1 /* 2 * kernel/cpuset.c 3 * 4 * Processor and Memory placement constraints for sets of tasks. 5 * 6 * Copyright (C) 2003 BULL SA. 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc. 8 * Copyright (C) 2006 Google, Inc 9 * 10 * Portions derived from Patrick Mochel's sysfs code. 11 * sysfs is Copyright (c) 2001-3 Patrick Mochel 12 * 13 * 2003-10-10 Written by Simon Derr. 14 * 2003-10-22 Updates by Stephen Hemminger. 15 * 2004 May-July Rework by Paul Jackson. 16 * 2006 Rework by Paul Menage to use generic cgroups 17 * 2008 Rework of the scheduler domains and CPU hotplug handling 18 * by Max Krasnyansky 19 * 20 * This file is subject to the terms and conditions of the GNU General Public 21 * License. See the file COPYING in the main directory of the Linux 22 * distribution for more details. 23 */ 24 #include "cpuset-internal.h" 25 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/kernel.h> 29 #include <linux/mempolicy.h> 30 #include <linux/mm.h> 31 #include <linux/memory.h> 32 #include <linux/export.h> 33 #include <linux/rcupdate.h> 34 #include <linux/sched.h> 35 #include <linux/sched/deadline.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/task.h> 38 #include <linux/security.h> 39 #include <linux/oom.h> 40 #include <linux/sched/isolation.h> 41 #include <linux/wait.h> 42 #include <linux/workqueue.h> 43 44 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key); 45 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); 46 47 /* 48 * There could be abnormal cpuset configurations for cpu or memory 49 * node binding, add this key to provide a quick low-cost judgment 50 * of the situation. 51 */ 52 DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key); 53 54 static const char * const perr_strings[] = { 55 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive", 56 [PERR_INVPARENT] = "Parent is an invalid partition root", 57 [PERR_NOTPART] = "Parent is not a partition root", 58 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive", 59 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream", 60 [PERR_HOTPLUG] = "No cpu available due to hotplug", 61 [PERR_CPUSEMPTY] = "cpuset.cpus and cpuset.cpus.exclusive are empty", 62 [PERR_HKEEPING] = "partition config conflicts with housekeeping setup", 63 [PERR_ACCESS] = "Enable partition not permitted", 64 [PERR_REMOTE] = "Have remote partition underneath", 65 }; 66 67 /* 68 * For local partitions, update to subpartitions_cpus & isolated_cpus is done 69 * in update_parent_effective_cpumask(). For remote partitions, it is done in 70 * the remote_partition_*() and remote_cpus_update() helpers. 71 */ 72 /* 73 * Exclusive CPUs distributed out to local or remote sub-partitions of 74 * top_cpuset 75 */ 76 static cpumask_var_t subpartitions_cpus; 77 78 /* 79 * Exclusive CPUs in isolated partitions 80 */ 81 static cpumask_var_t isolated_cpus; 82 83 /* 84 * Housekeeping (HK_TYPE_DOMAIN) CPUs at boot 85 */ 86 static cpumask_var_t boot_hk_cpus; 87 static bool have_boot_isolcpus; 88 89 /* List of remote partition root children */ 90 static struct list_head remote_children; 91 92 /* 93 * A flag to force sched domain rebuild at the end of an operation. 94 * It can be set in 95 * - update_partition_sd_lb() 96 * - update_cpumasks_hier() 97 * - cpuset_update_flag() 98 * - cpuset_hotplug_update_tasks() 99 * - cpuset_handle_hotplug() 100 * 101 * Protected by cpuset_mutex (with cpus_read_lock held) or cpus_write_lock. 102 * 103 * Note that update_relax_domain_level() in cpuset-v1.c can still call 104 * rebuild_sched_domains_locked() directly without using this flag. 105 */ 106 static bool force_sd_rebuild; 107 108 /* 109 * Partition root states: 110 * 111 * 0 - member (not a partition root) 112 * 1 - partition root 113 * 2 - partition root without load balancing (isolated) 114 * -1 - invalid partition root 115 * -2 - invalid isolated partition root 116 * 117 * There are 2 types of partitions - local or remote. Local partitions are 118 * those whose parents are partition root themselves. Setting of 119 * cpuset.cpus.exclusive are optional in setting up local partitions. 120 * Remote partitions are those whose parents are not partition roots. Passing 121 * down exclusive CPUs by setting cpuset.cpus.exclusive along its ancestor 122 * nodes are mandatory in creating a remote partition. 123 * 124 * For simplicity, a local partition can be created under a local or remote 125 * partition but a remote partition cannot have any partition root in its 126 * ancestor chain except the cgroup root. 127 */ 128 #define PRS_MEMBER 0 129 #define PRS_ROOT 1 130 #define PRS_ISOLATED 2 131 #define PRS_INVALID_ROOT -1 132 #define PRS_INVALID_ISOLATED -2 133 134 static inline bool is_prs_invalid(int prs_state) 135 { 136 return prs_state < 0; 137 } 138 139 /* 140 * Temporary cpumasks for working with partitions that are passed among 141 * functions to avoid memory allocation in inner functions. 142 */ 143 struct tmpmasks { 144 cpumask_var_t addmask, delmask; /* For partition root */ 145 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */ 146 }; 147 148 void inc_dl_tasks_cs(struct task_struct *p) 149 { 150 struct cpuset *cs = task_cs(p); 151 152 cs->nr_deadline_tasks++; 153 } 154 155 void dec_dl_tasks_cs(struct task_struct *p) 156 { 157 struct cpuset *cs = task_cs(p); 158 159 cs->nr_deadline_tasks--; 160 } 161 162 static inline int is_partition_valid(const struct cpuset *cs) 163 { 164 return cs->partition_root_state > 0; 165 } 166 167 static inline int is_partition_invalid(const struct cpuset *cs) 168 { 169 return cs->partition_root_state < 0; 170 } 171 172 /* 173 * Callers should hold callback_lock to modify partition_root_state. 174 */ 175 static inline void make_partition_invalid(struct cpuset *cs) 176 { 177 if (cs->partition_root_state > 0) 178 cs->partition_root_state = -cs->partition_root_state; 179 } 180 181 /* 182 * Send notification event of whenever partition_root_state changes. 183 */ 184 static inline void notify_partition_change(struct cpuset *cs, int old_prs) 185 { 186 if (old_prs == cs->partition_root_state) 187 return; 188 cgroup_file_notify(&cs->partition_file); 189 190 /* Reset prs_err if not invalid */ 191 if (is_partition_valid(cs)) 192 WRITE_ONCE(cs->prs_err, PERR_NONE); 193 } 194 195 static struct cpuset top_cpuset = { 196 .flags = BIT(CS_ONLINE) | BIT(CS_CPU_EXCLUSIVE) | 197 BIT(CS_MEM_EXCLUSIVE) | BIT(CS_SCHED_LOAD_BALANCE), 198 .partition_root_state = PRS_ROOT, 199 .relax_domain_level = -1, 200 .remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling), 201 }; 202 203 /* 204 * There are two global locks guarding cpuset structures - cpuset_mutex and 205 * callback_lock. The cpuset code uses only cpuset_mutex. Other kernel 206 * subsystems can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset 207 * structures. Note that cpuset_mutex needs to be a mutex as it is used in 208 * paths that rely on priority inheritance (e.g. scheduler - on RT) for 209 * correctness. 210 * 211 * A task must hold both locks to modify cpusets. If a task holds 212 * cpuset_mutex, it blocks others, ensuring that it is the only task able to 213 * also acquire callback_lock and be able to modify cpusets. It can perform 214 * various checks on the cpuset structure first, knowing nothing will change. 215 * It can also allocate memory while just holding cpuset_mutex. While it is 216 * performing these checks, various callback routines can briefly acquire 217 * callback_lock to query cpusets. Once it is ready to make the changes, it 218 * takes callback_lock, blocking everyone else. 219 * 220 * Calls to the kernel memory allocator can not be made while holding 221 * callback_lock, as that would risk double tripping on callback_lock 222 * from one of the callbacks into the cpuset code from within 223 * __alloc_pages(). 224 * 225 * If a task is only holding callback_lock, then it has read-only 226 * access to cpusets. 227 * 228 * Now, the task_struct fields mems_allowed and mempolicy may be changed 229 * by other task, we use alloc_lock in the task_struct fields to protect 230 * them. 231 * 232 * The cpuset_common_seq_show() handlers only hold callback_lock across 233 * small pieces of code, such as when reading out possibly multi-word 234 * cpumasks and nodemasks. 235 */ 236 237 static DEFINE_MUTEX(cpuset_mutex); 238 239 void cpuset_lock(void) 240 { 241 mutex_lock(&cpuset_mutex); 242 } 243 244 void cpuset_unlock(void) 245 { 246 mutex_unlock(&cpuset_mutex); 247 } 248 249 static DEFINE_SPINLOCK(callback_lock); 250 251 void cpuset_callback_lock_irq(void) 252 { 253 spin_lock_irq(&callback_lock); 254 } 255 256 void cpuset_callback_unlock_irq(void) 257 { 258 spin_unlock_irq(&callback_lock); 259 } 260 261 static struct workqueue_struct *cpuset_migrate_mm_wq; 262 263 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); 264 265 static inline void check_insane_mems_config(nodemask_t *nodes) 266 { 267 if (!cpusets_insane_config() && 268 movable_only_nodes(nodes)) { 269 static_branch_enable(&cpusets_insane_config_key); 270 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n" 271 "Cpuset allocations might fail even with a lot of memory available.\n", 272 nodemask_pr_args(nodes)); 273 } 274 } 275 276 /* 277 * decrease cs->attach_in_progress. 278 * wake_up cpuset_attach_wq if cs->attach_in_progress==0. 279 */ 280 static inline void dec_attach_in_progress_locked(struct cpuset *cs) 281 { 282 lockdep_assert_held(&cpuset_mutex); 283 284 cs->attach_in_progress--; 285 if (!cs->attach_in_progress) 286 wake_up(&cpuset_attach_wq); 287 } 288 289 static inline void dec_attach_in_progress(struct cpuset *cs) 290 { 291 mutex_lock(&cpuset_mutex); 292 dec_attach_in_progress_locked(cs); 293 mutex_unlock(&cpuset_mutex); 294 } 295 296 static inline bool cpuset_v2(void) 297 { 298 return !IS_ENABLED(CONFIG_CPUSETS_V1) || 299 cgroup_subsys_on_dfl(cpuset_cgrp_subsys); 300 } 301 302 /* 303 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when 304 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting 305 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option. 306 * With v2 behavior, "cpus" and "mems" are always what the users have 307 * requested and won't be changed by hotplug events. Only the effective 308 * cpus or mems will be affected. 309 */ 310 static inline bool is_in_v2_mode(void) 311 { 312 return cpuset_v2() || 313 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE); 314 } 315 316 /** 317 * partition_is_populated - check if partition has tasks 318 * @cs: partition root to be checked 319 * @excluded_child: a child cpuset to be excluded in task checking 320 * Return: true if there are tasks, false otherwise 321 * 322 * It is assumed that @cs is a valid partition root. @excluded_child should 323 * be non-NULL when this cpuset is going to become a partition itself. 324 */ 325 static inline bool partition_is_populated(struct cpuset *cs, 326 struct cpuset *excluded_child) 327 { 328 struct cgroup_subsys_state *css; 329 struct cpuset *child; 330 331 if (cs->css.cgroup->nr_populated_csets) 332 return true; 333 if (!excluded_child && !cs->nr_subparts) 334 return cgroup_is_populated(cs->css.cgroup); 335 336 rcu_read_lock(); 337 cpuset_for_each_child(child, css, cs) { 338 if (child == excluded_child) 339 continue; 340 if (is_partition_valid(child)) 341 continue; 342 if (cgroup_is_populated(child->css.cgroup)) { 343 rcu_read_unlock(); 344 return true; 345 } 346 } 347 rcu_read_unlock(); 348 return false; 349 } 350 351 /* 352 * Return in pmask the portion of a task's cpusets's cpus_allowed that 353 * are online and are capable of running the task. If none are found, 354 * walk up the cpuset hierarchy until we find one that does have some 355 * appropriate cpus. 356 * 357 * One way or another, we guarantee to return some non-empty subset 358 * of cpu_online_mask. 359 * 360 * Call with callback_lock or cpuset_mutex held. 361 */ 362 static void guarantee_online_cpus(struct task_struct *tsk, 363 struct cpumask *pmask) 364 { 365 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 366 struct cpuset *cs; 367 368 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask))) 369 cpumask_copy(pmask, cpu_online_mask); 370 371 rcu_read_lock(); 372 cs = task_cs(tsk); 373 374 while (!cpumask_intersects(cs->effective_cpus, pmask)) 375 cs = parent_cs(cs); 376 377 cpumask_and(pmask, pmask, cs->effective_cpus); 378 rcu_read_unlock(); 379 } 380 381 /* 382 * Return in *pmask the portion of a cpusets's mems_allowed that 383 * are online, with memory. If none are online with memory, walk 384 * up the cpuset hierarchy until we find one that does have some 385 * online mems. The top cpuset always has some mems online. 386 * 387 * One way or another, we guarantee to return some non-empty subset 388 * of node_states[N_MEMORY]. 389 * 390 * Call with callback_lock or cpuset_mutex held. 391 */ 392 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) 393 { 394 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) 395 cs = parent_cs(cs); 396 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); 397 } 398 399 /** 400 * alloc_cpumasks - allocate three cpumasks for cpuset 401 * @cs: the cpuset that have cpumasks to be allocated. 402 * @tmp: the tmpmasks structure pointer 403 * Return: 0 if successful, -ENOMEM otherwise. 404 * 405 * Only one of the two input arguments should be non-NULL. 406 */ 407 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 408 { 409 cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4; 410 411 if (cs) { 412 pmask1 = &cs->cpus_allowed; 413 pmask2 = &cs->effective_cpus; 414 pmask3 = &cs->effective_xcpus; 415 pmask4 = &cs->exclusive_cpus; 416 } else { 417 pmask1 = &tmp->new_cpus; 418 pmask2 = &tmp->addmask; 419 pmask3 = &tmp->delmask; 420 pmask4 = NULL; 421 } 422 423 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL)) 424 return -ENOMEM; 425 426 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL)) 427 goto free_one; 428 429 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL)) 430 goto free_two; 431 432 if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL)) 433 goto free_three; 434 435 436 return 0; 437 438 free_three: 439 free_cpumask_var(*pmask3); 440 free_two: 441 free_cpumask_var(*pmask2); 442 free_one: 443 free_cpumask_var(*pmask1); 444 return -ENOMEM; 445 } 446 447 /** 448 * free_cpumasks - free cpumasks in a tmpmasks structure 449 * @cs: the cpuset that have cpumasks to be free. 450 * @tmp: the tmpmasks structure pointer 451 */ 452 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp) 453 { 454 if (cs) { 455 free_cpumask_var(cs->cpus_allowed); 456 free_cpumask_var(cs->effective_cpus); 457 free_cpumask_var(cs->effective_xcpus); 458 free_cpumask_var(cs->exclusive_cpus); 459 } 460 if (tmp) { 461 free_cpumask_var(tmp->new_cpus); 462 free_cpumask_var(tmp->addmask); 463 free_cpumask_var(tmp->delmask); 464 } 465 } 466 467 /** 468 * alloc_trial_cpuset - allocate a trial cpuset 469 * @cs: the cpuset that the trial cpuset duplicates 470 */ 471 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) 472 { 473 struct cpuset *trial; 474 475 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); 476 if (!trial) 477 return NULL; 478 479 if (alloc_cpumasks(trial, NULL)) { 480 kfree(trial); 481 return NULL; 482 } 483 484 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); 485 cpumask_copy(trial->effective_cpus, cs->effective_cpus); 486 cpumask_copy(trial->effective_xcpus, cs->effective_xcpus); 487 cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus); 488 return trial; 489 } 490 491 /** 492 * free_cpuset - free the cpuset 493 * @cs: the cpuset to be freed 494 */ 495 static inline void free_cpuset(struct cpuset *cs) 496 { 497 free_cpumasks(cs, NULL); 498 kfree(cs); 499 } 500 501 /* Return user specified exclusive CPUs */ 502 static inline struct cpumask *user_xcpus(struct cpuset *cs) 503 { 504 return cpumask_empty(cs->exclusive_cpus) ? cs->cpus_allowed 505 : cs->exclusive_cpus; 506 } 507 508 static inline bool xcpus_empty(struct cpuset *cs) 509 { 510 return cpumask_empty(cs->cpus_allowed) && 511 cpumask_empty(cs->exclusive_cpus); 512 } 513 514 /* 515 * cpusets_are_exclusive() - check if two cpusets are exclusive 516 * 517 * Return true if exclusive, false if not 518 */ 519 static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2) 520 { 521 struct cpumask *xcpus1 = user_xcpus(cs1); 522 struct cpumask *xcpus2 = user_xcpus(cs2); 523 524 if (cpumask_intersects(xcpus1, xcpus2)) 525 return false; 526 return true; 527 } 528 529 /* 530 * validate_change() - Used to validate that any proposed cpuset change 531 * follows the structural rules for cpusets. 532 * 533 * If we replaced the flag and mask values of the current cpuset 534 * (cur) with those values in the trial cpuset (trial), would 535 * our various subset and exclusive rules still be valid? Presumes 536 * cpuset_mutex held. 537 * 538 * 'cur' is the address of an actual, in-use cpuset. Operations 539 * such as list traversal that depend on the actual address of the 540 * cpuset in the list must use cur below, not trial. 