1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 #include "cpuset-internal.h" 25 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/kernel.h> 29 #include <linux/mempolicy.h> 30 #include <linux/mm.h> 31 #include <linux/memory.h> 32 #include <linux/export.h> 33 #include <linux/rcupdate.h> 34 #include <linux/sched.h> 35 #include <linux/sched/deadline.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/task.h> 38 #include <linux/security.h> 39 #include <linux/oom.h> 40 #include <linux/sched/isolation.h> 41 #include <linux/wait.h> 42 #include <linux/workqueue.h> 43 #include <linux/task_work.h> 44 45 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 46 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 47 48 /* 49 * There could be abnormal cpuset configurations for cpu or memory 50 * node binding, add this key to provide a quick low-cost judgment 51 * of the situation. 52 */ 53 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 54 55 static const char * const perr_strings[] = { 56 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive", 57 [PERR_INVPARENT] = "Parent is an invalid partition root", 58 [PERR_NOTPART] = "Parent is not a partition root", 59 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", 60 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", 61 [PERR_HOTPLUG] = "No cpu available due to hotplug", 62 [PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty", 63 [PERR_HKEEPING] = "partition config conflicts with housekeeping setup", 64 [PERR_ACCESS] = "Enable partition not permitted", 65 [PERR_REMOTE] = "Have remote partition underneath", 66 }; 67 68 /* 69 * For local partitions, update to subpartitions_cpus & isolated_cpus is done 70 * in update_parent_effective_cpumask(). For remote partitions, it is done in 71 * the remote_partition_*() and remote_cpus_update() helpers. 72 */ 73 /* 74 * Exclusive CPUs distributed out to local or remote sub-partitions of 75 * top_cpuset 76 */ 77 static cpumask_var_t subpartitions_cpus; 78 79 /* 80 * Exclusive CPUs in isolated partitions 81 */ 82 static cpumask_var_t isolated_cpus; 83 84 /* 85 * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot 86 */ 87 static cpumask_var_t boot_hk_cpus; 88 static bool have_boot_isolcpus; 89 90 /* List of remote partition root children */ 91 static struct list_head remote_children; 92 93 /* 94 * A flag to force sched domain rebuild at the end of an operation. 95 * It can be set in 96 * - update_partition_sd_lb() 97 * - update_cpumasks_hier() 98 * - cpuset_update_flag() 99 * - cpuset_hotplug_update_tasks() 100 * - cpuset_handle_hotplug() 101 * 102 * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock. 103 * 104 * Note that update_relax_domain_level() in cpuset-v1.c can still call 105 * rebuild_sched_domains_locked() directly without using this flag. 106 */ 107 static bool force_sd_rebuild; 108 109 /* 110 * Partition root states: 111 * 112 * 0 - member (not a partition root) 113 * 1 - partition root 114 * 2 - partition root without load balancing (isolated) 115 * -1 - invalid partition root 116 * -2 - invalid isolated partition root 117 * 118 * There are 2 types of partitions - local or remote. Local partitions are 119 * those whose parents are partition root themselves. Setting of 120 * cpuset.cpus.exclusive are optional in setting up local partitions. 121 * Remote partitions are those whose parents are not partition roots. Passing 122 * down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor 123 * nodes are mandatory in creating a remote partition. 124 * 125 * For simplicity, a local partition can be created under a local or remote 126 * partition but a remote partition cannot have any partition root in its 127 * ancestor chain except the cgroup root. 128 */ 129 #define PRS_MEMBER 0 130 #define PRS_ROOT 1 131 #define PRS_ISOLATED 2 132 #define PRS_INVALID_ROOT -1 133 #define PRS_INVALID_ISOLATED -2 134 135 /* 136 * Temporary cpumasks for working with partitions that are passed among 137 * functions to avoid memory allocation in inner functions. 138 */ 139 struct tmpmasks { 140 cpumask_var_t addmask, delmask; /* For partition root */ 141 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 142 }; 143 144 void inc_dl_tasks_cs(struct task_struct *p) 145 { 146 struct cpuset *cs = task_cs(p); 147 148 cs->nr_deadline_tasks++; 149 } 150 151 void dec_dl_tasks_cs(struct task_struct *p) 152 { 153 struct cpuset *cs = task_cs(p); 154 155 cs->nr_deadline_tasks--; 156 } 157 158 static inline bool is_partition_valid(const struct cpuset *cs) 159 { 160 return cs->partition_root_state > 0; 161 } 162 163 static inline bool is_partition_invalid(const struct cpuset *cs) 164 { 165 return cs->partition_root_state < 0; 166 } 167 168 static inline bool cs_is_member(const struct cpuset *cs) 169 { 170 return cs->partition_root_state == PRS_MEMBER; 171 } 172 173 /* 174 * Callers should hold callback_lock to modify partition_root_state. 175 */ 176 static inline void make_partition_invalid(struct cpuset *cs) 177 { 178 if (cs->partition_root_state > 0) 179 cs->partition_root_state = -cs->partition_root_state; 180 } 181 182 /* 183 * Send notification event of whenever partition_root_state changes. 184 */ 185 static inline void notify_partition_change(struct cpuset *cs, int old_prs) 186 { 187 if (old_prs == cs->partition_root_state) 188 return; 189 cgroup_file_notify(&cs->partition_file); 190 191 /* Reset prs_err if not invalid */ 192 if (is_partition_valid(cs)) 193 WRITE_ONCE(cs->prs_err, PERR_NONE); 194 } 195 196 /* 197 * The top_cpuset is always synchronized to cpu_active_mask and we should avoid 198 * using cpu_online_mask as much as possible. An active CPU is always an online 199 * CPU, but not vice versa. cpu_active_mask and cpu_online_mask can differ 200 * during hotplug operations. A CPU is marked active at the last stage of CPU 201 * bringup (CPUHP_AP_ACTIVE). It is also the stage where cpuset hotplug code 202 * will be called to update the sched domains so that the scheduler can move 203 * a normal task to a newly active CPU or remove tasks away from a newly 204 * inactivated CPU. The online bit is set much earlier in the CPU bringup 205 * process and cleared much later in CPU teardown. 206 * 207 * If cpu_online_mask is used while a hotunplug operation is happening in 208 * parallel, we may leave an offline CPU in cpu_allowed or some other masks. 209 */ 210 static struct cpuset top_cpuset = { 211 .flags = BIT(CS_CPU_EXCLUSIVE) | 212 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE), 213 .partition_root_state = PRS_ROOT, 214 .relax_domain_level = -1, 215 .remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling), 216 }; 217 218 /* 219 * There are two global locks guarding cpuset structures - cpuset_mutex and 220 * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel 221 * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset 222 * structures. Note that cpuset_mutex needs to be a mutex as it is used in 223 * paths that rely on priority inheritance (e.g. scheduler - on RT) for 224 * correctness. 225 * 226 * A task must hold both locks to modify cpusets. If a task holds 227 * cpuset_mutex, it blocks others, ensuring that it is the only task able to 228 * also acquire callback_lock and be able to modify cpusets. It can perform 229 * various checks on the cpuset structure first, knowing nothing will change. 230 * It can also allocate memory while just holding cpuset_mutex. While it is 231 * performing these checks, various callback routines can briefly acquire 232 * callback_lock to query cpusets. Once it is ready to make the changes, it 233 * takes callback_lock, blocking everyone else. 234 * 235 * Calls to the kernel memory allocator can not be made while holding 236 * callback_lock, as that would risk double tripping on callback_lock 237 * from one of the callbacks into the cpuset code from within 238 * __alloc_pages(). 239 * 240 * If a task is only holding callback_lock, then it has read-only 241 * access to cpusets. 242 * 243 * Now, the task_struct fields mems_allowed and mempolicy may be changed 244 * by other task, we use alloc_lock in the task_struct fields to protect 245 * them. 246 * 247 * The cpuset_common_seq_show() handlers only hold callback_lock across 248 * small pieces of code, such as when reading out possibly multi-word 249 * cpumasks and nodemasks. 250 */ 251 252 static DEFINE_MUTEX(cpuset_mutex); 253 254 /** 255 * cpuset_lock - Acquire the global cpuset mutex 256 * 257 * This locks the global cpuset mutex to prevent modifications to cpuset 258 * hierarchy and configurations. This helper is not enough to make modification. 259 */ 260 void cpuset_lock(void) 261 { 262 mutex_lock(&cpuset_mutex); 263 } 264 265 void cpuset_unlock(void) 266 { 267 mutex_unlock(&cpuset_mutex); 268 } 269 270 /** 271 * cpuset_full_lock - Acquire full protection for cpuset modification 272 * 273 * Takes both CPU hotplug read lock (cpus_read_lock()) and cpuset mutex 274 * to safely modify cpuset data. 275 */ 276 void cpuset_full_lock(void) 277 { 278 cpus_read_lock(); 279 mutex_lock(&cpuset_mutex); 280 } 281 282 void cpuset_full_unlock(void) 283 { 284 mutex_unlock(&cpuset_mutex); 285 cpus_read_unlock(); 286 } 287 288 static DEFINE_SPINLOCK(callback_lock); 289 290 void cpuset_callback_lock_irq(void) 291 { 292 spin_lock_irq(&callback_lock); 293 } 294 295 void cpuset_callback_unlock_irq(void) 296 { 297 spin_unlock_irq(&callback_lock); 298 } 299 300 static struct workqueue_struct *cpuset_migrate_mm_wq; 301 302 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 303 304 static inline void check_insane_mems_config(nodemask_t *nodes) 305 { 306 if (!cpusets_insane_config() && 307 movable_only_nodes(nodes)) { 308 static_branch_enable_cpuslocked(&cpusets_insane_config_key); 309 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 310 "Cpuset allocations might fail even with a lot of memory available.\n", 311 nodemask_pr_args(nodes)); 312 } 313 } 314 315 /* 316 * decrease cs->attach_in_progress. 317 * wake_up cpuset_attach_wq if cs->attach_in_progress==0. 318 */ 319 static inline void dec_attach_in_progress_locked(struct cpuset *cs) 320 { 321 lockdep_assert_held(&cpuset_mutex); 322 323 cs->attach_in_progress--; 324 if (!cs->attach_in_progress) 325 wake_up(&cpuset_attach_wq); 326 } 327 328 static inline void dec_attach_in_progress(struct cpuset *cs) 329 { 330 mutex_lock(&cpuset_mutex); 331 dec_attach_in_progress_locked(cs); 332 mutex_unlock(&cpuset_mutex); 333 } 334 335 static inline bool cpuset_v2(void) 336 { 337 return !IS_ENABLED(CONFIG_CPUSETS_V1) || 338 cgroup_subsys_on_dfl(cpuset_cgrp_subsys); 339 } 340 341 /* 342 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 343 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 344 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 345 * With v2 behavior, "cpus" and "mems" are always what the users have 346 * requested and won't be changed by hotplug events. Only the effective 347 * cpus or mems will be affected. 348 */ 349 static inline bool is_in_v2_mode(void) 350 { 351 return cpuset_v2() || 352 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 353 } 354 355 /** 356 * partition_is_populated - check if partition has tasks 357 * @cs: partition root to be checked 358 * @excluded_child: a child cpuset to be excluded in task checking 359 * Return: true if there are tasks, false otherwise 360 * 361 * It is assumed that @cs is a valid partition root. @excluded_child should 362 * be non-NULL when this cpuset is going to become a partition itself. 363 */ 364 static inline bool partition_is_populated(struct cpuset *cs, 365 struct cpuset *excluded_child) 366 { 367 struct cgroup_subsys_state *css; 368 struct cpuset *child; 369 370 if (cs->css.cgroup->nr_populated_csets) 371 return true; 372 if (!excluded_child && !cs->nr_subparts) 373 return cgroup_is_populated(cs->css.cgroup); 374 375 rcu_read_lock(); 376 cpuset_for_each_child(child, css, cs) { 377 if (child == excluded_child) 378 continue; 379 if (is_partition_valid(child)) 380 continue; 381 if (cgroup_is_populated(child->css.cgroup)) { 382 rcu_read_unlock(); 383 return true; 384 } 385 } 386 rcu_read_unlock(); 387 return false; 388 } 389 390 /* 391 * Return in pmask the portion of a task's cpusets's cpus_allowed that 392 * are online and are capable of running the task. If none are found, 393 * walk up the cpuset hierarchy until we find one that does have some 394 * appropriate cpus. 395 * 396 * One way or another, we guarantee to return some non-empty subset 397 * of cpu_active_mask. 398 * 399 * Call with callback_lock or cpuset_mutex held. 400 */ 401 static void guarantee_active_cpus(struct task_struct *tsk, 402 struct cpumask *pmask) 403 { 404 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 405 struct cpuset *cs; 406 407 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_active_mask))) 408 cpumask_copy(pmask, cpu_active_mask); 409 410 rcu_read_lock(); 411 cs = task_cs(tsk); 412 413 while (!cpumask_intersects(cs->effective_cpus, pmask)) 414 cs = parent_cs(cs); 415 416 cpumask_and(pmask, pmask, cs->effective_cpus); 417 rcu_read_unlock(); 418 } 419 420 /* 421 * Return in *pmask the portion of a cpusets's mems_allowed that 422 * are online, with memory. If none are online with memory, walk 423 * up the cpuset hierarchy until we find one that does have some 424 * online mems. The top cpuset always has some mems online. 425 * 426 * One way or another, we guarantee to return some non-empty subset 427 * of node_states[N_MEMORY]. 428 * 429 * Call with callback_lock or cpuset_mutex held. 430 */ 431 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 432 { 433 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 434 cs = parent_cs(cs); 435 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 436 } 437 438 /** 439 * alloc_cpumasks - Allocate an array of cpumask variables 440 * @pmasks: Pointer to array of cpumask_var_t pointers 441 * @size: Number of cpumasks to allocate 442 * Return: 0 if successful, -ENOMEM otherwise. 443 * 444 * Allocates @size cpumasks and initializes them to empty. Returns 0 on 445 * success, -ENOMEM on allocation failure. On failure, any previously 446 * allocated cpumasks are freed. 447 */ 448 static inline int alloc_cpumasks(cpumask_var_t *pmasks[], u32 size) 449 { 450 int i; 451 452 for (i = 0; i < size; i++) { 453 if (!zalloc_cpumask_var(pmasks[i], GFP_KERNEL)) { 454 while (--i >= 0) 455 free_cpumask_var(*pmasks[i]); 456 return -ENOMEM; 457 } 458 } 459 return 0; 460 } 461 462 /** 463 * alloc_tmpmasks - Allocate temporary cpumasks for cpuset operations. 464 * @tmp: Pointer to tmpmasks structure to populate 465 * Return: 0 on success, -ENOMEM on allocation failure 466 */ 467 static inline int alloc_tmpmasks(struct tmpmasks *tmp) 468 { 469 /* 470 * Array of pointers to the three cpumask_var_t fields in tmpmasks. 471 * Note: Array size must match actual number of masks (3) 472 */ 473 cpumask_var_t *pmask[3] = { 474 &tmp->new_cpus, 475 &tmp->addmask, 476 &tmp->delmask 477 }; 478 479 return alloc_cpumasks(pmask, ARRAY_SIZE(pmask)); 480 } 481 482 /** 483 * free_tmpmasks - free cpumasks in a tmpmasks structure 484 * @tmp: the tmpmasks structure pointer 485 */ 486 static inline void free_tmpmasks(struct tmpmasks *tmp) 487 { 488 if (!tmp) 489 return; 490 491 free_cpumask_var(tmp->new_cpus); 492 free_cpumask_var(tmp->addmask); 493 free_cpumask_var(tmp->delmask); 494 } 495 496 /** 497 * dup_or_alloc_cpuset - Duplicate or allocate a new cpuset 498 * @cs: Source cpuset to duplicate (NULL for a fresh allocation) 499 * 500 * Creates a new cpuset by either: 501 * 1. Duplicating an existing cpuset (if @cs is non-NULL), or 502 * 2. Allocating a fresh cpuset with zero-initialized masks (if @cs is NULL) 503 * 504 * Return: Pointer to newly allocated cpuset on success, NULL on failure 505 */ 506 static struct cpuset *dup_or_alloc_cpuset(struct cpuset *cs) 507 { 508 struct cpuset *trial; 509 510 /* Allocate base structure */ 511 trial = cs ? kmemdup(cs, sizeof(*cs), GFP_KERNEL) : 512 kzalloc(sizeof(*cs), GFP_KERNEL); 513 if (!trial) 514 return NULL; 515 516 /* Setup cpumask pointer array */ 517 cpumask_var_t *pmask[4] = { 518 &trial->cpus_allowed, 519 &trial->effective_cpus, 520 &trial->effective_xcpus, 521 &trial->exclusive_cpus 522 }; 523 524 if (alloc_cpumasks(pmask, ARRAY_SIZE(pmask))) { 525 kfree(trial); 526 return NULL; 527 } 528 529 /* Copy masks if duplicating */ 530 if (cs) { 531 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 532 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 533 cpumask_copy(trial->effective_xcpus, cs->effective_xcpus); 534 cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus); 535 } 536 537 return trial; 538 } 539 540 /** 541 * free_cpuset - free the cpuset 542 * @cs: the cpuset to be freed 543 */ 544 static inline void free_cpuset(struct cpuset *cs) 545 { 546 free_cpumask_var(cs->cpus_allowed); 547 free_cpumask_var(cs->effective_cpus); 548 free_cpumask_var(cs->effective_xcpus); 549 free_cpumask_var(cs->exclusive_cpus); 550 kfree(cs); 551 } 552 553 /* Return user specified exclusive CPUs */ 554 static inline struct cpumask *user_xcpus(struct cpuset *cs) 555 { 556 return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed 557 : cs->exclusive_cpus; 558 } 559 560 static inline bool xcpus_empty(struct cpuset *cs) 561 { 562 return cpumask_empty(cs->cpus_allowed) && 563 cpumask_empty(cs->exclusive_cpus); 564 } 565 566 /* 567 * cpusets_are_exclusive() - check if two cpusets are exclusive 568 * 569 * Return true if exclusive, false if not 570 */ 571 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2) 572 { 573 struct cpumask *xcpus1 = user_xcpus(cs1); 574 struct cpumask *xcpus2 = user_xcpus(cs2); 575 576 if (cpumask_intersects(xcpus1, xcpus2)) 577 return false; 578 return true; 579 } 580 581 /** 582 * cpus_excl_conflict - Check if two cpusets have exclusive CPU conflicts 583 * @cs1: first cpuset to check 584 * @cs2: second cpuset to check 585 * 586 * Returns: true if CPU exclusivity conflict exists, false otherwise 587 * 588 * Conflict detection rules: 589 * 1. If either cpuset is CPU exclusive, they must be mutually exclusive 590 * 2. exclusive_cpus masks cannot intersect between cpusets 591 * 3. The allowed CPUs of one cpuset cannot be a subset of another's exclusive CPUs 592 */ 593 static inline bool cpus_excl_conflict(struct cpuset *cs1, struct cpuset *cs2) 594 { 595 /* If either cpuset is exclusive, check if they are mutually exclusive */ 596 if (is_cpu_exclusive(cs1) || is_cpu_exclusive(cs2)) 597 return !cpusets_are_exclusive(cs1, cs2); 598 599 /* Exclusive_cpus cannot intersect */ 600 if (cpumask_intersects(cs1->exclusive_cpus, cs2->exclusive_cpus)) 601 return true; 602 603 /* The cpus_allowed of one cpuset cannot be a subset of another cpuset's exclusive_cpus */ 604 if (!cpumask_empty(cs1->cpus_allowed) && 605 cpumask_subset(cs1->cpus_allowed, cs2->exclusive_cpus)) 606 return true; 607 608 if (!cpumask_empty(cs2->cpus_allowed) && 609 cpumask_subset(cs2->cpus_allowed, cs1->exclusive_cpus)) 610 return true; 611 612 return false; 613 } 614 615 static inline bool mems_excl_conflict(struct cpuset *cs1, struct cpuset *cs2) 616 { 617 if ((is_mem_exclusive(cs1) || is_mem_exclusive(cs2))) 618 return nodes_intersects(cs1->mems_allowed, cs2->mems_allowed); 619 return false; 620 } 621 622 /* 623 * validate_change() - Used to validate that any proposed cpuset change 624 * follows the structural rules for cpusets. 