPARTS_CPULIST, 3102 .flags = CFTYPE_DEBUG, 3103 }, 3104 3105 { } /* terminate */ 3106 }; 3107 3108 3109 /** 3110 * cpuset_css_alloc - Allocate a cpuset css 3111 * @parent_css: Parent css of the control group that the new cpuset will be 3112 * part of 3113 * Return: cpuset css on success, -ENOMEM on failure. 3114 * 3115 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return 3116 * top cpuset css otherwise. 3117 */ 3118 static struct cgroup_subsys_state * 3119 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 3120 { 3121 struct cpuset *cs; 3122 3123 if (!parent_css) 3124 return &top_cpuset.css; 3125 3126 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 3127 if (!cs) 3128 return ERR_PTR(-ENOMEM); 3129 3130 if (alloc_cpumasks(cs, NULL)) { 3131 kfree(cs); 3132 return ERR_PTR(-ENOMEM); 3133 } 3134 3135 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3136 nodes_clear(cs->mems_allowed); 3137 nodes_clear(cs->effective_mems); 3138 fmeter_init(&cs->fmeter); 3139 cs->relax_domain_level = -1; 3140 3141 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 3142 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) 3143 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 3144 3145 return &cs->css; 3146 } 3147 3148 static int cpuset_css_online(struct cgroup_subsys_state *css) 3149 { 3150 struct cpuset *cs = css_cs(css); 3151 struct cpuset *parent = parent_cs(cs); 3152 struct cpuset *tmp_cs; 3153 struct cgroup_subsys_state *pos_css; 3154 3155 if (!parent) 3156 return 0; 3157 3158 cpus_read_lock(); 3159 percpu_down_write(&cpuset_rwsem); 3160 3161 set_bit(CS_ONLINE, &cs->flags); 3162 if (is_spread_page(parent)) 3163 set_bit(CS_SPREAD_PAGE, &cs->flags); 3164 if (is_spread_slab(parent)) 3165 set_bit(CS_SPREAD_SLAB, &cs->flags); 3166 3167 cpuset_inc(); 3168 3169 spin_lock_irq(&callback_lock); 3170 if (is_in_v2_mode()) { 3171 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 3172 cs->effective_mems = parent->effective_mems; 3173 cs->use_parent_ecpus = true; 3174 parent->child_ecpus_count++; 3175 } 3176 spin_unlock_irq(&callback_lock); 3177 3178 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 3179 goto out_unlock; 3180 3181 /* 3182 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 3183 * set. This flag handling is implemented in cgroup core for 3184 * historical reasons - the flag may be specified during mount. 3185 * 3186 * Currently, if any sibling cpusets have exclusive cpus or mem, we 3187 * refuse to clone the configuration - thereby refusing the task to 3188 * be entered, and as a result refusing the sys_unshare() or 3189 * clone() which initiated it. If this becomes a problem for some 3190 * users who wish to allow that scenario, then this could be 3191 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 3192 * (and likewise for mems) to the new cgroup. 3193 */ 3194 rcu_read_lock(); 3195 cpuset_for_each_child(tmp_cs, pos_css, parent) { 3196 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 3197 rcu_read_unlock(); 3198 goto out_unlock; 3199 } 3200 } 3201 rcu_read_unlock(); 3202 3203 spin_lock_irq(&callback_lock); 3204 cs->mems_allowed = parent->mems_allowed; 3205 cs->effective_mems = parent->mems_allowed; 3206 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 3207 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 3208 spin_unlock_irq(&callback_lock); 3209 out_unlock: 3210 percpu_up_write(&cpuset_rwsem); 3211 cpus_read_unlock(); 3212 return 0; 3213 } 3214 3215 /* 3216 * If the cpuset being removed has its flag 'sched_load_balance' 3217 * enabled, then simulate turning sched_load_balance off, which 3218 * will call rebuild_sched_domains_locked(). That is not needed 3219 * in the default hierarchy where only changes in partition 3220 * will cause repartitioning. 3221 * 3222 * If the cpuset has the 'sched.partition' flag enabled, simulate 3223 * turning 'sched.partition" off. 3224 */ 3225 3226 static void cpuset_css_offline(struct cgroup_subsys_state *css) 3227 { 3228 struct cpuset *cs = css_cs(css); 3229 3230 cpus_read_lock(); 3231 percpu_down_write(&cpuset_rwsem); 3232 3233 if (is_partition_valid(cs)) 3234 update_prstate(cs, 0); 3235 3236 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && 3237 is_sched_load_balance(cs)) 3238 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 3239 3240 if (cs->use_parent_ecpus) { 3241 struct cpuset *parent = parent_cs(cs); 3242 3243 cs->use_parent_ecpus = false; 3244 parent->child_ecpus_count--; 3245 } 3246 