xref: /linux/kernel/cgroup/cpuset.c (revision 26b433d0da062d6e19d75350c0171d3cf8ff560d)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/sched/mm.h>
48 #include <linux/sched/task.h>
49 #include <linux/seq_file.h>
50 #include <linux/security.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53 #include <linux/stat.h>
54 #include <linux/string.h>
55 #include <linux/time.h>
56 #include <linux/time64.h>
57 #include <linux/backing-dev.h>
58 #include <linux/sort.h>
59 
60 #include <linux/uaccess.h>
61 #include <linux/atomic.h>
62 #include <linux/mutex.h>
63 #include <linux/cgroup.h>
64 #include <linux/wait.h>
65 
66 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
67 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
68 
69 /* See "Frequency meter" comments, below. */
70 
71 struct fmeter {
72 	int cnt;		/* unprocessed events count */
73 	int val;		/* most recent output value */
74 	time64_t time;		/* clock (secs) when val computed */
75 	spinlock_t lock;	/* guards read or write of above */
76 };
77 
78 struct cpuset {
79 	struct cgroup_subsys_state css;
80 
81 	unsigned long flags;		/* "unsigned long" so bitops work */
82 
83 	/*
84 	 * On default hierarchy:
85 	 *
86 	 * The user-configured masks can only be changed by writing to
87 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
88 	 * parent masks.
89 	 *
90 	 * The effective masks is the real masks that apply to the tasks
91 	 * in the cpuset. They may be changed if the configured masks are
92 	 * changed or hotplug happens.
93 	 *
94 	 * effective_mask == configured_mask & parent's effective_mask,
95 	 * and if it ends up empty, it will inherit the parent's mask.
96 	 *
97 	 *
98 	 * On legacy hierachy:
99 	 *
100 	 * The user-configured masks are always the same with effective masks.
101 	 */
102 
103 	/* user-configured CPUs and Memory Nodes allow to tasks */
104 	cpumask_var_t cpus_allowed;
105 	nodemask_t mems_allowed;
106 
107 	/* effective CPUs and Memory Nodes allow to tasks */
108 	cpumask_var_t effective_cpus;
109 	nodemask_t effective_mems;
110 
111 	/*
112 	 * This is old Memory Nodes tasks took on.
113 	 *
114 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
115 	 * - A new cpuset's old_mems_allowed is initialized when some
116 	 *   task is moved into it.
117 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
118 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
119 	 *   then old_mems_allowed is updated to mems_allowed.
120 	 */
121 	nodemask_t old_mems_allowed;
122 
123 	struct fmeter fmeter;		/* memory_pressure filter */
124 
125 	/*
126 	 * Tasks are being attached to this cpuset.  Used to prevent
127 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
128 	 */
129 	int attach_in_progress;
130 
131 	/* partition number for rebuild_sched_domains() */
132 	int pn;
133 
134 	/* for custom sched domain */
135 	int relax_domain_level;
136 };
137 
138 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
139 {
140 	return css ? container_of(css, struct cpuset, css) : NULL;
141 }
142 
143 /* Retrieve the cpuset for a task */
144 static inline struct cpuset *task_cs(struct task_struct *task)
145 {
146 	return css_cs(task_css(task, cpuset_cgrp_id));
147 }
148 
149 static inline struct cpuset *parent_cs(struct cpuset *cs)
150 {
151 	return css_cs(cs->css.parent);
152 }
153 
154 #ifdef CONFIG_NUMA
155 static inline bool task_has_mempolicy(struct task_struct *task)
156 {
157 	return task->mempolicy;
158 }
159 #else
160 static inline bool task_has_mempolicy(struct task_struct *task)
161 {
162 	return false;
163 }
164 #endif
165 
166 
167 /* bits in struct cpuset flags field */
168 typedef enum {
169 	CS_ONLINE,
170 	CS_CPU_EXCLUSIVE,
171 	CS_MEM_EXCLUSIVE,
172 	CS_MEM_HARDWALL,
173 	CS_MEMORY_MIGRATE,
174 	CS_SCHED_LOAD_BALANCE,
175 	CS_SPREAD_PAGE,
176 	CS_SPREAD_SLAB,
177 } cpuset_flagbits_t;
178 
179 /* convenient tests for these bits */
180 static inline bool is_cpuset_online(struct cpuset *cs)
181 {
182 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
183 }
184 
185 static inline int is_cpu_exclusive(const struct cpuset *cs)
186 {
187 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
188 }
189 
190 static inline int is_mem_exclusive(const struct cpuset *cs)
191 {
192 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
193 }
194 
195 static inline int is_mem_hardwall(const struct cpuset *cs)
196 {
197 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
198 }
199 
200 static inline int is_sched_load_balance(const struct cpuset *cs)
201 {
202 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
203 }
204 
205 static inline int is_memory_migrate(const struct cpuset *cs)
206 {
207 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
208 }
209 
210 static inline int is_spread_page(const struct cpuset *cs)
211 {
212 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
213 }
214 
215 static inline int is_spread_slab(const struct cpuset *cs)
216 {
217 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
218 }
219 
220 static struct cpuset top_cpuset = {
221 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
222 		  (1 << CS_MEM_EXCLUSIVE)),
223 };
224 
225 /**
226  * cpuset_for_each_child - traverse online children of a cpuset
227  * @child_cs: loop cursor pointing to the current child
228  * @pos_css: used for iteration
229  * @parent_cs: target cpuset to walk children of
230  *
231  * Walk @child_cs through the online children of @parent_cs.  Must be used
232  * with RCU read locked.
233  */
234 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
235 	css_for_each_child((pos_css), &(parent_cs)->css)		\
236 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
237 
238 /**
239  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
240  * @des_cs: loop cursor pointing to the current descendant
241  * @pos_css: used for iteration
242  * @root_cs: target cpuset to walk ancestor of
243  *
244  * Walk @des_cs through the online descendants of @root_cs.  Must be used
245  * with RCU read locked.  The caller may modify @pos_css by calling
246  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
247  * iteration and the first node to be visited.
248  */
249 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
250 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
251 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
252 
253 /*
254  * There are two global locks guarding cpuset structures - cpuset_mutex and
255  * callback_lock. We also require taking task_lock() when dereferencing a
256  * task's cpuset pointer. See "The task_lock() exception", at the end of this
257  * comment.
258  *
259  * A task must hold both locks to modify cpusets.  If a task holds
260  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
261  * is the only task able to also acquire callback_lock and be able to
262  * modify cpusets.  It can perform various checks on the cpuset structure
263  * first, knowing nothing will change.  It can also allocate memory while
264  * just holding cpuset_mutex.  While it is performing these checks, various
265  * callback routines can briefly acquire callback_lock to query cpusets.
266  * Once it is ready to make the changes, it takes callback_lock, blocking
267  * everyone else.
268  *
269  * Calls to the kernel memory allocator can not be made while holding
270  * callback_lock, as that would risk double tripping on callback_lock
271  * from one of the callbacks into the cpuset code from within
272  * __alloc_pages().
273  *
274  * If a task is only holding callback_lock, then it has read-only
275  * access to cpusets.
276  *
277  * Now, the task_struct fields mems_allowed and mempolicy may be changed
278  * by other task, we use alloc_lock in the task_struct fields to protect
279  * them.
280  *
281  * The cpuset_common_file_read() handlers only hold callback_lock across
282  * small pieces of code, such as when reading out possibly multi-word
283  * cpumasks and nodemasks.
284  *
285  * Accessing a task's cpuset should be done in accordance with the
286  * guidelines for accessing subsystem state in kernel/cgroup.c
287  */
288 
289 static DEFINE_MUTEX(cpuset_mutex);
290 static DEFINE_SPINLOCK(callback_lock);
291 
292 static struct workqueue_struct *cpuset_migrate_mm_wq;
293 
294 /*
295  * CPU / memory hotplug is handled asynchronously.
296  */
297 static void cpuset_hotplug_workfn(struct work_struct *work);
298 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
299 
300 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
301 
302 /*
303  * This is ugly, but preserves the userspace API for existing cpuset
304  * users. If someone tries to mount the "cpuset" filesystem, we
305  * silently switch it to mount "cgroup" instead
306  */
307 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
308 			 int flags, const char *unused_dev_name, void *data)
309 {
310 	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
311 	struct dentry *ret = ERR_PTR(-ENODEV);
312 	if (cgroup_fs) {
313 		char mountopts[] =
314 			"cpuset,noprefix,"
315 			"release_agent=/sbin/cpuset_release_agent";
316 		ret = cgroup_fs->mount(cgroup_fs, flags,
317 					   unused_dev_name, mountopts);
318 		put_filesystem(cgroup_fs);
319 	}
320 	return ret;
321 }
322 
323 static struct file_system_type cpuset_fs_type = {
324 	.name = "cpuset",
325 	.mount = cpuset_mount,
326 };
327 
328 /*
329  * Return in pmask the portion of a cpusets's cpus_allowed that
330  * are online.  If none are online, walk up the cpuset hierarchy
331  * until we find one that does have some online cpus.
332  *
333  * One way or another, we guarantee to return some non-empty subset
334  * of cpu_online_mask.
335  *
336  * Call with callback_lock or cpuset_mutex held.
337  */
338 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
339 {
340 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
341 		cs = parent_cs(cs);
342 		if (unlikely(!cs)) {
343 			/*
344 			 * The top cpuset doesn't have any online cpu as a
345 			 * consequence of a race between cpuset_hotplug_work
346 			 * and cpu hotplug notifier.  But we know the top
347 			 * cpuset's effective_cpus is on its way to to be
348 			 * identical to cpu_online_mask.
349 			 */
350 			cpumask_copy(pmask, cpu_online_mask);
351 			return;
352 		}
353 	}
354 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
355 }
356 
357 /*
358  * Return in *pmask the portion of a cpusets's mems_allowed that
359  * are online, with memory.  If none are online with memory, walk
360  * up the cpuset hierarchy until we find one that does have some
361  * online mems.  The top cpuset always has some mems online.
362  *
363  * One way or another, we guarantee to return some non-empty subset
364  * of node_states[N_MEMORY].
365  *
366  * Call with callback_lock or cpuset_mutex held.
367  */
368 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
369 {
370 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
371 		cs = parent_cs(cs);
372 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
373 }
374 
375 /*
376  * update task's spread flag if cpuset's page/slab spread flag is set
377  *
378  * Call with callback_lock or cpuset_mutex held.
379  */
380 static void cpuset_update_task_spread_flag(struct cpuset *cs,
381 					struct task_struct *tsk)
382 {
383 	if (is_spread_page(cs))
384 		task_set_spread_page(tsk);
385 	else
386 		task_clear_spread_page(tsk);
387 
388 	if (is_spread_slab(cs))
389 		task_set_spread_slab(tsk);
390 	else
391 		task_clear_spread_slab(tsk);
392 }
393 
394 /*
395  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
396  *
397  * One cpuset is a subset of another if all its allowed CPUs and
398  * Memory Nodes are a subset of the other, and its exclusive flags
399  * are only set if the other's are set.  Call holding cpuset_mutex.
