xref: /linux/kernel/cgroup/cpuset.c (revision 223981db9bafb80f558162c148f261e2ff043dbe)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/kernel.h>
31 #include <linux/mempolicy.h>
32 #include <linux/mm.h>
33 #include <linux/memory.h>
34 #include <linux/export.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/sched/deadline.h>
38 #include <linux/sched/mm.h>
39 #include <linux/sched/task.h>
40 #include <linux/security.h>
41 #include <linux/spinlock.h>
42 #include <linux/oom.h>
43 #include <linux/sched/isolation.h>
44 #include <linux/cgroup.h>
45 #include <linux/wait.h>
46 
47 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
48 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
49 
50 /*
51  * There could be abnormal cpuset configurations for cpu or memory
52  * node binding, add this key to provide a quick low-cost judgment
53  * of the situation.
54  */
55 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
56 
57 /* See "Frequency meter" comments, below. */
58 
59 struct fmeter {
60 	int cnt;		/* unprocessed events count */
61 	int val;		/* most recent output value */
62 	time64_t time;		/* clock (secs) when val computed */
63 	spinlock_t lock;	/* guards read or write of above */
64 };
65 
66 /*
67  * Invalid partition error code
68  */
69 enum prs_errcode {
70 	PERR_NONE = 0,
71 	PERR_INVCPUS,
72 	PERR_INVPARENT,
73 	PERR_NOTPART,
74 	PERR_NOTEXCL,
75 	PERR_NOCPUS,
76 	PERR_HOTPLUG,
77 	PERR_CPUSEMPTY,
78 	PERR_HKEEPING,
79 };
80 
81 static const char * const perr_strings[] = {
82 	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus.exclusive",
83 	[PERR_INVPARENT] = "Parent is an invalid partition root",
84 	[PERR_NOTPART]   = "Parent is not a partition root",
85 	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
86 	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
87 	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
88 	[PERR_CPUSEMPTY] = "cpuset.cpus is empty",
89 	[PERR_HKEEPING]  = "partition config conflicts with housekeeping setup",
90 };
91 
92 struct cpuset {
93 	struct cgroup_subsys_state css;
94 
95 	unsigned long flags;		/* "unsigned long" so bitops work */
96 
97 	/*
98 	 * On default hierarchy:
99 	 *
100 	 * The user-configured masks can only be changed by writing to
101 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
102 	 * parent masks.
103 	 *
104 	 * The effective masks is the real masks that apply to the tasks
105 	 * in the cpuset. They may be changed if the configured masks are
106 	 * changed or hotplug happens.
107 	 *
108 	 * effective_mask == configured_mask & parent's effective_mask,
109 	 * and if it ends up empty, it will inherit the parent's mask.
110 	 *
111 	 *
112 	 * On legacy hierarchy:
113 	 *
114 	 * The user-configured masks are always the same with effective masks.
115 	 */
116 
117 	/* user-configured CPUs and Memory Nodes allow to tasks */
118 	cpumask_var_t cpus_allowed;
119 	nodemask_t mems_allowed;
120 
121 	/* effective CPUs and Memory Nodes allow to tasks */
122 	cpumask_var_t effective_cpus;
123 	nodemask_t effective_mems;
124 
125 	/*
126 	 * Exclusive CPUs dedicated to current cgroup (default hierarchy only)
127 	 *
128 	 * This exclusive CPUs must be a subset of cpus_allowed. A parent
129 	 * cgroup can only grant exclusive CPUs to one of its children.
130 	 *
131 	 * When the cgroup becomes a valid partition root, effective_xcpus
132 	 * defaults to cpus_allowed if not set. The effective_cpus of a valid
133 	 * partition root comes solely from its effective_xcpus and some of the
134 	 * effective_xcpus may be distributed to sub-partitions below & hence
135 	 * excluded from its effective_cpus.
136 	 */
137 	cpumask_var_t effective_xcpus;
138 
139 	/*
140 	 * Exclusive CPUs as requested by the user (default hierarchy only)
141 	 */
142 	cpumask_var_t exclusive_cpus;
143 
144 	/*
145 	 * This is old Memory Nodes tasks took on.
146 	 *
147 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
148 	 * - A new cpuset's old_mems_allowed is initialized when some
149 	 *   task is moved into it.
150 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
151 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
152 	 *   then old_mems_allowed is updated to mems_allowed.
153 	 */
154 	nodemask_t old_mems_allowed;
155 
156 	struct fmeter fmeter;		/* memory_pressure filter */
157 
158 	/*
159 	 * Tasks are being attached to this cpuset.  Used to prevent
160 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
161 	 */
162 	int attach_in_progress;
163 
164 	/* partition number for rebuild_sched_domains() */
165 	int pn;
166 
167 	/* for custom sched domain */
168 	int relax_domain_level;
169 
170 	/* number of valid sub-partitions */
171 	int nr_subparts;
172 
173 	/* partition root state */
174 	int partition_root_state;
175 
176 	/*
177 	 * Default hierarchy only:
178 	 * use_parent_ecpus - set if using parent's effective_cpus
179 	 * child_ecpus_count - # of children with use_parent_ecpus set
180 	 */
181 	int use_parent_ecpus;
182 	int child_ecpus_count;
183 
184 	/*
185 	 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we
186 	 * know when to rebuild associated root domain bandwidth information.
187 	 */
188 	int nr_deadline_tasks;
189 	int nr_migrate_dl_tasks;
190 	u64 sum_migrate_dl_bw;
191 
192 	/* Invalid partition error code, not lock protected */
193 	enum prs_errcode prs_err;
194 
195 	/* Handle for cpuset.cpus.partition */
196 	struct cgroup_file partition_file;
197 
198 	/* Remote partition silbling list anchored at remote_children */
199 	struct list_head remote_sibling;
200 };
201 
202 /*
203  * Exclusive CPUs distributed out to sub-partitions of top_cpuset
204  */
205 static cpumask_var_t	subpartitions_cpus;
206 
207 /* List of remote partition root children */
208 static struct list_head remote_children;
209 
210 /*
211  * Partition root states:
212  *
213  *   0 - member (not a partition root)
214  *   1 - partition root
215  *   2 - partition root without load balancing (isolated)
216  *  -1 - invalid partition root
217  *  -2 - invalid isolated partition root
218  */
219 #define PRS_MEMBER		0
220 #define PRS_ROOT		1
221 #define PRS_ISOLATED		2
222 #define PRS_INVALID_ROOT	-1
223 #define PRS_INVALID_ISOLATED	-2
224 
225 static inline bool is_prs_invalid(int prs_state)
226 {
227 	return prs_state < 0;
228 }
229 
230 /*
231  * Temporary cpumasks for working with partitions that are passed among
232  * functions to avoid memory allocation in inner functions.
233  */
234 struct tmpmasks {
235 	cpumask_var_t addmask, delmask;	/* For partition root */
236 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
237 };
238 
239 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
240 {
241 	return css ? container_of(css, struct cpuset, css) : NULL;
242 }
243 
244 /* Retrieve the cpuset for a task */
245 static inline struct cpuset *task_cs(struct task_struct *task)
246 {
247 	return css_cs(task_css(task, cpuset_cgrp_id));
248 }
249 
250 static inline struct cpuset *parent_cs(struct cpuset *cs)
251 {
252 	return css_cs(cs->css.parent);
253 }
254 
255 void inc_dl_tasks_cs(struct task_struct *p)
256 {
257 	struct cpuset *cs = task_cs(p);
258 
259 	cs->nr_deadline_tasks++;
260 }
261 
262 void dec_dl_tasks_cs(struct task_struct *p)
263 {
264 	struct cpuset *cs = task_cs(p);
265 
266 	cs->nr_deadline_tasks--;
267 }
268 
269 /* bits in struct cpuset flags field */
270 typedef enum {
271 	CS_ONLINE,
272 	CS_CPU_EXCLUSIVE,
273 	CS_MEM_EXCLUSIVE,
274 	CS_MEM_HARDWALL,
275 	CS_MEMORY_MIGRATE,
276 	CS_SCHED_LOAD_BALANCE,
277 	CS_SPREAD_PAGE,
278 	CS_SPREAD_SLAB,
279 } cpuset_flagbits_t;
280 
281 /* convenient tests for these bits */
282 static inline bool is_cpuset_online(struct cpuset *cs)
283 {
284 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
285 }
286 
287 static inline int is_cpu_exclusive(const struct cpuset *cs)
288 {
289 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
290 }
291 
292 static inline int is_mem_exclusive(const struct cpuset *cs)
293 {
294 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
295 }
296 
297 static inline int is_mem_hardwall(const struct cpuset *cs)
298 {
299 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
300 }
301 
302 static inline int is_sched_load_balance(const struct cpuset *cs)
303 {
304 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
305 }
306 
307 static inline int is_memory_migrate(const struct cpuset *cs)
308 {
309 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
310 }
311 
312 static inline int is_spread_page(const struct cpuset *cs)
313 {
314 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
315 }
316 
317 static inline int is_spread_slab(const struct cpuset *cs)
318 {
319 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
320 }
321 
322 static inline int is_partition_valid(const struct cpuset *cs)
323 {
324 	return cs->partition_root_state > 0;
325 }
326 
327 static inline int is_partition_invalid(const struct cpuset *cs)
328 {
329 	return cs->partition_root_state < 0;
330 }
331 
332 /*
333  * Callers should hold callback_lock to modify partition_root_state.
334  */
335 static inline void make_partition_invalid(struct cpuset *cs)
336 {
337 	if (cs->partition_root_state > 0)
338 		cs->partition_root_state = -cs->partition_root_state;
339 }
340 
341 /*
342  * Send notification event of whenever partition_root_state changes.
343  */
344 static inline void notify_partition_change(struct cpuset *cs, int old_prs)
345 {
346 	if (old_prs == cs->partition_root_state)
347 		return;
348 	cgroup_file_notify(&cs->partition_file);
349 
350 	/* Reset prs_err if not invalid */
351 	if (is_partition_valid(cs))
352 		WRITE_ONCE(cs->prs_err, PERR_NONE);
353 }
354 
355 static struct cpuset top_cpuset = {
356 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
357 		  (1 << CS_MEM_EXCLUSIVE)),
358 	.partition_root_state = PRS_ROOT,
359 	.remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling),
360 };
361 
362 /**
363  * cpuset_for_each_child - traverse online children of a cpuset
364  * @child_cs: loop cursor pointing to the current child
365  * @pos_css: used for iteration
366  * @parent_cs: target cpuset to walk children of
367  *
368  * Walk @child_cs through the online children of @parent_cs.  Must be used
369  * with RCU read locked.
370  */
371 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
372 	css_for_each_child((pos_css), &(parent_cs)->css)		\
373 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
374 
375 /**
376  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
377  * @des_cs: loop cursor pointing to the current descendant
378  * @pos_css: used for iteration
379  * @root_cs: target cpuset to walk ancestor of
380  *
381  * Walk @des_cs through the online descendants of @root_cs.  Must be used
382  * with RCU read locked.  The caller may modify @pos_css by calling
383  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
384  * iteration and the first node to be visited.
385  */
386 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
387 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
388 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
389 
390 /*
391  * There are two global locks guarding cpuset structures - cpuset_mutex and
392  * callback_lock. We also require taking task_lock() when dereferencing a
393  * task's cpuset pointer. See "The task_lock() exception", at the end of this
394  * comment.  The cpuset code uses only cpuset_mutex. Other kernel subsystems
395  * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
396  * structures. Note that cpuset_mutex needs to be a mutex as it is used in
397  * paths that rely on priority inheritance (e.g. scheduler - on RT) for
398  * correctness.
399  *
400  * A task must hold both locks to modify cpusets.  If a task holds
401  * cpuset_mutex, it blocks others, ensuring that it is the only task able to
402  * also acquire callback_lock and be able to modify cpusets.  It can perform
403  * various checks on the cpuset structure first, knowing nothing will change.
404  * It can also allocate memory while just holding cpuset_mutex.  While it is
405  * performing these checks, various callback routines can briefly acquire
406  * callback_lock to query cpusets.  Once it is ready to make the changes, it
407  * takes callback_lock, blocking everyone else.
408  *
409  * Calls to the kernel memory allocator can not be made while holding
410  * callback_lock, as that would risk double tripping on callback_lock
411  * from one of the callbacks into the cpuset code from within
412  * __alloc_pages().
413  *
414  * If a task is only holding callback_lock, then it has read-only
415  * access to cpusets.
416  *
417  * Now, the task_struct fields mems_allowed and mempolicy may be changed
418  * by other task, we use alloc_lock in the task_struct fields to protect
419  * them.
420  *
421  * The cpuset_common_file_read() handlers only hold callback_lock across
422  * small pieces of code, such as when reading out possibly multi-word
423  * cpumasks and nodemasks.
424  *
425  * Accessing a task's cpuset should be done in accordance with the
426  * guidelines for accessing subsystem state in kernel/cgroup.c
427  */
428 
429 static DEFINE_MUTEX(cpuset_mutex);
430 
431 void cpuset_lock(void)
432 {
433 	mutex_lock(&cpuset_mutex);
434 }
435 
436 void cpuset_unlock(void)
437 {
438 	mutex_unlock(&cpuset_mutex);
439 }
440 
441 static DEFINE_SPINLOCK(callback_lock);
442 
443 static struct workqueue_struct *cpuset_migrate_mm_wq;
444 
445 /*
446  * CPU / memory hotplug is handled asynchronously.
447  */
448 static void cpuset_hotplug_workfn(struct work_struct *work);
449 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
450 
451 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
452 
453 static inline void check_insane_mems_config(nodemask_t *nodes)
454 {
455 	if (!cpusets_insane_config() &&
456 		movable_only_nodes(nodes)) {
457 		static_branch_enable(&cpusets_insane_config_key);
458 		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
459 			"Cpuset allocations might fail even with a lot of memory available.\n",
460 			nodemask_pr_args(nodes));
461 	}
462 }
463 
464 /*
465  * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
466  * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
467  * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
468  * With v2 behavior, "cpus" and "mems" are always what the users have
469  * requested and won't be changed by hotplug events. Only the effective
470  * cpus or mems will be affected.
471  */
472 static inline bool is_in_v2_mode(void)
473 {
474 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
475 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
476 }
477 
478 /**
479  * partition_is_populated - check if partition has tasks
480  * @cs: partition root to be checked
481  * @excluded_child: a child cpuset to be excluded in task checking
482  * Return: true if there are tasks, false otherwise
483  *
484  * It is assumed that @cs is a valid partition root. @excluded_child should
485  * be non-NULL when this cpuset is going to become a partition itself.
486  */
487 static inline bool partition_is_populated(struct cpuset *cs,
488 					  struct cpuset *excluded_child)
489 {
490 	struct cgroup_subsys_state *css;
491 	struct cpuset *child;
492 
493 	if (cs->css.cgroup->nr_populated_csets)
494 		return true;
495 	if (!excluded_child && !cs->nr_subparts)
496 		return cgroup_is_populated(cs->css.cgroup);
497 
498 	rcu_read_lock();
499 	cpuset_for_each_child(child, css, cs) {
500 		if (child == excluded_child)
501 			continue;
502 		if (is_partition_valid(child))
503 			continue;
504 		if (cgroup_is_populated(child->css.cgroup)) {
505 			rcu_read_unlock();
506 			return true;
507 		}
508 	}
509 	rcu_read_unlock();
510 	return false;
511 }
512 
513 /*
514  * Return in pmask the portion of a task's cpusets's cpus_allowed that
515  * are online and are capable of running the task.  If none are found,
516  * walk up the cpuset hierarchy until we find one that does have some
517  * appropriate cpus.
518  *
519  * One way or another, we guarantee to return some non-empty subset
520  * of cpu_online_mask.
521  *
522  * Call with callback_lock or cpuset_mutex held.
523  */
524 static void guarantee_online_cpus(struct task_struct *tsk,
525 				  struct cpumask *pmask)
526 {
527 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
528 	struct cpuset *cs;
529 
530 	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
531 		cpumask_copy(pmask, cpu_online_mask);
532 
533 	rcu_read_lock();
534 	cs = task_cs(tsk);
535 
536 	while (!cpumask_intersects(cs->effective_cpus, pmask)) {
537 		cs = parent_cs(cs);
538 		if (unlikely(!cs)) {
539 			/*
540 			 * The top cpuset doesn't have any online cpu as a
541 			 * consequence of a race between cpuset_hotplug_work
542 			 * and cpu hotplug notifier.  But we know the top
543 			 * cpuset's effective_cpus is on its way to be
544 			 * identical to cpu_online_mask.
545 			 */
546 			goto out_unlock;
547 		}
548 	}
549 	cpumask_and(pmask, pmask, cs->effective_cpus);
550 
551 out_unlock:
552 	rcu_read_unlock();
553 }
554 
555 /*
556  * Return in *pmask the portion of a cpusets's mems_allowed that
557  * are online, with memory.  If none are online with memory, walk
558  * up the cpuset hierarchy until we find one that does have some
559  * online mems.  The top cpuset always has some mems online.
560  *
561  * One way or another, we guarantee to return some non-empty subset
562  * of node_states[N_MEMORY].
563  *
564  * Call with callback_lock or cpuset_mutex held.
565  */
566 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
567 {
568 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
569 		cs = parent_cs(cs);
570 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
571 }
572 
573 /*
574  * update task's spread flag if cpuset's page/slab spread flag is set
575  *
576  * Call with callback_lock or cpuset_mutex held. The check can be skipped
577  * if on default hierarchy.
578  */
579 static void cpuset_update_task_spread_flags(struct cpuset *cs,
580 					struct task_struct *tsk)
581 {
582 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
583 		return;
584 
585 	if (is_spread_page(cs))
586 		task_set_spread_page(tsk);
587 	else
588 		task_clear_spread_page(tsk);
589 
590 	if (is_spread_slab(cs))
591 		task_set_spread_slab(tsk);
592 	else
593 		task_clear_spread_slab(tsk);
594 }
595 
596 /*
597  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
598  *
599  * One cpuset is a subset of another if all its allowed CPUs and
600  * Memory Nodes are a subset of the other, and its exclusive flags
601  * are only set if the other's are set.  Call holding cpuset_mutex.
602  */
603 
604 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
605 {
606 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
607 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
608 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
609 		is_mem_exclusive(p) <= is_mem_exclusive(q);
610 }
611 
612 /**
613  * alloc_cpumasks - allocate three cpumasks for cpuset
614  * @cs:  the cpuset that have cpumasks to be allocated.
615  * @tmp: the tmpmasks structure pointer
616  * Return: 0 if successful, -ENOMEM otherwise.
617  *
618  * Only one of the two input arguments should be non-NULL.
619  */
620 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
621 {
622 	cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4;
623 
624 	if (cs) {
625 		pmask1 = &cs->cpus_allowed;
626 		pmask2 = &cs->effective_cpus;
627 		pmask3 = &cs->effective_xcpus;
628 		pmask4 = &cs->exclusive_cpus;
629 	} else {
630 		pmask1 = &tmp->new_cpus;
631 		pmask2 = &tmp->addmask;
632 		pmask3 = &tmp->delmask;
633 		pmask4 = NULL;
634 	}
635 
636 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
637 		return -ENOMEM;
638 
639 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
640 		goto free_one;
641 
642 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
643 		goto free_two;
644 
645 	if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL))
646 		goto free_three;
647 
648 
649 	return 0;
650 
651 free_three:
652 	free_cpumask_var(*pmask3);
653 free_two:
654 	free_cpumask_var(*pmask2);
655 free_one:
656 	free_cpumask_var(*pmask1);
657 	return -ENOMEM;
658 }
659 
660 /**
661  * free_cpumasks - free cpumasks in a tmpmasks structure
662  * @cs:  the cpuset that have cpumasks to be free.
663  * @tmp: the tmpmasks structure pointer
664  */
665 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
666 {
667 	if (cs) {
668 		free_cpumask_var(cs->cpus_allowed);
669 		free_cpumask_var(cs->effective_cpus);
670 		free_cpumask_var(cs->effective_xcpus);
671 		free_cpumask_var(cs->exclusive_cpus);
672 	}
673 	if (tmp) {
674 		free_cpumask_var(tmp->new_cpus);
675 		free_cpumask_var(tmp->addmask);
676 		free_cpumask_var(tmp->delmask);
677 	}
678 }
679 
680 /**
681  * alloc_trial_cpuset - allocate a trial cpuset
682  * @cs: the cpuset that the trial cpuset duplicates
683  */
684 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
685 {
686 	struct cpuset *trial;
687 
688 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
689 	if (!trial)
690 		return NULL;
691 
692 	if (alloc_cpumasks(trial, NULL)) {
693 		kfree(trial);
694 		return NULL;
695 	}
696 
697 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
698 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
699 	cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
700 	cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
701 	return trial;
702 }
703 
704 /**
705  * free_cpuset - free the cpuset
706  * @cs: the cpuset to be freed
707  */
708 static inline void free_cpuset(struct cpuset *cs)
709 {
710 	free_cpumasks(cs, NULL);
711 	kfree(cs);
712 }
713 
714 static inline struct cpumask *fetch_xcpus(struct cpuset *cs)
715 {
716 	return !cpumask_empty(cs->exclusive_cpus) ? cs->exclusive_cpus :
717 	       cpumask_empty(cs->effective_xcpus) ? cs->cpus_allowed
718 						  : cs->effective_xcpus;
719 }
720 
721 /*
722  * cpusets_are_exclusive() - check if two cpusets are exclusive
723  *
724  * Return true if exclusive, false if not
725  */
726 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
727 {
728 	struct cpumask *xcpus1 = fetch_xcpus(cs1);
729 	struct cpumask *xcpus2 = fetch_xcpus(cs2);
730 
731 	if (cpumask_intersects(xcpus1, xcpus2))
732 		return false;
733 	return true;
734 }
735 
736 /*
737  * validate_change_legacy() - Validate conditions specific to legacy (v1)
738  *                            behavior.