625 * 626 * If we replaced the flag and mask values of the current cpuset 627 * (cur) with those values in the trial cpuset (trial), would 628 * our various subset and exclusive rules still be valid? Presumes 629 * cpuset_mutex held. 630 * 631 * 'cur' is the address of an actual, in-use cpuset. Operations 632 * such as list traversal that depend on the actual address of the 633 * cpuset in the list must use cur below, not trial. 634 * 635 * 'trial' is the address of bulk structure copy of cur, with 636 * perhaps one or more of the fields cpus_allowed, mems_allowed, 637 * or flags changed to new, trial values. 638 * 639 * Return 0 if valid, -errno if not. 640 */ 641 642 static int validate_change(struct cpuset *cur, struct cpuset *trial) 643 { 644 struct cgroup_subsys_state *css; 645 struct cpuset *c, *par; 646 int ret = 0; 647 648 rcu_read_lock(); 649 650 if (!is_in_v2_mode()) 651 ret = cpuset1_validate_change(cur, trial); 652 if (ret) 653 goto out; 654 655 /* Remaining checks don't apply to root cpuset */ 656 if (cur == &top_cpuset) 657 goto out; 658 659 par = parent_cs(cur); 660 661 /* 662 * Cpusets with tasks - existing or newly being attached - can't 663 * be changed to have empty cpus_allowed or mems_allowed. 664 */ 665 ret = -ENOSPC; 666 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 667 if (!cpumask_empty(cur->cpus_allowed) && 668 cpumask_empty(trial->cpus_allowed)) 669 goto out; 670 if (!nodes_empty(cur->mems_allowed) && 671 nodes_empty(trial->mems_allowed)) 672 goto out; 673 } 674 675 /* 676 * We can't shrink if we won't have enough room for SCHED_DEADLINE 677 * tasks. This check is not done when scheduling is disabled as the 678 * users should know what they are doing. 679 * 680 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns 681 * cpus_allowed. 682 * 683 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only 684 * for non-isolated partition root. At this point, the target 685 * effective_cpus isn't computed yet. user_xcpus() is the best 686 * approximation. 687 * 688 * TBD: May need to precompute the real effective_cpus here in case 689 * incorrect scheduling of SCHED_DEADLINE tasks in a partition 690 * becomes an issue. 691 */ 692 ret = -EBUSY; 693 if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) && 694 !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial))) 695 goto out; 696 697 /* 698 * If either I or some sibling (!= me) is exclusive, we can't 699 * overlap. exclusive_cpus cannot overlap with each other if set. 700 */ 701 ret = -EINVAL; 702 cpuset_for_each_child(c, css, par) { 703 if (c == cur) 704 continue; 705 if (cpus_excl_conflict(trial, c)) 706 goto out; 707 if (mems_excl_conflict(trial, c)) 708 goto out; 709 } 710 711 ret = 0; 712 out: 713 rcu_read_unlock(); 714 return ret; 715 } 716 717 #ifdef CONFIG_SMP 718 /* 719 * Helper routine for generate_sched_domains(). 720 * Do cpusets a, b have overlapping effective cpus_allowed masks? 721 */ 722 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 723 { 724 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 725 } 726 727 static void 728 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 729 { 730 if (dattr->relax_domain_level < c->relax_domain_level) 731 dattr->relax_domain_level = c->relax_domain_level; 732 return; 733 } 734 735 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 736 struct cpuset *root_cs) 737 { 738 struct cpuset *cp; 739 struct cgroup_subsys_state *pos_css; 740 741 rcu_read_lock(); 742 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 743 /* skip the whole subtree if @cp doesn't have any CPU */ 744 if (cpumask_empty(cp->cpus_allowed)) { 745 pos_css = css_rightmost_descendant(pos_css); 746 continue; 747 } 748 749 if (is_sched_load_balance(cp)) 750 update_domain_attr(dattr, cp); 751 } 752 rcu_read_unlock(); 753 } 754 755 /* Must be called with cpuset_mutex held. */ 756 static inline int nr_cpusets(void) 757 { 758 /* jump label reference count + the top-level cpuset */ 759 return static_key_count(&cpusets_enabled_key.key) + 1; 760 } 761 762 /* 763 * generate_sched_domains() 764 * 765 * This function builds a partial partition of the systems CPUs 766 * A 'partial partition' is a set of non-overlapping subsets whose 767 * union is a subset of that set. 768 * The output of this function needs to be passed to kernel/sched/core.c 769 * partition_sched_domains() routine, which will rebuild the scheduler's 770 * load balancing domains (sched domains) as specified by that partial 771 * partition. 772 * 773 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 774 * for a background explanation of this. 775 * 776 * Does not return errors, on the theory that the callers of this 777 * routine would rather not worry about failures to rebuild sched 778 * domains when operating in the severe memory shortage situations 779 * that could cause allocation failures below. 780 * 781 * Must be called with cpuset_mutex held. 782 * 783 * The three key local variables below are: 784 * cp - cpuset pointer, used (together with pos_css) to perform a 785 * top-down scan of all cpusets. For our purposes, rebuilding 786 * the schedulers sched domains, we can ignore !is_sched_load_ 787 * balance cpusets. 788 * csa - (for CpuSet Array) Array of pointers to all the cpusets 789 * that need to be load balanced, for convenient iterative 790 * access by the subsequent code that finds the best partition, 791 * i.e the set of domains (subsets) of CPUs such that the 792 * cpus_allowed of every cpuset marked is_sched_load_balance 793 * is a subset of one of these domains, while there are as 794 * many such domains as possible, each as small as possible. 795 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 796 * the kernel/sched/core.c routine partition_sched_domains() in a 797 * convenient format, that can be easily compared to the prior 798 * value to determine what partition elements (sched domains) 799 * were changed (added or removed.) 800 * 801 * Finding the best partition (set of domains): 802 * The double nested loops below over i, j scan over the load 803 * balanced cpusets (using the array of cpuset pointers in csa[]) 804 * looking for pairs of cpusets that have overlapping cpus_allowed 805 * and merging them using a union-find algorithm. 806 * 807 * The union of the cpus_allowed masks from the set of all cpusets 808 * having the same root then form the one element of the partition 809 * (one sched domain) to be passed to partition_sched_domains(). 810 * 811 */ 812 static int generate_sched_domains(cpumask_var_t **domains, 813 struct sched_domain_attr **attributes) 814 { 815 struct cpuset *cp; /* top-down scan of cpusets */ 816 struct cpuset **csa; /* array of all cpuset ptrs */ 817 int csn; /* how many cpuset ptrs in csa so far */ 818 int i, j; /* indices for partition finding loops */ 819 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 820 struct sched_domain_attr *dattr; /* attributes for custom domains */ 821 int ndoms = 0; /* number of sched domains in result */ 822 int nslot; /* next empty doms[] struct cpumask slot */ 823 struct cgroup_subsys_state *pos_css; 824 bool root_load_balance = is_sched_load_balance(&top_cpuset); 825 bool cgrpv2 = cpuset_v2(); 826 int nslot_update; 827 828 doms = NULL; 829 dattr = NULL; 830 csa = NULL; 831 832 /* Special case for the 99% of systems with one, full, sched domain */ 833 if (root_load_balance && cpumask_empty(subpartitions_cpus)) { 834 single_root_domain: 835 ndoms = 1; 836 doms = alloc_sched_domains(ndoms); 837 if (!doms) 838 goto done; 839 840 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 841 if (dattr) { 842 *dattr = SD_ATTR_INIT; 843 update_domain_attr_tree(dattr, &top_cpuset); 844 } 845 cpumask_and(doms[0], top_cpuset.effective_cpus, 846 housekeeping_cpumask(HK_TYPE_DOMAIN)); 847 848 goto done; 849 } 850 851 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 852 if (!csa) 853 goto done; 854 csn = 0; 855 856 rcu_read_lock(); 857 if (root_load_balance) 858 csa[csn++] = &top_cpuset; 859 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 860 if (cp == &top_cpuset) 861 continue; 862 863 if (cgrpv2) 864 goto v2; 865 866 /* 867 * v1: 868 * Continue traversing beyond @cp iff @cp has some CPUs and 869 * isn't load balancing. The former is obvious. The 870 * latter: All child cpusets contain a subset of the 871 * parent's cpus, so just skip them, and then we call 872 * update_domain_attr_tree() to calc relax_domain_level of 873 * the corresponding sched domain. 874 */ 875 if (!cpumask_empty(cp->cpus_allowed) && 876 !(is_sched_load_balance(cp) && 877 cpumask_intersects(cp->cpus_allowed, 878 housekeeping_cpumask(HK_TYPE_DOMAIN)))) 879 continue; 880 881 if (is_sched_load_balance(cp) && 882 !cpumask_empty(cp->effective_cpus)) 883 csa[csn++] = cp; 884 885 /* skip @cp's subtree */ 886 pos_css = css_rightmost_descendant(pos_css); 887 continue; 888 889 v2: 890 /* 891 * Only valid partition roots that are not isolated and with 892 * non-empty effective_cpus will be saved into csn[]. 893 */ 894 if ((cp->partition_root_state == PRS_ROOT) && 895 !cpumask_empty(cp->effective_cpus)) 896 csa[csn++] = cp; 897 898 /* 899 * Skip @cp's subtree if not a partition root and has no 900 * exclusive CPUs to be granted to child cpusets. 901 */ 902 if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus)) 903 pos_css = css_rightmost_descendant(pos_css); 904 } 905 rcu_read_unlock(); 906 907 /* 908 * If there are only isolated partitions underneath the cgroup root, 909 * we can optimize out unneeded sched domains scanning. 910 */ 911 if (root_load_balance && (csn == 1)) 912 goto single_root_domain; 913 914 for (i = 0; i < csn; i++) 915 uf_node_init(&csa[i]->node); 916 917 /* Merge overlapping cpusets */ 918 for (i = 0; i < csn; i++) { 919 for (j = i + 1; j < csn; j++) { 920 if (cpusets_overlap(csa[i], csa[j])) { 921 /* 922 * Cgroup v2 shouldn't pass down overlapping 923 * partition root cpusets. 924 */ 925 WARN_ON_ONCE(cgrpv2); 926 uf_union(&csa[i]->node, &csa[j]->node); 927 } 928 } 929 } 930 931 /* Count the total number of domains */ 932 for (i = 0; i < csn; i++) { 933 if (uf_find(&csa[i]->node) == &csa[i]->node) 934 ndoms++; 935 } 936 937 /* 938 * Now we know how many domains to create. 939 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 940 */ 941 doms = alloc_sched_domains(ndoms); 942 if (!doms) 943 goto done; 944 945 /* 946 * The rest of the code, including the scheduler, can deal with 947 * dattr==NULL case. No need to abort if alloc fails. 948 */ 949 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 950 GFP_KERNEL); 951 952 /* 953 * Cgroup v2 doesn't support domain attributes, just set all of them 954 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a 955 * subset of HK_TYPE_DOMAIN housekeeping CPUs. 956 */ 957 if (cgrpv2) { 958 for (i = 0; i < ndoms; i++) { 959 /* 960 * The top cpuset may contain some boot time isolated 961 * CPUs that need to be excluded from the sched domain. 962 */ 963 if (csa[i] == &top_cpuset) 964 cpumask_and(doms[i], csa[i]->effective_cpus, 965 housekeeping_cpumask(HK_TYPE_DOMAIN)); 966 else 967 cpumask_copy(doms[i], csa[i]->effective_cpus); 968 if (dattr) 969 dattr[i] = SD_ATTR_INIT; 970 } 971 goto done; 972 } 973 974 for (nslot = 0, i = 0; i < csn; i++) { 975 nslot_update = 0; 976 for (j = i; j < csn; j++) { 977 if (uf_find(&csa[j]->node) == &csa[i]->node) { 978 struct cpumask *dp = doms[nslot]; 979 980 if (i == j) { 981 nslot_update = 1; 982 cpumask_clear(dp); 983 if (dattr) 984 *(dattr + nslot) = SD_ATTR_INIT; 985 } 986 cpumask_or(dp, dp, csa[j]->effective_cpus); 987 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); 988 if (dattr) 989 update_domain_attr_tree(dattr + nslot, csa[j]); 990 } 991 } 992 if (nslot_update) 993 nslot++; 994 } 995 BUG_ON(nslot != ndoms); 996 997 done: 998 kfree(csa); 999 1000 /* 1001 * Fallback to the default domain if kmalloc() failed. 1002 * See comments in partition_sched_domains(). 1003 */ 1004 if (doms == NULL) 1005 ndoms = 1; 1006 1007 *domains = doms; 1008 *attributes = dattr; 1009 return ndoms; 1010 } 1011 1012 static void dl_update_tasks_root_domain(struct cpuset *cs) 1013 { 1014 struct css_task_iter it; 1015 struct task_struct *task; 1016 1017 if (cs->nr_deadline_tasks == 0) 1018 return; 1019 1020 css_task_iter_start(&cs->css, 0, &it); 1021 1022 while ((task = css_task_iter_next(&it))) 1023 dl_add_task_root_domain(task); 1024 1025 css_task_iter_end(&it); 1026 } 1027 1028 void dl_rebuild_rd_accounting(void) 1029 { 1030 struct cpuset *cs = NULL; 1031 struct cgroup_subsys_state *pos_css; 1032 int cpu; 1033 u64 cookie = ++dl_cookie; 1034 1035 lockdep_assert_held(&cpuset_mutex); 1036 lockdep_assert_cpus_held(); 1037 lockdep_assert_held(&sched_domains_mutex); 1038 1039 rcu_read_lock(); 1040 1041 for_each_possible_cpu(cpu) { 1042 if (dl_bw_visited(cpu, cookie)) 1043 continue; 1044 1045 dl_clear_root_domain_cpu(cpu); 1046 } 1047 1048 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1049 1050 if (cpumask_empty(cs->effective_cpus)) { 1051 pos_css = css_rightmost_descendant(pos_css); 1052 continue; 1053 } 1054 1055 css_get(&cs->css); 1056 1057 rcu_read_unlock(); 1058 1059 dl_update_tasks_root_domain(cs); 1060 1061 rcu_read_lock(); 1062 css_put(&cs->css); 1063 } 1064 rcu_read_unlock(); 1065 } 1066 1067 /* 1068 * Rebuild scheduler domains. 1069 * 1070 * If the flag 'sched_load_balance' of any cpuset with non-empty 1071 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1072 * which has that flag enabled, or if any cpuset with a non-empty 1073 * 'cpus' is removed, then call this routine to rebuild the 1074 * scheduler's dynamic sched domains. 1075 * 1076 * Call with cpuset_mutex held. Takes cpus_read_lock(). 1077 */ 1078 void rebuild_sched_domains_locked(void) 1079 { 1080 struct cgroup_subsys_state *pos_css; 1081 struct sched_domain_attr *attr; 1082 cpumask_var_t *doms; 1083 struct cpuset *cs; 1084 int ndoms; 1085 1086 lockdep_assert_cpus_held(); 1087 lockdep_assert_held(&cpuset_mutex); 1088 force_sd_rebuild = false; 1089 1090 /* 1091 * If we have raced with CPU hotplug, return early to avoid 1092 * passing doms with offlined cpu to partition_sched_domains(). 1093 * Anyways, cpuset_handle_hotplug() will rebuild sched domains. 1094 * 1095 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1096 * should be the same as the active CPUs, so checking only top_cpuset 1097 * is enough to detect racing CPU offlines. 1098 */ 1099 if (cpumask_empty(subpartitions_cpus) && 1100 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1101 return; 1102 1103 /* 1104 * With subpartition CPUs, however, the effective CPUs of a partition 1105 * root should be only a subset of the active CPUs. Since a CPU in any 1106 * partition root could be offlined, all must be checked. 