400  */
401 
402 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
403 {
404 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
405 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
406 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
407 		is_mem_exclusive(p) <= is_mem_exclusive(q);
408 }
409 
410 /**
411  * alloc_trial_cpuset - allocate a trial cpuset
412  * @cs: the cpuset that the trial cpuset duplicates
413  */
414 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
415 {
416 	struct cpuset *trial;
417 
418 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
419 	if (!trial)
420 		return NULL;
421 
422 	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
423 		goto free_cs;
424 	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
425 		goto free_cpus;
426 
427 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
428 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
429 	return trial;
430 
431 free_cpus:
432 	free_cpumask_var(trial->cpus_allowed);
433 free_cs:
434 	kfree(trial);
435 	return NULL;
436 }
437 
438 /**
439  * free_trial_cpuset - free the trial cpuset
440  * @trial: the trial cpuset to be freed
441  */
442 static void free_trial_cpuset(struct cpuset *trial)
443 {
444 	free_cpumask_var(trial->effective_cpus);
445 	free_cpumask_var(trial->cpus_allowed);
446 	kfree(trial);
447 }
448 
449 /*
450  * validate_change() - Used to validate that any proposed cpuset change
451  *		       follows the structural rules for cpusets.
452  *
453  * If we replaced the flag and mask values of the current cpuset
454  * (cur) with those values in the trial cpuset (trial), would
455  * our various subset and exclusive rules still be valid?  Presumes
456  * cpuset_mutex held.
457  *
458  * 'cur' is the address of an actual, in-use cpuset.  Operations
459  * such as list traversal that depend on the actual address of the
460  * cpuset in the list must use cur below, not trial.
461  *
462  * 'trial' is the address of bulk structure copy of cur, with
463  * perhaps one or more of the fields cpus_allowed, mems_allowed,
464  * or flags changed to new, trial values.
465  *
466  * Return 0 if valid, -errno if not.
467  */
468 
469 static int validate_change(struct cpuset *cur, struct cpuset *trial)
470 {
471 	struct cgroup_subsys_state *css;
472 	struct cpuset *c, *par;
473 	int ret;
474 
475 	rcu_read_lock();
476 
477 	/* Each of our child cpusets must be a subset of us */
478 	ret = -EBUSY;
479 	cpuset_for_each_child(c, css, cur)
480 		if (!is_cpuset_subset(c, trial))
481 			goto out;
482 
483 	/* Remaining checks don't apply to root cpuset */
484 	ret = 0;
485 	if (cur == &top_cpuset)
486 		goto out;
487 
488 	par = parent_cs(cur);
489 
490 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
491 	ret = -EACCES;
492 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
493 	    !is_cpuset_subset(trial, par))
494 		goto out;
495 
496 	/*
497 	 * If either I or some sibling (!= me) is exclusive, we can't
498 	 * overlap
499 	 */
500 	ret = -EINVAL;
501 	cpuset_for_each_child(c, css, par) {
502 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
503 		    c != cur &&
504 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
505 			goto out;
506 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
507 		    c != cur &&
508 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
509 			goto out;
510 	}
511 
512 	/*
513 	 * Cpusets with tasks - existing or newly being attached - can't
514 	 * be changed to have empty cpus_allowed or mems_allowed.
515 	 */
516 	ret = -ENOSPC;
517 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
518 		if (!cpumask_empty(cur->cpus_allowed) &&
519 		    cpumask_empty(trial->cpus_allowed))
520 			goto out;
521 		if (!nodes_empty(cur->mems_allowed) &&
522 		    nodes_empty(trial->mems_allowed))
523 			goto out;
524 	}
525 
526 	/*
527 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
528 	 * tasks.
529 	 */
530 	ret = -EBUSY;
531 	if (is_cpu_exclusive(cur) &&
532 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
533 				       trial->cpus_allowed))
534 		goto out;
535 
536 	ret = 0;
537 out:
538 	rcu_read_unlock();
539 	return ret;
540 }
541 
542 #ifdef CONFIG_SMP
543 /*
544  * Helper routine for generate_sched_domains().
545  * Do cpusets a, b have overlapping effective cpus_allowed masks?
546  */
547 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
548 {
549 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
550 }
551 
552 static void
553 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
554 {
555 	if (dattr->relax_domain_level < c->relax_domain_level)
556 		dattr->relax_domain_level = c->relax_domain_level;
557 	return;
558 }
559 
560 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
561 				    struct cpuset *root_cs)
562 {
563 	struct cpuset *cp;
564 	struct cgroup_subsys_state *pos_css;
565 
566 	rcu_read_lock();
567 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
568 		/* skip the whole subtree if @cp doesn't have any CPU */
569 		if (cpumask_empty(cp->cpus_allowed)) {
570 			pos_css = css_rightmost_descendant(pos_css);
571 			continue;
572 		}
573 
574 		if (is_sched_load_balance(cp))
575 			update_domain_attr(dattr, cp);
576 	}
577 	rcu_read_unlock();
578 }
579 
580 /* Must be called with cpuset_mutex held.  */
581 static inline int nr_cpusets(void)
582 {
583 	/* jump label reference count + the top-level cpuset */
584 	return static_key_count(&cpusets_enabled_key.key) + 1;
585 }
586 
587 /*
588  * generate_sched_domains()
589  *
590  * This function builds a partial partition of the systems CPUs
591  * A 'partial partition' is a set of non-overlapping subsets whose
592  * union is a subset of that set.
593  * The output of this function needs to be passed to kernel/sched/core.c
594  * partition_sched_domains() routine, which will rebuild the scheduler's
595  * load balancing domains (sched domains) as specified by that partial
596  * partition.
597  *
598  * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
599  * for a background explanation of this.
600  *
601  * Does not return errors, on the theory that the callers of this
602  * routine would rather not worry about failures to rebuild sched
603  * domains when operating in the severe memory shortage situations
604  * that could cause allocation failures below.
605  *
606  * Must be called with cpuset_mutex held.
607  *
608  * The three key local variables below are:
609  *    q  - a linked-list queue of cpuset pointers, used to implement a
610  *	   top-down scan of all cpusets.  This scan loads a pointer
611  *	   to each cpuset marked is_sched_load_balance into the
612  *	   array 'csa'.  For our purposes, rebuilding the schedulers
613  *	   sched domains, we can ignore !is_sched_load_balance cpusets.
614  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
615  *	   that need to be load balanced, for convenient iterative
616  *	   access by the subsequent code that finds the best partition,
617  *	   i.e the set of domains (subsets) of CPUs such that the
618  *	   cpus_allowed of every cpuset marked is_sched_load_balance
619  *	   is a subset of one of these domains, while there are as
620  *	   many such domains as possible, each as small as possible.
621  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
622  *	   the kernel/sched/core.c routine partition_sched_domains() in a
623  *	   convenient format, that can be easily compared to the prior
624  *	   value to determine what partition elements (sched domains)
625  *	   were changed (added or removed.)
626  *
627  * Finding the best partition (set of domains):
628  *	The triple nested loops below over i, j, k scan over the
629  *	load balanced cpusets (using the array of cpuset pointers in
630  *	csa[]) looking for pairs of cpusets that have overlapping
631  *	cpus_allowed, but which don't have the same 'pn' partition
632  *	number and gives them in the same partition number.  It keeps
633  *	looping on the 'restart' label until it can no longer find
634  *	any such pairs.
635  *
636  *	The union of the cpus_allowed masks from the set of
637  *	all cpusets having the same 'pn' value then form the one
638  *	element of the partition (one sched domain) to be passed to
639  *	partition_sched_domains().
640  */
641 static int generate_sched_domains(cpumask_var_t **domains,
642 			struct sched_domain_attr **attributes)
643 {
644 	struct cpuset *cp;	/* scans q */
645 	struct cpuset **csa;	/* array of all cpuset ptrs */
646 	int csn;		/* how many cpuset ptrs in csa so far */
647 	int i, j, k;		/* indices for partition finding loops */
648 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
649 	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
650 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
651 	int ndoms = 0;		/* number of sched domains in result */
652 	int nslot;		/* next empty doms[] struct cpumask slot */
653 	struct cgroup_subsys_state *pos_css;
654 
655 	doms = NULL;
656 	dattr = NULL;
657 	csa = NULL;
658 
659 	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
660 		goto done;
661 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
662 
663 	/* Special case for the 99% of systems with one, full, sched domain */
664 	if (is_sched_load_balance(&top_cpuset)) {
665 		ndoms = 1;
666 		doms = alloc_sched_domains(ndoms);
667 		if (!doms)
668 			goto done;
669 
670 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
671 		if (dattr) {
672 			*dattr = SD_ATTR_INIT;
673 			update_domain_attr_tree(dattr, &top_cpuset);
674 		}
675 		cpumask_and(doms[0], top_cpuset.effective_cpus,
676 				     non_isolated_cpus);
677 
678 		goto done;
679 	}
680 
681 	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
682 	if (!csa)
683 		goto done;
684 	csn = 0;
685 
686 	rcu_read_lock();
687 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
688 		if (cp == &top_cpuset)
689 			continue;
690 		/*
691 		 * Continue traversing beyond @cp iff @cp has some CPUs and
692 		 * isn't load balancing.  The former is obvious.  The
693 		 * latter: All child cpusets contain a subset of the
694 		 * parent's cpus, so just skip them, and then we call
695 		 * update_domain_attr_tree() to calc relax_domain_level of
696 		 * the corresponding sched domain.
697 		 */
698 		if (!cpumask_empty(cp->cpus_allowed) &&
699 		    !(is_sched_load_balance(cp) &&
700 		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
701 			continue;
702 
703 		if (is_sched_load_balance(cp))
704 			csa[csn++] = cp;
705 
706 		/* skip @cp's subtree */
707 		pos_css = css_rightmost_descendant(pos_css);
708 	}
709 	rcu_read_unlock();
710 
711 	for (i = 0; i < csn; i++)
712 		csa[i]->pn = i;
713 	ndoms = csn;
714 
715 restart:
716 	/* Find the best partition (set of sched domains) */
717 	for (i = 0; i < csn; i++) {
718 		struct cpuset *a = csa[i];
719 		int apn = a->pn;
720 
721 		for (j = 0; j < csn; j++) {
722 			struct cpuset *b = csa[j];
723 			int bpn = b->pn;
724 
725 			if (apn != bpn && cpusets_overlap(a, b)) {
726 				for (k = 0; k < csn; k++) {
727 					struct cpuset *c = csa[k];
728 
729 					if (c->pn == bpn)
730 						c->pn = apn;
731 				}
732 				ndoms--;	/* one less element */
733 				goto restart;
734 			}
735 		}
736 	}
737 
738 	/*
739 	 * Now we know how many domains to create.