3247 cpuset_dec(); 3248 clear_bit(CS_ONLINE, &cs->flags); 3249 3250 percpu_up_write(&cpuset_rwsem); 3251 cpus_read_unlock(); 3252 } 3253 3254 static void cpuset_css_free(struct cgroup_subsys_state *css) 3255 { 3256 struct cpuset *cs = css_cs(css); 3257 3258 free_cpuset(cs); 3259 } 3260 3261 static void cpuset_bind(struct cgroup_subsys_state *root_css) 3262 { 3263 percpu_down_write(&cpuset_rwsem); 3264 spin_lock_irq(&callback_lock); 3265 3266 if (is_in_v2_mode()) { 3267 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 3268 top_cpuset.mems_allowed = node_possible_map; 3269 } else { 3270 cpumask_copy(top_cpuset.cpus_allowed, 3271 top_cpuset.effective_cpus); 3272 top_cpuset.mems_allowed = top_cpuset.effective_mems; 3273 } 3274 3275 spin_unlock_irq(&callback_lock); 3276 percpu_up_write(&cpuset_rwsem); 3277 } 3278 3279 /* 3280 * In case the child is cloned into a cpuset different from its parent, 3281 * additional checks are done to see if the move is allowed. 3282 */ 3283 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) 3284 { 3285 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3286 bool same_cs; 3287 int ret; 3288 3289 rcu_read_lock(); 3290 same_cs = (cs == task_cs(current)); 3291 rcu_read_unlock(); 3292 3293 if (same_cs) 3294 return 0; 3295 3296 lockdep_assert_held(&cgroup_mutex); 3297 percpu_down_write(&cpuset_rwsem); 3298 3299 /* Check to see if task is allowed in the cpuset */ 3300 ret = cpuset_can_attach_check(cs); 3301 if (ret) 3302 goto out_unlock; 3303 3304 ret = task_can_attach(task, cs->effective_cpus); 3305 if (ret) 3306 goto out_unlock; 3307 3308 ret = security_task_setscheduler(task); 3309 if (ret) 3310 goto out_unlock; 3311 3312 /* 3313 * Mark attach is in progress. This makes validate_change() fail 3314 * changes which zero cpus/mems_allowed. 3315 */ 3316 cs->attach_in_progress++; 3317 out_unlock: 3318 percpu_up_write(&cpuset_rwsem); 3319 return ret; 3320 } 3321 3322 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) 3323 { 3324 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3325 bool same_cs; 3326 3327 rcu_read_lock(); 3328 same_cs = (cs == task_cs(current)); 3329 rcu_read_unlock(); 3330 3331 if (same_cs) 3332 return; 3333 3334 percpu_down_write(&cpuset_rwsem); 3335 cs->attach_in_progress--; 3336 if (!cs->attach_in_progress) 3337 wake_up(&cpuset_attach_wq); 3338 percpu_up_write(&cpuset_rwsem); 3339 } 3340 3341 /* 3342 * Make sure the new task conform to the current state of its parent, 3343 * which could have been changed by cpuset just after it inherits the 3344 * state from the parent and before it sits on the cgroup's task list. 3345 */ 3346 static void cpuset_fork(struct task_struct *task) 3347 { 3348 struct cpuset *cs; 3349 bool same_cs; 3350 3351 rcu_read_lock(); 3352 cs = task_cs(task); 3353 same_cs = (cs == task_cs(current)); 3354 rcu_read_unlock(); 3355 3356 if (same_cs) { 3357 if (cs == &top_cpuset) 3358 return; 3359 3360 set_cpus_allowed_ptr(task, current->cpus_ptr); 3361 task->mems_allowed = current->mems_allowed; 3362 return; 3363 } 3364 3365 /* CLONE_INTO_CGROUP */ 3366 percpu_down_write(&cpuset_rwsem); 3367 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3368 cpuset_attach_task(cs, task); 3369 3370 cs->attach_in_progress--; 3371 if (!cs->attach_in_progress) 3372 wake_up(&cpuset_attach_wq); 3373 3374 percpu_up_write(&cpuset_rwsem); 3375 } 3376 3377 struct cgroup_subsys cpuset_cgrp_subsys = { 3378 .css_alloc = cpuset_css_alloc, 3379 .css_online = cpuset_css_online, 3380 .css_offline = cpuset_css_offline, 3381 .css_free = cpuset_css_free, 3382 .can_attach = cpuset_can_attach, 3383 .cancel_attach = cpuset_cancel_attach, 3384 .attach = cpuset_attach, 3385 .post_attach = cpuset_post_attach, 3386 .bind = cpuset_bind, 3387 .can_fork = cpuset_can_fork, 3388 .cancel_fork = cpuset_cancel_fork, 3389 .fork = cpuset_fork, 3390 .legacy_cftypes = legacy_files, 3391 .dfl_cftypes = dfl_files, 3392 .early_init = true, 3393 .threaded = true, 3394 }; 3395 3396 /** 3397 * cpuset_init - initialize cpusets at system boot 3398 * 3399 * Description: Initialize top_cpuset 3400 **/ 3401 3402 int __init cpuset_init(void) 3403 { 3404 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 3405 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 3406 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL)); 3407 3408 cpumask_setall(top_cpuset.cpus_allowed); 3409 nodes_setall(top_cpuset.mems_allowed); 3410 cpumask_setall(top_cpuset.effective_cpus); 3411 nodes_setall(top_cpuset.effective_mems); 3412 3413 fmeter_init(&top_cpuset.fmeter); 3414 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); 3415 top_cpuset.relax_domain_level = -1; 3416 3417 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 3418 3419 return 0; 3420 } 3421 3422 /* 3423 * If CPU and/or memory hotplug handlers, below, unplug any CPUs 3424 * or memory nodes, we need to walk over the cpuset hierarchy, 3425 * removing that CPU or node from all cpusets. If this removes the 3426 * last CPU or node from a cpuset, then move the tasks in the empty 3427 * cpuset to its next-highest non-empty parent. 