1107 */ 1108 if (!cpumask_empty(subpartitions_cpus)) { 1109 rcu_read_lock(); 1110 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1111 if (!is_partition_valid(cs)) { 1112 pos_css = css_rightmost_descendant(pos_css); 1113 continue; 1114 } 1115 if (!cpumask_subset(cs->effective_cpus, 1116 cpu_active_mask)) { 1117 rcu_read_unlock(); 1118 return; 1119 } 1120 } 1121 rcu_read_unlock(); 1122 } 1123 1124 /* Generate domain masks and attrs */ 1125 ndoms = generate_sched_domains(&doms, &attr); 1126 1127 /* Have scheduler rebuild the domains */ 1128 partition_sched_domains(ndoms, doms, attr); 1129 } 1130 #else /* !CONFIG_SMP */ 1131 void rebuild_sched_domains_locked(void) 1132 { 1133 } 1134 #endif /* CONFIG_SMP */ 1135 1136 static void rebuild_sched_domains_cpuslocked(void) 1137 { 1138 mutex_lock(&cpuset_mutex); 1139 rebuild_sched_domains_locked(); 1140 mutex_unlock(&cpuset_mutex); 1141 } 1142 1143 void rebuild_sched_domains(void) 1144 { 1145 cpus_read_lock(); 1146 rebuild_sched_domains_cpuslocked(); 1147 cpus_read_unlock(); 1148 } 1149 1150 void cpuset_reset_sched_domains(void) 1151 { 1152 mutex_lock(&cpuset_mutex); 1153 partition_sched_domains(1, NULL, NULL); 1154 mutex_unlock(&cpuset_mutex); 1155 } 1156 1157 /** 1158 * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1159 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1160 * @new_cpus: the temp variable for the new effective_cpus mask 1161 * 1162 * Iterate through each task of @cs updating its cpus_allowed to the 1163 * effective cpuset's. As this function is called with cpuset_mutex held, 1164 * cpuset membership stays stable. 1165 * 1166 * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus 1167 * to make sure all offline CPUs are also included as hotplug code won't 1168 * update cpumasks for tasks in top_cpuset. 1169 * 1170 * As task_cpu_possible_mask() can be task dependent in arm64, we have to 1171 * do cpu masking per task instead of doing it once for all. 1172 */ 1173 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) 1174 { 1175 struct css_task_iter it; 1176 struct task_struct *task; 1177 bool top_cs = cs == &top_cpuset; 1178 1179 css_task_iter_start(&cs->css, 0, &it); 1180 while ((task = css_task_iter_next(&it))) { 1181 const struct cpumask *possible_mask = task_cpu_possible_mask(task); 1182 1183 if (top_cs) { 1184 /* 1185 * PF_NO_SETAFFINITY tasks are ignored. 1186 * All per cpu kthreads should have PF_NO_SETAFFINITY 1187 * flag set, see kthread_set_per_cpu(). 1188 */ 1189 if (task->flags & PF_NO_SETAFFINITY) 1190 continue; 1191 cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus); 1192 } else { 1193 cpumask_and(new_cpus, possible_mask, cs->effective_cpus); 1194 } 1195 set_cpus_allowed_ptr(task, new_cpus); 1196 } 1197 css_task_iter_end(&it); 1198 } 1199 1200 /** 1201 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1202 * @new_cpus: the temp variable for the new effective_cpus mask 1203 * @cs: the cpuset the need to recompute the new effective_cpus mask 1204 * @parent: the parent cpuset 1205 * 1206 * The result is valid only if the given cpuset isn't a partition root. 1207 */ 1208 static void compute_effective_cpumask(struct cpumask *new_cpus, 1209 struct cpuset *cs, struct cpuset *parent) 1210 { 1211 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1212 } 1213 1214 /* 1215 * Commands for update_parent_effective_cpumask 1216 */ 1217 enum partition_cmd { 1218 partcmd_enable, /* Enable partition root */ 1219 partcmd_enablei, /* Enable isolated partition root */ 1220 partcmd_disable, /* Disable partition root */ 1221 partcmd_update, /* Update parent's effective_cpus */ 1222 partcmd_invalidate, /* Make partition invalid */ 1223 }; 1224 1225 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1226 struct tmpmasks *tmp); 1227 1228 /* 1229 * Update partition exclusive flag 1230 * 1231 * Return: 0 if successful, an error code otherwise 1232 */ 1233 static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs) 1234 { 1235 bool exclusive = (new_prs > PRS_MEMBER); 1236 1237 if (exclusive && !is_cpu_exclusive(cs)) { 1238 if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1)) 1239 return PERR_NOTEXCL; 1240 } else if (!exclusive && is_cpu_exclusive(cs)) { 1241 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1242 cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1243 } 1244 return 0; 1245 } 1246 1247 /* 1248 * Update partition load balance flag and/or rebuild sched domain 1249 * 1250 * Changing load balance flag will automatically call 1251 * rebuild_sched_domains_locked(). 1252 * This function is for cgroup v2 only. 1253 */ 1254 static void update_partition_sd_lb(struct cpuset *cs, int old_prs) 1255 { 1256 int new_prs = cs->partition_root_state; 1257 bool rebuild_domains = (new_prs > 0) || (old_prs > 0); 1258 bool new_lb; 1259 1260 /* 1261 * If cs is not a valid partition root, the load balance state 1262 * will follow its parent. 1263 */ 1264 if (new_prs > 0) { 1265 new_lb = (new_prs != PRS_ISOLATED); 1266 } else { 1267 new_lb = is_sched_load_balance(parent_cs(cs)); 1268 } 1269 if (new_lb != !!is_sched_load_balance(cs)) { 1270 rebuild_domains = true; 1271 if (new_lb) 1272 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1273 else 1274 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1275 } 1276 1277 if (rebuild_domains) 1278 cpuset_force_rebuild(); 1279 } 1280 1281 /* 1282 * tasks_nocpu_error - Return true if tasks will have no effective_cpus 1283 */ 1284 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs, 1285 struct cpumask *xcpus) 1286 { 1287 /* 1288 * A populated partition (cs or parent) can't have empty effective_cpus 1289 */ 1290 return (cpumask_subset(parent->effective_cpus, xcpus) && 1291 partition_is_populated(parent, cs)) || 1292 (!cpumask_intersects(xcpus, cpu_active_mask) && 1293 partition_is_populated(cs, NULL)); 1294 } 1295 1296 static void reset_partition_data(struct cpuset *cs) 1297 { 1298 struct cpuset *parent = parent_cs(cs); 1299 1300 if (!cpuset_v2()) 1301 return; 1302 1303 lockdep_assert_held(&callback_lock); 1304 1305 cs->nr_subparts = 0; 1306 if (cpumask_empty(cs->exclusive_cpus)) { 1307 cpumask_clear(cs->effective_xcpus); 1308 if (is_cpu_exclusive(cs)) 1309 clear_bit(CS_CPU_EXCLUSIVE, &cs->flags); 1310 } 1311 if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed)) 1312 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 1313 } 1314 1315 /* 1316 * isolated_cpus_update - Update the isolated_cpus mask 1317 * @old_prs: old partition_root_state 1318 * @new_prs: new partition_root_state 1319 * @xcpus: exclusive CPUs with state change 1320 */ 1321 static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus) 1322 { 1323 WARN_ON_ONCE(old_prs == new_prs); 1324 if (new_prs == PRS_ISOLATED) 1325 cpumask_or(isolated_cpus, isolated_cpus, xcpus); 1326 else 1327 cpumask_andnot(isolated_cpus, isolated_cpus, xcpus); 1328 } 1329 1330 /* 1331 * partition_xcpus_add - Add new exclusive CPUs to partition 1332 * @new_prs: new partition_root_state 1333 * @parent: parent cpuset 1334 * @xcpus: exclusive CPUs to be added 1335 * Return: true if isolated_cpus modified, false otherwise 1336 * 1337 * Remote partition if parent == NULL 1338 */ 1339 static bool partition_xcpus_add(int new_prs, struct cpuset *parent, 1340 struct cpumask *xcpus) 1341 { 1342 bool isolcpus_updated; 1343 1344 WARN_ON_ONCE(new_prs < 0); 1345 lockdep_assert_held(&callback_lock); 1346 if (!parent) 1347 parent = &top_cpuset; 1348 1349 1350 if (parent == &top_cpuset) 1351 cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus); 1352 1353 isolcpus_updated = (new_prs != parent->partition_root_state); 1354 if (isolcpus_updated) 1355 isolated_cpus_update(parent->partition_root_state, new_prs, 1356 xcpus); 1357 1358 cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus); 1359 return isolcpus_updated; 1360 } 1361 1362 /* 1363 * partition_xcpus_del - Remove exclusive CPUs from partition 1364 * @old_prs: old partition_root_state 1365 * @parent: parent cpuset 1366 * @xcpus: exclusive CPUs to be removed 1367 * Return: true if isolated_cpus modified, false otherwise 1368 * 1369 * Remote partition if parent == NULL 1370 */ 1371 static bool partition_xcpus_del(int old_prs, struct cpuset *parent, 1372 struct cpumask *xcpus) 1373 { 1374 bool isolcpus_updated; 1375 1376 WARN_ON_ONCE(old_prs < 0); 1377 lockdep_assert_held(&callback_lock); 1378 if (!parent) 1379 parent = &top_cpuset; 1380 1381 if (parent == &top_cpuset) 1382 cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus); 1383 1384 isolcpus_updated = (old_prs != parent->partition_root_state); 1385 if (isolcpus_updated) 1386 isolated_cpus_update(old_prs, parent->partition_root_state, 1387 xcpus); 1388 1389 cpumask_and(xcpus, xcpus, cpu_active_mask); 1390 cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus); 1391 return isolcpus_updated; 1392 } 1393 1394 static void update_unbound_workqueue_cpumask(bool isolcpus_updated) 1395 { 1396 int ret; 1397 1398 lockdep_assert_cpus_held(); 1399 1400 if (!isolcpus_updated) 1401 return; 1402 1403 ret = workqueue_unbound_exclude_cpumask(isolated_cpus); 1404 WARN_ON_ONCE(ret < 0); 1405 } 1406 1407 /** 1408 * cpuset_cpu_is_isolated - Check if the given CPU is isolated 1409 * @cpu: the CPU number to be checked 1410 * Return: true if CPU is used in an isolated partition, false otherwise 1411 */ 1412 bool cpuset_cpu_is_isolated(int cpu) 1413 { 1414 return cpumask_test_cpu(cpu, isolated_cpus); 1415 } 1416 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated); 1417 1418 /** 1419 * rm_siblings_excl_cpus - Remove exclusive CPUs that are used by sibling cpusets 1420 * @parent: Parent cpuset containing all siblings 1421 * @cs: Current cpuset (will be skipped) 1422 * @excpus: exclusive effective CPU mask to modify 1423 * 1424 * This function ensures the given @excpus mask doesn't include any CPUs that 1425 * are exclusively allocated to sibling cpusets. It walks through all siblings 1426 * of @cs under @parent and removes their exclusive CPUs from @excpus. 1427 */ 1428 static int rm_siblings_excl_cpus(struct cpuset *parent, struct cpuset *cs, 1429 struct cpumask *excpus) 1430 { 1431 struct cgroup_subsys_state *css; 1432 struct cpuset *sibling; 1433 int retval = 0; 1434 1435 if (cpumask_empty(excpus)) 1436 return retval; 1437 1438 /* 1439 * Exclude exclusive CPUs from siblings 1440 */ 1441 rcu_read_lock(); 1442 cpuset_for_each_child(sibling, css, parent) { 1443 if (sibling == cs) 1444 continue; 1445 1446 if (cpumask_intersects(excpus, sibling->exclusive_cpus)) { 1447 cpumask_andnot(excpus, excpus, sibling->exclusive_cpus); 1448 retval++; 1449 continue; 1450 } 1451 if (cpumask_intersects(excpus, sibling->effective_xcpus)) { 1452 cpumask_andnot(excpus, excpus, sibling->effective_xcpus); 1453 retval++; 1454 } 1455 } 1456 rcu_read_unlock(); 1457 1458 return retval; 1459 } 1460 1461 /* 1462 * compute_excpus - compute effective exclusive CPUs 1463 * @cs: cpuset 1464 * @xcpus: effective exclusive CPUs value to be set 1465 * Return: 0 if there is no sibling conflict, > 0 otherwise 1466 * 1467 * If exclusive_cpus isn't explicitly set , we have to scan the sibling cpusets 1468 * and exclude their exclusive_cpus or effective_xcpus as well. 1469 */ 1470 static int compute_excpus(struct cpuset *cs, struct cpumask *excpus) 1471 { 1472 struct cpuset *parent = parent_cs(cs); 1473 1474 cpumask_and(excpus, user_xcpus(cs), parent->effective_xcpus); 1475 1476 if (!cpumask_empty(cs->exclusive_cpus)) 1477 return 0; 1478 1479 return rm_siblings_excl_cpus(parent, cs, excpus); 1480 } 1481 1482 /* 1483 * compute_trialcs_excpus - Compute effective exclusive CPUs for a trial cpuset 1484 * @trialcs: The trial cpuset containing the proposed new configuration 1485 * @cs: The original cpuset that the trial configuration is based on 1486 * Return: 0 if successful with no sibling conflict, >0 if a conflict is found 1487 * 1488 * Computes the effective_xcpus for a trial configuration. @cs is provided to represent 1489 * the real cs. 1490 */ 1491 static int compute_trialcs_excpus(struct cpuset *trialcs, struct cpuset *cs) 1492 { 1493 struct cpuset *parent = parent_cs(trialcs); 1494 struct cpumask *excpus = trialcs->effective_xcpus; 1495 1496 /* trialcs is member, cpuset.cpus has no impact to excpus */ 1497 if (cs_is_member(cs)) 1498 cpumask_and(excpus, trialcs->exclusive_cpus, 1499 parent->effective_xcpus); 1500 else 1501 cpumask_and(excpus, user_xcpus(trialcs), parent->effective_xcpus); 1502 1503 return rm_siblings_excl_cpus(parent, cs, excpus); 1504 } 1505 1506 static inline bool is_remote_partition(struct cpuset *cs) 1507 { 1508 return !list_empty(&cs->remote_sibling); 1509 } 1510 1511 static inline bool is_local_partition(struct cpuset *cs) 1512 { 1513 return is_partition_valid(cs) && !is_remote_partition(cs); 1514 } 1515 1516 /* 1517 * remote_partition_enable - Enable current cpuset as a remote partition root 1518 * @cs: the cpuset to update 1519 * @new_prs: new partition_root_state 1520 * @tmp: temporary masks 1521 * Return: 0 if successful, errcode if error 1522 * 1523 * Enable the current cpuset to become a remote partition root taking CPUs 1524 * directly from the top cpuset. cpuset_mutex must be held by the caller. 1525 */ 1526 static int remote_partition_enable(struct cpuset *cs, int new_prs, 1527 struct tmpmasks *tmp) 1528 { 1529 bool isolcpus_updated; 1530 1531 /* 1532 * The user must have sysadmin privilege. 1533 */ 1534 if (!capable(CAP_SYS_ADMIN)) 1535 return PERR_ACCESS; 1536 1537 /* 1538 * The requested exclusive_cpus must not be allocated to other 1539 * partitions and it can't use up all the root's effective_cpus. 1540 * 1541 * The effective_xcpus mask can contain offline CPUs, but there must 1542 * be at least one or more online CPUs present before it can be enabled. 1543 * 1544 * Note that creating a remote partition with any local partition root 1545 * above it or remote partition root underneath it is not allowed. 1546 */ 1547 compute_excpus(cs, tmp->new_cpus); 1548 WARN_ON_ONCE(cpumask_intersects(tmp->new_cpus, subpartitions_cpus)); 1549 if (!cpumask_intersects(tmp->new_cpus, cpu_active_mask) || 1550 cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus)) 1551 return PERR_INVCPUS; 1552 1553 spin_lock_irq(&callback_lock); 1554 isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus); 1555 list_add(&cs->remote_sibling, &remote_children); 1556 cpumask_copy(cs->effective_xcpus, tmp->new_cpus); 1557 spin_unlock_irq(&callback_lock); 1558 update_unbound_workqueue_cpumask(isolcpus_updated); 1559 cpuset_force_rebuild(); 1560 cs->prs_err = 0; 1561 1562 /* 1563 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1564 */ 1565 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1566 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1567 return 0; 1568 } 1569 1570 /* 1571 * remote_partition_disable - Remove current cpuset from remote partition list 1572 * @cs: the cpuset to update 1573 * @tmp: temporary masks 1574 * 1575 * The effective_cpus is also updated. 1576 * 1577 * cpuset_mutex must be held by the caller. 1578 */ 1579 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp) 1580 { 1581 bool isolcpus_updated; 1582 1583 WARN_ON_ONCE(!is_remote_partition(cs)); 1584 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); 1585 1586 spin_lock_irq(&callback_lock); 1587 list_del_init(&cs->remote_sibling); 1588 isolcpus_updated = partition_xcpus_del(cs->partition_root_state, 1589 NULL, cs->effective_xcpus); 1590 if (cs->prs_err) 1591 cs->partition_root_state = -cs->partition_root_state; 1592 else 1593 cs->partition_root_state = PRS_MEMBER; 1594 1595 /* effective_xcpus may need to be changed */ 1596 compute_excpus(cs, cs->effective_xcpus); 1597 reset_partition_data(cs); 1598 spin_unlock_irq(&callback_lock); 1599 update_unbound_workqueue_cpumask(isolcpus_updated); 1600 cpuset_force_rebuild(); 1601 1602 /* 1603 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1604 */ 1605 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1606 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1607 } 1608 1609 /* 1610 * remote_cpus_update - cpus_exclusive change of remote partition 1611 * @cs: the cpuset to be updated 1612 * @xcpus: the new exclusive_cpus mask, if non-NULL 1613 * @excpus: the new effective_xcpus mask 1614 * @tmp: temporary masks 1615 * 1616 * top_cpuset and subpartitions_cpus will be updated or partition can be 1617 * invalidated. 1618 */ 1619 static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus, 1620 struct cpumask *excpus, struct tmpmasks *tmp) 1621 { 1622 bool adding, deleting; 1623 int prs = cs->partition_root_state; 1624 int isolcpus_updated = 0; 1625 1626 if (WARN_ON_ONCE(!is_remote_partition(cs))) 1627 return; 1628 1629 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); 1630 1631 if (cpumask_empty(excpus)) { 1632 cs->prs_err = PERR_CPUSEMPTY; 1633 goto invalidate; 1634 } 1635 1636 adding = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus); 1637 deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus); 1638 1639 /* 1640 * Additions of remote CPUs is only allowed if those CPUs are 1641 * not allocated to other partitions and there are effective_cpus 1642 * left in the top cpuset. 1643 */ 1644 if (adding) { 1645 WARN_ON_ONCE(cpumask_intersects(tmp->addmask, subpartitions_cpus)); 1646 if (!capable(CAP_SYS_ADMIN)) 1647 cs->prs_err = PERR_ACCESS; 1648 else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) || 1649 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)) 1650 cs->prs_err = PERR_NOCPUS; 1651 if (cs->prs_err) 1652 goto invalidate; 1653 } 1654 1655 spin_lock_irq(&callback_lock); 1656 if (adding) 1657 isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask); 1658 if (deleting) 1659 isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask); 1660 /* 1661 * Need to update effective_xcpus and exclusive_cpus now as 1662 * update_sibling_cpumasks() below may iterate back to the same cs. 1663 */ 1664 cpumask_copy(cs->effective_xcpus, excpus); 1665 if (xcpus) 1666 cpumask_copy(cs->exclusive_cpus, xcpus); 1667 spin_unlock_irq(&callback_lock); 1668 update_unbound_workqueue_cpumask(isolcpus_updated); 1669 if (adding || deleting) 1670 cpuset_force_rebuild(); 1671 1672 /* 1673 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1674 */ 1675 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1676 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1677 return; 1678 1679 invalidate: 1680 remote_partition_disable(cs, tmp); 1681 } 1682 1683 /* 1684 * prstate_housekeeping_conflict - check for partition & housekeeping conflicts 1685 * @prstate: partition root state to be checked 1686 * @new_cpus: cpu mask 1687 * Return: true if there is conflict, false otherwise 1688 * 1689 * CPUs outside of boot_hk_cpus, if defined, can only be used in an 1690 * isolated partition. 