739  */
740 static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
741 {
742 	struct cgroup_subsys_state *css;
743 	struct cpuset *c, *par;
744 	int ret;
745 
746 	WARN_ON_ONCE(!rcu_read_lock_held());
747 
748 	/* Each of our child cpusets must be a subset of us */
749 	ret = -EBUSY;
750 	cpuset_for_each_child(c, css, cur)
751 		if (!is_cpuset_subset(c, trial))
752 			goto out;
753 
754 	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
755 	ret = -EACCES;
756 	par = parent_cs(cur);
757 	if (par && !is_cpuset_subset(trial, par))
758 		goto out;
759 
760 	ret = 0;
761 out:
762 	return ret;
763 }
764 
765 /*
766  * validate_change() - Used to validate that any proposed cpuset change
767  *		       follows the structural rules for cpusets.
768  *
769  * If we replaced the flag and mask values of the current cpuset
770  * (cur) with those values in the trial cpuset (trial), would
771  * our various subset and exclusive rules still be valid?  Presumes
772  * cpuset_mutex held.
773  *
774  * 'cur' is the address of an actual, in-use cpuset.  Operations
775  * such as list traversal that depend on the actual address of the
776  * cpuset in the list must use cur below, not trial.
777  *
778  * 'trial' is the address of bulk structure copy of cur, with
779  * perhaps one or more of the fields cpus_allowed, mems_allowed,
780  * or flags changed to new, trial values.
781  *
782  * Return 0 if valid, -errno if not.
783  */
784 
785 static int validate_change(struct cpuset *cur, struct cpuset *trial)
786 {
787 	struct cgroup_subsys_state *css;
788 	struct cpuset *c, *par;
789 	int ret = 0;
790 
791 	rcu_read_lock();
792 
793 	if (!is_in_v2_mode())
794 		ret = validate_change_legacy(cur, trial);
795 	if (ret)
796 		goto out;
797 
798 	/* Remaining checks don't apply to root cpuset */
799 	if (cur == &top_cpuset)
800 		goto out;
801 
802 	par = parent_cs(cur);
803 
804 	/*
805 	 * Cpusets with tasks - existing or newly being attached - can't
806 	 * be changed to have empty cpus_allowed or mems_allowed.
807 	 */
808 	ret = -ENOSPC;
809 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
810 		if (!cpumask_empty(cur->cpus_allowed) &&
811 		    cpumask_empty(trial->cpus_allowed))
812 			goto out;
813 		if (!nodes_empty(cur->mems_allowed) &&
814 		    nodes_empty(trial->mems_allowed))
815 			goto out;
816 	}
817 
818 	/*
819 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
820 	 * tasks.
821 	 */
822 	ret = -EBUSY;
823 	if (is_cpu_exclusive(cur) &&
824 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
825 				       trial->cpus_allowed))
826 		goto out;
827 
828 	/*
829 	 * If either I or some sibling (!= me) is exclusive, we can't
830 	 * overlap
831 	 */
832 	ret = -EINVAL;
833 	cpuset_for_each_child(c, css, par) {
834 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
835 		    c != cur) {
836 			if (!cpusets_are_exclusive(trial, c))
837 				goto out;
838 		}
839 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
840 		    c != cur &&
841 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
842 			goto out;
843 	}
844 
845 	ret = 0;
846 out:
847 	rcu_read_unlock();
848 	return ret;
849 }
850 
851 #ifdef CONFIG_SMP
852 /*
853  * Helper routine for generate_sched_domains().
854  * Do cpusets a, b have overlapping effective cpus_allowed masks?
855  */
856 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
857 {
858 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
859 }
860 
861 static void
862 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
863 {
864 	if (dattr->relax_domain_level < c->relax_domain_level)
865 		dattr->relax_domain_level = c->relax_domain_level;
866 	return;
867 }
868 
869 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
870 				    struct cpuset *root_cs)
871 {
872 	struct cpuset *cp;
873 	struct cgroup_subsys_state *pos_css;
874 
875 	rcu_read_lock();
876 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
877 		/* skip the whole subtree if @cp doesn't have any CPU */
878 		if (cpumask_empty(cp->cpus_allowed)) {
879 			pos_css = css_rightmost_descendant(pos_css);
880 			continue;
881 		}
882 
883 		if (is_sched_load_balance(cp))
884 			update_domain_attr(dattr, cp);
885 	}
886 	rcu_read_unlock();
887 }
888 
889 /* Must be called with cpuset_mutex held.  */
890 static inline int nr_cpusets(void)
891 {
892 	/* jump label reference count + the top-level cpuset */
893 	return static_key_count(&cpusets_enabled_key.key) + 1;
894 }
895 
896 /*
897  * generate_sched_domains()
898  *
899  * This function builds a partial partition of the systems CPUs
900  * A 'partial partition' is a set of non-overlapping subsets whose
901  * union is a subset of that set.
902  * The output of this function needs to be passed to kernel/sched/core.c
903  * partition_sched_domains() routine, which will rebuild the scheduler's
904  * load balancing domains (sched domains) as specified by that partial
905  * partition.
906  *
907  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
908  * for a background explanation of this.
909  *
910  * Does not return errors, on the theory that the callers of this
911  * routine would rather not worry about failures to rebuild sched
912  * domains when operating in the severe memory shortage situations
913  * that could cause allocation failures below.
914  *
915  * Must be called with cpuset_mutex held.
916  *
917  * The three key local variables below are:
918  *    cp - cpuset pointer, used (together with pos_css) to perform a
919  *	   top-down scan of all cpusets. For our purposes, rebuilding
920  *	   the schedulers sched domains, we can ignore !is_sched_load_
921  *	   balance cpusets.
922  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
923  *	   that need to be load balanced, for convenient iterative
924  *	   access by the subsequent code that finds the best partition,
925  *	   i.e the set of domains (subsets) of CPUs such that the
926  *	   cpus_allowed of every cpuset marked is_sched_load_balance
927  *	   is a subset of one of these domains, while there are as
928  *	   many such domains as possible, each as small as possible.
929  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
930  *	   the kernel/sched/core.c routine partition_sched_domains() in a
931  *	   convenient format, that can be easily compared to the prior
932  *	   value to determine what partition elements (sched domains)
933  *	   were changed (added or removed.)
934  *
935  * Finding the best partition (set of domains):
936  *	The triple nested loops below over i, j, k scan over the
937  *	load balanced cpusets (using the array of cpuset pointers in
938  *	csa[]) looking for pairs of cpusets that have overlapping
939  *	cpus_allowed, but which don't have the same 'pn' partition
940  *	number and gives them in the same partition number.  It keeps
941  *	looping on the 'restart' label until it can no longer find
942  *	any such pairs.
943  *
944  *	The union of the cpus_allowed masks from the set of
945  *	all cpusets having the same 'pn' value then form the one
946  *	element of the partition (one sched domain) to be passed to
947  *	partition_sched_domains().
948  */
949 static int generate_sched_domains(cpumask_var_t **domains,
950 			struct sched_domain_attr **attributes)
951 {
952 	struct cpuset *cp;	/* top-down scan of cpusets */
953 	struct cpuset **csa;	/* array of all cpuset ptrs */
954 	int csn;		/* how many cpuset ptrs in csa so far */
955 	int i, j, k;		/* indices for partition finding loops */
956 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
957 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
958 	int ndoms = 0;		/* number of sched domains in result */
959 	int nslot;		/* next empty doms[] struct cpumask slot */
960 	struct cgroup_subsys_state *pos_css;
961 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
962 
963 	doms = NULL;
964 	dattr = NULL;
965 	csa = NULL;
966 
967 	/* Special case for the 99% of systems with one, full, sched domain */
968 	if (root_load_balance && !top_cpuset.nr_subparts) {
969 		ndoms = 1;
970 		doms = alloc_sched_domains(ndoms);
971 		if (!doms)
972 			goto done;
973 
974 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
975 		if (dattr) {
976 			*dattr = SD_ATTR_INIT;
977 			update_domain_attr_tree(dattr, &top_cpuset);
978 		}
979 		cpumask_and(doms[0], top_cpuset.effective_cpus,
980 			    housekeeping_cpumask(HK_TYPE_DOMAIN));
981 
982 		goto done;
983 	}
984 
985 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
986 	if (!csa)
987 		goto done;
988 	csn = 0;
989 
990 	rcu_read_lock();
991 	if (root_load_balance)
992 		csa[csn++] = &top_cpuset;
993 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
994 		if (cp == &top_cpuset)
995 			continue;
996 		/*
997 		 * Continue traversing beyond @cp iff @cp has some CPUs and
998 		 * isn't load balancing.  The former is obvious.  The
999 		 * latter: All child cpusets contain a subset of the
1000 		 * parent's cpus, so just skip them, and then we call
1001 		 * update_domain_attr_tree() to calc relax_domain_level of
1002 		 * the corresponding sched domain.
1003 		 *
1004 		 * If root is load-balancing, we can skip @cp if it
1005 		 * is a subset of the root's effective_cpus.
1006 		 */
1007 		if (!cpumask_empty(cp->cpus_allowed) &&
1008 		    !(is_sched_load_balance(cp) &&
1009 		      cpumask_intersects(cp->cpus_allowed,
1010 					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
1011 			continue;
1012 
1013 		if (root_load_balance &&
1014 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
1015 			continue;
1016 
1017 		if (is_sched_load_balance(cp) &&
1018 		    !cpumask_empty(cp->effective_cpus))
1019 			csa[csn++] = cp;
1020 
1021 		/* skip @cp's subtree if not a partition root */
1022 		if (!is_partition_valid(cp))
1023 			pos_css = css_rightmost_descendant(pos_css);
1024 	}
1025 	rcu_read_unlock();
1026 
1027 	for (i = 0; i < csn; i++)
1028 		csa[i]->pn = i;
1029 	ndoms = csn;
1030 
1031 restart:
1032 	/* Find the best partition (set of sched domains) */
1033 	for (i = 0; i < csn; i++) {
1034 		struct cpuset *a = csa[i];
1035 		int apn = a->pn;
1036 
1037 		for (j = 0; j < csn; j++) {
1038 			struct cpuset *b = csa[j];
1039 			int bpn = b->pn;
1040 
1041 			if (apn != bpn && cpusets_overlap(a, b)) {
1042 				for (k = 0; k < csn; k++) {
1043 					struct cpuset *c = csa[k];
1044 
1045 					if (c->pn == bpn)
1046 						c->pn = apn;
1047 				}
1048 				ndoms--;	/* one less element */
1049 				goto restart;
1050 			}
1051 		}
1052 	}
1053 
1054 	/*
1055 	 * Now we know how many domains to create.
1056 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
1057 	 */
1058 	doms = alloc_sched_domains(ndoms);
1059 	if (!doms)
1060 		goto done;
1061 
1062 	/*
1063 	 * The rest of the code, including the scheduler, can deal with
1064 	 * dattr==NULL case. No need to abort if alloc fails.
1065 	 */
1066 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
1067 			      GFP_KERNEL);
1068 
1069 	for (nslot = 0, i = 0; i < csn; i++) {
1070 		struct cpuset *a = csa[i];
1071 		struct cpumask *dp;
1072 		int apn = a->pn;
1073 
1074 		if (apn < 0) {
1075 			/* Skip completed partitions */
1076 			continue;
1077 		}
1078 
1079 		dp = doms[nslot];
1080 
1081 		if (nslot == ndoms) {
1082 			static int warnings = 10;
1083 			if (warnings) {
1084 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
1085 					nslot, ndoms, csn, i, apn);
1086 				warnings--;
1087 			}
1088 			continue;
1089 		}
1090 
1091 		cpumask_clear(dp);
1092 		if (dattr)
1093 			*(dattr + nslot) = SD_ATTR_INIT;
1094 		for (j = i; j < csn; j++) {
1095 			struct cpuset *b = csa[j];
1096 
1097 			if (apn == b->pn) {
1098 				cpumask_or(dp, dp, b->effective_cpus);
1099 				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1100 				if (dattr)
1101 					update_domain_attr_tree(dattr + nslot, b);
1102 
1103 				/* Done with this partition */
1104 				b->pn = -1;
1105 			}
1106 		}
1107 		nslot++;
1108 	}
1109 	BUG_ON(nslot != ndoms);
1110 
1111 done:
1112 	kfree(csa);
1113 
1114 	/*
1115 	 * Fallback to the default domain if kmalloc() failed.
1116 	 * See comments in partition_sched_domains().
1117 	 */
1118 	if (doms == NULL)
1119 		ndoms = 1;
1120 
1121 	*domains    = doms;
1122 	*attributes = dattr;
1123 	return ndoms;
1124 }
1125 
1126 static void dl_update_tasks_root_domain(struct cpuset *cs)
1127 {
1128 	struct css_task_iter it;
1129 	struct task_struct *task;
1130 
1131 	if (cs->nr_deadline_tasks == 0)
1132 		return;
1133 
1134 	css_task_iter_start(&cs->css, 0, &it);
1135 
1136 	while ((task = css_task_iter_next(&it)))
1137 		dl_add_task_root_domain(task);
1138 
1139 	css_task_iter_end(&it);
1140 }
1141 
1142 static void dl_rebuild_rd_accounting(void)
1143 {
1144 	struct cpuset *cs = NULL;
1145 	struct cgroup_subsys_state *pos_css;
1146 
1147 	lockdep_assert_held(&cpuset_mutex);
1148 	lockdep_assert_cpus_held();
1149 	lockdep_assert_held(&sched_domains_mutex);
1150 
1151 	rcu_read_lock();
1152 
1153 	/*
1154 	 * Clear default root domain DL accounting, it will be computed again
1155 	 * if a task belongs to it.
1156 	 */
1157 	dl_clear_root_domain(&def_root_domain);
1158 
1159 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1160 
1161 		if (cpumask_empty(cs->effective_cpus)) {
1162 			pos_css = css_rightmost_descendant(pos_css);
1163 			continue;
1164 		}
1165 
1166 		css_get(&cs->css);
1167 
1168 		rcu_read_unlock();
1169 
1170 		dl_update_tasks_root_domain(cs);
1171 
1172 		rcu_read_lock();
1173 		css_put(&cs->css);
1174 	}
1175 	rcu_read_unlock();
1176 }
1177 
1178 static void
1179 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1180 				    struct sched_domain_attr *dattr_new)
1181 {
1182 	mutex_lock(&sched_domains_mutex);
1183 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1184 	dl_rebuild_rd_accounting();
1185 	mutex_unlock(&sched_domains_mutex);
1186 }
1187 
1188 /*
1189  * Rebuild scheduler domains.
1190  *
1191  * If the flag 'sched_load_balance' of any cpuset with non-empty
1192  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1193  * which has that flag enabled, or if any cpuset with a non-empty
1194  * 'cpus' is removed, then call this routine to rebuild the
1195  * scheduler's dynamic sched domains.
1196  *
1197  * Call with cpuset_mutex held.  Takes cpus_read_lock().
1198  */
1199 static void rebuild_sched_domains_locked(void)
1200 {
1201 	struct cgroup_subsys_state *pos_css;
1202 	struct sched_domain_attr *attr;
1203 	cpumask_var_t *doms;
1204 	struct cpuset *cs;
1205 	int ndoms;
1206 
1207 	lockdep_assert_cpus_held();
1208 	lockdep_assert_held(&cpuset_mutex);
1209 
1210 	/*
1211 	 * If we have raced with CPU hotplug, return early to avoid
1212 	 * passing doms with offlined cpu to partition_sched_domains().
1213 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1214 	 *
1215 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1216 	 * should be the same as the active CPUs, so checking only top_cpuset
1217 	 * is enough to detect racing CPU offlines.
1218 	 */
1219 	if (cpumask_empty(subpartitions_cpus) &&
1220 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1221 		return;
1222 
1223 	/*
1224 	 * With subpartition CPUs, however, the effective CPUs of a partition
1225 	 * root should be only a subset of the active CPUs.  Since a CPU in any
1226 	 * partition root could be offlined, all must be checked.
1227 	 */
1228 	if (top_cpuset.nr_subparts) {
1229 		rcu_read_lock();
1230 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1231 			if (!is_partition_valid(cs)) {
1232 				pos_css = css_rightmost_descendant(pos_css);
1233 				continue;
1234 			}
1235 			if (!cpumask_subset(cs->effective_cpus,
1236 					    cpu_active_mask)) {
1237 				rcu_read_unlock();
1238 				return;
1239 			}
1240 		}
1241 		rcu_read_unlock();
1242 	}
1243 
1244 	/* Generate domain masks and attrs */
1245 	ndoms = generate_sched_domains(&doms, &attr);
1246 
1247 	/* Have scheduler rebuild the domains */
1248 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1249 }
1250 #else /* !CONFIG_SMP */
1251 static void rebuild_sched_domains_locked(void)
1252 {
1253 }
1254 #endif /* CONFIG_SMP */
1255 
1256 void rebuild_sched_domains(void)
1257 {
1258 	cpus_read_lock();
1259 	mutex_lock(&cpuset_mutex);
1260 	rebuild_sched_domains_locked();
1261 	mutex_unlock(&cpuset_mutex);
1262 	cpus_read_unlock();
1263 }
1264 
1265 /**
1266  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1267  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1268  * @new_cpus: the temp variable for the new effective_cpus mask
1269  *
1270  * Iterate through each task of @cs updating its cpus_allowed to the
1271  * effective cpuset's.  As this function is called with cpuset_mutex held,
1272  * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
1273  * is used instead of effective_cpus to make sure all offline CPUs are also
1274  * included as hotplug code won't update cpumasks for tasks in top_cpuset.
1275  */
1276 static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1277 {
1278 	struct css_task_iter it;
1279 	struct task_struct *task;
1280 	bool top_cs = cs == &top_cpuset;
1281 
1282 	css_task_iter_start(&cs->css, 0, &it);
1283 	while ((task = css_task_iter_next(&it))) {
1284 		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1285 
1286 		if (top_cs) {
1287 			/*
1288 			 * Percpu kthreads in top_cpuset are ignored
1289 			 */
1290 			if (kthread_is_per_cpu(task))
1291 				continue;
1292 			cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1293 		} else {
1294 			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1295 		}
1296 		set_cpus_allowed_ptr(task, new_cpus);
1297 	}
1298 	css_task_iter_end(&it);
1299 }
1300 
1301 /**
1302  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1303  * @new_cpus: the temp variable for the new effective_cpus mask
1304  * @cs: the cpuset the need to recompute the new effective_cpus mask
1305  * @parent: the parent cpuset
1306  *
1307  * The result is valid only if the given cpuset isn't a partition root.
1308  */
1309 static void compute_effective_cpumask(struct cpumask *new_cpus,
1310 				      struct cpuset *cs, struct cpuset *parent)
1311 {
1312 	cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1313 }
1314 
1315 /*
1316  * Commands for update_parent_effective_cpumask
1317  */
1318 enum partition_cmd {
1319 	partcmd_enable,		/* Enable partition root	  */
1320 	partcmd_disable,	/* Disable partition root	  */
1321 	partcmd_update,		/* Update parent's effective_cpus */
1322 	partcmd_invalidate,	/* Make partition invalid	  */
1323 };
1324 
1325 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1326 		       int turning_on);
1327 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1328 				    struct tmpmasks *tmp);
1329 
1330 /*
1331  * Update partition exclusive flag
1332  *
1333  * Return: 0 if successful, an error code otherwise
1334  */
1335 static int update_partition_exclusive(struct cpuset *cs, int new_prs)
1336 {
1337 	bool exclusive = (new_prs > 0);
1338 
1339 	if (exclusive && !is_cpu_exclusive(cs)) {
1340 		if (update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1341 			return PERR_NOTEXCL;
1342 	} else if (!exclusive && is_cpu_exclusive(cs)) {
1343 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1344 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1345 	}
1346 	return 0;
1347 }
1348 
1349 /*
1350  * Update partition load balance flag and/or rebuild sched domain
1351  *
1352  * Changing load balance flag will automatically call
1353  * rebuild_sched_domains_locked().
