1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/sched/deadline.h> 61 #include <linux/psi.h> 62 #include <net/sock.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/cgroup.h> 66 67 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 68 MAX_CFTYPE_NAME + 2) 69 /* let's not notify more than 100 times per second */ 70 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 71 72 /* 73 * To avoid confusing the compiler (and generating warnings) with code 74 * that attempts to access what would be a 0-element array (i.e. sized 75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 76 * constant expression can be added. 77 */ 78 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 79 80 /* 81 * cgroup_mutex is the master lock. Any modification to cgroup or its 82 * hierarchy must be performed while holding it. 83 * 84 * css_set_lock protects task->cgroups pointer, the list of css_set 85 * objects, and the chain of tasks off each css_set. 86 * 87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 88 * cgroup.h can use them for lockdep annotations. 89 */ 90 DEFINE_MUTEX(cgroup_mutex); 91 DEFINE_SPINLOCK(css_set_lock); 92 93 #if (defined CONFIG_PROVE_RCU || defined CONFIG_LOCKDEP) 94 EXPORT_SYMBOL_GPL(cgroup_mutex); 95 EXPORT_SYMBOL_GPL(css_set_lock); 96 #endif 97 98 struct blocking_notifier_head cgroup_lifetime_notifier = 99 BLOCKING_NOTIFIER_INIT(cgroup_lifetime_notifier); 100 101 DEFINE_SPINLOCK(trace_cgroup_path_lock); 102 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 103 static bool cgroup_debug __read_mostly; 104 105 /* 106 * Protects cgroup_idr and css_idr so that IDs can be released without 107 * grabbing cgroup_mutex. 108 */ 109 static DEFINE_SPINLOCK(cgroup_idr_lock); 110 111 /* 112 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 113 * against file removal/re-creation across css hiding. 114 */ 115 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 116 117 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 118 119 #define cgroup_assert_mutex_or_rcu_locked() \ 120 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 121 !lockdep_is_held(&cgroup_mutex), \ 122 "cgroup_mutex or RCU read lock required"); 123 124 /* 125 * cgroup destruction makes heavy use of work items and there can be a lot 126 * of concurrent destructions. Use a separate workqueue so that cgroup 127 * destruction work items don't end up filling up max_active of system_wq 128 * which may lead to deadlock. 129 */ 130 static struct workqueue_struct *cgroup_destroy_wq; 131 132 /* generate an array of cgroup subsystem pointers */ 133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 134 struct cgroup_subsys *cgroup_subsys[] = { 135 #include <linux/cgroup_subsys.h> 136 }; 137 #undef SUBSYS 138 139 /* array of cgroup subsystem names */ 140 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 141 static const char *cgroup_subsys_name[] = { 142 #include <linux/cgroup_subsys.h> 143 }; 144 #undef SUBSYS 145 146 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 147 #define SUBSYS(_x) \ 148 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 149 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 150 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 151 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 152 #include <linux/cgroup_subsys.h> 153 #undef SUBSYS 154 155 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 156 static struct static_key_true *cgroup_subsys_enabled_key[] = { 157 #include <linux/cgroup_subsys.h> 158 }; 159 #undef SUBSYS 160 161 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 162 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 163 #include <linux/cgroup_subsys.h> 164 }; 165 #undef SUBSYS 166 167 static DEFINE_PER_CPU(struct css_rstat_cpu, root_rstat_cpu); 168 static DEFINE_PER_CPU(struct cgroup_rstat_base_cpu, root_rstat_base_cpu); 169 170 /* the default hierarchy */ 171 struct cgroup_root cgrp_dfl_root = { 172 .cgrp.self.rstat_cpu = &root_rstat_cpu, 173 .cgrp.rstat_base_cpu = &root_rstat_base_cpu, 174 }; 175 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 176 177 /* 178 * The default hierarchy always exists but is hidden until mounted for the 179 * first time. This is for backward compatibility. 180 */ 181 bool cgrp_dfl_visible; 182 183 /* some controllers are not supported in the default hierarchy */ 184 static u16 cgrp_dfl_inhibit_ss_mask; 185 186 /* some controllers are implicitly enabled on the default hierarchy */ 187 static u16 cgrp_dfl_implicit_ss_mask; 188 189 /* some controllers can be threaded on the default hierarchy */ 190 static u16 cgrp_dfl_threaded_ss_mask; 191 192 /* The list of hierarchy roots */ 193 LIST_HEAD(cgroup_roots); 194 static int cgroup_root_count; 195 196 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 197 static DEFINE_IDR(cgroup_hierarchy_idr); 198 199 /* 200 * Assign a monotonically increasing serial number to csses. It guarantees 201 * cgroups with bigger numbers are newer than those with smaller numbers. 202 * Also, as csses are always appended to the parent's ->children list, it 203 * guarantees that sibling csses are always sorted in the ascending serial 204 * number order on the list. Protected by cgroup_mutex. 205 */ 206 static u64 css_serial_nr_next = 1; 207 208 /* 209 * These bitmasks identify subsystems with specific features to avoid 210 * having to do iterative checks repeatedly. 211 */ 212 static u16 have_fork_callback __read_mostly; 213 static u16 have_exit_callback __read_mostly; 214 static u16 have_release_callback __read_mostly; 215 static u16 have_canfork_callback __read_mostly; 216 217 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS); 218 219 /* cgroup namespace for init task */ 220 struct cgroup_namespace init_cgroup_ns = { 221 .ns.count = REFCOUNT_INIT(2), 222 .user_ns = &init_user_ns, 223 .ns.ops = &cgroupns_operations, 224 .ns.inum = PROC_CGROUP_INIT_INO, 225 .root_cset = &init_css_set, 226 }; 227 228 static struct file_system_type cgroup2_fs_type; 229 static struct cftype cgroup_base_files[]; 230 static struct cftype cgroup_psi_files[]; 231 232 /* cgroup optional features */ 233 enum cgroup_opt_features { 234 #ifdef CONFIG_PSI 235 OPT_FEATURE_PRESSURE, 236 #endif 237 OPT_FEATURE_COUNT 238 }; 239 240 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 241 #ifdef CONFIG_PSI 242 "pressure", 243 #endif 244 }; 245 246 static u16 cgroup_feature_disable_mask __read_mostly; 247 248 static int cgroup_apply_control(struct cgroup *cgrp); 249 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 250 static void css_task_iter_skip(struct css_task_iter *it, 251 struct task_struct *task); 252 static int cgroup_destroy_locked(struct cgroup *cgrp); 253 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 254 struct cgroup_subsys *ss); 255 static void css_release(struct percpu_ref *ref); 256 static void kill_css(struct cgroup_subsys_state *css); 257 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 258 struct cgroup *cgrp, struct cftype cfts[], 259 bool is_add); 260 261 #ifdef CONFIG_DEBUG_CGROUP_REF 262 #define CGROUP_REF_FN_ATTRS noinline 263 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); 264 #include <linux/cgroup_refcnt.h> 265 #endif 266 267 /** 268 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 269 * @ssid: subsys ID of interest 270 * 271 * cgroup_subsys_enabled() can only be used with literal subsys names which 272 * is fine for individual subsystems but unsuitable for cgroup core. This 273 * is slower static_key_enabled() based test indexed by @ssid. 274 */ 275 bool cgroup_ssid_enabled(int ssid) 276 { 277 if (!CGROUP_HAS_SUBSYS_CONFIG) 278 return false; 279 280 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 281 } 282 283 /** 284 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 285 * @cgrp: the cgroup of interest 286 * 287 * The default hierarchy is the v2 interface of cgroup and this function 288 * can be used to test whether a cgroup is on the default hierarchy for 289 * cases where a subsystem should behave differently depending on the 290 * interface version. 291 * 292 * List of changed behaviors: 293 * 294 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 295 * and "name" are disallowed. 296 * 297 * - When mounting an existing superblock, mount options should match. 298 * 299 * - rename(2) is disallowed. 300 * 301 * - "tasks" is removed. Everything should be at process granularity. Use 302 * "cgroup.procs" instead. 303 * 304 * - "cgroup.procs" is not sorted. pids will be unique unless they got 305 * recycled in-between reads. 306 * 307 * - "release_agent" and "notify_on_release" are removed. Replacement 308 * notification mechanism will be implemented. 309 * 310 * - "cgroup.clone_children" is removed. 311 * 312 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 313 * and its descendants contain no task; otherwise, 1. The file also 314 * generates kernfs notification which can be monitored through poll and 315 * [di]notify when the value of the file changes. 316 * 317 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 318 * take masks of ancestors with non-empty cpus/mems, instead of being 319 * moved to an ancestor. 320 * 321 * - cpuset: a task can be moved into an empty cpuset, and again it takes 322 * masks of ancestors. 323 * 324 * - blkcg: blk-throttle becomes properly hierarchical. 325 */ 326 bool cgroup_on_dfl(const struct cgroup *cgrp) 327 { 328 return cgrp->root == &cgrp_dfl_root; 329 } 330 331 /* IDR wrappers which synchronize using cgroup_idr_lock */ 332 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 333 gfp_t gfp_mask) 334 { 335 int ret; 336 337 idr_preload(gfp_mask); 338 spin_lock_bh(&cgroup_idr_lock); 339 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 340 spin_unlock_bh(&cgroup_idr_lock); 341 idr_preload_end(); 342 return ret; 343 } 344 345 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 346 { 347 void *ret; 348 349 spin_lock_bh(&cgroup_idr_lock); 350 ret = idr_replace(idr, ptr, id); 351 spin_unlock_bh(&cgroup_idr_lock); 352 return ret; 353 } 354 355 static void cgroup_idr_remove(struct idr *idr, int id) 356 { 357 spin_lock_bh(&cgroup_idr_lock); 358 idr_remove(idr, id); 359 spin_unlock_bh(&cgroup_idr_lock); 360 } 361 362 static bool cgroup_has_tasks(struct cgroup *cgrp) 363 { 364 return cgrp->nr_populated_csets; 365 } 366 367 static bool cgroup_is_threaded(struct cgroup *cgrp) 368 { 369 return cgrp->dom_cgrp != cgrp; 370 } 371 372 /* can @cgrp host both domain and threaded children? */ 373 static bool cgroup_is_mixable(struct cgroup *cgrp) 374 { 375 /* 376 * Root isn't under domain level resource control exempting it from 377 * the no-internal-process constraint, so it can serve as a thread 378 * root and a parent of resource domains at the same time. 379 */ 380 return !cgroup_parent(cgrp); 381 } 382 383 /* can @cgrp become a thread root? Should always be true for a thread root */ 384 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 385 { 386 /* mixables don't care */ 387 if (cgroup_is_mixable(cgrp)) 388 return true; 389 390 /* domain roots can't be nested under threaded */ 391 if (cgroup_is_threaded(cgrp)) 392 return false; 393 394 /* can only have either domain or threaded children */ 395 if (cgrp->nr_populated_domain_children) 396 return false; 397 398 /* and no domain controllers can be enabled */ 399 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 400 return false; 401 402 return true; 403 } 404 405 /* is @cgrp root of a threaded subtree? */ 406 static bool cgroup_is_thread_root(struct cgroup *cgrp) 407 { 408 /* thread root should be a domain */ 409 if (cgroup_is_threaded(cgrp)) 410 return false; 411 412 /* a domain w/ threaded children is a thread root */ 413 if (cgrp->nr_threaded_children) 414 return true; 415 416 /* 417 * A domain which has tasks and explicit threaded controllers 418 * enabled is a thread root. 419 */ 420 if (cgroup_has_tasks(cgrp) && 421 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 422 return true; 423 424 return false; 425 } 426 427 /* a domain which isn't connected to the root w/o brekage can't be used */ 428 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 429 { 430 /* the cgroup itself can be a thread root */ 431 if (cgroup_is_threaded(cgrp)) 432 return false; 433 434 /* but the ancestors can't be unless mixable */ 435 while ((cgrp = cgroup_parent(cgrp))) { 436 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 437 return false; 438 if (cgroup_is_threaded(cgrp)) 439 return false; 440 } 441 442 return true; 443 } 444 445 /* subsystems visibly enabled on a cgroup */ 446 static u16 cgroup_control(struct cgroup *cgrp) 447 { 448 struct cgroup *parent = cgroup_parent(cgrp); 449 u16 root_ss_mask = cgrp->root->subsys_mask; 450 451 if (parent) { 452 u16 ss_mask = parent->subtree_control; 453 454 /* threaded cgroups can only have threaded controllers */ 455 if (cgroup_is_threaded(cgrp)) 456 ss_mask &= cgrp_dfl_threaded_ss_mask; 457 return ss_mask; 458 } 459 460 if (cgroup_on_dfl(cgrp)) 461 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 462 cgrp_dfl_implicit_ss_mask); 463 return root_ss_mask; 464 } 465 466 /* subsystems enabled on a cgroup */ 467 static u16 cgroup_ss_mask(struct cgroup *cgrp) 468 { 469 struct cgroup *parent = cgroup_parent(cgrp); 470 471 if (parent) { 472 u16 ss_mask = parent->subtree_ss_mask; 473 474 /* threaded cgroups can only have threaded controllers */ 475 if (cgroup_is_threaded(cgrp)) 476 ss_mask &= cgrp_dfl_threaded_ss_mask; 477 return ss_mask; 478 } 479 480 return cgrp->root->subsys_mask; 481 } 482 483 /** 484 * cgroup_css - obtain a cgroup's css for the specified subsystem 485 * @cgrp: the cgroup of interest 486 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 487 * 488 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 489 * function must be called either under cgroup_mutex or rcu_read_lock() and 490 * the caller is responsible for pinning the returned css if it wants to 491 * keep accessing it outside the said locks. This function may return 492 * %NULL if @cgrp doesn't have @subsys_id enabled. 