1691 */ 1692 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus) 1693 { 1694 if (!have_boot_isolcpus) 1695 return false; 1696 1697 if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus)) 1698 return true; 1699 1700 return false; 1701 } 1702 1703 /** 1704 * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset 1705 * @cs: The cpuset that requests change in partition root state 1706 * @cmd: Partition root state change command 1707 * @newmask: Optional new cpumask for partcmd_update 1708 * @tmp: Temporary addmask and delmask 1709 * Return: 0 or a partition root state error code 1710 * 1711 * For partcmd_enable*, the cpuset is being transformed from a non-partition 1712 * root to a partition root. The effective_xcpus (cpus_allowed if 1713 * effective_xcpus not set) mask of the given cpuset will be taken away from 1714 * parent's effective_cpus. The function will return 0 if all the CPUs listed 1715 * in effective_xcpus can be granted or an error code will be returned. 1716 * 1717 * For partcmd_disable, the cpuset is being transformed from a partition 1718 * root back to a non-partition root. Any CPUs in effective_xcpus will be 1719 * given back to parent's effective_cpus. 0 will always be returned. 1720 * 1721 * For partcmd_update, if the optional newmask is specified, the cpu list is 1722 * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is 1723 * assumed to remain the same. The cpuset should either be a valid or invalid 1724 * partition root. The partition root state may change from valid to invalid 1725 * or vice versa. An error code will be returned if transitioning from 1726 * invalid to valid violates the exclusivity rule. 1727 * 1728 * For partcmd_invalidate, the current partition will be made invalid. 1729 * 1730 * The partcmd_enable* and partcmd_disable commands are used by 1731 * update_prstate(). An error code may be returned and the caller will check 1732 * for error. 1733 * 1734 * The partcmd_update command is used by update_cpumasks_hier() with newmask 1735 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used 1736 * by update_cpumask() with NULL newmask. In both cases, the callers won't 1737 * check for error and so partition_root_state and prs_err will be updated 1738 * directly. 1739 */ 1740 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd, 1741 struct cpumask *newmask, 1742 struct tmpmasks *tmp) 1743 { 1744 struct cpuset *parent = parent_cs(cs); 1745 int adding; /* Adding cpus to parent's effective_cpus */ 1746 int deleting; /* Deleting cpus from parent's effective_cpus */ 1747 int old_prs, new_prs; 1748 int part_error = PERR_NONE; /* Partition error? */ 1749 int subparts_delta = 0; 1750 int isolcpus_updated = 0; 1751 struct cpumask *xcpus = user_xcpus(cs); 1752 bool nocpu; 1753 1754 lockdep_assert_held(&cpuset_mutex); 1755 WARN_ON_ONCE(is_remote_partition(cs)); /* For local partition only */ 1756 1757 /* 1758 * new_prs will only be changed for the partcmd_update and 1759 * partcmd_invalidate commands. 1760 */ 1761 adding = deleting = false; 1762 old_prs = new_prs = cs->partition_root_state; 1763 1764 if (cmd == partcmd_invalidate) { 1765 if (is_partition_invalid(cs)) 1766 return 0; 1767 1768 /* 1769 * Make the current partition invalid. 1770 */ 1771 if (is_partition_valid(parent)) 1772 adding = cpumask_and(tmp->addmask, 1773 xcpus, parent->effective_xcpus); 1774 if (old_prs > 0) { 1775 new_prs = -old_prs; 1776 subparts_delta--; 1777 } 1778 goto write_error; 1779 } 1780 1781 /* 1782 * The parent must be a partition root. 1783 * The new cpumask, if present, or the current cpus_allowed must 1784 * not be empty. 1785 */ 1786 if (!is_partition_valid(parent)) { 1787 return is_partition_invalid(parent) 1788 ? PERR_INVPARENT : PERR_NOTPART; 1789 } 1790 if (!newmask && xcpus_empty(cs)) 1791 return PERR_CPUSEMPTY; 1792 1793 nocpu = tasks_nocpu_error(parent, cs, xcpus); 1794 1795 if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) { 1796 /* 1797 * Need to call compute_excpus() in case 1798 * exclusive_cpus not set. Sibling conflict should only happen 1799 * if exclusive_cpus isn't set. 1800 */ 1801 xcpus = tmp->delmask; 1802 if (compute_excpus(cs, xcpus)) 1803 WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus)); 1804 new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED; 1805 1806 /* 1807 * Enabling partition root is not allowed if its 1808 * effective_xcpus is empty. 1809 */ 1810 if (cpumask_empty(xcpus)) 1811 return PERR_INVCPUS; 1812 1813 if (prstate_housekeeping_conflict(new_prs, xcpus)) 1814 return PERR_HKEEPING; 1815 1816 if (tasks_nocpu_error(parent, cs, xcpus)) 1817 return PERR_NOCPUS; 1818 1819 /* 1820 * This function will only be called when all the preliminary 1821 * checks have passed. At this point, the following condition 1822 * should hold. 1823 * 1824 * (cs->effective_xcpus & cpu_active_mask) ⊆ parent->effective_cpus 1825 * 1826 * Warn if it is not the case. 1827 */ 1828 cpumask_and(tmp->new_cpus, xcpus, cpu_active_mask); 1829 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus)); 1830 1831 deleting = true; 1832 subparts_delta++; 1833 } else if (cmd == partcmd_disable) { 1834 /* 1835 * May need to add cpus back to parent's effective_cpus 1836 * (and maybe removed from subpartitions_cpus/isolated_cpus) 1837 * for valid partition root. xcpus may contain CPUs that 1838 * shouldn't be removed from the two global cpumasks. 1839 */ 1840 if (is_partition_valid(cs)) { 1841 cpumask_copy(tmp->addmask, cs->effective_xcpus); 1842 adding = true; 1843 subparts_delta--; 1844 } 1845 new_prs = PRS_MEMBER; 1846 } else if (newmask) { 1847 /* 1848 * Empty cpumask is not allowed 1849 */ 1850 if (cpumask_empty(newmask)) { 1851 part_error = PERR_CPUSEMPTY; 1852 goto write_error; 1853 } 1854 1855 /* Check newmask again, whether cpus are available for parent/cs */ 1856 nocpu |= tasks_nocpu_error(parent, cs, newmask); 1857 1858 /* 1859 * partcmd_update with newmask: 1860 * 1861 * Compute add/delete mask to/from effective_cpus 1862 * 1863 * For valid partition: 1864 * addmask = exclusive_cpus & ~newmask 1865 * & parent->effective_xcpus 1866 * delmask = newmask & ~exclusive_cpus 1867 * & parent->effective_xcpus 1868 * 1869 * For invalid partition: 1870 * delmask = newmask & parent->effective_xcpus 1871 */ 1872 if (is_partition_invalid(cs)) { 1873 adding = false; 1874 deleting = cpumask_and(tmp->delmask, 1875 newmask, parent->effective_xcpus); 1876 } else { 1877 cpumask_andnot(tmp->addmask, xcpus, newmask); 1878 adding = cpumask_and(tmp->addmask, tmp->addmask, 1879 parent->effective_xcpus); 1880 1881 cpumask_andnot(tmp->delmask, newmask, xcpus); 1882 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1883 parent->effective_xcpus); 1884 } 1885 /* 1886 * The new CPUs to be removed from parent's effective CPUs 1887 * must be present. 1888 */ 1889 if (deleting) { 1890 cpumask_and(tmp->new_cpus, tmp->delmask, cpu_active_mask); 1891 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, parent->effective_cpus)); 1892 } 1893 1894 /* 1895 * Make partition invalid if parent's effective_cpus could 1896 * become empty and there are tasks in the parent. 1897 */ 1898 if (nocpu && (!adding || 1899 !cpumask_intersects(tmp->addmask, cpu_active_mask))) { 1900 part_error = PERR_NOCPUS; 1901 deleting = false; 1902 adding = cpumask_and(tmp->addmask, 1903 xcpus, parent->effective_xcpus); 1904 } 1905 } else { 1906 /* 1907 * partcmd_update w/o newmask 1908 * 1909 * delmask = effective_xcpus & parent->effective_cpus 1910 * 1911 * This can be called from: 1912 * 1) update_cpumasks_hier() 1913 * 2) cpuset_hotplug_update_tasks() 1914 * 1915 * Check to see if it can be transitioned from valid to 1916 * invalid partition or vice versa. 1917 * 1918 * A partition error happens when parent has tasks and all 1919 * its effective CPUs will have to be distributed out. 1920 */ 1921 if (nocpu) { 1922 part_error = PERR_NOCPUS; 1923 if (is_partition_valid(cs)) 1924 adding = cpumask_and(tmp->addmask, 1925 xcpus, parent->effective_xcpus); 1926 } else if (is_partition_invalid(cs) && !cpumask_empty(xcpus) && 1927 cpumask_subset(xcpus, parent->effective_xcpus)) { 1928 struct cgroup_subsys_state *css; 1929 struct cpuset *child; 1930 bool exclusive = true; 1931 1932 /* 1933 * Convert invalid partition to valid has to 1934 * pass the cpu exclusivity test. 1935 */ 1936 rcu_read_lock(); 1937 cpuset_for_each_child(child, css, parent) { 1938 if (child == cs) 1939 continue; 1940 if (!cpusets_are_exclusive(cs, child)) { 1941 exclusive = false; 1942 break; 1943 } 1944 } 1945 rcu_read_unlock(); 1946 if (exclusive) 1947 deleting = cpumask_and(tmp->delmask, 1948 xcpus, parent->effective_cpus); 1949 else 1950 part_error = PERR_NOTEXCL; 1951 } 1952 } 1953 1954 write_error: 1955 if (part_error) 1956 WRITE_ONCE(cs->prs_err, part_error); 1957 1958 if (cmd == partcmd_update) { 1959 /* 1960 * Check for possible transition between valid and invalid 1961 * partition root. 1962 */ 1963 switch (cs->partition_root_state) { 1964 case PRS_ROOT: 1965 case PRS_ISOLATED: 1966 if (part_error) { 1967 new_prs = -old_prs; 1968 subparts_delta--; 1969 } 1970 break; 1971 case PRS_INVALID_ROOT: 1972 case PRS_INVALID_ISOLATED: 1973 if (!part_error) { 1974 new_prs = -old_prs; 1975 subparts_delta++; 1976 } 1977 break; 1978 } 1979 } 1980 1981 if (!adding && !deleting && (new_prs == old_prs)) 1982 return 0; 1983 1984 /* 1985 * Transitioning between invalid to valid or vice versa may require 1986 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update, 1987 * validate_change() has already been successfully called and 1988 * CPU lists in cs haven't been updated yet. So defer it to later. 1989 */ 1990 if ((old_prs != new_prs) && (cmd != partcmd_update)) { 1991 int err = update_partition_exclusive_flag(cs, new_prs); 1992 1993 if (err) 1994 return err; 1995 } 1996 1997 /* 1998 * Change the parent's effective_cpus & effective_xcpus (top cpuset 1999 * only). 2000 * 2001 * Newly added CPUs will be removed from effective_cpus and 2002 * newly deleted ones will be added back to effective_cpus. 2003 */ 2004 spin_lock_irq(&callback_lock); 2005 if (old_prs != new_prs) { 2006 cs->partition_root_state = new_prs; 2007 if (new_prs <= 0) 2008 cs->nr_subparts = 0; 2009 } 2010 /* 2011 * Adding to parent's effective_cpus means deletion CPUs from cs 2012 * and vice versa. 2013 */ 2014 if (adding) 2015 isolcpus_updated += partition_xcpus_del(old_prs, parent, 2016 tmp->addmask); 2017 if (deleting) 2018 isolcpus_updated += partition_xcpus_add(new_prs, parent, 2019 tmp->delmask); 2020 2021 if (is_partition_valid(parent)) { 2022 parent->nr_subparts += subparts_delta; 2023 WARN_ON_ONCE(parent->nr_subparts < 0); 2024 } 2025 spin_unlock_irq(&callback_lock); 2026 update_unbound_workqueue_cpumask(isolcpus_updated); 2027 2028 if ((old_prs != new_prs) && (cmd == partcmd_update)) 2029 update_partition_exclusive_flag(cs, new_prs); 2030 2031 if (adding || deleting) { 2032 cpuset_update_tasks_cpumask(parent, tmp->addmask); 2033 update_sibling_cpumasks(parent, cs, tmp); 2034 } 2035 2036 /* 2037 * For partcmd_update without newmask, it is being called from 2038 * cpuset_handle_hotplug(). Update the load balance flag and 2039 * scheduling domain accordingly. 2040 */ 2041 if ((cmd == partcmd_update) && !newmask) 2042 update_partition_sd_lb(cs, old_prs); 2043 2044 notify_partition_change(cs, old_prs); 2045 return 0; 2046 } 2047 2048 /** 2049 * compute_partition_effective_cpumask - compute effective_cpus for partition 2050 * @cs: partition root cpuset 2051 * @new_ecpus: previously computed effective_cpus to be updated 2052 * 2053 * Compute the effective_cpus of a partition root by scanning effective_xcpus 2054 * of child partition roots and excluding their effective_xcpus. 2055 * 2056 * This has the side effect of invalidating valid child partition roots, 2057 * if necessary. Since it is called from either cpuset_hotplug_update_tasks() 2058 * or update_cpumasks_hier() where parent and children are modified 2059 * successively, we don't need to call update_parent_effective_cpumask() 2060 * and the child's effective_cpus will be updated in later iterations. 2061 * 2062 * Note that rcu_read_lock() is assumed to be held. 2063 */ 2064 static void compute_partition_effective_cpumask(struct cpuset *cs, 2065 struct cpumask *new_ecpus) 2066 { 2067 struct cgroup_subsys_state *css; 2068 struct cpuset *child; 2069 bool populated = partition_is_populated(cs, NULL); 2070 2071 /* 2072 * Check child partition roots to see if they should be 2073 * invalidated when 2074 * 1) child effective_xcpus not a subset of new 2075 * excluisve_cpus 2076 * 2) All the effective_cpus will be used up and cp 2077 * has tasks 2078 */ 2079 compute_excpus(cs, new_ecpus); 2080 cpumask_and(new_ecpus, new_ecpus, cpu_active_mask); 2081 2082 rcu_read_lock(); 2083 cpuset_for_each_child(child, css, cs) { 2084 if (!is_partition_valid(child)) 2085 continue; 2086 2087 /* 2088 * There shouldn't be a remote partition underneath another 2089 * partition root. 2090 */ 2091 WARN_ON_ONCE(is_remote_partition(child)); 2092 child->prs_err = 0; 2093 if (!cpumask_subset(child->effective_xcpus, 2094 cs->effective_xcpus)) 2095 child->prs_err = PERR_INVCPUS; 2096 else if (populated && 2097 cpumask_subset(new_ecpus, child->effective_xcpus)) 2098 child->prs_err = PERR_NOCPUS; 2099 2100 if (child->prs_err) { 2101 int old_prs = child->partition_root_state; 2102 2103 /* 2104 * Invalidate child partition 2105 */ 2106 spin_lock_irq(&callback_lock); 2107 make_partition_invalid(child); 2108 cs->nr_subparts--; 2109 child->nr_subparts = 0; 2110 spin_unlock_irq(&callback_lock); 2111 notify_partition_change(child, old_prs); 2112 continue; 2113 } 2114 cpumask_andnot(new_ecpus, new_ecpus, 2115 child->effective_xcpus); 2116 } 2117 rcu_read_unlock(); 2118 } 2119 2120 /* 2121 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 2122 * @cs: the cpuset to consider 2123 * @tmp: temp variables for calculating effective_cpus & partition setup 2124 * @force: don't skip any descendant cpusets if set 2125 * 2126 * When configured cpumask is changed, the effective cpumasks of this cpuset 2127 * and all its descendants need to be updated. 2128 * 2129 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 2130 * 2131 * Called with cpuset_mutex held 2132 */ 2133 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, 2134 bool force) 2135 { 2136 struct cpuset *cp; 2137 struct cgroup_subsys_state *pos_css; 2138 bool need_rebuild_sched_domains = false; 2139 int old_prs, new_prs; 2140 2141 rcu_read_lock(); 2142 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2143 struct cpuset *parent = parent_cs(cp); 2144 bool remote = is_remote_partition(cp); 2145 bool update_parent = false; 2146 2147 old_prs = new_prs = cp->partition_root_state; 2148 2149 /* 2150 * For child remote partition root (!= cs), we need to call 2151 * remote_cpus_update() if effective_xcpus will be changed. 2152 * Otherwise, we can skip the whole subtree. 2153 * 2154 * remote_cpus_update() will reuse tmp->new_cpus only after 2155 * its value is being processed. 2156 */ 2157 if (remote && (cp != cs)) { 2158 compute_excpus(cp, tmp->new_cpus); 2159 if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) { 2160 pos_css = css_rightmost_descendant(pos_css); 2161 continue; 2162 } 2163 rcu_read_unlock(); 2164 remote_cpus_update(cp, NULL, tmp->new_cpus, tmp); 2165 rcu_read_lock(); 2166 2167 /* Remote partition may be invalidated */ 2168 new_prs = cp->partition_root_state; 2169 remote = (new_prs == old_prs); 2170 } 2171 2172 if (remote || (is_partition_valid(parent) && is_partition_valid(cp))) 2173 compute_partition_effective_cpumask(cp, tmp->new_cpus); 2174 else 2175 compute_effective_cpumask(tmp->new_cpus, cp, parent); 2176 2177 if (remote) 2178 goto get_css; /* Ready to update cpuset data */ 2179 2180 /* 2181 * A partition with no effective_cpus is allowed as long as 2182 * there is no task associated with it. Call 2183 * update_parent_effective_cpumask() to check it. 2184 */ 2185 if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) { 2186 update_parent = true; 2187 goto update_parent_effective; 2188 } 2189 2190 /* 2191 * If it becomes empty, inherit the effective mask of the 2192 * parent, which is guaranteed to have some CPUs unless 2193 * it is a partition root that has explicitly distributed 2194 * out all its CPUs. 2195 */ 2196 if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) 2197 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 2198 2199 /* 2200 * Skip the whole subtree if 2201 * 1) the cpumask remains the same, 2202 * 2) has no partition root state, 2203 * 3) force flag not set, and 2204 * 4) for v2 load balance state same as its parent. 