1354  * This function is for cgroup v2 only.
1355  */
1356 static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1357 {
1358 	int new_prs = cs->partition_root_state;
1359 	bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1360 	bool new_lb;
1361 
1362 	/*
1363 	 * If cs is not a valid partition root, the load balance state
1364 	 * will follow its parent.
1365 	 */
1366 	if (new_prs > 0) {
1367 		new_lb = (new_prs != PRS_ISOLATED);
1368 	} else {
1369 		new_lb = is_sched_load_balance(parent_cs(cs));
1370 	}
1371 	if (new_lb != !!is_sched_load_balance(cs)) {
1372 		rebuild_domains = true;
1373 		if (new_lb)
1374 			set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1375 		else
1376 			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1377 	}
1378 
1379 	if (rebuild_domains)
1380 		rebuild_sched_domains_locked();
1381 }
1382 
1383 /*
1384  * tasks_nocpu_error - Return true if tasks will have no effective_cpus
1385  */
1386 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1387 			      struct cpumask *xcpus)
1388 {
1389 	/*
1390 	 * A populated partition (cs or parent) can't have empty effective_cpus
1391 	 */
1392 	return (cpumask_subset(parent->effective_cpus, xcpus) &&
1393 		partition_is_populated(parent, cs)) ||
1394 	       (!cpumask_intersects(xcpus, cpu_active_mask) &&
1395 		partition_is_populated(cs, NULL));
1396 }
1397 
1398 static void reset_partition_data(struct cpuset *cs)
1399 {
1400 	struct cpuset *parent = parent_cs(cs);
1401 
1402 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
1403 		return;
1404 
1405 	lockdep_assert_held(&callback_lock);
1406 
1407 	cs->nr_subparts = 0;
1408 	if (cpumask_empty(cs->exclusive_cpus)) {
1409 		cpumask_clear(cs->effective_xcpus);
1410 		if (is_cpu_exclusive(cs))
1411 			clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1412 	}
1413 	if (!cpumask_and(cs->effective_cpus,
1414 			 parent->effective_cpus, cs->cpus_allowed)) {
1415 		cs->use_parent_ecpus = true;
1416 		parent->child_ecpus_count++;
1417 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1418 	}
1419 }
1420 
1421 /*
1422  * compute_effective_exclusive_cpumask - compute effective exclusive CPUs
1423  * @cs: cpuset
1424  * @xcpus: effective exclusive CPUs value to be set
1425  * Return: true if xcpus is not empty, false otherwise.
1426  *
1427  * Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set),
1428  * it must be a subset of cpus_allowed and parent's effective_xcpus.
1429  */
1430 static bool compute_effective_exclusive_cpumask(struct cpuset *cs,
1431 						struct cpumask *xcpus)
1432 {
1433 	struct cpuset *parent = parent_cs(cs);
1434 
1435 	if (!xcpus)
1436 		xcpus = cs->effective_xcpus;
1437 
1438 	if (!cpumask_empty(cs->exclusive_cpus))
1439 		cpumask_and(xcpus, cs->exclusive_cpus, cs->cpus_allowed);
1440 	else
1441 		cpumask_copy(xcpus, cs->cpus_allowed);
1442 
1443 	return cpumask_and(xcpus, xcpus, parent->effective_xcpus);
1444 }
1445 
1446 static inline bool is_remote_partition(struct cpuset *cs)
1447 {
1448 	return !list_empty(&cs->remote_sibling);
1449 }
1450 
1451 static inline bool is_local_partition(struct cpuset *cs)
1452 {
1453 	return is_partition_valid(cs) && !is_remote_partition(cs);
1454 }
1455 
1456 /*
1457  * remote_partition_enable - Enable current cpuset as a remote partition root
1458  * @cs: the cpuset to update
1459  * @tmp: temparary masks
1460  * Return: 1 if successful, 0 if error
1461  *
1462  * Enable the current cpuset to become a remote partition root taking CPUs
1463  * directly from the top cpuset. cpuset_mutex must be held by the caller.
1464  */
1465 static int remote_partition_enable(struct cpuset *cs, struct tmpmasks *tmp)
1466 {
1467 	/*
1468 	 * The user must have sysadmin privilege.
1469 	 */
1470 	if (!capable(CAP_SYS_ADMIN))
1471 		return 0;
1472 
1473 	/*
1474 	 * The requested exclusive_cpus must not be allocated to other
1475 	 * partitions and it can't use up all the root's effective_cpus.
1476 	 *
1477 	 * Note that if there is any local partition root above it or
1478 	 * remote partition root underneath it, its exclusive_cpus must
1479 	 * have overlapped with subpartitions_cpus.
1480 	 */
1481 	compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1482 	if (cpumask_empty(tmp->new_cpus) ||
1483 	    cpumask_intersects(tmp->new_cpus, subpartitions_cpus) ||
1484 	    cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1485 		return 0;
1486 
1487 	spin_lock_irq(&callback_lock);
1488 	cpumask_andnot(top_cpuset.effective_cpus,
1489 		       top_cpuset.effective_cpus, tmp->new_cpus);
1490 	cpumask_or(subpartitions_cpus,
1491 		   subpartitions_cpus, tmp->new_cpus);
1492 
1493 	if (cs->use_parent_ecpus) {
1494 		struct cpuset *parent = parent_cs(cs);
1495 
1496 		cs->use_parent_ecpus = false;
1497 		parent->child_ecpus_count--;
1498 	}
1499 	list_add(&cs->remote_sibling, &remote_children);
1500 	spin_unlock_irq(&callback_lock);
1501 
1502 	/*
1503 	 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1504 	 */
1505 	update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1506 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1507 
1508 	return 1;
1509 }
1510 
1511 /*
1512  * remote_partition_disable - Remove current cpuset from remote partition list
1513  * @cs: the cpuset to update
1514  * @tmp: temparary masks
1515  *
1516  * The effective_cpus is also updated.
1517  *
1518  * cpuset_mutex must be held by the caller.
1519  */
1520 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1521 {
1522 	compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1523 	WARN_ON_ONCE(!is_remote_partition(cs));
1524 	WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus));
1525 
1526 	spin_lock_irq(&callback_lock);
1527 	cpumask_andnot(subpartitions_cpus,
1528 		       subpartitions_cpus, tmp->new_cpus);
1529 	cpumask_and(tmp->new_cpus,
1530 		    tmp->new_cpus, cpu_active_mask);
1531 	cpumask_or(top_cpuset.effective_cpus,
1532 		   top_cpuset.effective_cpus, tmp->new_cpus);
1533 	list_del_init(&cs->remote_sibling);
1534 	cs->partition_root_state = -cs->partition_root_state;
1535 	if (!cs->prs_err)
1536 		cs->prs_err = PERR_INVCPUS;
1537 	reset_partition_data(cs);
1538 	spin_unlock_irq(&callback_lock);
1539 
1540 	/*
1541 	 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1542 	 */
1543 	update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1544 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1545 }
1546 
1547 /*
1548  * remote_cpus_update - cpus_exclusive change of remote partition
1549  * @cs: the cpuset to be updated
1550  * @newmask: the new effective_xcpus mask
1551  * @tmp: temparary masks
1552  *
1553  * top_cpuset and subpartitions_cpus will be updated or partition can be
1554  * invalidated.
1555  */
1556 static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask,
1557 			       struct tmpmasks *tmp)
1558 {
1559 	bool adding, deleting;
1560 
1561 	if (WARN_ON_ONCE(!is_remote_partition(cs)))
1562 		return;
1563 
1564 	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1565 
1566 	if (cpumask_empty(newmask))
1567 		goto invalidate;
1568 
1569 	adding   = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus);
1570 	deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask);
1571 
1572 	/*
1573 	 * Additions of remote CPUs is only allowed if those CPUs are
1574 	 * not allocated to other partitions and there are effective_cpus
1575 	 * left in the top cpuset.
1576 	 */
1577 	if (adding && (!capable(CAP_SYS_ADMIN) ||
1578 		       cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1579 		       cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)))
1580 		goto invalidate;
1581 
1582 	spin_lock_irq(&callback_lock);
1583 	if (adding) {
1584 		cpumask_or(subpartitions_cpus,
1585 			   subpartitions_cpus, tmp->addmask);
1586 		cpumask_andnot(top_cpuset.effective_cpus,
1587 			       top_cpuset.effective_cpus, tmp->addmask);
1588 	}
1589 	if (deleting) {
1590 		cpumask_andnot(subpartitions_cpus,
1591 			       subpartitions_cpus, tmp->delmask);
1592 		cpumask_and(tmp->delmask,
1593 			    tmp->delmask, cpu_active_mask);
1594 		cpumask_or(top_cpuset.effective_cpus,
1595 			   top_cpuset.effective_cpus, tmp->delmask);
1596 	}
1597 	spin_unlock_irq(&callback_lock);
1598 
1599 	/*
1600 	 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1601 	 */
1602 	update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1603 	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1604 	return;
1605 
1606 invalidate:
1607 	remote_partition_disable(cs, tmp);
1608 }
1609 
1610 /*
1611  * remote_partition_check - check if a child remote partition needs update
1612  * @cs: the cpuset to be updated
1613  * @newmask: the new effective_xcpus mask
1614  * @delmask: temporary mask for deletion (not in tmp)
1615  * @tmp: temparary masks
1616  *
1617  * This should be called before the given cs has updated its cpus_allowed
1618  * and/or effective_xcpus.
1619  */
1620 static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask,
1621 				   struct cpumask *delmask, struct tmpmasks *tmp)
1622 {
1623 	struct cpuset *child, *next;
1624 	int disable_cnt = 0;
1625 
1626 	/*
1627 	 * Compute the effective exclusive CPUs that will be deleted.
1628 	 */
1629 	if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) ||
1630 	    !cpumask_intersects(delmask, subpartitions_cpus))
1631 		return;	/* No deletion of exclusive CPUs in partitions */
1632 
1633 	/*
1634 	 * Searching the remote children list to look for those that will
1635 	 * be impacted by the deletion of exclusive CPUs.
1636 	 *
1637 	 * Since a cpuset must be removed from the remote children list
1638 	 * before it can go offline and holding cpuset_mutex will prevent
1639 	 * any change in cpuset status. RCU read lock isn't needed.
1640 	 */
1641 	lockdep_assert_held(&cpuset_mutex);
1642 	list_for_each_entry_safe(child, next, &remote_children, remote_sibling)
1643 		if (cpumask_intersects(child->effective_cpus, delmask)) {
1644 			remote_partition_disable(child, tmp);
1645 			disable_cnt++;
1646 		}
1647 	if (disable_cnt)
1648 		rebuild_sched_domains_locked();
1649 }
1650 
1651 /*
1652  * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1653  * @prstate: partition root state to be checked
1654  * @new_cpus: cpu mask
1655  * Return: true if there is conflict, false otherwise
1656  *
1657  * CPUs outside of housekeeping_cpumask(HK_TYPE_DOMAIN) can only be used in
1658  * an isolated partition.
1659  */
1660 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1661 {
1662 	const struct cpumask *hk_domain = housekeeping_cpumask(HK_TYPE_DOMAIN);
1663 	bool all_in_hk = cpumask_subset(new_cpus, hk_domain);
1664 
1665 	if (!all_in_hk && (prstate != PRS_ISOLATED))
1666 		return true;
1667 
1668 	return false;
1669 }
1670 
1671 /**
1672  * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1673  * @cs:      The cpuset that requests change in partition root state
1674  * @cmd:     Partition root state change command
1675  * @newmask: Optional new cpumask for partcmd_update
1676  * @tmp:     Temporary addmask and delmask
1677  * Return:   0 or a partition root state error code
1678  *
1679  * For partcmd_enable, the cpuset is being transformed from a non-partition
1680  * root to a partition root. The effective_xcpus (cpus_allowed if effective_xcpus
1681  * not set) mask of the given cpuset will be taken away from parent's
1682  * effective_cpus. The function will return 0 if all the CPUs listed in
1683  * effective_xcpus can be granted or an error code will be returned.
1684  *
1685  * For partcmd_disable, the cpuset is being transformed from a partition
1686  * root back to a non-partition root. Any CPUs in effective_xcpus will be
1687  * given back to parent's effective_cpus. 0 will always be returned.
1688  *
1689  * For partcmd_update, if the optional newmask is specified, the cpu list is
1690  * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1691  * assumed to remain the same. The cpuset should either be a valid or invalid
1692  * partition root. The partition root state may change from valid to invalid
1693  * or vice versa. An error code will be returned if transitioning from
1694  * invalid to valid violates the exclusivity rule.
1695  *
1696  * For partcmd_invalidate, the current partition will be made invalid.
1697  *
1698  * The partcmd_enable and partcmd_disable commands are used by
1699  * update_prstate(). An error code may be returned and the caller will check
1700  * for error.
1701  *
1702  * The partcmd_update command is used by update_cpumasks_hier() with newmask
1703  * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1704  * by update_cpumask() with NULL newmask. In both cases, the callers won't
1705  * check for error and so partition_root_state and prs_error will be updated
1706  * directly.
1707  */
1708 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1709 					   struct cpumask *newmask,
1710 					   struct tmpmasks *tmp)
1711 {
1712 	struct cpuset *parent = parent_cs(cs);
1713 	int adding;	/* Adding cpus to parent's effective_cpus	*/
1714 	int deleting;	/* Deleting cpus from parent's effective_cpus	*/
1715 	int old_prs, new_prs;
1716 	int part_error = PERR_NONE;	/* Partition error? */
1717 	int subparts_delta = 0;
1718 	struct cpumask *xcpus;		/* cs effective_xcpus */
1719 	bool nocpu;
1720 
1721 	lockdep_assert_held(&cpuset_mutex);
1722 
1723 	/*
1724 	 * new_prs will only be changed for the partcmd_update and
1725 	 * partcmd_invalidate commands.
1726 	 */
1727 	adding = deleting = false;
1728 	old_prs = new_prs = cs->partition_root_state;
1729 	xcpus = !cpumask_empty(cs->exclusive_cpus)
1730 		? cs->effective_xcpus : cs->cpus_allowed;
1731 
1732 	if (cmd == partcmd_invalidate) {
1733 		if (is_prs_invalid(old_prs))
1734 			return 0;
1735 
1736 		/*
1737 		 * Make the current partition invalid.
1738 		 */
1739 		if (is_partition_valid(parent))
1740 			adding = cpumask_and(tmp->addmask,
1741 					     xcpus, parent->effective_xcpus);
1742 		if (old_prs > 0) {
1743 			new_prs = -old_prs;
1744 			subparts_delta--;
1745 		}
1746 		goto write_error;
1747 	}
1748 
1749 	/*
1750 	 * The parent must be a partition root.
1751 	 * The new cpumask, if present, or the current cpus_allowed must
1752 	 * not be empty.
1753 	 */
1754 	if (!is_partition_valid(parent)) {
1755 		return is_partition_invalid(parent)
1756 		       ? PERR_INVPARENT : PERR_NOTPART;
1757 	}
1758 	if (!newmask && cpumask_empty(cs->cpus_allowed))
1759 		return PERR_CPUSEMPTY;
1760 
1761 	nocpu = tasks_nocpu_error(parent, cs, xcpus);
1762 
1763 	if (cmd == partcmd_enable) {
1764 		/*
1765 		 * Enabling partition root is not allowed if its
1766 		 * effective_xcpus is empty or doesn't overlap with
1767 		 * parent's effective_xcpus.
1768 		 */
1769 		if (cpumask_empty(xcpus) ||
1770 		    !cpumask_intersects(xcpus, parent->effective_xcpus))
1771 			return PERR_INVCPUS;
1772 
1773 		if (prstate_housekeeping_conflict(new_prs, xcpus))
1774 			return PERR_HKEEPING;
1775 
1776 		/*
1777 		 * A parent can be left with no CPU as long as there is no
1778 		 * task directly associated with the parent partition.
1779 		 */
1780 		if (nocpu)
1781 			return PERR_NOCPUS;
1782 
1783 		cpumask_copy(tmp->delmask, xcpus);
1784 		deleting = true;
1785 		subparts_delta++;
1786 	} else if (cmd == partcmd_disable) {
1787 		/*
1788 		 * May need to add cpus to parent's effective_cpus for
1789 		 * valid partition root.
1790 		 */
1791 		adding = !is_prs_invalid(old_prs) &&
1792 			  cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus);
1793 		if (adding)
1794 			subparts_delta--;
1795 	} else if (newmask) {
1796 		/*
1797 		 * Empty cpumask is not allowed
1798 		 */
1799 		if (cpumask_empty(newmask)) {
1800 			part_error = PERR_CPUSEMPTY;
1801 			goto write_error;
1802 		}
1803 
1804 		/*
1805 		 * partcmd_update with newmask:
1806 		 *
1807 		 * Compute add/delete mask to/from effective_cpus
1808 		 *
1809 		 * For valid partition:
1810 		 *   addmask = exclusive_cpus & ~newmask
1811 		 *			      & parent->effective_xcpus
1812 		 *   delmask = newmask & ~exclusive_cpus
1813 		 *		       & parent->effective_xcpus
1814 		 *
1815 		 * For invalid partition:
1816 		 *   delmask = newmask & parent->effective_xcpus
1817 		 */
1818 		if (is_prs_invalid(old_prs)) {
1819 			adding = false;
1820 			deleting = cpumask_and(tmp->delmask,
1821 					newmask, parent->effective_xcpus);
1822 		} else {
1823 			cpumask_andnot(tmp->addmask, xcpus, newmask);
1824 			adding = cpumask_and(tmp->addmask, tmp->addmask,
1825 					     parent->effective_xcpus);
1826 
1827 			cpumask_andnot(tmp->delmask, newmask, xcpus);
1828 			deleting = cpumask_and(tmp->delmask, tmp->delmask,
1829 					       parent->effective_xcpus);
1830 		}
1831 		/*
1832 		 * Make partition invalid if parent's effective_cpus could
1833 		 * become empty and there are tasks in the parent.
1834 		 */
1835 		if (nocpu && (!adding ||
1836 		    !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
1837 			part_error = PERR_NOCPUS;
1838 			deleting = false;
1839 			adding = cpumask_and(tmp->addmask,
1840 					     xcpus, parent->effective_xcpus);
1841 		}
1842 	} else {
1843 		/*
1844 		 * partcmd_update w/o newmask
1845 		 *
1846 		 * delmask = effective_xcpus & parent->effective_cpus
1847 		 *
1848 		 * This can be called from:
1849 		 * 1) update_cpumasks_hier()
1850 		 * 2) cpuset_hotplug_update_tasks()
1851 		 *
1852 		 * Check to see if it can be transitioned from valid to
1853 		 * invalid partition or vice versa.
1854 		 *
1855 		 * A partition error happens when parent has tasks and all
1856 		 * its effective CPUs will have to be distributed out.
1857 		 */
1858 		WARN_ON_ONCE(!is_partition_valid(parent));
1859 		if (nocpu) {
1860 			part_error = PERR_NOCPUS;
1861 			if (is_partition_valid(cs))
1862 				adding = cpumask_and(tmp->addmask,
1863 						xcpus, parent->effective_xcpus);
1864 		} else if (is_partition_invalid(cs) &&
1865 			   cpumask_subset(xcpus, parent->effective_xcpus)) {
1866 			struct cgroup_subsys_state *css;
1867 			struct cpuset *child;
1868 			bool exclusive = true;
1869 
1870 			/*
1871 			 * Convert invalid partition to valid has to
1872 			 * pass the cpu exclusivity test.
1873 			 */
1874 			rcu_read_lock();
1875 			cpuset_for_each_child(child, css, parent) {
1876 				if (child == cs)
1877 					continue;
1878 				if (!cpusets_are_exclusive(cs, child)) {
1879 					exclusive = false;
1880 					break;
1881 				}
1882 			}
1883 			rcu_read_unlock();
1884 			if (exclusive)
1885 				deleting = cpumask_and(tmp->delmask,
1886 						xcpus, parent->effective_cpus);
1887 			else
1888 				part_error = PERR_NOTEXCL;
1889 		}
1890 	}
1891 
1892 write_error:
1893 	if (part_error)
1894 		WRITE_ONCE(cs->prs_err, part_error);
1895 
1896 	if (cmd == partcmd_update) {
1897 		/*
1898 		 * Check for possible transition between valid and invalid
1899 		 * partition root.