493 */ 494 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 495 struct cgroup_subsys *ss) 496 { 497 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 498 return rcu_dereference_check(cgrp->subsys[ss->id], 499 lockdep_is_held(&cgroup_mutex)); 500 else 501 return &cgrp->self; 502 } 503 504 /** 505 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 506 * @cgrp: the cgroup of interest 507 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 508 * 509 * Similar to cgroup_css() but returns the effective css, which is defined 510 * as the matching css of the nearest ancestor including self which has @ss 511 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 512 * function is guaranteed to return non-NULL css. 513 */ 514 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 515 struct cgroup_subsys *ss) 516 { 517 lockdep_assert_held(&cgroup_mutex); 518 519 if (!ss) 520 return &cgrp->self; 521 522 /* 523 * This function is used while updating css associations and thus 524 * can't test the csses directly. Test ss_mask. 525 */ 526 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 527 cgrp = cgroup_parent(cgrp); 528 if (!cgrp) 529 return NULL; 530 } 531 532 return cgroup_css(cgrp, ss); 533 } 534 535 /** 536 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 537 * @cgrp: the cgroup of interest 538 * @ss: the subsystem of interest 539 * 540 * Find and get the effective css of @cgrp for @ss. The effective css is 541 * defined as the matching css of the nearest ancestor including self which 542 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 543 * the root css is returned, so this function always returns a valid css. 544 * 545 * The returned css is not guaranteed to be online, and therefore it is the 546 * callers responsibility to try get a reference for it. 547 */ 548 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 549 struct cgroup_subsys *ss) 550 { 551 struct cgroup_subsys_state *css; 552 553 if (!CGROUP_HAS_SUBSYS_CONFIG) 554 return NULL; 555 556 do { 557 css = cgroup_css(cgrp, ss); 558 559 if (css) 560 return css; 561 cgrp = cgroup_parent(cgrp); 562 } while (cgrp); 563 564 return init_css_set.subsys[ss->id]; 565 } 566 567 /** 568 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 569 * @cgrp: the cgroup of interest 570 * @ss: the subsystem of interest 571 * 572 * Find and get the effective css of @cgrp for @ss. The effective css is 573 * defined as the matching css of the nearest ancestor including self which 574 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 575 * the root css is returned, so this function always returns a valid css. 576 * The returned css must be put using css_put(). 577 */ 578 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 579 struct cgroup_subsys *ss) 580 { 581 struct cgroup_subsys_state *css; 582 583 if (!CGROUP_HAS_SUBSYS_CONFIG) 584 return NULL; 585 586 rcu_read_lock(); 587 588 do { 589 css = cgroup_css(cgrp, ss); 590 591 if (css && css_tryget_online(css)) 592 goto out_unlock; 593 cgrp = cgroup_parent(cgrp); 594 } while (cgrp); 595 596 css = init_css_set.subsys[ss->id]; 597 css_get(css); 598 out_unlock: 599 rcu_read_unlock(); 600 return css; 601 } 602 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 603 604 static void cgroup_get_live(struct cgroup *cgrp) 605 { 606 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 607 cgroup_get(cgrp); 608 } 609 610 /** 611 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 612 * is responsible for taking the css_set_lock. 613 * @cgrp: the cgroup in question 614 */ 615 int __cgroup_task_count(const struct cgroup *cgrp) 616 { 617 int count = 0; 618 struct cgrp_cset_link *link; 619 620 lockdep_assert_held(&css_set_lock); 621 622 list_for_each_entry(link, &cgrp->cset_links, cset_link) 623 count += link->cset->nr_tasks; 624 625 return count; 626 } 627 628 /** 629 * cgroup_task_count - count the number of tasks in a cgroup. 630 * @cgrp: the cgroup in question 631 */ 632 int cgroup_task_count(const struct cgroup *cgrp) 633 { 634 int count; 635 636 spin_lock_irq(&css_set_lock); 637 count = __cgroup_task_count(cgrp); 638 spin_unlock_irq(&css_set_lock); 639 640 return count; 641 } 642 643 static struct cgroup *kn_priv(struct kernfs_node *kn) 644 { 645 struct kernfs_node *parent; 646 /* 647 * The parent can not be replaced due to KERNFS_ROOT_INVARIANT_PARENT. 648 * Therefore it is always safe to dereference this pointer outside of a 649 * RCU section. 650 */ 651 parent = rcu_dereference_check(kn->__parent, 652 kernfs_root_flags(kn) & KERNFS_ROOT_INVARIANT_PARENT); 653 return parent->priv; 654 } 655 656 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 657 { 658 struct cgroup *cgrp = kn_priv(of->kn); 659 struct cftype *cft = of_cft(of); 660 661 /* 662 * This is open and unprotected implementation of cgroup_css(). 663 * seq_css() is only called from a kernfs file operation which has 664 * an active reference on the file. Because all the subsystem 665 * files are drained before a css is disassociated with a cgroup, 666 * the matching css from the cgroup's subsys table is guaranteed to 667 * be and stay valid until the enclosing operation is complete. 668 */ 669 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 670 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 671 else 672 return &cgrp->self; 673 } 674 EXPORT_SYMBOL_GPL(of_css); 675 676 /** 677 * for_each_css - iterate all css's of a cgroup 678 * @css: the iteration cursor 679 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 680 * @cgrp: the target cgroup to iterate css's of 681 * 682 * Should be called under cgroup_mutex. 683 */ 684 #define for_each_css(css, ssid, cgrp) \ 685 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 686 if (!((css) = rcu_dereference_check( \ 687 (cgrp)->subsys[(ssid)], \ 688 lockdep_is_held(&cgroup_mutex)))) { } \ 689 else 690 691 /** 692 * do_each_subsys_mask - filter for_each_subsys with a bitmask 693 * @ss: the iteration cursor 694 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 695 * @ss_mask: the bitmask 696 * 697 * The block will only run for cases where the ssid-th bit (1 << ssid) of 698 * @ss_mask is set. 699 */ 700 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 701 unsigned long __ss_mask = (ss_mask); \ 702 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 703 (ssid) = 0; \ 704 break; \ 705 } \ 706 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 707 (ss) = cgroup_subsys[ssid]; \ 708 { 709 710 #define while_each_subsys_mask() \ 711 } \ 712 } \ 713 } while (false) 714 715 /* iterate over child cgrps, lock should be held throughout iteration */ 716 #define cgroup_for_each_live_child(child, cgrp) \ 717 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 718 if (({ lockdep_assert_held(&cgroup_mutex); \ 719 cgroup_is_dead(child); })) \ 720 ; \ 721 else 722 723 /* walk live descendants in pre order */ 724 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 725 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 726 if (({ lockdep_assert_held(&cgroup_mutex); \ 727 (dsct) = (d_css)->cgroup; \ 728 cgroup_is_dead(dsct); })) \ 729 ; \ 730 else 731 732 /* walk live descendants in postorder */ 733 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 734 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 735 if (({ lockdep_assert_held(&cgroup_mutex); \ 736 (dsct) = (d_css)->cgroup; \ 737 cgroup_is_dead(dsct); })) \ 738 ; \ 739 else 740 741 /* 742 * The default css_set - used by init and its children prior to any 743 * hierarchies being mounted. It contains a pointer to the root state 744 * for each subsystem. Also used to anchor the list of css_sets. Not 745 * reference-counted, to improve performance when child cgroups 746 * haven't been created. 747 */ 748 struct css_set init_css_set = { 749 .refcount = REFCOUNT_INIT(1), 750 .dom_cset = &init_css_set, 751 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 752 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 753 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 754 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 755 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 756 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 757 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 758 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 759 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 760 761 /* 762 * The following field is re-initialized when this cset gets linked 763 * in cgroup_init(). However, let's initialize the field 764 * statically too so that the default cgroup can be accessed safely 765 * early during boot. 766 */ 767 .dfl_cgrp = &cgrp_dfl_root.cgrp, 768 }; 769 770 static int css_set_count = 1; /* 1 for init_css_set */ 771 772 static bool css_set_threaded(struct css_set *cset) 773 { 774 return cset->dom_cset != cset; 775 } 776 777 /** 778 * css_set_populated - does a css_set contain any tasks? 779 * @cset: target css_set 780 * 781 * css_set_populated() should be the same as !!cset->nr_tasks at steady 782 * state. However, css_set_populated() can be called while a task is being 783 * added to or removed from the linked list before the nr_tasks is 784 * properly updated. Hence, we can't just look at ->nr_tasks here. 785 */ 786 static bool css_set_populated(struct css_set *cset) 787 { 788 lockdep_assert_held(&css_set_lock); 789 790 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 791 } 792 793 /** 794 * cgroup_update_populated - update the populated count of a cgroup 795 * @cgrp: the target cgroup 796 * @populated: inc or dec populated count 797 * 798 * One of the css_sets associated with @cgrp is either getting its first 799 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 800 * count is propagated towards root so that a given cgroup's 801 * nr_populated_children is zero iff none of its descendants contain any 802 * tasks. 803 * 804 * @cgrp's interface file "cgroup.populated" is zero if both 805 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 806 * 1 otherwise. When the sum changes from or to zero, userland is notified 807 * that the content of the interface file has changed. This can be used to 808 * detect when @cgrp and its descendants become populated or empty. 809 */ 810 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 811 { 812 struct cgroup *child = NULL; 813 int adj = populated ? 1 : -1; 814 815 lockdep_assert_held(&css_set_lock); 816 817 do { 818 bool was_populated = cgroup_is_populated(cgrp); 819 820 if (!child) { 821 cgrp->nr_populated_csets += adj; 822 } else { 823 if (cgroup_is_threaded(child)) 824 cgrp->nr_populated_threaded_children += adj; 825 else 826 cgrp->nr_populated_domain_children += adj; 827 } 828 829 if (was_populated == cgroup_is_populated(cgrp)) 830 break; 831 832 cgroup1_check_for_release(cgrp); 833 TRACE_CGROUP_PATH(notify_populated, cgrp, 834 cgroup_is_populated(cgrp)); 835 cgroup_file_notify(&cgrp->events_file); 836 837 child = cgrp; 838 cgrp = cgroup_parent(cgrp); 839 } while (cgrp); 840 } 841 842 /** 843 * css_set_update_populated - update populated state of a css_set 844 * @cset: target css_set 845 * @populated: whether @cset is populated or depopulated 846 * 847 * @cset is either getting the first task or losing the last. Update the 848 * populated counters of all associated cgroups accordingly. 849 */ 850 static void css_set_update_populated(struct css_set *cset, bool populated) 851 { 852 struct cgrp_cset_link *link; 853 854 lockdep_assert_held(&css_set_lock); 855 856 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 857 cgroup_update_populated(link->cgrp, populated); 858 } 859 860 /* 861 * @task is leaving, advance task iterators which are pointing to it so 862 * that they can resume at the next position. Advancing an iterator might 863 * remove it from the list, use safe walk. See css_task_iter_skip() for 864 * details. 865 */ 866 static void css_set_skip_task_iters(struct css_set *cset, 867 struct task_struct *task) 868 { 869 struct css_task_iter *it, *pos; 870 871 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 872 css_task_iter_skip(it, task); 873 } 874 875 /** 876 * css_set_move_task - move a task from one css_set to another 877 * @task: task being moved 878 * @from_cset: css_set @task currently belongs to (may be NULL) 879 * @to_cset: new css_set @task is being moved to (may be NULL) 880 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 881 * 882 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 883 * css_set, @from_cset can be NULL. If @task is being disassociated 884 * instead of moved, @to_cset can be NULL. 885 * 886 * This function automatically handles populated counter updates and 887 * css_task_iter adjustments but the caller is responsible for managing 888 * @from_cset and @to_cset's reference counts. 889 */ 890 static void css_set_move_task(struct task_struct *task, 891 struct css_set *from_cset, struct css_set *to_cset, 892 bool use_mg_tasks) 893 { 894 lockdep_assert_held(&css_set_lock); 895 896 if (to_cset && !css_set_populated(to_cset)) 897 css_set_update_populated(to_cset, true); 898 899 if (from_cset) { 900 WARN_ON_ONCE(list_empty(&task->cg_list)); 901 902 css_set_skip_task_iters(from_cset, task); 903 list_del_init(&task->cg_list); 904 if (!css_set_populated(from_cset)) 905 css_set_update_populated(from_cset, false); 906 } else { 907 WARN_ON_ONCE(!list_empty(&task->cg_list)); 908 } 909 910 if (to_cset) { 911 /* 912 * We are synchronized through cgroup_threadgroup_rwsem 913 * against PF_EXITING setting such that we can't race 914 * against cgroup_exit()/cgroup_free() dropping the css_set. 915 */ 916 WARN_ON_ONCE(task->flags & PF_EXITING); 917 918 cgroup_move_task(task, to_cset); 919 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 920 &to_cset->tasks); 921 } 922 } 923 924 /* 925 * hash table for cgroup groups. This improves the performance to find 926 * an existing css_set. This hash doesn't (currently) take into 927 * account cgroups in empty hierarchies. 928 */ 929 #define CSS_SET_HASH_BITS 7 930 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 931 932 static unsigned long css_set_hash(struct cgroup_subsys_state **css) 933 { 934 unsigned long key = 0UL; 935 struct cgroup_subsys *ss; 936 int i; 937 938 for_each_subsys(ss, i) 939 key += (unsigned long)css[i]; 940 key = (key >> 16) ^ key; 941 942 return key; 943 } 944 945 void put_css_set_locked(struct css_set *cset) 946 { 947 struct cgrp_cset_link *link, *tmp_link; 948 struct cgroup_subsys *ss; 949 int ssid; 950 951 lockdep_assert_held(&css_set_lock); 952 953 if (!refcount_dec_and_test(&cset->refcount)) 954 return; 955 956 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 957 958 /* This css_set is dead. Unlink it and release cgroup and css refs */ 959 for_each_subsys(ss, ssid) { 960 list_del(&cset->e_cset_node[ssid]); 961 css_put(cset->subsys[ssid]); 962 } 963 hash_del(&cset->hlist); 964 css_set_count--; 965 966 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 967 list_del(&link->cset_link); 968 list_del(&link->cgrp_link); 969 if (cgroup_parent(link->cgrp)) 970 cgroup_put(link->cgrp); 971 kfree(link); 972 } 973 974 if (css_set_threaded(cset)) { 975 list_del(&cset->threaded_csets_node); 976 put_css_set_locked(cset->dom_cset); 977 } 978 979 kfree_rcu(cset, rcu_head); 980 } 981 982 /** 983 * compare_css_sets - helper function for find_existing_css_set(). 