2205 */ 2206 if (!cp->partition_root_state && !force && 2207 cpumask_equal(tmp->new_cpus, cp->effective_cpus) && 2208 (!cpuset_v2() || 2209 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { 2210 pos_css = css_rightmost_descendant(pos_css); 2211 continue; 2212 } 2213 2214 update_parent_effective: 2215 /* 2216 * update_parent_effective_cpumask() should have been called 2217 * for cs already in update_cpumask(). We should also call 2218 * cpuset_update_tasks_cpumask() again for tasks in the parent 2219 * cpuset if the parent's effective_cpus changes. 2220 */ 2221 if ((cp != cs) && old_prs) { 2222 switch (parent->partition_root_state) { 2223 case PRS_ROOT: 2224 case PRS_ISOLATED: 2225 update_parent = true; 2226 break; 2227 2228 default: 2229 /* 2230 * When parent is not a partition root or is 2231 * invalid, child partition roots become 2232 * invalid too. 2233 */ 2234 if (is_partition_valid(cp)) 2235 new_prs = -cp->partition_root_state; 2236 WRITE_ONCE(cp->prs_err, 2237 is_partition_invalid(parent) 2238 ? PERR_INVPARENT : PERR_NOTPART); 2239 break; 2240 } 2241 } 2242 get_css: 2243 if (!css_tryget_online(&cp->css)) 2244 continue; 2245 rcu_read_unlock(); 2246 2247 if (update_parent) { 2248 update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp); 2249 /* 2250 * The cpuset partition_root_state may become 2251 * invalid. Capture it. 2252 */ 2253 new_prs = cp->partition_root_state; 2254 } 2255 2256 spin_lock_irq(&callback_lock); 2257 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 2258 cp->partition_root_state = new_prs; 2259 if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) 2260 compute_excpus(cp, cp->effective_xcpus); 2261 2262 /* 2263 * Make sure effective_xcpus is properly set for a valid 2264 * partition root. 2265 */ 2266 if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus)) 2267 cpumask_and(cp->effective_xcpus, 2268 cp->cpus_allowed, parent->effective_xcpus); 2269 else if (new_prs < 0) 2270 reset_partition_data(cp); 2271 spin_unlock_irq(&callback_lock); 2272 2273 notify_partition_change(cp, old_prs); 2274 2275 WARN_ON(!is_in_v2_mode() && 2276 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 2277 2278 cpuset_update_tasks_cpumask(cp, cp->effective_cpus); 2279 2280 /* 2281 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE 2282 * from parent if current cpuset isn't a valid partition root 2283 * and their load balance states differ. 2284 */ 2285 if (cpuset_v2() && !is_partition_valid(cp) && 2286 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { 2287 if (is_sched_load_balance(parent)) 2288 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2289 else 2290 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2291 } 2292 2293 /* 2294 * On legacy hierarchy, if the effective cpumask of any non- 2295 * empty cpuset is changed, we need to rebuild sched domains. 2296 * On default hierarchy, the cpuset needs to be a partition 2297 * root as well. 2298 */ 2299 if (!cpumask_empty(cp->cpus_allowed) && 2300 is_sched_load_balance(cp) && 2301 (!cpuset_v2() || is_partition_valid(cp))) 2302 need_rebuild_sched_domains = true; 2303 2304 rcu_read_lock(); 2305 css_put(&cp->css); 2306 } 2307 rcu_read_unlock(); 2308 2309 if (need_rebuild_sched_domains) 2310 cpuset_force_rebuild(); 2311 } 2312 2313 /** 2314 * update_sibling_cpumasks - Update siblings cpumasks 2315 * @parent: Parent cpuset 2316 * @cs: Current cpuset 2317 * @tmp: Temp variables 2318 */ 2319 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 2320 struct tmpmasks *tmp) 2321 { 2322 struct cpuset *sibling; 2323 struct cgroup_subsys_state *pos_css; 2324 2325 lockdep_assert_held(&cpuset_mutex); 2326 2327 /* 2328 * Check all its siblings and call update_cpumasks_hier() 2329 * if their effective_cpus will need to be changed. 2330 * 2331 * It is possible a change in parent's effective_cpus 2332 * due to a change in a child partition's effective_xcpus will impact 2333 * its siblings even if they do not inherit parent's effective_cpus 2334 * directly. 2335 * 2336 * The update_cpumasks_hier() function may sleep. So we have to 2337 * release the RCU read lock before calling it. 2338 */ 2339 rcu_read_lock(); 2340 cpuset_for_each_child(sibling, pos_css, parent) { 2341 if (sibling == cs) 2342 continue; 2343 if (!is_partition_valid(sibling)) { 2344 compute_effective_cpumask(tmp->new_cpus, sibling, 2345 parent); 2346 if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus)) 2347 continue; 2348 } else if (is_remote_partition(sibling)) { 2349 /* 2350 * Change in a sibling cpuset won't affect a remote 2351 * partition root. 2352 */ 2353 continue; 2354 } 2355 2356 if (!css_tryget_online(&sibling->css)) 2357 continue; 2358 2359 rcu_read_unlock(); 2360 update_cpumasks_hier(sibling, tmp, false); 2361 rcu_read_lock(); 2362 css_put(&sibling->css); 2363 } 2364 rcu_read_unlock(); 2365 } 2366 2367 static int parse_cpuset_cpulist(const char *buf, struct cpumask *out_mask) 2368 { 2369 int retval; 2370 2371 retval = cpulist_parse(buf, out_mask); 2372 if (retval < 0) 2373 return retval; 2374 if (!cpumask_subset(out_mask, top_cpuset.cpus_allowed)) 2375 return -EINVAL; 2376 2377 return 0; 2378 } 2379 2380 /** 2381 * validate_partition - Validate a cpuset partition configuration 2382 * @cs: The cpuset to validate 2383 * @trialcs: The trial cpuset containing proposed configuration changes 2384 * 2385 * If any validation check fails, the appropriate error code is set in the 2386 * cpuset's prs_err field. 2387 * 2388 * Return: PRS error code (0 if valid, non-zero error code if invalid) 2389 */ 2390 static enum prs_errcode validate_partition(struct cpuset *cs, struct cpuset *trialcs) 2391 { 2392 struct cpuset *parent = parent_cs(cs); 2393 2394 if (cs_is_member(trialcs)) 2395 return PERR_NONE; 2396 2397 if (cpumask_empty(trialcs->effective_xcpus)) 2398 return PERR_INVCPUS; 2399 2400 if (prstate_housekeeping_conflict(trialcs->partition_root_state, 2401 trialcs->effective_xcpus)) 2402 return PERR_HKEEPING; 2403 2404 if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) 2405 return PERR_NOCPUS; 2406 2407 return PERR_NONE; 2408 } 2409 2410 static int cpus_allowed_validate_change(struct cpuset *cs, struct cpuset *trialcs, 2411 struct tmpmasks *tmp) 2412 { 2413 int retval; 2414 struct cpuset *parent = parent_cs(cs); 2415 2416 retval = validate_change(cs, trialcs); 2417 2418 if ((retval == -EINVAL) && cpuset_v2()) { 2419 struct cgroup_subsys_state *css; 2420 struct cpuset *cp; 2421 2422 /* 2423 * The -EINVAL error code indicates that partition sibling 2424 * CPU exclusivity rule has been violated. We still allow 2425 * the cpumask change to proceed while invalidating the 2426 * partition. However, any conflicting sibling partitions 2427 * have to be marked as invalid too. 2428 */ 2429 trialcs->prs_err = PERR_NOTEXCL; 2430 rcu_read_lock(); 2431 cpuset_for_each_child(cp, css, parent) { 2432 struct cpumask *xcpus = user_xcpus(trialcs); 2433 2434 if (is_partition_valid(cp) && 2435 cpumask_intersects(xcpus, cp->effective_xcpus)) { 2436 rcu_read_unlock(); 2437 update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, tmp); 2438 rcu_read_lock(); 2439 } 2440 } 2441 rcu_read_unlock(); 2442 retval = 0; 2443 } 2444 return retval; 2445 } 2446 2447 /** 2448 * partition_cpus_change - Handle partition state changes due to CPU mask updates 2449 * @cs: The target cpuset being modified 2450 * @trialcs: The trial cpuset containing proposed configuration changes 2451 * @tmp: Temporary masks for intermediate calculations 2452 * 2453 * This function handles partition state transitions triggered by CPU mask changes. 2454 * CPU modifications may cause a partition to be disabled or require state updates. 2455 */ 2456 static void partition_cpus_change(struct cpuset *cs, struct cpuset *trialcs, 2457 struct tmpmasks *tmp) 2458 { 2459 enum prs_errcode prs_err; 2460 2461 if (cs_is_member(cs)) 2462 return; 2463 2464 prs_err = validate_partition(cs, trialcs); 2465 if (prs_err) 2466 trialcs->prs_err = cs->prs_err = prs_err; 2467 2468 if (is_remote_partition(cs)) { 2469 if (trialcs->prs_err) 2470 remote_partition_disable(cs, tmp); 2471 else 2472 remote_cpus_update(cs, trialcs->exclusive_cpus, 2473 trialcs->effective_xcpus, tmp); 2474 } else { 2475 if (trialcs->prs_err) 2476 update_parent_effective_cpumask(cs, partcmd_invalidate, 2477 NULL, tmp); 2478 else 2479 update_parent_effective_cpumask(cs, partcmd_update, 2480 trialcs->effective_xcpus, tmp); 2481 } 2482 } 2483 2484 /** 2485 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 2486 * @cs: the cpuset to consider 2487 * @trialcs: trial cpuset 2488 * @buf: buffer of cpu numbers written to this cpuset 2489 */ 2490 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2491 const char *buf) 2492 { 2493 int retval; 2494 struct tmpmasks tmp; 2495 bool force = false; 2496 int old_prs = cs->partition_root_state; 2497 2498 retval = parse_cpuset_cpulist(buf, trialcs->cpus_allowed); 2499 if (retval < 0) 2500 return retval; 2501 2502 /* Nothing to do if the cpus didn't change */ 2503 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 2504 return 0; 2505 2506 if (alloc_tmpmasks(&tmp)) 2507 return -ENOMEM; 2508 2509 compute_trialcs_excpus(trialcs, cs); 2510 trialcs->prs_err = PERR_NONE; 2511 2512 retval = cpus_allowed_validate_change(cs, trialcs, &tmp); 2513 if (retval < 0) 2514 goto out_free; 2515 2516 /* 2517 * Check all the descendants in update_cpumasks_hier() if 2518 * effective_xcpus is to be changed. 2519 */ 2520 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); 2521 2522 partition_cpus_change(cs, trialcs, &tmp); 2523 2524 spin_lock_irq(&callback_lock); 2525 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 2526 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2527 if ((old_prs > 0) && !is_partition_valid(cs)) 2528 reset_partition_data(cs); 2529 spin_unlock_irq(&callback_lock); 2530 2531 /* effective_cpus/effective_xcpus will be updated here */ 2532 update_cpumasks_hier(cs, &tmp, force); 2533 2534 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2535 if (cs->partition_root_state) 2536 update_partition_sd_lb(cs, old_prs); 2537 out_free: 2538 free_tmpmasks(&tmp); 2539 return retval; 2540 } 2541 2542 /** 2543 * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset 2544 * @cs: the cpuset to consider 2545 * @trialcs: trial cpuset 2546 * @buf: buffer of cpu numbers written to this cpuset 2547 * 2548 * The tasks' cpumask will be updated if cs is a valid partition root. 2549 */ 2550 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2551 const char *buf) 2552 { 2553 int retval; 2554 struct tmpmasks tmp; 2555 bool force = false; 2556 int old_prs = cs->partition_root_state; 2557 2558 retval = parse_cpuset_cpulist(buf, trialcs->exclusive_cpus); 2559 if (retval < 0) 2560 return retval; 2561 2562 /* Nothing to do if the CPUs didn't change */ 2563 if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus)) 2564 return 0; 2565 2566 /* 2567 * Reject the change if there is exclusive CPUs conflict with 2568 * the siblings. 2569 */ 2570 if (compute_trialcs_excpus(trialcs, cs)) 2571 return -EINVAL; 2572 2573 /* 2574 * Check all the descendants in update_cpumasks_hier() if 2575 * effective_xcpus is to be changed. 2576 */ 2577 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); 2578 2579 retval = validate_change(cs, trialcs); 2580 if (retval) 2581 return retval; 2582 2583 if (alloc_tmpmasks(&tmp)) 2584 return -ENOMEM; 2585 2586 trialcs->prs_err = PERR_NONE; 2587 partition_cpus_change(cs, trialcs, &tmp); 2588 2589 spin_lock_irq(&callback_lock); 2590 cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus); 2591 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2592 if ((old_prs > 0) && !is_partition_valid(cs)) 2593 reset_partition_data(cs); 2594 spin_unlock_irq(&callback_lock); 2595 2596 /* 2597 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus 2598 * of the subtree when it is a valid partition root or effective_xcpus 2599 * is updated. 2600 */ 2601 if (is_partition_valid(cs) || force) 2602 update_cpumasks_hier(cs, &tmp, force); 2603 2604 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2605 if (cs->partition_root_state) 2606 update_partition_sd_lb(cs, old_prs); 2607 2608 free_tmpmasks(&tmp); 2609 return 0; 2610 } 2611 2612 /* 2613 * Migrate memory region from one set of nodes to another. This is 2614 * performed asynchronously as it can be called from process migration path 2615 * holding locks involved in process management. All mm migrations are 2616 * performed in the queued order and can be waited for by flushing 2617 * cpuset_migrate_mm_wq. 2618 */ 2619 2620 struct cpuset_migrate_mm_work { 2621 struct work_struct work; 2622 struct mm_struct *mm; 2623 nodemask_t from; 2624 nodemask_t to; 2625 }; 2626 2627 static void cpuset_migrate_mm_workfn(struct work_struct *work) 2628 { 2629 struct cpuset_migrate_mm_work *mwork = 2630 container_of(work, struct cpuset_migrate_mm_work, work); 2631 2632 /* on a wq worker, no need to worry about %current's mems_allowed */ 2633 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 2634 mmput(mwork->mm); 2635 kfree(mwork); 2636 } 2637 2638 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 2639 const nodemask_t *to) 2640 { 2641 struct cpuset_migrate_mm_work *mwork; 2642 2643 if (nodes_equal(*from, *to)) { 2644 mmput(mm); 2645 return; 2646 } 2647 2648 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 2649 if (mwork) { 2650 mwork->mm = mm; 2651 mwork->from = *from; 2652 mwork->to = *to; 2653 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 2654 queue_work(cpuset_migrate_mm_wq, &mwork->work); 2655 } else { 2656 mmput(mm); 2657 } 2658 } 2659 2660 static void flush_migrate_mm_task_workfn(struct callback_head *head) 2661 { 2662 flush_workqueue(cpuset_migrate_mm_wq); 2663 kfree(head); 2664 } 2665 2666 static void schedule_flush_migrate_mm(void) 2667 { 2668 struct callback_head *flush_cb; 2669 2670 flush_cb = kzalloc(sizeof(struct callback_head), GFP_KERNEL); 2671 if (!flush_cb) 2672 return; 2673 2674 init_task_work(flush_cb, flush_migrate_mm_task_workfn); 2675 2676 if (task_work_add(current, flush_cb, TWA_RESUME)) 2677 kfree(flush_cb); 2678 } 2679 2680 /* 2681 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 2682 * @tsk: the task to change 2683 * @newmems: new nodes that the task will be set 2684 * 2685 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 2686 * and rebind an eventual tasks' mempolicy. If the task is allocating in 2687 * parallel, it might temporarily see an empty intersection, which results in 2688 * a seqlock check and retry before OOM or allocation failure. 2689 */ 2690 static void cpuset_change_task_nodemask(struct task_struct *tsk, 2691 nodemask_t *newmems) 2692 { 2693 task_lock(tsk); 2694 2695 local_irq_disable(); 2696 write_seqcount_begin(&tsk->mems_allowed_seq); 2697 2698 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 2699 mpol_rebind_task(tsk, newmems); 2700 tsk->mems_allowed = *newmems; 2701 2702 write_seqcount_end(&tsk->mems_allowed_seq); 2703 local_irq_enable(); 2704 2705 task_unlock(tsk); 2706 } 2707 2708 static void *cpuset_being_rebound; 2709 2710 /** 2711 * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 2712 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 2713 * 2714 * Iterate through each task of @cs updating its mems_allowed to the 2715 * effective cpuset's. As this function is called with cpuset_mutex held, 2716 * cpuset membership stays stable. 2717 */ 2718 void cpuset_update_tasks_nodemask(struct cpuset *cs) 2719 { 2720 static nodemask_t newmems; /* protected by cpuset_mutex */ 2721 struct css_task_iter it; 2722 struct task_struct *task; 2723 2724 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 2725 2726 guarantee_online_mems(cs, &newmems); 2727 2728 /* 2729 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 2730 * take while holding tasklist_lock. Forks can happen - the 2731 * mpol_dup() cpuset_being_rebound check will catch such forks, 2732 * and rebind their vma mempolicies too. Because we still hold 2733 * the global cpuset_mutex, we know that no other rebind effort 2734 * will be contending for the global variable cpuset_being_rebound. 2735 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 2736 * is idempotent. Also migrate pages in each mm to new nodes. 2737 */ 2738 css_task_iter_start(&cs->css, 0, &it); 2739 while ((task = css_task_iter_next(&it))) { 2740 struct mm_struct *mm; 2741 bool migrate; 2742 2743 cpuset_change_task_nodemask(task, &newmems); 2744 2745 mm = get_task_mm(task); 2746 if (!mm) 2747 continue; 2748 2749 migrate = is_memory_migrate(cs); 2750 2751 mpol_rebind_mm(mm, &cs->mems_allowed); 2752 if (migrate) 2753 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 2754 else 2755 mmput(mm); 2756 } 2757 css_task_iter_end(&it); 2758 2759 /* 2760 * All the tasks' nodemasks have been updated, update 2761 * cs->old_mems_allowed. 2762 */ 2763 cs->old_mems_allowed = newmems; 2764 2765 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 2766 cpuset_being_rebound = NULL; 2767 } 2768 2769 /* 2770 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 2771 * @cs: the cpuset to consider 2772 * @new_mems: a temp variable for calculating new effective_mems 2773 * 2774 * When configured nodemask is changed, the effective nodemasks of this cpuset 2775 * and all its descendants need to be updated. 