3428 */ 3429 static void remove_tasks_in_empty_cpuset(struct cpuset *cs) 3430 { 3431 struct cpuset *parent; 3432 3433 /* 3434 * Find its next-highest non-empty parent, (top cpuset 3435 * has online cpus, so can't be empty). 3436 */ 3437 parent = parent_cs(cs); 3438 while (cpumask_empty(parent->cpus_allowed) || 3439 nodes_empty(parent->mems_allowed)) 3440 parent = parent_cs(parent); 3441 3442 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { 3443 pr_err("cpuset: failed to transfer tasks out of empty cpuset "); 3444 pr_cont_cgroup_name(cs->css.cgroup); 3445 pr_cont("\n"); 3446 } 3447 } 3448 3449 static void 3450 hotplug_update_tasks_legacy(struct cpuset *cs, 3451 struct cpumask *new_cpus, nodemask_t *new_mems, 3452 bool cpus_updated, bool mems_updated) 3453 { 3454 bool is_empty; 3455 3456 spin_lock_irq(&callback_lock); 3457 cpumask_copy(cs->cpus_allowed, new_cpus); 3458 cpumask_copy(cs->effective_cpus, new_cpus); 3459 cs->mems_allowed = *new_mems; 3460 cs->effective_mems = *new_mems; 3461 spin_unlock_irq(&callback_lock); 3462 3463 /* 3464 * Don't call update_tasks_cpumask() if the cpuset becomes empty, 3465 * as the tasks will be migrated to an ancestor. 3466 */ 3467 if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) 3468 update_tasks_cpumask(cs, new_cpus); 3469 if (mems_updated && !nodes_empty(cs->mems_allowed)) 3470 update_tasks_nodemask(cs); 3471 3472 is_empty = cpumask_empty(cs->cpus_allowed) || 3473 nodes_empty(cs->mems_allowed); 3474 3475 percpu_up_write(&cpuset_rwsem); 3476 3477 /* 3478 * Move tasks to the nearest ancestor with execution resources, 3479 * This is full cgroup operation which will also call back into 3480 * cpuset. Should be done outside any lock. 3481 */ 3482 if (is_empty) 3483 remove_tasks_in_empty_cpuset(cs); 3484 3485 percpu_down_write(&cpuset_rwsem); 3486 } 3487 3488 static void 3489 hotplug_update_tasks(struct cpuset *cs, 3490 struct cpumask *new_cpus, nodemask_t *new_mems, 3491 bool cpus_updated, bool mems_updated) 3492 { 3493 /* A partition root is allowed to have empty effective cpus */ 3494 if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) 3495 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3496 if (nodes_empty(*new_mems)) 3497 *new_mems = parent_cs(cs)->effective_mems; 3498 3499 spin_lock_irq(&callback_lock); 3500 cpumask_copy(cs->effective_cpus, new_cpus); 3501 cs->effective_mems = *new_mems; 3502 spin_unlock_irq(&callback_lock); 3503 3504 if (cpus_updated) 3505 update_tasks_cpumask(cs, new_cpus); 3506 if (mems_updated) 3507 update_tasks_nodemask(cs); 3508 } 3509 3510 static bool force_rebuild; 3511 3512 void cpuset_force_rebuild(void) 3513 { 3514 force_rebuild = true; 3515 } 3516 3517 /** 3518 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3519 * @cs: cpuset in interest 3520 * @tmp: the tmpmasks structure pointer 3521 * 3522 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3523 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3524 * all its tasks are moved to the nearest ancestor with both resources. 3525 */ 3526 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3527 { 3528 static cpumask_t new_cpus; 3529 static nodemask_t new_mems; 3530 bool cpus_updated; 3531 bool mems_updated; 3532 struct cpuset *parent; 3533 retry: 3534 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3535 3536 percpu_down_write(&cpuset_rwsem); 3537 3538 /* 3539 * We have raced with task attaching. We wait until attaching 3540 * is finished, so we won't attach a task to an empty cpuset. 