740 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
741 	 */
742 	doms = alloc_sched_domains(ndoms);
743 	if (!doms)
744 		goto done;
745 
746 	/*
747 	 * The rest of the code, including the scheduler, can deal with
748 	 * dattr==NULL case. No need to abort if alloc fails.
749 	 */
750 	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
751 
752 	for (nslot = 0, i = 0; i < csn; i++) {
753 		struct cpuset *a = csa[i];
754 		struct cpumask *dp;
755 		int apn = a->pn;
756 
757 		if (apn < 0) {
758 			/* Skip completed partitions */
759 			continue;
760 		}
761 
762 		dp = doms[nslot];
763 
764 		if (nslot == ndoms) {
765 			static int warnings = 10;
766 			if (warnings) {
767 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
768 					nslot, ndoms, csn, i, apn);
769 				warnings--;
770 			}
771 			continue;
772 		}
773 
774 		cpumask_clear(dp);
775 		if (dattr)
776 			*(dattr + nslot) = SD_ATTR_INIT;
777 		for (j = i; j < csn; j++) {
778 			struct cpuset *b = csa[j];
779 
780 			if (apn == b->pn) {
781 				cpumask_or(dp, dp, b->effective_cpus);
782 				cpumask_and(dp, dp, non_isolated_cpus);
783 				if (dattr)
784 					update_domain_attr_tree(dattr + nslot, b);
785 
786 				/* Done with this partition */
787 				b->pn = -1;
788 			}
789 		}
790 		nslot++;
791 	}
792 	BUG_ON(nslot != ndoms);
793 
794 done:
795 	free_cpumask_var(non_isolated_cpus);
796 	kfree(csa);
797 
798 	/*
799 	 * Fallback to the default domain if kmalloc() failed.
800 	 * See comments in partition_sched_domains().
801 	 */
802 	if (doms == NULL)
803 		ndoms = 1;
804 
805 	*domains    = doms;
806 	*attributes = dattr;
807 	return ndoms;
808 }
809 
810 /*
811  * Rebuild scheduler domains.
812  *
813  * If the flag 'sched_load_balance' of any cpuset with non-empty
814  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
815  * which has that flag enabled, or if any cpuset with a non-empty
816  * 'cpus' is removed, then call this routine to rebuild the
817  * scheduler's dynamic sched domains.
818  *
819  * Call with cpuset_mutex held.  Takes get_online_cpus().
820  */
821 static void rebuild_sched_domains_locked(void)
822 {
823 	struct sched_domain_attr *attr;
824 	cpumask_var_t *doms;
825 	int ndoms;
826 
827 	lockdep_assert_held(&cpuset_mutex);
828 	get_online_cpus();
829 
830 	/*
831 	 * We have raced with CPU hotplug. Don't do anything to avoid
832 	 * passing doms with offlined cpu to partition_sched_domains().
833 	 * Anyways, hotplug work item will rebuild sched domains.
834 	 */
835 	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
836 		goto out;
837 
838 	/* Generate domain masks and attrs */
839 	ndoms = generate_sched_domains(&doms, &attr);
840 
841 	/* Have scheduler rebuild the domains */
842 	partition_sched_domains(ndoms, doms, attr);
843 out:
844 	put_online_cpus();
845 }
846 #else /* !CONFIG_SMP */
847 static void rebuild_sched_domains_locked(void)
848 {
849 }
850 #endif /* CONFIG_SMP */
851 
852 void rebuild_sched_domains(void)
853 {
854 	mutex_lock(&cpuset_mutex);
855 	rebuild_sched_domains_locked();
856 	mutex_unlock(&cpuset_mutex);
857 }
858 
859 /**
860  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
861  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
862  *
863  * Iterate through each task of @cs updating its cpus_allowed to the
864  * effective cpuset's.  As this function is called with cpuset_mutex held,
865  * cpuset membership stays stable.
866  */
867 static void update_tasks_cpumask(struct cpuset *cs)
868 {
869 	struct css_task_iter it;
870 	struct task_struct *task;
871 
872 	css_task_iter_start(&cs->css, &it);
873 	while ((task = css_task_iter_next(&it)))
874 		set_cpus_allowed_ptr(task, cs->effective_cpus);
875 	css_task_iter_end(&it);
876 }
877 
878 /*
879  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
880  * @cs: the cpuset to consider
881  * @new_cpus: temp variable for calculating new effective_cpus
882  *
883  * When congifured cpumask is changed, the effective cpumasks of this cpuset
884  * and all its descendants need to be updated.
885  *
886  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
887  *
888  * Called with cpuset_mutex held
889  */
890 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
891 {
892 	struct cpuset *cp;
893 	struct cgroup_subsys_state *pos_css;
894 	bool need_rebuild_sched_domains = false;
895 
896 	rcu_read_lock();
897 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
898 		struct cpuset *parent = parent_cs(cp);
899 
900 		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
901 
902 		/*
903 		 * If it becomes empty, inherit the effective mask of the
904 		 * parent, which is guaranteed to have some CPUs.
905 		 */
906 		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
907 		    cpumask_empty(new_cpus))
908 			cpumask_copy(new_cpus, parent->effective_cpus);
909 
910 		/* Skip the whole subtree if the cpumask remains the same. */
911 		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
912 			pos_css = css_rightmost_descendant(pos_css);
913 			continue;
914 		}
915 
916 		if (!css_tryget_online(&cp->css))
917 			continue;
918 		rcu_read_unlock();
919 
920 		spin_lock_irq(&callback_lock);
921 		cpumask_copy(cp->effective_cpus, new_cpus);
922 		spin_unlock_irq(&callback_lock);
923 
924 		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
925 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
926 
927 		update_tasks_cpumask(cp);
928 
929 		/*
930 		 * If the effective cpumask of any non-empty cpuset is changed,
931 		 * we need to rebuild sched domains.
932 		 */
933 		if (!cpumask_empty(cp->cpus_allowed) &&
934 		    is_sched_load_balance(cp))
935 			need_rebuild_sched_domains = true;
936 
937 		rcu_read_lock();
938 		css_put(&cp->css);
939 	}
940 	rcu_read_unlock();
941 
942 	if (need_rebuild_sched_domains)
943 		rebuild_sched_domains_locked();
944 }
945 
946 /**
947  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
948  * @cs: the cpuset to consider
949  * @trialcs: trial cpuset
950  * @buf: buffer of cpu numbers written to this cpuset
951  */
952 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
953 			  const char *buf)
954 {
955 	int retval;
956 
957 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
958 	if (cs == &top_cpuset)
959 		return -EACCES;
960 
961 	/*
962 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
963 	 * Since cpulist_parse() fails on an empty mask, we special case
964 	 * that parsing.  The validate_change() call ensures that cpusets
965 	 * with tasks have cpus.
966 	 */
967 	if (!*buf) {
968 		cpumask_clear(trialcs->cpus_allowed);
969 	} else {
970 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
971 		if (retval < 0)
972 			return retval;
973 
974 		if (!cpumask_subset(trialcs->cpus_allowed,
975 				    top_cpuset.cpus_allowed))
976 			return -EINVAL;
977 	}
978 
979 	/* Nothing to do if the cpus didn't change */
980 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
981 		return 0;
982 
983 	retval = validate_change(cs, trialcs);
984 	if (retval < 0)
985 		return retval;
986 
987 	spin_lock_irq(&callback_lock);
988 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
989 	spin_unlock_irq(&callback_lock);
990 
991 	/* use trialcs->cpus_allowed as a temp variable */
992 	update_cpumasks_hier(cs, trialcs->cpus_allowed);
993 	return 0;
994 }
995 
996 /*
997  * Migrate memory region from one set of nodes to another.  This is
998  * performed asynchronously as it can be called from process migration path
999  * holding locks involved in process management.  All mm migrations are
1000  * performed in the queued order and can be waited for by flushing
1001  * cpuset_migrate_mm_wq.
1002  */
1003 
1004 struct cpuset_migrate_mm_work {
1005 	struct work_struct	work;
1006 	struct mm_struct	*mm;
1007 	nodemask_t		from;
1008 	nodemask_t		to;
1009 };
1010 
1011 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1012 {
1013 	struct cpuset_migrate_mm_work *mwork =
1014 		container_of(work, struct cpuset_migrate_mm_work, work);
1015 
1016 	/* on a wq worker, no need to worry about %current's mems_allowed */
1017 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1018 	mmput(mwork->mm);
1019 	kfree(mwork);
1020 }
1021 
1022 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1023 							const nodemask_t *to)
1024 {
1025 	struct cpuset_migrate_mm_work *mwork;
1026 
1027 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1028 	if (mwork) {
1029 		mwork->mm = mm;
1030 		mwork->from = *from;
1031 		mwork->to = *to;
1032 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1033 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1034 	} else {
1035 		mmput(mm);
1036 	}
1037 }
1038 
1039 static void cpuset_post_attach(void)
1040 {
1041 	flush_workqueue(cpuset_migrate_mm_wq);
1042 }
1043 
1044 /*
1045  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1046  * @tsk: the task to change
1047  * @newmems: new nodes that the task will be set
1048  *
1049  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1050  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1051  * parallel, it might temporarily see an empty intersection, which results in
1052  * a seqlock check and retry before OOM or allocation failure.
1053  */
1054 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1055 					nodemask_t *newmems)
1056 {
1057 	task_lock(tsk);
1058 
1059 	local_irq_disable();
1060 	write_seqcount_begin(&tsk->mems_allowed_seq);
1061 
1062 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1063 	mpol_rebind_task(tsk, newmems);
1064 	tsk->mems_allowed = *newmems;
1065 
1066 	write_seqcount_end(&tsk->mems_allowed_seq);
1067 	local_irq_enable();
1068 
1069 	task_unlock(tsk);
1070 }
1071 
1072 static void *cpuset_being_rebound;
1073 
1074 /**
1075  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1076  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1077  *
1078  * Iterate through each task of @cs updating its mems_allowed to the
1079  * effective cpuset's.  As this function is called with cpuset_mutex held,
1080  * cpuset membership stays stable.
1081  */
1082 static void update_tasks_nodemask(struct cpuset *cs)
1083 {
1084 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1085 	struct css_task_iter it;
1086 	struct task_struct *task;
1087 
1088 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1089 
1090 	guarantee_online_mems(cs, &newmems);
1091 
1092 	/*
1093 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1094 	 * take while holding tasklist_lock.  Forks can happen - the
1095 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1096 	 * and rebind their vma mempolicies too.  Because we still hold
1097 	 * the global cpuset_mutex, we know that no other rebind effort
1098 	 * will be contending for the global variable cpuset_being_rebound.