984 * @cset: candidate css_set being tested 985 * @old_cset: existing css_set for a task 986 * @new_cgrp: cgroup that's being entered by the task 987 * @template: desired set of css pointers in css_set (pre-calculated) 988 * 989 * Returns true if "cset" matches "old_cset" except for the hierarchy 990 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 991 */ 992 static bool compare_css_sets(struct css_set *cset, 993 struct css_set *old_cset, 994 struct cgroup *new_cgrp, 995 struct cgroup_subsys_state *template[]) 996 { 997 struct cgroup *new_dfl_cgrp; 998 struct list_head *l1, *l2; 999 1000 /* 1001 * On the default hierarchy, there can be csets which are 1002 * associated with the same set of cgroups but different csses. 1003 * Let's first ensure that csses match. 1004 */ 1005 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1006 return false; 1007 1008 1009 /* @cset's domain should match the default cgroup's */ 1010 if (cgroup_on_dfl(new_cgrp)) 1011 new_dfl_cgrp = new_cgrp; 1012 else 1013 new_dfl_cgrp = old_cset->dfl_cgrp; 1014 1015 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1016 return false; 1017 1018 /* 1019 * Compare cgroup pointers in order to distinguish between 1020 * different cgroups in hierarchies. As different cgroups may 1021 * share the same effective css, this comparison is always 1022 * necessary. 1023 */ 1024 l1 = &cset->cgrp_links; 1025 l2 = &old_cset->cgrp_links; 1026 while (1) { 1027 struct cgrp_cset_link *link1, *link2; 1028 struct cgroup *cgrp1, *cgrp2; 1029 1030 l1 = l1->next; 1031 l2 = l2->next; 1032 /* See if we reached the end - both lists are equal length. */ 1033 if (l1 == &cset->cgrp_links) { 1034 BUG_ON(l2 != &old_cset->cgrp_links); 1035 break; 1036 } else { 1037 BUG_ON(l2 == &old_cset->cgrp_links); 1038 } 1039 /* Locate the cgroups associated with these links. */ 1040 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1041 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1042 cgrp1 = link1->cgrp; 1043 cgrp2 = link2->cgrp; 1044 /* Hierarchies should be linked in the same order. */ 1045 BUG_ON(cgrp1->root != cgrp2->root); 1046 1047 /* 1048 * If this hierarchy is the hierarchy of the cgroup 1049 * that's changing, then we need to check that this 1050 * css_set points to the new cgroup; if it's any other 1051 * hierarchy, then this css_set should point to the 1052 * same cgroup as the old css_set. 1053 */ 1054 if (cgrp1->root == new_cgrp->root) { 1055 if (cgrp1 != new_cgrp) 1056 return false; 1057 } else { 1058 if (cgrp1 != cgrp2) 1059 return false; 1060 } 1061 } 1062 return true; 1063 } 1064 1065 /** 1066 * find_existing_css_set - init css array and find the matching css_set 1067 * @old_cset: the css_set that we're using before the cgroup transition 1068 * @cgrp: the cgroup that we're moving into 1069 * @template: out param for the new set of csses, should be clear on entry 1070 */ 1071 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1072 struct cgroup *cgrp, 1073 struct cgroup_subsys_state **template) 1074 { 1075 struct cgroup_root *root = cgrp->root; 1076 struct cgroup_subsys *ss; 1077 struct css_set *cset; 1078 unsigned long key; 1079 int i; 1080 1081 /* 1082 * Build the set of subsystem state objects that we want to see in the 1083 * new css_set. While subsystems can change globally, the entries here 1084 * won't change, so no need for locking. 1085 */ 1086 for_each_subsys(ss, i) { 1087 if (root->subsys_mask & (1UL << i)) { 1088 /* 1089 * @ss is in this hierarchy, so we want the 1090 * effective css from @cgrp. 1091 */ 1092 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1093 } else { 1094 /* 1095 * @ss is not in this hierarchy, so we don't want 1096 * to change the css. 1097 */ 1098 template[i] = old_cset->subsys[i]; 1099 } 1100 } 1101 1102 key = css_set_hash(template); 1103 hash_for_each_possible(css_set_table, cset, hlist, key) { 1104 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1105 continue; 1106 1107 /* This css_set matches what we need */ 1108 return cset; 1109 } 1110 1111 /* No existing cgroup group matched */ 1112 return NULL; 1113 } 1114 1115 static void free_cgrp_cset_links(struct list_head *links_to_free) 1116 { 1117 struct cgrp_cset_link *link, *tmp_link; 1118 1119 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1120 list_del(&link->cset_link); 1121 kfree(link); 1122 } 1123 } 1124 1125 /** 1126 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1127 * @count: the number of links to allocate 1128 * @tmp_links: list_head the allocated links are put on 1129 * 1130 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1131 * through ->cset_link. Returns 0 on success or -errno. 1132 */ 1133 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1134 { 1135 struct cgrp_cset_link *link; 1136 int i; 1137 1138 INIT_LIST_HEAD(tmp_links); 1139 1140 for (i = 0; i < count; i++) { 1141 link = kzalloc(sizeof(*link), GFP_KERNEL); 1142 if (!link) { 1143 free_cgrp_cset_links(tmp_links); 1144 return -ENOMEM; 1145 } 1146 list_add(&link->cset_link, tmp_links); 1147 } 1148 return 0; 1149 } 1150 1151 /** 1152 * link_css_set - a helper function to link a css_set to a cgroup 1153 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1154 * @cset: the css_set to be linked 1155 * @cgrp: the destination cgroup 1156 */ 1157 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1158 struct cgroup *cgrp) 1159 { 1160 struct cgrp_cset_link *link; 1161 1162 BUG_ON(list_empty(tmp_links)); 1163 1164 if (cgroup_on_dfl(cgrp)) 1165 cset->dfl_cgrp = cgrp; 1166 1167 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1168 link->cset = cset; 1169 link->cgrp = cgrp; 1170 1171 /* 1172 * Always add links to the tail of the lists so that the lists are 1173 * in chronological order. 1174 */ 1175 list_move_tail(&link->cset_link, &cgrp->cset_links); 1176 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1177 1178 if (cgroup_parent(cgrp)) 1179 cgroup_get_live(cgrp); 1180 } 1181 1182 /** 1183 * find_css_set - return a new css_set with one cgroup updated 1184 * @old_cset: the baseline css_set 1185 * @cgrp: the cgroup to be updated 1186 * 1187 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1188 * substituted into the appropriate hierarchy. 1189 */ 1190 static struct css_set *find_css_set(struct css_set *old_cset, 1191 struct cgroup *cgrp) 1192 { 1193 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1194 struct css_set *cset; 1195 struct list_head tmp_links; 1196 struct cgrp_cset_link *link; 1197 struct cgroup_subsys *ss; 1198 unsigned long key; 1199 int ssid; 1200 1201 lockdep_assert_held(&cgroup_mutex); 1202 1203 /* First see if we already have a cgroup group that matches 1204 * the desired set */ 1205 spin_lock_irq(&css_set_lock); 1206 cset = find_existing_css_set(old_cset, cgrp, template); 1207 if (cset) 1208 get_css_set(cset); 1209 spin_unlock_irq(&css_set_lock); 1210 1211 if (cset) 1212 return cset; 1213 1214 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1215 if (!cset) 1216 return NULL; 1217 1218 /* Allocate all the cgrp_cset_link objects that we'll need */ 1219 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1220 kfree(cset); 1221 return NULL; 1222 } 1223 1224 refcount_set(&cset->refcount, 1); 1225 cset->dom_cset = cset; 1226 INIT_LIST_HEAD(&cset->tasks); 1227 INIT_LIST_HEAD(&cset->mg_tasks); 1228 INIT_LIST_HEAD(&cset->dying_tasks); 1229 INIT_LIST_HEAD(&cset->task_iters); 1230 INIT_LIST_HEAD(&cset->threaded_csets); 1231 INIT_HLIST_NODE(&cset->hlist); 1232 INIT_LIST_HEAD(&cset->cgrp_links); 1233 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1234 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1235 INIT_LIST_HEAD(&cset->mg_node); 1236 1237 /* Copy the set of subsystem state objects generated in 1238 * find_existing_css_set() */ 1239 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1240 1241 spin_lock_irq(&css_set_lock); 1242 /* Add reference counts and links from the new css_set. */ 1243 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1244 struct cgroup *c = link->cgrp; 1245 1246 if (c->root == cgrp->root) 1247 c = cgrp; 1248 link_css_set(&tmp_links, cset, c); 1249 } 1250 1251 BUG_ON(!list_empty(&tmp_links)); 1252 1253 css_set_count++; 1254 1255 /* Add @cset to the hash table */ 1256 key = css_set_hash(cset->subsys); 1257 hash_add(css_set_table, &cset->hlist, key); 1258 1259 for_each_subsys(ss, ssid) { 1260 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1261 1262 list_add_tail(&cset->e_cset_node[ssid], 1263 &css->cgroup->e_csets[ssid]); 1264 css_get(css); 1265 } 1266 1267 spin_unlock_irq(&css_set_lock); 1268 1269 /* 1270 * If @cset should be threaded, look up the matching dom_cset and 1271 * link them up. We first fully initialize @cset then look for the 1272 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1273 * to stay empty until we return. 1274 */ 1275 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1276 struct css_set *dcset; 1277 1278 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1279 if (!dcset) { 1280 put_css_set(cset); 1281 return NULL; 1282 } 1283 1284 spin_lock_irq(&css_set_lock); 1285 cset->dom_cset = dcset; 1286 list_add_tail(&cset->threaded_csets_node, 1287 &dcset->threaded_csets); 1288 spin_unlock_irq(&css_set_lock); 1289 } 1290 1291 return cset; 1292 } 1293 1294 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1295 { 1296 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1297 1298 return root_cgrp->root; 1299 } 1300 1301 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1302 { 1303 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1304 1305 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1306 if (favor && !favoring) { 1307 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1308 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1309 } else if (!favor && favoring) { 1310 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1311 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1312 } 1313 } 1314 1315 static int cgroup_init_root_id(struct cgroup_root *root) 1316 { 1317 int id; 1318 1319 lockdep_assert_held(&cgroup_mutex); 1320 1321 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1322 if (id < 0) 1323 return id; 1324 1325 root->hierarchy_id = id; 1326 return 0; 1327 } 1328 1329 static void cgroup_exit_root_id(struct cgroup_root *root) 1330 { 1331 lockdep_assert_held(&cgroup_mutex); 1332 1333 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1334 } 1335 1336 void cgroup_free_root(struct cgroup_root *root) 1337 { 1338 kfree_rcu(root, rcu); 1339 } 1340 1341 static void cgroup_destroy_root(struct cgroup_root *root) 1342 { 1343 struct cgroup *cgrp = &root->cgrp; 1344 struct cgrp_cset_link *link, *tmp_link; 1345 int ret; 1346 1347 trace_cgroup_destroy_root(root); 1348 1349 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1350 1351 BUG_ON(atomic_read(&root->nr_cgrps)); 1352 BUG_ON(!list_empty(&cgrp->self.children)); 1353 1354 ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier, 1355 CGROUP_LIFETIME_OFFLINE, cgrp); 1356 WARN_ON_ONCE(notifier_to_errno(ret)); 1357 1358 /* Rebind all subsystems back to the default hierarchy */ 1359 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1360 1361 /* 1362 * Release all the links from cset_links to this hierarchy's 1363 * root cgroup 1364 */ 1365 spin_lock_irq(&css_set_lock); 1366 1367 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1368 list_del(&link->cset_link); 1369 list_del(&link->cgrp_link); 1370 kfree(link); 1371 } 1372 1373 spin_unlock_irq(&css_set_lock); 1374 1375 WARN_ON_ONCE(list_empty(&root->root_list)); 1376 list_del_rcu(&root->root_list); 1377 cgroup_root_count--; 1378 1379 if (!have_favordynmods) 1380 cgroup_favor_dynmods(root, false); 1381 1382 cgroup_exit_root_id(root); 1383 1384 cgroup_unlock(); 1385 1386 kernfs_destroy_root(root->kf_root); 1387 cgroup_free_root(root); 1388 } 1389 1390 /* 1391 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1392 */ 1393 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1394 struct cgroup_root *root) 1395 { 1396 struct cgroup *res_cgroup = NULL; 1397 1398 if (cset == &init_css_set) { 1399 res_cgroup = &root->cgrp; 1400 } else if (root == &cgrp_dfl_root) { 1401 res_cgroup = cset->dfl_cgrp; 1402 } else { 1403 struct cgrp_cset_link *link; 1404 lockdep_assert_held(&css_set_lock); 1405 1406 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1407 struct cgroup *c = link->cgrp; 1408 1409 if (c->root == root) { 1410 res_cgroup = c; 1411 break; 1412 } 1413 } 1414 } 1415 1416 /* 1417 * If cgroup_mutex is not held, the cgrp_cset_link will be freed 1418 * before we remove the cgroup root from the root_list. Consequently, 1419 * when accessing a cgroup root, the cset_link may have already been 1420 * freed, resulting in a NULL res_cgroup. However, by holding the 1421 * cgroup_mutex, we ensure that res_cgroup can't be NULL. 1422 * If we don't hold cgroup_mutex in the caller, we must do the NULL 1423 * check. 1424 */ 1425 return res_cgroup; 1426 } 1427 1428 /* 1429 * look up cgroup associated with current task's cgroup namespace on the 1430 * specified hierarchy 1431 */ 1432 static struct cgroup * 1433 current_cgns_cgroup_from_root(struct cgroup_root *root) 1434 { 1435 struct cgroup *res = NULL; 1436 struct css_set *cset; 1437 1438 lockdep_assert_held(&css_set_lock); 1439 1440 rcu_read_lock(); 1441 1442 cset = current->nsproxy->cgroup_ns->root_cset; 1443 res = __cset_cgroup_from_root(cset, root); 1444 1445 rcu_read_unlock(); 1446 1447 /* 1448 * The namespace_sem is held by current, so the root cgroup can't 1449 * be umounted. Therefore, we can ensure that the res is non-NULL. 1450 */ 1451 WARN_ON_ONCE(!res); 1452 return res; 1453 } 1454 1455 /* 1456 * Look up cgroup associated with current task's cgroup namespace on the default 1457 * hierarchy. 1458 * 1459 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1460 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1461 * pointers. 1462 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1463 * - As a bonus returned cgrp is pinned with the current because it cannot 1464 * switch cgroup_ns asynchronously. 1465 */ 1466 static struct cgroup *current_cgns_cgroup_dfl(void) 1467 { 1468 struct css_set *cset; 1469 1470 if (current->nsproxy) { 1471 cset = current->nsproxy->cgroup_ns->root_cset; 1472 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1473 } else { 1474 /* 1475 * NOTE: This function may be called from bpf_cgroup_from_id() 1476 * on a task which has already passed exit_task_namespaces() and 1477 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all 1478 * cgroups visible for lookups. 