1900 		 */
1901 		switch (cs->partition_root_state) {
1902 		case PRS_ROOT:
1903 		case PRS_ISOLATED:
1904 			if (part_error) {
1905 				new_prs = -old_prs;
1906 				subparts_delta--;
1907 			}
1908 			break;
1909 		case PRS_INVALID_ROOT:
1910 		case PRS_INVALID_ISOLATED:
1911 			if (!part_error) {
1912 				new_prs = -old_prs;
1913 				subparts_delta++;
1914 			}
1915 			break;
1916 		}
1917 	}
1918 
1919 	if (!adding && !deleting && (new_prs == old_prs))
1920 		return 0;
1921 
1922 	/*
1923 	 * Transitioning between invalid to valid or vice versa may require
1924 	 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
1925 	 * validate_change() has already been successfully called and
1926 	 * CPU lists in cs haven't been updated yet. So defer it to later.
1927 	 */
1928 	if ((old_prs != new_prs) && (cmd != partcmd_update))  {
1929 		int err = update_partition_exclusive(cs, new_prs);
1930 
1931 		if (err)
1932 			return err;
1933 	}
1934 
1935 	/*
1936 	 * Change the parent's effective_cpus & effective_xcpus (top cpuset
1937 	 * only).
1938 	 *
1939 	 * Newly added CPUs will be removed from effective_cpus and
1940 	 * newly deleted ones will be added back to effective_cpus.
1941 	 */
1942 	spin_lock_irq(&callback_lock);
1943 	if (adding) {
1944 		if (parent == &top_cpuset)
1945 			cpumask_andnot(subpartitions_cpus,
1946 				       subpartitions_cpus, tmp->addmask);
1947 		/*
1948 		 * Some of the CPUs in effective_xcpus might have been offlined.
1949 		 */
1950 		cpumask_or(parent->effective_cpus,
1951 			   parent->effective_cpus, tmp->addmask);
1952 		cpumask_and(parent->effective_cpus,
1953 			    parent->effective_cpus, cpu_active_mask);
1954 	}
1955 	if (deleting) {
1956 		if (parent == &top_cpuset)
1957 			cpumask_or(subpartitions_cpus,
1958 				   subpartitions_cpus, tmp->delmask);
1959 		cpumask_andnot(parent->effective_cpus,
1960 			       parent->effective_cpus, tmp->delmask);
1961 	}
1962 
1963 	if (is_partition_valid(parent)) {
1964 		parent->nr_subparts += subparts_delta;
1965 		WARN_ON_ONCE(parent->nr_subparts < 0);
1966 	}
1967 
1968 	if (old_prs != new_prs) {
1969 		cs->partition_root_state = new_prs;
1970 		if (new_prs <= 0)
1971 			cs->nr_subparts = 0;
1972 	}
1973 
1974 	spin_unlock_irq(&callback_lock);
1975 
1976 	if ((old_prs != new_prs) && (cmd == partcmd_update))
1977 		update_partition_exclusive(cs, new_prs);
1978 
1979 	if (adding || deleting) {
1980 		update_tasks_cpumask(parent, tmp->addmask);
1981 		update_sibling_cpumasks(parent, cs, tmp);
1982 	}
1983 
1984 	/*
1985 	 * For partcmd_update without newmask, it is being called from
1986 	 * cpuset_hotplug_workfn() where cpus_read_lock() wasn't taken.
1987 	 * Update the load balance flag and scheduling domain if
1988 	 * cpus_read_trylock() is successful.
1989 	 */
1990 	if ((cmd == partcmd_update) && !newmask && cpus_read_trylock()) {
1991 		update_partition_sd_lb(cs, old_prs);
1992 		cpus_read_unlock();
1993 	}
1994 
1995 	notify_partition_change(cs, old_prs);
1996 	return 0;
1997 }
1998 
1999 /**
2000  * compute_partition_effective_cpumask - compute effective_cpus for partition
2001  * @cs: partition root cpuset
2002  * @new_ecpus: previously computed effective_cpus to be updated
2003  *
2004  * Compute the effective_cpus of a partition root by scanning effective_xcpus
2005  * of child partition roots and excluding their effective_xcpus.
2006  *
2007  * This has the side effect of invalidating valid child partition roots,
2008  * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
2009  * or update_cpumasks_hier() where parent and children are modified
2010  * successively, we don't need to call update_parent_effective_cpumask()
2011  * and the child's effective_cpus will be updated in later iterations.
2012  *
2013  * Note that rcu_read_lock() is assumed to be held.
2014  */
2015 static void compute_partition_effective_cpumask(struct cpuset *cs,
2016 						struct cpumask *new_ecpus)
2017 {
2018 	struct cgroup_subsys_state *css;
2019 	struct cpuset *child;
2020 	bool populated = partition_is_populated(cs, NULL);
2021 
2022 	/*
2023 	 * Check child partition roots to see if they should be
2024 	 * invalidated when
2025 	 *  1) child effective_xcpus not a subset of new
2026 	 *     excluisve_cpus
2027 	 *  2) All the effective_cpus will be used up and cp
2028 	 *     has tasks
2029 	 */
2030 	compute_effective_exclusive_cpumask(cs, new_ecpus);
2031 	cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
2032 
2033 	rcu_read_lock();
2034 	cpuset_for_each_child(child, css, cs) {
2035 		if (!is_partition_valid(child))
2036 			continue;
2037 
2038 		child->prs_err = 0;
2039 		if (!cpumask_subset(child->effective_xcpus,
2040 				    cs->effective_xcpus))
2041 			child->prs_err = PERR_INVCPUS;
2042 		else if (populated &&
2043 			 cpumask_subset(new_ecpus, child->effective_xcpus))
2044 			child->prs_err = PERR_NOCPUS;
2045 
2046 		if (child->prs_err) {
2047 			int old_prs = child->partition_root_state;
2048 
2049 			/*
2050 			 * Invalidate child partition
2051 			 */
2052 			spin_lock_irq(&callback_lock);
2053 			make_partition_invalid(child);
2054 			cs->nr_subparts--;
2055 			child->nr_subparts = 0;
2056 			spin_unlock_irq(&callback_lock);
2057 			notify_partition_change(child, old_prs);
2058 			continue;
2059 		}
2060 		cpumask_andnot(new_ecpus, new_ecpus,
2061 			       child->effective_xcpus);
2062 	}
2063 	rcu_read_unlock();
2064 }
2065 
2066 /*
2067  * update_cpumasks_hier() flags
2068  */
2069 #define HIER_CHECKALL		0x01	/* Check all cpusets with no skipping */
2070 #define HIER_NO_SD_REBUILD	0x02	/* Don't rebuild sched domains */
2071 
2072 /*
2073  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
2074  * @cs:  the cpuset to consider
2075  * @tmp: temp variables for calculating effective_cpus & partition setup
2076  * @force: don't skip any descendant cpusets if set
2077  *
2078  * When configured cpumask is changed, the effective cpumasks of this cpuset
2079  * and all its descendants need to be updated.
2080  *
2081  * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
2082  *
2083  * Called with cpuset_mutex held
2084  */
2085 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
2086 				 int flags)
2087 {
2088 	struct cpuset *cp;
2089 	struct cgroup_subsys_state *pos_css;
2090 	bool need_rebuild_sched_domains = false;
2091 	int old_prs, new_prs;
2092 
2093 	rcu_read_lock();
2094 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2095 		struct cpuset *parent = parent_cs(cp);
2096 		bool remote = is_remote_partition(cp);
2097 		bool update_parent = false;
2098 
2099 		/*
2100 		 * Skip descendent remote partition that acquires CPUs
2101 		 * directly from top cpuset unless it is cs.
2102 		 */
2103 		if (remote && (cp != cs)) {
2104 			pos_css = css_rightmost_descendant(pos_css);
2105 			continue;
2106 		}
2107 
2108 		/*
2109 		 * Update effective_xcpus if exclusive_cpus set.
2110 		 * The case when exclusive_cpus isn't set is handled later.
2111 		 */
2112 		if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) {
2113 			spin_lock_irq(&callback_lock);
2114 			compute_effective_exclusive_cpumask(cp, NULL);
2115 			spin_unlock_irq(&callback_lock);
2116 		}
2117 
2118 		old_prs = new_prs = cp->partition_root_state;
2119 		if (remote || (is_partition_valid(parent) &&
2120 			       is_partition_valid(cp)))
2121 			compute_partition_effective_cpumask(cp, tmp->new_cpus);
2122 		else
2123 			compute_effective_cpumask(tmp->new_cpus, cp, parent);
2124 
2125 		/*
2126 		 * A partition with no effective_cpus is allowed as long as
2127 		 * there is no task associated with it. Call
2128 		 * update_parent_effective_cpumask() to check it.
2129 		 */
2130 		if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
2131 			update_parent = true;
2132 			goto update_parent_effective;
2133 		}
2134 
2135 		/*
2136 		 * If it becomes empty, inherit the effective mask of the
2137 		 * parent, which is guaranteed to have some CPUs unless
2138 		 * it is a partition root that has explicitly distributed
2139 		 * out all its CPUs.
2140 		 */
2141 		if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) {
2142 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2143 			if (!cp->use_parent_ecpus) {
2144 				cp->use_parent_ecpus = true;
2145 				parent->child_ecpus_count++;
2146 			}
2147 		} else if (cp->use_parent_ecpus) {
2148 			cp->use_parent_ecpus = false;
2149 			WARN_ON_ONCE(!parent->child_ecpus_count);
2150 			parent->child_ecpus_count--;
2151 		}
2152 
2153 		if (remote)
2154 			goto get_css;
2155 
2156 		/*
2157 		 * Skip the whole subtree if
2158 		 * 1) the cpumask remains the same,
2159 		 * 2) has no partition root state,
2160 		 * 3) HIER_CHECKALL flag not set, and
2161 		 * 4) for v2 load balance state same as its parent.
2162 		 */
2163 		if (!cp->partition_root_state && !(flags & HIER_CHECKALL) &&
2164 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2165 		    (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
2166 		    (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2167 			pos_css = css_rightmost_descendant(pos_css);
2168 			continue;
2169 		}
2170 
2171 update_parent_effective:
2172 		/*
2173 		 * update_parent_effective_cpumask() should have been called
2174 		 * for cs already in update_cpumask(). We should also call
2175 		 * update_tasks_cpumask() again for tasks in the parent
2176 		 * cpuset if the parent's effective_cpus changes.
2177 		 */
2178 		if ((cp != cs) && old_prs) {
2179 			switch (parent->partition_root_state) {
2180 			case PRS_ROOT:
2181 			case PRS_ISOLATED:
2182 				update_parent = true;
2183 				break;
2184 
2185 			default:
2186 				/*
2187 				 * When parent is not a partition root or is
2188 				 * invalid, child partition roots become
2189 				 * invalid too.
2190 				 */
2191 				if (is_partition_valid(cp))
2192 					new_prs = -cp->partition_root_state;
2193 				WRITE_ONCE(cp->prs_err,
2194 					   is_partition_invalid(parent)
2195 					   ? PERR_INVPARENT : PERR_NOTPART);
2196 				break;
2197 			}
2198 		}
2199 get_css:
2200 		if (!css_tryget_online(&cp->css))
2201 			continue;
2202 		rcu_read_unlock();
2203 
2204 		if (update_parent) {
2205 			update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
2206 			/*
2207 			 * The cpuset partition_root_state may become
2208 			 * invalid. Capture it.
2209 			 */
2210 			new_prs = cp->partition_root_state;
2211 		}
2212 
2213 		spin_lock_irq(&callback_lock);
2214 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2215 		cp->partition_root_state = new_prs;
2216 		/*
2217 		 * Make sure effective_xcpus is properly set for a valid
2218 		 * partition root.
2219 		 */
2220 		if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2221 			cpumask_and(cp->effective_xcpus,
2222 				    cp->cpus_allowed, parent->effective_xcpus);
2223 		else if (new_prs < 0)
2224 			reset_partition_data(cp);
2225 		spin_unlock_irq(&callback_lock);
2226 
2227 		notify_partition_change(cp, old_prs);
2228 
2229 		WARN_ON(!is_in_v2_mode() &&
2230 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2231 
2232 		update_tasks_cpumask(cp, cp->effective_cpus);
2233 
2234 		/*
2235 		 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2236 		 * from parent if current cpuset isn't a valid partition root
2237 		 * and their load balance states differ.
2238 		 */
2239 		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2240 		    !is_partition_valid(cp) &&
2241 		    (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2242 			if (is_sched_load_balance(parent))
2243 				set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2244 			else
2245 				clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2246 		}
2247 
2248 		/*
2249 		 * On legacy hierarchy, if the effective cpumask of any non-
2250 		 * empty cpuset is changed, we need to rebuild sched domains.
2251 		 * On default hierarchy, the cpuset needs to be a partition
2252 		 * root as well.
2253 		 */
2254 		if (!cpumask_empty(cp->cpus_allowed) &&
2255 		    is_sched_load_balance(cp) &&
2256 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
2257 		    is_partition_valid(cp)))
2258 			need_rebuild_sched_domains = true;
2259 
2260 		rcu_read_lock();
2261 		css_put(&cp->css);
2262 	}
2263 	rcu_read_unlock();
2264 
2265 	if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD))
2266 		rebuild_sched_domains_locked();
2267 }
2268 
2269 /**
2270  * update_sibling_cpumasks - Update siblings cpumasks
2271  * @parent:  Parent cpuset
2272  * @cs:      Current cpuset
2273  * @tmp:     Temp variables
2274  */
2275 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2276 				    struct tmpmasks *tmp)
2277 {
2278 	struct cpuset *sibling;
2279 	struct cgroup_subsys_state *pos_css;
2280 
2281 	lockdep_assert_held(&cpuset_mutex);
2282 
2283 	/*
2284 	 * Check all its siblings and call update_cpumasks_hier()
2285 	 * if their effective_cpus will need to be changed.
2286 	 *
2287 	 * With the addition of effective_xcpus which is a subset of
2288 	 * cpus_allowed. It is possible a change in parent's effective_cpus
2289 	 * due to a change in a child partition's effective_xcpus will impact
2290 	 * its siblings even if they do not inherit parent's effective_cpus
2291 	 * directly.
2292 	 *
2293 	 * The update_cpumasks_hier() function may sleep. So we have to
2294 	 * release the RCU read lock before calling it. HIER_NO_SD_REBUILD
2295 	 * flag is used to suppress rebuild of sched domains as the callers
2296 	 * will take care of that.
2297 	 */
2298 	rcu_read_lock();
2299 	cpuset_for_each_child(sibling, pos_css, parent) {
2300 		if (sibling == cs)
2301 			continue;
2302 		if (!sibling->use_parent_ecpus &&
2303 		    !is_partition_valid(sibling)) {
2304 			compute_effective_cpumask(tmp->new_cpus, sibling,
2305 						  parent);
2306 			if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2307 				continue;
2308 		}
2309 		if (!css_tryget_online(&sibling->css))
2310 			continue;
2311 
2312 		rcu_read_unlock();
2313 		update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD);
2314 		rcu_read_lock();
2315 		css_put(&sibling->css);
2316 	}
2317 	rcu_read_unlock();
2318 }
2319 
2320 /**
2321  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2322  * @cs: the cpuset to consider
2323  * @trialcs: trial cpuset
2324  * @buf: buffer of cpu numbers written to this cpuset
2325  */
2326 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2327 			  const char *buf)
2328 {
2329 	int retval;
2330 	struct tmpmasks tmp;
2331 	struct cpuset *parent = parent_cs(cs);
2332 	bool invalidate = false;
2333 	int hier_flags = 0;
2334 	int old_prs = cs->partition_root_state;
2335 
2336 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
2337 	if (cs == &top_cpuset)
2338 		return -EACCES;
2339 
2340 	/*
2341 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
2342 	 * Since cpulist_parse() fails on an empty mask, we special case
2343 	 * that parsing.  The validate_change() call ensures that cpusets
2344 	 * with tasks have cpus.
2345 	 */
2346 	if (!*buf) {
2347 		cpumask_clear(trialcs->cpus_allowed);
2348 		cpumask_clear(trialcs->effective_xcpus);
2349 	} else {
2350 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
2351 		if (retval < 0)
2352 			return retval;
2353 
2354 		if (!cpumask_subset(trialcs->cpus_allowed,
2355 				    top_cpuset.cpus_allowed))
2356 			return -EINVAL;
2357 
2358 		/*
2359 		 * When exclusive_cpus isn't explicitly set, it is constrainted
2360 		 * by cpus_allowed and parent's effective_xcpus. Otherwise,
2361 		 * trialcs->effective_xcpus is used as a temporary cpumask
2362 		 * for checking validity of the partition root.
2363 		 */
2364 		if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs))
2365 			compute_effective_exclusive_cpumask(trialcs, NULL);
2366 	}
2367 
2368 	/* Nothing to do if the cpus didn't change */
2369 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2370 		return 0;
2371 
2372 	if (alloc_cpumasks(NULL, &tmp))
2373 		return -ENOMEM;
2374 
2375 	if (old_prs) {
2376 		if (is_partition_valid(cs) &&
2377 		    cpumask_empty(trialcs->effective_xcpus)) {
2378 			invalidate = true;
2379 			cs->prs_err = PERR_INVCPUS;
2380 		} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2381 			invalidate = true;
2382 			cs->prs_err = PERR_HKEEPING;
2383 		} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2384 			invalidate = true;
2385 			cs->prs_err = PERR_NOCPUS;
2386 		}
2387 	}
2388 
2389 	/*
2390 	 * Check all the descendants in update_cpumasks_hier() if
2391 	 * effective_xcpus is to be changed.
2392 	 */
2393 	if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
2394 		hier_flags = HIER_CHECKALL;
2395 
2396 	retval = validate_change(cs, trialcs);
2397 
2398 	if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2399 		struct cgroup_subsys_state *css;
2400 		struct cpuset *cp;
2401 
2402 		/*
2403 		 * The -EINVAL error code indicates that partition sibling
2404 		 * CPU exclusivity rule has been violated. We still allow
2405 		 * the cpumask change to proceed while invalidating the
2406 		 * partition. However, any conflicting sibling partitions
2407 		 * have to be marked as invalid too.
2408 		 */
2409 		invalidate = true;
2410 		rcu_read_lock();
2411 		cpuset_for_each_child(cp, css, parent) {
2412 			struct cpumask *xcpus = fetch_xcpus(trialcs);
2413 
2414 			if (is_partition_valid(cp) &&
2415 			    cpumask_intersects(xcpus, cp->effective_xcpus)) {
2416 				rcu_read_unlock();
2417 				update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp);
2418 				rcu_read_lock();
2419 			}
2420 		}
2421 		rcu_read_unlock();
2422 		retval = 0;
2423 	}
2424 
2425 	if (retval < 0)
2426 		goto out_free;
2427 
2428 	if (is_partition_valid(cs) ||
2429 	   (is_partition_invalid(cs) && !invalidate)) {
2430 		struct cpumask *xcpus = trialcs->effective_xcpus;
2431 
2432 		if (cpumask_empty(xcpus) && is_partition_invalid(cs))
2433 			xcpus = trialcs->cpus_allowed;
2434 
2435 		/*
2436 		 * Call remote_cpus_update() to handle valid remote partition
2437 		 */
2438 		if (is_remote_partition(cs))
2439 			remote_cpus_update(cs, xcpus, &tmp);
2440 		else if (invalidate)
2441 			update_parent_effective_cpumask(cs, partcmd_invalidate,
2442 							NULL, &tmp);
2443 		else
2444 			update_parent_effective_cpumask(cs, partcmd_update,
2445 							xcpus, &tmp);
2446 	} else if (!cpumask_empty(cs->exclusive_cpus)) {
2447 		/*
2448 		 * Use trialcs->effective_cpus as a temp cpumask
2449 		 */
2450 		remote_partition_check(cs, trialcs->effective_xcpus,
2451 				       trialcs->effective_cpus, &tmp);
2452 	}
2453 
2454 	spin_lock_irq(&callback_lock);
2455 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2456 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2457 	if ((old_prs > 0) && !is_partition_valid(cs))
2458 		reset_partition_data(cs);
2459 	spin_unlock_irq(&callback_lock);
2460 
2461 	/* effective_cpus/effective_xcpus will be updated here */
2462 	update_cpumasks_hier(cs, &tmp, hier_flags);
2463 
2464 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2465 	if (cs->partition_root_state)
2466 		update_partition_sd_lb(cs, old_prs);
2467 out_free:
2468 	free_cpumasks(NULL, &tmp);
2469 	return 0;
2470 }
2471 
2472 /**
2473  * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2474  * @cs: the cpuset to consider
2475  * @trialcs: trial cpuset
2476  * @buf: buffer of cpu numbers written to this cpuset
2477  *
2478  * The tasks' cpumask will be updated if cs is a valid partition root.