1099 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1100 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1101 	 */
1102 	css_task_iter_start(&cs->css, &it);
1103 	while ((task = css_task_iter_next(&it))) {
1104 		struct mm_struct *mm;
1105 		bool migrate;
1106 
1107 		cpuset_change_task_nodemask(task, &newmems);
1108 
1109 		mm = get_task_mm(task);
1110 		if (!mm)
1111 			continue;
1112 
1113 		migrate = is_memory_migrate(cs);
1114 
1115 		mpol_rebind_mm(mm, &cs->mems_allowed);
1116 		if (migrate)
1117 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1118 		else
1119 			mmput(mm);
1120 	}
1121 	css_task_iter_end(&it);
1122 
1123 	/*
1124 	 * All the tasks' nodemasks have been updated, update
1125 	 * cs->old_mems_allowed.
1126 	 */
1127 	cs->old_mems_allowed = newmems;
1128 
1129 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1130 	cpuset_being_rebound = NULL;
1131 }
1132 
1133 /*
1134  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1135  * @cs: the cpuset to consider
1136  * @new_mems: a temp variable for calculating new effective_mems
1137  *
1138  * When configured nodemask is changed, the effective nodemasks of this cpuset
1139  * and all its descendants need to be updated.
1140  *
1141  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1142  *
1143  * Called with cpuset_mutex held
1144  */
1145 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1146 {
1147 	struct cpuset *cp;
1148 	struct cgroup_subsys_state *pos_css;
1149 
1150 	rcu_read_lock();
1151 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1152 		struct cpuset *parent = parent_cs(cp);
1153 
1154 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1155 
1156 		/*
1157 		 * If it becomes empty, inherit the effective mask of the
1158 		 * parent, which is guaranteed to have some MEMs.
1159 		 */
1160 		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1161 		    nodes_empty(*new_mems))
1162 			*new_mems = parent->effective_mems;
1163 
1164 		/* Skip the whole subtree if the nodemask remains the same. */
1165 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1166 			pos_css = css_rightmost_descendant(pos_css);
1167 			continue;
1168 		}
1169 
1170 		if (!css_tryget_online(&cp->css))
1171 			continue;
1172 		rcu_read_unlock();
1173 
1174 		spin_lock_irq(&callback_lock);
1175 		cp->effective_mems = *new_mems;
1176 		spin_unlock_irq(&callback_lock);
1177 
1178 		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1179 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1180 
1181 		update_tasks_nodemask(cp);
1182 
1183 		rcu_read_lock();
1184 		css_put(&cp->css);
1185 	}
1186 	rcu_read_unlock();
1187 }
1188 
1189 /*
1190  * Handle user request to change the 'mems' memory placement
1191  * of a cpuset.  Needs to validate the request, update the
1192  * cpusets mems_allowed, and for each task in the cpuset,
1193  * update mems_allowed and rebind task's mempolicy and any vma
1194  * mempolicies and if the cpuset is marked 'memory_migrate',
1195  * migrate the tasks pages to the new memory.
1196  *
1197  * Call with cpuset_mutex held. May take callback_lock during call.
1198  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1199  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1200  * their mempolicies to the cpusets new mems_allowed.
1201  */
1202 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1203 			   const char *buf)
1204 {
1205 	int retval;
1206 
1207 	/*
1208 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1209 	 * it's read-only
1210 	 */
1211 	if (cs == &top_cpuset) {
1212 		retval = -EACCES;
1213 		goto done;
1214 	}
1215 
1216 	/*
1217 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1218 	 * Since nodelist_parse() fails on an empty mask, we special case
1219 	 * that parsing.  The validate_change() call ensures that cpusets
1220 	 * with tasks have memory.
1221 	 */
1222 	if (!*buf) {
1223 		nodes_clear(trialcs->mems_allowed);
1224 	} else {
1225 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1226 		if (retval < 0)
1227 			goto done;
1228 
1229 		if (!nodes_subset(trialcs->mems_allowed,
1230 				  top_cpuset.mems_allowed)) {
1231 			retval = -EINVAL;
1232 			goto done;
1233 		}
1234 	}
1235 
1236 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1237 		retval = 0;		/* Too easy - nothing to do */
1238 		goto done;
1239 	}
1240 	retval = validate_change(cs, trialcs);
1241 	if (retval < 0)
1242 		goto done;
1243 
1244 	spin_lock_irq(&callback_lock);
1245 	cs->mems_allowed = trialcs->mems_allowed;
1246 	spin_unlock_irq(&callback_lock);
1247 
1248 	/* use trialcs->mems_allowed as a temp variable */
1249 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1250 done:
1251 	return retval;
1252 }
1253 
1254 int current_cpuset_is_being_rebound(void)
1255 {
1256 	int ret;
1257 
1258 	rcu_read_lock();
1259 	ret = task_cs(current) == cpuset_being_rebound;
1260 	rcu_read_unlock();
1261 
1262 	return ret;
1263 }
1264 
1265 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1266 {
1267 #ifdef CONFIG_SMP
1268 	if (val < -1 || val >= sched_domain_level_max)
1269 		return -EINVAL;
1270 #endif
1271 
1272 	if (val != cs->relax_domain_level) {
1273 		cs->relax_domain_level = val;
1274 		if (!cpumask_empty(cs->cpus_allowed) &&
1275 		    is_sched_load_balance(cs))
1276 			rebuild_sched_domains_locked();
1277 	}
1278 
1279 	return 0;
1280 }
1281 
1282 /**
1283  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1284  * @cs: the cpuset in which each task's spread flags needs to be changed
1285  *
1286  * Iterate through each task of @cs updating its spread flags.  As this
1287  * function is called with cpuset_mutex held, cpuset membership stays
1288  * stable.
1289  */
1290 static void update_tasks_flags(struct cpuset *cs)
1291 {
1292 	struct css_task_iter it;
1293 	struct task_struct *task;
1294 
1295 	css_task_iter_start(&cs->css, &it);
1296 	while ((task = css_task_iter_next(&it)))
1297 		cpuset_update_task_spread_flag(cs, task);
1298 	css_task_iter_end(&it);
1299 }
1300 
1301 /*
1302  * update_flag - read a 0 or a 1 in a file and update associated flag
1303  * bit:		the bit to update (see cpuset_flagbits_t)
1304  * cs:		the cpuset to update
1305  * turning_on: 	whether the flag is being set or cleared
1306  *
1307  * Call with cpuset_mutex held.
1308  */
1309 
1310 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1311 		       int turning_on)
1312 {
1313 	struct cpuset *trialcs;
1314 	int balance_flag_changed;
1315 	int spread_flag_changed;
1316 	int err;
1317 
1318 	trialcs = alloc_trial_cpuset(cs);
1319 	if (!trialcs)
1320 		return -ENOMEM;
1321 
1322 	if (turning_on)
1323 		set_bit(bit, &trialcs->flags);
1324 	else
1325 		clear_bit(bit, &trialcs->flags);
1326 
1327 	err = validate_change(cs, trialcs);
1328 	if (err < 0)
1329 		goto out;
1330 
1331 	balance_flag_changed = (is_sched_load_balance(cs) !=
1332 				is_sched_load_balance(trialcs));
1333 
1334 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1335 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1336 
1337 	spin_lock_irq(&callback_lock);
1338 	cs->flags = trialcs->flags;
1339 	spin_unlock_irq(&callback_lock);
1340 
1341 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1342 		rebuild_sched_domains_locked();
1343 
1344 	if (spread_flag_changed)
1345 		update_tasks_flags(cs);
1346 out:
1347 	free_trial_cpuset(trialcs);
1348 	return err;
1349 }
1350 
1351 /*
1352  * Frequency meter - How fast is some event occurring?
1353  *
1354  * These routines manage a digitally filtered, constant time based,
1355  * event frequency meter.  There are four routines:
1356  *   fmeter_init() - initialize a frequency meter.
1357  *   fmeter_markevent() - called each time the event happens.
1358  *   fmeter_getrate() - returns the recent rate of such events.
1359  *   fmeter_update() - internal routine used to update fmeter.
1360  *
1361  * A common data structure is passed to each of these routines,
1362  * which is used to keep track of the state required to manage the
1363  * frequency meter and its digital filter.
1364  *
1365  * The filter works on the number of events marked per unit time.
1366  * The filter is single-pole low-pass recursive (IIR).  The time unit
1367  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1368  * simulate 3 decimal digits of precision (multiplied by 1000).
1369  *
1370  * With an FM_COEF of 933, and a time base of 1 second, the filter
1371  * has a half-life of 10 seconds, meaning that if the events quit
1372  * happening, then the rate returned from the fmeter_getrate()
1373  * will be cut in half each 10 seconds, until it converges to zero.
1374  *
1375  * It is not worth doing a real infinitely recursive filter.  If more
1376  * than FM_MAXTICKS ticks have elapsed since the last filter event,
1377  * just compute FM_MAXTICKS ticks worth, by which point the level
1378  * will be stable.
1379  *
1380  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1381  * arithmetic overflow in the fmeter_update() routine.
1382  *
1383  * Given the simple 32 bit integer arithmetic used, this meter works
1384  * best for reporting rates between one per millisecond (msec) and
1385  * one per 32 (approx) seconds.  At constant rates faster than one
1386  * per msec it maxes out at values just under 1,000,000.  At constant
1387  * rates between one per msec, and one per second it will stabilize
1388  * to a value N*1000, where N is the rate of events per second.
1389  * At constant rates between one per second and one per 32 seconds,
1390  * it will be choppy, moving up on the seconds that have an event,
1391  * and then decaying until the next event.  At rates slower than
1392  * about one in 32 seconds, it decays all the way back to zero between
1393  * each event.