3541 */ 3542 if (cs->attach_in_progress) { 3543 percpu_up_write(&cpuset_rwsem); 3544 goto retry; 3545 } 3546 3547 parent = parent_cs(cs); 3548 compute_effective_cpumask(&new_cpus, cs, parent); 3549 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3550 3551 if (cs->nr_subparts_cpus) 3552 /* 3553 * Make sure that CPUs allocated to child partitions 3554 * do not show up in effective_cpus. 3555 */ 3556 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus); 3557 3558 if (!tmp || !cs->partition_root_state) 3559 goto update_tasks; 3560 3561 /* 3562 * In the unlikely event that a partition root has empty 3563 * effective_cpus with tasks, we will have to invalidate child 3564 * partitions, if present, by setting nr_subparts_cpus to 0 to 3565 * reclaim their cpus. 3566 */ 3567 if (cs->nr_subparts_cpus && is_partition_valid(cs) && 3568 cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) { 3569 spin_lock_irq(&callback_lock); 3570 cs->nr_subparts_cpus = 0; 3571 cpumask_clear(cs->subparts_cpus); 3572 spin_unlock_irq(&callback_lock); 3573 compute_effective_cpumask(&new_cpus, cs, parent); 3574 } 3575 3576 /* 3577 * Force the partition to become invalid if either one of 3578 * the following conditions hold: 3579 * 1) empty effective cpus but not valid empty partition. 3580 * 2) parent is invalid or doesn't grant any cpus to child 3581 * partitions. 3582 */ 3583 if (is_partition_valid(cs) && (!parent->nr_subparts_cpus || 3584 (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) { 3585 int old_prs, parent_prs; 3586 3587 update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp); 3588 if (cs->nr_subparts_cpus) { 3589 spin_lock_irq(&callback_lock); 3590 cs->nr_subparts_cpus = 0; 3591 cpumask_clear(cs->subparts_cpus); 3592 spin_unlock_irq(&callback_lock); 3593 compute_effective_cpumask(&new_cpus, cs, parent); 3594 } 3595 3596 old_prs = cs->partition_root_state; 3597 parent_prs = parent->partition_root_state; 3598 if (is_partition_valid(cs)) { 3599 spin_lock_irq(&callback_lock); 3600 make_partition_invalid(cs); 3601 spin_unlock_irq(&callback_lock); 3602 if (is_prs_invalid(parent_prs)) 3603 WRITE_ONCE(cs->prs_err, PERR_INVPARENT); 3604 else if (!parent_prs) 3605 WRITE_ONCE(cs->prs_err, PERR_NOTPART); 3606 else 3607 WRITE_ONCE(cs->prs_err, PERR_HOTPLUG); 3608 notify_partition_change(cs, old_prs); 3609 } 3610 cpuset_force_rebuild(); 3611 } 3612 3613 /* 3614 * On the other hand, an invalid partition root may be transitioned 3615 * back to a regular one. 3616 */ 3617 else if (is_partition_valid(parent) && is_partition_invalid(cs)) { 3618 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp); 3619 if (is_partition_valid(cs)) 3620 cpuset_force_rebuild(); 3621 } 3622 3623 update_tasks: 3624 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3625 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3626 if (!cpus_updated && !mems_updated) 3627 goto unlock; /* Hotplug doesn't affect this cpuset */ 3628 3629 if (mems_updated) 3630 check_insane_mems_config(&new_mems); 3631 3632 if (is_in_v2_mode()) 3633 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3634 cpus_updated, mems_updated); 3635 else 3636 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, 3637 cpus_updated, mems_updated); 3638 3639 unlock: 3640 percpu_up_write(&cpuset_rwsem); 3641 } 3642 3643 /** 3644 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset 3645 * 3646 * This function is called after either CPU or memory configuration has 3647 * changed and updates cpuset accordingly. The top_cpuset is always 3648 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3649 * order to make cpusets transparent (of no affect) on systems that are 3650 * actively using CPU hotplug but making no active use of cpusets. 3651 * 3652 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3653 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3654 * all descendants. 3655 * 3656 * Note that CPU offlining during suspend is ignored. We don't modify 3657 * cpusets across suspend/resume cycles at all. 3658 */ 3659 static void cpuset_hotplug_workfn(struct work_struct *work) 3660 { 3661 static cpumask_t new_cpus; 3662 static nodemask_t new_mems; 3663 bool cpus_updated, mems_updated; 3664 bool on_dfl = is_in_v2_mode(); 3665 struct tmpmasks tmp, *ptmp = NULL; 3666 3667 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3668 ptmp = &tmp; 3669 3670 percpu_down_write(&cpuset_rwsem); 3671 3672 /* fetch the available cpus/mems and find out which changed how */ 3673 cpumask_copy(&new_cpus, cpu_active_mask); 3674 new_mems = node_states[N_MEMORY]; 3675 3676 /* 3677 * If subparts_cpus is populated, it is likely that the check below 3678 * will produce a false positive on cpus_updated when the cpu list 3679 * isn't changed. It is extra work, but it is better to be safe. 3680 */ 3681 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); 3682 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3683 3684 /* 3685 * In the rare case that hotplug removes all the cpus in subparts_cpus, 3686 * we assumed that cpus are updated. 