2479  */
2480 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2481 				    const char *buf)
2482 {
2483 	int retval;
2484 	struct tmpmasks tmp;
2485 	struct cpuset *parent = parent_cs(cs);
2486 	bool invalidate = false;
2487 	int hier_flags = 0;
2488 	int old_prs = cs->partition_root_state;
2489 
2490 	if (!*buf) {
2491 		cpumask_clear(trialcs->exclusive_cpus);
2492 		cpumask_clear(trialcs->effective_xcpus);
2493 	} else {
2494 		retval = cpulist_parse(buf, trialcs->exclusive_cpus);
2495 		if (retval < 0)
2496 			return retval;
2497 		if (!is_cpu_exclusive(cs))
2498 			set_bit(CS_CPU_EXCLUSIVE, &trialcs->flags);
2499 	}
2500 
2501 	/* Nothing to do if the CPUs didn't change */
2502 	if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2503 		return 0;
2504 
2505 	if (alloc_cpumasks(NULL, &tmp))
2506 		return -ENOMEM;
2507 
2508 	if (*buf)
2509 		compute_effective_exclusive_cpumask(trialcs, NULL);
2510 
2511 	/*
2512 	 * Check all the descendants in update_cpumasks_hier() if
2513 	 * effective_xcpus is to be changed.
2514 	 */
2515 	if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
2516 		hier_flags = HIER_CHECKALL;
2517 
2518 	retval = validate_change(cs, trialcs);
2519 	if (retval)
2520 		return retval;
2521 
2522 	if (old_prs) {
2523 		if (cpumask_empty(trialcs->effective_xcpus)) {
2524 			invalidate = true;
2525 			cs->prs_err = PERR_INVCPUS;
2526 		} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2527 			invalidate = true;
2528 			cs->prs_err = PERR_HKEEPING;
2529 		} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2530 			invalidate = true;
2531 			cs->prs_err = PERR_NOCPUS;
2532 		}
2533 
2534 		if (is_remote_partition(cs)) {
2535 			if (invalidate)
2536 				remote_partition_disable(cs, &tmp);
2537 			else
2538 				remote_cpus_update(cs, trialcs->effective_xcpus,
2539 						   &tmp);
2540 		} else if (invalidate) {
2541 			update_parent_effective_cpumask(cs, partcmd_invalidate,
2542 							NULL, &tmp);
2543 		} else {
2544 			update_parent_effective_cpumask(cs, partcmd_update,
2545 						trialcs->effective_xcpus, &tmp);
2546 		}
2547 	} else if (!cpumask_empty(trialcs->exclusive_cpus)) {
2548 		/*
2549 		 * Use trialcs->effective_cpus as a temp cpumask
2550 		 */
2551 		remote_partition_check(cs, trialcs->effective_xcpus,
2552 				       trialcs->effective_cpus, &tmp);
2553 	}
2554 	spin_lock_irq(&callback_lock);
2555 	cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2556 	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2557 	if ((old_prs > 0) && !is_partition_valid(cs))
2558 		reset_partition_data(cs);
2559 	spin_unlock_irq(&callback_lock);
2560 
2561 	/*
2562 	 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2563 	 * of the subtree when it is a valid partition root or effective_xcpus
2564 	 * is updated.
2565 	 */
2566 	if (is_partition_valid(cs) || hier_flags)
2567 		update_cpumasks_hier(cs, &tmp, hier_flags);
2568 
2569 	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2570 	if (cs->partition_root_state)
2571 		update_partition_sd_lb(cs, old_prs);
2572 
2573 	free_cpumasks(NULL, &tmp);
2574 	return 0;
2575 }
2576 
2577 /*
2578  * Migrate memory region from one set of nodes to another.  This is
2579  * performed asynchronously as it can be called from process migration path
2580  * holding locks involved in process management.  All mm migrations are
2581  * performed in the queued order and can be waited for by flushing
2582  * cpuset_migrate_mm_wq.
2583  */
2584 
2585 struct cpuset_migrate_mm_work {
2586 	struct work_struct	work;
2587 	struct mm_struct	*mm;
2588 	nodemask_t		from;
2589 	nodemask_t		to;
2590 };
2591 
2592 static void cpuset_migrate_mm_workfn(struct work_struct *work)
2593 {
2594 	struct cpuset_migrate_mm_work *mwork =
2595 		container_of(work, struct cpuset_migrate_mm_work, work);
2596 
2597 	/* on a wq worker, no need to worry about %current's mems_allowed */
2598 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2599 	mmput(mwork->mm);
2600 	kfree(mwork);
2601 }
2602 
2603 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2604 							const nodemask_t *to)
2605 {
2606 	struct cpuset_migrate_mm_work *mwork;
2607 
2608 	if (nodes_equal(*from, *to)) {
2609 		mmput(mm);
2610 		return;
2611 	}
2612 
2613 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2614 	if (mwork) {
2615 		mwork->mm = mm;
2616 		mwork->from = *from;
2617 		mwork->to = *to;
2618 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2619 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
2620 	} else {
2621 		mmput(mm);
2622 	}
2623 }
2624 
2625 static void cpuset_post_attach(void)
2626 {
2627 	flush_workqueue(cpuset_migrate_mm_wq);
2628 }
2629 
2630 /*
2631  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2632  * @tsk: the task to change
2633  * @newmems: new nodes that the task will be set
2634  *
2635  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2636  * and rebind an eventual tasks' mempolicy. If the task is allocating in
2637  * parallel, it might temporarily see an empty intersection, which results in
2638  * a seqlock check and retry before OOM or allocation failure.
2639  */
2640 static void cpuset_change_task_nodemask(struct task_struct *tsk,
2641 					nodemask_t *newmems)
2642 {
2643 	task_lock(tsk);
2644 
2645 	local_irq_disable();
2646 	write_seqcount_begin(&tsk->mems_allowed_seq);
2647 
2648 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2649 	mpol_rebind_task(tsk, newmems);
2650 	tsk->mems_allowed = *newmems;
2651 
2652 	write_seqcount_end(&tsk->mems_allowed_seq);
2653 	local_irq_enable();
2654 
2655 	task_unlock(tsk);
2656 }
2657 
2658 static void *cpuset_being_rebound;
2659 
2660 /**
2661  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2662  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2663  *
2664  * Iterate through each task of @cs updating its mems_allowed to the
2665  * effective cpuset's.  As this function is called with cpuset_mutex held,
2666  * cpuset membership stays stable.
2667  */
2668 static void update_tasks_nodemask(struct cpuset *cs)
2669 {
2670 	static nodemask_t newmems;	/* protected by cpuset_mutex */
2671 	struct css_task_iter it;
2672 	struct task_struct *task;
2673 
2674 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
2675 
2676 	guarantee_online_mems(cs, &newmems);
2677 
2678 	/*
2679 	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2680 	 * take while holding tasklist_lock.  Forks can happen - the
2681 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
2682 	 * and rebind their vma mempolicies too.  Because we still hold
2683 	 * the global cpuset_mutex, we know that no other rebind effort
2684 	 * will be contending for the global variable cpuset_being_rebound.
2685 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2686 	 * is idempotent.  Also migrate pages in each mm to new nodes.
2687 	 */
2688 	css_task_iter_start(&cs->css, 0, &it);
2689 	while ((task = css_task_iter_next(&it))) {
2690 		struct mm_struct *mm;
2691 		bool migrate;
2692 
2693 		cpuset_change_task_nodemask(task, &newmems);
2694 
2695 		mm = get_task_mm(task);
2696 		if (!mm)
2697 			continue;
2698 
2699 		migrate = is_memory_migrate(cs);
2700 
2701 		mpol_rebind_mm(mm, &cs->mems_allowed);
2702 		if (migrate)
2703 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2704 		else
2705 			mmput(mm);
2706 	}
2707 	css_task_iter_end(&it);
2708 
2709 	/*
2710 	 * All the tasks' nodemasks have been updated, update
2711 	 * cs->old_mems_allowed.
2712 	 */
2713 	cs->old_mems_allowed = newmems;
2714 
2715 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2716 	cpuset_being_rebound = NULL;
2717 }
2718 
2719 /*
2720  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2721  * @cs: the cpuset to consider
2722  * @new_mems: a temp variable for calculating new effective_mems
2723  *
2724  * When configured nodemask is changed, the effective nodemasks of this cpuset
2725  * and all its descendants need to be updated.
2726  *
2727  * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2728  *
2729  * Called with cpuset_mutex held
2730  */
2731 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2732 {
2733 	struct cpuset *cp;
2734 	struct cgroup_subsys_state *pos_css;
2735 
2736 	rcu_read_lock();
2737 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2738 		struct cpuset *parent = parent_cs(cp);
2739 
2740 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2741 
2742 		/*
2743 		 * If it becomes empty, inherit the effective mask of the
2744 		 * parent, which is guaranteed to have some MEMs.
2745 		 */
2746 		if (is_in_v2_mode() && nodes_empty(*new_mems))
2747 			*new_mems = parent->effective_mems;
2748 
2749 		/* Skip the whole subtree if the nodemask remains the same. */
2750 		if (nodes_equal(*new_mems, cp->effective_mems)) {
2751 			pos_css = css_rightmost_descendant(pos_css);
2752 			continue;
2753 		}
2754 
2755 		if (!css_tryget_online(&cp->css))
2756 			continue;
2757 		rcu_read_unlock();
2758 
2759 		spin_lock_irq(&callback_lock);
2760 		cp->effective_mems = *new_mems;
2761 		spin_unlock_irq(&callback_lock);
2762 
2763 		WARN_ON(!is_in_v2_mode() &&
2764 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2765 
2766 		update_tasks_nodemask(cp);
2767 
2768 		rcu_read_lock();
2769 		css_put(&cp->css);
2770 	}
2771 	rcu_read_unlock();
2772 }
2773 
2774 /*
2775  * Handle user request to change the 'mems' memory placement
2776  * of a cpuset.  Needs to validate the request, update the
2777  * cpusets mems_allowed, and for each task in the cpuset,
2778  * update mems_allowed and rebind task's mempolicy and any vma
2779  * mempolicies and if the cpuset is marked 'memory_migrate',
2780  * migrate the tasks pages to the new memory.
2781  *
2782  * Call with cpuset_mutex held. May take callback_lock during call.
2783  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2784  * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2785  * their mempolicies to the cpusets new mems_allowed.
2786  */
2787 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2788 			   const char *buf)
2789 {
2790 	int retval;
2791 
2792 	/*
2793 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2794 	 * it's read-only
2795 	 */
2796 	if (cs == &top_cpuset) {
2797 		retval = -EACCES;
2798 		goto done;
2799 	}
2800 
2801 	/*
2802 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2803 	 * Since nodelist_parse() fails on an empty mask, we special case
2804 	 * that parsing.  The validate_change() call ensures that cpusets
2805 	 * with tasks have memory.
2806 	 */
2807 	if (!*buf) {
2808 		nodes_clear(trialcs->mems_allowed);
2809 	} else {
2810 		retval = nodelist_parse(buf, trialcs->mems_allowed);
2811 		if (retval < 0)
2812 			goto done;
2813 
2814 		if (!nodes_subset(trialcs->mems_allowed,
2815 				  top_cpuset.mems_allowed)) {
2816 			retval = -EINVAL;
2817 			goto done;
2818 		}
2819 	}
2820 
2821 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2822 		retval = 0;		/* Too easy - nothing to do */
2823 		goto done;
2824 	}
2825 	retval = validate_change(cs, trialcs);
2826 	if (retval < 0)
2827 		goto done;
2828 
2829 	check_insane_mems_config(&trialcs->mems_allowed);
2830 
2831 	spin_lock_irq(&callback_lock);
2832 	cs->mems_allowed = trialcs->mems_allowed;
2833 	spin_unlock_irq(&callback_lock);
2834 
2835 	/* use trialcs->mems_allowed as a temp variable */
2836 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2837 done:
2838 	return retval;
2839 }
2840 
2841 bool current_cpuset_is_being_rebound(void)
2842 {
2843 	bool ret;
2844 
2845 	rcu_read_lock();
2846 	ret = task_cs(current) == cpuset_being_rebound;
2847 	rcu_read_unlock();
2848 
2849 	return ret;
2850 }
2851 
2852 static int update_relax_domain_level(struct cpuset *cs, s64 val)
2853 {
2854 #ifdef CONFIG_SMP
2855 	if (val < -1 || val >= sched_domain_level_max)
2856 		return -EINVAL;
2857 #endif
2858 
2859 	if (val != cs->relax_domain_level) {
2860 		cs->relax_domain_level = val;
2861 		if (!cpumask_empty(cs->cpus_allowed) &&
2862 		    is_sched_load_balance(cs))
2863 			rebuild_sched_domains_locked();
2864 	}
2865 
2866 	return 0;
2867 }
2868 
2869 /**
2870  * update_tasks_flags - update the spread flags of tasks in the cpuset.
2871  * @cs: the cpuset in which each task's spread flags needs to be changed
2872  *
2873  * Iterate through each task of @cs updating its spread flags.  As this
2874  * function is called with cpuset_mutex held, cpuset membership stays
2875  * stable.
2876  */
2877 static void update_tasks_flags(struct cpuset *cs)
2878 {
2879 	struct css_task_iter it;
2880 	struct task_struct *task;
2881 
2882 	css_task_iter_start(&cs->css, 0, &it);
2883 	while ((task = css_task_iter_next(&it)))
2884 		cpuset_update_task_spread_flags(cs, task);
2885 	css_task_iter_end(&it);
2886 }
2887 
2888 /*
2889  * update_flag - read a 0 or a 1 in a file and update associated flag
2890  * bit:		the bit to update (see cpuset_flagbits_t)
2891  * cs:		the cpuset to update
2892  * turning_on: 	whether the flag is being set or cleared
2893  *
2894  * Call with cpuset_mutex held.
2895  */
2896 
2897 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2898 		       int turning_on)
2899 {
2900 	struct cpuset *trialcs;
2901 	int balance_flag_changed;
2902 	int spread_flag_changed;
2903 	int err;
2904 
2905 	trialcs = alloc_trial_cpuset(cs);
2906 	if (!trialcs)
2907 		return -ENOMEM;
2908 
2909 	if (turning_on)
2910 		set_bit(bit, &trialcs->flags);
2911 	else
2912 		clear_bit(bit, &trialcs->flags);
2913 
2914 	err = validate_change(cs, trialcs);
2915 	if (err < 0)
2916 		goto out;
2917 
2918 	balance_flag_changed = (is_sched_load_balance(cs) !=
2919 				is_sched_load_balance(trialcs));
2920 
2921 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2922 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
2923 
2924 	spin_lock_irq(&callback_lock);
2925 	cs->flags = trialcs->flags;
2926 	spin_unlock_irq(&callback_lock);
2927 
2928 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2929 		rebuild_sched_domains_locked();
2930 
2931 	if (spread_flag_changed)
2932 		update_tasks_flags(cs);
2933 out:
2934 	free_cpuset(trialcs);
2935 	return err;
2936 }
2937 
2938 /**
2939  * update_prstate - update partition_root_state
2940  * @cs: the cpuset to update
2941  * @new_prs: new partition root state
2942  * Return: 0 if successful, != 0 if error
2943  *
2944  * Call with cpuset_mutex held.
2945  */
2946 static int update_prstate(struct cpuset *cs, int new_prs)
2947 {
2948 	int err = PERR_NONE, old_prs = cs->partition_root_state;
2949 	struct cpuset *parent = parent_cs(cs);
2950 	struct tmpmasks tmpmask;
2951 
2952 	if (old_prs == new_prs)
2953 		return 0;
2954 
2955 	/*
2956 	 * Treat a previously invalid partition root as if it is a "member".
2957 	 */
2958 	if (new_prs && is_prs_invalid(old_prs))
2959 		old_prs = PRS_MEMBER;
2960 
2961 	if (alloc_cpumasks(NULL, &tmpmask))
2962 		return -ENOMEM;
2963 
2964 	/*
2965 	 * Setup effective_xcpus if not properly set yet, it will be cleared
2966 	 * later if partition becomes invalid.
2967 	 */
2968 	if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) {
2969 		spin_lock_irq(&callback_lock);
2970 		cpumask_and(cs->effective_xcpus,
2971 			    cs->cpus_allowed, parent->effective_xcpus);
2972 		spin_unlock_irq(&callback_lock);
2973 	}
2974 
2975 	err = update_partition_exclusive(cs, new_prs);
2976 	if (err)
2977 		goto out;
2978 
2979 	if (!old_prs) {
2980 		/*
2981 		 * cpus_allowed cannot be empty.
2982 		 */
2983 		if (cpumask_empty(cs->cpus_allowed)) {
2984 			err = PERR_CPUSEMPTY;
2985 			goto out;
2986 		}
2987 
2988 		err = update_parent_effective_cpumask(cs, partcmd_enable,
2989 						      NULL, &tmpmask);
2990 		/*
2991 		 * If an attempt to become local partition root fails,
2992 		 * try to become a remote partition root instead.
2993 		 */
2994 		if (err && remote_partition_enable(cs, &tmpmask))
2995 			err = 0;
2996 	} else if (old_prs && new_prs) {
2997 		/*
2998 		 * A change in load balance state only, no change in cpumasks.
2999 		 */
3000 		;
3001 	} else {
3002 		/*
3003 		 * Switching back to member is always allowed even if it
3004 		 * disables child partitions.
3005 		 */
3006 		if (is_remote_partition(cs))
3007 			remote_partition_disable(cs, &tmpmask);
3008 		else
3009 			update_parent_effective_cpumask(cs, partcmd_disable,
3010 							NULL, &tmpmask);
3011 
3012 		/*
3013 		 * Invalidation of child partitions will be done in
3014 		 * update_cpumasks_hier().
3015 		 */
3016 	}
3017 out:
3018 	/*
3019 	 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
3020 	 * happens.
3021 	 */
3022 	if (err) {
3023 		new_prs = -new_prs;
3024 		update_partition_exclusive(cs, new_prs);
3025 	}
3026 
3027 	spin_lock_irq(&callback_lock);
3028 	cs->partition_root_state = new_prs;
3029 	WRITE_ONCE(cs->prs_err, err);
3030 	if (!is_partition_valid(cs))
3031 		reset_partition_data(cs);
3032 	spin_unlock_irq(&callback_lock);
3033 
3034 	/* Force update if switching back to member */
3035 	update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0);
3036 
3037 	/* Update sched domains and load balance flag */
3038 	update_partition_sd_lb(cs, old_prs);
3039 
3040 	notify_partition_change(cs, old_prs);
3041 	free_cpumasks(NULL, &tmpmask);
3042 	return 0;
3043 }
3044 
3045 /*
3046  * Frequency meter - How fast is some event occurring?
3047  *
3048  * These routines manage a digitally filtered, constant time based,
3049  * event frequency meter.  There are four routines:
3050  *   fmeter_init() - initialize a frequency meter.
3051  *   fmeter_markevent() - called each time the event happens.
3052  *   fmeter_getrate() - returns the recent rate of such events.
3053  *   fmeter_update() - internal routine used to update fmeter.
3054  *
3055  * A common data structure is passed to each of these routines,
3056  * which is used to keep track of the state required to manage the
3057  * frequency meter and its digital filter.
3058  *
3059  * The filter works on the number of events marked per unit time.
3060  * The filter is single-pole low-pass recursive (IIR).  The time unit
3061  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
3062  * simulate 3 decimal digits of precision (multiplied by 1000).
3063  *
3064  * With an FM_COEF of 933, and a time base of 1 second, the filter
3065  * has a half-life of 10 seconds, meaning that if the events quit
3066  * happening, then the rate returned from the fmeter_getrate()
3067  * will be cut in half each 10 seconds, until it converges to zero.
3068  *
3069  * It is not worth doing a real infinitely recursive filter.  If more
3070  * than FM_MAXTICKS ticks have elapsed since the last filter event,
3071  * just compute FM_MAXTICKS ticks worth, by which point the level
3072  * will be stable.
3073  *
3074  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
3075  * arithmetic overflow in the fmeter_update() routine.
3076  *
3077  * Given the simple 32 bit integer arithmetic used, this meter works
3078  * best for reporting rates between one per millisecond (msec) and
3079  * one per 32 (approx) seconds.  At constant rates faster than one
3080  * per msec it maxes out at values just under 1,000,000.  At constant
3081  * rates between one per msec, and one per second it will stabilize
3082  * to a value N*1000, where N is the rate of events per second.
3083  * At constant rates between one per second and one per 32 seconds,
3084  * it will be choppy, moving up on the seconds that have an event,
3085  * and then decaying until the next event.  At rates slower than
3086  * about one in 32 seconds, it decays all the way back to zero between
3087  * each event.