1394  */
1395 
1396 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
1397 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1398 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
1399 #define FM_SCALE 1000		/* faux fixed point scale */
1400 
1401 /* Initialize a frequency meter */
1402 static void fmeter_init(struct fmeter *fmp)
1403 {
1404 	fmp->cnt = 0;
1405 	fmp->val = 0;
1406 	fmp->time = 0;
1407 	spin_lock_init(&fmp->lock);
1408 }
1409 
1410 /* Internal meter update - process cnt events and update value */
1411 static void fmeter_update(struct fmeter *fmp)
1412 {
1413 	time64_t now;
1414 	u32 ticks;
1415 
1416 	now = ktime_get_seconds();
1417 	ticks = now - fmp->time;
1418 
1419 	if (ticks == 0)
1420 		return;
1421 
1422 	ticks = min(FM_MAXTICKS, ticks);
1423 	while (ticks-- > 0)
1424 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1425 	fmp->time = now;
1426 
1427 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1428 	fmp->cnt = 0;
1429 }
1430 
1431 /* Process any previous ticks, then bump cnt by one (times scale). */
1432 static void fmeter_markevent(struct fmeter *fmp)
1433 {
1434 	spin_lock(&fmp->lock);
1435 	fmeter_update(fmp);
1436 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1437 	spin_unlock(&fmp->lock);
1438 }
1439 
1440 /* Process any previous ticks, then return current value. */
1441 static int fmeter_getrate(struct fmeter *fmp)
1442 {
1443 	int val;
1444 
1445 	spin_lock(&fmp->lock);
1446 	fmeter_update(fmp);
1447 	val = fmp->val;
1448 	spin_unlock(&fmp->lock);
1449 	return val;
1450 }
1451 
1452 static struct cpuset *cpuset_attach_old_cs;
1453 
1454 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1455 static int cpuset_can_attach(struct cgroup_taskset *tset)
1456 {
1457 	struct cgroup_subsys_state *css;
1458 	struct cpuset *cs;
1459 	struct task_struct *task;
1460 	int ret;
1461 
1462 	/* used later by cpuset_attach() */
1463 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1464 	cs = css_cs(css);
1465 
1466 	mutex_lock(&cpuset_mutex);
1467 
1468 	/* allow moving tasks into an empty cpuset if on default hierarchy */
1469 	ret = -ENOSPC;
1470 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1471 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1472 		goto out_unlock;
1473 
1474 	cgroup_taskset_for_each(task, css, tset) {
1475 		ret = task_can_attach(task, cs->cpus_allowed);
1476 		if (ret)
1477 			goto out_unlock;
1478 		ret = security_task_setscheduler(task);
1479 		if (ret)
1480 			goto out_unlock;
1481 	}
1482 
1483 	/*
1484 	 * Mark attach is in progress.  This makes validate_change() fail
1485 	 * changes which zero cpus/mems_allowed.
1486 	 */
1487 	cs->attach_in_progress++;
1488 	ret = 0;
1489 out_unlock:
1490 	mutex_unlock(&cpuset_mutex);
1491 	return ret;
1492 }
1493 
1494 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1495 {
1496 	struct cgroup_subsys_state *css;
1497 	struct cpuset *cs;
1498 
1499 	cgroup_taskset_first(tset, &css);
1500 	cs = css_cs(css);
1501 
1502 	mutex_lock(&cpuset_mutex);
1503 	css_cs(css)->attach_in_progress--;
1504 	mutex_unlock(&cpuset_mutex);
1505 }
1506 
1507 /*
1508  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1509  * but we can't allocate it dynamically there.  Define it global and
1510  * allocate from cpuset_init().
1511  */
1512 static cpumask_var_t cpus_attach;
1513 
1514 static void cpuset_attach(struct cgroup_taskset *tset)
1515 {
1516 	/* static buf protected by cpuset_mutex */
1517 	static nodemask_t cpuset_attach_nodemask_to;
1518 	struct task_struct *task;
1519 	struct task_struct *leader;
1520 	struct cgroup_subsys_state *css;
1521 	struct cpuset *cs;
1522 	struct cpuset *oldcs = cpuset_attach_old_cs;
1523 
1524 	cgroup_taskset_first(tset, &css);
1525 	cs = css_cs(css);
1526 
1527 	mutex_lock(&cpuset_mutex);
1528 
1529 	/* prepare for attach */
1530 	if (cs == &top_cpuset)
1531 		cpumask_copy(cpus_attach, cpu_possible_mask);
1532 	else
1533 		guarantee_online_cpus(cs, cpus_attach);
1534 
1535 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1536 
1537 	cgroup_taskset_for_each(task, css, tset) {
1538 		/*
1539 		 * can_attach beforehand should guarantee that this doesn't
1540 		 * fail.  TODO: have a better way to handle failure here
1541 		 */
1542 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1543 
1544 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1545 		cpuset_update_task_spread_flag(cs, task);
1546 	}
1547 
1548 	/*
1549 	 * Change mm for all threadgroup leaders. This is expensive and may
1550 	 * sleep and should be moved outside migration path proper.
1551 	 */
1552 	cpuset_attach_nodemask_to = cs->effective_mems;
1553 	cgroup_taskset_for_each_leader(leader, css, tset) {
1554 		struct mm_struct *mm = get_task_mm(leader);
1555 
1556 		if (mm) {
1557 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1558 
1559 			/*
1560 			 * old_mems_allowed is the same with mems_allowed
1561 			 * here, except if this task is being moved
1562 			 * automatically due to hotplug.  In that case
1563 			 * @mems_allowed has been updated and is empty, so
1564 			 * @old_mems_allowed is the right nodesets that we
1565 			 * migrate mm from.
1566 			 */
1567 			if (is_memory_migrate(cs))
1568 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1569 						  &cpuset_attach_nodemask_to);
1570 			else
1571 				mmput(mm);
1572 		}
1573 	}
1574 
1575 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1576 
1577 	cs->attach_in_progress--;
1578 	if (!cs->attach_in_progress)
1579 		wake_up(&cpuset_attach_wq);
1580 
1581 	mutex_unlock(&cpuset_mutex);
1582 }
1583 
1584 /* The various types of files and directories in a cpuset file system */
1585 
1586 typedef enum {
1587 	FILE_MEMORY_MIGRATE,
1588 	FILE_CPULIST,
1589 	FILE_MEMLIST,
1590 	FILE_EFFECTIVE_CPULIST,
1591 	FILE_EFFECTIVE_MEMLIST,
1592 	FILE_CPU_EXCLUSIVE,
1593 	FILE_MEM_EXCLUSIVE,
1594 	FILE_MEM_HARDWALL,
1595 	FILE_SCHED_LOAD_BALANCE,
1596 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1597 	FILE_MEMORY_PRESSURE_ENABLED,
1598 	FILE_MEMORY_PRESSURE,
1599 	FILE_SPREAD_PAGE,
1600 	FILE_SPREAD_SLAB,
1601 } cpuset_filetype_t;
1602 
1603 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1604 			    u64 val)
1605 {
1606 	struct cpuset *cs = css_cs(css);
1607 	cpuset_filetype_t type = cft->private;
1608 	int retval = 0;
1609 
1610 	mutex_lock(&cpuset_mutex);
1611 	if (!is_cpuset_online(cs)) {
1612 		retval = -ENODEV;
1613 		goto out_unlock;
1614 	}
1615 
1616 	switch (type) {
1617 	case FILE_CPU_EXCLUSIVE:
1618 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1619 		break;
1620 	case FILE_MEM_EXCLUSIVE:
1621 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1622 		break;
1623 	case FILE_MEM_HARDWALL:
1624 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
1625 		break;
1626 	case FILE_SCHED_LOAD_BALANCE:
1627 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1628 		break;
1629 	case FILE_MEMORY_MIGRATE:
1630 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1631 		break;
1632 	case FILE_MEMORY_PRESSURE_ENABLED:
1633 		cpuset_memory_pressure_enabled = !!val;
1634 		break;
1635 	case FILE_SPREAD_PAGE:
1636 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1637 		break;
1638 	case FILE_SPREAD_SLAB:
1639 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1640 		break;
1641 	default:
1642 		retval = -EINVAL;
1643 		break;
1644 	}
1645 out_unlock:
1646 	mutex_unlock(&cpuset_mutex);
1647 	return retval;
1648 }
1649 
1650 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1651 			    s64 val)
1652 {
1653 	struct cpuset *cs = css_cs(css);
1654 	cpuset_filetype_t type = cft->private;
1655 	int retval = -ENODEV;
1656 
1657 	mutex_lock(&cpuset_mutex);
1658 	if (!is_cpuset_online(cs))
1659 		goto out_unlock;
1660 
1661 	switch (type) {
1662 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1663 		retval = update_relax_domain_level(cs, val);
1664 		break;
1665 	default:
1666 		retval = -EINVAL;
1667 		break;
1668 	}
1669 out_unlock:
1670 	mutex_unlock(&cpuset_mutex);
1671 	return retval;
1672 }
1673 
1674 /*
1675  * Common handling for a write to a "cpus" or "mems" file.
1676  */
1677 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1678 				    char *buf, size_t nbytes, loff_t off)
1679 {
1680 	struct cpuset *cs = css_cs(of_css(of));
1681 	struct cpuset *trialcs;
1682 	int retval = -ENODEV;
1683 
1684 	buf = strstrip(buf);
1685 
1686 	/*
1687 	 * CPU or memory hotunplug may leave @cs w/o any execution
1688 	 * resources, in which case the hotplug code asynchronously updates
1689 	 * configuration and transfers all tasks to the nearest ancestor
1690 	 * which can execute.
1691 	 *
1692 	 * As writes to "cpus" or "mems" may restore @cs's execution
1693 	 * resources, wait for the previously scheduled operations before
1694 	 * proceeding, so that we don't end up keep removing tasks added
1695 	 * after execution capability is restored.
1696 	 *
1697 	 * cpuset_hotplug_work calls back into cgroup core via
1698 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1699 	 * operation like this one can lead to a deadlock through kernfs
1700 	 * active_ref protection.  Let's break the protection.  Losing the
1701 	 * protection is okay as we check whether @cs is online after
1702 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
1703 	 * hierarchies.
1704 	 */
1705 	css_get(&cs->css);
1706 	kernfs_break_active_protection(of->kn);
1707 	flush_work(&cpuset_hotplug_work);
1708 
1709 	mutex_lock(&cpuset_mutex);
1710 	if (!is_cpuset_online(cs))
1711 		goto out_unlock;
1712 
1713 	trialcs = alloc_trial_cpuset(cs);
1714 	if (!trialcs) {
1715 		retval = -ENOMEM;
1716 		goto out_unlock;
1717 	}
1718 
1719 	switch (of_cft(of)->private) {
1720 	case FILE_CPULIST:
1721 		retval = update_cpumask(cs, trialcs, buf);
1722 		break;
1723 	case FILE_MEMLIST:
1724 		retval = update_nodemask(cs, trialcs, buf);
1725 		break;
1726 	default:
1727 		retval = -EINVAL;
1728 		break;
1729 	}
1730 
1731 	free_trial_cpuset(trialcs);
1732 out_unlock:
1733 	mutex_unlock(&cpuset_mutex);
1734 	kernfs_unbreak_active_protection(of->kn);
1735 	css_put(&cs->css);
1736 	flush_workqueue(cpuset_migrate_mm_wq);
1737 	return retval ?: nbytes;
1738 }
1739 
1740 /*
1741  * These ascii lists should be read in a single call, by using a user
1742  * buffer large enough to hold the entire map.  If read in smaller
1743  * chunks, there is no guarantee of atomicity.  Since the display format
1744  * used, list of ranges of sequential numbers, is variable length,
1745  * and since these maps can change value dynamically, one could read
1746  * gibberish by doing partial reads while a list was changing.