1479 */ 1480 return &cgrp_dfl_root.cgrp; 1481 } 1482 } 1483 1484 /* look up cgroup associated with given css_set on the specified hierarchy */ 1485 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1486 struct cgroup_root *root) 1487 { 1488 lockdep_assert_held(&css_set_lock); 1489 1490 return __cset_cgroup_from_root(cset, root); 1491 } 1492 1493 /* 1494 * Return the cgroup for "task" from the given hierarchy. Must be 1495 * called with css_set_lock held to prevent task's groups from being modified. 1496 * Must be called with either cgroup_mutex or rcu read lock to prevent the 1497 * cgroup root from being destroyed. 1498 */ 1499 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1500 struct cgroup_root *root) 1501 { 1502 /* 1503 * No need to lock the task - since we hold css_set_lock the 1504 * task can't change groups. 1505 */ 1506 return cset_cgroup_from_root(task_css_set(task), root); 1507 } 1508 1509 /* 1510 * A task must hold cgroup_mutex to modify cgroups. 1511 * 1512 * Any task can increment and decrement the count field without lock. 1513 * So in general, code holding cgroup_mutex can't rely on the count 1514 * field not changing. However, if the count goes to zero, then only 1515 * cgroup_attach_task() can increment it again. Because a count of zero 1516 * means that no tasks are currently attached, therefore there is no 1517 * way a task attached to that cgroup can fork (the other way to 1518 * increment the count). So code holding cgroup_mutex can safely 1519 * assume that if the count is zero, it will stay zero. Similarly, if 1520 * a task holds cgroup_mutex on a cgroup with zero count, it 1521 * knows that the cgroup won't be removed, as cgroup_rmdir() 1522 * needs that mutex. 1523 * 1524 * A cgroup can only be deleted if both its 'count' of using tasks 1525 * is zero, and its list of 'children' cgroups is empty. Since all 1526 * tasks in the system use _some_ cgroup, and since there is always at 1527 * least one task in the system (init, pid == 1), therefore, root cgroup 1528 * always has either children cgroups and/or using tasks. So we don't 1529 * need a special hack to ensure that root cgroup cannot be deleted. 1530 * 1531 * P.S. One more locking exception. RCU is used to guard the 1532 * update of a tasks cgroup pointer by cgroup_attach_task() 1533 */ 1534 1535 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1536 1537 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1538 char *buf) 1539 { 1540 struct cgroup_subsys *ss = cft->ss; 1541 1542 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1543 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1544 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1545 1546 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1547 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1548 cft->name); 1549 } else { 1550 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1551 } 1552 return buf; 1553 } 1554 1555 /** 1556 * cgroup_file_mode - deduce file mode of a control file 1557 * @cft: the control file in question 1558 * 1559 * S_IRUGO for read, S_IWUSR for write. 1560 */ 1561 static umode_t cgroup_file_mode(const struct cftype *cft) 1562 { 1563 umode_t mode = 0; 1564 1565 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1566 mode |= S_IRUGO; 1567 1568 if (cft->write_u64 || cft->write_s64 || cft->write) { 1569 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1570 mode |= S_IWUGO; 1571 else 1572 mode |= S_IWUSR; 1573 } 1574 1575 return mode; 1576 } 1577 1578 /** 1579 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1580 * @subtree_control: the new subtree_control mask to consider 1581 * @this_ss_mask: available subsystems 1582 * 1583 * On the default hierarchy, a subsystem may request other subsystems to be 1584 * enabled together through its ->depends_on mask. In such cases, more 1585 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1586 * 1587 * This function calculates which subsystems need to be enabled if 1588 * @subtree_control is to be applied while restricted to @this_ss_mask. 1589 */ 1590 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1591 { 1592 u16 cur_ss_mask = subtree_control; 1593 struct cgroup_subsys *ss; 1594 int ssid; 1595 1596 lockdep_assert_held(&cgroup_mutex); 1597 1598 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1599 1600 while (true) { 1601 u16 new_ss_mask = cur_ss_mask; 1602 1603 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1604 new_ss_mask |= ss->depends_on; 1605 } while_each_subsys_mask(); 1606 1607 /* 1608 * Mask out subsystems which aren't available. This can 1609 * happen only if some depended-upon subsystems were bound 1610 * to non-default hierarchies. 1611 */ 1612 new_ss_mask &= this_ss_mask; 1613 1614 if (new_ss_mask == cur_ss_mask) 1615 break; 1616 cur_ss_mask = new_ss_mask; 1617 } 1618 1619 return cur_ss_mask; 1620 } 1621 1622 /** 1623 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1624 * @kn: the kernfs_node being serviced 1625 * 1626 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1627 * the method finishes if locking succeeded. Note that once this function 1628 * returns the cgroup returned by cgroup_kn_lock_live() may become 1629 * inaccessible any time. If the caller intends to continue to access the 1630 * cgroup, it should pin it before invoking this function. 1631 */ 1632 void cgroup_kn_unlock(struct kernfs_node *kn) 1633 { 1634 struct cgroup *cgrp; 1635 1636 if (kernfs_type(kn) == KERNFS_DIR) 1637 cgrp = kn->priv; 1638 else 1639 cgrp = kn_priv(kn); 1640 1641 cgroup_unlock(); 1642 1643 kernfs_unbreak_active_protection(kn); 1644 cgroup_put(cgrp); 1645 } 1646 1647 /** 1648 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1649 * @kn: the kernfs_node being serviced 1650 * @drain_offline: perform offline draining on the cgroup 1651 * 1652 * This helper is to be used by a cgroup kernfs method currently servicing 1653 * @kn. It breaks the active protection, performs cgroup locking and 1654 * verifies that the associated cgroup is alive. Returns the cgroup if 1655 * alive; otherwise, %NULL. A successful return should be undone by a 1656 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1657 * cgroup is drained of offlining csses before return. 1658 * 1659 * Any cgroup kernfs method implementation which requires locking the 1660 * associated cgroup should use this helper. It avoids nesting cgroup 1661 * locking under kernfs active protection and allows all kernfs operations 1662 * including self-removal. 1663 */ 1664 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1665 { 1666 struct cgroup *cgrp; 1667 1668 if (kernfs_type(kn) == KERNFS_DIR) 1669 cgrp = kn->priv; 1670 else 1671 cgrp = kn_priv(kn); 1672 1673 /* 1674 * We're gonna grab cgroup_mutex which nests outside kernfs 1675 * active_ref. cgroup liveliness check alone provides enough 1676 * protection against removal. Ensure @cgrp stays accessible and 1677 * break the active_ref protection. 1678 */ 1679 if (!cgroup_tryget(cgrp)) 1680 return NULL; 1681 kernfs_break_active_protection(kn); 1682 1683 if (drain_offline) 1684 cgroup_lock_and_drain_offline(cgrp); 1685 else 1686 cgroup_lock(); 1687 1688 if (!cgroup_is_dead(cgrp)) 1689 return cgrp; 1690 1691 cgroup_kn_unlock(kn); 1692 return NULL; 1693 } 1694 1695 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1696 { 1697 char name[CGROUP_FILE_NAME_MAX]; 1698 1699 lockdep_assert_held(&cgroup_mutex); 1700 1701 if (cft->file_offset) { 1702 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1703 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1704 1705 spin_lock_irq(&cgroup_file_kn_lock); 1706 cfile->kn = NULL; 1707 spin_unlock_irq(&cgroup_file_kn_lock); 1708 1709 timer_delete_sync(&cfile->notify_timer); 1710 } 1711 1712 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1713 } 1714 1715 /** 1716 * css_clear_dir - remove subsys files in a cgroup directory 1717 * @css: target css 1718 */ 1719 static void css_clear_dir(struct cgroup_subsys_state *css) 1720 { 1721 struct cgroup *cgrp = css->cgroup; 1722 struct cftype *cfts; 1723 1724 if (!(css->flags & CSS_VISIBLE)) 1725 return; 1726 1727 css->flags &= ~CSS_VISIBLE; 1728 1729 if (css_is_self(css)) { 1730 if (cgroup_on_dfl(cgrp)) { 1731 cgroup_addrm_files(css, cgrp, 1732 cgroup_base_files, false); 1733 if (cgroup_psi_enabled()) 1734 cgroup_addrm_files(css, cgrp, 1735 cgroup_psi_files, false); 1736 } else { 1737 cgroup_addrm_files(css, cgrp, 1738 cgroup1_base_files, false); 1739 } 1740 } else { 1741 list_for_each_entry(cfts, &css->ss->cfts, node) 1742 cgroup_addrm_files(css, cgrp, cfts, false); 1743 } 1744 } 1745 1746 /** 1747 * css_populate_dir - create subsys files in a cgroup directory 1748 * @css: target css 1749 * 1750 * On failure, no file is added. 1751 */ 1752 static int css_populate_dir(struct cgroup_subsys_state *css) 1753 { 1754 struct cgroup *cgrp = css->cgroup; 1755 struct cftype *cfts, *failed_cfts; 1756 int ret; 1757 1758 if (css->flags & CSS_VISIBLE) 1759 return 0; 1760 1761 if (css_is_self(css)) { 1762 if (cgroup_on_dfl(cgrp)) { 1763 ret = cgroup_addrm_files(css, cgrp, 1764 cgroup_base_files, true); 1765 if (ret < 0) 1766 return ret; 1767 1768 if (cgroup_psi_enabled()) { 1769 ret = cgroup_addrm_files(css, cgrp, 1770 cgroup_psi_files, true); 1771 if (ret < 0) { 1772 cgroup_addrm_files(css, cgrp, 1773 cgroup_base_files, false); 1774 return ret; 1775 } 1776 } 1777 } else { 1778 ret = cgroup_addrm_files(css, cgrp, 1779 cgroup1_base_files, true); 1780 if (ret < 0) 1781 return ret; 1782 } 1783 } else { 1784 list_for_each_entry(cfts, &css->ss->cfts, node) { 1785 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1786 if (ret < 0) { 1787 failed_cfts = cfts; 1788 goto err; 1789 } 1790 } 1791 } 1792 1793 css->flags |= CSS_VISIBLE; 1794 1795 return 0; 1796 err: 1797 list_for_each_entry(cfts, &css->ss->cfts, node) { 1798 if (cfts == failed_cfts) 1799 break; 1800 cgroup_addrm_files(css, cgrp, cfts, false); 1801 } 1802 return ret; 1803 } 1804 1805 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1806 { 1807 struct cgroup *dcgrp = &dst_root->cgrp; 1808 struct cgroup_subsys *ss; 1809 int ssid, ret; 1810 u16 dfl_disable_ss_mask = 0; 1811 1812 lockdep_assert_held(&cgroup_mutex); 1813 1814 do_each_subsys_mask(ss, ssid, ss_mask) { 1815 /* 1816 * If @ss has non-root csses attached to it, can't move. 1817 * If @ss is an implicit controller, it is exempt from this 1818 * rule and can be stolen. 1819 */ 1820 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1821 !ss->implicit_on_dfl) 1822 return -EBUSY; 1823 1824 /* can't move between two non-dummy roots either */ 1825 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1826 return -EBUSY; 1827 1828 /* 1829 * Collect ssid's that need to be disabled from default 1830 * hierarchy. 1831 */ 1832 if (ss->root == &cgrp_dfl_root) 1833 dfl_disable_ss_mask |= 1 << ssid; 1834 1835 } while_each_subsys_mask(); 1836 1837 if (dfl_disable_ss_mask) { 1838 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1839 1840 /* 1841 * Controllers from default hierarchy that need to be rebound 1842 * are all disabled together in one go. 1843 */ 1844 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1845 WARN_ON(cgroup_apply_control(scgrp)); 1846 cgroup_finalize_control(scgrp, 0); 1847 } 1848 1849 do_each_subsys_mask(ss, ssid, ss_mask) { 1850 struct cgroup_root *src_root = ss->root; 1851 struct cgroup *scgrp = &src_root->cgrp; 1852 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1853 struct css_set *cset, *cset_pos; 1854 struct css_task_iter *it; 1855 1856 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1857 1858 if (src_root != &cgrp_dfl_root) { 1859 /* disable from the source */ 1860 src_root->subsys_mask &= ~(1 << ssid); 1861 WARN_ON(cgroup_apply_control(scgrp)); 1862 cgroup_finalize_control(scgrp, 0); 1863 } 1864 1865 /* rebind */ 1866 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1867 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1868 ss->root = dst_root; 1869 1870 spin_lock_irq(&css_set_lock); 1871 css->cgroup = dcgrp; 1872 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); 1873 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], 1874 e_cset_node[ss->id]) { 1875 list_move_tail(&cset->e_cset_node[ss->id], 1876 &dcgrp->e_csets[ss->id]); 1877 /* 1878 * all css_sets of scgrp together in same order to dcgrp, 1879 * patch in-flight iterators to preserve correct iteration. 