3687 */ 3688 if (!cpus_updated && top_cpuset.nr_subparts_cpus) 3689 cpus_updated = true; 3690 3691 /* synchronize cpus_allowed to cpu_active_mask */ 3692 if (cpus_updated) { 3693 spin_lock_irq(&callback_lock); 3694 if (!on_dfl) 3695 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3696 /* 3697 * Make sure that CPUs allocated to child partitions 3698 * do not show up in effective_cpus. If no CPU is left, 3699 * we clear the subparts_cpus & let the child partitions 3700 * fight for the CPUs again. 3701 */ 3702 if (top_cpuset.nr_subparts_cpus) { 3703 if (cpumask_subset(&new_cpus, 3704 top_cpuset.subparts_cpus)) { 3705 top_cpuset.nr_subparts_cpus = 0; 3706 cpumask_clear(top_cpuset.subparts_cpus); 3707 } else { 3708 cpumask_andnot(&new_cpus, &new_cpus, 3709 top_cpuset.subparts_cpus); 3710 } 3711 } 3712 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3713 spin_unlock_irq(&callback_lock); 3714 /* we don't mess with cpumasks of tasks in top_cpuset */ 3715 } 3716 3717 /* synchronize mems_allowed to N_MEMORY */ 3718 if (mems_updated) { 3719 spin_lock_irq(&callback_lock); 3720 if (!on_dfl) 3721 top_cpuset.mems_allowed = new_mems; 3722 top_cpuset.effective_mems = new_mems; 3723 spin_unlock_irq(&callback_lock); 3724 update_tasks_nodemask(&top_cpuset); 3725 } 3726 3727 percpu_up_write(&cpuset_rwsem); 3728 3729 /* if cpus or mems changed, we need to propagate to descendants */ 3730 if (cpus_updated || mems_updated) { 3731 struct cpuset *cs; 3732 struct cgroup_subsys_state *pos_css; 3733 3734 rcu_read_lock(); 3735 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3736 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3737 continue; 3738 rcu_read_unlock(); 3739 3740 cpuset_hotplug_update_tasks(cs, ptmp); 3741 3742 rcu_read_lock(); 3743 css_put(&cs->css); 3744 } 3745 rcu_read_unlock(); 3746 } 3747 3748 /* rebuild sched domains if cpus_allowed has changed */ 3749 if (cpus_updated || force_rebuild) { 3750 force_rebuild = false; 3751 rebuild_sched_domains(); 3752 } 3753 3754 free_cpumasks(NULL, ptmp); 3755 } 3756 3757 void cpuset_update_active_cpus(void) 3758 { 3759 /* 3760 * We're inside cpu hotplug critical region which usually nests 3761 * inside cgroup synchronization. Bounce actual hotplug processing 3762 * to a work item to avoid reverse locking order. 3763 */ 3764 schedule_work(&cpuset_hotplug_work); 3765 } 3766 3767 void cpuset_wait_for_hotplug(void) 3768 { 3769 flush_work(&cpuset_hotplug_work); 3770 } 3771 3772 /* 3773 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3774 * Call this routine anytime after node_states[N_MEMORY] changes. 3775 * See cpuset_update_active_cpus() for CPU hotplug handling. 3776 */ 3777 static int cpuset_track_online_nodes(struct notifier_block *self, 3778 unsigned long action, void *arg) 3779 { 3780 schedule_work(&cpuset_hotplug_work); 3781 return NOTIFY_OK; 3782 } 3783 3784 /** 3785 * cpuset_init_smp - initialize cpus_allowed 3786 * 3787 * Description: Finish top cpuset after cpu, node maps are initialized 3788 */ 3789 void __init cpuset_init_smp(void) 3790 { 3791 /* 3792 * cpus_allowd/mems_allowed set to v2 values in the initial 3793 * cpuset_bind() call will be reset to v1 values in another 3794 * cpuset_bind() call when v1 cpuset is mounted. 3795 */ 3796 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 3797 3798 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 3799 top_cpuset.effective_mems = node_states[N_MEMORY]; 3800 3801 hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); 3802 3803 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 3804 BUG_ON(!cpuset_migrate_mm_wq); 3805 } 3806 3807 /** 3808 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 3809 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 3810 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 3811 * 3812 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 3813 * attached to the specified @tsk. Guaranteed to return some non-empty 3814 * subset of cpu_online_mask, even if this means going outside the 3815 * tasks cpuset, except when the task is in the top cpuset. 