1747  */
1748 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1749 {
1750 	struct cpuset *cs = css_cs(seq_css(sf));
1751 	cpuset_filetype_t type = seq_cft(sf)->private;
1752 	int ret = 0;
1753 
1754 	spin_lock_irq(&callback_lock);
1755 
1756 	switch (type) {
1757 	case FILE_CPULIST:
1758 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1759 		break;
1760 	case FILE_MEMLIST:
1761 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1762 		break;
1763 	case FILE_EFFECTIVE_CPULIST:
1764 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1765 		break;
1766 	case FILE_EFFECTIVE_MEMLIST:
1767 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1768 		break;
1769 	default:
1770 		ret = -EINVAL;
1771 	}
1772 
1773 	spin_unlock_irq(&callback_lock);
1774 	return ret;
1775 }
1776 
1777 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1778 {
1779 	struct cpuset *cs = css_cs(css);
1780 	cpuset_filetype_t type = cft->private;
1781 	switch (type) {
1782 	case FILE_CPU_EXCLUSIVE:
1783 		return is_cpu_exclusive(cs);
1784 	case FILE_MEM_EXCLUSIVE:
1785 		return is_mem_exclusive(cs);
1786 	case FILE_MEM_HARDWALL:
1787 		return is_mem_hardwall(cs);
1788 	case FILE_SCHED_LOAD_BALANCE:
1789 		return is_sched_load_balance(cs);
1790 	case FILE_MEMORY_MIGRATE:
1791 		return is_memory_migrate(cs);
1792 	case FILE_MEMORY_PRESSURE_ENABLED:
1793 		return cpuset_memory_pressure_enabled;
1794 	case FILE_MEMORY_PRESSURE:
1795 		return fmeter_getrate(&cs->fmeter);
1796 	case FILE_SPREAD_PAGE:
1797 		return is_spread_page(cs);
1798 	case FILE_SPREAD_SLAB:
1799 		return is_spread_slab(cs);
1800 	default:
1801 		BUG();
1802 	}
1803 
1804 	/* Unreachable but makes gcc happy */
1805 	return 0;
1806 }
1807 
1808 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1809 {
1810 	struct cpuset *cs = css_cs(css);
1811 	cpuset_filetype_t type = cft->private;
1812 	switch (type) {
1813 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1814 		return cs->relax_domain_level;
1815 	default:
1816 		BUG();
1817 	}
1818 
1819 	/* Unrechable but makes gcc happy */
1820 	return 0;
1821 }
1822 
1823 
1824 /*
1825  * for the common functions, 'private' gives the type of file
1826  */
1827 
1828 static struct cftype files[] = {
1829 	{
1830 		.name = "cpus",
1831 		.seq_show = cpuset_common_seq_show,
1832 		.write = cpuset_write_resmask,
1833 		.max_write_len = (100U + 6 * NR_CPUS),
1834 		.private = FILE_CPULIST,
1835 	},
1836 
1837 	{
1838 		.name = "mems",
1839 		.seq_show = cpuset_common_seq_show,
1840 		.write = cpuset_write_resmask,
1841 		.max_write_len = (100U + 6 * MAX_NUMNODES),
1842 		.private = FILE_MEMLIST,
1843 	},
1844 
1845 	{
1846 		.name = "effective_cpus",
1847 		.seq_show = cpuset_common_seq_show,
1848 		.private = FILE_EFFECTIVE_CPULIST,
1849 	},
1850 
1851 	{
1852 		.name = "effective_mems",
1853 		.seq_show = cpuset_common_seq_show,
1854 		.private = FILE_EFFECTIVE_MEMLIST,
1855 	},
1856 
1857 	{
1858 		.name = "cpu_exclusive",
1859 		.read_u64 = cpuset_read_u64,
1860 		.write_u64 = cpuset_write_u64,
1861 		.private = FILE_CPU_EXCLUSIVE,
1862 	},
1863 
1864 	{
1865 		.name = "mem_exclusive",
1866 		.read_u64 = cpuset_read_u64,
1867 		.write_u64 = cpuset_write_u64,
1868 		.private = FILE_MEM_EXCLUSIVE,
1869 	},
1870 
1871 	{
1872 		.name = "mem_hardwall",
1873 		.read_u64 = cpuset_read_u64,
1874 		.write_u64 = cpuset_write_u64,
1875 		.private = FILE_MEM_HARDWALL,
1876 	},
1877 
1878 	{
1879 		.name = "sched_load_balance",
1880 		.read_u64 = cpuset_read_u64,
1881 		.write_u64 = cpuset_write_u64,
1882 		.private = FILE_SCHED_LOAD_BALANCE,
1883 	},
1884 
1885 	{
1886 		.name = "sched_relax_domain_level",
1887 		.read_s64 = cpuset_read_s64,
1888 		.write_s64 = cpuset_write_s64,
1889 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1890 	},
1891 
1892 	{
1893 		.name = "memory_migrate",
1894 		.read_u64 = cpuset_read_u64,
1895 		.write_u64 = cpuset_write_u64,
1896 		.private = FILE_MEMORY_MIGRATE,
1897 	},
1898 
1899 	{
1900 		.name = "memory_pressure",
1901 		.read_u64 = cpuset_read_u64,
1902 		.private = FILE_MEMORY_PRESSURE,
1903 	},
1904 
1905 	{
1906 		.name = "memory_spread_page",
1907 		.read_u64 = cpuset_read_u64,
1908 		.write_u64 = cpuset_write_u64,
1909 		.private = FILE_SPREAD_PAGE,
1910 	},
1911 
1912 	{
1913 		.name = "memory_spread_slab",
1914 		.read_u64 = cpuset_read_u64,
1915 		.write_u64 = cpuset_write_u64,
1916 		.private = FILE_SPREAD_SLAB,
1917 	},
1918 
1919 	{
1920 		.name = "memory_pressure_enabled",
1921 		.flags = CFTYPE_ONLY_ON_ROOT,
1922 		.read_u64 = cpuset_read_u64,
1923 		.write_u64 = cpuset_write_u64,
1924 		.private = FILE_MEMORY_PRESSURE_ENABLED,
1925 	},
1926 
1927 	{ }	/* terminate */
1928 };
1929 
1930 /*
1931  *	cpuset_css_alloc - allocate a cpuset css
1932  *	cgrp:	control group that the new cpuset will be part of
1933  */
1934 
1935 static struct cgroup_subsys_state *
1936 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1937 {
1938 	struct cpuset *cs;
1939 
1940 	if (!parent_css)
1941 		return &top_cpuset.css;
1942 
1943 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1944 	if (!cs)
1945 		return ERR_PTR(-ENOMEM);
1946 	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1947 		goto free_cs;
1948 	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1949 		goto free_cpus;
1950 
1951 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1952 	cpumask_clear(cs->cpus_allowed);
1953 	nodes_clear(cs->mems_allowed);
1954 	cpumask_clear(cs->effective_cpus);
1955 	nodes_clear(cs->effective_mems);
1956 	fmeter_init(&cs->fmeter);
1957 	cs->relax_domain_level = -1;
1958 
1959 	return &cs->css;
1960 
1961 free_cpus:
1962 	free_cpumask_var(cs->cpus_allowed);
1963 free_cs:
1964 	kfree(cs);
1965 	return ERR_PTR(-ENOMEM);
1966 }
1967 
1968 static int cpuset_css_online(struct cgroup_subsys_state *css)
1969 {
1970 	struct cpuset *cs = css_cs(css);
1971 	struct cpuset *parent = parent_cs(cs);
1972 	struct cpuset *tmp_cs;
1973 	struct cgroup_subsys_state *pos_css;
1974 
1975 	if (!parent)
1976 		return 0;
1977 
1978 	mutex_lock(&cpuset_mutex);
1979 
1980 	set_bit(CS_ONLINE, &cs->flags);
1981 	if (is_spread_page(parent))
1982 		set_bit(CS_SPREAD_PAGE, &cs->flags);
1983 	if (is_spread_slab(parent))
1984 		set_bit(CS_SPREAD_SLAB, &cs->flags);
1985 
1986 	cpuset_inc();
1987 
1988 	spin_lock_irq(&callback_lock);
1989 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1990 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1991 		cs->effective_mems = parent->effective_mems;
1992 	}
1993 	spin_unlock_irq(&callback_lock);
1994 
1995 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1996 		goto out_unlock;
1997 
1998 	/*
1999 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2000 	 * set.  This flag handling is implemented in cgroup core for
2001 	 * histrical reasons - the flag may be specified during mount.
2002 	 *
2003 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2004 	 * refuse to clone the configuration - thereby refusing the task to
2005 	 * be entered, and as a result refusing the sys_unshare() or
2006 	 * clone() which initiated it.  If this becomes a problem for some
2007 	 * users who wish to allow that scenario, then this could be
2008 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2009 	 * (and likewise for mems) to the new cgroup.
2010 	 */
2011 	rcu_read_lock();
2012 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2013 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2014 			rcu_read_unlock();
2015 			goto out_unlock;
2016 		}
2017 	}
2018 	rcu_read_unlock();
2019 
2020 	spin_lock_irq(&callback_lock);
2021 	cs->mems_allowed = parent->mems_allowed;
2022 	cs->effective_mems = parent->mems_allowed;
2023 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2024 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2025 	spin_unlock_irq(&callback_lock);
2026 out_unlock:
2027 	mutex_unlock(&cpuset_mutex);
2028 	return 0;
2029 }
2030 
2031 /*
2032  * If the cpuset being removed has its flag 'sched_load_balance'
2033  * enabled, then simulate turning sched_load_balance off, which
2034  * will call rebuild_sched_domains_locked().
2035  */
2036 
2037 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2038 {
2039 	struct cpuset *cs = css_cs(css);
2040 
2041 	mutex_lock(&cpuset_mutex);
2042 
2043 	if (is_sched_load_balance(cs))
2044 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2045 
2046 	cpuset_dec();
2047 	clear_bit(CS_ONLINE, &cs->flags);
2048 
2049 	mutex_unlock(&cpuset_mutex);
2050 }
2051 
2052 static void cpuset_css_free(struct cgroup_subsys_state *css)
2053 {
2054 	struct cpuset *cs = css_cs(css);
2055 
2056 	free_cpumask_var(cs->effective_cpus);
2057 	free_cpumask_var(cs->cpus_allowed);
2058 	kfree(cs);
2059 }
2060 
2061 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2062 {
2063 	mutex_lock(&cpuset_mutex);
2064 	spin_lock_irq(&callback_lock);
2065 
2066 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2067 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2068 		top_cpuset.mems_allowed = node_possible_map;
2069 	} else {
2070 		cpumask_copy(top_cpuset.cpus_allowed,
2071 			     top_cpuset.effective_cpus);
2072 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2073 	}
2074 
2075 	spin_unlock_irq(&callback_lock);
2076 	mutex_unlock(&cpuset_mutex);
2077 }
2078 
2079 /*
2080  * Make sure the new task conform to the current state of its parent,
2081  * which could have been changed by cpuset just after it inherits the
2082  * state from the parent and before it sits on the cgroup's task list.