2776 * 2777 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 2778 * 2779 * Called with cpuset_mutex held 2780 */ 2781 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 2782 { 2783 struct cpuset *cp; 2784 struct cgroup_subsys_state *pos_css; 2785 2786 rcu_read_lock(); 2787 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2788 struct cpuset *parent = parent_cs(cp); 2789 2790 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 2791 2792 /* 2793 * If it becomes empty, inherit the effective mask of the 2794 * parent, which is guaranteed to have some MEMs. 2795 */ 2796 if (is_in_v2_mode() && nodes_empty(*new_mems)) 2797 *new_mems = parent->effective_mems; 2798 2799 /* Skip the whole subtree if the nodemask remains the same. */ 2800 if (nodes_equal(*new_mems, cp->effective_mems)) { 2801 pos_css = css_rightmost_descendant(pos_css); 2802 continue; 2803 } 2804 2805 if (!css_tryget_online(&cp->css)) 2806 continue; 2807 rcu_read_unlock(); 2808 2809 spin_lock_irq(&callback_lock); 2810 cp->effective_mems = *new_mems; 2811 spin_unlock_irq(&callback_lock); 2812 2813 WARN_ON(!is_in_v2_mode() && 2814 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 2815 2816 cpuset_update_tasks_nodemask(cp); 2817 2818 rcu_read_lock(); 2819 css_put(&cp->css); 2820 } 2821 rcu_read_unlock(); 2822 } 2823 2824 /* 2825 * Handle user request to change the 'mems' memory placement 2826 * of a cpuset. Needs to validate the request, update the 2827 * cpusets mems_allowed, and for each task in the cpuset, 2828 * update mems_allowed and rebind task's mempolicy and any vma 2829 * mempolicies and if the cpuset is marked 'memory_migrate', 2830 * migrate the tasks pages to the new memory. 2831 * 2832 * Call with cpuset_mutex held. May take callback_lock during call. 2833 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 2834 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 2835 * their mempolicies to the cpusets new mems_allowed. 2836 */ 2837 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 2838 const char *buf) 2839 { 2840 int retval; 2841 2842 /* 2843 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 2844 * The validate_change() call ensures that cpusets with tasks have memory. 2845 */ 2846 retval = nodelist_parse(buf, trialcs->mems_allowed); 2847 if (retval < 0) 2848 goto done; 2849 2850 if (!nodes_subset(trialcs->mems_allowed, 2851 top_cpuset.mems_allowed)) { 2852 retval = -EINVAL; 2853 goto done; 2854 } 2855 2856 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 2857 retval = 0; /* Too easy - nothing to do */ 2858 goto done; 2859 } 2860 retval = validate_change(cs, trialcs); 2861 if (retval < 0) 2862 goto done; 2863 2864 check_insane_mems_config(&trialcs->mems_allowed); 2865 2866 spin_lock_irq(&callback_lock); 2867 cs->mems_allowed = trialcs->mems_allowed; 2868 spin_unlock_irq(&callback_lock); 2869 2870 /* use trialcs->mems_allowed as a temp variable */ 2871 update_nodemasks_hier(cs, &trialcs->mems_allowed); 2872 done: 2873 return retval; 2874 } 2875 2876 bool current_cpuset_is_being_rebound(void) 2877 { 2878 bool ret; 2879 2880 rcu_read_lock(); 2881 ret = task_cs(current) == cpuset_being_rebound; 2882 rcu_read_unlock(); 2883 2884 return ret; 2885 } 2886 2887 /* 2888 * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag 2889 * bit: the bit to update (see cpuset_flagbits_t) 2890 * cs: the cpuset to update 2891 * turning_on: whether the flag is being set or cleared 2892 * 2893 * Call with cpuset_mutex held. 2894 */ 2895 2896 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 2897 int turning_on) 2898 { 2899 struct cpuset *trialcs; 2900 int balance_flag_changed; 2901 int spread_flag_changed; 2902 int err; 2903 2904 trialcs = dup_or_alloc_cpuset(cs); 2905 if (!trialcs) 2906 return -ENOMEM; 2907 2908 if (turning_on) 2909 set_bit(bit, &trialcs->flags); 2910 else 2911 clear_bit(bit, &trialcs->flags); 2912 2913 err = validate_change(cs, trialcs); 2914 if (err < 0) 2915 goto out; 2916 2917 balance_flag_changed = (is_sched_load_balance(cs) != 2918 is_sched_load_balance(trialcs)); 2919 2920 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 2921 || (is_spread_page(cs) != is_spread_page(trialcs))); 2922 2923 spin_lock_irq(&callback_lock); 2924 cs->flags = trialcs->flags; 2925 spin_unlock_irq(&callback_lock); 2926 2927 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) { 2928 if (cpuset_v2()) 2929 cpuset_force_rebuild(); 2930 else 2931 rebuild_sched_domains_locked(); 2932 } 2933 2934 if (spread_flag_changed) 2935 cpuset1_update_tasks_flags(cs); 2936 out: 2937 free_cpuset(trialcs); 2938 return err; 2939 } 2940 2941 /** 2942 * update_prstate - update partition_root_state 2943 * @cs: the cpuset to update 2944 * @new_prs: new partition root state 2945 * Return: 0 if successful, != 0 if error 2946 * 2947 * Call with cpuset_mutex held. 2948 */ 2949 static int update_prstate(struct cpuset *cs, int new_prs) 2950 { 2951 int err = PERR_NONE, old_prs = cs->partition_root_state; 2952 struct cpuset *parent = parent_cs(cs); 2953 struct tmpmasks tmpmask; 2954 bool isolcpus_updated = false; 2955 2956 if (old_prs == new_prs) 2957 return 0; 2958 2959 /* 2960 * Treat a previously invalid partition root as if it is a "member". 2961 */ 2962 if (new_prs && is_partition_invalid(cs)) 2963 old_prs = PRS_MEMBER; 2964 2965 if (alloc_tmpmasks(&tmpmask)) 2966 return -ENOMEM; 2967 2968 err = update_partition_exclusive_flag(cs, new_prs); 2969 if (err) 2970 goto out; 2971 2972 if (!old_prs) { 2973 /* 2974 * cpus_allowed and exclusive_cpus cannot be both empty. 2975 */ 2976 if (xcpus_empty(cs)) { 2977 err = PERR_CPUSEMPTY; 2978 goto out; 2979 } 2980 2981 /* 2982 * We don't support the creation of a new local partition with 2983 * a remote partition underneath it. This unsupported 2984 * setting can happen only if parent is the top_cpuset because 2985 * a remote partition cannot be created underneath an existing 2986 * local or remote partition. 2987 */ 2988 if ((parent == &top_cpuset) && 2989 cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) { 2990 err = PERR_REMOTE; 2991 goto out; 2992 } 2993 2994 /* 2995 * If parent is valid partition, enable local partiion. 2996 * Otherwise, enable a remote partition. 2997 */ 2998 if (is_partition_valid(parent)) { 2999 enum partition_cmd cmd = (new_prs == PRS_ROOT) 3000 ? partcmd_enable : partcmd_enablei; 3001 3002 err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask); 3003 } else { 3004 err = remote_partition_enable(cs, new_prs, &tmpmask); 3005 } 3006 } else if (old_prs && new_prs) { 3007 /* 3008 * A change in load balance state only, no change in cpumasks. 3009 * Need to update isolated_cpus. 3010 */ 3011 isolcpus_updated = true; 3012 } else { 3013 /* 3014 * Switching back to member is always allowed even if it 3015 * disables child partitions. 3016 */ 3017 if (is_remote_partition(cs)) 3018 remote_partition_disable(cs, &tmpmask); 3019 else 3020 update_parent_effective_cpumask(cs, partcmd_disable, 3021 NULL, &tmpmask); 3022 3023 /* 3024 * Invalidation of child partitions will be done in 3025 * update_cpumasks_hier(). 3026 */ 3027 } 3028 out: 3029 /* 3030 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error 3031 * happens. 3032 */ 3033 if (err) { 3034 new_prs = -new_prs; 3035 update_partition_exclusive_flag(cs, new_prs); 3036 } 3037 3038 spin_lock_irq(&callback_lock); 3039 cs->partition_root_state = new_prs; 3040 WRITE_ONCE(cs->prs_err, err); 3041 if (!is_partition_valid(cs)) 3042 reset_partition_data(cs); 3043 else if (isolcpus_updated) 3044 isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus); 3045 spin_unlock_irq(&callback_lock); 3046 update_unbound_workqueue_cpumask(isolcpus_updated); 3047 3048 /* Force update if switching back to member & update effective_xcpus */ 3049 update_cpumasks_hier(cs, &tmpmask, !new_prs); 3050 3051 /* A newly created partition must have effective_xcpus set */ 3052 WARN_ON_ONCE(!old_prs && (new_prs > 0) 3053 && cpumask_empty(cs->effective_xcpus)); 3054 3055 /* Update sched domains and load balance flag */ 3056 update_partition_sd_lb(cs, old_prs); 3057 3058 notify_partition_change(cs, old_prs); 3059 if (force_sd_rebuild) 3060 rebuild_sched_domains_locked(); 3061 free_tmpmasks(&tmpmask); 3062 return 0; 3063 } 3064 3065 static struct cpuset *cpuset_attach_old_cs; 3066 3067 /* 3068 * Check to see if a cpuset can accept a new task 3069 * For v1, cpus_allowed and mems_allowed can't be empty. 3070 * For v2, effective_cpus can't be empty. 3071 * Note that in v1, effective_cpus = cpus_allowed. 3072 */ 3073 static int cpuset_can_attach_check(struct cpuset *cs) 3074 { 3075 if (cpumask_empty(cs->effective_cpus) || 3076 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) 3077 return -ENOSPC; 3078 return 0; 3079 } 3080 3081 static void reset_migrate_dl_data(struct cpuset *cs) 3082 { 3083 cs->nr_migrate_dl_tasks = 0; 3084 cs->sum_migrate_dl_bw = 0; 3085 } 3086 3087 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 3088 static int cpuset_can_attach(struct cgroup_taskset *tset) 3089 { 3090 struct cgroup_subsys_state *css; 3091 struct cpuset *cs, *oldcs; 3092 struct task_struct *task; 3093 bool cpus_updated, mems_updated; 3094 int ret; 3095 3096 /* used later by cpuset_attach() */ 3097 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 3098 oldcs = cpuset_attach_old_cs; 3099 cs = css_cs(css); 3100 3101 mutex_lock(&cpuset_mutex); 3102 3103 /* Check to see if task is allowed in the cpuset */ 3104 ret = cpuset_can_attach_check(cs); 3105 if (ret) 3106 goto out_unlock; 3107 3108 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); 3109 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 3110 3111 cgroup_taskset_for_each(task, css, tset) { 3112 ret = task_can_attach(task); 3113 if (ret) 3114 goto out_unlock; 3115 3116 /* 3117 * Skip rights over task check in v2 when nothing changes, 3118 * migration permission derives from hierarchy ownership in 3119 * cgroup_procs_write_permission()). 3120 */ 3121 if (!cpuset_v2() || (cpus_updated || mems_updated)) { 3122 ret = security_task_setscheduler(task); 3123 if (ret) 3124 goto out_unlock; 3125 } 3126 3127 if (dl_task(task)) { 3128 cs->nr_migrate_dl_tasks++; 3129 cs->sum_migrate_dl_bw += task->dl.dl_bw; 3130 } 3131 } 3132 3133 if (!cs->nr_migrate_dl_tasks) 3134 goto out_success; 3135 3136 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { 3137 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); 3138 3139 if (unlikely(cpu >= nr_cpu_ids)) { 3140 reset_migrate_dl_data(cs); 3141 ret = -EINVAL; 3142 goto out_unlock; 3143 } 3144 3145 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); 3146 if (ret) { 3147 reset_migrate_dl_data(cs); 3148 goto out_unlock; 3149 } 3150 } 3151 3152 out_success: 3153 /* 3154 * Mark attach is in progress. This makes validate_change() fail 3155 * changes which zero cpus/mems_allowed. 3156 */ 3157 cs->attach_in_progress++; 3158 out_unlock: 3159 mutex_unlock(&cpuset_mutex); 3160 return ret; 3161 } 3162 3163 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 3164 { 3165 struct cgroup_subsys_state *css; 3166 struct cpuset *cs; 3167 3168 cgroup_taskset_first(tset, &css); 3169 cs = css_cs(css); 3170 3171 mutex_lock(&cpuset_mutex); 3172 dec_attach_in_progress_locked(cs); 3173 3174 if (cs->nr_migrate_dl_tasks) { 3175 int cpu = cpumask_any(cs->effective_cpus); 3176 3177 dl_bw_free(cpu, cs->sum_migrate_dl_bw); 3178 reset_migrate_dl_data(cs); 3179 } 3180 3181 mutex_unlock(&cpuset_mutex); 3182 } 3183 3184 /* 3185 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() 3186 * but we can't allocate it dynamically there. Define it global and 3187 * allocate from cpuset_init(). 3188 */ 3189 static cpumask_var_t cpus_attach; 3190 static nodemask_t cpuset_attach_nodemask_to; 3191 3192 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) 3193 { 3194 lockdep_assert_held(&cpuset_mutex); 3195 3196 if (cs != &top_cpuset) 3197 guarantee_active_cpus(task, cpus_attach); 3198 else 3199 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), 3200 subpartitions_cpus); 3201 /* 3202 * can_attach beforehand should guarantee that this doesn't 3203 * fail. TODO: have a better way to handle failure here 3204 */ 3205 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 3206 3207 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 3208 cpuset1_update_task_spread_flags(cs, task); 3209 } 3210 3211 static void cpuset_attach(struct cgroup_taskset *tset) 3212 { 3213 struct task_struct *task; 3214 struct task_struct *leader; 3215 struct cgroup_subsys_state *css; 3216 struct cpuset *cs; 3217 struct cpuset *oldcs = cpuset_attach_old_cs; 3218 bool cpus_updated, mems_updated; 3219 bool queue_task_work = false; 3220 3221 cgroup_taskset_first(tset, &css); 3222 cs = css_cs(css); 3223 3224 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ 3225 mutex_lock(&cpuset_mutex); 3226 cpus_updated = !cpumask_equal(cs->effective_cpus, 3227 oldcs->effective_cpus); 3228 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 3229 3230 /* 3231 * In the default hierarchy, enabling cpuset in the child cgroups 3232 * will trigger a number of cpuset_attach() calls with no change 3233 * in effective cpus and mems. In that case, we can optimize out 3234 * by skipping the task iteration and update. 3235 */ 3236 if (cpuset_v2() && !cpus_updated && !mems_updated) { 3237 cpuset_attach_nodemask_to = cs->effective_mems; 3238 goto out; 3239 } 3240 3241 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3242 3243 cgroup_taskset_for_each(task, css, tset) 3244 cpuset_attach_task(cs, task); 3245 3246 /* 3247 * Change mm for all threadgroup leaders. This is expensive and may 3248 * sleep and should be moved outside migration path proper. Skip it 3249 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is 3250 * not set. 3251 */ 3252 cpuset_attach_nodemask_to = cs->effective_mems; 3253 if (!is_memory_migrate(cs) && !mems_updated) 3254 goto out; 3255 3256 cgroup_taskset_for_each_leader(leader, css, tset) { 3257 struct mm_struct *mm = get_task_mm(leader); 3258 3259 if (mm) { 3260 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 3261 3262 /* 3263 * old_mems_allowed is the same with mems_allowed 3264 * here, except if this task is being moved 3265 * automatically due to hotplug. In that case 3266 * @mems_allowed has been updated and is empty, so 3267 * @old_mems_allowed is the right nodesets that we 3268 * migrate mm from. 3269 */ 3270 if (is_memory_migrate(cs)) { 3271 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 3272 &cpuset_attach_nodemask_to); 3273 queue_task_work = true; 3274 } else 3275 mmput(mm); 3276 } 3277 } 3278 3279 out: 3280 if (queue_task_work) 3281 schedule_flush_migrate_mm(); 3282 cs->old_mems_allowed = cpuset_attach_nodemask_to; 3283 3284 if (cs->nr_migrate_dl_tasks) { 3285 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; 3286 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; 3287 reset_migrate_dl_data(cs); 3288 } 3289 3290 dec_attach_in_progress_locked(cs); 3291 3292 mutex_unlock(&cpuset_mutex); 3293 } 3294 3295 /* 3296 * Common handling for a write to a "cpus" or "mems" file. 3297 */ 3298 ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 3299 char *buf, size_t nbytes, loff_t off) 3300 { 3301 struct cpuset *cs = css_cs(of_css(of)); 3302 struct cpuset *trialcs; 3303 int retval = -ENODEV; 3304 3305 /* root is read-only */ 3306 if (cs == &top_cpuset) 3307 return -EACCES; 3308 3309 buf = strstrip(buf); 3310 cpuset_full_lock(); 3311 if (!is_cpuset_online(cs)) 3312 goto out_unlock; 3313 3314 trialcs = dup_or_alloc_cpuset(cs); 3315 if (!trialcs) { 3316 retval = -ENOMEM; 3317 goto out_unlock; 3318 } 3319 3320 switch (of_cft(of)->private) { 3321 case FILE_CPULIST: 3322 retval = update_cpumask(cs, trialcs, buf); 3323 break; 3324 case FILE_EXCLUSIVE_CPULIST: 3325 retval = update_exclusive_cpumask(cs, trialcs, buf); 3326 break; 3327 case FILE_MEMLIST: 3328 retval = update_nodemask(cs, trialcs, buf); 3329 break; 3330 default: 3331 retval = -EINVAL; 3332 break; 3333 } 3334 3335 free_cpuset(trialcs); 3336 if (force_sd_rebuild) 3337 rebuild_sched_domains_locked(); 3338 out_unlock: 3339 cpuset_full_unlock(); 3340 if (of_cft(of)->private == FILE_MEMLIST) 3341 schedule_flush_migrate_mm(); 3342 return retval ?: nbytes; 3343 } 3344 3345 /* 3346 * These ascii lists should be read in a single call, by using a user 3347 * buffer large enough to hold the entire map. If read in smaller 3348 * chunks, there is no guarantee of atomicity. Since the display format 3349 * used, list of ranges of sequential numbers, is variable length, 3350 * and since these maps can change value dynamically, one could read 3351 * gibberish by doing partial reads while a list was changing. 