541 * 542 * 'trial' is the address of bulk structure copy of cur, with 543 * perhaps one or more of the fields cpus_allowed, mems_allowed, 544 * or flags changed to new, trial values. 545 * 546 * Return 0 if valid, -errno if not. 547 */ 548 549 static int validate_change(struct cpuset *cur, struct cpuset *trial) 550 { 551 struct cgroup_subsys_state *css; 552 struct cpuset *c, *par; 553 int ret = 0; 554 555 rcu_read_lock(); 556 557 if (!is_in_v2_mode()) 558 ret = cpuset1_validate_change(cur, trial); 559 if (ret) 560 goto out; 561 562 /* Remaining checks don't apply to root cpuset */ 563 if (cur == &top_cpuset) 564 goto out; 565 566 par = parent_cs(cur); 567 568 /* 569 * Cpusets with tasks - existing or newly being attached - can't 570 * be changed to have empty cpus_allowed or mems_allowed. 571 */ 572 ret = -ENOSPC; 573 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { 574 if (!cpumask_empty(cur->cpus_allowed) && 575 cpumask_empty(trial->cpus_allowed)) 576 goto out; 577 if (!nodes_empty(cur->mems_allowed) && 578 nodes_empty(trial->mems_allowed)) 579 goto out; 580 } 581 582 /* 583 * We can't shrink if we won't have enough room for SCHED_DEADLINE 584 * tasks. This check is not done when scheduling is disabled as the 585 * users should know what they are doing. 586 * 587 * For v1, effective_cpus == cpus_allowed & user_xcpus() returns 588 * cpus_allowed. 589 * 590 * For v2, is_cpu_exclusive() & is_sched_load_balance() are true only 591 * for non-isolated partition root. At this point, the target 592 * effective_cpus isn't computed yet. user_xcpus() is the best 593 * approximation. 594 * 595 * TBD: May need to precompute the real effective_cpus here in case 596 * incorrect scheduling of SCHED_DEADLINE tasks in a partition 597 * becomes an issue. 598 */ 599 ret = -EBUSY; 600 if (is_cpu_exclusive(cur) && is_sched_load_balance(cur) && 601 !cpuset_cpumask_can_shrink(cur->effective_cpus, user_xcpus(trial))) 602 goto out; 603 604 /* 605 * If either I or some sibling (!= me) is exclusive, we can't 606 * overlap. exclusive_cpus cannot overlap with each other if set. 607 */ 608 ret = -EINVAL; 609 cpuset_for_each_child(c, css, par) { 610 bool txset, cxset; /* Are exclusive_cpus set? */ 611 612 if (c == cur) 613 continue; 614 615 txset = !cpumask_empty(trial->exclusive_cpus); 616 cxset = !cpumask_empty(c->exclusive_cpus); 617 if (is_cpu_exclusive(trial) || is_cpu_exclusive(c) || 618 (txset && cxset)) { 619 if (!cpusets_are_exclusive(trial, c)) 620 goto out; 621 } else if (txset || cxset) { 622 struct cpumask *xcpus, *acpus; 623 624 /* 625 * When just one of the exclusive_cpus's is set, 626 * cpus_allowed of the other cpuset, if set, cannot be 627 * a subset of it or none of those CPUs will be 628 * available if these exclusive CPUs are activated. 629 */ 630 if (txset) { 631 xcpus = trial->exclusive_cpus; 632 acpus = c->cpus_allowed; 633 } else { 634 xcpus = c->exclusive_cpus; 635 acpus = trial->cpus_allowed; 636 } 637 if (!cpumask_empty(acpus) && cpumask_subset(acpus, xcpus)) 638 goto out; 639 } 640 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && 641 nodes_intersects(trial->mems_allowed, c->mems_allowed)) 642 goto out; 643 } 644 645 ret = 0; 646 out: 647 rcu_read_unlock(); 648 return ret; 649 } 650 651 #ifdef CONFIG_SMP 652 /* 653 * Helper routine for generate_sched_domains(). 654 * Do cpusets a, b have overlapping effective cpus_allowed masks? 655 */ 656 static int cpusets_overlap(struct cpuset *a, struct cpuset *b) 657 { 658 return cpumask_intersects(a->effective_cpus, b->effective_cpus); 659 } 660 661 static void 662 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) 663 { 664 if (dattr->relax_domain_level < c->relax_domain_level) 665 dattr->relax_domain_level = c->relax_domain_level; 666 return; 667 } 668 669 static void update_domain_attr_tree(struct sched_domain_attr *dattr, 670 struct cpuset *root_cs) 671 { 672 struct cpuset *cp; 673 struct cgroup_subsys_state *pos_css; 674 675 rcu_read_lock(); 676 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { 677 /* skip the whole subtree if @cp doesn't have any CPU */ 678 if (cpumask_empty(cp->cpus_allowed)) { 679 pos_css = css_rightmost_descendant(pos_css); 680 continue; 681 } 682 683 if (is_sched_load_balance(cp)) 684 update_domain_attr(dattr, cp); 685 } 686 rcu_read_unlock(); 687 } 688 689 /* Must be called with cpuset_mutex held. */ 690 static inline int nr_cpusets(void) 691 { 692 /* jump label reference count + the top-level cpuset */ 693 return static_key_count(&cpusets_enabled_key.key) + 1; 694 } 695 696 /* 697 * generate_sched_domains() 698 * 699 * This function builds a partial partition of the systems CPUs 700 * A 'partial partition' is a set of non-overlapping subsets whose 701 * union is a subset of that set. 702 * The output of this function needs to be passed to kernel/sched/core.c 703 * partition_sched_domains() routine, which will rebuild the scheduler's 704 * load balancing domains (sched domains) as specified by that partial 705 * partition. 706 * 707 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst 708 * for a background explanation of this. 709 * 710 * Does not return errors, on the theory that the callers of this 711 * routine would rather not worry about failures to rebuild sched 712 * domains when operating in the severe memory shortage situations 713 * that could cause allocation failures below. 714 * 715 * Must be called with cpuset_mutex held. 716 * 717 * The three key local variables below are: 718 * cp - cpuset pointer, used (together with pos_css) to perform a 719 * top-down scan of all cpusets. For our purposes, rebuilding 720 * the schedulers sched domains, we can ignore !is_sched_load_ 721 * balance cpusets. 722 * csa - (for CpuSet Array) Array of pointers to all the cpusets 723 * that need to be load balanced, for convenient iterative 724 * access by the subsequent code that finds the best partition, 725 * i.e the set of domains (subsets) of CPUs such that the 726 * cpus_allowed of every cpuset marked is_sched_load_balance 727 * is a subset of one of these domains, while there are as 728 * many such domains as possible, each as small as possible. 729 * doms - Conversion of 'csa' to an array of cpumasks, for passing to 730 * the kernel/sched/core.c routine partition_sched_domains() in a 731 * convenient format, that can be easily compared to the prior 732 * value to determine what partition elements (sched domains) 733 * were changed (added or removed.) 734 * 735 * Finding the best partition (set of domains): 736 * The double nested loops below over i, j scan over the load 737 * balanced cpusets (using the array of cpuset pointers in csa[]) 738 * looking for pairs of cpusets that have overlapping cpus_allowed 739 * and merging them using a union-find algorithm. 740 * 741 * The union of the cpus_allowed masks from the set of all cpusets 742 * having the same root then form the one element of the partition 743 * (one sched domain) to be passed to partition_sched_domains(). 744 * 745 */ 746 static int generate_sched_domains(cpumask_var_t **domains, 747 struct sched_domain_attr **attributes) 748 { 749 struct cpuset *cp; /* top-down scan of cpusets */ 750 struct cpuset **csa; /* array of all cpuset ptrs */ 751 int csn; /* how many cpuset ptrs in csa so far */ 752 int i, j; /* indices for partition finding loops */ 753 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ 754 struct sched_domain_attr *dattr; /* attributes for custom domains */ 755 int ndoms = 0; /* number of sched domains in result */ 756 int nslot; /* next empty doms[] struct cpumask slot */ 757 struct cgroup_subsys_state *pos_css; 758 bool root_load_balance = is_sched_load_balance(&top_cpuset); 759 bool cgrpv2 = cpuset_v2(); 760 int nslot_update; 761 762 doms = NULL; 763 dattr = NULL; 764 csa = NULL; 765 766 /* Special case for the 99% of systems with one, full, sched domain */ 767 if (root_load_balance && cpumask_empty(subpartitions_cpus)) { 768 single_root_domain: 769 ndoms = 1; 770 doms = alloc_sched_domains(ndoms); 771 if (!doms) 772 goto done; 773 774 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); 775 if (dattr) { 776 *dattr = SD_ATTR_INIT; 777 update_domain_attr_tree(dattr, &top_cpuset); 778 } 779 cpumask_and(doms[0], top_cpuset.effective_cpus, 780 housekeeping_cpumask(HK_TYPE_DOMAIN)); 781 782 goto done; 783 } 784 785 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL); 786 if (!csa) 787 goto done; 788 csn = 0; 789 790 rcu_read_lock(); 791 if (root_load_balance) 792 csa[csn++] = &top_cpuset; 793 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { 794 if (cp == &top_cpuset) 795 continue; 796 797 if (cgrpv2) 798 goto v2; 799 800 /* 801 * v1: 802 * Continue traversing beyond @cp iff @cp has some CPUs and 803 * isn't load balancing. The former is obvious. The 804 * latter: All child cpusets contain a subset of the 805 * parent's cpus, so just skip them, and then we call 806 * update_domain_attr_tree() to calc relax_domain_level of 807 * the corresponding sched domain. 808 */ 809 if (!cpumask_empty(cp->cpus_allowed) && 810 !(is_sched_load_balance(cp) && 811 cpumask_intersects(cp->cpus_allowed, 812 housekeeping_cpumask(HK_TYPE_DOMAIN)))) 813 continue; 814 815 if (is_sched_load_balance(cp) && 816 !cpumask_empty(cp->effective_cpus)) 817 csa[csn++] = cp; 818 819 /* skip @cp's subtree */ 820 pos_css = css_rightmost_descendant(pos_css); 821 continue; 822 823 v2: 824 /* 825 * Only valid partition roots that are not isolated and with 826 * non-empty effective_cpus will be saved into csn[]. 827 */ 828 if ((cp->partition_root_state == PRS_ROOT) && 829 !cpumask_empty(cp->effective_cpus)) 830 csa[csn++] = cp; 831 832 /* 833 * Skip @cp's subtree if not a partition root and has no 834 * exclusive CPUs to be granted to child cpusets. 835 */ 836 if (!is_partition_valid(cp) && cpumask_empty(cp->exclusive_cpus)) 837 pos_css = css_rightmost_descendant(pos_css); 838 } 839 rcu_read_unlock(); 840 841 /* 842 * If there are only isolated partitions underneath the cgroup root, 843 * we can optimize out unneeded sched domains scanning. 844 */ 845 if (root_load_balance && (csn == 1)) 846 goto single_root_domain; 847 848 for (i = 0; i < csn; i++) 849 uf_node_init(&csa[i]->node); 850 851 /* Merge overlapping cpusets */ 852 for (i = 0; i < csn; i++) { 853 for (j = i + 1; j < csn; j++) { 854 if (cpusets_overlap(csa[i], csa[j])) { 855 /* 856 * Cgroup v2 shouldn't pass down overlapping 857 * partition root cpusets. 858 */ 859 WARN_ON_ONCE(cgrpv2); 860 uf_union(&csa[i]->node, &csa[j]->node); 861 } 862 } 863 } 864 865 /* Count the total number of domains */ 866 for (i = 0; i < csn; i++) { 867 if (uf_find(&csa[i]->node) == &csa[i]->node) 868 ndoms++; 869 } 870 871 /* 872 * Now we know how many domains to create. 873 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. 874 */ 875 doms = alloc_sched_domains(ndoms); 876 if (!doms) 877 goto done; 878 879 /* 880 * The rest of the code, including the scheduler, can deal with 881 * dattr==NULL case. No need to abort if alloc fails. 882 */ 883 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr), 884 GFP_KERNEL); 885 886 /* 887 * Cgroup v2 doesn't support domain attributes, just set all of them 888 * to SD_ATTR_INIT. Also non-isolating partition root CPUs are a 889 * subset of HK_TYPE_DOMAIN housekeeping CPUs. 890 */ 891 if (cgrpv2) { 892 for (i = 0; i < ndoms; i++) { 893 /* 894 * The top cpuset may contain some boot time isolated 895 * CPUs that need to be excluded from the sched domain. 896 */ 897 if (csa[i] == &top_cpuset) 898 cpumask_and(doms[i], csa[i]->effective_cpus, 899 housekeeping_cpumask(HK_TYPE_DOMAIN)); 900 else 901 cpumask_copy(doms[i], csa[i]->effective_cpus); 902 if (dattr) 903 dattr[i] = SD_ATTR_INIT; 904 } 905 goto done; 906 } 907 908 for (nslot = 0, i = 0; i < csn; i++) { 909 nslot_update = 0; 910 for (j = i; j < csn; j++) { 911 if (uf_find(&csa[j]->node) == &csa[i]->node) { 912 struct cpumask *dp = doms[nslot]; 913 914 if (i == j) { 915 nslot_update = 1; 916 cpumask_clear(dp); 917 if (dattr) 918 *(dattr + nslot) = SD_ATTR_INIT; 919 } 920 cpumask_or(dp, dp, csa[j]->effective_cpus); 921 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN)); 922 if (dattr) 923 update_domain_attr_tree(dattr + nslot, csa[j]); 924 } 925 } 926 if (nslot_update) 927 nslot++; 928 } 929 BUG_ON(nslot != ndoms); 930 931 done: 932 kfree(csa); 933 934 /* 935 * Fallback to the default domain if kmalloc() failed. 936 * See comments in partition_sched_domains(). 937 */ 938 if (doms == NULL) 939 ndoms = 1; 940 941 *domains = doms; 942 *attributes = dattr; 943 return ndoms; 944 } 945 946 static void dl_update_tasks_root_domain(struct cpuset *cs) 947 { 948 struct css_task_iter it; 949 struct task_struct *task; 950 951 if (cs->nr_deadline_tasks == 0) 952 return; 953 954 css_task_iter_start(&cs->css, 0, &it); 955 956 while ((task = css_task_iter_next(&it))) 957 dl_add_task_root_domain(task); 958 959 css_task_iter_end(&it); 960 } 961 962 void dl_rebuild_rd_accounting(void) 963 { 964 struct cpuset *cs = NULL; 965 struct cgroup_subsys_state *pos_css; 966 int cpu; 967 u64 cookie = ++dl_cookie; 968 969 lockdep_assert_held(&cpuset_mutex); 970 lockdep_assert_cpus_held(); 971 lockdep_assert_held(&sched_domains_mutex); 972 973 rcu_read_lock(); 974 975 for_each_possible_cpu(cpu) { 976 if (dl_bw_visited(cpu, cookie)) 977 continue; 978 979 dl_clear_root_domain_cpu(cpu); 980 } 981 982 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 983 984 if (cpumask_empty(cs->effective_cpus)) { 985 pos_css = css_rightmost_descendant(pos_css); 986 continue; 987 } 988 989 css_get(&cs->css); 990 991 rcu_read_unlock(); 992 993 dl_update_tasks_root_domain(cs); 994 995 rcu_read_lock(); 996 css_put(&cs->css); 997 } 998 rcu_read_unlock(); 999 } 1000 1001 /* 1002 * Rebuild scheduler domains. 1003 * 1004 * If the flag 'sched_load_balance' of any cpuset with non-empty 1005 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset 1006 * which has that flag enabled, or if any cpuset with a non-empty 1007 * 'cpus' is removed, then call this routine to rebuild the 1008 * scheduler's dynamic sched domains. 1009 * 1010 * Call with cpuset_mutex held. Takes cpus_read_lock(). 1011 */ 1012 void rebuild_sched_domains_locked(void) 1013 { 1014 struct cgroup_subsys_state *pos_css; 1015 struct sched_domain_attr *attr; 1016 cpumask_var_t *doms; 1017 struct cpuset *cs; 1018 int ndoms; 1019 1020 lockdep_assert_cpus_held(); 1021 lockdep_assert_held(&cpuset_mutex); 1022 force_sd_rebuild = false; 1023 1024 /* 1025 * If we have raced with CPU hotplug, return early to avoid 1026 * passing doms with offlined cpu to partition_sched_domains(). 1027 * Anyways, cpuset_handle_hotplug() will rebuild sched domains. 1028 * 1029 * With no CPUs in any subpartitions, top_cpuset's effective CPUs 1030 * should be the same as the active CPUs, so checking only top_cpuset 1031 * is enough to detect racing CPU offlines. 1032 */ 1033 if (cpumask_empty(subpartitions_cpus) && 1034 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) 1035 return; 1036 1037 /* 1038 * With subpartition CPUs, however, the effective CPUs of a partition 1039 * root should be only a subset of the active CPUs. Since a CPU in any 1040 * partition root could be offlined, all must be checked. 1041 */ 1042 if (!cpumask_empty(subpartitions_cpus)) { 1043 rcu_read_lock(); 1044 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 1045 if (!is_partition_valid(cs)) { 1046 pos_css = css_rightmost_descendant(pos_css); 1047 continue; 1048 } 1049 if (!cpumask_subset(cs->effective_cpus, 1050 cpu_active_mask)) { 1051 rcu_read_unlock(); 1052 return; 1053 } 1054 } 1055 rcu_read_unlock(); 1056 } 1057 1058 /* Generate domain masks and attrs */ 1059 ndoms = generate_sched_domains(&doms, &attr); 1060 1061 /* Have scheduler rebuild the domains */ 1062 partition_sched_domains(ndoms, doms, attr); 1063 } 1064 #else /* !CONFIG_SMP */ 1065 void rebuild_sched_domains_locked(void) 1066 { 1067 } 1068 #endif /* CONFIG_SMP */ 1069 1070 static void rebuild_sched_domains_cpuslocked(void) 1071 { 1072 mutex_lock(&cpuset_mutex); 1073 rebuild_sched_domains_locked(); 1074 mutex_unlock(&cpuset_mutex); 1075 } 1076 1077 void rebuild_sched_domains(void) 1078 { 1079 cpus_read_lock(); 1080 rebuild_sched_domains_cpuslocked(); 1081 cpus_read_unlock(); 1082 } 1083 1084 void cpuset_reset_sched_domains(void) 1085 { 1086 mutex_lock(&cpuset_mutex); 1087 partition_sched_domains(1, NULL, NULL); 1088 mutex_unlock(&cpuset_mutex); 1089 } 1090 1091 /** 1092 * cpuset_update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. 1093 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed 1094 * @new_cpus: the temp variable for the new effective_cpus mask 1095 * 1096 * Iterate through each task of @cs updating its cpus_allowed to the 1097 * effective cpuset's. As this function is called with cpuset_mutex held, 1098 * cpuset membership stays stable. 