3088  */
3089 
3090 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
3091 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
3092 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
3093 #define FM_SCALE 1000		/* faux fixed point scale */
3094 
3095 /* Initialize a frequency meter */
3096 static void fmeter_init(struct fmeter *fmp)
3097 {
3098 	fmp->cnt = 0;
3099 	fmp->val = 0;
3100 	fmp->time = 0;
3101 	spin_lock_init(&fmp->lock);
3102 }
3103 
3104 /* Internal meter update - process cnt events and update value */
3105 static void fmeter_update(struct fmeter *fmp)
3106 {
3107 	time64_t now;
3108 	u32 ticks;
3109 
3110 	now = ktime_get_seconds();
3111 	ticks = now - fmp->time;
3112 
3113 	if (ticks == 0)
3114 		return;
3115 
3116 	ticks = min(FM_MAXTICKS, ticks);
3117 	while (ticks-- > 0)
3118 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
3119 	fmp->time = now;
3120 
3121 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
3122 	fmp->cnt = 0;
3123 }
3124 
3125 /* Process any previous ticks, then bump cnt by one (times scale). */
3126 static void fmeter_markevent(struct fmeter *fmp)
3127 {
3128 	spin_lock(&fmp->lock);
3129 	fmeter_update(fmp);
3130 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
3131 	spin_unlock(&fmp->lock);
3132 }
3133 
3134 /* Process any previous ticks, then return current value. */
3135 static int fmeter_getrate(struct fmeter *fmp)
3136 {
3137 	int val;
3138 
3139 	spin_lock(&fmp->lock);
3140 	fmeter_update(fmp);
3141 	val = fmp->val;
3142 	spin_unlock(&fmp->lock);
3143 	return val;
3144 }
3145 
3146 static struct cpuset *cpuset_attach_old_cs;
3147 
3148 /*
3149  * Check to see if a cpuset can accept a new task
3150  * For v1, cpus_allowed and mems_allowed can't be empty.
3151  * For v2, effective_cpus can't be empty.
3152  * Note that in v1, effective_cpus = cpus_allowed.
3153  */
3154 static int cpuset_can_attach_check(struct cpuset *cs)
3155 {
3156 	if (cpumask_empty(cs->effective_cpus) ||
3157 	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
3158 		return -ENOSPC;
3159 	return 0;
3160 }
3161 
3162 static void reset_migrate_dl_data(struct cpuset *cs)
3163 {
3164 	cs->nr_migrate_dl_tasks = 0;
3165 	cs->sum_migrate_dl_bw = 0;
3166 }
3167 
3168 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
3169 static int cpuset_can_attach(struct cgroup_taskset *tset)
3170 {
3171 	struct cgroup_subsys_state *css;
3172 	struct cpuset *cs, *oldcs;
3173 	struct task_struct *task;
3174 	bool cpus_updated, mems_updated;
3175 	int ret;
3176 
3177 	/* used later by cpuset_attach() */
3178 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
3179 	oldcs = cpuset_attach_old_cs;
3180 	cs = css_cs(css);
3181 
3182 	mutex_lock(&cpuset_mutex);
3183 
3184 	/* Check to see if task is allowed in the cpuset */
3185 	ret = cpuset_can_attach_check(cs);
3186 	if (ret)
3187 		goto out_unlock;
3188 
3189 	cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
3190 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3191 
3192 	cgroup_taskset_for_each(task, css, tset) {
3193 		ret = task_can_attach(task);
3194 		if (ret)
3195 			goto out_unlock;
3196 
3197 		/*
3198 		 * Skip rights over task check in v2 when nothing changes,
3199 		 * migration permission derives from hierarchy ownership in
3200 		 * cgroup_procs_write_permission()).
3201 		 */
3202 		if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
3203 		    (cpus_updated || mems_updated)) {
3204 			ret = security_task_setscheduler(task);
3205 			if (ret)
3206 				goto out_unlock;
3207 		}
3208 
3209 		if (dl_task(task)) {
3210 			cs->nr_migrate_dl_tasks++;
3211 			cs->sum_migrate_dl_bw += task->dl.dl_bw;
3212 		}
3213 	}
3214 
3215 	if (!cs->nr_migrate_dl_tasks)
3216 		goto out_success;
3217 
3218 	if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
3219 		int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
3220 
3221 		if (unlikely(cpu >= nr_cpu_ids)) {
3222 			reset_migrate_dl_data(cs);
3223 			ret = -EINVAL;
3224 			goto out_unlock;
3225 		}
3226 
3227 		ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
3228 		if (ret) {
3229 			reset_migrate_dl_data(cs);
3230 			goto out_unlock;
3231 		}
3232 	}
3233 
3234 out_success:
3235 	/*
3236 	 * Mark attach is in progress.  This makes validate_change() fail
3237 	 * changes which zero cpus/mems_allowed.
3238 	 */
3239 	cs->attach_in_progress++;
3240 out_unlock:
3241 	mutex_unlock(&cpuset_mutex);
3242 	return ret;
3243 }
3244 
3245 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
3246 {
3247 	struct cgroup_subsys_state *css;
3248 	struct cpuset *cs;
3249 
3250 	cgroup_taskset_first(tset, &css);
3251 	cs = css_cs(css);
3252 
3253 	mutex_lock(&cpuset_mutex);
3254 	cs->attach_in_progress--;
3255 	if (!cs->attach_in_progress)
3256 		wake_up(&cpuset_attach_wq);
3257 
3258 	if (cs->nr_migrate_dl_tasks) {
3259 		int cpu = cpumask_any(cs->effective_cpus);
3260 
3261 		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
3262 		reset_migrate_dl_data(cs);
3263 	}
3264 
3265 	mutex_unlock(&cpuset_mutex);
3266 }
3267 
3268 /*
3269  * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
3270  * but we can't allocate it dynamically there.  Define it global and
3271  * allocate from cpuset_init().
3272  */
3273 static cpumask_var_t cpus_attach;
3274 static nodemask_t cpuset_attach_nodemask_to;
3275 
3276 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
3277 {
3278 	lockdep_assert_held(&cpuset_mutex);
3279 
3280 	if (cs != &top_cpuset)
3281 		guarantee_online_cpus(task, cpus_attach);
3282 	else
3283 		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3284 			       subpartitions_cpus);
3285 	/*
3286 	 * can_attach beforehand should guarantee that this doesn't
3287 	 * fail.  TODO: have a better way to handle failure here
3288 	 */
3289 	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
3290 
3291 	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3292 	cpuset_update_task_spread_flags(cs, task);
3293 }
3294 
3295 static void cpuset_attach(struct cgroup_taskset *tset)
3296 {
3297 	struct task_struct *task;
3298 	struct task_struct *leader;
3299 	struct cgroup_subsys_state *css;
3300 	struct cpuset *cs;
3301 	struct cpuset *oldcs = cpuset_attach_old_cs;
3302 	bool cpus_updated, mems_updated;
3303 
3304 	cgroup_taskset_first(tset, &css);
3305 	cs = css_cs(css);
3306 
3307 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
3308 	mutex_lock(&cpuset_mutex);
3309 	cpus_updated = !cpumask_equal(cs->effective_cpus,
3310 				      oldcs->effective_cpus);
3311 	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3312 
3313 	/*
3314 	 * In the default hierarchy, enabling cpuset in the child cgroups
3315 	 * will trigger a number of cpuset_attach() calls with no change
3316 	 * in effective cpus and mems. In that case, we can optimize out
3317 	 * by skipping the task iteration and update.
3318 	 */
3319 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3320 	    !cpus_updated && !mems_updated) {
3321 		cpuset_attach_nodemask_to = cs->effective_mems;
3322 		goto out;
3323 	}
3324 
3325 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3326 
3327 	cgroup_taskset_for_each(task, css, tset)
3328 		cpuset_attach_task(cs, task);
3329 
3330 	/*
3331 	 * Change mm for all threadgroup leaders. This is expensive and may
3332 	 * sleep and should be moved outside migration path proper. Skip it
3333 	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3334 	 * not set.
3335 	 */
3336 	cpuset_attach_nodemask_to = cs->effective_mems;
3337 	if (!is_memory_migrate(cs) && !mems_updated)
3338 		goto out;
3339 
3340 	cgroup_taskset_for_each_leader(leader, css, tset) {
3341 		struct mm_struct *mm = get_task_mm(leader);
3342 
3343 		if (mm) {
3344 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3345 
3346 			/*
3347 			 * old_mems_allowed is the same with mems_allowed
3348 			 * here, except if this task is being moved
3349 			 * automatically due to hotplug.  In that case
3350 			 * @mems_allowed has been updated and is empty, so
3351 			 * @old_mems_allowed is the right nodesets that we
3352 			 * migrate mm from.
3353 			 */
3354 			if (is_memory_migrate(cs))
3355 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3356 						  &cpuset_attach_nodemask_to);
3357 			else
3358 				mmput(mm);
3359 		}
3360 	}
3361 
3362 out:
3363 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
3364 
3365 	if (cs->nr_migrate_dl_tasks) {
3366 		cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3367 		oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3368 		reset_migrate_dl_data(cs);
3369 	}
3370 
3371 	cs->attach_in_progress--;
3372 	if (!cs->attach_in_progress)
3373 		wake_up(&cpuset_attach_wq);
3374 
3375 	mutex_unlock(&cpuset_mutex);
3376 }
3377 
3378 /* The various types of files and directories in a cpuset file system */
3379 
3380 typedef enum {
3381 	FILE_MEMORY_MIGRATE,
3382 	FILE_CPULIST,
3383 	FILE_MEMLIST,
3384 	FILE_EFFECTIVE_CPULIST,
3385 	FILE_EFFECTIVE_MEMLIST,
3386 	FILE_SUBPARTS_CPULIST,
3387 	FILE_EXCLUSIVE_CPULIST,
3388 	FILE_EFFECTIVE_XCPULIST,
3389 	FILE_CPU_EXCLUSIVE,
3390 	FILE_MEM_EXCLUSIVE,
3391 	FILE_MEM_HARDWALL,
3392 	FILE_SCHED_LOAD_BALANCE,
3393 	FILE_PARTITION_ROOT,
3394 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
3395 	FILE_MEMORY_PRESSURE_ENABLED,
3396 	FILE_MEMORY_PRESSURE,
3397 	FILE_SPREAD_PAGE,
3398 	FILE_SPREAD_SLAB,
3399 } cpuset_filetype_t;
3400 
3401 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
3402 			    u64 val)
3403 {
3404 	struct cpuset *cs = css_cs(css);
3405 	cpuset_filetype_t type = cft->private;
3406 	int retval = 0;
3407 
3408 	cpus_read_lock();
3409 	mutex_lock(&cpuset_mutex);
3410 	if (!is_cpuset_online(cs)) {
3411 		retval = -ENODEV;
3412 		goto out_unlock;
3413 	}
3414 
3415 	switch (type) {
3416 	case FILE_CPU_EXCLUSIVE:
3417 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
3418 		break;
3419 	case FILE_MEM_EXCLUSIVE:
3420 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
3421 		break;
3422 	case FILE_MEM_HARDWALL:
3423 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
3424 		break;
3425 	case FILE_SCHED_LOAD_BALANCE:
3426 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
3427 		break;
3428 	case FILE_MEMORY_MIGRATE:
3429 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
3430 		break;
3431 	case FILE_MEMORY_PRESSURE_ENABLED:
3432 		cpuset_memory_pressure_enabled = !!val;
3433 		break;
3434 	case FILE_SPREAD_PAGE:
3435 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
3436 		break;
3437 	case FILE_SPREAD_SLAB:
3438 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
3439 		break;
3440 	default:
3441 		retval = -EINVAL;
3442 		break;
3443 	}
3444 out_unlock:
3445 	mutex_unlock(&cpuset_mutex);
3446 	cpus_read_unlock();
3447 	return retval;
3448 }
3449 
3450 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
3451 			    s64 val)
3452 {
3453 	struct cpuset *cs = css_cs(css);
3454 	cpuset_filetype_t type = cft->private;
3455 	int retval = -ENODEV;
3456 
3457 	cpus_read_lock();
3458 	mutex_lock(&cpuset_mutex);
3459 	if (!is_cpuset_online(cs))
3460 		goto out_unlock;
3461 
3462 	switch (type) {
3463 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
3464 		retval = update_relax_domain_level(cs, val);
3465 		break;
3466 	default:
3467 		retval = -EINVAL;
3468 		break;
3469 	}
3470 out_unlock:
3471 	mutex_unlock(&cpuset_mutex);
3472 	cpus_read_unlock();
3473 	return retval;
3474 }
3475 
3476 /*
3477  * Common handling for a write to a "cpus" or "mems" file.
3478  */
3479 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3480 				    char *buf, size_t nbytes, loff_t off)
3481 {
3482 	struct cpuset *cs = css_cs(of_css(of));
3483 	struct cpuset *trialcs;
3484 	int retval = -ENODEV;
3485 
3486 	buf = strstrip(buf);
3487 
3488 	/*
3489 	 * CPU or memory hotunplug may leave @cs w/o any execution
3490 	 * resources, in which case the hotplug code asynchronously updates
3491 	 * configuration and transfers all tasks to the nearest ancestor
3492 	 * which can execute.
3493 	 *
3494 	 * As writes to "cpus" or "mems" may restore @cs's execution
3495 	 * resources, wait for the previously scheduled operations before
3496 	 * proceeding, so that we don't end up keep removing tasks added
3497 	 * after execution capability is restored.
3498 	 *
3499 	 * cpuset_hotplug_work calls back into cgroup core via
3500 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
3501 	 * operation like this one can lead to a deadlock through kernfs
3502 	 * active_ref protection.  Let's break the protection.  Losing the
3503 	 * protection is okay as we check whether @cs is online after
3504 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
3505 	 * hierarchies.
3506 	 */
3507 	css_get(&cs->css);
3508 	kernfs_break_active_protection(of->kn);
3509 	flush_work(&cpuset_hotplug_work);
3510 
3511 	cpus_read_lock();
3512 	mutex_lock(&cpuset_mutex);
3513 	if (!is_cpuset_online(cs))
3514 		goto out_unlock;
3515 
3516 	trialcs = alloc_trial_cpuset(cs);
3517 	if (!trialcs) {
3518 		retval = -ENOMEM;
3519 		goto out_unlock;
3520 	}
3521 
3522 	switch (of_cft(of)->private) {
3523 	case FILE_CPULIST:
3524 		retval = update_cpumask(cs, trialcs, buf);
3525 		break;
3526 	case FILE_EXCLUSIVE_CPULIST:
3527 		retval = update_exclusive_cpumask(cs, trialcs, buf);
3528 		break;
3529 	case FILE_MEMLIST:
3530 		retval = update_nodemask(cs, trialcs, buf);
3531 		break;
3532 	default:
3533 		retval = -EINVAL;
3534 		break;
3535 	}
3536 
3537 	free_cpuset(trialcs);
3538 out_unlock:
3539 	mutex_unlock(&cpuset_mutex);
3540 	cpus_read_unlock();
3541 	kernfs_unbreak_active_protection(of->kn);
3542 	css_put(&cs->css);
3543 	flush_workqueue(cpuset_migrate_mm_wq);
3544 	return retval ?: nbytes;
3545 }
3546 
3547 /*
3548  * These ascii lists should be read in a single call, by using a user
3549  * buffer large enough to hold the entire map.  If read in smaller
3550  * chunks, there is no guarantee of atomicity.  Since the display format
3551  * used, list of ranges of sequential numbers, is variable length,
3552  * and since these maps can change value dynamically, one could read
3553  * gibberish by doing partial reads while a list was changing.
3554  */
3555 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
3556 {
3557 	struct cpuset *cs = css_cs(seq_css(sf));
3558 	cpuset_filetype_t type = seq_cft(sf)->private;
3559 	int ret = 0;
3560 
3561 	spin_lock_irq(&callback_lock);
3562 
3563 	switch (type) {
3564 	case FILE_CPULIST:
3565 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3566 		break;
3567 	case FILE_MEMLIST:
3568 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3569 		break;
3570 	case FILE_EFFECTIVE_CPULIST:
3571 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3572 		break;
3573 	case FILE_EFFECTIVE_MEMLIST:
3574 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3575 		break;
3576 	case FILE_EXCLUSIVE_CPULIST:
3577 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3578 		break;
3579 	case FILE_EFFECTIVE_XCPULIST:
3580 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3581 		break;
3582 	case FILE_SUBPARTS_CPULIST:
3583 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3584 		break;
3585 	default:
3586 		ret = -EINVAL;
3587 	}
3588 
3589 	spin_unlock_irq(&callback_lock);
3590 	return ret;
3591 }
3592 
3593 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
3594 {
3595 	struct cpuset *cs = css_cs(css);
3596 	cpuset_filetype_t type = cft->private;
3597 	switch (type) {
3598 	case FILE_CPU_EXCLUSIVE:
3599 		return is_cpu_exclusive(cs);
3600 	case FILE_MEM_EXCLUSIVE:
3601 		return is_mem_exclusive(cs);
3602 	case FILE_MEM_HARDWALL:
3603 		return is_mem_hardwall(cs);
3604 	case FILE_SCHED_LOAD_BALANCE:
3605 		return is_sched_load_balance(cs);
3606 	case FILE_MEMORY_MIGRATE:
3607 		return is_memory_migrate(cs);
3608 	case FILE_MEMORY_PRESSURE_ENABLED:
3609 		return cpuset_memory_pressure_enabled;
3610 	case FILE_MEMORY_PRESSURE:
3611 		return fmeter_getrate(&cs->fmeter);
3612 	case FILE_SPREAD_PAGE:
3613 		return is_spread_page(cs);
3614 	case FILE_SPREAD_SLAB:
3615 		return is_spread_slab(cs);
3616 	default:
3617 		BUG();
3618 	}
3619 
3620 	/* Unreachable but makes gcc happy */
3621 	return 0;
3622 }
3623 
3624 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
3625 {
3626 	struct cpuset *cs = css_cs(css);
3627 	cpuset_filetype_t type = cft->private;
3628 	switch (type) {
3629 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
3630 		return cs->relax_domain_level;
3631 	default:
3632 		BUG();
3633 	}
3634 
3635 	/* Unreachable but makes gcc happy */
3636 	return 0;
3637 }
3638 
3639 static int sched_partition_show(struct seq_file *seq, void *v)
3640 {
3641 	struct cpuset *cs = css_cs(seq_css(seq));
3642 	const char *err, *type = NULL;
3643 
3644 	switch (cs->partition_root_state) {
3645 	case PRS_ROOT:
3646 		seq_puts(seq, "root\n");
3647 		break;
3648 	case PRS_ISOLATED:
3649 		seq_puts(seq, "isolated\n");
3650 		break;
3651 	case PRS_MEMBER:
3652 		seq_puts(seq, "member\n");
3653 		break;
3654 	case PRS_INVALID_ROOT:
3655 		type = "root";
3656 		fallthrough;
3657 	case PRS_INVALID_ISOLATED:
3658 		if (!type)
3659 			type = "isolated";
3660 		err = perr_strings[READ_ONCE(cs->prs_err)];
3661 		if (err)
3662 			seq_printf(seq, "%s invalid (%s)\n", type, err);
3663 		else
3664 			seq_printf(seq, "%s invalid\n", type);
3665 		break;
3666 	}
3667 	return 0;
3668 }
3669 
3670 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
3671 				     size_t nbytes, loff_t off)
3672 {
3673 	struct cpuset *cs = css_cs(of_css(of));
3674 	int val;
3675 	int retval = -ENODEV;
3676 
3677 	buf = strstrip(buf);
3678 
3679 	/*
3680 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
3681 	 */
3682 	if (!strcmp(buf, "root"))
3683 		val = PRS_ROOT;
3684 	else if (!strcmp(buf, "member"))
3685 		val = PRS_MEMBER;
3686 	else if (!strcmp(buf, "isolated"))
3687 		val = PRS_ISOLATED;
3688 	else
3689 		return -EINVAL;
3690 
3691 	css_get(&cs->css);
3692 	cpus_read_lock();
3693 	mutex_lock(&cpuset_mutex);
3694 	if (!is_cpuset_online(cs))
3695 		goto out_unlock;
3696 
3697 	retval = update_prstate(cs, val);
3698 out_unlock:
3699 	mutex_unlock(&cpuset_mutex);
3700 	cpus_read_unlock();
3701 	css_put(&cs->css);
3702 	return retval ?: nbytes;
3703 }
3704 
3705 /*
3706  * for the common functions, 'private' gives the type of file
3707  */
3708 
3709 static struct cftype legacy_files[] = {
3710 	{
3711 		.name = "cpus",
3712 		.seq_show = cpuset_common_seq_show,
3713 		.write = cpuset_write_resmask,
3714 		.max_write_len = (100U + 6 * NR_CPUS),
3715 		.private = FILE_CPULIST,
3716 	},
3717 
3718 	{
3719 		.name = "mems",
3720 		.seq_show = cpuset_common_seq_show,
3721 		.write = cpuset_write_resmask,
3722 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3723 		.private = FILE_MEMLIST,
3724 	},
3725 
3726 	{
3727 		.name = "effective_cpus",
3728 		.seq_show = cpuset_common_seq_show,
3729 		.private = FILE_EFFECTIVE_CPULIST,
3730 	},
3731 
3732 	{
3733 		.name = "effective_mems",
3734 		.seq_show = cpuset_common_seq_show,
3735 		.private = FILE_EFFECTIVE_MEMLIST,
3736 	},
3737 
3738 	{
3739 		.name = "cpu_exclusive",
3740 		.read_u64 = cpuset_read_u64,
3741 		.write_u64 = cpuset_write_u64,
3742 		.private = FILE_CPU_EXCLUSIVE,
3743 	},
3744 
3745 	{
3746 		.name = "mem_exclusive",
3747 		.read_u64 = cpuset_read_u64,
3748 		.write_u64 = cpuset_write_u64,
3749 		.private = FILE_MEM_EXCLUSIVE,
3750 	},
3751 
3752 	{
3753 		.name = "mem_hardwall",
3754 		.read_u64 = cpuset_read_u64,
3755 		.write_u64 = cpuset_write_u64,
3756 		.private = FILE_MEM_HARDWALL,
3757 	},
3758 
3759 	{
3760 		.name = "sched_load_balance",
3761 		.read_u64 = cpuset_read_u64,
3762 		.write_u64 = cpuset_write_u64,
3763 		.private = FILE_SCHED_LOAD_BALANCE,
3764 	},
3765 
3766 	{
3767 		.name = "sched_relax_domain_level",
3768 		.read_s64 = cpuset_read_s64,
3769 		.write_s64 = cpuset_write_s64,
3770 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
3771 	},
3772 
3773 	{
3774 		.name = "memory_migrate",
3775 		.read_u64 = cpuset_read_u64,
3776 		.write_u64 = cpuset_write_u64,
3777 		.private = FILE_MEMORY_MIGRATE,
3778 	},
3779 
3780 	{
3781 		.name = "memory_pressure",
3782 		.read_u64 = cpuset_read_u64,
3783 		.private = FILE_MEMORY_PRESSURE,
3784 	},
3785 
3786 	{
3787 		.name = "memory_spread_page",
3788 		.read_u64 = cpuset_read_u64,
3789 		.write_u64 = cpuset_write_u64,
3790 		.private = FILE_SPREAD_PAGE,
3791 	},
3792 
3793 	{
3794 		.name = "memory_spread_slab",
3795 		.read_u64 = cpuset_read_u64,
3796 		.write_u64 = cpuset_write_u64,
3797 		.private = FILE_SPREAD_SLAB,
3798 	},
3799 
3800 	{
3801 		.name = "memory_pressure_enabled",
3802 		.flags = CFTYPE_ONLY_ON_ROOT,
3803 		.read_u64 = cpuset_read_u64,
3804 		.write_u64 = cpuset_write_u64,
3805 		.private = FILE_MEMORY_PRESSURE_ENABLED,
3806 	},
3807 
3808 	{ }	/* terminate */
3809 };
3810 
3811 /*
3812  * This is currently a minimal set for the default hierarchy. It can be
3813  * expanded later on by migrating more features and control files from v1.