3352 */ 3353 int cpuset_common_seq_show(struct seq_file *sf, void *v) 3354 { 3355 struct cpuset *cs = css_cs(seq_css(sf)); 3356 cpuset_filetype_t type = seq_cft(sf)->private; 3357 int ret = 0; 3358 3359 spin_lock_irq(&callback_lock); 3360 3361 switch (type) { 3362 case FILE_CPULIST: 3363 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 3364 break; 3365 case FILE_MEMLIST: 3366 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 3367 break; 3368 case FILE_EFFECTIVE_CPULIST: 3369 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 3370 break; 3371 case FILE_EFFECTIVE_MEMLIST: 3372 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 3373 break; 3374 case FILE_EXCLUSIVE_CPULIST: 3375 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus)); 3376 break; 3377 case FILE_EFFECTIVE_XCPULIST: 3378 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus)); 3379 break; 3380 case FILE_SUBPARTS_CPULIST: 3381 seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus)); 3382 break; 3383 case FILE_ISOLATED_CPULIST: 3384 seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus)); 3385 break; 3386 default: 3387 ret = -EINVAL; 3388 } 3389 3390 spin_unlock_irq(&callback_lock); 3391 return ret; 3392 } 3393 3394 static int cpuset_partition_show(struct seq_file *seq, void *v) 3395 { 3396 struct cpuset *cs = css_cs(seq_css(seq)); 3397 const char *err, *type = NULL; 3398 3399 switch (cs->partition_root_state) { 3400 case PRS_ROOT: 3401 seq_puts(seq, "root\n"); 3402 break; 3403 case PRS_ISOLATED: 3404 seq_puts(seq, "isolated\n"); 3405 break; 3406 case PRS_MEMBER: 3407 seq_puts(seq, "member\n"); 3408 break; 3409 case PRS_INVALID_ROOT: 3410 type = "root"; 3411 fallthrough; 3412 case PRS_INVALID_ISOLATED: 3413 if (!type) 3414 type = "isolated"; 3415 err = perr_strings[READ_ONCE(cs->prs_err)]; 3416 if (err) 3417 seq_printf(seq, "%s invalid (%s)\n", type, err); 3418 else 3419 seq_printf(seq, "%s invalid\n", type); 3420 break; 3421 } 3422 return 0; 3423 } 3424 3425 static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf, 3426 size_t nbytes, loff_t off) 3427 { 3428 struct cpuset *cs = css_cs(of_css(of)); 3429 int val; 3430 int retval = -ENODEV; 3431 3432 buf = strstrip(buf); 3433 3434 if (!strcmp(buf, "root")) 3435 val = PRS_ROOT; 3436 else if (!strcmp(buf, "member")) 3437 val = PRS_MEMBER; 3438 else if (!strcmp(buf, "isolated")) 3439 val = PRS_ISOLATED; 3440 else 3441 return -EINVAL; 3442 3443 cpuset_full_lock(); 3444 if (is_cpuset_online(cs)) 3445 retval = update_prstate(cs, val); 3446 cpuset_full_unlock(); 3447 return retval ?: nbytes; 3448 } 3449 3450 /* 3451 * This is currently a minimal set for the default hierarchy. It can be 3452 * expanded later on by migrating more features and control files from v1. 3453 */ 3454 static struct cftype dfl_files[] = { 3455 { 3456 .name = "cpus", 3457 .seq_show = cpuset_common_seq_show, 3458 .write = cpuset_write_resmask, 3459 .max_write_len = (100U + 6 * NR_CPUS), 3460 .private = FILE_CPULIST, 3461 .flags = CFTYPE_NOT_ON_ROOT, 3462 }, 3463 3464 { 3465 .name = "mems", 3466 .seq_show = cpuset_common_seq_show, 3467 .write = cpuset_write_resmask, 3468 .max_write_len = (100U + 6 * MAX_NUMNODES), 3469 .private = FILE_MEMLIST, 3470 .flags = CFTYPE_NOT_ON_ROOT, 3471 }, 3472 3473 { 3474 .name = "cpus.effective", 3475 .seq_show = cpuset_common_seq_show, 3476 .private = FILE_EFFECTIVE_CPULIST, 3477 }, 3478 3479 { 3480 .name = "mems.effective", 3481 .seq_show = cpuset_common_seq_show, 3482 .private = FILE_EFFECTIVE_MEMLIST, 3483 }, 3484 3485 { 3486 .name = "cpus.partition", 3487 .seq_show = cpuset_partition_show, 3488 .write = cpuset_partition_write, 3489 .private = FILE_PARTITION_ROOT, 3490 .flags = CFTYPE_NOT_ON_ROOT, 3491 .file_offset = offsetof(struct cpuset, partition_file), 3492 }, 3493 3494 { 3495 .name = "cpus.exclusive", 3496 .seq_show = cpuset_common_seq_show, 3497 .write = cpuset_write_resmask, 3498 .max_write_len = (100U + 6 * NR_CPUS), 3499 .private = FILE_EXCLUSIVE_CPULIST, 3500 .flags = CFTYPE_NOT_ON_ROOT, 3501 }, 3502 3503 { 3504 .name = "cpus.exclusive.effective", 3505 .seq_show = cpuset_common_seq_show, 3506 .private = FILE_EFFECTIVE_XCPULIST, 3507 .flags = CFTYPE_NOT_ON_ROOT, 3508 }, 3509 3510 { 3511 .name = "cpus.subpartitions", 3512 .seq_show = cpuset_common_seq_show, 3513 .private = FILE_SUBPARTS_CPULIST, 3514 .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG, 3515 }, 3516 3517 { 3518 .name = "cpus.isolated", 3519 .seq_show = cpuset_common_seq_show, 3520 .private = FILE_ISOLATED_CPULIST, 3521 .flags = CFTYPE_ONLY_ON_ROOT, 3522 }, 3523 3524 { } /* terminate */ 3525 }; 3526 3527 3528 /** 3529 * cpuset_css_alloc - Allocate a cpuset css 3530 * @parent_css: Parent css of the control group that the new cpuset will be 3531 * part of 3532 * Return: cpuset css on success, -ENOMEM on failure. 3533 * 3534 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return 3535 * top cpuset css otherwise. 3536 */ 3537 static struct cgroup_subsys_state * 3538 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 3539 { 3540 struct cpuset *cs; 3541 3542 if (!parent_css) 3543 return &top_cpuset.css; 3544 3545 cs = dup_or_alloc_cpuset(NULL); 3546 if (!cs) 3547 return ERR_PTR(-ENOMEM); 3548 3549 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3550 fmeter_init(&cs->fmeter); 3551 cs->relax_domain_level = -1; 3552 INIT_LIST_HEAD(&cs->remote_sibling); 3553 3554 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 3555 if (cpuset_v2()) 3556 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 3557 3558 return &cs->css; 3559 } 3560 3561 static int cpuset_css_online(struct cgroup_subsys_state *css) 3562 { 3563 struct cpuset *cs = css_cs(css); 3564 struct cpuset *parent = parent_cs(cs); 3565 struct cpuset *tmp_cs; 3566 struct cgroup_subsys_state *pos_css; 3567 3568 if (!parent) 3569 return 0; 3570 3571 cpuset_full_lock(); 3572 if (is_spread_page(parent)) 3573 set_bit(CS_SPREAD_PAGE, &cs->flags); 3574 if (is_spread_slab(parent)) 3575 set_bit(CS_SPREAD_SLAB, &cs->flags); 3576 /* 3577 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated 3578 */ 3579 if (cpuset_v2() && !is_sched_load_balance(parent)) 3580 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3581 3582 cpuset_inc(); 3583 3584 spin_lock_irq(&callback_lock); 3585 if (is_in_v2_mode()) { 3586 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 3587 cs->effective_mems = parent->effective_mems; 3588 } 3589 spin_unlock_irq(&callback_lock); 3590 3591 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 3592 goto out_unlock; 3593 3594 /* 3595 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 3596 * set. This flag handling is implemented in cgroup core for 3597 * historical reasons - the flag may be specified during mount. 3598 * 3599 * Currently, if any sibling cpusets have exclusive cpus or mem, we 3600 * refuse to clone the configuration - thereby refusing the task to 3601 * be entered, and as a result refusing the sys_unshare() or 3602 * clone() which initiated it. If this becomes a problem for some 3603 * users who wish to allow that scenario, then this could be 3604 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 3605 * (and likewise for mems) to the new cgroup. 3606 */ 3607 rcu_read_lock(); 3608 cpuset_for_each_child(tmp_cs, pos_css, parent) { 3609 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 3610 rcu_read_unlock(); 3611 goto out_unlock; 3612 } 3613 } 3614 rcu_read_unlock(); 3615 3616 spin_lock_irq(&callback_lock); 3617 cs->mems_allowed = parent->mems_allowed; 3618 cs->effective_mems = parent->mems_allowed; 3619 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 3620 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 3621 spin_unlock_irq(&callback_lock); 3622 out_unlock: 3623 cpuset_full_unlock(); 3624 return 0; 3625 } 3626 3627 /* 3628 * If the cpuset being removed has its flag 'sched_load_balance' 3629 * enabled, then simulate turning sched_load_balance off, which 3630 * will call rebuild_sched_domains_locked(). That is not needed 3631 * in the default hierarchy where only changes in partition 3632 * will cause repartitioning. 3633 */ 3634 static void cpuset_css_offline(struct cgroup_subsys_state *css) 3635 { 3636 struct cpuset *cs = css_cs(css); 3637 3638 cpuset_full_lock(); 3639 if (!cpuset_v2() && is_sched_load_balance(cs)) 3640 cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 3641 3642 cpuset_dec(); 3643 cpuset_full_unlock(); 3644 } 3645 3646 /* 3647 * If a dying cpuset has the 'cpus.partition' enabled, turn it off by 3648 * changing it back to member to free its exclusive CPUs back to the pool to 3649 * be used by other online cpusets. 3650 */ 3651 static void cpuset_css_killed(struct cgroup_subsys_state *css) 3652 { 3653 struct cpuset *cs = css_cs(css); 3654 3655 cpuset_full_lock(); 3656 /* Reset valid partition back to member */ 3657 if (is_partition_valid(cs)) 3658 update_prstate(cs, PRS_MEMBER); 3659 cpuset_full_unlock(); 3660 } 3661 3662 static void cpuset_css_free(struct cgroup_subsys_state *css) 3663 { 3664 struct cpuset *cs = css_cs(css); 3665 3666 free_cpuset(cs); 3667 } 3668 3669 static void cpuset_bind(struct cgroup_subsys_state *root_css) 3670 { 3671 mutex_lock(&cpuset_mutex); 3672 spin_lock_irq(&callback_lock); 3673 3674 if (is_in_v2_mode()) { 3675 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 3676 cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask); 3677 top_cpuset.mems_allowed = node_possible_map; 3678 } else { 3679 cpumask_copy(top_cpuset.cpus_allowed, 3680 top_cpuset.effective_cpus); 3681 top_cpuset.mems_allowed = top_cpuset.effective_mems; 3682 } 3683 3684 spin_unlock_irq(&callback_lock); 3685 mutex_unlock(&cpuset_mutex); 3686 } 3687 3688 /* 3689 * In case the child is cloned into a cpuset different from its parent, 3690 * additional checks are done to see if the move is allowed. 3691 */ 3692 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) 3693 { 3694 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3695 bool same_cs; 3696 int ret; 3697 3698 rcu_read_lock(); 3699 same_cs = (cs == task_cs(current)); 3700 rcu_read_unlock(); 3701 3702 if (same_cs) 3703 return 0; 3704 3705 lockdep_assert_held(&cgroup_mutex); 3706 mutex_lock(&cpuset_mutex); 3707 3708 /* Check to see if task is allowed in the cpuset */ 3709 ret = cpuset_can_attach_check(cs); 3710 if (ret) 3711 goto out_unlock; 3712 3713 ret = task_can_attach(task); 3714 if (ret) 3715 goto out_unlock; 3716 3717 ret = security_task_setscheduler(task); 3718 if (ret) 3719 goto out_unlock; 3720 3721 /* 3722 * Mark attach is in progress. This makes validate_change() fail 3723 * changes which zero cpus/mems_allowed. 3724 */ 3725 cs->attach_in_progress++; 3726 out_unlock: 3727 mutex_unlock(&cpuset_mutex); 3728 return ret; 3729 } 3730 3731 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) 3732 { 3733 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3734 bool same_cs; 3735 3736 rcu_read_lock(); 3737 same_cs = (cs == task_cs(current)); 3738 rcu_read_unlock(); 3739 3740 if (same_cs) 3741 return; 3742 3743 dec_attach_in_progress(cs); 3744 } 3745 3746 /* 3747 * Make sure the new task conform to the current state of its parent, 3748 * which could have been changed by cpuset just after it inherits the 3749 * state from the parent and before it sits on the cgroup's task list. 3750 */ 3751 static void cpuset_fork(struct task_struct *task) 3752 { 3753 struct cpuset *cs; 3754 bool same_cs; 3755 3756 rcu_read_lock(); 3757 cs = task_cs(task); 3758 same_cs = (cs == task_cs(current)); 3759 rcu_read_unlock(); 3760 3761 if (same_cs) { 3762 if (cs == &top_cpuset) 3763 return; 3764 3765 set_cpus_allowed_ptr(task, current->cpus_ptr); 3766 task->mems_allowed = current->mems_allowed; 3767 return; 3768 } 3769 3770 /* CLONE_INTO_CGROUP */ 3771 mutex_lock(&cpuset_mutex); 3772 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3773 cpuset_attach_task(cs, task); 3774 3775 dec_attach_in_progress_locked(cs); 3776 mutex_unlock(&cpuset_mutex); 3777 } 3778 3779 struct cgroup_subsys cpuset_cgrp_subsys = { 3780 .css_alloc = cpuset_css_alloc, 3781 .css_online = cpuset_css_online, 3782 .css_offline = cpuset_css_offline, 3783 .css_killed = cpuset_css_killed, 3784 .css_free = cpuset_css_free, 3785 .can_attach = cpuset_can_attach, 3786 .cancel_attach = cpuset_cancel_attach, 3787 .attach = cpuset_attach, 3788 .bind = cpuset_bind, 3789 .can_fork = cpuset_can_fork, 3790 .cancel_fork = cpuset_cancel_fork, 3791 .fork = cpuset_fork, 3792 #ifdef CONFIG_CPUSETS_V1 3793 .legacy_cftypes = cpuset1_files, 3794 #endif 3795 .dfl_cftypes = dfl_files, 3796 .early_init = true, 3797 .threaded = true, 3798 }; 3799 3800 /** 3801 * cpuset_init - initialize cpusets at system boot 3802 * 3803 * Description: Initialize top_cpuset 3804 **/ 3805 3806 int __init cpuset_init(void) 3807 { 3808 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 3809 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 3810 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL)); 3811 BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL)); 3812 BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL)); 3813 BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL)); 3814 3815 cpumask_setall(top_cpuset.cpus_allowed); 3816 nodes_setall(top_cpuset.mems_allowed); 3817 cpumask_setall(top_cpuset.effective_cpus); 3818 cpumask_setall(top_cpuset.effective_xcpus); 3819 cpumask_setall(top_cpuset.exclusive_cpus); 3820 nodes_setall(top_cpuset.effective_mems); 3821 3822 fmeter_init(&top_cpuset.fmeter); 3823 INIT_LIST_HEAD(&remote_children); 3824 3825 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 3826 3827 have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN); 3828 if (have_boot_isolcpus) { 3829 BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL)); 3830 cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN)); 3831 cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus); 3832 } 3833 3834 return 0; 3835 } 3836 3837 static void 3838 hotplug_update_tasks(struct cpuset *cs, 3839 struct cpumask *new_cpus, nodemask_t *new_mems, 3840 bool cpus_updated, bool mems_updated) 3841 { 3842 /* A partition root is allowed to have empty effective cpus */ 3843 if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) 3844 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3845 if (nodes_empty(*new_mems)) 3846 *new_mems = parent_cs(cs)->effective_mems; 3847 3848 spin_lock_irq(&callback_lock); 3849 cpumask_copy(cs->effective_cpus, new_cpus); 3850 cs->effective_mems = *new_mems; 3851 spin_unlock_irq(&callback_lock); 3852 3853 if (cpus_updated) 3854 cpuset_update_tasks_cpumask(cs, new_cpus); 3855 if (mems_updated) 3856 cpuset_update_tasks_nodemask(cs); 3857 } 3858 3859 void cpuset_force_rebuild(void) 3860 { 3861 force_sd_rebuild = true; 3862 } 3863 3864 /** 3865 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3866 * @cs: cpuset in interest 3867 * @tmp: the tmpmasks structure pointer 3868 * 3869 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3870 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3871 * all its tasks are moved to the nearest ancestor with both resources. 3872 */ 3873 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3874 { 3875 static cpumask_t new_cpus; 3876 static nodemask_t new_mems; 3877 bool cpus_updated; 3878 bool mems_updated; 3879 bool remote; 3880 int partcmd = -1; 3881 struct cpuset *parent; 3882 retry: 3883 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3884 3885 mutex_lock(&cpuset_mutex); 3886 3887 /* 3888 * We have raced with task attaching. We wait until attaching 3889 * is finished, so we won't attach a task to an empty cpuset. 3890 */ 3891 if (cs->attach_in_progress) { 3892 mutex_unlock(&cpuset_mutex); 3893 goto retry; 3894 } 3895 3896 parent = parent_cs(cs); 3897 compute_effective_cpumask(&new_cpus, cs, parent); 3898 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3899 3900 if (!tmp || !cs->partition_root_state) 3901 goto update_tasks; 3902 3903 /* 3904 * Compute effective_cpus for valid partition root, may invalidate 3905 * child partition roots if necessary. 3906 */ 3907 remote = is_remote_partition(cs); 3908 if (remote || (is_partition_valid(cs) && is_partition_valid(parent))) 3909 compute_partition_effective_cpumask(cs, &new_cpus); 3910 3911 if (remote && cpumask_empty(&new_cpus) && 3912 partition_is_populated(cs, NULL)) { 3913 cs->prs_err = PERR_HOTPLUG; 3914 remote_partition_disable(cs, tmp); 3915 compute_effective_cpumask(&new_cpus, cs, parent); 3916 remote = false; 3917 } 3918 3919 /* 3920 * Force the partition to become invalid if either one of 3921 * the following conditions hold: 3922 * 1) empty effective cpus but not valid empty partition. 3923 * 2) parent is invalid or doesn't grant any cpus to child 3924 * partitions. 3925 */ 3926 if (is_local_partition(cs) && (!is_partition_valid(parent) || 3927 tasks_nocpu_error(parent, cs, &new_cpus))) 3928 partcmd = partcmd_invalidate; 3929 /* 3930 * On the other hand, an invalid partition root may be transitioned 3931 * back to a regular one with a non-empty effective xcpus. 3932 */ 3933 else if (is_partition_valid(parent) && is_partition_invalid(cs) && 3934 !cpumask_empty(cs->effective_xcpus)) 3935 partcmd = partcmd_update; 3936 3937 if (partcmd >= 0) { 3938 update_parent_effective_cpumask(cs, partcmd, NULL, tmp); 3939 if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) { 3940 compute_partition_effective_cpumask(cs, &new_cpus); 3941 cpuset_force_rebuild(); 3942 } 3943 } 3944 3945 update_tasks: 3946 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3947 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3948 if (!cpus_updated && !mems_updated) 3949 goto unlock; /* Hotplug doesn't affect this cpuset */ 3950 3951 if (mems_updated) 3952 check_insane_mems_config(&new_mems); 3953 3954 if (is_in_v2_mode()) 3955 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3956 cpus_updated, mems_updated); 3957 else 3958 cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems, 3959 cpus_updated, mems_updated); 3960 3961 unlock: 3962 mutex_unlock(&cpuset_mutex); 3963 } 3964 3965 /** 3966 * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset 3967 * 3968 * This function is called after either CPU or memory configuration has 3969 * changed and updates cpuset accordingly. The top_cpuset is always 3970 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3971 * order to make cpusets transparent (of no affect) on systems that are 3972 * actively using CPU hotplug but making no active use of cpusets. 