1880 * since the iterator is always advanced right away and 1881 * finished when it->cset_pos meets it->cset_head, so only 1882 * update it->cset_head is enough here. 1883 */ 1884 list_for_each_entry(it, &cset->task_iters, iters_node) 1885 if (it->cset_head == &scgrp->e_csets[ss->id]) 1886 it->cset_head = &dcgrp->e_csets[ss->id]; 1887 } 1888 spin_unlock_irq(&css_set_lock); 1889 1890 /* default hierarchy doesn't enable controllers by default */ 1891 dst_root->subsys_mask |= 1 << ssid; 1892 if (dst_root == &cgrp_dfl_root) { 1893 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1894 } else { 1895 dcgrp->subtree_control |= 1 << ssid; 1896 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1897 } 1898 1899 ret = cgroup_apply_control(dcgrp); 1900 if (ret) 1901 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1902 ss->name, ret); 1903 1904 if (ss->bind) 1905 ss->bind(css); 1906 } while_each_subsys_mask(); 1907 1908 kernfs_activate(dcgrp->kn); 1909 return 0; 1910 } 1911 1912 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1913 struct kernfs_root *kf_root) 1914 { 1915 int len = 0; 1916 char *buf = NULL; 1917 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1918 struct cgroup *ns_cgroup; 1919 1920 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1921 if (!buf) 1922 return -ENOMEM; 1923 1924 spin_lock_irq(&css_set_lock); 1925 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1926 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1927 spin_unlock_irq(&css_set_lock); 1928 1929 if (len == -E2BIG) 1930 len = -ERANGE; 1931 else if (len > 0) { 1932 seq_escape(sf, buf, " \t\n\\"); 1933 len = 0; 1934 } 1935 kfree(buf); 1936 return len; 1937 } 1938 1939 enum cgroup2_param { 1940 Opt_nsdelegate, 1941 Opt_favordynmods, 1942 Opt_memory_localevents, 1943 Opt_memory_recursiveprot, 1944 Opt_memory_hugetlb_accounting, 1945 Opt_pids_localevents, 1946 nr__cgroup2_params 1947 }; 1948 1949 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1950 fsparam_flag("nsdelegate", Opt_nsdelegate), 1951 fsparam_flag("favordynmods", Opt_favordynmods), 1952 fsparam_flag("memory_localevents", Opt_memory_localevents), 1953 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1954 fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting), 1955 fsparam_flag("pids_localevents", Opt_pids_localevents), 1956 {} 1957 }; 1958 1959 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1960 { 1961 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1962 struct fs_parse_result result; 1963 int opt; 1964 1965 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1966 if (opt < 0) 1967 return opt; 1968 1969 switch (opt) { 1970 case Opt_nsdelegate: 1971 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1972 return 0; 1973 case Opt_favordynmods: 1974 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1975 return 0; 1976 case Opt_memory_localevents: 1977 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1978 return 0; 1979 case Opt_memory_recursiveprot: 1980 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1981 return 0; 1982 case Opt_memory_hugetlb_accounting: 1983 ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1984 return 0; 1985 case Opt_pids_localevents: 1986 ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; 1987 return 0; 1988 } 1989 return -EINVAL; 1990 } 1991 1992 struct cgroup_of_peak *of_peak(struct kernfs_open_file *of) 1993 { 1994 struct cgroup_file_ctx *ctx = of->priv; 1995 1996 return &ctx->peak; 1997 } 1998 1999 static void apply_cgroup_root_flags(unsigned int root_flags) 2000 { 2001 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 2002 if (root_flags & CGRP_ROOT_NS_DELEGATE) 2003 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 2004 else 2005 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 2006 2007 cgroup_favor_dynmods(&cgrp_dfl_root, 2008 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 2009 2010 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 2011 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 2012 else 2013 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 2014 2015 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 2016 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 2017 else 2018 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 2019 2020 if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 2021 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 2022 else 2023 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 2024 2025 if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) 2026 cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; 2027 else 2028 cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS; 2029 } 2030 } 2031 2032 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 2033 { 2034 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 2035 seq_puts(seq, ",nsdelegate"); 2036 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 2037 seq_puts(seq, ",favordynmods"); 2038 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 2039 seq_puts(seq, ",memory_localevents"); 2040 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 2041 seq_puts(seq, ",memory_recursiveprot"); 2042 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 2043 seq_puts(seq, ",memory_hugetlb_accounting"); 2044 if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) 2045 seq_puts(seq, ",pids_localevents"); 2046 return 0; 2047 } 2048 2049 static int cgroup_reconfigure(struct fs_context *fc) 2050 { 2051 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2052 2053 apply_cgroup_root_flags(ctx->flags); 2054 return 0; 2055 } 2056 2057 static void init_cgroup_housekeeping(struct cgroup *cgrp) 2058 { 2059 struct cgroup_subsys *ss; 2060 int ssid; 2061 2062 INIT_LIST_HEAD(&cgrp->self.sibling); 2063 INIT_LIST_HEAD(&cgrp->self.children); 2064 INIT_LIST_HEAD(&cgrp->cset_links); 2065 INIT_LIST_HEAD(&cgrp->pidlists); 2066 mutex_init(&cgrp->pidlist_mutex); 2067 cgrp->self.cgroup = cgrp; 2068 cgrp->self.flags |= CSS_ONLINE; 2069 cgrp->dom_cgrp = cgrp; 2070 cgrp->max_descendants = INT_MAX; 2071 cgrp->max_depth = INT_MAX; 2072 prev_cputime_init(&cgrp->prev_cputime); 2073 2074 for_each_subsys(ss, ssid) 2075 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2076 2077 init_waitqueue_head(&cgrp->offline_waitq); 2078 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2079 } 2080 2081 void init_cgroup_root(struct cgroup_fs_context *ctx) 2082 { 2083 struct cgroup_root *root = ctx->root; 2084 struct cgroup *cgrp = &root->cgrp; 2085 2086 INIT_LIST_HEAD_RCU(&root->root_list); 2087 atomic_set(&root->nr_cgrps, 1); 2088 cgrp->root = root; 2089 init_cgroup_housekeeping(cgrp); 2090 2091 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2092 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2093 if (ctx->release_agent) 2094 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2095 if (ctx->name) 2096 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2097 if (ctx->cpuset_clone_children) 2098 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2099 } 2100 2101 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2102 { 2103 LIST_HEAD(tmp_links); 2104 struct cgroup *root_cgrp = &root->cgrp; 2105 struct kernfs_syscall_ops *kf_sops; 2106 struct css_set *cset; 2107 int i, ret; 2108 2109 lockdep_assert_held(&cgroup_mutex); 2110 2111 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2112 0, GFP_KERNEL); 2113 if (ret) 2114 goto out; 2115 2116 /* 2117 * We're accessing css_set_count without locking css_set_lock here, 2118 * but that's OK - it can only be increased by someone holding 2119 * cgroup_lock, and that's us. Later rebinding may disable 2120 * controllers on the default hierarchy and thus create new csets, 2121 * which can't be more than the existing ones. Allocate 2x. 2122 */ 2123 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2124 if (ret) 2125 goto cancel_ref; 2126 2127 ret = cgroup_init_root_id(root); 2128 if (ret) 2129 goto cancel_ref; 2130 2131 kf_sops = root == &cgrp_dfl_root ? 2132 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2133 2134 root->kf_root = kernfs_create_root(kf_sops, 2135 KERNFS_ROOT_CREATE_DEACTIVATED | 2136 KERNFS_ROOT_SUPPORT_EXPORTOP | 2137 KERNFS_ROOT_SUPPORT_USER_XATTR | 2138 KERNFS_ROOT_INVARIANT_PARENT, 2139 root_cgrp); 2140 if (IS_ERR(root->kf_root)) { 2141 ret = PTR_ERR(root->kf_root); 2142 goto exit_root_id; 2143 } 2144 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2145 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2146 root_cgrp->ancestors[0] = root_cgrp; 2147 2148 ret = css_populate_dir(&root_cgrp->self); 2149 if (ret) 2150 goto destroy_root; 2151 2152 ret = css_rstat_init(&root_cgrp->self); 2153 if (ret) 2154 goto destroy_root; 2155 2156 ret = rebind_subsystems(root, ss_mask); 2157 if (ret) 2158 goto exit_stats; 2159 2160 ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier, 2161 CGROUP_LIFETIME_ONLINE, root_cgrp); 2162 WARN_ON_ONCE(notifier_to_errno(ret)); 2163 2164 trace_cgroup_setup_root(root); 2165 2166 /* 2167 * There must be no failure case after here, since rebinding takes 2168 * care of subsystems' refcounts, which are explicitly dropped in 2169 * the failure exit path. 2170 */ 2171 list_add_rcu(&root->root_list, &cgroup_roots); 2172 cgroup_root_count++; 2173 2174 /* 2175 * Link the root cgroup in this hierarchy into all the css_set 2176 * objects. 2177 */ 2178 spin_lock_irq(&css_set_lock); 2179 hash_for_each(css_set_table, i, cset, hlist) { 2180 link_css_set(&tmp_links, cset, root_cgrp); 2181 if (css_set_populated(cset)) 2182 cgroup_update_populated(root_cgrp, true); 2183 } 2184 spin_unlock_irq(&css_set_lock); 2185 2186 BUG_ON(!list_empty(&root_cgrp->self.children)); 2187 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2188 2189 ret = 0; 2190 goto out; 2191 2192 exit_stats: 2193 css_rstat_exit(&root_cgrp->self); 2194 destroy_root: 2195 kernfs_destroy_root(root->kf_root); 2196 root->kf_root = NULL; 2197 exit_root_id: 2198 cgroup_exit_root_id(root); 2199 cancel_ref: 2200 percpu_ref_exit(&root_cgrp->self.refcnt); 2201 out: 2202 free_cgrp_cset_links(&tmp_links); 2203 return ret; 2204 } 2205 2206 int cgroup_do_get_tree(struct fs_context *fc) 2207 { 2208 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2209 int ret; 2210 2211 ctx->kfc.root = ctx->root->kf_root; 2212 if (fc->fs_type == &cgroup2_fs_type) 2213 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2214 else 2215 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2216 ret = kernfs_get_tree(fc); 2217 2218 /* 2219 * In non-init cgroup namespace, instead of root cgroup's dentry, 2220 * we return the dentry corresponding to the cgroupns->root_cgrp. 2221 */ 2222 if (!ret && ctx->ns != &init_cgroup_ns) { 2223 struct dentry *nsdentry; 2224 struct super_block *sb = fc->root->d_sb; 2225 struct cgroup *cgrp; 2226 2227 cgroup_lock(); 2228 spin_lock_irq(&css_set_lock); 2229 2230 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2231 2232 spin_unlock_irq(&css_set_lock); 2233 cgroup_unlock(); 2234 2235 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2236 dput(fc->root); 2237 if (IS_ERR(nsdentry)) { 2238 deactivate_locked_super(sb); 2239 ret = PTR_ERR(nsdentry); 2240 nsdentry = NULL; 2241 } 2242 fc->root = nsdentry; 2243 } 2244 2245 if (!ctx->kfc.new_sb_created) 2246 cgroup_put(&ctx->root->cgrp); 2247 2248 return ret; 2249 } 2250 2251 /* 2252 * Destroy a cgroup filesystem context. 2253 */ 2254 static void cgroup_fs_context_free(struct fs_context *fc) 2255 { 2256 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2257 2258 kfree(ctx->name); 2259 kfree(ctx->release_agent); 2260 put_cgroup_ns(ctx->ns); 2261 kernfs_free_fs_context(fc); 2262 kfree(ctx); 2263 } 2264 2265 static int cgroup_get_tree(struct fs_context *fc) 2266 { 2267 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2268 int ret; 2269 2270 WRITE_ONCE(cgrp_dfl_visible, true); 2271 cgroup_get_live(&cgrp_dfl_root.cgrp); 2272 ctx->root = &cgrp_dfl_root; 2273 2274 ret = cgroup_do_get_tree(fc); 2275 if (!ret) 2276 apply_cgroup_root_flags(ctx->flags); 2277 return ret; 2278 } 2279 2280 static const struct fs_context_operations cgroup_fs_context_ops = { 2281 .free = cgroup_fs_context_free, 2282 .parse_param = cgroup2_parse_param, 2283 .get_tree = cgroup_get_tree, 2284 .reconfigure = cgroup_reconfigure, 2285 }; 2286 2287 static const struct fs_context_operations cgroup1_fs_context_ops = { 2288 .free = cgroup_fs_context_free, 2289 .parse_param = cgroup1_parse_param, 2290 .get_tree = cgroup1_get_tree, 2291 .reconfigure = cgroup1_reconfigure, 2292 }; 2293 2294 /* 2295 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2296 * we select the namespace we're going to use. 2297 */ 2298 static int cgroup_init_fs_context(struct fs_context *fc) 2299 { 2300 struct cgroup_fs_context *ctx; 2301 2302 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2303 if (!ctx) 2304 return -ENOMEM; 2305 2306 ctx->ns = current->nsproxy->cgroup_ns; 2307 get_cgroup_ns(ctx->ns); 2308 fc->fs_private = &ctx->kfc; 2309 if (fc->fs_type == &cgroup2_fs_type) 2310 fc->ops = &cgroup_fs_context_ops; 2311 else 2312 fc->ops = &cgroup1_fs_context_ops; 2313 put_user_ns(fc->user_ns); 2314 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2315 fc->global = true; 2316 2317 if (have_favordynmods) 2318 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2319 2320 return 0; 2321 } 2322 2323 static void cgroup_kill_sb(struct super_block *sb) 2324 { 2325 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2326 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2327 2328 /* 2329 * If @root doesn't have any children, start killing it. 2330 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2331 * 2332 * And don't kill the default root. 2333 */ 2334 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2335 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2336 percpu_ref_kill(&root->cgrp.self.refcnt); 2337 cgroup_put(&root->cgrp); 2338 kernfs_kill_sb(sb); 2339 } 2340 2341 struct file_system_type cgroup_fs_type = { 2342 .name = "cgroup", 2343 .init_fs_context = cgroup_init_fs_context, 2344 .parameters = cgroup1_fs_parameters, 2345 .kill_sb = cgroup_kill_sb, 2346 .fs_flags = FS_USERNS_MOUNT, 2347 }; 2348 2349 static struct file_system_type cgroup2_fs_type = { 2350 .name = "cgroup2", 2351 .init_fs_context = cgroup_init_fs_context, 2352 .parameters = cgroup2_fs_parameters, 2353 .kill_sb = cgroup_kill_sb, 2354 .fs_flags = FS_USERNS_MOUNT, 2355 }; 2356 2357 #ifdef CONFIG_CPUSETS_V1 2358 enum cpuset_param { 2359 Opt_cpuset_v2_mode, 2360 }; 2361 2362 static const struct fs_parameter_spec cpuset_fs_parameters[] = { 2363 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode), 2364 {} 2365 }; 2366 2367 static int cpuset_parse_param(struct fs_context *fc, struct fs_parameter *param) 2368 { 2369 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2370 struct fs_parse_result result; 2371 int opt; 2372 2373 opt = fs_parse(fc, cpuset_fs_parameters, param, &result); 2374 if (opt < 0) 2375 return opt; 2376 2377 switch (opt) { 2378 case Opt_cpuset_v2_mode: 2379 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE; 2380 return 0; 2381 } 2382 return -EINVAL; 2383 } 2384 2385 static const struct fs_context_operations cpuset_fs_context_ops = { 2386 .get_tree = cgroup1_get_tree, 2387 .free = cgroup_fs_context_free, 2388 .parse_param = cpuset_parse_param, 2389 }; 2390 2391 /* 2392 * This is ugly, but preserves the userspace API for existing cpuset 2393 * users. If someone tries to mount the "cpuset" filesystem, we 2394 * silently switch it to mount "cgroup" instead 2395 */ 2396 static int cpuset_init_fs_context(struct fs_context *fc) 2397 { 2398 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2399 struct cgroup_fs_context *ctx; 2400 int err; 2401 2402 err = cgroup_init_fs_context(fc); 2403 if (err) { 2404 kfree(agent); 2405 return err; 2406 } 2407 2408 fc->ops = &cpuset_fs_context_ops; 2409 2410 ctx = cgroup_fc2context(fc); 2411 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2412 ctx->flags |= CGRP_ROOT_NOPREFIX; 2413 ctx->release_agent = agent; 2414 2415 get_filesystem(&cgroup_fs_type); 2416 put_filesystem(fc->fs_type); 2417 fc->fs_type = &cgroup_fs_type; 2418 2419 return 0; 2420 } 2421 2422 static struct file_system_type cpuset_fs_type = { 2423 .name = "cpuset", 2424 .init_fs_context = cpuset_init_fs_context, 2425 .parameters = cpuset_fs_parameters, 2426 .fs_flags = FS_USERNS_MOUNT, 2427 }; 2428 #endif 2429 2430 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2431 struct cgroup_namespace *ns) 2432 { 2433 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2434 2435 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2436 } 2437 2438 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2439 struct cgroup_namespace *ns) 2440 { 2441 int ret; 2442 2443 cgroup_lock(); 2444 spin_lock_irq(&css_set_lock); 2445 2446 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2447 2448 spin_unlock_irq(&css_set_lock); 2449 cgroup_unlock(); 2450 2451 return ret; 2452 } 2453 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2454 2455 /** 2456 * cgroup_attach_lock - Lock for ->attach() 2457 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2458 * 2459 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2460 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2461 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2462 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2463 * lead to deadlocks. 