2083  */
2084 static void cpuset_fork(struct task_struct *task)
2085 {
2086 	if (task_css_is_root(task, cpuset_cgrp_id))
2087 		return;
2088 
2089 	set_cpus_allowed_ptr(task, &current->cpus_allowed);
2090 	task->mems_allowed = current->mems_allowed;
2091 }
2092 
2093 struct cgroup_subsys cpuset_cgrp_subsys = {
2094 	.css_alloc	= cpuset_css_alloc,
2095 	.css_online	= cpuset_css_online,
2096 	.css_offline	= cpuset_css_offline,
2097 	.css_free	= cpuset_css_free,
2098 	.can_attach	= cpuset_can_attach,
2099 	.cancel_attach	= cpuset_cancel_attach,
2100 	.attach		= cpuset_attach,
2101 	.post_attach	= cpuset_post_attach,
2102 	.bind		= cpuset_bind,
2103 	.fork		= cpuset_fork,
2104 	.legacy_cftypes	= files,
2105 	.early_init	= true,
2106 };
2107 
2108 /**
2109  * cpuset_init - initialize cpusets at system boot
2110  *
2111  * Description: Initialize top_cpuset and the cpuset internal file system,
2112  **/
2113 
2114 int __init cpuset_init(void)
2115 {
2116 	int err = 0;
2117 
2118 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2119 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2120 
2121 	cpumask_setall(top_cpuset.cpus_allowed);
2122 	nodes_setall(top_cpuset.mems_allowed);
2123 	cpumask_setall(top_cpuset.effective_cpus);
2124 	nodes_setall(top_cpuset.effective_mems);
2125 
2126 	fmeter_init(&top_cpuset.fmeter);
2127 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2128 	top_cpuset.relax_domain_level = -1;
2129 
2130 	err = register_filesystem(&cpuset_fs_type);
2131 	if (err < 0)
2132 		return err;
2133 
2134 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2135 
2136 	return 0;
2137 }
2138 
2139 /*
2140  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2141  * or memory nodes, we need to walk over the cpuset hierarchy,
2142  * removing that CPU or node from all cpusets.  If this removes the
2143  * last CPU or node from a cpuset, then move the tasks in the empty
2144  * cpuset to its next-highest non-empty parent.
2145  */
2146 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2147 {
2148 	struct cpuset *parent;
2149 
2150 	/*
2151 	 * Find its next-highest non-empty parent, (top cpuset
2152 	 * has online cpus, so can't be empty).
2153 	 */
2154 	parent = parent_cs(cs);
2155 	while (cpumask_empty(parent->cpus_allowed) ||
2156 			nodes_empty(parent->mems_allowed))
2157 		parent = parent_cs(parent);
2158 
2159 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2160 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2161 		pr_cont_cgroup_name(cs->css.cgroup);
2162 		pr_cont("\n");
2163 	}
2164 }
2165 
2166 static void
2167 hotplug_update_tasks_legacy(struct cpuset *cs,
2168 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2169 			    bool cpus_updated, bool mems_updated)
2170 {
2171 	bool is_empty;
2172 
2173 	spin_lock_irq(&callback_lock);
2174 	cpumask_copy(cs->cpus_allowed, new_cpus);
2175 	cpumask_copy(cs->effective_cpus, new_cpus);
2176 	cs->mems_allowed = *new_mems;
2177 	cs->effective_mems = *new_mems;
2178 	spin_unlock_irq(&callback_lock);
2179 
2180 	/*
2181 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2182 	 * as the tasks will be migratecd to an ancestor.
2183 	 */
2184 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2185 		update_tasks_cpumask(cs);
2186 	if (mems_updated && !nodes_empty(cs->mems_allowed))
2187 		update_tasks_nodemask(cs);
2188 
2189 	is_empty = cpumask_empty(cs->cpus_allowed) ||
2190 		   nodes_empty(cs->mems_allowed);
2191 
2192 	mutex_unlock(&cpuset_mutex);
2193 
2194 	/*
2195 	 * Move tasks to the nearest ancestor with execution resources,
2196 	 * This is full cgroup operation which will also call back into
2197 	 * cpuset. Should be done outside any lock.
2198 	 */
2199 	if (is_empty)
2200 		remove_tasks_in_empty_cpuset(cs);
2201 
2202 	mutex_lock(&cpuset_mutex);
2203 }
2204 
2205 static void
2206 hotplug_update_tasks(struct cpuset *cs,
2207 		     struct cpumask *new_cpus, nodemask_t *new_mems,
2208 		     bool cpus_updated, bool mems_updated)
2209 {
2210 	if (cpumask_empty(new_cpus))
2211 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2212 	if (nodes_empty(*new_mems))
2213 		*new_mems = parent_cs(cs)->effective_mems;
2214 
2215 	spin_lock_irq(&callback_lock);
2216 	cpumask_copy(cs->effective_cpus, new_cpus);
2217 	cs->effective_mems = *new_mems;
2218 	spin_unlock_irq(&callback_lock);
2219 
2220 	if (cpus_updated)
2221 		update_tasks_cpumask(cs);
2222 	if (mems_updated)
2223 		update_tasks_nodemask(cs);
2224 }
2225 
2226 /**
2227  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2228  * @cs: cpuset in interest
2229  *
2230  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2231  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2232  * all its tasks are moved to the nearest ancestor with both resources.
2233  */
2234 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2235 {
2236 	static cpumask_t new_cpus;
2237 	static nodemask_t new_mems;
2238 	bool cpus_updated;
2239 	bool mems_updated;
2240 retry:
2241 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2242 
2243 	mutex_lock(&cpuset_mutex);
2244 
2245 	/*
2246 	 * We have raced with task attaching. We wait until attaching
2247 	 * is finished, so we won't attach a task to an empty cpuset.
2248 	 */
2249 	if (cs->attach_in_progress) {
2250 		mutex_unlock(&cpuset_mutex);
2251 		goto retry;
2252 	}
2253 
2254 	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2255 	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2256 
2257 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2258 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2259 
2260 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2261 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
2262 				     cpus_updated, mems_updated);
2263 	else
2264 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2265 					    cpus_updated, mems_updated);
2266 
2267 	mutex_unlock(&cpuset_mutex);
2268 }
2269 
2270 /**
2271  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2272  *
2273  * This function is called after either CPU or memory configuration has
2274  * changed and updates cpuset accordingly.  The top_cpuset is always
2275  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2276  * order to make cpusets transparent (of no affect) on systems that are
2277  * actively using CPU hotplug but making no active use of cpusets.
2278  *
2279  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2280  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2281  * all descendants.
2282  *
2283  * Note that CPU offlining during suspend is ignored.  We don't modify
2284  * cpusets across suspend/resume cycles at all.
2285  */
2286 static void cpuset_hotplug_workfn(struct work_struct *work)
2287 {
2288 	static cpumask_t new_cpus;
2289 	static nodemask_t new_mems;
2290 	bool cpus_updated, mems_updated;
2291 	bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2292 
2293 	mutex_lock(&cpuset_mutex);
2294 
2295 	/* fetch the available cpus/mems and find out which changed how */
2296 	cpumask_copy(&new_cpus, cpu_active_mask);
2297 	new_mems = node_states[N_MEMORY];
2298 
2299 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2300 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2301 
2302 	/* synchronize cpus_allowed to cpu_active_mask */
2303 	if (cpus_updated) {
2304 		spin_lock_irq(&callback_lock);
2305 		if (!on_dfl)
2306 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2307 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2308 		spin_unlock_irq(&callback_lock);
2309 		/* we don't mess with cpumasks of tasks in top_cpuset */
2310 	}
2311 
2312 	/* synchronize mems_allowed to N_MEMORY */
2313 	if (mems_updated) {
2314 		spin_lock_irq(&callback_lock);
2315 		if (!on_dfl)
2316 			top_cpuset.mems_allowed = new_mems;
2317 		top_cpuset.effective_mems = new_mems;
2318 		spin_unlock_irq(&callback_lock);
2319 		update_tasks_nodemask(&top_cpuset);
2320 	}
2321 
2322 	mutex_unlock(&cpuset_mutex);
2323 
2324 	/* if cpus or mems changed, we need to propagate to descendants */
2325 	if (cpus_updated || mems_updated) {
2326 		struct cpuset *cs;
2327 		struct cgroup_subsys_state *pos_css;
2328 
2329 		rcu_read_lock();
2330 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2331 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2332 				continue;
2333 			rcu_read_unlock();
2334 
2335 			cpuset_hotplug_update_tasks(cs);
2336 
2337 			rcu_read_lock();
2338 			css_put(&cs->css);
2339 		}
2340 		rcu_read_unlock();
2341 	}
2342 
2343 	/* rebuild sched domains if cpus_allowed has changed */
2344 	if (cpus_updated)
2345 		rebuild_sched_domains();
2346 }
2347 
2348 void cpuset_update_active_cpus(void)
2349 {
2350 	/*
2351 	 * We're inside cpu hotplug critical region which usually nests
2352 	 * inside cgroup synchronization.  Bounce actual hotplug processing
2353 	 * to a work item to avoid reverse locking order.
2354 	 */
2355 	schedule_work(&cpuset_hotplug_work);
2356 }
2357 
2358 /*
2359  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2360  * Call this routine anytime after node_states[N_MEMORY] changes.
2361  * See cpuset_update_active_cpus() for CPU hotplug handling.
2362  */
2363 static int cpuset_track_online_nodes(struct notifier_block *self,
2364 				unsigned long action, void *arg)
2365 {
2366 	schedule_work(&cpuset_hotplug_work);
2367 	return NOTIFY_OK;
2368 }
2369 
2370 static struct notifier_block cpuset_track_online_nodes_nb = {
2371 	.notifier_call = cpuset_track_online_nodes,
2372 	.priority = 10,		/* ??! */
2373 };
2374 
2375 /**
2376  * cpuset_init_smp - initialize cpus_allowed
2377  *
2378  * Description: Finish top cpuset after cpu, node maps are initialized
2379  */
2380 void __init cpuset_init_smp(void)
2381 {
2382 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2383 	top_cpuset.mems_allowed = node_states[N_MEMORY];
2384 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2385 
2386 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2387 	top_cpuset.effective_mems = node_states[N_MEMORY];
2388 
2389 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2390 
2391 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2392 	BUG_ON(!cpuset_migrate_mm_wq);
2393 }
2394 
2395 /**
2396  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2397  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2398  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2399  *
2400  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2401  * attached to the specified @tsk.  Guaranteed to return some non-empty
2402  * subset of cpu_online_mask, even if this means going outside the
2403  * tasks cpuset.