1099 * 1100 * For top_cpuset, task_cpu_possible_mask() is used instead of effective_cpus 1101 * to make sure all offline CPUs are also included as hotplug code won't 1102 * update cpumasks for tasks in top_cpuset. 1103 * 1104 * As task_cpu_possible_mask() can be task dependent in arm64, we have to 1105 * do cpu masking per task instead of doing it once for all. 1106 */ 1107 void cpuset_update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus) 1108 { 1109 struct css_task_iter it; 1110 struct task_struct *task; 1111 bool top_cs = cs == &top_cpuset; 1112 1113 css_task_iter_start(&cs->css, 0, &it); 1114 while ((task = css_task_iter_next(&it))) { 1115 const struct cpumask *possible_mask = task_cpu_possible_mask(task); 1116 1117 if (top_cs) { 1118 /* 1119 * Percpu kthreads in top_cpuset are ignored 1120 */ 1121 if (kthread_is_per_cpu(task)) 1122 continue; 1123 cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus); 1124 } else { 1125 cpumask_and(new_cpus, possible_mask, cs->effective_cpus); 1126 } 1127 set_cpus_allowed_ptr(task, new_cpus); 1128 } 1129 css_task_iter_end(&it); 1130 } 1131 1132 /** 1133 * compute_effective_cpumask - Compute the effective cpumask of the cpuset 1134 * @new_cpus: the temp variable for the new effective_cpus mask 1135 * @cs: the cpuset the need to recompute the new effective_cpus mask 1136 * @parent: the parent cpuset 1137 * 1138 * The result is valid only if the given cpuset isn't a partition root. 1139 */ 1140 static void compute_effective_cpumask(struct cpumask *new_cpus, 1141 struct cpuset *cs, struct cpuset *parent) 1142 { 1143 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus); 1144 } 1145 1146 /* 1147 * Commands for update_parent_effective_cpumask 1148 */ 1149 enum partition_cmd { 1150 partcmd_enable, /* Enable partition root */ 1151 partcmd_enablei, /* Enable isolated partition root */ 1152 partcmd_disable, /* Disable partition root */ 1153 partcmd_update, /* Update parent's effective_cpus */ 1154 partcmd_invalidate, /* Make partition invalid */ 1155 }; 1156 1157 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 1158 struct tmpmasks *tmp); 1159 1160 /* 1161 * Update partition exclusive flag 1162 * 1163 * Return: 0 if successful, an error code otherwise 1164 */ 1165 static int update_partition_exclusive_flag(struct cpuset *cs, int new_prs) 1166 { 1167 bool exclusive = (new_prs > PRS_MEMBER); 1168 1169 if (exclusive && !is_cpu_exclusive(cs)) { 1170 if (cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 1)) 1171 return PERR_NOTEXCL; 1172 } else if (!exclusive && is_cpu_exclusive(cs)) { 1173 /* Turning off CS_CPU_EXCLUSIVE will not return error */ 1174 cpuset_update_flag(CS_CPU_EXCLUSIVE, cs, 0); 1175 } 1176 return 0; 1177 } 1178 1179 /* 1180 * Update partition load balance flag and/or rebuild sched domain 1181 * 1182 * Changing load balance flag will automatically call 1183 * rebuild_sched_domains_locked(). 1184 * This function is for cgroup v2 only. 1185 */ 1186 static void update_partition_sd_lb(struct cpuset *cs, int old_prs) 1187 { 1188 int new_prs = cs->partition_root_state; 1189 bool rebuild_domains = (new_prs > 0) || (old_prs > 0); 1190 bool new_lb; 1191 1192 /* 1193 * If cs is not a valid partition root, the load balance state 1194 * will follow its parent. 1195 */ 1196 if (new_prs > 0) { 1197 new_lb = (new_prs != PRS_ISOLATED); 1198 } else { 1199 new_lb = is_sched_load_balance(parent_cs(cs)); 1200 } 1201 if (new_lb != !!is_sched_load_balance(cs)) { 1202 rebuild_domains = true; 1203 if (new_lb) 1204 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1205 else 1206 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 1207 } 1208 1209 if (rebuild_domains) 1210 cpuset_force_rebuild(); 1211 } 1212 1213 /* 1214 * tasks_nocpu_error - Return true if tasks will have no effective_cpus 1215 */ 1216 static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs, 1217 struct cpumask *xcpus) 1218 { 1219 /* 1220 * A populated partition (cs or parent) can't have empty effective_cpus 1221 */ 1222 return (cpumask_subset(parent->effective_cpus, xcpus) && 1223 partition_is_populated(parent, cs)) || 1224 (!cpumask_intersects(xcpus, cpu_active_mask) && 1225 partition_is_populated(cs, NULL)); 1226 } 1227 1228 static void reset_partition_data(struct cpuset *cs) 1229 { 1230 struct cpuset *parent = parent_cs(cs); 1231 1232 if (!cpuset_v2()) 1233 return; 1234 1235 lockdep_assert_held(&callback_lock); 1236 1237 cs->nr_subparts = 0; 1238 if (cpumask_empty(cs->exclusive_cpus)) { 1239 cpumask_clear(cs->effective_xcpus); 1240 if (is_cpu_exclusive(cs)) 1241 clear_bit(CS_CPU_EXCLUSIVE, &cs->flags); 1242 } 1243 if (!cpumask_and(cs->effective_cpus, parent->effective_cpus, cs->cpus_allowed)) 1244 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 1245 } 1246 1247 /* 1248 * isolated_cpus_update - Update the isolated_cpus mask 1249 * @old_prs: old partition_root_state 1250 * @new_prs: new partition_root_state 1251 * @xcpus: exclusive CPUs with state change 1252 */ 1253 static void isolated_cpus_update(int old_prs, int new_prs, struct cpumask *xcpus) 1254 { 1255 WARN_ON_ONCE(old_prs == new_prs); 1256 if (new_prs == PRS_ISOLATED) 1257 cpumask_or(isolated_cpus, isolated_cpus, xcpus); 1258 else 1259 cpumask_andnot(isolated_cpus, isolated_cpus, xcpus); 1260 } 1261 1262 /* 1263 * partition_xcpus_add - Add new exclusive CPUs to partition 1264 * @new_prs: new partition_root_state 1265 * @parent: parent cpuset 1266 * @xcpus: exclusive CPUs to be added 1267 * Return: true if isolated_cpus modified, false otherwise 1268 * 1269 * Remote partition if parent == NULL 1270 */ 1271 static bool partition_xcpus_add(int new_prs, struct cpuset *parent, 1272 struct cpumask *xcpus) 1273 { 1274 bool isolcpus_updated; 1275 1276 WARN_ON_ONCE(new_prs < 0); 1277 lockdep_assert_held(&callback_lock); 1278 if (!parent) 1279 parent = &top_cpuset; 1280 1281 1282 if (parent == &top_cpuset) 1283 cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus); 1284 1285 isolcpus_updated = (new_prs != parent->partition_root_state); 1286 if (isolcpus_updated) 1287 isolated_cpus_update(parent->partition_root_state, new_prs, 1288 xcpus); 1289 1290 cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus); 1291 return isolcpus_updated; 1292 } 1293 1294 /* 1295 * partition_xcpus_del - Remove exclusive CPUs from partition 1296 * @old_prs: old partition_root_state 1297 * @parent: parent cpuset 1298 * @xcpus: exclusive CPUs to be removed 1299 * Return: true if isolated_cpus modified, false otherwise 1300 * 1301 * Remote partition if parent == NULL 1302 */ 1303 static bool partition_xcpus_del(int old_prs, struct cpuset *parent, 1304 struct cpumask *xcpus) 1305 { 1306 bool isolcpus_updated; 1307 1308 WARN_ON_ONCE(old_prs < 0); 1309 lockdep_assert_held(&callback_lock); 1310 if (!parent) 1311 parent = &top_cpuset; 1312 1313 if (parent == &top_cpuset) 1314 cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus); 1315 1316 isolcpus_updated = (old_prs != parent->partition_root_state); 1317 if (isolcpus_updated) 1318 isolated_cpus_update(old_prs, parent->partition_root_state, 1319 xcpus); 1320 1321 cpumask_and(xcpus, xcpus, cpu_active_mask); 1322 cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus); 1323 return isolcpus_updated; 1324 } 1325 1326 static void update_unbound_workqueue_cpumask(bool isolcpus_updated) 1327 { 1328 int ret; 1329 1330 lockdep_assert_cpus_held(); 1331 1332 if (!isolcpus_updated) 1333 return; 1334 1335 ret = workqueue_unbound_exclude_cpumask(isolated_cpus); 1336 WARN_ON_ONCE(ret < 0); 1337 } 1338 1339 /** 1340 * cpuset_cpu_is_isolated - Check if the given CPU is isolated 1341 * @cpu: the CPU number to be checked 1342 * Return: true if CPU is used in an isolated partition, false otherwise 1343 */ 1344 bool cpuset_cpu_is_isolated(int cpu) 1345 { 1346 return cpumask_test_cpu(cpu, isolated_cpus); 1347 } 1348 EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated); 1349 1350 /* 1351 * compute_effective_exclusive_cpumask - compute effective exclusive CPUs 1352 * @cs: cpuset 1353 * @xcpus: effective exclusive CPUs value to be set 1354 * @real_cs: the real cpuset (can be NULL) 1355 * Return: 0 if there is no sibling conflict, > 0 otherwise 1356 * 1357 * If exclusive_cpus isn't explicitly set or a real_cs is provided, we have to 1358 * scan the sibling cpusets and exclude their exclusive_cpus or effective_xcpus 1359 * as well. The provision of real_cs means that a cpumask is being changed and 1360 * the given cs is a trial one. 1361 */ 1362 static int compute_effective_exclusive_cpumask(struct cpuset *cs, 1363 struct cpumask *xcpus, 1364 struct cpuset *real_cs) 1365 { 1366 struct cgroup_subsys_state *css; 1367 struct cpuset *parent = parent_cs(cs); 1368 struct cpuset *sibling; 1369 int retval = 0; 1370 1371 if (!xcpus) 1372 xcpus = cs->effective_xcpus; 1373 1374 cpumask_and(xcpus, user_xcpus(cs), parent->effective_xcpus); 1375 1376 if (!real_cs) { 1377 if (!cpumask_empty(cs->exclusive_cpus)) 1378 return 0; 1379 } else { 1380 cs = real_cs; 1381 } 1382 1383 /* 1384 * Exclude exclusive CPUs from siblings 1385 */ 1386 rcu_read_lock(); 1387 cpuset_for_each_child(sibling, css, parent) { 1388 if (sibling == cs) 1389 continue; 1390 1391 if (!cpumask_empty(sibling->exclusive_cpus) && 1392 cpumask_intersects(xcpus, sibling->exclusive_cpus)) { 1393 cpumask_andnot(xcpus, xcpus, sibling->exclusive_cpus); 1394 retval++; 1395 continue; 1396 } 1397 if (!cpumask_empty(sibling->effective_xcpus) && 1398 cpumask_intersects(xcpus, sibling->effective_xcpus)) { 1399 cpumask_andnot(xcpus, xcpus, sibling->effective_xcpus); 1400 retval++; 1401 } 1402 } 1403 rcu_read_unlock(); 1404 return retval; 1405 } 1406 1407 static inline bool is_remote_partition(struct cpuset *cs) 1408 { 1409 return !list_empty(&cs->remote_sibling); 1410 } 1411 1412 static inline bool is_local_partition(struct cpuset *cs) 1413 { 1414 return is_partition_valid(cs) && !is_remote_partition(cs); 1415 } 1416 1417 /* 1418 * remote_partition_enable - Enable current cpuset as a remote partition root 1419 * @cs: the cpuset to update 1420 * @new_prs: new partition_root_state 1421 * @tmp: temporary masks 1422 * Return: 0 if successful, errcode if error 1423 * 1424 * Enable the current cpuset to become a remote partition root taking CPUs 1425 * directly from the top cpuset. cpuset_mutex must be held by the caller. 1426 */ 1427 static int remote_partition_enable(struct cpuset *cs, int new_prs, 1428 struct tmpmasks *tmp) 1429 { 1430 bool isolcpus_updated; 1431 1432 /* 1433 * The user must have sysadmin privilege. 1434 */ 1435 if (!capable(CAP_SYS_ADMIN)) 1436 return PERR_ACCESS; 1437 1438 /* 1439 * The requested exclusive_cpus must not be allocated to other 1440 * partitions and it can't use up all the root's effective_cpus. 1441 * 1442 * Note that if there is any local partition root above it or 1443 * remote partition root underneath it, its exclusive_cpus must 1444 * have overlapped with subpartitions_cpus. 1445 */ 1446 compute_effective_exclusive_cpumask(cs, tmp->new_cpus, NULL); 1447 if (cpumask_empty(tmp->new_cpus) || 1448 cpumask_intersects(tmp->new_cpus, subpartitions_cpus) || 1449 cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus)) 1450 return PERR_INVCPUS; 1451 1452 spin_lock_irq(&callback_lock); 1453 isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus); 1454 list_add(&cs->remote_sibling, &remote_children); 1455 cpumask_copy(cs->effective_xcpus, tmp->new_cpus); 1456 spin_unlock_irq(&callback_lock); 1457 update_unbound_workqueue_cpumask(isolcpus_updated); 1458 cpuset_force_rebuild(); 1459 cs->prs_err = 0; 1460 1461 /* 1462 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1463 */ 1464 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1465 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1466 return 0; 1467 } 1468 1469 /* 1470 * remote_partition_disable - Remove current cpuset from remote partition list 1471 * @cs: the cpuset to update 1472 * @tmp: temporary masks 1473 * 1474 * The effective_cpus is also updated. 1475 * 1476 * cpuset_mutex must be held by the caller. 1477 */ 1478 static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp) 1479 { 1480 bool isolcpus_updated; 1481 1482 WARN_ON_ONCE(!is_remote_partition(cs)); 1483 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); 1484 1485 spin_lock_irq(&callback_lock); 1486 list_del_init(&cs->remote_sibling); 1487 isolcpus_updated = partition_xcpus_del(cs->partition_root_state, 1488 NULL, cs->effective_xcpus); 1489 if (cs->prs_err) 1490 cs->partition_root_state = -cs->partition_root_state; 1491 else 1492 cs->partition_root_state = PRS_MEMBER; 1493 1494 /* effective_xcpus may need to be changed */ 1495 compute_effective_exclusive_cpumask(cs, NULL, NULL); 1496 reset_partition_data(cs); 1497 spin_unlock_irq(&callback_lock); 1498 update_unbound_workqueue_cpumask(isolcpus_updated); 1499 cpuset_force_rebuild(); 1500 1501 /* 1502 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1503 */ 1504 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1505 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1506 } 1507 1508 /* 1509 * remote_cpus_update - cpus_exclusive change of remote partition 1510 * @cs: the cpuset to be updated 1511 * @xcpus: the new exclusive_cpus mask, if non-NULL 1512 * @excpus: the new effective_xcpus mask 1513 * @tmp: temporary masks 1514 * 1515 * top_cpuset and subpartitions_cpus will be updated or partition can be 1516 * invalidated. 1517 */ 1518 static void remote_cpus_update(struct cpuset *cs, struct cpumask *xcpus, 1519 struct cpumask *excpus, struct tmpmasks *tmp) 1520 { 1521 bool adding, deleting; 1522 int prs = cs->partition_root_state; 1523 int isolcpus_updated = 0; 1524 1525 if (WARN_ON_ONCE(!is_remote_partition(cs))) 1526 return; 1527 1528 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus)); 1529 1530 if (cpumask_empty(excpus)) { 1531 cs->prs_err = PERR_CPUSEMPTY; 1532 goto invalidate; 1533 } 1534 1535 adding = cpumask_andnot(tmp->addmask, excpus, cs->effective_xcpus); 1536 deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, excpus); 1537 1538 /* 1539 * Additions of remote CPUs is only allowed if those CPUs are 1540 * not allocated to other partitions and there are effective_cpus 1541 * left in the top cpuset. 1542 */ 1543 if (adding) { 1544 if (!capable(CAP_SYS_ADMIN)) 1545 cs->prs_err = PERR_ACCESS; 1546 else if (cpumask_intersects(tmp->addmask, subpartitions_cpus) || 1547 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)) 1548 cs->prs_err = PERR_NOCPUS; 1549 if (cs->prs_err) 1550 goto invalidate; 1551 } 1552 1553 spin_lock_irq(&callback_lock); 1554 if (adding) 1555 isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask); 1556 if (deleting) 1557 isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask); 1558 /* 1559 * Need to update effective_xcpus and exclusive_cpus now as 1560 * update_sibling_cpumasks() below may iterate back to the same cs. 1561 */ 1562 cpumask_copy(cs->effective_xcpus, excpus); 1563 if (xcpus) 1564 cpumask_copy(cs->exclusive_cpus, xcpus); 1565 spin_unlock_irq(&callback_lock); 1566 update_unbound_workqueue_cpumask(isolcpus_updated); 1567 if (adding || deleting) 1568 cpuset_force_rebuild(); 1569 1570 /* 1571 * Propagate changes in top_cpuset's effective_cpus down the hierarchy. 1572 */ 1573 cpuset_update_tasks_cpumask(&top_cpuset, tmp->new_cpus); 1574 update_sibling_cpumasks(&top_cpuset, NULL, tmp); 1575 return; 1576 1577 invalidate: 1578 remote_partition_disable(cs, tmp); 1579 } 1580 1581 /* 1582 * prstate_housekeeping_conflict - check for partition & housekeeping conflicts 1583 * @prstate: partition root state to be checked 1584 * @new_cpus: cpu mask 1585 * Return: true if there is conflict, false otherwise 1586 * 1587 * CPUs outside of boot_hk_cpus, if defined, can only be used in an 1588 * isolated partition. 1589 */ 1590 static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus) 1591 { 1592 if (!have_boot_isolcpus) 1593 return false; 1594 1595 if ((prstate != PRS_ISOLATED) && !cpumask_subset(new_cpus, boot_hk_cpus)) 1596 return true; 1597 1598 return false; 1599 } 1600 1601 /** 1602 * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset 1603 * @cs: The cpuset that requests change in partition root state 1604 * @cmd: Partition root state change command 1605 * @newmask: Optional new cpumask for partcmd_update 1606 * @tmp: Temporary addmask and delmask 1607 * Return: 0 or a partition root state error code 1608 * 1609 * For partcmd_enable*, the cpuset is being transformed from a non-partition 1610 * root to a partition root. The effective_xcpus (cpus_allowed if 1611 * effective_xcpus not set) mask of the given cpuset will be taken away from 1612 * parent's effective_cpus. The function will return 0 if all the CPUs listed 1613 * in effective_xcpus can be granted or an error code will be returned. 