2464 * 2465 * Bringing up a CPU may involve creating and destroying tasks which requires 2466 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2467 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2468 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2469 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2470 * the threadgroup_rwsem to be released to create new tasks. For more details: 2471 * 2472 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2473 * 2474 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2475 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2476 * CPU hotplug is disabled on entry. 2477 */ 2478 void cgroup_attach_lock(bool lock_threadgroup) 2479 { 2480 cpus_read_lock(); 2481 if (lock_threadgroup) 2482 percpu_down_write(&cgroup_threadgroup_rwsem); 2483 } 2484 2485 /** 2486 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2487 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2488 */ 2489 void cgroup_attach_unlock(bool lock_threadgroup) 2490 { 2491 if (lock_threadgroup) 2492 percpu_up_write(&cgroup_threadgroup_rwsem); 2493 cpus_read_unlock(); 2494 } 2495 2496 /** 2497 * cgroup_migrate_add_task - add a migration target task to a migration context 2498 * @task: target task 2499 * @mgctx: target migration context 2500 * 2501 * Add @task, which is a migration target, to @mgctx->tset. This function 2502 * becomes noop if @task doesn't need to be migrated. @task's css_set 2503 * should have been added as a migration source and @task->cg_list will be 2504 * moved from the css_set's tasks list to mg_tasks one. 2505 */ 2506 static void cgroup_migrate_add_task(struct task_struct *task, 2507 struct cgroup_mgctx *mgctx) 2508 { 2509 struct css_set *cset; 2510 2511 lockdep_assert_held(&css_set_lock); 2512 2513 /* @task either already exited or can't exit until the end */ 2514 if (task->flags & PF_EXITING) 2515 return; 2516 2517 /* cgroup_threadgroup_rwsem protects racing against forks */ 2518 WARN_ON_ONCE(list_empty(&task->cg_list)); 2519 2520 cset = task_css_set(task); 2521 if (!cset->mg_src_cgrp) 2522 return; 2523 2524 mgctx->tset.nr_tasks++; 2525 2526 list_move_tail(&task->cg_list, &cset->mg_tasks); 2527 if (list_empty(&cset->mg_node)) 2528 list_add_tail(&cset->mg_node, 2529 &mgctx->tset.src_csets); 2530 if (list_empty(&cset->mg_dst_cset->mg_node)) 2531 list_add_tail(&cset->mg_dst_cset->mg_node, 2532 &mgctx->tset.dst_csets); 2533 } 2534 2535 /** 2536 * cgroup_taskset_first - reset taskset and return the first task 2537 * @tset: taskset of interest 2538 * @dst_cssp: output variable for the destination css 2539 * 2540 * @tset iteration is initialized and the first task is returned. 2541 */ 2542 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2543 struct cgroup_subsys_state **dst_cssp) 2544 { 2545 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2546 tset->cur_task = NULL; 2547 2548 return cgroup_taskset_next(tset, dst_cssp); 2549 } 2550 2551 /** 2552 * cgroup_taskset_next - iterate to the next task in taskset 2553 * @tset: taskset of interest 2554 * @dst_cssp: output variable for the destination css 2555 * 2556 * Return the next task in @tset. Iteration must have been initialized 2557 * with cgroup_taskset_first(). 2558 */ 2559 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2560 struct cgroup_subsys_state **dst_cssp) 2561 { 2562 struct css_set *cset = tset->cur_cset; 2563 struct task_struct *task = tset->cur_task; 2564 2565 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2566 if (!task) 2567 task = list_first_entry(&cset->mg_tasks, 2568 struct task_struct, cg_list); 2569 else 2570 task = list_next_entry(task, cg_list); 2571 2572 if (&task->cg_list != &cset->mg_tasks) { 2573 tset->cur_cset = cset; 2574 tset->cur_task = task; 2575 2576 /* 2577 * This function may be called both before and 2578 * after cgroup_migrate_execute(). The two cases 2579 * can be distinguished by looking at whether @cset 2580 * has its ->mg_dst_cset set. 2581 */ 2582 if (cset->mg_dst_cset) 2583 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2584 else 2585 *dst_cssp = cset->subsys[tset->ssid]; 2586 2587 return task; 2588 } 2589 2590 cset = list_next_entry(cset, mg_node); 2591 task = NULL; 2592 } 2593 2594 return NULL; 2595 } 2596 2597 /** 2598 * cgroup_migrate_execute - migrate a taskset 2599 * @mgctx: migration context 2600 * 2601 * Migrate tasks in @mgctx as setup by migration preparation functions. 2602 * This function fails iff one of the ->can_attach callbacks fails and 2603 * guarantees that either all or none of the tasks in @mgctx are migrated. 2604 * @mgctx is consumed regardless of success. 2605 */ 2606 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2607 { 2608 struct cgroup_taskset *tset = &mgctx->tset; 2609 struct cgroup_subsys *ss; 2610 struct task_struct *task, *tmp_task; 2611 struct css_set *cset, *tmp_cset; 2612 int ssid, failed_ssid, ret; 2613 2614 /* check that we can legitimately attach to the cgroup */ 2615 if (tset->nr_tasks) { 2616 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2617 if (ss->can_attach) { 2618 tset->ssid = ssid; 2619 ret = ss->can_attach(tset); 2620 if (ret) { 2621 failed_ssid = ssid; 2622 goto out_cancel_attach; 2623 } 2624 } 2625 } while_each_subsys_mask(); 2626 } 2627 2628 /* 2629 * Now that we're guaranteed success, proceed to move all tasks to 2630 * the new cgroup. There are no failure cases after here, so this 2631 * is the commit point. 2632 */ 2633 spin_lock_irq(&css_set_lock); 2634 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2635 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2636 struct css_set *from_cset = task_css_set(task); 2637 struct css_set *to_cset = cset->mg_dst_cset; 2638 2639 get_css_set(to_cset); 2640 to_cset->nr_tasks++; 2641 css_set_move_task(task, from_cset, to_cset, true); 2642 from_cset->nr_tasks--; 2643 /* 2644 * If the source or destination cgroup is frozen, 2645 * the task might require to change its state. 2646 */ 2647 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2648 to_cset->dfl_cgrp); 2649 put_css_set_locked(from_cset); 2650 2651 } 2652 } 2653 spin_unlock_irq(&css_set_lock); 2654 2655 /* 2656 * Migration is committed, all target tasks are now on dst_csets. 2657 * Nothing is sensitive to fork() after this point. Notify 2658 * controllers that migration is complete. 2659 */ 2660 tset->csets = &tset->dst_csets; 2661 2662 if (tset->nr_tasks) { 2663 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2664 if (ss->attach) { 2665 tset->ssid = ssid; 2666 ss->attach(tset); 2667 } 2668 } while_each_subsys_mask(); 2669 } 2670 2671 ret = 0; 2672 goto out_release_tset; 2673 2674 out_cancel_attach: 2675 if (tset->nr_tasks) { 2676 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2677 if (ssid == failed_ssid) 2678 break; 2679 if (ss->cancel_attach) { 2680 tset->ssid = ssid; 2681 ss->cancel_attach(tset); 2682 } 2683 } while_each_subsys_mask(); 2684 } 2685 out_release_tset: 2686 spin_lock_irq(&css_set_lock); 2687 list_splice_init(&tset->dst_csets, &tset->src_csets); 2688 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2689 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2690 list_del_init(&cset->mg_node); 2691 } 2692 spin_unlock_irq(&css_set_lock); 2693 2694 /* 2695 * Re-initialize the cgroup_taskset structure in case it is reused 2696 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2697 * iteration. 2698 */ 2699 tset->nr_tasks = 0; 2700 tset->csets = &tset->src_csets; 2701 return ret; 2702 } 2703 2704 /** 2705 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2706 * @dst_cgrp: destination cgroup to test 2707 * 2708 * On the default hierarchy, except for the mixable, (possible) thread root 2709 * and threaded cgroups, subtree_control must be zero for migration 2710 * destination cgroups with tasks so that child cgroups don't compete 2711 * against tasks. 2712 */ 2713 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2714 { 2715 /* v1 doesn't have any restriction */ 2716 if (!cgroup_on_dfl(dst_cgrp)) 2717 return 0; 2718 2719 /* verify @dst_cgrp can host resources */ 2720 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2721 return -EOPNOTSUPP; 2722 2723 /* 2724 * If @dst_cgrp is already or can become a thread root or is 2725 * threaded, it doesn't matter. 2726 */ 2727 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2728 return 0; 2729 2730 /* apply no-internal-process constraint */ 2731 if (dst_cgrp->subtree_control) 2732 return -EBUSY; 2733 2734 return 0; 2735 } 2736 2737 /** 2738 * cgroup_migrate_finish - cleanup after attach 2739 * @mgctx: migration context 2740 * 2741 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2742 * those functions for details. 2743 */ 2744 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2745 { 2746 struct css_set *cset, *tmp_cset; 2747 2748 lockdep_assert_held(&cgroup_mutex); 2749 2750 spin_lock_irq(&css_set_lock); 2751 2752 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2753 mg_src_preload_node) { 2754 cset->mg_src_cgrp = NULL; 2755 cset->mg_dst_cgrp = NULL; 2756 cset->mg_dst_cset = NULL; 2757 list_del_init(&cset->mg_src_preload_node); 2758 put_css_set_locked(cset); 2759 } 2760 2761 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2762 mg_dst_preload_node) { 2763 cset->mg_src_cgrp = NULL; 2764 cset->mg_dst_cgrp = NULL; 2765 cset->mg_dst_cset = NULL; 2766 list_del_init(&cset->mg_dst_preload_node); 2767 put_css_set_locked(cset); 2768 } 2769 2770 spin_unlock_irq(&css_set_lock); 2771 } 2772 2773 /** 2774 * cgroup_migrate_add_src - add a migration source css_set 2775 * @src_cset: the source css_set to add 2776 * @dst_cgrp: the destination cgroup 2777 * @mgctx: migration context 2778 * 2779 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2780 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2781 * up by cgroup_migrate_finish(). 2782 * 2783 * This function may be called without holding cgroup_threadgroup_rwsem 2784 * even if the target is a process. Threads may be created and destroyed 2785 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2786 * into play and the preloaded css_sets are guaranteed to cover all 2787 * migrations. 2788 */ 2789 void cgroup_migrate_add_src(struct css_set *src_cset, 2790 struct cgroup *dst_cgrp, 2791 struct cgroup_mgctx *mgctx) 2792 { 2793 struct cgroup *src_cgrp; 2794 2795 lockdep_assert_held(&cgroup_mutex); 2796 lockdep_assert_held(&css_set_lock); 2797 2798 /* 2799 * If ->dead, @src_set is associated with one or more dead cgroups 2800 * and doesn't contain any migratable tasks. Ignore it early so 2801 * that the rest of migration path doesn't get confused by it. 2802 */ 2803 if (src_cset->dead) 2804 return; 2805 2806 if (!list_empty(&src_cset->mg_src_preload_node)) 2807 return; 2808 2809 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2810 2811 WARN_ON(src_cset->mg_src_cgrp); 2812 WARN_ON(src_cset->mg_dst_cgrp); 2813 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2814 WARN_ON(!list_empty(&src_cset->mg_node)); 2815 2816 src_cset->mg_src_cgrp = src_cgrp; 2817 src_cset->mg_dst_cgrp = dst_cgrp; 2818 get_css_set(src_cset); 2819 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2820 } 2821 2822 /** 2823 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2824 * @mgctx: migration context 2825 * 2826 * Tasks are about to be moved and all the source css_sets have been 2827 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2828 * pins all destination css_sets, links each to its source, and append them 2829 * to @mgctx->preloaded_dst_csets. 2830 * 2831 * This function must be called after cgroup_migrate_add_src() has been 2832 * called on each migration source css_set. After migration is performed 2833 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2834 * @mgctx. 2835 */ 2836 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2837 { 2838 struct css_set *src_cset, *tmp_cset; 2839 2840 lockdep_assert_held(&cgroup_mutex); 2841 2842 /* look up the dst cset for each src cset and link it to src */ 2843 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2844 mg_src_preload_node) { 2845 struct css_set *dst_cset; 2846 struct cgroup_subsys *ss; 2847 int ssid; 2848 2849 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2850 if (!dst_cset) 2851 return -ENOMEM; 2852 2853 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2854 2855 /* 2856 * If src cset equals dst, it's noop. Drop the src. 2857 * cgroup_migrate() will skip the cset too. Note that we 2858 * can't handle src == dst as some nodes are used by both. 2859 */ 2860 if (src_cset == dst_cset) { 2861 src_cset->mg_src_cgrp = NULL; 2862 src_cset->mg_dst_cgrp = NULL; 2863 list_del_init(&src_cset->mg_src_preload_node); 2864 put_css_set(src_cset); 2865 put_css_set(dst_cset); 2866 continue; 2867 } 2868 2869 src_cset->mg_dst_cset = dst_cset; 2870 2871 if (list_empty(&dst_cset->mg_dst_preload_node)) 2872 list_add_tail(&dst_cset->mg_dst_preload_node, 2873 &mgctx->preloaded_dst_csets); 2874 else 2875 put_css_set(dst_cset); 2876 2877 for_each_subsys(ss, ssid) 2878 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2879 mgctx->ss_mask |= 1 << ssid; 2880 } 2881 2882 return 0; 2883 } 2884 2885 /** 2886 * cgroup_migrate - migrate a process or task to a cgroup 2887 * @leader: the leader of the process or the task to migrate 2888 * @threadgroup: whether @leader points to the whole process or a single task 2889 * @mgctx: migration context 2890 * 2891 * Migrate a process or task denoted by @leader. If migrating a process, 2892 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2893 * responsible for invoking cgroup_migrate_add_src() and 2894 * cgroup_migrate_prepare_dst() on the targets before invoking this 2895 * function and following up with cgroup_migrate_finish(). 2896 * 2897 * As long as a controller's ->can_attach() doesn't fail, this function is 2898 * guaranteed to succeed. This means that, excluding ->can_attach() 2899 * failure, when migrating multiple targets, the success or failure can be 2900 * decided for all targets by invoking group_migrate_prepare_dst() before 2901 * actually starting migrating. 