3816 **/ 3817 3818 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 3819 { 3820 unsigned long flags; 3821 struct cpuset *cs; 3822 3823 spin_lock_irqsave(&callback_lock, flags); 3824 rcu_read_lock(); 3825 3826 cs = task_cs(tsk); 3827 if (cs != &top_cpuset) 3828 guarantee_online_cpus(tsk, pmask); 3829 /* 3830 * Tasks in the top cpuset won't get update to their cpumasks 3831 * when a hotplug online/offline event happens. So we include all 3832 * offline cpus in the allowed cpu list. 3833 */ 3834 if ((cs == &top_cpuset) || cpumask_empty(pmask)) { 3835 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3836 3837 /* 3838 * We first exclude cpus allocated to partitions. If there is no 3839 * allowable online cpu left, we fall back to all possible cpus. 3840 */ 3841 cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus); 3842 if (!cpumask_intersects(pmask, cpu_online_mask)) 3843 cpumask_copy(pmask, possible_mask); 3844 } 3845 3846 rcu_read_unlock(); 3847 spin_unlock_irqrestore(&callback_lock, flags); 3848 } 3849 3850 /** 3851 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 3852 * @tsk: pointer to task_struct with which the scheduler is struggling 3853 * 3854 * Description: In the case that the scheduler cannot find an allowed cpu in 3855 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 3856 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 3857 * which will not contain a sane cpumask during cases such as cpu hotplugging. 3858 * This is the absolute last resort for the scheduler and it is only used if 3859 * _every_ other avenue has been traveled. 3860 * 3861 * Returns true if the affinity of @tsk was changed, false otherwise. 3862 **/ 3863 3864 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 3865 { 3866 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 3867 const struct cpumask *cs_mask; 3868 bool changed = false; 3869 3870 rcu_read_lock(); 3871 cs_mask = task_cs(tsk)->cpus_allowed; 3872 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 3873 do_set_cpus_allowed(tsk, cs_mask); 3874 changed = true; 3875 } 3876 rcu_read_unlock(); 3877 3878 /* 3879 * We own tsk->cpus_allowed, nobody can change it under us. 3880 * 3881 * But we used cs && cs->cpus_allowed lockless and thus can 3882 * race with cgroup_attach_task() or update_cpumask() and get 3883 * the wrong tsk->cpus_allowed. However, both cases imply the 3884 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 3885 * which takes task_rq_lock(). 3886 * 3887 * If we are called after it dropped the lock we must see all 3888 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 3889 * set any mask even if it is not right from task_cs() pov, 3890 * the pending set_cpus_allowed_ptr() will fix things. 3891 * 3892 * select_fallback_rq() will fix things ups and set cpu_possible_mask 3893 * if required. 3894 */ 3895 return changed; 3896 } 3897 3898 void __init cpuset_init_current_mems_allowed(void) 3899 { 3900 nodes_setall(current->mems_allowed); 3901 } 3902 3903 /** 3904 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 3905 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 3906 * 3907 * Description: Returns the nodemask_t mems_allowed of the cpuset 3908 * attached to the specified @tsk. Guaranteed to return some non-empty 3909 * subset of node_states[N_MEMORY], even if this means going outside the 3910 * tasks cpuset. 3911 **/ 3912 3913 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 3914 { 3915 nodemask_t mask; 3916 unsigned long flags; 3917 3918 spin_lock_irqsave(&callback_lock, flags); 3919 rcu_read_lock(); 3920 guarantee_online_mems(task_cs(tsk), &mask); 3921 rcu_read_unlock(); 3922 spin_unlock_irqrestore(&callback_lock, flags); 3923 3924 return mask; 3925 } 3926 3927 /** 3928 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 3929 * @nodemask: the nodemask to be checked 3930 * 3931 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 3932 */ 3933 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 3934 { 3935 return nodes_intersects(*nodemask, current->mems_allowed); 3936 } 3937 3938 /* 3939 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 3940 * mem_hardwall ancestor to the specified cpuset. Call holding 3941 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 3942 * (an unusual configuration), then returns the root cpuset. 