1614 * 1615 * For partcmd_disable, the cpuset is being transformed from a partition 1616 * root back to a non-partition root. Any CPUs in effective_xcpus will be 1617 * given back to parent's effective_cpus. 0 will always be returned. 1618 * 1619 * For partcmd_update, if the optional newmask is specified, the cpu list is 1620 * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is 1621 * assumed to remain the same. The cpuset should either be a valid or invalid 1622 * partition root. The partition root state may change from valid to invalid 1623 * or vice versa. An error code will be returned if transitioning from 1624 * invalid to valid violates the exclusivity rule. 1625 * 1626 * For partcmd_invalidate, the current partition will be made invalid. 1627 * 1628 * The partcmd_enable* and partcmd_disable commands are used by 1629 * update_prstate(). An error code may be returned and the caller will check 1630 * for error. 1631 * 1632 * The partcmd_update command is used by update_cpumasks_hier() with newmask 1633 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used 1634 * by update_cpumask() with NULL newmask. In both cases, the callers won't 1635 * check for error and so partition_root_state and prs_err will be updated 1636 * directly. 1637 */ 1638 static int update_parent_effective_cpumask(struct cpuset *cs, int cmd, 1639 struct cpumask *newmask, 1640 struct tmpmasks *tmp) 1641 { 1642 struct cpuset *parent = parent_cs(cs); 1643 int adding; /* Adding cpus to parent's effective_cpus */ 1644 int deleting; /* Deleting cpus from parent's effective_cpus */ 1645 int old_prs, new_prs; 1646 int part_error = PERR_NONE; /* Partition error? */ 1647 int subparts_delta = 0; 1648 int isolcpus_updated = 0; 1649 struct cpumask *xcpus = user_xcpus(cs); 1650 bool nocpu; 1651 1652 lockdep_assert_held(&cpuset_mutex); 1653 WARN_ON_ONCE(is_remote_partition(cs)); 1654 1655 /* 1656 * new_prs will only be changed for the partcmd_update and 1657 * partcmd_invalidate commands. 1658 */ 1659 adding = deleting = false; 1660 old_prs = new_prs = cs->partition_root_state; 1661 1662 if (cmd == partcmd_invalidate) { 1663 if (is_prs_invalid(old_prs)) 1664 return 0; 1665 1666 /* 1667 * Make the current partition invalid. 1668 */ 1669 if (is_partition_valid(parent)) 1670 adding = cpumask_and(tmp->addmask, 1671 xcpus, parent->effective_xcpus); 1672 if (old_prs > 0) { 1673 new_prs = -old_prs; 1674 subparts_delta--; 1675 } 1676 goto write_error; 1677 } 1678 1679 /* 1680 * The parent must be a partition root. 1681 * The new cpumask, if present, or the current cpus_allowed must 1682 * not be empty. 1683 */ 1684 if (!is_partition_valid(parent)) { 1685 return is_partition_invalid(parent) 1686 ? PERR_INVPARENT : PERR_NOTPART; 1687 } 1688 if (!newmask && xcpus_empty(cs)) 1689 return PERR_CPUSEMPTY; 1690 1691 nocpu = tasks_nocpu_error(parent, cs, xcpus); 1692 1693 if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) { 1694 /* 1695 * Need to call compute_effective_exclusive_cpumask() in case 1696 * exclusive_cpus not set. Sibling conflict should only happen 1697 * if exclusive_cpus isn't set. 1698 */ 1699 xcpus = tmp->new_cpus; 1700 if (compute_effective_exclusive_cpumask(cs, xcpus, NULL)) 1701 WARN_ON_ONCE(!cpumask_empty(cs->exclusive_cpus)); 1702 1703 /* 1704 * Enabling partition root is not allowed if its 1705 * effective_xcpus is empty. 1706 */ 1707 if (cpumask_empty(xcpus)) 1708 return PERR_INVCPUS; 1709 1710 if (prstate_housekeeping_conflict(new_prs, xcpus)) 1711 return PERR_HKEEPING; 1712 1713 /* 1714 * A parent can be left with no CPU as long as there is no 1715 * task directly associated with the parent partition. 1716 */ 1717 if (nocpu) 1718 return PERR_NOCPUS; 1719 1720 deleting = cpumask_and(tmp->delmask, xcpus, parent->effective_xcpus); 1721 if (deleting) 1722 subparts_delta++; 1723 new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED; 1724 } else if (cmd == partcmd_disable) { 1725 /* 1726 * May need to add cpus back to parent's effective_cpus 1727 * (and maybe removed from subpartitions_cpus/isolated_cpus) 1728 * for valid partition root. xcpus may contain CPUs that 1729 * shouldn't be removed from the two global cpumasks. 1730 */ 1731 if (is_partition_valid(cs)) { 1732 cpumask_copy(tmp->addmask, cs->effective_xcpus); 1733 adding = true; 1734 subparts_delta--; 1735 } 1736 new_prs = PRS_MEMBER; 1737 } else if (newmask) { 1738 /* 1739 * Empty cpumask is not allowed 1740 */ 1741 if (cpumask_empty(newmask)) { 1742 part_error = PERR_CPUSEMPTY; 1743 goto write_error; 1744 } 1745 1746 /* Check newmask again, whether cpus are available for parent/cs */ 1747 nocpu |= tasks_nocpu_error(parent, cs, newmask); 1748 1749 /* 1750 * partcmd_update with newmask: 1751 * 1752 * Compute add/delete mask to/from effective_cpus 1753 * 1754 * For valid partition: 1755 * addmask = exclusive_cpus & ~newmask 1756 * & parent->effective_xcpus 1757 * delmask = newmask & ~exclusive_cpus 1758 * & parent->effective_xcpus 1759 * 1760 * For invalid partition: 1761 * delmask = newmask & parent->effective_xcpus 1762 */ 1763 if (is_prs_invalid(old_prs)) { 1764 adding = false; 1765 deleting = cpumask_and(tmp->delmask, 1766 newmask, parent->effective_xcpus); 1767 } else { 1768 cpumask_andnot(tmp->addmask, xcpus, newmask); 1769 adding = cpumask_and(tmp->addmask, tmp->addmask, 1770 parent->effective_xcpus); 1771 1772 cpumask_andnot(tmp->delmask, newmask, xcpus); 1773 deleting = cpumask_and(tmp->delmask, tmp->delmask, 1774 parent->effective_xcpus); 1775 } 1776 /* 1777 * Make partition invalid if parent's effective_cpus could 1778 * become empty and there are tasks in the parent. 1779 */ 1780 if (nocpu && (!adding || 1781 !cpumask_intersects(tmp->addmask, cpu_active_mask))) { 1782 part_error = PERR_NOCPUS; 1783 deleting = false; 1784 adding = cpumask_and(tmp->addmask, 1785 xcpus, parent->effective_xcpus); 1786 } 1787 } else { 1788 /* 1789 * partcmd_update w/o newmask 1790 * 1791 * delmask = effective_xcpus & parent->effective_cpus 1792 * 1793 * This can be called from: 1794 * 1) update_cpumasks_hier() 1795 * 2) cpuset_hotplug_update_tasks() 1796 * 1797 * Check to see if it can be transitioned from valid to 1798 * invalid partition or vice versa. 1799 * 1800 * A partition error happens when parent has tasks and all 1801 * its effective CPUs will have to be distributed out. 1802 */ 1803 WARN_ON_ONCE(!is_partition_valid(parent)); 1804 if (nocpu) { 1805 part_error = PERR_NOCPUS; 1806 if (is_partition_valid(cs)) 1807 adding = cpumask_and(tmp->addmask, 1808 xcpus, parent->effective_xcpus); 1809 } else if (is_partition_invalid(cs) && 1810 cpumask_subset(xcpus, parent->effective_xcpus)) { 1811 struct cgroup_subsys_state *css; 1812 struct cpuset *child; 1813 bool exclusive = true; 1814 1815 /* 1816 * Convert invalid partition to valid has to 1817 * pass the cpu exclusivity test. 1818 */ 1819 rcu_read_lock(); 1820 cpuset_for_each_child(child, css, parent) { 1821 if (child == cs) 1822 continue; 1823 if (!cpusets_are_exclusive(cs, child)) { 1824 exclusive = false; 1825 break; 1826 } 1827 } 1828 rcu_read_unlock(); 1829 if (exclusive) 1830 deleting = cpumask_and(tmp->delmask, 1831 xcpus, parent->effective_cpus); 1832 else 1833 part_error = PERR_NOTEXCL; 1834 } 1835 } 1836 1837 write_error: 1838 if (part_error) 1839 WRITE_ONCE(cs->prs_err, part_error); 1840 1841 if (cmd == partcmd_update) { 1842 /* 1843 * Check for possible transition between valid and invalid 1844 * partition root. 1845 */ 1846 switch (cs->partition_root_state) { 1847 case PRS_ROOT: 1848 case PRS_ISOLATED: 1849 if (part_error) { 1850 new_prs = -old_prs; 1851 subparts_delta--; 1852 } 1853 break; 1854 case PRS_INVALID_ROOT: 1855 case PRS_INVALID_ISOLATED: 1856 if (!part_error) { 1857 new_prs = -old_prs; 1858 subparts_delta++; 1859 } 1860 break; 1861 } 1862 } 1863 1864 if (!adding && !deleting && (new_prs == old_prs)) 1865 return 0; 1866 1867 /* 1868 * Transitioning between invalid to valid or vice versa may require 1869 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update, 1870 * validate_change() has already been successfully called and 1871 * CPU lists in cs haven't been updated yet. So defer it to later. 1872 */ 1873 if ((old_prs != new_prs) && (cmd != partcmd_update)) { 1874 int err = update_partition_exclusive_flag(cs, new_prs); 1875 1876 if (err) 1877 return err; 1878 } 1879 1880 /* 1881 * Change the parent's effective_cpus & effective_xcpus (top cpuset 1882 * only). 1883 * 1884 * Newly added CPUs will be removed from effective_cpus and 1885 * newly deleted ones will be added back to effective_cpus. 1886 */ 1887 spin_lock_irq(&callback_lock); 1888 if (old_prs != new_prs) { 1889 cs->partition_root_state = new_prs; 1890 if (new_prs <= 0) 1891 cs->nr_subparts = 0; 1892 } 1893 /* 1894 * Adding to parent's effective_cpus means deletion CPUs from cs 1895 * and vice versa. 1896 */ 1897 if (adding) 1898 isolcpus_updated += partition_xcpus_del(old_prs, parent, 1899 tmp->addmask); 1900 if (deleting) 1901 isolcpus_updated += partition_xcpus_add(new_prs, parent, 1902 tmp->delmask); 1903 1904 if (is_partition_valid(parent)) { 1905 parent->nr_subparts += subparts_delta; 1906 WARN_ON_ONCE(parent->nr_subparts < 0); 1907 } 1908 spin_unlock_irq(&callback_lock); 1909 update_unbound_workqueue_cpumask(isolcpus_updated); 1910 1911 if ((old_prs != new_prs) && (cmd == partcmd_update)) 1912 update_partition_exclusive_flag(cs, new_prs); 1913 1914 if (adding || deleting) { 1915 cpuset_update_tasks_cpumask(parent, tmp->addmask); 1916 update_sibling_cpumasks(parent, cs, tmp); 1917 } 1918 1919 /* 1920 * For partcmd_update without newmask, it is being called from 1921 * cpuset_handle_hotplug(). Update the load balance flag and 1922 * scheduling domain accordingly. 1923 */ 1924 if ((cmd == partcmd_update) && !newmask) 1925 update_partition_sd_lb(cs, old_prs); 1926 1927 notify_partition_change(cs, old_prs); 1928 return 0; 1929 } 1930 1931 /** 1932 * compute_partition_effective_cpumask - compute effective_cpus for partition 1933 * @cs: partition root cpuset 1934 * @new_ecpus: previously computed effective_cpus to be updated 1935 * 1936 * Compute the effective_cpus of a partition root by scanning effective_xcpus 1937 * of child partition roots and excluding their effective_xcpus. 1938 * 1939 * This has the side effect of invalidating valid child partition roots, 1940 * if necessary. Since it is called from either cpuset_hotplug_update_tasks() 1941 * or update_cpumasks_hier() where parent and children are modified 1942 * successively, we don't need to call update_parent_effective_cpumask() 1943 * and the child's effective_cpus will be updated in later iterations. 1944 * 1945 * Note that rcu_read_lock() is assumed to be held. 1946 */ 1947 static void compute_partition_effective_cpumask(struct cpuset *cs, 1948 struct cpumask *new_ecpus) 1949 { 1950 struct cgroup_subsys_state *css; 1951 struct cpuset *child; 1952 bool populated = partition_is_populated(cs, NULL); 1953 1954 /* 1955 * Check child partition roots to see if they should be 1956 * invalidated when 1957 * 1) child effective_xcpus not a subset of new 1958 * excluisve_cpus 1959 * 2) All the effective_cpus will be used up and cp 1960 * has tasks 1961 */ 1962 compute_effective_exclusive_cpumask(cs, new_ecpus, NULL); 1963 cpumask_and(new_ecpus, new_ecpus, cpu_active_mask); 1964 1965 rcu_read_lock(); 1966 cpuset_for_each_child(child, css, cs) { 1967 if (!is_partition_valid(child)) 1968 continue; 1969 1970 /* 1971 * There shouldn't be a remote partition underneath another 1972 * partition root. 1973 */ 1974 WARN_ON_ONCE(is_remote_partition(child)); 1975 child->prs_err = 0; 1976 if (!cpumask_subset(child->effective_xcpus, 1977 cs->effective_xcpus)) 1978 child->prs_err = PERR_INVCPUS; 1979 else if (populated && 1980 cpumask_subset(new_ecpus, child->effective_xcpus)) 1981 child->prs_err = PERR_NOCPUS; 1982 1983 if (child->prs_err) { 1984 int old_prs = child->partition_root_state; 1985 1986 /* 1987 * Invalidate child partition 1988 */ 1989 spin_lock_irq(&callback_lock); 1990 make_partition_invalid(child); 1991 cs->nr_subparts--; 1992 child->nr_subparts = 0; 1993 spin_unlock_irq(&callback_lock); 1994 notify_partition_change(child, old_prs); 1995 continue; 1996 } 1997 cpumask_andnot(new_ecpus, new_ecpus, 1998 child->effective_xcpus); 1999 } 2000 rcu_read_unlock(); 2001 } 2002 2003 /* 2004 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree 2005 * @cs: the cpuset to consider 2006 * @tmp: temp variables for calculating effective_cpus & partition setup 2007 * @force: don't skip any descendant cpusets if set 2008 * 2009 * When configured cpumask is changed, the effective cpumasks of this cpuset 2010 * and all its descendants need to be updated. 2011 * 2012 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed. 2013 * 2014 * Called with cpuset_mutex held 2015 */ 2016 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp, 2017 bool force) 2018 { 2019 struct cpuset *cp; 2020 struct cgroup_subsys_state *pos_css; 2021 bool need_rebuild_sched_domains = false; 2022 int old_prs, new_prs; 2023 2024 rcu_read_lock(); 2025 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2026 struct cpuset *parent = parent_cs(cp); 2027 bool remote = is_remote_partition(cp); 2028 bool update_parent = false; 2029 2030 old_prs = new_prs = cp->partition_root_state; 2031 2032 /* 2033 * For child remote partition root (!= cs), we need to call 2034 * remote_cpus_update() if effective_xcpus will be changed. 2035 * Otherwise, we can skip the whole subtree. 2036 * 2037 * remote_cpus_update() will reuse tmp->new_cpus only after 2038 * its value is being processed. 2039 */ 2040 if (remote && (cp != cs)) { 2041 compute_effective_exclusive_cpumask(cp, tmp->new_cpus, NULL); 2042 if (cpumask_equal(cp->effective_xcpus, tmp->new_cpus)) { 2043 pos_css = css_rightmost_descendant(pos_css); 2044 continue; 2045 } 2046 rcu_read_unlock(); 2047 remote_cpus_update(cp, NULL, tmp->new_cpus, tmp); 2048 rcu_read_lock(); 2049 2050 /* Remote partition may be invalidated */ 2051 new_prs = cp->partition_root_state; 2052 remote = (new_prs == old_prs); 2053 } 2054 2055 if (remote || (is_partition_valid(parent) && is_partition_valid(cp))) 2056 compute_partition_effective_cpumask(cp, tmp->new_cpus); 2057 else 2058 compute_effective_cpumask(tmp->new_cpus, cp, parent); 2059 2060 if (remote) 2061 goto get_css; /* Ready to update cpuset data */ 2062 2063 /* 2064 * A partition with no effective_cpus is allowed as long as 2065 * there is no task associated with it. Call 2066 * update_parent_effective_cpumask() to check it. 2067 */ 2068 if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) { 2069 update_parent = true; 2070 goto update_parent_effective; 2071 } 2072 2073 /* 2074 * If it becomes empty, inherit the effective mask of the 2075 * parent, which is guaranteed to have some CPUs unless 2076 * it is a partition root that has explicitly distributed 2077 * out all its CPUs. 2078 */ 2079 if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) 2080 cpumask_copy(tmp->new_cpus, parent->effective_cpus); 2081 2082 /* 2083 * Skip the whole subtree if 2084 * 1) the cpumask remains the same, 2085 * 2) has no partition root state, 2086 * 3) force flag not set, and 2087 * 4) for v2 load balance state same as its parent. 2088 */ 2089 if (!cp->partition_root_state && !force && 2090 cpumask_equal(tmp->new_cpus, cp->effective_cpus) && 2091 (!cpuset_v2() || 2092 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) { 2093 pos_css = css_rightmost_descendant(pos_css); 2094 continue; 2095 } 2096 2097 update_parent_effective: 2098 /* 2099 * update_parent_effective_cpumask() should have been called 2100 * for cs already in update_cpumask(). We should also call 2101 * cpuset_update_tasks_cpumask() again for tasks in the parent 2102 * cpuset if the parent's effective_cpus changes. 2103 */ 2104 if ((cp != cs) && old_prs) { 2105 switch (parent->partition_root_state) { 2106 case PRS_ROOT: 2107 case PRS_ISOLATED: 2108 update_parent = true; 2109 break; 2110 2111 default: 2112 /* 2113 * When parent is not a partition root or is 2114 * invalid, child partition roots become 2115 * invalid too. 2116 */ 2117 if (is_partition_valid(cp)) 2118 new_prs = -cp->partition_root_state; 2119 WRITE_ONCE(cp->prs_err, 2120 is_partition_invalid(parent) 2121 ? PERR_INVPARENT : PERR_NOTPART); 2122 break; 2123 } 2124 } 2125 get_css: 2126 if (!css_tryget_online(&cp->css)) 2127 continue; 2128 rcu_read_unlock(); 2129 2130 if (update_parent) { 2131 update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp); 2132 /* 2133 * The cpuset partition_root_state may become 2134 * invalid. Capture it. 2135 */ 2136 new_prs = cp->partition_root_state; 2137 } 2138 2139 spin_lock_irq(&callback_lock); 2140 cpumask_copy(cp->effective_cpus, tmp->new_cpus); 2141 cp->partition_root_state = new_prs; 2142 if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) 2143 compute_effective_exclusive_cpumask(cp, NULL, NULL); 2144 2145 /* 2146 * Make sure effective_xcpus is properly set for a valid 2147 * partition root. 2148 */ 2149 if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus)) 2150 cpumask_and(cp->effective_xcpus, 2151 cp->cpus_allowed, parent->effective_xcpus); 2152 else if (new_prs < 0) 2153 reset_partition_data(cp); 2154 spin_unlock_irq(&callback_lock); 2155 2156 notify_partition_change(cp, old_prs); 2157 2158 WARN_ON(!is_in_v2_mode() && 2159 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); 2160 2161 cpuset_update_tasks_cpumask(cp, cp->effective_cpus); 2162 2163 /* 2164 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE 2165 * from parent if current cpuset isn't a valid partition root 2166 * and their load balance states differ. 