2404  **/
2405 
2406 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2407 {
2408 	unsigned long flags;
2409 
2410 	spin_lock_irqsave(&callback_lock, flags);
2411 	rcu_read_lock();
2412 	guarantee_online_cpus(task_cs(tsk), pmask);
2413 	rcu_read_unlock();
2414 	spin_unlock_irqrestore(&callback_lock, flags);
2415 }
2416 
2417 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2418 {
2419 	rcu_read_lock();
2420 	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2421 	rcu_read_unlock();
2422 
2423 	/*
2424 	 * We own tsk->cpus_allowed, nobody can change it under us.
2425 	 *
2426 	 * But we used cs && cs->cpus_allowed lockless and thus can
2427 	 * race with cgroup_attach_task() or update_cpumask() and get
2428 	 * the wrong tsk->cpus_allowed. However, both cases imply the
2429 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2430 	 * which takes task_rq_lock().
2431 	 *
2432 	 * If we are called after it dropped the lock we must see all
2433 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2434 	 * set any mask even if it is not right from task_cs() pov,
2435 	 * the pending set_cpus_allowed_ptr() will fix things.
2436 	 *
2437 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2438 	 * if required.
2439 	 */
2440 }
2441 
2442 void __init cpuset_init_current_mems_allowed(void)
2443 {
2444 	nodes_setall(current->mems_allowed);
2445 }
2446 
2447 /**
2448  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2449  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2450  *
2451  * Description: Returns the nodemask_t mems_allowed of the cpuset
2452  * attached to the specified @tsk.  Guaranteed to return some non-empty
2453  * subset of node_states[N_MEMORY], even if this means going outside the
2454  * tasks cpuset.
2455  **/
2456 
2457 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2458 {
2459 	nodemask_t mask;
2460 	unsigned long flags;
2461 
2462 	spin_lock_irqsave(&callback_lock, flags);
2463 	rcu_read_lock();
2464 	guarantee_online_mems(task_cs(tsk), &mask);
2465 	rcu_read_unlock();
2466 	spin_unlock_irqrestore(&callback_lock, flags);
2467 
2468 	return mask;
2469 }
2470 
2471 /**
2472  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2473  * @nodemask: the nodemask to be checked
2474  *
2475  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2476  */
2477 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2478 {
2479 	return nodes_intersects(*nodemask, current->mems_allowed);
2480 }
2481 
2482 /*
2483  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2484  * mem_hardwall ancestor to the specified cpuset.  Call holding
2485  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2486  * (an unusual configuration), then returns the root cpuset.
2487  */
2488 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2489 {
2490 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2491 		cs = parent_cs(cs);
2492 	return cs;
2493 }
2494 
2495 /**
2496  * cpuset_node_allowed - Can we allocate on a memory node?
2497  * @node: is this an allowed node?
2498  * @gfp_mask: memory allocation flags
2499  *
2500  * If we're in interrupt, yes, we can always allocate.  If @node is set in
2501  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
2502  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2503  * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2504  * Otherwise, no.
2505  *
2506  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2507  * and do not allow allocations outside the current tasks cpuset
2508  * unless the task has been OOM killed as is marked TIF_MEMDIE.
2509  * GFP_KERNEL allocations are not so marked, so can escape to the
2510  * nearest enclosing hardwalled ancestor cpuset.
2511  *
2512  * Scanning up parent cpusets requires callback_lock.  The
2513  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2514  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2515  * current tasks mems_allowed came up empty on the first pass over
2516  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2517  * cpuset are short of memory, might require taking the callback_lock.
2518  *
2519  * The first call here from mm/page_alloc:get_page_from_freelist()
2520  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2521  * so no allocation on a node outside the cpuset is allowed (unless
2522  * in interrupt, of course).
2523  *
2524  * The second pass through get_page_from_freelist() doesn't even call
2525  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2526  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2527  * in alloc_flags.  That logic and the checks below have the combined
2528  * affect that:
2529  *	in_interrupt - any node ok (current task context irrelevant)
2530  *	GFP_ATOMIC   - any node ok
2531  *	TIF_MEMDIE   - any node ok
2532  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2533  *	GFP_USER     - only nodes in current tasks mems allowed ok.
2534  */
2535 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
2536 {
2537 	struct cpuset *cs;		/* current cpuset ancestors */
2538 	int allowed;			/* is allocation in zone z allowed? */
2539 	unsigned long flags;
2540 
2541 	if (in_interrupt())
2542 		return true;
2543 	if (node_isset(node, current->mems_allowed))
2544 		return true;
2545 	/*
2546 	 * Allow tasks that have access to memory reserves because they have
2547 	 * been OOM killed to get memory anywhere.
2548 	 */
2549 	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2550 		return true;
2551 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2552 		return false;
2553 
2554 	if (current->flags & PF_EXITING) /* Let dying task have memory */
2555 		return true;
2556 
2557 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2558 	spin_lock_irqsave(&callback_lock, flags);
2559 
2560 	rcu_read_lock();
2561 	cs = nearest_hardwall_ancestor(task_cs(current));
2562 	allowed = node_isset(node, cs->mems_allowed);
2563 	rcu_read_unlock();
2564 
2565 	spin_unlock_irqrestore(&callback_lock, flags);
2566 	return allowed;
2567 }
2568 
2569 /**
2570  * cpuset_mem_spread_node() - On which node to begin search for a file page
2571  * cpuset_slab_spread_node() - On which node to begin search for a slab page
2572  *
2573  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2574  * tasks in a cpuset with is_spread_page or is_spread_slab set),
2575  * and if the memory allocation used cpuset_mem_spread_node()
2576  * to determine on which node to start looking, as it will for
2577  * certain page cache or slab cache pages such as used for file
2578  * system buffers and inode caches, then instead of starting on the
2579  * local node to look for a free page, rather spread the starting
2580  * node around the tasks mems_allowed nodes.
2581  *
2582  * We don't have to worry about the returned node being offline
2583  * because "it can't happen", and even if it did, it would be ok.
2584  *
2585  * The routines calling guarantee_online_mems() are careful to
2586  * only set nodes in task->mems_allowed that are online.  So it
2587  * should not be possible for the following code to return an
2588  * offline node.  But if it did, that would be ok, as this routine
2589  * is not returning the node where the allocation must be, only
2590  * the node where the search should start.  The zonelist passed to
2591  * __alloc_pages() will include all nodes.  If the slab allocator
2592  * is passed an offline node, it will fall back to the local node.
2593  * See kmem_cache_alloc_node().
2594  */
2595 
2596 static int cpuset_spread_node(int *rotor)
2597 {
2598 	return *rotor = next_node_in(*rotor, current->mems_allowed);
2599 }
2600 
2601 int cpuset_mem_spread_node(void)
2602 {
2603 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2604 		current->cpuset_mem_spread_rotor =
2605 			node_random(&current->mems_allowed);
2606 
2607 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2608 }
2609 
2610 int cpuset_slab_spread_node(void)
2611 {
2612 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2613 		current->cpuset_slab_spread_rotor =
2614 			node_random(&current->mems_allowed);
2615 
2616 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2617 }
2618 
2619 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2620 
2621 /**
2622  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2623  * @tsk1: pointer to task_struct of some task.
2624  * @tsk2: pointer to task_struct of some other task.
2625  *
2626  * Description: Return true if @tsk1's mems_allowed intersects the
2627  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2628  * one of the task's memory usage might impact the memory available
2629  * to the other.
2630  **/
2631 
2632 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2633 				   const struct task_struct *tsk2)
2634 {
2635 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2636 }
2637 
2638 /**
2639  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2640  *
2641  * Description: Prints current's name, cpuset name, and cached copy of its
2642  * mems_allowed to the kernel log.
2643  */
2644 void cpuset_print_current_mems_allowed(void)
2645 {
2646 	struct cgroup *cgrp;
2647 
2648 	rcu_read_lock();
2649 
2650 	cgrp = task_cs(current)->css.cgroup;
2651 	pr_info("%s cpuset=", current->comm);
2652 	pr_cont_cgroup_name(cgrp);
2653 	pr_cont(" mems_allowed=%*pbl\n",
2654 		nodemask_pr_args(&current->mems_allowed));
2655 
2656 	rcu_read_unlock();
2657 }
2658 
2659 /*
2660  * Collection of memory_pressure is suppressed unless
2661  * this flag is enabled by writing "1" to the special
2662  * cpuset file 'memory_pressure_enabled' in the root cpuset.
2663  */
2664 
2665 int cpuset_memory_pressure_enabled __read_mostly;
2666 
2667 /**
2668  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2669  *
2670  * Keep a running average of the rate of synchronous (direct)
2671  * page reclaim efforts initiated by tasks in each cpuset.
2672  *
2673  * This represents the rate at which some task in the cpuset
2674  * ran low on memory on all nodes it was allowed to use, and
2675  * had to enter the kernels page reclaim code in an effort to
2676  * create more free memory by tossing clean pages or swapping
2677  * or writing dirty pages.
2678  *
2679  * Display to user space in the per-cpuset read-only file
2680  * "memory_pressure".  Value displayed is an integer
2681  * representing the recent rate of entry into the synchronous
2682  * (direct) page reclaim by any task attached to the cpuset.
2683  **/
2684 
2685 void __cpuset_memory_pressure_bump(void)
2686 {
2687 	rcu_read_lock();
2688 	fmeter_markevent(&task_cs(current)->fmeter);
2689 	rcu_read_unlock();
2690 }
2691 
2692 #ifdef CONFIG_PROC_PID_CPUSET
2693 /*
2694  * proc_cpuset_show()
2695  *  - Print tasks cpuset path into seq_file.
2696  *  - Used for /proc/<pid>/cpuset.
2697  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2698  *    doesn't really matter if tsk->cpuset changes after we read it,
2699  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2700  *    anyway.
2701  */
2702 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2703 		     struct pid *pid, struct task_struct *tsk)
2704 {
2705 	char *buf;
2706 	struct cgroup_subsys_state *css;
2707 	int retval;
2708 
2709 	retval = -ENOMEM;
2710 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
2711 	if (!buf)
2712 		goto out;
2713 
2714 	css = task_get_css(tsk, cpuset_cgrp_id);
2715 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2716 				current->nsproxy->cgroup_ns);
2717 	css_put(css);
2718 	if (retval >= PATH_MAX)
2719 		retval = -ENAMETOOLONG;
2720 	if (retval < 0)
2721 		goto out_free;
2722 	seq_puts(m, buf);
2723 	seq_putc(m, '\n');
2724 	retval = 0;
2725 out_free:
2726 	kfree(buf);
2727 out:
2728 	return retval;
2729 }
2730 #endif /* CONFIG_PROC_PID_CPUSET */
2731 
2732 /* Display task mems_allowed in /proc/<pid>/status file. */
2733 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2734 {
2735 	seq_printf(m, "Mems_allowed:\t%*pb\n",
2736 		   nodemask_pr_args(&task->mems_allowed));
2737 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2738 		   nodemask_pr_args(&task->mems_allowed));
2739 }
2740