3943 */ 3944 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 3945 { 3946 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 3947 cs = parent_cs(cs); 3948 return cs; 3949 } 3950 3951 /* 3952 * cpuset_node_allowed - Can we allocate on a memory node? 3953 * @node: is this an allowed node? 3954 * @gfp_mask: memory allocation flags 3955 * 3956 * If we're in interrupt, yes, we can always allocate. If @node is set in 3957 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 3958 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 3959 * yes. If current has access to memory reserves as an oom victim, yes. 3960 * Otherwise, no. 3961 * 3962 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 3963 * and do not allow allocations outside the current tasks cpuset 3964 * unless the task has been OOM killed. 3965 * GFP_KERNEL allocations are not so marked, so can escape to the 3966 * nearest enclosing hardwalled ancestor cpuset. 3967 * 3968 * Scanning up parent cpusets requires callback_lock. The 3969 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 3970 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 3971 * current tasks mems_allowed came up empty on the first pass over 3972 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 3973 * cpuset are short of memory, might require taking the callback_lock. 3974 * 3975 * The first call here from mm/page_alloc:get_page_from_freelist() 3976 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 3977 * so no allocation on a node outside the cpuset is allowed (unless 3978 * in interrupt, of course). 3979 * 3980 * The second pass through get_page_from_freelist() doesn't even call 3981 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 3982 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 3983 * in alloc_flags. That logic and the checks below have the combined 3984 * affect that: 3985 * in_interrupt - any node ok (current task context irrelevant) 3986 * GFP_ATOMIC - any node ok 3987 * tsk_is_oom_victim - any node ok 3988 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 3989 * GFP_USER - only nodes in current tasks mems allowed ok. 3990 */ 3991 bool cpuset_node_allowed(int node, gfp_t gfp_mask) 3992 { 3993 struct cpuset *cs; /* current cpuset ancestors */ 3994 bool allowed; /* is allocation in zone z allowed? */ 3995 unsigned long flags; 3996 3997 if (in_interrupt()) 3998 return true; 3999 if (node_isset(node, current->mems_allowed)) 4000 return true; 4001 /* 4002 * Allow tasks that have access to memory reserves because they have 4003 * been OOM killed to get memory anywhere. 4004 */ 4005 if (unlikely(tsk_is_oom_victim(current))) 4006 return true; 4007 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 4008 return false; 4009 4010 if (current->flags & PF_EXITING) /* Let dying task have memory */ 4011 return true; 4012 4013 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 4014 spin_lock_irqsave(&callback_lock, flags); 4015 4016 rcu_read_lock(); 4017 cs = nearest_hardwall_ancestor(task_cs(current)); 4018 allowed = node_isset(node, cs->mems_allowed); 4019 rcu_read_unlock(); 4020 4021 spin_unlock_irqrestore(&callback_lock, flags); 4022 return allowed; 4023 } 4024 4025 /** 4026 * cpuset_spread_node() - On which node to begin search for a page 4027 * 4028 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 4029 * tasks in a cpuset with is_spread_page or is_spread_slab set), 4030 * and if the memory allocation used cpuset_mem_spread_node() 4031 * to determine on which node to start looking, as it will for 4032 * certain page cache or slab cache pages such as used for file 4033 * system buffers and inode caches, then instead of starting on the 4034 * local node to look for a free page, rather spread the starting 4035 * node around the tasks mems_allowed nodes. 4036 * 4037 * We don't have to worry about the returned node being offline 4038 * because "it can't happen", and even if it did, it would be ok. 4039 * 4040 * The routines calling guarantee_online_mems() are careful to 4041 * only set nodes in task->mems_allowed that are online. So it 4042 * should not be possible for the following code to return an 4043 * offline node. But if it did, that would be ok, as this routine 4044 * is not returning the node where the allocation must be, only 4045 * the node where the search should start. The zonelist passed to 4046 * __alloc_pages() will include all nodes. If the slab allocator 4047 * is passed an offline node, it will fall back to the local node. 4048 * See kmem_cache_alloc_node(). 