3814  */
3815 static struct cftype dfl_files[] = {
3816 	{
3817 		.name = "cpus",
3818 		.seq_show = cpuset_common_seq_show,
3819 		.write = cpuset_write_resmask,
3820 		.max_write_len = (100U + 6 * NR_CPUS),
3821 		.private = FILE_CPULIST,
3822 		.flags = CFTYPE_NOT_ON_ROOT,
3823 	},
3824 
3825 	{
3826 		.name = "mems",
3827 		.seq_show = cpuset_common_seq_show,
3828 		.write = cpuset_write_resmask,
3829 		.max_write_len = (100U + 6 * MAX_NUMNODES),
3830 		.private = FILE_MEMLIST,
3831 		.flags = CFTYPE_NOT_ON_ROOT,
3832 	},
3833 
3834 	{
3835 		.name = "cpus.effective",
3836 		.seq_show = cpuset_common_seq_show,
3837 		.private = FILE_EFFECTIVE_CPULIST,
3838 	},
3839 
3840 	{
3841 		.name = "mems.effective",
3842 		.seq_show = cpuset_common_seq_show,
3843 		.private = FILE_EFFECTIVE_MEMLIST,
3844 	},
3845 
3846 	{
3847 		.name = "cpus.partition",
3848 		.seq_show = sched_partition_show,
3849 		.write = sched_partition_write,
3850 		.private = FILE_PARTITION_ROOT,
3851 		.flags = CFTYPE_NOT_ON_ROOT,
3852 		.file_offset = offsetof(struct cpuset, partition_file),
3853 	},
3854 
3855 	{
3856 		.name = "cpus.exclusive",
3857 		.seq_show = cpuset_common_seq_show,
3858 		.write = cpuset_write_resmask,
3859 		.max_write_len = (100U + 6 * NR_CPUS),
3860 		.private = FILE_EXCLUSIVE_CPULIST,
3861 		.flags = CFTYPE_NOT_ON_ROOT,
3862 	},
3863 
3864 	{
3865 		.name = "cpus.exclusive.effective",
3866 		.seq_show = cpuset_common_seq_show,
3867 		.private = FILE_EFFECTIVE_XCPULIST,
3868 		.flags = CFTYPE_NOT_ON_ROOT,
3869 	},
3870 
3871 	{
3872 		.name = "cpus.subpartitions",
3873 		.seq_show = cpuset_common_seq_show,
3874 		.private = FILE_SUBPARTS_CPULIST,
3875 		.flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
3876 	},
3877 
3878 	{ }	/* terminate */
3879 };
3880 
3881 
3882 /**
3883  * cpuset_css_alloc - Allocate a cpuset css
3884  * @parent_css: Parent css of the control group that the new cpuset will be
3885  *              part of
3886  * Return: cpuset css on success, -ENOMEM on failure.
3887  *
3888  * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3889  * top cpuset css otherwise.
3890  */
3891 static struct cgroup_subsys_state *
3892 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3893 {
3894 	struct cpuset *cs;
3895 
3896 	if (!parent_css)
3897 		return &top_cpuset.css;
3898 
3899 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
3900 	if (!cs)
3901 		return ERR_PTR(-ENOMEM);
3902 
3903 	if (alloc_cpumasks(cs, NULL)) {
3904 		kfree(cs);
3905 		return ERR_PTR(-ENOMEM);
3906 	}
3907 
3908 	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3909 	nodes_clear(cs->mems_allowed);
3910 	nodes_clear(cs->effective_mems);
3911 	fmeter_init(&cs->fmeter);
3912 	cs->relax_domain_level = -1;
3913 	INIT_LIST_HEAD(&cs->remote_sibling);
3914 
3915 	/* Set CS_MEMORY_MIGRATE for default hierarchy */
3916 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
3917 		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3918 
3919 	return &cs->css;
3920 }
3921 
3922 static int cpuset_css_online(struct cgroup_subsys_state *css)
3923 {
3924 	struct cpuset *cs = css_cs(css);
3925 	struct cpuset *parent = parent_cs(cs);
3926 	struct cpuset *tmp_cs;
3927 	struct cgroup_subsys_state *pos_css;
3928 
3929 	if (!parent)
3930 		return 0;
3931 
3932 	cpus_read_lock();
3933 	mutex_lock(&cpuset_mutex);
3934 
3935 	set_bit(CS_ONLINE, &cs->flags);
3936 	if (is_spread_page(parent))
3937 		set_bit(CS_SPREAD_PAGE, &cs->flags);
3938 	if (is_spread_slab(parent))
3939 		set_bit(CS_SPREAD_SLAB, &cs->flags);
3940 
3941 	cpuset_inc();
3942 
3943 	spin_lock_irq(&callback_lock);
3944 	if (is_in_v2_mode()) {
3945 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3946 		cs->effective_mems = parent->effective_mems;
3947 		cs->use_parent_ecpus = true;
3948 		parent->child_ecpus_count++;
3949 		/*
3950 		 * Clear CS_SCHED_LOAD_BALANCE if parent is isolated
3951 		 */
3952 		if (!is_sched_load_balance(parent))
3953 			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3954 	}
3955 
3956 	/*
3957 	 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
3958 	 */
3959 	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3960 	    !is_sched_load_balance(parent))
3961 		clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3962 
3963 	spin_unlock_irq(&callback_lock);
3964 
3965 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3966 		goto out_unlock;
3967 
3968 	/*
3969 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3970 	 * set.  This flag handling is implemented in cgroup core for
3971 	 * historical reasons - the flag may be specified during mount.
3972 	 *
3973 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3974 	 * refuse to clone the configuration - thereby refusing the task to
3975 	 * be entered, and as a result refusing the sys_unshare() or
3976 	 * clone() which initiated it.  If this becomes a problem for some
3977 	 * users who wish to allow that scenario, then this could be
3978 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3979 	 * (and likewise for mems) to the new cgroup.
3980 	 */
3981 	rcu_read_lock();
3982 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
3983 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3984 			rcu_read_unlock();
3985 			goto out_unlock;
3986 		}
3987 	}
3988 	rcu_read_unlock();
3989 
3990 	spin_lock_irq(&callback_lock);
3991 	cs->mems_allowed = parent->mems_allowed;
3992 	cs->effective_mems = parent->mems_allowed;
3993 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3994 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3995 	spin_unlock_irq(&callback_lock);
3996 out_unlock:
3997 	mutex_unlock(&cpuset_mutex);
3998 	cpus_read_unlock();
3999 	return 0;
4000 }
4001 
4002 /*
4003  * If the cpuset being removed has its flag 'sched_load_balance'
4004  * enabled, then simulate turning sched_load_balance off, which
4005  * will call rebuild_sched_domains_locked(). That is not needed
4006  * in the default hierarchy where only changes in partition
4007  * will cause repartitioning.
4008  *
4009  * If the cpuset has the 'sched.partition' flag enabled, simulate
4010  * turning 'sched.partition" off.
4011  */
4012 
4013 static void cpuset_css_offline(struct cgroup_subsys_state *css)
4014 {
4015 	struct cpuset *cs = css_cs(css);
4016 
4017 	cpus_read_lock();
4018 	mutex_lock(&cpuset_mutex);
4019 
4020 	if (is_partition_valid(cs))
4021 		update_prstate(cs, 0);
4022 
4023 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
4024 	    is_sched_load_balance(cs))
4025 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
4026 
4027 	if (cs->use_parent_ecpus) {
4028 		struct cpuset *parent = parent_cs(cs);
4029 
4030 		cs->use_parent_ecpus = false;
4031 		parent->child_ecpus_count--;
4032 	}
4033 
4034 	cpuset_dec();
4035 	clear_bit(CS_ONLINE, &cs->flags);
4036 
4037 	mutex_unlock(&cpuset_mutex);
4038 	cpus_read_unlock();
4039 }
4040 
4041 static void cpuset_css_free(struct cgroup_subsys_state *css)
4042 {
4043 	struct cpuset *cs = css_cs(css);
4044 
4045 	free_cpuset(cs);
4046 }
4047 
4048 static void cpuset_bind(struct cgroup_subsys_state *root_css)
4049 {
4050 	mutex_lock(&cpuset_mutex);
4051 	spin_lock_irq(&callback_lock);
4052 
4053 	if (is_in_v2_mode()) {
4054 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
4055 		cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
4056 		top_cpuset.mems_allowed = node_possible_map;
4057 	} else {
4058 		cpumask_copy(top_cpuset.cpus_allowed,
4059 			     top_cpuset.effective_cpus);
4060 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
4061 	}
4062 
4063 	spin_unlock_irq(&callback_lock);
4064 	mutex_unlock(&cpuset_mutex);
4065 }
4066 
4067 /*
4068  * In case the child is cloned into a cpuset different from its parent,
4069  * additional checks are done to see if the move is allowed.
4070  */
4071 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
4072 {
4073 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
4074 	bool same_cs;
4075 	int ret;
4076 
4077 	rcu_read_lock();
4078 	same_cs = (cs == task_cs(current));
4079 	rcu_read_unlock();
4080 
4081 	if (same_cs)
4082 		return 0;
4083 
4084 	lockdep_assert_held(&cgroup_mutex);
4085 	mutex_lock(&cpuset_mutex);
4086 
4087 	/* Check to see if task is allowed in the cpuset */
4088 	ret = cpuset_can_attach_check(cs);
4089 	if (ret)
4090 		goto out_unlock;
4091 
4092 	ret = task_can_attach(task);
4093 	if (ret)
4094 		goto out_unlock;
4095 
4096 	ret = security_task_setscheduler(task);
4097 	if (ret)
4098 		goto out_unlock;
4099 
4100 	/*
4101 	 * Mark attach is in progress.  This makes validate_change() fail
4102 	 * changes which zero cpus/mems_allowed.
4103 	 */
4104 	cs->attach_in_progress++;
4105 out_unlock:
4106 	mutex_unlock(&cpuset_mutex);
4107 	return ret;
4108 }
4109 
4110 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
4111 {
4112 	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
4113 	bool same_cs;
4114 
4115 	rcu_read_lock();
4116 	same_cs = (cs == task_cs(current));
4117 	rcu_read_unlock();
4118 
4119 	if (same_cs)
4120 		return;
4121 
4122 	mutex_lock(&cpuset_mutex);
4123 	cs->attach_in_progress--;
4124 	if (!cs->attach_in_progress)
4125 		wake_up(&cpuset_attach_wq);
4126 	mutex_unlock(&cpuset_mutex);
4127 }
4128 
4129 /*
4130  * Make sure the new task conform to the current state of its parent,
4131  * which could have been changed by cpuset just after it inherits the
4132  * state from the parent and before it sits on the cgroup's task list.
4133  */
4134 static void cpuset_fork(struct task_struct *task)
4135 {
4136 	struct cpuset *cs;
4137 	bool same_cs;
4138 
4139 	rcu_read_lock();
4140 	cs = task_cs(task);
4141 	same_cs = (cs == task_cs(current));
4142 	rcu_read_unlock();
4143 
4144 	if (same_cs) {
4145 		if (cs == &top_cpuset)
4146 			return;
4147 
4148 		set_cpus_allowed_ptr(task, current->cpus_ptr);
4149 		task->mems_allowed = current->mems_allowed;
4150 		return;
4151 	}
4152 
4153 	/* CLONE_INTO_CGROUP */
4154 	mutex_lock(&cpuset_mutex);
4155 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
4156 	cpuset_attach_task(cs, task);
4157 
4158 	cs->attach_in_progress--;
4159 	if (!cs->attach_in_progress)
4160 		wake_up(&cpuset_attach_wq);
4161 
4162 	mutex_unlock(&cpuset_mutex);
4163 }
4164 
4165 struct cgroup_subsys cpuset_cgrp_subsys = {
4166 	.css_alloc	= cpuset_css_alloc,
4167 	.css_online	= cpuset_css_online,
4168 	.css_offline	= cpuset_css_offline,
4169 	.css_free	= cpuset_css_free,
4170 	.can_attach	= cpuset_can_attach,
4171 	.cancel_attach	= cpuset_cancel_attach,
4172 	.attach		= cpuset_attach,
4173 	.post_attach	= cpuset_post_attach,
4174 	.bind		= cpuset_bind,
4175 	.can_fork	= cpuset_can_fork,
4176 	.cancel_fork	= cpuset_cancel_fork,
4177 	.fork		= cpuset_fork,
4178 	.legacy_cftypes	= legacy_files,
4179 	.dfl_cftypes	= dfl_files,
4180 	.early_init	= true,
4181 	.threaded	= true,
4182 };
4183 
4184 /**
4185  * cpuset_init - initialize cpusets at system boot
4186  *
4187  * Description: Initialize top_cpuset
4188  **/
4189 
4190 int __init cpuset_init(void)
4191 {
4192 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
4193 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
4194 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
4195 	BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
4196 	BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
4197 
4198 	cpumask_setall(top_cpuset.cpus_allowed);
4199 	nodes_setall(top_cpuset.mems_allowed);
4200 	cpumask_setall(top_cpuset.effective_cpus);
4201 	cpumask_setall(top_cpuset.effective_xcpus);
4202 	cpumask_setall(top_cpuset.exclusive_cpus);
4203 	nodes_setall(top_cpuset.effective_mems);
4204 
4205 	fmeter_init(&top_cpuset.fmeter);
4206 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
4207 	top_cpuset.relax_domain_level = -1;
4208 	INIT_LIST_HEAD(&remote_children);
4209 
4210 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
4211 
4212 	return 0;
4213 }
4214 
4215 /*
4216  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
4217  * or memory nodes, we need to walk over the cpuset hierarchy,
4218  * removing that CPU or node from all cpusets.  If this removes the
4219  * last CPU or node from a cpuset, then move the tasks in the empty
4220  * cpuset to its next-highest non-empty parent.
4221  */
4222 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
4223 {
4224 	struct cpuset *parent;
4225 
4226 	/*
4227 	 * Find its next-highest non-empty parent, (top cpuset
4228 	 * has online cpus, so can't be empty).
4229 	 */
4230 	parent = parent_cs(cs);
4231 	while (cpumask_empty(parent->cpus_allowed) ||
4232 			nodes_empty(parent->mems_allowed))
4233 		parent = parent_cs(parent);
4234 
4235 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
4236 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
4237 		pr_cont_cgroup_name(cs->css.cgroup);
4238 		pr_cont("\n");
4239 	}
4240 }
4241 
4242 static void
4243 hotplug_update_tasks_legacy(struct cpuset *cs,
4244 			    struct cpumask *new_cpus, nodemask_t *new_mems,
4245 			    bool cpus_updated, bool mems_updated)
4246 {
4247 	bool is_empty;
4248 
4249 	spin_lock_irq(&callback_lock);
4250 	cpumask_copy(cs->cpus_allowed, new_cpus);
4251 	cpumask_copy(cs->effective_cpus, new_cpus);
4252 	cs->mems_allowed = *new_mems;
4253 	cs->effective_mems = *new_mems;
4254 	spin_unlock_irq(&callback_lock);
4255 
4256 	/*
4257 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
4258 	 * as the tasks will be migrated to an ancestor.
4259 	 */
4260 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
4261 		update_tasks_cpumask(cs, new_cpus);
4262 	if (mems_updated && !nodes_empty(cs->mems_allowed))
4263 		update_tasks_nodemask(cs);
4264 
4265 	is_empty = cpumask_empty(cs->cpus_allowed) ||
4266 		   nodes_empty(cs->mems_allowed);
4267 
4268 	/*
4269 	 * Move tasks to the nearest ancestor with execution resources,
4270 	 * This is full cgroup operation which will also call back into
4271 	 * cpuset. Should be done outside any lock.
4272 	 */
4273 	if (is_empty) {
4274 		mutex_unlock(&cpuset_mutex);
4275 		remove_tasks_in_empty_cpuset(cs);
4276 		mutex_lock(&cpuset_mutex);
4277 	}
4278 }
4279 
4280 static void
4281 hotplug_update_tasks(struct cpuset *cs,
4282 		     struct cpumask *new_cpus, nodemask_t *new_mems,
4283 		     bool cpus_updated, bool mems_updated)
4284 {
4285 	/* A partition root is allowed to have empty effective cpus */
4286 	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
4287 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
4288 	if (nodes_empty(*new_mems))
4289 		*new_mems = parent_cs(cs)->effective_mems;
4290 
4291 	spin_lock_irq(&callback_lock);
4292 	cpumask_copy(cs->effective_cpus, new_cpus);
4293 	cs->effective_mems = *new_mems;
4294 	spin_unlock_irq(&callback_lock);
4295 
4296 	if (cpus_updated)
4297 		update_tasks_cpumask(cs, new_cpus);
4298 	if (mems_updated)
4299 		update_tasks_nodemask(cs);
4300 }
4301 
4302 static bool force_rebuild;
4303 
4304 void cpuset_force_rebuild(void)
4305 {
4306 	force_rebuild = true;
4307 }
4308 
4309 /**
4310  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
4311  * @cs: cpuset in interest
4312  * @tmp: the tmpmasks structure pointer
4313  *
4314  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
4315  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
4316  * all its tasks are moved to the nearest ancestor with both resources.
4317  */
4318 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
4319 {
4320 	static cpumask_t new_cpus;
4321 	static nodemask_t new_mems;
4322 	bool cpus_updated;
4323 	bool mems_updated;
4324 	bool remote;
4325 	struct cpuset *parent;
4326 retry:
4327 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
4328 
4329 	mutex_lock(&cpuset_mutex);
4330 
4331 	/*
4332 	 * We have raced with task attaching. We wait until attaching
4333 	 * is finished, so we won't attach a task to an empty cpuset.
4334 	 */
4335 	if (cs->attach_in_progress) {
4336 		mutex_unlock(&cpuset_mutex);
4337 		goto retry;
4338 	}
4339 
4340 	parent = parent_cs(cs);
4341 	compute_effective_cpumask(&new_cpus, cs, parent);
4342 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
4343 
4344 	if (!tmp || !cs->partition_root_state)
4345 		goto update_tasks;
4346 
4347 	/*
4348 	 * Compute effective_cpus for valid partition root, may invalidate
4349 	 * child partition roots if necessary.