2167 */ 2168 if (cpuset_v2() && !is_partition_valid(cp) && 2169 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) { 2170 if (is_sched_load_balance(parent)) 2171 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2172 else 2173 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags); 2174 } 2175 2176 /* 2177 * On legacy hierarchy, if the effective cpumask of any non- 2178 * empty cpuset is changed, we need to rebuild sched domains. 2179 * On default hierarchy, the cpuset needs to be a partition 2180 * root as well. 2181 */ 2182 if (!cpumask_empty(cp->cpus_allowed) && 2183 is_sched_load_balance(cp) && 2184 (!cpuset_v2() || is_partition_valid(cp))) 2185 need_rebuild_sched_domains = true; 2186 2187 rcu_read_lock(); 2188 css_put(&cp->css); 2189 } 2190 rcu_read_unlock(); 2191 2192 if (need_rebuild_sched_domains) 2193 cpuset_force_rebuild(); 2194 } 2195 2196 /** 2197 * update_sibling_cpumasks - Update siblings cpumasks 2198 * @parent: Parent cpuset 2199 * @cs: Current cpuset 2200 * @tmp: Temp variables 2201 */ 2202 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs, 2203 struct tmpmasks *tmp) 2204 { 2205 struct cpuset *sibling; 2206 struct cgroup_subsys_state *pos_css; 2207 2208 lockdep_assert_held(&cpuset_mutex); 2209 2210 /* 2211 * Check all its siblings and call update_cpumasks_hier() 2212 * if their effective_cpus will need to be changed. 2213 * 2214 * It is possible a change in parent's effective_cpus 2215 * due to a change in a child partition's effective_xcpus will impact 2216 * its siblings even if they do not inherit parent's effective_cpus 2217 * directly. 2218 * 2219 * The update_cpumasks_hier() function may sleep. So we have to 2220 * release the RCU read lock before calling it. 2221 */ 2222 rcu_read_lock(); 2223 cpuset_for_each_child(sibling, pos_css, parent) { 2224 if (sibling == cs) 2225 continue; 2226 if (!is_partition_valid(sibling)) { 2227 compute_effective_cpumask(tmp->new_cpus, sibling, 2228 parent); 2229 if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus)) 2230 continue; 2231 } else if (is_remote_partition(sibling)) { 2232 /* 2233 * Change in a sibling cpuset won't affect a remote 2234 * partition root. 2235 */ 2236 continue; 2237 } 2238 2239 if (!css_tryget_online(&sibling->css)) 2240 continue; 2241 2242 rcu_read_unlock(); 2243 update_cpumasks_hier(sibling, tmp, false); 2244 rcu_read_lock(); 2245 css_put(&sibling->css); 2246 } 2247 rcu_read_unlock(); 2248 } 2249 2250 /** 2251 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it 2252 * @cs: the cpuset to consider 2253 * @trialcs: trial cpuset 2254 * @buf: buffer of cpu numbers written to this cpuset 2255 */ 2256 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2257 const char *buf) 2258 { 2259 int retval; 2260 struct tmpmasks tmp; 2261 struct cpuset *parent = parent_cs(cs); 2262 bool invalidate = false; 2263 bool force = false; 2264 int old_prs = cs->partition_root_state; 2265 2266 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ 2267 if (cs == &top_cpuset) 2268 return -EACCES; 2269 2270 /* 2271 * An empty cpus_allowed is ok only if the cpuset has no tasks. 2272 * Since cpulist_parse() fails on an empty mask, we special case 2273 * that parsing. The validate_change() call ensures that cpusets 2274 * with tasks have cpus. 2275 */ 2276 if (!*buf) { 2277 cpumask_clear(trialcs->cpus_allowed); 2278 if (cpumask_empty(trialcs->exclusive_cpus)) 2279 cpumask_clear(trialcs->effective_xcpus); 2280 } else { 2281 retval = cpulist_parse(buf, trialcs->cpus_allowed); 2282 if (retval < 0) 2283 return retval; 2284 2285 if (!cpumask_subset(trialcs->cpus_allowed, 2286 top_cpuset.cpus_allowed)) 2287 return -EINVAL; 2288 2289 /* 2290 * When exclusive_cpus isn't explicitly set, it is constrained 2291 * by cpus_allowed and parent's effective_xcpus. Otherwise, 2292 * trialcs->effective_xcpus is used as a temporary cpumask 2293 * for checking validity of the partition root. 2294 */ 2295 trialcs->partition_root_state = PRS_MEMBER; 2296 if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs)) 2297 compute_effective_exclusive_cpumask(trialcs, NULL, cs); 2298 } 2299 2300 /* Nothing to do if the cpus didn't change */ 2301 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) 2302 return 0; 2303 2304 if (alloc_cpumasks(NULL, &tmp)) 2305 return -ENOMEM; 2306 2307 if (old_prs) { 2308 if (is_partition_valid(cs) && 2309 cpumask_empty(trialcs->effective_xcpus)) { 2310 invalidate = true; 2311 cs->prs_err = PERR_INVCPUS; 2312 } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) { 2313 invalidate = true; 2314 cs->prs_err = PERR_HKEEPING; 2315 } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) { 2316 invalidate = true; 2317 cs->prs_err = PERR_NOCPUS; 2318 } 2319 } 2320 2321 /* 2322 * Check all the descendants in update_cpumasks_hier() if 2323 * effective_xcpus is to be changed. 2324 */ 2325 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); 2326 2327 retval = validate_change(cs, trialcs); 2328 2329 if ((retval == -EINVAL) && cpuset_v2()) { 2330 struct cgroup_subsys_state *css; 2331 struct cpuset *cp; 2332 2333 /* 2334 * The -EINVAL error code indicates that partition sibling 2335 * CPU exclusivity rule has been violated. We still allow 2336 * the cpumask change to proceed while invalidating the 2337 * partition. However, any conflicting sibling partitions 2338 * have to be marked as invalid too. 2339 */ 2340 invalidate = true; 2341 rcu_read_lock(); 2342 cpuset_for_each_child(cp, css, parent) { 2343 struct cpumask *xcpus = user_xcpus(trialcs); 2344 2345 if (is_partition_valid(cp) && 2346 cpumask_intersects(xcpus, cp->effective_xcpus)) { 2347 rcu_read_unlock(); 2348 update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp); 2349 rcu_read_lock(); 2350 } 2351 } 2352 rcu_read_unlock(); 2353 retval = 0; 2354 } 2355 2356 if (retval < 0) 2357 goto out_free; 2358 2359 if (is_partition_valid(cs) || 2360 (is_partition_invalid(cs) && !invalidate)) { 2361 struct cpumask *xcpus = trialcs->effective_xcpus; 2362 2363 if (cpumask_empty(xcpus) && is_partition_invalid(cs)) 2364 xcpus = trialcs->cpus_allowed; 2365 2366 /* 2367 * Call remote_cpus_update() to handle valid remote partition 2368 */ 2369 if (is_remote_partition(cs)) 2370 remote_cpus_update(cs, NULL, xcpus, &tmp); 2371 else if (invalidate) 2372 update_parent_effective_cpumask(cs, partcmd_invalidate, 2373 NULL, &tmp); 2374 else 2375 update_parent_effective_cpumask(cs, partcmd_update, 2376 xcpus, &tmp); 2377 } 2378 2379 spin_lock_irq(&callback_lock); 2380 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); 2381 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2382 if ((old_prs > 0) && !is_partition_valid(cs)) 2383 reset_partition_data(cs); 2384 spin_unlock_irq(&callback_lock); 2385 2386 /* effective_cpus/effective_xcpus will be updated here */ 2387 update_cpumasks_hier(cs, &tmp, force); 2388 2389 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2390 if (cs->partition_root_state) 2391 update_partition_sd_lb(cs, old_prs); 2392 out_free: 2393 free_cpumasks(NULL, &tmp); 2394 return retval; 2395 } 2396 2397 /** 2398 * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset 2399 * @cs: the cpuset to consider 2400 * @trialcs: trial cpuset 2401 * @buf: buffer of cpu numbers written to this cpuset 2402 * 2403 * The tasks' cpumask will be updated if cs is a valid partition root. 2404 */ 2405 static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs, 2406 const char *buf) 2407 { 2408 int retval; 2409 struct tmpmasks tmp; 2410 struct cpuset *parent = parent_cs(cs); 2411 bool invalidate = false; 2412 bool force = false; 2413 int old_prs = cs->partition_root_state; 2414 2415 if (!*buf) { 2416 cpumask_clear(trialcs->exclusive_cpus); 2417 cpumask_clear(trialcs->effective_xcpus); 2418 } else { 2419 retval = cpulist_parse(buf, trialcs->exclusive_cpus); 2420 if (retval < 0) 2421 return retval; 2422 } 2423 2424 /* Nothing to do if the CPUs didn't change */ 2425 if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus)) 2426 return 0; 2427 2428 if (*buf) { 2429 trialcs->partition_root_state = PRS_MEMBER; 2430 /* 2431 * Reject the change if there is exclusive CPUs conflict with 2432 * the siblings. 2433 */ 2434 if (compute_effective_exclusive_cpumask(trialcs, NULL, cs)) 2435 return -EINVAL; 2436 } 2437 2438 /* 2439 * Check all the descendants in update_cpumasks_hier() if 2440 * effective_xcpus is to be changed. 2441 */ 2442 force = !cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus); 2443 2444 retval = validate_change(cs, trialcs); 2445 if (retval) 2446 return retval; 2447 2448 if (alloc_cpumasks(NULL, &tmp)) 2449 return -ENOMEM; 2450 2451 if (old_prs) { 2452 if (cpumask_empty(trialcs->effective_xcpus)) { 2453 invalidate = true; 2454 cs->prs_err = PERR_INVCPUS; 2455 } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) { 2456 invalidate = true; 2457 cs->prs_err = PERR_HKEEPING; 2458 } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) { 2459 invalidate = true; 2460 cs->prs_err = PERR_NOCPUS; 2461 } 2462 2463 if (is_remote_partition(cs)) { 2464 if (invalidate) 2465 remote_partition_disable(cs, &tmp); 2466 else 2467 remote_cpus_update(cs, trialcs->exclusive_cpus, 2468 trialcs->effective_xcpus, &tmp); 2469 } else if (invalidate) { 2470 update_parent_effective_cpumask(cs, partcmd_invalidate, 2471 NULL, &tmp); 2472 } else { 2473 update_parent_effective_cpumask(cs, partcmd_update, 2474 trialcs->effective_xcpus, &tmp); 2475 } 2476 } 2477 spin_lock_irq(&callback_lock); 2478 cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus); 2479 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus); 2480 if ((old_prs > 0) && !is_partition_valid(cs)) 2481 reset_partition_data(cs); 2482 spin_unlock_irq(&callback_lock); 2483 2484 /* 2485 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus 2486 * of the subtree when it is a valid partition root or effective_xcpus 2487 * is updated. 2488 */ 2489 if (is_partition_valid(cs) || force) 2490 update_cpumasks_hier(cs, &tmp, force); 2491 2492 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */ 2493 if (cs->partition_root_state) 2494 update_partition_sd_lb(cs, old_prs); 2495 2496 free_cpumasks(NULL, &tmp); 2497 return 0; 2498 } 2499 2500 /* 2501 * Migrate memory region from one set of nodes to another. This is 2502 * performed asynchronously as it can be called from process migration path 2503 * holding locks involved in process management. All mm migrations are 2504 * performed in the queued order and can be waited for by flushing 2505 * cpuset_migrate_mm_wq. 2506 */ 2507 2508 struct cpuset_migrate_mm_work { 2509 struct work_struct work; 2510 struct mm_struct *mm; 2511 nodemask_t from; 2512 nodemask_t to; 2513 }; 2514 2515 static void cpuset_migrate_mm_workfn(struct work_struct *work) 2516 { 2517 struct cpuset_migrate_mm_work *mwork = 2518 container_of(work, struct cpuset_migrate_mm_work, work); 2519 2520 /* on a wq worker, no need to worry about %current's mems_allowed */ 2521 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); 2522 mmput(mwork->mm); 2523 kfree(mwork); 2524 } 2525 2526 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, 2527 const nodemask_t *to) 2528 { 2529 struct cpuset_migrate_mm_work *mwork; 2530 2531 if (nodes_equal(*from, *to)) { 2532 mmput(mm); 2533 return; 2534 } 2535 2536 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); 2537 if (mwork) { 2538 mwork->mm = mm; 2539 mwork->from = *from; 2540 mwork->to = *to; 2541 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); 2542 queue_work(cpuset_migrate_mm_wq, &mwork->work); 2543 } else { 2544 mmput(mm); 2545 } 2546 } 2547 2548 static void cpuset_post_attach(void) 2549 { 2550 flush_workqueue(cpuset_migrate_mm_wq); 2551 } 2552 2553 /* 2554 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy 2555 * @tsk: the task to change 2556 * @newmems: new nodes that the task will be set 2557 * 2558 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed 2559 * and rebind an eventual tasks' mempolicy. If the task is allocating in 2560 * parallel, it might temporarily see an empty intersection, which results in 2561 * a seqlock check and retry before OOM or allocation failure. 2562 */ 2563 static void cpuset_change_task_nodemask(struct task_struct *tsk, 2564 nodemask_t *newmems) 2565 { 2566 task_lock(tsk); 2567 2568 local_irq_disable(); 2569 write_seqcount_begin(&tsk->mems_allowed_seq); 2570 2571 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); 2572 mpol_rebind_task(tsk, newmems); 2573 tsk->mems_allowed = *newmems; 2574 2575 write_seqcount_end(&tsk->mems_allowed_seq); 2576 local_irq_enable(); 2577 2578 task_unlock(tsk); 2579 } 2580 2581 static void *cpuset_being_rebound; 2582 2583 /** 2584 * cpuset_update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. 2585 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed 2586 * 2587 * Iterate through each task of @cs updating its mems_allowed to the 2588 * effective cpuset's. As this function is called with cpuset_mutex held, 2589 * cpuset membership stays stable. 2590 */ 2591 void cpuset_update_tasks_nodemask(struct cpuset *cs) 2592 { 2593 static nodemask_t newmems; /* protected by cpuset_mutex */ 2594 struct css_task_iter it; 2595 struct task_struct *task; 2596 2597 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ 2598 2599 guarantee_online_mems(cs, &newmems); 2600 2601 /* 2602 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't 2603 * take while holding tasklist_lock. Forks can happen - the 2604 * mpol_dup() cpuset_being_rebound check will catch such forks, 2605 * and rebind their vma mempolicies too. Because we still hold 2606 * the global cpuset_mutex, we know that no other rebind effort 2607 * will be contending for the global variable cpuset_being_rebound. 2608 * It's ok if we rebind the same mm twice; mpol_rebind_mm() 2609 * is idempotent. Also migrate pages in each mm to new nodes. 2610 */ 2611 css_task_iter_start(&cs->css, 0, &it); 2612 while ((task = css_task_iter_next(&it))) { 2613 struct mm_struct *mm; 2614 bool migrate; 2615 2616 cpuset_change_task_nodemask(task, &newmems); 2617 2618 mm = get_task_mm(task); 2619 if (!mm) 2620 continue; 2621 2622 migrate = is_memory_migrate(cs); 2623 2624 mpol_rebind_mm(mm, &cs->mems_allowed); 2625 if (migrate) 2626 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); 2627 else 2628 mmput(mm); 2629 } 2630 css_task_iter_end(&it); 2631 2632 /* 2633 * All the tasks' nodemasks have been updated, update 2634 * cs->old_mems_allowed. 2635 */ 2636 cs->old_mems_allowed = newmems; 2637 2638 /* We're done rebinding vmas to this cpuset's new mems_allowed. */ 2639 cpuset_being_rebound = NULL; 2640 } 2641 2642 /* 2643 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree 2644 * @cs: the cpuset to consider 2645 * @new_mems: a temp variable for calculating new effective_mems 2646 * 2647 * When configured nodemask is changed, the effective nodemasks of this cpuset 2648 * and all its descendants need to be updated. 2649 * 2650 * On legacy hierarchy, effective_mems will be the same with mems_allowed. 2651 * 2652 * Called with cpuset_mutex held 2653 */ 2654 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) 2655 { 2656 struct cpuset *cp; 2657 struct cgroup_subsys_state *pos_css; 2658 2659 rcu_read_lock(); 2660 cpuset_for_each_descendant_pre(cp, pos_css, cs) { 2661 struct cpuset *parent = parent_cs(cp); 2662 2663 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); 2664 2665 /* 2666 * If it becomes empty, inherit the effective mask of the 2667 * parent, which is guaranteed to have some MEMs. 2668 */ 2669 if (is_in_v2_mode() && nodes_empty(*new_mems)) 2670 *new_mems = parent->effective_mems; 2671 2672 /* Skip the whole subtree if the nodemask remains the same. */ 2673 if (nodes_equal(*new_mems, cp->effective_mems)) { 2674 pos_css = css_rightmost_descendant(pos_css); 2675 continue; 2676 } 2677 2678 if (!css_tryget_online(&cp->css)) 2679 continue; 2680 rcu_read_unlock(); 2681 2682 spin_lock_irq(&callback_lock); 2683 cp->effective_mems = *new_mems; 2684 spin_unlock_irq(&callback_lock); 2685 2686 WARN_ON(!is_in_v2_mode() && 2687 !nodes_equal(cp->mems_allowed, cp->effective_mems)); 2688 2689 cpuset_update_tasks_nodemask(cp); 2690 2691 rcu_read_lock(); 2692 css_put(&cp->css); 2693 } 2694 rcu_read_unlock(); 2695 } 2696 2697 /* 2698 * Handle user request to change the 'mems' memory placement 2699 * of a cpuset. Needs to validate the request, update the 2700 * cpusets mems_allowed, and for each task in the cpuset, 2701 * update mems_allowed and rebind task's mempolicy and any vma 2702 * mempolicies and if the cpuset is marked 'memory_migrate', 2703 * migrate the tasks pages to the new memory. 