2902 */ 2903 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2904 struct cgroup_mgctx *mgctx) 2905 { 2906 struct task_struct *task; 2907 2908 /* 2909 * The following thread iteration should be inside an RCU critical 2910 * section to prevent tasks from being freed while taking the snapshot. 2911 * spin_lock_irq() implies RCU critical section here. 2912 */ 2913 spin_lock_irq(&css_set_lock); 2914 task = leader; 2915 do { 2916 cgroup_migrate_add_task(task, mgctx); 2917 if (!threadgroup) 2918 break; 2919 } while_each_thread(leader, task); 2920 spin_unlock_irq(&css_set_lock); 2921 2922 return cgroup_migrate_execute(mgctx); 2923 } 2924 2925 /** 2926 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2927 * @dst_cgrp: the cgroup to attach to 2928 * @leader: the task or the leader of the threadgroup to be attached 2929 * @threadgroup: attach the whole threadgroup? 2930 * 2931 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2932 */ 2933 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2934 bool threadgroup) 2935 { 2936 DEFINE_CGROUP_MGCTX(mgctx); 2937 struct task_struct *task; 2938 int ret = 0; 2939 2940 /* look up all src csets */ 2941 spin_lock_irq(&css_set_lock); 2942 rcu_read_lock(); 2943 task = leader; 2944 do { 2945 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2946 if (!threadgroup) 2947 break; 2948 } while_each_thread(leader, task); 2949 rcu_read_unlock(); 2950 spin_unlock_irq(&css_set_lock); 2951 2952 /* prepare dst csets and commit */ 2953 ret = cgroup_migrate_prepare_dst(&mgctx); 2954 if (!ret) 2955 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2956 2957 cgroup_migrate_finish(&mgctx); 2958 2959 if (!ret) 2960 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2961 2962 return ret; 2963 } 2964 2965 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2966 bool *threadgroup_locked) 2967 { 2968 struct task_struct *tsk; 2969 pid_t pid; 2970 2971 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2972 return ERR_PTR(-EINVAL); 2973 2974 /* 2975 * If we migrate a single thread, we don't care about threadgroup 2976 * stability. If the thread is `current`, it won't exit(2) under our 2977 * hands or change PID through exec(2). We exclude 2978 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2979 * callers by cgroup_mutex. 2980 * Therefore, we can skip the global lock. 2981 */ 2982 lockdep_assert_held(&cgroup_mutex); 2983 *threadgroup_locked = pid || threadgroup; 2984 cgroup_attach_lock(*threadgroup_locked); 2985 2986 rcu_read_lock(); 2987 if (pid) { 2988 tsk = find_task_by_vpid(pid); 2989 if (!tsk) { 2990 tsk = ERR_PTR(-ESRCH); 2991 goto out_unlock_threadgroup; 2992 } 2993 } else { 2994 tsk = current; 2995 } 2996 2997 if (threadgroup) 2998 tsk = tsk->group_leader; 2999 3000 /* 3001 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 3002 * If userland migrates such a kthread to a non-root cgroup, it can 3003 * become trapped in a cpuset, or RT kthread may be born in a 3004 * cgroup with no rt_runtime allocated. Just say no. 3005 */ 3006 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 3007 tsk = ERR_PTR(-EINVAL); 3008 goto out_unlock_threadgroup; 3009 } 3010 3011 get_task_struct(tsk); 3012 goto out_unlock_rcu; 3013 3014 out_unlock_threadgroup: 3015 cgroup_attach_unlock(*threadgroup_locked); 3016 *threadgroup_locked = false; 3017 out_unlock_rcu: 3018 rcu_read_unlock(); 3019 return tsk; 3020 } 3021 3022 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 3023 { 3024 struct cgroup_subsys *ss; 3025 int ssid; 3026 3027 /* release reference from cgroup_procs_write_start() */ 3028 put_task_struct(task); 3029 3030 cgroup_attach_unlock(threadgroup_locked); 3031 3032 for_each_subsys(ss, ssid) 3033 if (ss->post_attach) 3034 ss->post_attach(); 3035 } 3036 3037 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 3038 { 3039 struct cgroup_subsys *ss; 3040 bool printed = false; 3041 int ssid; 3042 3043 do_each_subsys_mask(ss, ssid, ss_mask) { 3044 if (printed) 3045 seq_putc(seq, ' '); 3046 seq_puts(seq, ss->name); 3047 printed = true; 3048 } while_each_subsys_mask(); 3049 if (printed) 3050 seq_putc(seq, '\n'); 3051 } 3052 3053 /* show controllers which are enabled from the parent */ 3054 static int cgroup_controllers_show(struct seq_file *seq, void *v) 3055 { 3056 struct cgroup *cgrp = seq_css(seq)->cgroup; 3057 3058 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 3059 return 0; 3060 } 3061 3062 /* show controllers which are enabled for a given cgroup's children */ 3063 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 3064 { 3065 struct cgroup *cgrp = seq_css(seq)->cgroup; 3066 3067 cgroup_print_ss_mask(seq, cgrp->subtree_control); 3068 return 0; 3069 } 3070 3071 /** 3072 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 3073 * @cgrp: root of the subtree to update csses for 3074 * 3075 * @cgrp's control masks have changed and its subtree's css associations 3076 * need to be updated accordingly. This function looks up all css_sets 3077 * which are attached to the subtree, creates the matching updated css_sets 3078 * and migrates the tasks to the new ones. 3079 */ 3080 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3081 { 3082 DEFINE_CGROUP_MGCTX(mgctx); 3083 struct cgroup_subsys_state *d_css; 3084 struct cgroup *dsct; 3085 struct css_set *src_cset; 3086 bool has_tasks; 3087 int ret; 3088 3089 lockdep_assert_held(&cgroup_mutex); 3090 3091 /* look up all csses currently attached to @cgrp's subtree */ 3092 spin_lock_irq(&css_set_lock); 3093 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3094 struct cgrp_cset_link *link; 3095 3096 /* 3097 * As cgroup_update_dfl_csses() is only called by 3098 * cgroup_apply_control(). The csses associated with the 3099 * given cgrp will not be affected by changes made to 3100 * its subtree_control file. We can skip them. 3101 */ 3102 if (dsct == cgrp) 3103 continue; 3104 3105 list_for_each_entry(link, &dsct->cset_links, cset_link) 3106 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3107 } 3108 spin_unlock_irq(&css_set_lock); 3109 3110 /* 3111 * We need to write-lock threadgroup_rwsem while migrating tasks. 3112 * However, if there are no source csets for @cgrp, changing its 3113 * controllers isn't gonna produce any task migrations and the 3114 * write-locking can be skipped safely. 3115 */ 3116 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3117 cgroup_attach_lock(has_tasks); 3118 3119 /* NULL dst indicates self on default hierarchy */ 3120 ret = cgroup_migrate_prepare_dst(&mgctx); 3121 if (ret) 3122 goto out_finish; 3123 3124 spin_lock_irq(&css_set_lock); 3125 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3126 mg_src_preload_node) { 3127 struct task_struct *task, *ntask; 3128 3129 /* all tasks in src_csets need to be migrated */ 3130 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3131 cgroup_migrate_add_task(task, &mgctx); 3132 } 3133 spin_unlock_irq(&css_set_lock); 3134 3135 ret = cgroup_migrate_execute(&mgctx); 3136 out_finish: 3137 cgroup_migrate_finish(&mgctx); 3138 cgroup_attach_unlock(has_tasks); 3139 return ret; 3140 } 3141 3142 /** 3143 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3144 * @cgrp: root of the target subtree 3145 * 3146 * Because css offlining is asynchronous, userland may try to re-enable a 3147 * controller while the previous css is still around. This function grabs 3148 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3149 */ 3150 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3151 __acquires(&cgroup_mutex) 3152 { 3153 struct cgroup *dsct; 3154 struct cgroup_subsys_state *d_css; 3155 struct cgroup_subsys *ss; 3156 int ssid; 3157 3158 restart: 3159 cgroup_lock(); 3160 3161 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3162 for_each_subsys(ss, ssid) { 3163 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3164 DEFINE_WAIT(wait); 3165 3166 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3167 continue; 3168 3169 cgroup_get_live(dsct); 3170 prepare_to_wait(&dsct->offline_waitq, &wait, 3171 TASK_UNINTERRUPTIBLE); 3172 3173 cgroup_unlock(); 3174 schedule(); 3175 finish_wait(&dsct->offline_waitq, &wait); 3176 3177 cgroup_put(dsct); 3178 goto restart; 3179 } 3180 } 3181 } 3182 3183 /** 3184 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3185 * @cgrp: root of the target subtree 3186 * 3187 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3188 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3189 * itself. 3190 */ 3191 static void cgroup_save_control(struct cgroup *cgrp) 3192 { 3193 struct cgroup *dsct; 3194 struct cgroup_subsys_state *d_css; 3195 3196 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3197 dsct->old_subtree_control = dsct->subtree_control; 3198 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3199 dsct->old_dom_cgrp = dsct->dom_cgrp; 3200 } 3201 } 3202 3203 /** 3204 * cgroup_propagate_control - refresh control masks of a subtree 3205 * @cgrp: root of the target subtree 3206 * 3207 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3208 * ->subtree_control and propagate controller availability through the 3209 * subtree so that descendants don't have unavailable controllers enabled. 3210 */ 3211 static void cgroup_propagate_control(struct cgroup *cgrp) 3212 { 3213 struct cgroup *dsct; 3214 struct cgroup_subsys_state *d_css; 3215 3216 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3217 dsct->subtree_control &= cgroup_control(dsct); 3218 dsct->subtree_ss_mask = 3219 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3220 cgroup_ss_mask(dsct)); 3221 } 3222 } 3223 3224 /** 3225 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3226 * @cgrp: root of the target subtree 3227 * 3228 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3229 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3230 * itself. 3231 */ 3232 static void cgroup_restore_control(struct cgroup *cgrp) 3233 { 3234 struct cgroup *dsct; 3235 struct cgroup_subsys_state *d_css; 3236 3237 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3238 dsct->subtree_control = dsct->old_subtree_control; 3239 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3240 dsct->dom_cgrp = dsct->old_dom_cgrp; 3241 } 3242 } 3243 3244 static bool css_visible(struct cgroup_subsys_state *css) 3245 { 3246 struct cgroup_subsys *ss = css->ss; 3247 struct cgroup *cgrp = css->cgroup; 3248 3249 if (cgroup_control(cgrp) & (1 << ss->id)) 3250 return true; 3251 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3252 return false; 3253 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3254 } 3255 3256 /** 3257 * cgroup_apply_control_enable - enable or show csses according to control 3258 * @cgrp: root of the target subtree 3259 * 3260 * Walk @cgrp's subtree and create new csses or make the existing ones 3261 * visible. A css is created invisible if it's being implicitly enabled 3262 * through dependency. An invisible css is made visible when the userland 3263 * explicitly enables it. 3264 * 3265 * Returns 0 on success, -errno on failure. On failure, csses which have 3266 * been processed already aren't cleaned up. The caller is responsible for 3267 * cleaning up with cgroup_apply_control_disable(). 3268 */ 3269 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3270 { 3271 struct cgroup *dsct; 3272 struct cgroup_subsys_state *d_css; 3273 struct cgroup_subsys *ss; 3274 int ssid, ret; 3275 3276 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3277 for_each_subsys(ss, ssid) { 3278 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3279 3280 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3281 continue; 3282 3283 if (!css) { 3284 css = css_create(dsct, ss); 3285 if (IS_ERR(css)) 3286 return PTR_ERR(css); 3287 } 3288 3289 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3290 3291 if (css_visible(css)) { 3292 ret = css_populate_dir(css); 3293 if (ret) 3294 return ret; 3295 } 3296 } 3297 } 3298 3299 return 0; 3300 } 3301 3302 /** 3303 * cgroup_apply_control_disable - kill or hide csses according to control 3304 * @cgrp: root of the target subtree 3305 * 3306 * Walk @cgrp's subtree and kill and hide csses so that they match 3307 * cgroup_ss_mask() and cgroup_visible_mask(). 3308 * 3309 * A css is hidden when the userland requests it to be disabled while other 3310 * subsystems are still depending on it. The css must not actively control 3311 * resources and be in the vanilla state if it's made visible again later. 3312 * Controllers which may be depended upon should provide ->css_reset() for 3313 * this purpose. 3314 */ 3315 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3316 { 3317 struct cgroup *dsct; 3318 struct cgroup_subsys_state *d_css; 3319 struct cgroup_subsys *ss; 3320 int ssid; 3321 3322 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3323 for_each_subsys(ss, ssid) { 3324 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3325 3326 if (!css) 3327 continue; 3328 3329 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3330 3331 if (css->parent && 3332 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3333 kill_css(css); 3334 } else if (!css_visible(css)) { 3335 css_clear_dir(css); 3336 if (ss->css_reset) 3337 ss->css_reset(css); 3338 } 3339 } 3340 } 3341 } 3342 3343 /** 3344 * cgroup_apply_control - apply control mask updates to the subtree 3345 * @cgrp: root of the target subtree 3346 * 3347 * subsystems can be enabled and disabled in a subtree using the following 3348 * steps. 3349 * 3350 * 1. Call cgroup_save_control() to stash the current state. 3351 * 2. Update ->subtree_control masks in the subtree as desired. 3352 * 3. Call cgroup_apply_control() to apply the changes. 3353 * 4. Optionally perform other related operations. 3354 * 5. Call cgroup_finalize_control() to finish up. 3355 * 3356 * This function implements step 3 and propagates the mask changes 3357 * throughout @cgrp's subtree, updates csses accordingly and perform 3358 * process migrations. 3359 */ 3360 static int cgroup_apply_control(struct cgroup *cgrp) 3361 { 3362 int ret; 3363 3364 cgroup_propagate_control(cgrp); 3365 3366 ret = cgroup_apply_control_enable(cgrp); 3367 if (ret) 3368 return ret; 3369 3370 /* 3371 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3372 * making the following cgroup_update_dfl_csses() properly update 3373 * css associations of all tasks in the subtree. 