4049 */ 4050 static int cpuset_spread_node(int *rotor) 4051 { 4052 return *rotor = next_node_in(*rotor, current->mems_allowed); 4053 } 4054 4055 /** 4056 * cpuset_mem_spread_node() - On which node to begin search for a file page 4057 */ 4058 int cpuset_mem_spread_node(void) 4059 { 4060 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 4061 current->cpuset_mem_spread_rotor = 4062 node_random(¤t->mems_allowed); 4063 4064 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 4065 } 4066 4067 /** 4068 * cpuset_slab_spread_node() - On which node to begin search for a slab page 4069 */ 4070 int cpuset_slab_spread_node(void) 4071 { 4072 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) 4073 current->cpuset_slab_spread_rotor = 4074 node_random(¤t->mems_allowed); 4075 4076 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); 4077 } 4078 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); 4079 4080 /** 4081 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 4082 * @tsk1: pointer to task_struct of some task. 4083 * @tsk2: pointer to task_struct of some other task. 4084 * 4085 * Description: Return true if @tsk1's mems_allowed intersects the 4086 * mems_allowed of @tsk2. Used by the OOM killer to determine if 4087 * one of the task's memory usage might impact the memory available 4088 * to the other. 4089 **/ 4090 4091 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 4092 const struct task_struct *tsk2) 4093 { 4094 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 4095 } 4096 4097 /** 4098 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 4099 * 4100 * Description: Prints current's name, cpuset name, and cached copy of its 4101 * mems_allowed to the kernel log. 4102 */ 4103 void cpuset_print_current_mems_allowed(void) 4104 { 4105 struct cgroup *cgrp; 4106 4107 rcu_read_lock(); 4108 4109 cgrp = task_cs(current)->css.cgroup; 4110 pr_cont(",cpuset="); 4111 pr_cont_cgroup_name(cgrp); 4112 pr_cont(",mems_allowed=%*pbl", 4113 nodemask_pr_args(¤t->mems_allowed)); 4114 4115 rcu_read_unlock(); 4116 } 4117 4118 /* 4119 * Collection of memory_pressure is suppressed unless 4120 * this flag is enabled by writing "1" to the special 4121 * cpuset file 'memory_pressure_enabled' in the root cpuset. 4122 */ 4123 4124 int cpuset_memory_pressure_enabled __read_mostly; 4125 4126 /* 4127 * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. 4128 * 4129 * Keep a running average of the rate of synchronous (direct) 4130 * page reclaim efforts initiated by tasks in each cpuset. 4131 * 4132 * This represents the rate at which some task in the cpuset 4133 * ran low on memory on all nodes it was allowed to use, and 4134 * had to enter the kernels page reclaim code in an effort to 4135 * create more free memory by tossing clean pages or swapping 4136 * or writing dirty pages. 4137 * 4138 * Display to user space in the per-cpuset read-only file 4139 * "memory_pressure". Value displayed is an integer 4140 * representing the recent rate of entry into the synchronous 4141 * (direct) page reclaim by any task attached to the cpuset. 4142 */ 4143 4144 void __cpuset_memory_pressure_bump(void) 4145 { 4146 rcu_read_lock(); 4147 fmeter_markevent(&task_cs(current)->fmeter); 4148 rcu_read_unlock(); 4149 } 4150 4151 #ifdef CONFIG_PROC_PID_CPUSET 4152 /* 4153 * proc_cpuset_show() 4154 * - Print tasks cpuset path into seq_file. 4155 * - Used for /proc/<pid>/cpuset. 4156 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it 4157 * doesn't really matter if tsk->cpuset changes after we read it, 4158 * and we take cpuset_rwsem, keeping cpuset_attach() from changing it 4159 * anyway. 4160 */ 4161 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, 4162 struct pid *pid, struct task_struct *tsk) 4163 { 4164 char *buf; 4165 struct cgroup_subsys_state *css; 4166 int retval; 4167 4168 retval = -ENOMEM; 4169 buf = kmalloc(PATH_MAX, GFP_KERNEL); 4170 if (!buf) 4171 goto out; 4172 4173 css = task_get_css(tsk, cpuset_cgrp_id); 4174 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, 4175 current->nsproxy->cgroup_ns); 4176 css_put(css); 4177 if (retval >= PATH_MAX) 4178 retval = -ENAMETOOLONG; 4179 if (retval < 0) 4180 goto out_free; 4181 seq_puts(m, buf); 4182 seq_putc(m, '\n'); 4183 retval = 0; 4184 out_free: 4185 kfree(buf); 4186 out: 4187 return retval; 4188 } 4189 #endif /* CONFIG_PROC_PID_CPUSET */ 4190 4191 /* Display task mems_allowed in /proc/<pid>/status file. */ 4192 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 4193 { 4194 seq_printf(m, "Mems_allowed:\t%*pb\n", 4195 nodemask_pr_args(&task->mems_allowed)); 4196 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 4197 nodemask_pr_args(&task->mems_allowed)); 4198 } 4199