2704 * 2705 * Call with cpuset_mutex held. May take callback_lock during call. 2706 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, 2707 * lock each such tasks mm->mmap_lock, scan its vma's and rebind 2708 * their mempolicies to the cpusets new mems_allowed. 2709 */ 2710 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, 2711 const char *buf) 2712 { 2713 int retval; 2714 2715 /* 2716 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; 2717 * it's read-only 2718 */ 2719 if (cs == &top_cpuset) { 2720 retval = -EACCES; 2721 goto done; 2722 } 2723 2724 /* 2725 * An empty mems_allowed is ok iff there are no tasks in the cpuset. 2726 * Since nodelist_parse() fails on an empty mask, we special case 2727 * that parsing. The validate_change() call ensures that cpusets 2728 * with tasks have memory. 2729 */ 2730 if (!*buf) { 2731 nodes_clear(trialcs->mems_allowed); 2732 } else { 2733 retval = nodelist_parse(buf, trialcs->mems_allowed); 2734 if (retval < 0) 2735 goto done; 2736 2737 if (!nodes_subset(trialcs->mems_allowed, 2738 top_cpuset.mems_allowed)) { 2739 retval = -EINVAL; 2740 goto done; 2741 } 2742 } 2743 2744 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { 2745 retval = 0; /* Too easy - nothing to do */ 2746 goto done; 2747 } 2748 retval = validate_change(cs, trialcs); 2749 if (retval < 0) 2750 goto done; 2751 2752 check_insane_mems_config(&trialcs->mems_allowed); 2753 2754 spin_lock_irq(&callback_lock); 2755 cs->mems_allowed = trialcs->mems_allowed; 2756 spin_unlock_irq(&callback_lock); 2757 2758 /* use trialcs->mems_allowed as a temp variable */ 2759 update_nodemasks_hier(cs, &trialcs->mems_allowed); 2760 done: 2761 return retval; 2762 } 2763 2764 bool current_cpuset_is_being_rebound(void) 2765 { 2766 bool ret; 2767 2768 rcu_read_lock(); 2769 ret = task_cs(current) == cpuset_being_rebound; 2770 rcu_read_unlock(); 2771 2772 return ret; 2773 } 2774 2775 /* 2776 * cpuset_update_flag - read a 0 or a 1 in a file and update associated flag 2777 * bit: the bit to update (see cpuset_flagbits_t) 2778 * cs: the cpuset to update 2779 * turning_on: whether the flag is being set or cleared 2780 * 2781 * Call with cpuset_mutex held. 2782 */ 2783 2784 int cpuset_update_flag(cpuset_flagbits_t bit, struct cpuset *cs, 2785 int turning_on) 2786 { 2787 struct cpuset *trialcs; 2788 int balance_flag_changed; 2789 int spread_flag_changed; 2790 int err; 2791 2792 trialcs = alloc_trial_cpuset(cs); 2793 if (!trialcs) 2794 return -ENOMEM; 2795 2796 if (turning_on) 2797 set_bit(bit, &trialcs->flags); 2798 else 2799 clear_bit(bit, &trialcs->flags); 2800 2801 err = validate_change(cs, trialcs); 2802 if (err < 0) 2803 goto out; 2804 2805 balance_flag_changed = (is_sched_load_balance(cs) != 2806 is_sched_load_balance(trialcs)); 2807 2808 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) 2809 || (is_spread_page(cs) != is_spread_page(trialcs))); 2810 2811 spin_lock_irq(&callback_lock); 2812 cs->flags = trialcs->flags; 2813 spin_unlock_irq(&callback_lock); 2814 2815 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) { 2816 if (cpuset_v2()) 2817 cpuset_force_rebuild(); 2818 else 2819 rebuild_sched_domains_locked(); 2820 } 2821 2822 if (spread_flag_changed) 2823 cpuset1_update_tasks_flags(cs); 2824 out: 2825 free_cpuset(trialcs); 2826 return err; 2827 } 2828 2829 /** 2830 * update_prstate - update partition_root_state 2831 * @cs: the cpuset to update 2832 * @new_prs: new partition root state 2833 * Return: 0 if successful, != 0 if error 2834 * 2835 * Call with cpuset_mutex held. 2836 */ 2837 static int update_prstate(struct cpuset *cs, int new_prs) 2838 { 2839 int err = PERR_NONE, old_prs = cs->partition_root_state; 2840 struct cpuset *parent = parent_cs(cs); 2841 struct tmpmasks tmpmask; 2842 bool isolcpus_updated = false; 2843 2844 if (old_prs == new_prs) 2845 return 0; 2846 2847 /* 2848 * Treat a previously invalid partition root as if it is a "member". 2849 */ 2850 if (new_prs && is_prs_invalid(old_prs)) 2851 old_prs = PRS_MEMBER; 2852 2853 if (alloc_cpumasks(NULL, &tmpmask)) 2854 return -ENOMEM; 2855 2856 err = update_partition_exclusive_flag(cs, new_prs); 2857 if (err) 2858 goto out; 2859 2860 if (!old_prs) { 2861 /* 2862 * cpus_allowed and exclusive_cpus cannot be both empty. 2863 */ 2864 if (xcpus_empty(cs)) { 2865 err = PERR_CPUSEMPTY; 2866 goto out; 2867 } 2868 2869 /* 2870 * We don't support the creation of a new local partition with 2871 * a remote partition underneath it. This unsupported 2872 * setting can happen only if parent is the top_cpuset because 2873 * a remote partition cannot be created underneath an existing 2874 * local or remote partition. 2875 */ 2876 if ((parent == &top_cpuset) && 2877 cpumask_intersects(cs->exclusive_cpus, subpartitions_cpus)) { 2878 err = PERR_REMOTE; 2879 goto out; 2880 } 2881 2882 /* 2883 * If parent is valid partition, enable local partiion. 2884 * Otherwise, enable a remote partition. 2885 */ 2886 if (is_partition_valid(parent)) { 2887 enum partition_cmd cmd = (new_prs == PRS_ROOT) 2888 ? partcmd_enable : partcmd_enablei; 2889 2890 err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask); 2891 } else { 2892 err = remote_partition_enable(cs, new_prs, &tmpmask); 2893 } 2894 } else if (old_prs && new_prs) { 2895 /* 2896 * A change in load balance state only, no change in cpumasks. 2897 * Need to update isolated_cpus. 2898 */ 2899 isolcpus_updated = true; 2900 } else { 2901 /* 2902 * Switching back to member is always allowed even if it 2903 * disables child partitions. 2904 */ 2905 if (is_remote_partition(cs)) 2906 remote_partition_disable(cs, &tmpmask); 2907 else 2908 update_parent_effective_cpumask(cs, partcmd_disable, 2909 NULL, &tmpmask); 2910 2911 /* 2912 * Invalidation of child partitions will be done in 2913 * update_cpumasks_hier(). 2914 */ 2915 } 2916 out: 2917 /* 2918 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error 2919 * happens. 2920 */ 2921 if (err) { 2922 new_prs = -new_prs; 2923 update_partition_exclusive_flag(cs, new_prs); 2924 } 2925 2926 spin_lock_irq(&callback_lock); 2927 cs->partition_root_state = new_prs; 2928 WRITE_ONCE(cs->prs_err, err); 2929 if (!is_partition_valid(cs)) 2930 reset_partition_data(cs); 2931 else if (isolcpus_updated) 2932 isolated_cpus_update(old_prs, new_prs, cs->effective_xcpus); 2933 spin_unlock_irq(&callback_lock); 2934 update_unbound_workqueue_cpumask(isolcpus_updated); 2935 2936 /* Force update if switching back to member & update effective_xcpus */ 2937 update_cpumasks_hier(cs, &tmpmask, !new_prs); 2938 2939 /* A newly created partition must have effective_xcpus set */ 2940 WARN_ON_ONCE(!old_prs && (new_prs > 0) 2941 && cpumask_empty(cs->effective_xcpus)); 2942 2943 /* Update sched domains and load balance flag */ 2944 update_partition_sd_lb(cs, old_prs); 2945 2946 notify_partition_change(cs, old_prs); 2947 if (force_sd_rebuild) 2948 rebuild_sched_domains_locked(); 2949 free_cpumasks(NULL, &tmpmask); 2950 return 0; 2951 } 2952 2953 static struct cpuset *cpuset_attach_old_cs; 2954 2955 /* 2956 * Check to see if a cpuset can accept a new task 2957 * For v1, cpus_allowed and mems_allowed can't be empty. 2958 * For v2, effective_cpus can't be empty. 2959 * Note that in v1, effective_cpus = cpus_allowed. 2960 */ 2961 static int cpuset_can_attach_check(struct cpuset *cs) 2962 { 2963 if (cpumask_empty(cs->effective_cpus) || 2964 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed))) 2965 return -ENOSPC; 2966 return 0; 2967 } 2968 2969 static void reset_migrate_dl_data(struct cpuset *cs) 2970 { 2971 cs->nr_migrate_dl_tasks = 0; 2972 cs->sum_migrate_dl_bw = 0; 2973 } 2974 2975 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ 2976 static int cpuset_can_attach(struct cgroup_taskset *tset) 2977 { 2978 struct cgroup_subsys_state *css; 2979 struct cpuset *cs, *oldcs; 2980 struct task_struct *task; 2981 bool cpus_updated, mems_updated; 2982 int ret; 2983 2984 /* used later by cpuset_attach() */ 2985 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); 2986 oldcs = cpuset_attach_old_cs; 2987 cs = css_cs(css); 2988 2989 mutex_lock(&cpuset_mutex); 2990 2991 /* Check to see if task is allowed in the cpuset */ 2992 ret = cpuset_can_attach_check(cs); 2993 if (ret) 2994 goto out_unlock; 2995 2996 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus); 2997 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 2998 2999 cgroup_taskset_for_each(task, css, tset) { 3000 ret = task_can_attach(task); 3001 if (ret) 3002 goto out_unlock; 3003 3004 /* 3005 * Skip rights over task check in v2 when nothing changes, 3006 * migration permission derives from hierarchy ownership in 3007 * cgroup_procs_write_permission()). 3008 */ 3009 if (!cpuset_v2() || (cpus_updated || mems_updated)) { 3010 ret = security_task_setscheduler(task); 3011 if (ret) 3012 goto out_unlock; 3013 } 3014 3015 if (dl_task(task)) { 3016 cs->nr_migrate_dl_tasks++; 3017 cs->sum_migrate_dl_bw += task->dl.dl_bw; 3018 } 3019 } 3020 3021 if (!cs->nr_migrate_dl_tasks) 3022 goto out_success; 3023 3024 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) { 3025 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus); 3026 3027 if (unlikely(cpu >= nr_cpu_ids)) { 3028 reset_migrate_dl_data(cs); 3029 ret = -EINVAL; 3030 goto out_unlock; 3031 } 3032 3033 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw); 3034 if (ret) { 3035 reset_migrate_dl_data(cs); 3036 goto out_unlock; 3037 } 3038 } 3039 3040 out_success: 3041 /* 3042 * Mark attach is in progress. This makes validate_change() fail 3043 * changes which zero cpus/mems_allowed. 3044 */ 3045 cs->attach_in_progress++; 3046 out_unlock: 3047 mutex_unlock(&cpuset_mutex); 3048 return ret; 3049 } 3050 3051 static void cpuset_cancel_attach(struct cgroup_taskset *tset) 3052 { 3053 struct cgroup_subsys_state *css; 3054 struct cpuset *cs; 3055 3056 cgroup_taskset_first(tset, &css); 3057 cs = css_cs(css); 3058 3059 mutex_lock(&cpuset_mutex); 3060 dec_attach_in_progress_locked(cs); 3061 3062 if (cs->nr_migrate_dl_tasks) { 3063 int cpu = cpumask_any(cs->effective_cpus); 3064 3065 dl_bw_free(cpu, cs->sum_migrate_dl_bw); 3066 reset_migrate_dl_data(cs); 3067 } 3068 3069 mutex_unlock(&cpuset_mutex); 3070 } 3071 3072 /* 3073 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task() 3074 * but we can't allocate it dynamically there. Define it global and 3075 * allocate from cpuset_init(). 3076 */ 3077 static cpumask_var_t cpus_attach; 3078 static nodemask_t cpuset_attach_nodemask_to; 3079 3080 static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task) 3081 { 3082 lockdep_assert_held(&cpuset_mutex); 3083 3084 if (cs != &top_cpuset) 3085 guarantee_online_cpus(task, cpus_attach); 3086 else 3087 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task), 3088 subpartitions_cpus); 3089 /* 3090 * can_attach beforehand should guarantee that this doesn't 3091 * fail. TODO: have a better way to handle failure here 3092 */ 3093 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); 3094 3095 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); 3096 cpuset1_update_task_spread_flags(cs, task); 3097 } 3098 3099 static void cpuset_attach(struct cgroup_taskset *tset) 3100 { 3101 struct task_struct *task; 3102 struct task_struct *leader; 3103 struct cgroup_subsys_state *css; 3104 struct cpuset *cs; 3105 struct cpuset *oldcs = cpuset_attach_old_cs; 3106 bool cpus_updated, mems_updated; 3107 3108 cgroup_taskset_first(tset, &css); 3109 cs = css_cs(css); 3110 3111 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */ 3112 mutex_lock(&cpuset_mutex); 3113 cpus_updated = !cpumask_equal(cs->effective_cpus, 3114 oldcs->effective_cpus); 3115 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems); 3116 3117 /* 3118 * In the default hierarchy, enabling cpuset in the child cgroups 3119 * will trigger a number of cpuset_attach() calls with no change 3120 * in effective cpus and mems. In that case, we can optimize out 3121 * by skipping the task iteration and update. 3122 */ 3123 if (cpuset_v2() && !cpus_updated && !mems_updated) { 3124 cpuset_attach_nodemask_to = cs->effective_mems; 3125 goto out; 3126 } 3127 3128 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3129 3130 cgroup_taskset_for_each(task, css, tset) 3131 cpuset_attach_task(cs, task); 3132 3133 /* 3134 * Change mm for all threadgroup leaders. This is expensive and may 3135 * sleep and should be moved outside migration path proper. Skip it 3136 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is 3137 * not set. 3138 */ 3139 cpuset_attach_nodemask_to = cs->effective_mems; 3140 if (!is_memory_migrate(cs) && !mems_updated) 3141 goto out; 3142 3143 cgroup_taskset_for_each_leader(leader, css, tset) { 3144 struct mm_struct *mm = get_task_mm(leader); 3145 3146 if (mm) { 3147 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); 3148 3149 /* 3150 * old_mems_allowed is the same with mems_allowed 3151 * here, except if this task is being moved 3152 * automatically due to hotplug. In that case 3153 * @mems_allowed has been updated and is empty, so 3154 * @old_mems_allowed is the right nodesets that we 3155 * migrate mm from. 3156 */ 3157 if (is_memory_migrate(cs)) 3158 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, 3159 &cpuset_attach_nodemask_to); 3160 else 3161 mmput(mm); 3162 } 3163 } 3164 3165 out: 3166 cs->old_mems_allowed = cpuset_attach_nodemask_to; 3167 3168 if (cs->nr_migrate_dl_tasks) { 3169 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks; 3170 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks; 3171 reset_migrate_dl_data(cs); 3172 } 3173 3174 dec_attach_in_progress_locked(cs); 3175 3176 mutex_unlock(&cpuset_mutex); 3177 } 3178 3179 /* 3180 * Common handling for a write to a "cpus" or "mems" file. 3181 */ 3182 ssize_t cpuset_write_resmask(struct kernfs_open_file *of, 3183 char *buf, size_t nbytes, loff_t off) 3184 { 3185 struct cpuset *cs = css_cs(of_css(of)); 3186 struct cpuset *trialcs; 3187 int retval = -ENODEV; 3188 3189 buf = strstrip(buf); 3190 cpus_read_lock(); 3191 mutex_lock(&cpuset_mutex); 3192 if (!is_cpuset_online(cs)) 3193 goto out_unlock; 3194 3195 trialcs = alloc_trial_cpuset(cs); 3196 if (!trialcs) { 3197 retval = -ENOMEM; 3198 goto out_unlock; 3199 } 3200 3201 switch (of_cft(of)->private) { 3202 case FILE_CPULIST: 3203 retval = update_cpumask(cs, trialcs, buf); 3204 break; 3205 case FILE_EXCLUSIVE_CPULIST: 3206 retval = update_exclusive_cpumask(cs, trialcs, buf); 3207 break; 3208 case FILE_MEMLIST: 3209 retval = update_nodemask(cs, trialcs, buf); 3210 break; 3211 default: 3212 retval = -EINVAL; 3213 break; 3214 } 3215 3216 free_cpuset(trialcs); 3217 if (force_sd_rebuild) 3218 rebuild_sched_domains_locked(); 3219 out_unlock: 3220 mutex_unlock(&cpuset_mutex); 3221 cpus_read_unlock(); 3222 flush_workqueue(cpuset_migrate_mm_wq); 3223 return retval ?: nbytes; 3224 } 3225 3226 /* 3227 * These ascii lists should be read in a single call, by using a user 3228 * buffer large enough to hold the entire map. If read in smaller 3229 * chunks, there is no guarantee of atomicity. Since the display format 3230 * used, list of ranges of sequential numbers, is variable length, 3231 * and since these maps can change value dynamically, one could read 3232 * gibberish by doing partial reads while a list was changing. 