4350 	 */
4351 	remote = is_remote_partition(cs);
4352 	if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
4353 		compute_partition_effective_cpumask(cs, &new_cpus);
4354 
4355 	if (remote && cpumask_empty(&new_cpus) &&
4356 	    partition_is_populated(cs, NULL)) {
4357 		remote_partition_disable(cs, tmp);
4358 		compute_effective_cpumask(&new_cpus, cs, parent);
4359 		remote = false;
4360 		cpuset_force_rebuild();
4361 	}
4362 
4363 	/*
4364 	 * Force the partition to become invalid if either one of
4365 	 * the following conditions hold:
4366 	 * 1) empty effective cpus but not valid empty partition.
4367 	 * 2) parent is invalid or doesn't grant any cpus to child
4368 	 *    partitions.
4369 	 */
4370 	if (is_local_partition(cs) && (!is_partition_valid(parent) ||
4371 				tasks_nocpu_error(parent, cs, &new_cpus))) {
4372 		update_parent_effective_cpumask(cs, partcmd_invalidate, NULL, tmp);
4373 		compute_effective_cpumask(&new_cpus, cs, parent);
4374 		cpuset_force_rebuild();
4375 	}
4376 	/*
4377 	 * On the other hand, an invalid partition root may be transitioned
4378 	 * back to a regular one.
4379 	 */
4380 	else if (is_partition_valid(parent) && is_partition_invalid(cs)) {
4381 		update_parent_effective_cpumask(cs, partcmd_update, NULL, tmp);
4382 		if (is_partition_valid(cs)) {
4383 			compute_partition_effective_cpumask(cs, &new_cpus);
4384 			cpuset_force_rebuild();
4385 		}
4386 	}
4387 
4388 update_tasks:
4389 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
4390 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
4391 	if (!cpus_updated && !mems_updated)
4392 		goto unlock;	/* Hotplug doesn't affect this cpuset */
4393 
4394 	if (mems_updated)
4395 		check_insane_mems_config(&new_mems);
4396 
4397 	if (is_in_v2_mode())
4398 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
4399 				     cpus_updated, mems_updated);
4400 	else
4401 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
4402 					    cpus_updated, mems_updated);
4403 
4404 unlock:
4405 	mutex_unlock(&cpuset_mutex);
4406 }
4407 
4408 /**
4409  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
4410  * @work: unused
4411  *
4412  * This function is called after either CPU or memory configuration has
4413  * changed and updates cpuset accordingly.  The top_cpuset is always
4414  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
4415  * order to make cpusets transparent (of no affect) on systems that are
4416  * actively using CPU hotplug but making no active use of cpusets.
4417  *
4418  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
4419  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
4420  * all descendants.
4421  *
4422  * Note that CPU offlining during suspend is ignored.  We don't modify
4423  * cpusets across suspend/resume cycles at all.
4424  */
4425 static void cpuset_hotplug_workfn(struct work_struct *work)
4426 {
4427 	static cpumask_t new_cpus;
4428 	static nodemask_t new_mems;
4429 	bool cpus_updated, mems_updated;
4430 	bool on_dfl = is_in_v2_mode();
4431 	struct tmpmasks tmp, *ptmp = NULL;
4432 
4433 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
4434 		ptmp = &tmp;
4435 
4436 	mutex_lock(&cpuset_mutex);
4437 
4438 	/* fetch the available cpus/mems and find out which changed how */
4439 	cpumask_copy(&new_cpus, cpu_active_mask);
4440 	new_mems = node_states[N_MEMORY];
4441 
4442 	/*
4443 	 * If subpartitions_cpus is populated, it is likely that the check
4444 	 * below will produce a false positive on cpus_updated when the cpu
4445 	 * list isn't changed. It is extra work, but it is better to be safe.
4446 	 */
4447 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
4448 		       !cpumask_empty(subpartitions_cpus);
4449 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
4450 
4451 	/*
4452 	 * In the rare case that hotplug removes all the cpus in
4453 	 * subpartitions_cpus, we assumed that cpus are updated.
4454 	 */
4455 	if (!cpus_updated && top_cpuset.nr_subparts)
4456 		cpus_updated = true;
4457 
4458 	/* For v1, synchronize cpus_allowed to cpu_active_mask */
4459 	if (cpus_updated) {
4460 		spin_lock_irq(&callback_lock);
4461 		if (!on_dfl)
4462 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
4463 		/*
4464 		 * Make sure that CPUs allocated to child partitions
4465 		 * do not show up in effective_cpus. If no CPU is left,
4466 		 * we clear the subpartitions_cpus & let the child partitions
4467 		 * fight for the CPUs again.
4468 		 */
4469 		if (!cpumask_empty(subpartitions_cpus)) {
4470 			if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
4471 				top_cpuset.nr_subparts = 0;
4472 				cpumask_clear(subpartitions_cpus);
4473 			} else {
4474 				cpumask_andnot(&new_cpus, &new_cpus,
4475 					       subpartitions_cpus);
4476 			}
4477 		}
4478 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
4479 		spin_unlock_irq(&callback_lock);
4480 		/* we don't mess with cpumasks of tasks in top_cpuset */
4481 	}
4482 
4483 	/* synchronize mems_allowed to N_MEMORY */
4484 	if (mems_updated) {
4485 		spin_lock_irq(&callback_lock);
4486 		if (!on_dfl)
4487 			top_cpuset.mems_allowed = new_mems;
4488 		top_cpuset.effective_mems = new_mems;
4489 		spin_unlock_irq(&callback_lock);
4490 		update_tasks_nodemask(&top_cpuset);
4491 	}
4492 
4493 	mutex_unlock(&cpuset_mutex);
4494 
4495 	/* if cpus or mems changed, we need to propagate to descendants */
4496 	if (cpus_updated || mems_updated) {
4497 		struct cpuset *cs;
4498 		struct cgroup_subsys_state *pos_css;
4499 
4500 		rcu_read_lock();
4501 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
4502 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
4503 				continue;
4504 			rcu_read_unlock();
4505 
4506 			cpuset_hotplug_update_tasks(cs, ptmp);
4507 
4508 			rcu_read_lock();
4509 			css_put(&cs->css);
4510 		}
4511 		rcu_read_unlock();
4512 	}
4513 
4514 	/* rebuild sched domains if cpus_allowed has changed */
4515 	if (cpus_updated || force_rebuild) {
4516 		force_rebuild = false;
4517 		rebuild_sched_domains();
4518 	}
4519 
4520 	free_cpumasks(NULL, ptmp);
4521 }
4522 
4523 void cpuset_update_active_cpus(void)
4524 {
4525 	/*
4526 	 * We're inside cpu hotplug critical region which usually nests
4527 	 * inside cgroup synchronization.  Bounce actual hotplug processing
4528 	 * to a work item to avoid reverse locking order.
4529 	 */
4530 	schedule_work(&cpuset_hotplug_work);
4531 }
4532 
4533 void cpuset_wait_for_hotplug(void)
4534 {
4535 	flush_work(&cpuset_hotplug_work);
4536 }
4537 
4538 /*
4539  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
4540  * Call this routine anytime after node_states[N_MEMORY] changes.
4541  * See cpuset_update_active_cpus() for CPU hotplug handling.
4542  */
4543 static int cpuset_track_online_nodes(struct notifier_block *self,
4544 				unsigned long action, void *arg)
4545 {
4546 	schedule_work(&cpuset_hotplug_work);
4547 	return NOTIFY_OK;
4548 }
4549 
4550 /**
4551  * cpuset_init_smp - initialize cpus_allowed
4552  *
4553  * Description: Finish top cpuset after cpu, node maps are initialized
4554  */
4555 void __init cpuset_init_smp(void)
4556 {
4557 	/*
4558 	 * cpus_allowd/mems_allowed set to v2 values in the initial
4559 	 * cpuset_bind() call will be reset to v1 values in another
4560 	 * cpuset_bind() call when v1 cpuset is mounted.
4561 	 */
4562 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4563 
4564 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
4565 	top_cpuset.effective_mems = node_states[N_MEMORY];
4566 
4567 	hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
4568 
4569 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
4570 	BUG_ON(!cpuset_migrate_mm_wq);
4571 }
4572 
4573 /**
4574  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
4575  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4576  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4577  *
4578  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
4579  * attached to the specified @tsk.  Guaranteed to return some non-empty
4580  * subset of cpu_online_mask, even if this means going outside the
4581  * tasks cpuset, except when the task is in the top cpuset.
4582  **/
4583 
4584 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
4585 {
4586 	unsigned long flags;
4587 	struct cpuset *cs;
4588 
4589 	spin_lock_irqsave(&callback_lock, flags);
4590 	rcu_read_lock();
4591 
4592 	cs = task_cs(tsk);
4593 	if (cs != &top_cpuset)
4594 		guarantee_online_cpus(tsk, pmask);
4595 	/*
4596 	 * Tasks in the top cpuset won't get update to their cpumasks
4597 	 * when a hotplug online/offline event happens. So we include all
4598 	 * offline cpus in the allowed cpu list.
4599 	 */
4600 	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
4601 		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4602 
4603 		/*
4604 		 * We first exclude cpus allocated to partitions. If there is no
4605 		 * allowable online cpu left, we fall back to all possible cpus.
4606 		 */
4607 		cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
4608 		if (!cpumask_intersects(pmask, cpu_online_mask))
4609 			cpumask_copy(pmask, possible_mask);
4610 	}
4611 
4612 	rcu_read_unlock();
4613 	spin_unlock_irqrestore(&callback_lock, flags);
4614 }
4615 
4616 /**
4617  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
4618  * @tsk: pointer to task_struct with which the scheduler is struggling
4619  *
4620  * Description: In the case that the scheduler cannot find an allowed cpu in
4621  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
4622  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
4623  * which will not contain a sane cpumask during cases such as cpu hotplugging.
4624  * This is the absolute last resort for the scheduler and it is only used if
4625  * _every_ other avenue has been traveled.
4626  *
4627  * Returns true if the affinity of @tsk was changed, false otherwise.
4628  **/
4629 
4630 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4631 {
4632 	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4633 	const struct cpumask *cs_mask;
4634 	bool changed = false;
4635 
4636 	rcu_read_lock();
4637 	cs_mask = task_cs(tsk)->cpus_allowed;
4638 	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4639 		do_set_cpus_allowed(tsk, cs_mask);
4640 		changed = true;
4641 	}
4642 	rcu_read_unlock();
4643 
4644 	/*
4645 	 * We own tsk->cpus_allowed, nobody can change it under us.
4646 	 *
4647 	 * But we used cs && cs->cpus_allowed lockless and thus can
4648 	 * race with cgroup_attach_task() or update_cpumask() and get
4649 	 * the wrong tsk->cpus_allowed. However, both cases imply the
4650 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4651 	 * which takes task_rq_lock().
4652 	 *
4653 	 * If we are called after it dropped the lock we must see all
4654 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4655 	 * set any mask even if it is not right from task_cs() pov,
4656 	 * the pending set_cpus_allowed_ptr() will fix things.
4657 	 *
4658 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4659 	 * if required.
4660 	 */
4661 	return changed;
4662 }
4663 
4664 void __init cpuset_init_current_mems_allowed(void)
4665 {
4666 	nodes_setall(current->mems_allowed);
4667 }
4668 
4669 /**
4670  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4671  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4672  *
4673  * Description: Returns the nodemask_t mems_allowed of the cpuset
4674  * attached to the specified @tsk.  Guaranteed to return some non-empty
4675  * subset of node_states[N_MEMORY], even if this means going outside the
4676  * tasks cpuset.
4677  **/
4678 
4679 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4680 {
4681 	nodemask_t mask;
4682 	unsigned long flags;
4683 
4684 	spin_lock_irqsave(&callback_lock, flags);
4685 	rcu_read_lock();
4686 	guarantee_online_mems(task_cs(tsk), &mask);
4687 	rcu_read_unlock();
4688 	spin_unlock_irqrestore(&callback_lock, flags);
4689 
4690 	return mask;
4691 }
4692 
4693 /**
4694  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4695  * @nodemask: the nodemask to be checked
4696  *
4697  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4698  */
4699 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4700 {
4701 	return nodes_intersects(*nodemask, current->mems_allowed);
4702 }
4703 
4704 /*
4705  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4706  * mem_hardwall ancestor to the specified cpuset.  Call holding
4707  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
4708  * (an unusual configuration), then returns the root cpuset.
4709  */
4710 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4711 {
4712 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4713 		cs = parent_cs(cs);
4714 	return cs;
4715 }
4716 
4717 /*
4718  * cpuset_node_allowed - Can we allocate on a memory node?
4719  * @node: is this an allowed node?
4720  * @gfp_mask: memory allocation flags
4721  *
4722  * If we're in interrupt, yes, we can always allocate.  If @node is set in
4723  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
4724  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4725  * yes.  If current has access to memory reserves as an oom victim, yes.
4726  * Otherwise, no.
4727  *
4728  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4729  * and do not allow allocations outside the current tasks cpuset
4730  * unless the task has been OOM killed.
4731  * GFP_KERNEL allocations are not so marked, so can escape to the
4732  * nearest enclosing hardwalled ancestor cpuset.
4733  *
4734  * Scanning up parent cpusets requires callback_lock.  The
4735  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4736  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4737  * current tasks mems_allowed came up empty on the first pass over
4738  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
4739  * cpuset are short of memory, might require taking the callback_lock.
4740  *
4741  * The first call here from mm/page_alloc:get_page_from_freelist()
4742  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4743  * so no allocation on a node outside the cpuset is allowed (unless
4744  * in interrupt, of course).
4745  *
4746  * The second pass through get_page_from_freelist() doesn't even call
4747  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
4748  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4749  * in alloc_flags.  That logic and the checks below have the combined
4750  * affect that:
4751  *	in_interrupt - any node ok (current task context irrelevant)
4752  *	GFP_ATOMIC   - any node ok
4753  *	tsk_is_oom_victim   - any node ok
4754  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
4755  *	GFP_USER     - only nodes in current tasks mems allowed ok.
4756  */
4757 bool cpuset_node_allowed(int node, gfp_t gfp_mask)
4758 {
4759 	struct cpuset *cs;		/* current cpuset ancestors */
4760 	bool allowed;			/* is allocation in zone z allowed? */
4761 	unsigned long flags;
4762 
4763 	if (in_interrupt())
4764 		return true;
4765 	if (node_isset(node, current->mems_allowed))
4766 		return true;
4767 	/*
4768 	 * Allow tasks that have access to memory reserves because they have
4769 	 * been OOM killed to get memory anywhere.
4770 	 */
4771 	if (unlikely(tsk_is_oom_victim(current)))
4772 		return true;
4773 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4774 		return false;
4775 
4776 	if (current->flags & PF_EXITING) /* Let dying task have memory */
4777 		return true;
4778 
4779 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4780 	spin_lock_irqsave(&callback_lock, flags);
4781 
4782 	rcu_read_lock();
4783 	cs = nearest_hardwall_ancestor(task_cs(current));
4784 	allowed = node_isset(node, cs->mems_allowed);
4785 	rcu_read_unlock();
4786 
4787 	spin_unlock_irqrestore(&callback_lock, flags);
4788 	return allowed;
4789 }
4790 
4791 /**
4792  * cpuset_spread_node() - On which node to begin search for a page
4793  * @rotor: round robin rotor
4794  *
4795  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4796  * tasks in a cpuset with is_spread_page or is_spread_slab set),
4797  * and if the memory allocation used cpuset_mem_spread_node()
4798  * to determine on which node to start looking, as it will for
4799  * certain page cache or slab cache pages such as used for file
4800  * system buffers and inode caches, then instead of starting on the
4801  * local node to look for a free page, rather spread the starting
4802  * node around the tasks mems_allowed nodes.
4803  *
4804  * We don't have to worry about the returned node being offline
4805  * because "it can't happen", and even if it did, it would be ok.
4806  *
4807  * The routines calling guarantee_online_mems() are careful to
4808  * only set nodes in task->mems_allowed that are online.  So it
4809  * should not be possible for the following code to return an
4810  * offline node.  But if it did, that would be ok, as this routine
4811  * is not returning the node where the allocation must be, only
4812  * the node where the search should start.  The zonelist passed to
4813  * __alloc_pages() will include all nodes.  If the slab allocator
4814  * is passed an offline node, it will fall back to the local node.
4815  * See kmem_cache_alloc_node().
4816  */
4817 static int cpuset_spread_node(int *rotor)
4818 {
4819 	return *rotor = next_node_in(*rotor, current->mems_allowed);
4820 }
4821 
4822 /**
4823  * cpuset_mem_spread_node() - On which node to begin search for a file page
4824  */
4825 int cpuset_mem_spread_node(void)
4826 {
4827 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4828 		current->cpuset_mem_spread_rotor =
4829 			node_random(&current->mems_allowed);
4830 
4831 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4832 }
4833 
4834 /**
4835  * cpuset_slab_spread_node() - On which node to begin search for a slab page
4836  */
4837 int cpuset_slab_spread_node(void)
4838 {
4839 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
4840 		current->cpuset_slab_spread_rotor =
4841 			node_random(&current->mems_allowed);
4842 
4843 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
4844 }
4845 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
4846 
4847 /**
4848  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
4849  * @tsk1: pointer to task_struct of some task.
4850  * @tsk2: pointer to task_struct of some other task.
4851  *
4852  * Description: Return true if @tsk1's mems_allowed intersects the
4853  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
4854  * one of the task's memory usage might impact the memory available
4855  * to the other.
4856  **/
4857 
4858 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
4859 				   const struct task_struct *tsk2)
4860 {
4861 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
4862 }
4863 
4864 /**
4865  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
4866  *
4867  * Description: Prints current's name, cpuset name, and cached copy of its
4868  * mems_allowed to the kernel log.
4869  */
4870 void cpuset_print_current_mems_allowed(void)
4871 {
4872 	struct cgroup *cgrp;
4873 
4874 	rcu_read_lock();
4875 
4876 	cgrp = task_cs(current)->css.cgroup;
4877 	pr_cont(",cpuset=");
4878 	pr_cont_cgroup_name(cgrp);
4879 	pr_cont(",mems_allowed=%*pbl",
4880 		nodemask_pr_args(&current->mems_allowed));
4881 
4882 	rcu_read_unlock();
4883 }
4884 
4885 /*
4886  * Collection of memory_pressure is suppressed unless
4887  * this flag is enabled by writing "1" to the special
4888  * cpuset file 'memory_pressure_enabled' in the root cpuset.
4889  */
4890 
4891 int cpuset_memory_pressure_enabled __read_mostly;
4892 
4893 /*
4894  * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
4895  *
4896  * Keep a running average of the rate of synchronous (direct)
4897  * page reclaim efforts initiated by tasks in each cpuset.
4898  *
4899  * This represents the rate at which some task in the cpuset
4900  * ran low on memory on all nodes it was allowed to use, and
4901  * had to enter the kernels page reclaim code in an effort to
4902  * create more free memory by tossing clean pages or swapping
4903  * or writing dirty pages.
4904  *
4905  * Display to user space in the per-cpuset read-only file
4906  * "memory_pressure".  Value displayed is an integer
4907  * representing the recent rate of entry into the synchronous
4908  * (direct) page reclaim by any task attached to the cpuset.
4909  */
4910 
4911 void __cpuset_memory_pressure_bump(void)
4912 {
4913 	rcu_read_lock();
4914 	fmeter_markevent(&task_cs(current)->fmeter);
4915 	rcu_read_unlock();
4916 }
4917 
4918 #ifdef CONFIG_PROC_PID_CPUSET
4919 /*
4920  * proc_cpuset_show()
4921  *  - Print tasks cpuset path into seq_file.
4922  *  - Used for /proc/<pid>/cpuset.
4923  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
4924  *    doesn't really matter if tsk->cpuset changes after we read it,
4925  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
4926  *    anyway.
4927  */
4928 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
4929 		     struct pid *pid, struct task_struct *tsk)
4930 {
4931 	char *buf;
4932 	struct cgroup_subsys_state *css;
4933 	int retval;
4934 
4935 	retval = -ENOMEM;
4936 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
4937 	if (!buf)
4938 		goto out;
4939 
4940 	css = task_get_css(tsk, cpuset_cgrp_id);
4941 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
4942 				current->nsproxy->cgroup_ns);
4943 	css_put(css);
4944 	if (retval >= PATH_MAX)
4945 		retval = -ENAMETOOLONG;
4946 	if (retval < 0)
4947 		goto out_free;
4948 	seq_puts(m, buf);
4949 	seq_putc(m, '\n');
4950 	retval = 0;
4951 out_free:
4952 	kfree(buf);
4953 out:
4954 	return retval;
4955 }
4956 #endif /* CONFIG_PROC_PID_CPUSET */
4957 
4958 /* Display task mems_allowed in /proc/<pid>/status file. */
4959 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4960 {
4961 	seq_printf(m, "Mems_allowed:\t%*pb\n",
4962 		   nodemask_pr_args(&task->mems_allowed));
4963 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4964 		   nodemask_pr_args(&task->mems_allowed));
4965 }
4966