3973 * 3974 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3975 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3976 * all descendants. 3977 * 3978 * Note that CPU offlining during suspend is ignored. We don't modify 3979 * cpusets across suspend/resume cycles at all. 3980 * 3981 * CPU / memory hotplug is handled synchronously. 3982 */ 3983 static void cpuset_handle_hotplug(void) 3984 { 3985 static cpumask_t new_cpus; 3986 static nodemask_t new_mems; 3987 bool cpus_updated, mems_updated; 3988 bool on_dfl = is_in_v2_mode(); 3989 struct tmpmasks tmp, *ptmp = NULL; 3990 3991 if (on_dfl && !alloc_tmpmasks(&tmp)) 3992 ptmp = &tmp; 3993 3994 lockdep_assert_cpus_held(); 3995 mutex_lock(&cpuset_mutex); 3996 3997 /* fetch the available cpus/mems and find out which changed how */ 3998 cpumask_copy(&new_cpus, cpu_active_mask); 3999 new_mems = node_states[N_MEMORY]; 4000 4001 /* 4002 * If subpartitions_cpus is populated, it is likely that the check 4003 * below will produce a false positive on cpus_updated when the cpu 4004 * list isn't changed. It is extra work, but it is better to be safe. 4005 */ 4006 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) || 4007 !cpumask_empty(subpartitions_cpus); 4008 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 4009 4010 /* For v1, synchronize cpus_allowed to cpu_active_mask */ 4011 if (cpus_updated) { 4012 cpuset_force_rebuild(); 4013 spin_lock_irq(&callback_lock); 4014 if (!on_dfl) 4015 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 4016 /* 4017 * Make sure that CPUs allocated to child partitions 4018 * do not show up in effective_cpus. If no CPU is left, 4019 * we clear the subpartitions_cpus & let the child partitions 4020 * fight for the CPUs again. 4021 */ 4022 if (!cpumask_empty(subpartitions_cpus)) { 4023 if (cpumask_subset(&new_cpus, subpartitions_cpus)) { 4024 top_cpuset.nr_subparts = 0; 4025 cpumask_clear(subpartitions_cpus); 4026 } else { 4027 cpumask_andnot(&new_cpus, &new_cpus, 4028 subpartitions_cpus); 4029 } 4030 } 4031 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 4032 spin_unlock_irq(&callback_lock); 4033 /* we don't mess with cpumasks of tasks in top_cpuset */ 4034 } 4035 4036 /* synchronize mems_allowed to N_MEMORY */ 4037 if (mems_updated) { 4038 spin_lock_irq(&callback_lock); 4039 if (!on_dfl) 4040 top_cpuset.mems_allowed = new_mems; 4041 top_cpuset.effective_mems = new_mems; 4042 spin_unlock_irq(&callback_lock); 4043 cpuset_update_tasks_nodemask(&top_cpuset); 4044 } 4045 4046 mutex_unlock(&cpuset_mutex); 4047 4048 /* if cpus or mems changed, we need to propagate to descendants */ 4049 if (cpus_updated || mems_updated) { 4050 struct cpuset *cs; 4051 struct cgroup_subsys_state *pos_css; 4052 4053 rcu_read_lock(); 4054 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 4055 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 4056 continue; 4057 rcu_read_unlock(); 4058 4059 cpuset_hotplug_update_tasks(cs, ptmp); 4060 4061 rcu_read_lock(); 4062 css_put(&cs->css); 4063 } 4064 rcu_read_unlock(); 4065 } 4066 4067 /* rebuild sched domains if necessary */ 4068 if (force_sd_rebuild) 4069 rebuild_sched_domains_cpuslocked(); 4070 4071 free_tmpmasks(ptmp); 4072 } 4073 4074 void cpuset_update_active_cpus(void) 4075 { 4076 /* 4077 * We're inside cpu hotplug critical region which usually nests 4078 * inside cgroup synchronization. Bounce actual hotplug processing 4079 * to a work item to avoid reverse locking order. 4080 */ 4081 cpuset_handle_hotplug(); 4082 } 4083 4084 /* 4085 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 4086 * Call this routine anytime after node_states[N_MEMORY] changes. 4087 * See cpuset_update_active_cpus() for CPU hotplug handling. 4088 */ 4089 static int cpuset_track_online_nodes(struct notifier_block *self, 4090 unsigned long action, void *arg) 4091 { 4092 cpuset_handle_hotplug(); 4093 return NOTIFY_OK; 4094 } 4095 4096 /** 4097 * cpuset_init_smp - initialize cpus_allowed 4098 * 4099 * Description: Finish top cpuset after cpu, node maps are initialized 4100 */ 4101 void __init cpuset_init_smp(void) 4102 { 4103 /* 4104 * cpus_allowd/mems_allowed set to v2 values in the initial 4105 * cpuset_bind() call will be reset to v1 values in another 4106 * cpuset_bind() call when v1 cpuset is mounted. 4107 */ 4108 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 4109 4110 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 4111 top_cpuset.effective_mems = node_states[N_MEMORY]; 4112 4113 hotplug_node_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); 4114 4115 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 4116 BUG_ON(!cpuset_migrate_mm_wq); 4117 } 4118 4119 /** 4120 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 4121 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 4122 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 4123 * 4124 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 4125 * attached to the specified @tsk. Guaranteed to return some non-empty 4126 * subset of cpu_active_mask, even if this means going outside the 4127 * tasks cpuset, except when the task is in the top cpuset. 4128 **/ 4129 4130 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 4131 { 4132 unsigned long flags; 4133 struct cpuset *cs; 4134 4135 spin_lock_irqsave(&callback_lock, flags); 4136 4137 cs = task_cs(tsk); 4138 if (cs != &top_cpuset) 4139 guarantee_active_cpus(tsk, pmask); 4140 /* 4141 * Tasks in the top cpuset won't get update to their cpumasks 4142 * when a hotplug online/offline event happens. So we include all 4143 * offline cpus in the allowed cpu list. 4144 */ 4145 if ((cs == &top_cpuset) || cpumask_empty(pmask)) { 4146 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 4147 4148 /* 4149 * We first exclude cpus allocated to partitions. If there is no 4150 * allowable online cpu left, we fall back to all possible cpus. 4151 */ 4152 cpumask_andnot(pmask, possible_mask, subpartitions_cpus); 4153 if (!cpumask_intersects(pmask, cpu_active_mask)) 4154 cpumask_copy(pmask, possible_mask); 4155 } 4156 4157 spin_unlock_irqrestore(&callback_lock, flags); 4158 } 4159 4160 /** 4161 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 4162 * @tsk: pointer to task_struct with which the scheduler is struggling 4163 * 4164 * Description: In the case that the scheduler cannot find an allowed cpu in 4165 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 4166 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 4167 * which will not contain a sane cpumask during cases such as cpu hotplugging. 4168 * This is the absolute last resort for the scheduler and it is only used if 4169 * _every_ other avenue has been traveled. 4170 * 4171 * Returns true if the affinity of @tsk was changed, false otherwise. 4172 **/ 4173 4174 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 4175 { 4176 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 4177 const struct cpumask *cs_mask; 4178 bool changed = false; 4179 4180 rcu_read_lock(); 4181 cs_mask = task_cs(tsk)->cpus_allowed; 4182 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 4183 do_set_cpus_allowed(tsk, cs_mask); 4184 changed = true; 4185 } 4186 rcu_read_unlock(); 4187 4188 /* 4189 * We own tsk->cpus_allowed, nobody can change it under us. 4190 * 4191 * But we used cs && cs->cpus_allowed lockless and thus can 4192 * race with cgroup_attach_task() or update_cpumask() and get 4193 * the wrong tsk->cpus_allowed. However, both cases imply the 4194 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 4195 * which takes task_rq_lock(). 4196 * 4197 * If we are called after it dropped the lock we must see all 4198 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 4199 * set any mask even if it is not right from task_cs() pov, 4200 * the pending set_cpus_allowed_ptr() will fix things. 4201 * 4202 * select_fallback_rq() will fix things ups and set cpu_possible_mask 4203 * if required. 4204 */ 4205 return changed; 4206 } 4207 4208 void __init cpuset_init_current_mems_allowed(void) 4209 { 4210 nodes_setall(current->mems_allowed); 4211 } 4212 4213 /** 4214 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 4215 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 4216 * 4217 * Description: Returns the nodemask_t mems_allowed of the cpuset 4218 * attached to the specified @tsk. Guaranteed to return some non-empty 4219 * subset of node_states[N_MEMORY], even if this means going outside the 4220 * tasks cpuset. 4221 **/ 4222 4223 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 4224 { 4225 nodemask_t mask; 4226 unsigned long flags; 4227 4228 spin_lock_irqsave(&callback_lock, flags); 4229 guarantee_online_mems(task_cs(tsk), &mask); 4230 spin_unlock_irqrestore(&callback_lock, flags); 4231 4232 return mask; 4233 } 4234 4235 /** 4236 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 4237 * @nodemask: the nodemask to be checked 4238 * 4239 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 4240 */ 4241 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 4242 { 4243 return nodes_intersects(*nodemask, current->mems_allowed); 4244 } 4245 4246 /* 4247 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 4248 * mem_hardwall ancestor to the specified cpuset. Call holding 4249 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 4250 * (an unusual configuration), then returns the root cpuset. 4251 */ 4252 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 4253 { 4254 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 4255 cs = parent_cs(cs); 4256 return cs; 4257 } 4258 4259 /* 4260 * cpuset_current_node_allowed - Can current task allocate on a memory node? 4261 * @node: is this an allowed node? 4262 * @gfp_mask: memory allocation flags 4263 * 4264 * If we're in interrupt, yes, we can always allocate. If @node is set in 4265 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 4266 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 4267 * yes. If current has access to memory reserves as an oom victim, yes. 4268 * Otherwise, no. 4269 * 4270 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 4271 * and do not allow allocations outside the current tasks cpuset 4272 * unless the task has been OOM killed. 4273 * GFP_KERNEL allocations are not so marked, so can escape to the 4274 * nearest enclosing hardwalled ancestor cpuset. 4275 * 4276 * Scanning up parent cpusets requires callback_lock. The 4277 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 4278 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 4279 * current tasks mems_allowed came up empty on the first pass over 4280 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 4281 * cpuset are short of memory, might require taking the callback_lock. 4282 * 4283 * The first call here from mm/page_alloc:get_page_from_freelist() 4284 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 4285 * so no allocation on a node outside the cpuset is allowed (unless 4286 * in interrupt, of course). 4287 * 4288 * The second pass through get_page_from_freelist() doesn't even call 4289 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 4290 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 4291 * in alloc_flags. That logic and the checks below have the combined 4292 * affect that: 4293 * in_interrupt - any node ok (current task context irrelevant) 4294 * GFP_ATOMIC - any node ok 4295 * tsk_is_oom_victim - any node ok 4296 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 4297 * GFP_USER - only nodes in current tasks mems allowed ok. 4298 */ 4299 bool cpuset_current_node_allowed(int node, gfp_t gfp_mask) 4300 { 4301 struct cpuset *cs; /* current cpuset ancestors */ 4302 bool allowed; /* is allocation in zone z allowed? */ 4303 unsigned long flags; 4304 4305 if (in_interrupt()) 4306 return true; 4307 if (node_isset(node, current->mems_allowed)) 4308 return true; 4309 /* 4310 * Allow tasks that have access to memory reserves because they have 4311 * been OOM killed to get memory anywhere. 4312 */ 4313 if (unlikely(tsk_is_oom_victim(current))) 4314 return true; 4315 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 4316 return false; 4317 4318 if (current->flags & PF_EXITING) /* Let dying task have memory */ 4319 return true; 4320 4321 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 4322 spin_lock_irqsave(&callback_lock, flags); 4323 4324 cs = nearest_hardwall_ancestor(task_cs(current)); 4325 allowed = node_isset(node, cs->mems_allowed); 4326 4327 spin_unlock_irqrestore(&callback_lock, flags); 4328 return allowed; 4329 } 4330 4331 bool cpuset_node_allowed(struct cgroup *cgroup, int nid) 4332 { 4333 struct cgroup_subsys_state *css; 4334 struct cpuset *cs; 4335 bool allowed; 4336 4337 /* 4338 * In v1, mem_cgroup and cpuset are unlikely in the same hierarchy 4339 * and mems_allowed is likely to be empty even if we could get to it, 4340 * so return true to avoid taking a global lock on the empty check. 4341 */ 4342 if (!cpuset_v2()) 4343 return true; 4344 4345 css = cgroup_get_e_css(cgroup, &cpuset_cgrp_subsys); 4346 if (!css) 4347 return true; 4348 4349 /* 4350 * Normally, accessing effective_mems would require the cpuset_mutex 4351 * or callback_lock - but node_isset is atomic and the reference 4352 * taken via cgroup_get_e_css is sufficient to protect css. 4353 * 4354 * Since this interface is intended for use by migration paths, we 4355 * relax locking here to avoid taking global locks - while accepting 4356 * there may be rare scenarios where the result may be innaccurate. 4357 * 4358 * Reclaim and migration are subject to these same race conditions, and 4359 * cannot make strong isolation guarantees, so this is acceptable. 4360 */ 4361 cs = container_of(css, struct cpuset, css); 4362 allowed = node_isset(nid, cs->effective_mems); 4363 css_put(css); 4364 return allowed; 4365 } 4366 4367 /** 4368 * cpuset_spread_node() - On which node to begin search for a page 4369 * @rotor: round robin rotor 4370 * 4371 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 4372 * tasks in a cpuset with is_spread_page or is_spread_slab set), 4373 * and if the memory allocation used cpuset_mem_spread_node() 4374 * to determine on which node to start looking, as it will for 4375 * certain page cache or slab cache pages such as used for file 4376 * system buffers and inode caches, then instead of starting on the 4377 * local node to look for a free page, rather spread the starting 4378 * node around the tasks mems_allowed nodes. 4379 * 4380 * We don't have to worry about the returned node being offline 4381 * because "it can't happen", and even if it did, it would be ok. 4382 * 4383 * The routines calling guarantee_online_mems() are careful to 4384 * only set nodes in task->mems_allowed that are online. So it 4385 * should not be possible for the following code to return an 4386 * offline node. But if it did, that would be ok, as this routine 4387 * is not returning the node where the allocation must be, only 4388 * the node where the search should start. The zonelist passed to 4389 * __alloc_pages() will include all nodes. If the slab allocator 4390 * is passed an offline node, it will fall back to the local node. 4391 * See kmem_cache_alloc_node(). 4392 */ 4393 static int cpuset_spread_node(int *rotor) 4394 { 4395 return *rotor = next_node_in(*rotor, current->mems_allowed); 4396 } 4397 4398 /** 4399 * cpuset_mem_spread_node() - On which node to begin search for a file page 4400 */ 4401 int cpuset_mem_spread_node(void) 4402 { 4403 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 4404 current->cpuset_mem_spread_rotor = 4405 node_random(¤t->mems_allowed); 4406 4407 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 4408 } 4409 4410 /** 4411 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 4412 * @tsk1: pointer to task_struct of some task. 4413 * @tsk2: pointer to task_struct of some other task. 4414 * 4415 * Description: Return true if @tsk1's mems_allowed intersects the 4416 * mems_allowed of @tsk2. Used by the OOM killer to determine if 4417 * one of the task's memory usage might impact the memory available 4418 * to the other. 4419 **/ 4420 4421 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 4422 const struct task_struct *tsk2) 4423 { 4424 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 4425 } 4426 4427 /** 4428 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 4429 * 4430 * Description: Prints current's name, cpuset name, and cached copy of its 4431 * mems_allowed to the kernel log. 4432 */ 4433 void cpuset_print_current_mems_allowed(void) 4434 { 4435 struct cgroup *cgrp; 4436 4437 rcu_read_lock(); 4438 4439 cgrp = task_cs(current)->css.cgroup; 4440 pr_cont(",cpuset="); 4441 pr_cont_cgroup_name(cgrp); 4442 pr_cont(",mems_allowed=%*pbl", 4443 nodemask_pr_args(¤t->mems_allowed)); 4444 4445 rcu_read_unlock(); 4446 } 4447 4448 /* Display task mems_allowed in /proc/<pid>/status file. */ 4449 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 4450 { 4451 seq_printf(m, "Mems_allowed:\t%*pb\n", 4452 nodemask_pr_args(&task->mems_allowed)); 4453 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 4454 nodemask_pr_args(&task->mems_allowed)); 4455 } 4456