3233 */ 3234 int cpuset_common_seq_show(struct seq_file *sf, void *v) 3235 { 3236 struct cpuset *cs = css_cs(seq_css(sf)); 3237 cpuset_filetype_t type = seq_cft(sf)->private; 3238 int ret = 0; 3239 3240 spin_lock_irq(&callback_lock); 3241 3242 switch (type) { 3243 case FILE_CPULIST: 3244 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); 3245 break; 3246 case FILE_MEMLIST: 3247 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); 3248 break; 3249 case FILE_EFFECTIVE_CPULIST: 3250 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); 3251 break; 3252 case FILE_EFFECTIVE_MEMLIST: 3253 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); 3254 break; 3255 case FILE_EXCLUSIVE_CPULIST: 3256 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus)); 3257 break; 3258 case FILE_EFFECTIVE_XCPULIST: 3259 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus)); 3260 break; 3261 case FILE_SUBPARTS_CPULIST: 3262 seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus)); 3263 break; 3264 case FILE_ISOLATED_CPULIST: 3265 seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus)); 3266 break; 3267 default: 3268 ret = -EINVAL; 3269 } 3270 3271 spin_unlock_irq(&callback_lock); 3272 return ret; 3273 } 3274 3275 static int cpuset_partition_show(struct seq_file *seq, void *v) 3276 { 3277 struct cpuset *cs = css_cs(seq_css(seq)); 3278 const char *err, *type = NULL; 3279 3280 switch (cs->partition_root_state) { 3281 case PRS_ROOT: 3282 seq_puts(seq, "root\n"); 3283 break; 3284 case PRS_ISOLATED: 3285 seq_puts(seq, "isolated\n"); 3286 break; 3287 case PRS_MEMBER: 3288 seq_puts(seq, "member\n"); 3289 break; 3290 case PRS_INVALID_ROOT: 3291 type = "root"; 3292 fallthrough; 3293 case PRS_INVALID_ISOLATED: 3294 if (!type) 3295 type = "isolated"; 3296 err = perr_strings[READ_ONCE(cs->prs_err)]; 3297 if (err) 3298 seq_printf(seq, "%s invalid (%s)\n", type, err); 3299 else 3300 seq_printf(seq, "%s invalid\n", type); 3301 break; 3302 } 3303 return 0; 3304 } 3305 3306 static ssize_t cpuset_partition_write(struct kernfs_open_file *of, char *buf, 3307 size_t nbytes, loff_t off) 3308 { 3309 struct cpuset *cs = css_cs(of_css(of)); 3310 int val; 3311 int retval = -ENODEV; 3312 3313 buf = strstrip(buf); 3314 3315 if (!strcmp(buf, "root")) 3316 val = PRS_ROOT; 3317 else if (!strcmp(buf, "member")) 3318 val = PRS_MEMBER; 3319 else if (!strcmp(buf, "isolated")) 3320 val = PRS_ISOLATED; 3321 else 3322 return -EINVAL; 3323 3324 css_get(&cs->css); 3325 cpus_read_lock(); 3326 mutex_lock(&cpuset_mutex); 3327 if (is_cpuset_online(cs)) 3328 retval = update_prstate(cs, val); 3329 mutex_unlock(&cpuset_mutex); 3330 cpus_read_unlock(); 3331 css_put(&cs->css); 3332 return retval ?: nbytes; 3333 } 3334 3335 /* 3336 * This is currently a minimal set for the default hierarchy. It can be 3337 * expanded later on by migrating more features and control files from v1. 3338 */ 3339 static struct cftype dfl_files[] = { 3340 { 3341 .name = "cpus", 3342 .seq_show = cpuset_common_seq_show, 3343 .write = cpuset_write_resmask, 3344 .max_write_len = (100U + 6 * NR_CPUS), 3345 .private = FILE_CPULIST, 3346 .flags = CFTYPE_NOT_ON_ROOT, 3347 }, 3348 3349 { 3350 .name = "mems", 3351 .seq_show = cpuset_common_seq_show, 3352 .write = cpuset_write_resmask, 3353 .max_write_len = (100U + 6 * MAX_NUMNODES), 3354 .private = FILE_MEMLIST, 3355 .flags = CFTYPE_NOT_ON_ROOT, 3356 }, 3357 3358 { 3359 .name = "cpus.effective", 3360 .seq_show = cpuset_common_seq_show, 3361 .private = FILE_EFFECTIVE_CPULIST, 3362 }, 3363 3364 { 3365 .name = "mems.effective", 3366 .seq_show = cpuset_common_seq_show, 3367 .private = FILE_EFFECTIVE_MEMLIST, 3368 }, 3369 3370 { 3371 .name = "cpus.partition", 3372 .seq_show = cpuset_partition_show, 3373 .write = cpuset_partition_write, 3374 .private = FILE_PARTITION_ROOT, 3375 .flags = CFTYPE_NOT_ON_ROOT, 3376 .file_offset = offsetof(struct cpuset, partition_file), 3377 }, 3378 3379 { 3380 .name = "cpus.exclusive", 3381 .seq_show = cpuset_common_seq_show, 3382 .write = cpuset_write_resmask, 3383 .max_write_len = (100U + 6 * NR_CPUS), 3384 .private = FILE_EXCLUSIVE_CPULIST, 3385 .flags = CFTYPE_NOT_ON_ROOT, 3386 }, 3387 3388 { 3389 .name = "cpus.exclusive.effective", 3390 .seq_show = cpuset_common_seq_show, 3391 .private = FILE_EFFECTIVE_XCPULIST, 3392 .flags = CFTYPE_NOT_ON_ROOT, 3393 }, 3394 3395 { 3396 .name = "cpus.subpartitions", 3397 .seq_show = cpuset_common_seq_show, 3398 .private = FILE_SUBPARTS_CPULIST, 3399 .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG, 3400 }, 3401 3402 { 3403 .name = "cpus.isolated", 3404 .seq_show = cpuset_common_seq_show, 3405 .private = FILE_ISOLATED_CPULIST, 3406 .flags = CFTYPE_ONLY_ON_ROOT, 3407 }, 3408 3409 { } /* terminate */ 3410 }; 3411 3412 3413 /** 3414 * cpuset_css_alloc - Allocate a cpuset css 3415 * @parent_css: Parent css of the control group that the new cpuset will be 3416 * part of 3417 * Return: cpuset css on success, -ENOMEM on failure. 3418 * 3419 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return 3420 * top cpuset css otherwise. 3421 */ 3422 static struct cgroup_subsys_state * 3423 cpuset_css_alloc(struct cgroup_subsys_state *parent_css) 3424 { 3425 struct cpuset *cs; 3426 3427 if (!parent_css) 3428 return &top_cpuset.css; 3429 3430 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 3431 if (!cs) 3432 return ERR_PTR(-ENOMEM); 3433 3434 if (alloc_cpumasks(cs, NULL)) { 3435 kfree(cs); 3436 return ERR_PTR(-ENOMEM); 3437 } 3438 3439 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3440 fmeter_init(&cs->fmeter); 3441 cs->relax_domain_level = -1; 3442 INIT_LIST_HEAD(&cs->remote_sibling); 3443 3444 /* Set CS_MEMORY_MIGRATE for default hierarchy */ 3445 if (cpuset_v2()) 3446 __set_bit(CS_MEMORY_MIGRATE, &cs->flags); 3447 3448 return &cs->css; 3449 } 3450 3451 static int cpuset_css_online(struct cgroup_subsys_state *css) 3452 { 3453 struct cpuset *cs = css_cs(css); 3454 struct cpuset *parent = parent_cs(cs); 3455 struct cpuset *tmp_cs; 3456 struct cgroup_subsys_state *pos_css; 3457 3458 if (!parent) 3459 return 0; 3460 3461 cpus_read_lock(); 3462 mutex_lock(&cpuset_mutex); 3463 3464 set_bit(CS_ONLINE, &cs->flags); 3465 if (is_spread_page(parent)) 3466 set_bit(CS_SPREAD_PAGE, &cs->flags); 3467 if (is_spread_slab(parent)) 3468 set_bit(CS_SPREAD_SLAB, &cs->flags); 3469 /* 3470 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated 3471 */ 3472 if (cpuset_v2() && !is_sched_load_balance(parent)) 3473 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); 3474 3475 cpuset_inc(); 3476 3477 spin_lock_irq(&callback_lock); 3478 if (is_in_v2_mode()) { 3479 cpumask_copy(cs->effective_cpus, parent->effective_cpus); 3480 cs->effective_mems = parent->effective_mems; 3481 } 3482 spin_unlock_irq(&callback_lock); 3483 3484 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) 3485 goto out_unlock; 3486 3487 /* 3488 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is 3489 * set. This flag handling is implemented in cgroup core for 3490 * historical reasons - the flag may be specified during mount. 3491 * 3492 * Currently, if any sibling cpusets have exclusive cpus or mem, we 3493 * refuse to clone the configuration - thereby refusing the task to 3494 * be entered, and as a result refusing the sys_unshare() or 3495 * clone() which initiated it. If this becomes a problem for some 3496 * users who wish to allow that scenario, then this could be 3497 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive 3498 * (and likewise for mems) to the new cgroup. 3499 */ 3500 rcu_read_lock(); 3501 cpuset_for_each_child(tmp_cs, pos_css, parent) { 3502 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { 3503 rcu_read_unlock(); 3504 goto out_unlock; 3505 } 3506 } 3507 rcu_read_unlock(); 3508 3509 spin_lock_irq(&callback_lock); 3510 cs->mems_allowed = parent->mems_allowed; 3511 cs->effective_mems = parent->mems_allowed; 3512 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); 3513 cpumask_copy(cs->effective_cpus, parent->cpus_allowed); 3514 spin_unlock_irq(&callback_lock); 3515 out_unlock: 3516 mutex_unlock(&cpuset_mutex); 3517 cpus_read_unlock(); 3518 return 0; 3519 } 3520 3521 /* 3522 * If the cpuset being removed has its flag 'sched_load_balance' 3523 * enabled, then simulate turning sched_load_balance off, which 3524 * will call rebuild_sched_domains_locked(). That is not needed 3525 * in the default hierarchy where only changes in partition 3526 * will cause repartitioning. 3527 * 3528 * If the cpuset has the 'sched.partition' flag enabled, simulate 3529 * turning 'sched.partition" off. 3530 */ 3531 3532 static void cpuset_css_offline(struct cgroup_subsys_state *css) 3533 { 3534 struct cpuset *cs = css_cs(css); 3535 3536 cpus_read_lock(); 3537 mutex_lock(&cpuset_mutex); 3538 3539 if (!cpuset_v2() && is_sched_load_balance(cs)) 3540 cpuset_update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); 3541 3542 cpuset_dec(); 3543 clear_bit(CS_ONLINE, &cs->flags); 3544 3545 mutex_unlock(&cpuset_mutex); 3546 cpus_read_unlock(); 3547 } 3548 3549 static void cpuset_css_killed(struct cgroup_subsys_state *css) 3550 { 3551 struct cpuset *cs = css_cs(css); 3552 3553 cpus_read_lock(); 3554 mutex_lock(&cpuset_mutex); 3555 3556 /* Reset valid partition back to member */ 3557 if (is_partition_valid(cs)) 3558 update_prstate(cs, PRS_MEMBER); 3559 3560 mutex_unlock(&cpuset_mutex); 3561 cpus_read_unlock(); 3562 3563 } 3564 3565 static void cpuset_css_free(struct cgroup_subsys_state *css) 3566 { 3567 struct cpuset *cs = css_cs(css); 3568 3569 free_cpuset(cs); 3570 } 3571 3572 static void cpuset_bind(struct cgroup_subsys_state *root_css) 3573 { 3574 mutex_lock(&cpuset_mutex); 3575 spin_lock_irq(&callback_lock); 3576 3577 if (is_in_v2_mode()) { 3578 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); 3579 cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask); 3580 top_cpuset.mems_allowed = node_possible_map; 3581 } else { 3582 cpumask_copy(top_cpuset.cpus_allowed, 3583 top_cpuset.effective_cpus); 3584 top_cpuset.mems_allowed = top_cpuset.effective_mems; 3585 } 3586 3587 spin_unlock_irq(&callback_lock); 3588 mutex_unlock(&cpuset_mutex); 3589 } 3590 3591 /* 3592 * In case the child is cloned into a cpuset different from its parent, 3593 * additional checks are done to see if the move is allowed. 3594 */ 3595 static int cpuset_can_fork(struct task_struct *task, struct css_set *cset) 3596 { 3597 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3598 bool same_cs; 3599 int ret; 3600 3601 rcu_read_lock(); 3602 same_cs = (cs == task_cs(current)); 3603 rcu_read_unlock(); 3604 3605 if (same_cs) 3606 return 0; 3607 3608 lockdep_assert_held(&cgroup_mutex); 3609 mutex_lock(&cpuset_mutex); 3610 3611 /* Check to see if task is allowed in the cpuset */ 3612 ret = cpuset_can_attach_check(cs); 3613 if (ret) 3614 goto out_unlock; 3615 3616 ret = task_can_attach(task); 3617 if (ret) 3618 goto out_unlock; 3619 3620 ret = security_task_setscheduler(task); 3621 if (ret) 3622 goto out_unlock; 3623 3624 /* 3625 * Mark attach is in progress. This makes validate_change() fail 3626 * changes which zero cpus/mems_allowed. 3627 */ 3628 cs->attach_in_progress++; 3629 out_unlock: 3630 mutex_unlock(&cpuset_mutex); 3631 return ret; 3632 } 3633 3634 static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset) 3635 { 3636 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]); 3637 bool same_cs; 3638 3639 rcu_read_lock(); 3640 same_cs = (cs == task_cs(current)); 3641 rcu_read_unlock(); 3642 3643 if (same_cs) 3644 return; 3645 3646 dec_attach_in_progress(cs); 3647 } 3648 3649 /* 3650 * Make sure the new task conform to the current state of its parent, 3651 * which could have been changed by cpuset just after it inherits the 3652 * state from the parent and before it sits on the cgroup's task list. 3653 */ 3654 static void cpuset_fork(struct task_struct *task) 3655 { 3656 struct cpuset *cs; 3657 bool same_cs; 3658 3659 rcu_read_lock(); 3660 cs = task_cs(task); 3661 same_cs = (cs == task_cs(current)); 3662 rcu_read_unlock(); 3663 3664 if (same_cs) { 3665 if (cs == &top_cpuset) 3666 return; 3667 3668 set_cpus_allowed_ptr(task, current->cpus_ptr); 3669 task->mems_allowed = current->mems_allowed; 3670 return; 3671 } 3672 3673 /* CLONE_INTO_CGROUP */ 3674 mutex_lock(&cpuset_mutex); 3675 guarantee_online_mems(cs, &cpuset_attach_nodemask_to); 3676 cpuset_attach_task(cs, task); 3677 3678 dec_attach_in_progress_locked(cs); 3679 mutex_unlock(&cpuset_mutex); 3680 } 3681 3682 struct cgroup_subsys cpuset_cgrp_subsys = { 3683 .css_alloc = cpuset_css_alloc, 3684 .css_online = cpuset_css_online, 3685 .css_offline = cpuset_css_offline, 3686 .css_killed = cpuset_css_killed, 3687 .css_free = cpuset_css_free, 3688 .can_attach = cpuset_can_attach, 3689 .cancel_attach = cpuset_cancel_attach, 3690 .attach = cpuset_attach, 3691 .post_attach = cpuset_post_attach, 3692 .bind = cpuset_bind, 3693 .can_fork = cpuset_can_fork, 3694 .cancel_fork = cpuset_cancel_fork, 3695 .fork = cpuset_fork, 3696 #ifdef CONFIG_CPUSETS_V1 3697 .legacy_cftypes = cpuset1_files, 3698 #endif 3699 .dfl_cftypes = dfl_files, 3700 .early_init = true, 3701 .threaded = true, 3702 }; 3703 3704 /** 3705 * cpuset_init - initialize cpusets at system boot 3706 * 3707 * Description: Initialize top_cpuset 3708 **/ 3709 3710 int __init cpuset_init(void) 3711 { 3712 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)); 3713 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)); 3714 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL)); 3715 BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL)); 3716 BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL)); 3717 BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL)); 3718 3719 cpumask_setall(top_cpuset.cpus_allowed); 3720 nodes_setall(top_cpuset.mems_allowed); 3721 cpumask_setall(top_cpuset.effective_cpus); 3722 cpumask_setall(top_cpuset.effective_xcpus); 3723 cpumask_setall(top_cpuset.exclusive_cpus); 3724 nodes_setall(top_cpuset.effective_mems); 3725 3726 fmeter_init(&top_cpuset.fmeter); 3727 INIT_LIST_HEAD(&remote_children); 3728 3729 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)); 3730 3731 have_boot_isolcpus = housekeeping_enabled(HK_TYPE_DOMAIN); 3732 if (have_boot_isolcpus) { 3733 BUG_ON(!alloc_cpumask_var(&boot_hk_cpus, GFP_KERNEL)); 3734 cpumask_copy(boot_hk_cpus, housekeeping_cpumask(HK_TYPE_DOMAIN)); 3735 cpumask_andnot(isolated_cpus, cpu_possible_mask, boot_hk_cpus); 3736 } 3737 3738 return 0; 3739 } 3740 3741 static void 3742 hotplug_update_tasks(struct cpuset *cs, 3743 struct cpumask *new_cpus, nodemask_t *new_mems, 3744 bool cpus_updated, bool mems_updated) 3745 { 3746 /* A partition root is allowed to have empty effective cpus */ 3747 if (cpumask_empty(new_cpus) && !is_partition_valid(cs)) 3748 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); 3749 if (nodes_empty(*new_mems)) 3750 *new_mems = parent_cs(cs)->effective_mems; 3751 3752 spin_lock_irq(&callback_lock); 3753 cpumask_copy(cs->effective_cpus, new_cpus); 3754 cs->effective_mems = *new_mems; 3755 spin_unlock_irq(&callback_lock); 3756 3757 if (cpus_updated) 3758 cpuset_update_tasks_cpumask(cs, new_cpus); 3759 if (mems_updated) 3760 cpuset_update_tasks_nodemask(cs); 3761 } 3762 3763 void cpuset_force_rebuild(void) 3764 { 3765 force_sd_rebuild = true; 3766 } 3767 3768 /** 3769 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug 3770 * @cs: cpuset in interest 3771 * @tmp: the tmpmasks structure pointer 3772 * 3773 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone 3774 * offline, update @cs accordingly. If @cs ends up with no CPU or memory, 3775 * all its tasks are moved to the nearest ancestor with both resources. 3776 */ 3777 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp) 3778 { 3779 static cpumask_t new_cpus; 3780 static nodemask_t new_mems; 3781 bool cpus_updated; 3782 bool mems_updated; 3783 bool remote; 3784 int partcmd = -1; 3785 struct cpuset *parent; 3786 retry: 3787 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); 3788 3789 mutex_lock(&cpuset_mutex); 3790 3791 /* 3792 * We have raced with task attaching. We wait until attaching 3793 * is finished, so we won't attach a task to an empty cpuset. 3794 */ 3795 if (cs->attach_in_progress) { 3796 mutex_unlock(&cpuset_mutex); 3797 goto retry; 3798 } 3799 3800 parent = parent_cs(cs); 3801 compute_effective_cpumask(&new_cpus, cs, parent); 3802 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems); 3803 3804 if (!tmp || !cs->partition_root_state) 3805 goto update_tasks; 3806 3807 /* 3808 * Compute effective_cpus for valid partition root, may invalidate 3809 * child partition roots if necessary. 3810 */ 3811 remote = is_remote_partition(cs); 3812 if (remote || (is_partition_valid(cs) && is_partition_valid(parent))) 3813 compute_partition_effective_cpumask(cs, &new_cpus); 3814 3815 if (remote && cpumask_empty(&new_cpus) && 3816 partition_is_populated(cs, NULL)) { 3817 cs->prs_err = PERR_HOTPLUG; 3818 remote_partition_disable(cs, tmp); 3819 compute_effective_cpumask(&new_cpus, cs, parent); 3820 remote = false; 3821 } 3822 3823 /* 3824 * Force the partition to become invalid if either one of 3825 * the following conditions hold: 3826 * 1) empty effective cpus but not valid empty partition. 3827 * 2) parent is invalid or doesn't grant any cpus to child 3828 * partitions. 3829 */ 3830 if (is_local_partition(cs) && (!is_partition_valid(parent) || 3831 tasks_nocpu_error(parent, cs, &new_cpus))) 3832 partcmd = partcmd_invalidate; 3833 /* 3834 * On the other hand, an invalid partition root may be transitioned 3835 * back to a regular one. 3836 */ 3837 else if (is_partition_valid(parent) && is_partition_invalid(cs)) 3838 partcmd = partcmd_update; 3839 3840 if (partcmd >= 0) { 3841 update_parent_effective_cpumask(cs, partcmd, NULL, tmp); 3842 if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) { 3843 compute_partition_effective_cpumask(cs, &new_cpus); 3844 cpuset_force_rebuild(); 3845 } 3846 } 3847 3848 update_tasks: 3849 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); 3850 mems_updated = !nodes_equal(new_mems, cs->effective_mems); 3851 if (!cpus_updated && !mems_updated) 3852 goto unlock; /* Hotplug doesn't affect this cpuset */ 3853 3854 if (mems_updated) 3855 check_insane_mems_config(&new_mems); 3856 3857 if (is_in_v2_mode()) 3858 hotplug_update_tasks(cs, &new_cpus, &new_mems, 3859 cpus_updated, mems_updated); 3860 else 3861 cpuset1_hotplug_update_tasks(cs, &new_cpus, &new_mems, 3862 cpus_updated, mems_updated); 3863 3864 unlock: 3865 mutex_unlock(&cpuset_mutex); 3866 } 3867 3868 /** 3869 * cpuset_handle_hotplug - handle CPU/memory hot{,un}plug for a cpuset 3870 * 3871 * This function is called after either CPU or memory configuration has 3872 * changed and updates cpuset accordingly. The top_cpuset is always 3873 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in 3874 * order to make cpusets transparent (of no affect) on systems that are 3875 * actively using CPU hotplug but making no active use of cpusets. 3876 * 3877 * Non-root cpusets are only affected by offlining. If any CPUs or memory 3878 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on 3879 * all descendants. 3880 * 3881 * Note that CPU offlining during suspend is ignored. We don't modify 3882 * cpusets across suspend/resume cycles at all. 3883 * 3884 * CPU / memory hotplug is handled synchronously. 3885 */ 3886 static void cpuset_handle_hotplug(void) 3887 { 3888 static cpumask_t new_cpus; 3889 static nodemask_t new_mems; 3890 bool cpus_updated, mems_updated; 3891 bool on_dfl = is_in_v2_mode(); 3892 struct tmpmasks tmp, *ptmp = NULL; 3893 3894 if (on_dfl && !alloc_cpumasks(NULL, &tmp)) 3895 ptmp = &tmp; 3896 3897 lockdep_assert_cpus_held(); 3898 mutex_lock(&cpuset_mutex); 3899 3900 /* fetch the available cpus/mems and find out which changed how */ 3901 cpumask_copy(&new_cpus, cpu_active_mask); 3902 new_mems = node_states[N_MEMORY]; 3903 3904 /* 3905 * If subpartitions_cpus is populated, it is likely that the check 3906 * below will produce a false positive on cpus_updated when the cpu 3907 * list isn't changed. It is extra work, but it is better to be safe. 3908 */ 3909 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) || 3910 !cpumask_empty(subpartitions_cpus); 3911 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); 3912 3913 /* For v1, synchronize cpus_allowed to cpu_active_mask */ 3914 if (cpus_updated) { 3915 cpuset_force_rebuild(); 3916 spin_lock_irq(&callback_lock); 3917 if (!on_dfl) 3918 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); 3919 /* 3920 * Make sure that CPUs allocated to child partitions 3921 * do not show up in effective_cpus. If no CPU is left, 3922 * we clear the subpartitions_cpus & let the child partitions 3923 * fight for the CPUs again. 3924 */ 3925 if (!cpumask_empty(subpartitions_cpus)) { 3926 if (cpumask_subset(&new_cpus, subpartitions_cpus)) { 3927 top_cpuset.nr_subparts = 0; 3928 cpumask_clear(subpartitions_cpus); 3929 } else { 3930 cpumask_andnot(&new_cpus, &new_cpus, 3931 subpartitions_cpus); 3932 } 3933 } 3934 cpumask_copy(top_cpuset.effective_cpus, &new_cpus); 3935 spin_unlock_irq(&callback_lock); 3936 /* we don't mess with cpumasks of tasks in top_cpuset */ 3937 } 3938 3939 /* synchronize mems_allowed to N_MEMORY */ 3940 if (mems_updated) { 3941 spin_lock_irq(&callback_lock); 3942 if (!on_dfl) 3943 top_cpuset.mems_allowed = new_mems; 3944 top_cpuset.effective_mems = new_mems; 3945 spin_unlock_irq(&callback_lock); 3946 cpuset_update_tasks_nodemask(&top_cpuset); 3947 } 3948 3949 mutex_unlock(&cpuset_mutex); 3950 3951 /* if cpus or mems changed, we need to propagate to descendants */ 3952 if (cpus_updated || mems_updated) { 3953 struct cpuset *cs; 3954 struct cgroup_subsys_state *pos_css; 3955 3956 rcu_read_lock(); 3957 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { 3958 if (cs == &top_cpuset || !css_tryget_online(&cs->css)) 3959 continue; 3960 rcu_read_unlock(); 3961 3962 cpuset_hotplug_update_tasks(cs, ptmp); 3963 3964 rcu_read_lock(); 3965 css_put(&cs->css); 3966 } 3967 rcu_read_unlock(); 3968 } 3969 3970 /* rebuild sched domains if necessary */ 3971 if (force_sd_rebuild) 3972 rebuild_sched_domains_cpuslocked(); 3973 3974 free_cpumasks(NULL, ptmp); 3975 } 3976 3977 void cpuset_update_active_cpus(void) 3978 { 3979 /* 3980 * We're inside cpu hotplug critical region which usually nests 3981 * inside cgroup synchronization. Bounce actual hotplug processing 3982 * to a work item to avoid reverse locking order. 3983 */ 3984 cpuset_handle_hotplug(); 3985 } 3986 3987 /* 3988 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. 3989 * Call this routine anytime after node_states[N_MEMORY] changes. 3990 * See cpuset_update_active_cpus() for CPU hotplug handling. 3991 */ 3992 static int cpuset_track_online_nodes(struct notifier_block *self, 3993 unsigned long action, void *arg) 3994 { 3995 cpuset_handle_hotplug(); 3996 return NOTIFY_OK; 3997 } 3998 3999 /** 4000 * cpuset_init_smp - initialize cpus_allowed 4001 * 4002 * Description: Finish top cpuset after cpu, node maps are initialized 4003 */ 4004 void __init cpuset_init_smp(void) 4005 { 4006 /* 4007 * cpus_allowd/mems_allowed set to v2 values in the initial 4008 * cpuset_bind() call will be reset to v1 values in another 4009 * cpuset_bind() call when v1 cpuset is mounted. 4010 */ 4011 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; 4012 4013 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); 4014 top_cpuset.effective_mems = node_states[N_MEMORY]; 4015 4016 hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI); 4017 4018 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); 4019 BUG_ON(!cpuset_migrate_mm_wq); 4020 } 4021 4022 /** 4023 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. 4024 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. 4025 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. 4026 * 4027 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset 4028 * attached to the specified @tsk. Guaranteed to return some non-empty 4029 * subset of cpu_online_mask, even if this means going outside the 4030 * tasks cpuset, except when the task is in the top cpuset. 4031 **/ 4032 4033 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) 4034 { 4035 unsigned long flags; 4036 struct cpuset *cs; 4037 4038 spin_lock_irqsave(&callback_lock, flags); 4039 rcu_read_lock(); 4040 4041 cs = task_cs(tsk); 4042 if (cs != &top_cpuset) 4043 guarantee_online_cpus(tsk, pmask); 4044 /* 4045 * Tasks in the top cpuset won't get update to their cpumasks 4046 * when a hotplug online/offline event happens. So we include all 4047 * offline cpus in the allowed cpu list. 4048 */ 4049 if ((cs == &top_cpuset) || cpumask_empty(pmask)) { 4050 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 4051 4052 /* 4053 * We first exclude cpus allocated to partitions. If there is no 4054 * allowable online cpu left, we fall back to all possible cpus. 4055 */ 4056 cpumask_andnot(pmask, possible_mask, subpartitions_cpus); 4057 if (!cpumask_intersects(pmask, cpu_online_mask)) 4058 cpumask_copy(pmask, possible_mask); 4059 } 4060 4061 rcu_read_unlock(); 4062 spin_unlock_irqrestore(&callback_lock, flags); 4063 } 4064 4065 /** 4066 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe. 4067 * @tsk: pointer to task_struct with which the scheduler is struggling 4068 * 4069 * Description: In the case that the scheduler cannot find an allowed cpu in 4070 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy 4071 * mode however, this value is the same as task_cs(tsk)->effective_cpus, 4072 * which will not contain a sane cpumask during cases such as cpu hotplugging. 4073 * This is the absolute last resort for the scheduler and it is only used if 4074 * _every_ other avenue has been traveled. 4075 * 4076 * Returns true if the affinity of @tsk was changed, false otherwise. 4077 **/ 4078 4079 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk) 4080 { 4081 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk); 4082 const struct cpumask *cs_mask; 4083 bool changed = false; 4084 4085 rcu_read_lock(); 4086 cs_mask = task_cs(tsk)->cpus_allowed; 4087 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) { 4088 do_set_cpus_allowed(tsk, cs_mask); 4089 changed = true; 4090 } 4091 rcu_read_unlock(); 4092 4093 /* 4094 * We own tsk->cpus_allowed, nobody can change it under us. 4095 * 4096 * But we used cs && cs->cpus_allowed lockless and thus can 4097 * race with cgroup_attach_task() or update_cpumask() and get 4098 * the wrong tsk->cpus_allowed. However, both cases imply the 4099 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() 4100 * which takes task_rq_lock(). 4101 * 4102 * If we are called after it dropped the lock we must see all 4103 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary 4104 * set any mask even if it is not right from task_cs() pov, 4105 * the pending set_cpus_allowed_ptr() will fix things. 4106 * 4107 * select_fallback_rq() will fix things ups and set cpu_possible_mask 4108 * if required. 4109 */ 4110 return changed; 4111 } 4112 4113 void __init cpuset_init_current_mems_allowed(void) 4114 { 4115 nodes_setall(current->mems_allowed); 4116 } 4117 4118 /** 4119 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. 4120 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. 4121 * 4122 * Description: Returns the nodemask_t mems_allowed of the cpuset 4123 * attached to the specified @tsk. Guaranteed to return some non-empty 4124 * subset of node_states[N_MEMORY], even if this means going outside the 4125 * tasks cpuset. 4126 **/ 4127 4128 nodemask_t cpuset_mems_allowed(struct task_struct *tsk) 4129 { 4130 nodemask_t mask; 4131 unsigned long flags; 4132 4133 spin_lock_irqsave(&callback_lock, flags); 4134 rcu_read_lock(); 4135 guarantee_online_mems(task_cs(tsk), &mask); 4136 rcu_read_unlock(); 4137 spin_unlock_irqrestore(&callback_lock, flags); 4138 4139 return mask; 4140 } 4141 4142 /** 4143 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed 4144 * @nodemask: the nodemask to be checked 4145 * 4146 * Are any of the nodes in the nodemask allowed in current->mems_allowed? 4147 */ 4148 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) 4149 { 4150 return nodes_intersects(*nodemask, current->mems_allowed); 4151 } 4152 4153 /* 4154 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or 4155 * mem_hardwall ancestor to the specified cpuset. Call holding 4156 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall 4157 * (an unusual configuration), then returns the root cpuset. 4158 */ 4159 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) 4160 { 4161 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) 4162 cs = parent_cs(cs); 4163 return cs; 4164 } 4165 4166 /* 4167 * cpuset_node_allowed - Can we allocate on a memory node? 4168 * @node: is this an allowed node? 4169 * @gfp_mask: memory allocation flags 4170 * 4171 * If we're in interrupt, yes, we can always allocate. If @node is set in 4172 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this 4173 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, 4174 * yes. If current has access to memory reserves as an oom victim, yes. 4175 * Otherwise, no. 4176 * 4177 * GFP_USER allocations are marked with the __GFP_HARDWALL bit, 4178 * and do not allow allocations outside the current tasks cpuset 4179 * unless the task has been OOM killed. 4180 * GFP_KERNEL allocations are not so marked, so can escape to the 4181 * nearest enclosing hardwalled ancestor cpuset. 4182 * 4183 * Scanning up parent cpusets requires callback_lock. The 4184 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit 4185 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the 4186 * current tasks mems_allowed came up empty on the first pass over 4187 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the 4188 * cpuset are short of memory, might require taking the callback_lock. 4189 * 4190 * The first call here from mm/page_alloc:get_page_from_freelist() 4191 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, 4192 * so no allocation on a node outside the cpuset is allowed (unless 4193 * in interrupt, of course). 4194 * 4195 * The second pass through get_page_from_freelist() doesn't even call 4196 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() 4197 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set 4198 * in alloc_flags. That logic and the checks below have the combined 4199 * affect that: 4200 * in_interrupt - any node ok (current task context irrelevant) 4201 * GFP_ATOMIC - any node ok 4202 * tsk_is_oom_victim - any node ok 4203 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok 4204 * GFP_USER - only nodes in current tasks mems allowed ok. 4205 */ 4206 bool cpuset_node_allowed(int node, gfp_t gfp_mask) 4207 { 4208 struct cpuset *cs; /* current cpuset ancestors */ 4209 bool allowed; /* is allocation in zone z allowed? */ 4210 unsigned long flags; 4211 4212 if (in_interrupt()) 4213 return true; 4214 if (node_isset(node, current->mems_allowed)) 4215 return true; 4216 /* 4217 * Allow tasks that have access to memory reserves because they have 4218 * been OOM killed to get memory anywhere. 4219 */ 4220 if (unlikely(tsk_is_oom_victim(current))) 4221 return true; 4222 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ 4223 return false; 4224 4225 if (current->flags & PF_EXITING) /* Let dying task have memory */ 4226 return true; 4227 4228 /* Not hardwall and node outside mems_allowed: scan up cpusets */ 4229 spin_lock_irqsave(&callback_lock, flags); 4230 4231 rcu_read_lock(); 4232 cs = nearest_hardwall_ancestor(task_cs(current)); 4233 allowed = node_isset(node, cs->mems_allowed); 4234 rcu_read_unlock(); 4235 4236 spin_unlock_irqrestore(&callback_lock, flags); 4237 return allowed; 4238 } 4239 4240 /** 4241 * cpuset_spread_node() - On which node to begin search for a page 4242 * @rotor: round robin rotor 4243 * 4244 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for 4245 * tasks in a cpuset with is_spread_page or is_spread_slab set), 4246 * and if the memory allocation used cpuset_mem_spread_node() 4247 * to determine on which node to start looking, as it will for 4248 * certain page cache or slab cache pages such as used for file 4249 * system buffers and inode caches, then instead of starting on the 4250 * local node to look for a free page, rather spread the starting 4251 * node around the tasks mems_allowed nodes. 4252 * 4253 * We don't have to worry about the returned node being offline 4254 * because "it can't happen", and even if it did, it would be ok. 4255 * 4256 * The routines calling guarantee_online_mems() are careful to 4257 * only set nodes in task->mems_allowed that are online. So it 4258 * should not be possible for the following code to return an 4259 * offline node. But if it did, that would be ok, as this routine 4260 * is not returning the node where the allocation must be, only 4261 * the node where the search should start. The zonelist passed to 4262 * __alloc_pages() will include all nodes. If the slab allocator 4263 * is passed an offline node, it will fall back to the local node. 4264 * See kmem_cache_alloc_node(). 4265 */ 4266 static int cpuset_spread_node(int *rotor) 4267 { 4268 return *rotor = next_node_in(*rotor, current->mems_allowed); 4269 } 4270 4271 /** 4272 * cpuset_mem_spread_node() - On which node to begin search for a file page 4273 */ 4274 int cpuset_mem_spread_node(void) 4275 { 4276 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) 4277 current->cpuset_mem_spread_rotor = 4278 node_random(¤t->mems_allowed); 4279 4280 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); 4281 } 4282 4283 /** 4284 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? 4285 * @tsk1: pointer to task_struct of some task. 4286 * @tsk2: pointer to task_struct of some other task. 4287 * 4288 * Description: Return true if @tsk1's mems_allowed intersects the 4289 * mems_allowed of @tsk2. Used by the OOM killer to determine if 4290 * one of the task's memory usage might impact the memory available 4291 * to the other. 4292 **/ 4293 4294 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, 4295 const struct task_struct *tsk2) 4296 { 4297 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); 4298 } 4299 4300 /** 4301 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed 4302 * 4303 * Description: Prints current's name, cpuset name, and cached copy of its 4304 * mems_allowed to the kernel log. 4305 */ 4306 void cpuset_print_current_mems_allowed(void) 4307 { 4308 struct cgroup *cgrp; 4309 4310 rcu_read_lock(); 4311 4312 cgrp = task_cs(current)->css.cgroup; 4313 pr_cont(",cpuset="); 4314 pr_cont_cgroup_name(cgrp); 4315 pr_cont(",mems_allowed=%*pbl", 4316 nodemask_pr_args(¤t->mems_allowed)); 4317 4318 rcu_read_unlock(); 4319 } 4320 4321 /* Display task mems_allowed in /proc/<pid>/status file. */ 4322 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) 4323 { 4324 seq_printf(m, "Mems_allowed:\t%*pb\n", 4325 nodemask_pr_args(&task->mems_allowed)); 4326 seq_printf(m, "Mems_allowed_list:\t%*pbl\n", 4327 nodemask_pr_args(&task->mems_allowed)); 4328 } 4329