3374 */ 3375 return cgroup_update_dfl_csses(cgrp); 3376 } 3377 3378 /** 3379 * cgroup_finalize_control - finalize control mask update 3380 * @cgrp: root of the target subtree 3381 * @ret: the result of the update 3382 * 3383 * Finalize control mask update. See cgroup_apply_control() for more info. 3384 */ 3385 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3386 { 3387 if (ret) { 3388 cgroup_restore_control(cgrp); 3389 cgroup_propagate_control(cgrp); 3390 } 3391 3392 cgroup_apply_control_disable(cgrp); 3393 } 3394 3395 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3396 { 3397 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3398 3399 /* if nothing is getting enabled, nothing to worry about */ 3400 if (!enable) 3401 return 0; 3402 3403 /* can @cgrp host any resources? */ 3404 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3405 return -EOPNOTSUPP; 3406 3407 /* mixables don't care */ 3408 if (cgroup_is_mixable(cgrp)) 3409 return 0; 3410 3411 if (domain_enable) { 3412 /* can't enable domain controllers inside a thread subtree */ 3413 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3414 return -EOPNOTSUPP; 3415 } else { 3416 /* 3417 * Threaded controllers can handle internal competitions 3418 * and are always allowed inside a (prospective) thread 3419 * subtree. 3420 */ 3421 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3422 return 0; 3423 } 3424 3425 /* 3426 * Controllers can't be enabled for a cgroup with tasks to avoid 3427 * child cgroups competing against tasks. 3428 */ 3429 if (cgroup_has_tasks(cgrp)) 3430 return -EBUSY; 3431 3432 return 0; 3433 } 3434 3435 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3436 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3437 char *buf, size_t nbytes, 3438 loff_t off) 3439 { 3440 u16 enable = 0, disable = 0; 3441 struct cgroup *cgrp, *child; 3442 struct cgroup_subsys *ss; 3443 char *tok; 3444 int ssid, ret; 3445 3446 /* 3447 * Parse input - space separated list of subsystem names prefixed 3448 * with either + or -. 3449 */ 3450 buf = strstrip(buf); 3451 while ((tok = strsep(&buf, " "))) { 3452 if (tok[0] == '\0') 3453 continue; 3454 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3455 if (!cgroup_ssid_enabled(ssid) || 3456 strcmp(tok + 1, ss->name)) 3457 continue; 3458 3459 if (*tok == '+') { 3460 enable |= 1 << ssid; 3461 disable &= ~(1 << ssid); 3462 } else if (*tok == '-') { 3463 disable |= 1 << ssid; 3464 enable &= ~(1 << ssid); 3465 } else { 3466 return -EINVAL; 3467 } 3468 break; 3469 } while_each_subsys_mask(); 3470 if (ssid == CGROUP_SUBSYS_COUNT) 3471 return -EINVAL; 3472 } 3473 3474 cgrp = cgroup_kn_lock_live(of->kn, true); 3475 if (!cgrp) 3476 return -ENODEV; 3477 3478 for_each_subsys(ss, ssid) { 3479 if (enable & (1 << ssid)) { 3480 if (cgrp->subtree_control & (1 << ssid)) { 3481 enable &= ~(1 << ssid); 3482 continue; 3483 } 3484 3485 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3486 ret = -ENOENT; 3487 goto out_unlock; 3488 } 3489 } else if (disable & (1 << ssid)) { 3490 if (!(cgrp->subtree_control & (1 << ssid))) { 3491 disable &= ~(1 << ssid); 3492 continue; 3493 } 3494 3495 /* a child has it enabled? */ 3496 cgroup_for_each_live_child(child, cgrp) { 3497 if (child->subtree_control & (1 << ssid)) { 3498 ret = -EBUSY; 3499 goto out_unlock; 3500 } 3501 } 3502 } 3503 } 3504 3505 if (!enable && !disable) { 3506 ret = 0; 3507 goto out_unlock; 3508 } 3509 3510 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3511 if (ret) 3512 goto out_unlock; 3513 3514 /* save and update control masks and prepare csses */ 3515 cgroup_save_control(cgrp); 3516 3517 cgrp->subtree_control |= enable; 3518 cgrp->subtree_control &= ~disable; 3519 3520 ret = cgroup_apply_control(cgrp); 3521 cgroup_finalize_control(cgrp, ret); 3522 if (ret) 3523 goto out_unlock; 3524 3525 kernfs_activate(cgrp->kn); 3526 out_unlock: 3527 cgroup_kn_unlock(of->kn); 3528 return ret ?: nbytes; 3529 } 3530 3531 /** 3532 * cgroup_enable_threaded - make @cgrp threaded 3533 * @cgrp: the target cgroup 3534 * 3535 * Called when "threaded" is written to the cgroup.type interface file and 3536 * tries to make @cgrp threaded and join the parent's resource domain. 3537 * This function is never called on the root cgroup as cgroup.type doesn't 3538 * exist on it. 3539 */ 3540 static int cgroup_enable_threaded(struct cgroup *cgrp) 3541 { 3542 struct cgroup *parent = cgroup_parent(cgrp); 3543 struct cgroup *dom_cgrp = parent->dom_cgrp; 3544 struct cgroup *dsct; 3545 struct cgroup_subsys_state *d_css; 3546 int ret; 3547 3548 lockdep_assert_held(&cgroup_mutex); 3549 3550 /* noop if already threaded */ 3551 if (cgroup_is_threaded(cgrp)) 3552 return 0; 3553 3554 /* 3555 * If @cgroup is populated or has domain controllers enabled, it 3556 * can't be switched. While the below cgroup_can_be_thread_root() 3557 * test can catch the same conditions, that's only when @parent is 3558 * not mixable, so let's check it explicitly. 3559 */ 3560 if (cgroup_is_populated(cgrp) || 3561 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3562 return -EOPNOTSUPP; 3563 3564 /* we're joining the parent's domain, ensure its validity */ 3565 if (!cgroup_is_valid_domain(dom_cgrp) || 3566 !cgroup_can_be_thread_root(dom_cgrp)) 3567 return -EOPNOTSUPP; 3568 3569 /* 3570 * The following shouldn't cause actual migrations and should 3571 * always succeed. 3572 */ 3573 cgroup_save_control(cgrp); 3574 3575 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3576 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3577 dsct->dom_cgrp = dom_cgrp; 3578 3579 ret = cgroup_apply_control(cgrp); 3580 if (!ret) 3581 parent->nr_threaded_children++; 3582 3583 cgroup_finalize_control(cgrp, ret); 3584 return ret; 3585 } 3586 3587 static int cgroup_type_show(struct seq_file *seq, void *v) 3588 { 3589 struct cgroup *cgrp = seq_css(seq)->cgroup; 3590 3591 if (cgroup_is_threaded(cgrp)) 3592 seq_puts(seq, "threaded\n"); 3593 else if (!cgroup_is_valid_domain(cgrp)) 3594 seq_puts(seq, "domain invalid\n"); 3595 else if (cgroup_is_thread_root(cgrp)) 3596 seq_puts(seq, "domain threaded\n"); 3597 else 3598 seq_puts(seq, "domain\n"); 3599 3600 return 0; 3601 } 3602 3603 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3604 size_t nbytes, loff_t off) 3605 { 3606 struct cgroup *cgrp; 3607 int ret; 3608 3609 /* only switching to threaded mode is supported */ 3610 if (strcmp(strstrip(buf), "threaded")) 3611 return -EINVAL; 3612 3613 /* drain dying csses before we re-apply (threaded) subtree control */ 3614 cgrp = cgroup_kn_lock_live(of->kn, true); 3615 if (!cgrp) 3616 return -ENOENT; 3617 3618 /* threaded can only be enabled */ 3619 ret = cgroup_enable_threaded(cgrp); 3620 3621 cgroup_kn_unlock(of->kn); 3622 return ret ?: nbytes; 3623 } 3624 3625 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3626 { 3627 struct cgroup *cgrp = seq_css(seq)->cgroup; 3628 int descendants = READ_ONCE(cgrp->max_descendants); 3629 3630 if (descendants == INT_MAX) 3631 seq_puts(seq, "max\n"); 3632 else 3633 seq_printf(seq, "%d\n", descendants); 3634 3635 return 0; 3636 } 3637 3638 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3639 char *buf, size_t nbytes, loff_t off) 3640 { 3641 struct cgroup *cgrp; 3642 int descendants; 3643 ssize_t ret; 3644 3645 buf = strstrip(buf); 3646 if (!strcmp(buf, "max")) { 3647 descendants = INT_MAX; 3648 } else { 3649 ret = kstrtoint(buf, 0, &descendants); 3650 if (ret) 3651 return ret; 3652 } 3653 3654 if (descendants < 0) 3655 return -ERANGE; 3656 3657 cgrp = cgroup_kn_lock_live(of->kn, false); 3658 if (!cgrp) 3659 return -ENOENT; 3660 3661 cgrp->max_descendants = descendants; 3662 3663 cgroup_kn_unlock(of->kn); 3664 3665 return nbytes; 3666 } 3667 3668 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3669 { 3670 struct cgroup *cgrp = seq_css(seq)->cgroup; 3671 int depth = READ_ONCE(cgrp->max_depth); 3672 3673 if (depth == INT_MAX) 3674 seq_puts(seq, "max\n"); 3675 else 3676 seq_printf(seq, "%d\n", depth); 3677 3678 return 0; 3679 } 3680 3681 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3682 char *buf, size_t nbytes, loff_t off) 3683 { 3684 struct cgroup *cgrp; 3685 ssize_t ret; 3686 int depth; 3687 3688 buf = strstrip(buf); 3689 if (!strcmp(buf, "max")) { 3690 depth = INT_MAX; 3691 } else { 3692 ret = kstrtoint(buf, 0, &depth); 3693 if (ret) 3694 return ret; 3695 } 3696 3697 if (depth < 0) 3698 return -ERANGE; 3699 3700 cgrp = cgroup_kn_lock_live(of->kn, false); 3701 if (!cgrp) 3702 return -ENOENT; 3703 3704 cgrp->max_depth = depth; 3705 3706 cgroup_kn_unlock(of->kn); 3707 3708 return nbytes; 3709 } 3710 3711 static int cgroup_events_show(struct seq_file *seq, void *v) 3712 { 3713 struct cgroup *cgrp = seq_css(seq)->cgroup; 3714 3715 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3716 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3717 3718 return 0; 3719 } 3720 3721 static int cgroup_stat_show(struct seq_file *seq, void *v) 3722 { 3723 struct cgroup *cgroup = seq_css(seq)->cgroup; 3724 struct cgroup_subsys_state *css; 3725 int dying_cnt[CGROUP_SUBSYS_COUNT]; 3726 int ssid; 3727 3728 seq_printf(seq, "nr_descendants %d\n", 3729 cgroup->nr_descendants); 3730 3731 /* 3732 * Show the number of live and dying csses associated with each of 3733 * non-inhibited cgroup subsystems that is bound to cgroup v2. 3734 * 3735 * Without proper lock protection, racing is possible. So the 3736 * numbers may not be consistent when that happens. 3737 */ 3738 rcu_read_lock(); 3739 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { 3740 dying_cnt[ssid] = -1; 3741 if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) || 3742 (cgroup_subsys[ssid]->root != &cgrp_dfl_root)) 3743 continue; 3744 css = rcu_dereference_raw(cgroup->subsys[ssid]); 3745 dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid]; 3746 seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name, 3747 css ? (css->nr_descendants + 1) : 0); 3748 } 3749 3750 seq_printf(seq, "nr_dying_descendants %d\n", 3751 cgroup->nr_dying_descendants); 3752 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { 3753 if (dying_cnt[ssid] >= 0) 3754 seq_printf(seq, "nr_dying_subsys_%s %d\n", 3755 cgroup_subsys[ssid]->name, dying_cnt[ssid]); 3756 } 3757 rcu_read_unlock(); 3758 return 0; 3759 } 3760 3761 #ifdef CONFIG_CGROUP_SCHED 3762 /** 3763 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 3764 * @cgrp: the cgroup of interest 3765 * @ss: the subsystem of interest 3766 * 3767 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 3768 * or is offline, %NULL is returned. 3769 */ 3770 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 3771 struct cgroup_subsys *ss) 3772 { 3773 struct cgroup_subsys_state *css; 3774 3775 rcu_read_lock(); 3776 css = cgroup_css(cgrp, ss); 3777 if (css && !css_tryget_online(css)) 3778 css = NULL; 3779 rcu_read_unlock(); 3780 3781 return css; 3782 } 3783 3784 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid) 3785 { 3786 struct cgroup *cgrp = seq_css(seq)->cgroup; 3787 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3788 struct cgroup_subsys_state *css; 3789 int ret; 3790 3791 if (!ss->css_extra_stat_show) 3792 return 0; 3793 3794 css = cgroup_tryget_css(cgrp, ss); 3795 if (!css) 3796 return 0; 3797 3798 ret = ss->css_extra_stat_show(seq, css); 3799 css_put(css); 3800 return ret; 3801 } 3802 3803 static int cgroup_local_stat_show(struct seq_file *seq, 3804 struct cgroup *cgrp, int ssid) 3805 { 3806 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3807 struct cgroup_subsys_state *css; 3808 int ret; 3809 3810 if (!ss->css_local_stat_show) 3811 return 0; 3812 3813 css = cgroup_tryget_css(cgrp, ss); 3814 if (!css) 3815 return 0; 3816 3817 ret = ss->css_local_stat_show(seq, css); 3818 css_put(css); 3819 return ret; 3820 } 3821 #endif 3822 3823 static int cpu_stat_show(struct seq_file *seq, void *v) 3824 { 3825 int ret = 0; 3826 3827 cgroup_base_stat_cputime_show(seq); 3828 #ifdef CONFIG_CGROUP_SCHED 3829 ret = cgroup_extra_stat_show(seq, cpu_cgrp_id); 3830 #endif 3831 return ret; 3832 } 3833 3834 static int cpu_local_stat_show(struct seq_file *seq, void *v) 3835 { 3836 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3837 int ret = 0; 3838 3839 #ifdef CONFIG_CGROUP_SCHED 3840 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id); 3841 #endif 3842 return ret; 3843 } 3844 3845 #ifdef CONFIG_PSI 3846 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3847 { 3848 struct cgroup *cgrp = seq_css(seq)->cgroup; 3849 struct psi_group *psi = cgroup_psi(cgrp); 3850 3851 return psi_show(seq, psi, PSI_IO); 3852 } 3853 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3854 { 3855 struct cgroup *cgrp = seq_css(seq)->cgroup; 3856 struct psi_group *psi = cgroup_psi(cgrp); 3857 3858 return psi_show(seq, psi, PSI_MEM); 3859 } 3860 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3861 { 3862 struct cgroup *cgrp = seq_css(seq)->cgroup; 3863 struct psi_group *psi = cgroup_psi(cgrp); 3864 3865 return psi_show(seq, psi, PSI_CPU); 3866 } 3867 3868 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3869 size_t nbytes, enum psi_res res) 3870 { 3871 struct cgroup_file_ctx *ctx = of->priv; 3872 struct psi_trigger *new; 3873 struct cgroup *cgrp; 3874 struct psi_group *psi; 3875 3876 cgrp = cgroup_kn_lock_live(of->kn, false); 3877 if (!cgrp) 3878 return -ENODEV; 3879 3880 cgroup_get(cgrp); 3881 cgroup_kn_unlock(of->kn); 3882 3883 /* Allow only one trigger per file descriptor */ 3884 if (ctx->psi.trigger) { 3885 cgroup_put(cgrp); 3886 return -EBUSY; 3887 } 3888 3889 psi = cgroup_psi(cgrp); 3890 new = psi_trigger_create(psi, buf, res, of->file, of); 3891 if (IS_ERR(new)) { 3892 cgroup_put(cgrp); 3893 return PTR_ERR(new); 3894 } 3895 3896 smp_store_release(&ctx->psi.trigger, new); 3897 cgroup_put(cgrp); 3898 3899 return nbytes; 3900 } 3901 3902 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3903 char *buf, size_t nbytes, 3904 loff_t off) 3905 { 3906 return pressure_write(of, buf, nbytes, PSI_IO); 3907 } 3908 3909 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3910 char *buf, size_t nbytes, 3911 loff_t off) 3912 { 3913 return pressure_write(of, buf, nbytes, PSI_MEM); 3914 } 3915 3916 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3917 char *buf, size_t nbytes, 3918 loff_t off) 3919 { 3920 return pressure_write(of, buf, nbytes, PSI_CPU); 3921 } 3922 3923 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3924 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3925 { 3926 struct cgroup *cgrp = seq_css(seq)->cgroup; 3927 struct psi_group *psi = cgroup_psi(cgrp); 3928 3929 return psi_show(seq, psi, PSI_IRQ); 3930 } 3931 3932 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3933 char *buf, size_t nbytes, 3934 loff_t off) 3935 { 3936 return pressure_write(of, buf, nbytes, PSI_IRQ); 3937 } 3938 #endif 3939 3940 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3941 { 3942 struct cgroup *cgrp = seq_css(seq)->cgroup; 3943 struct psi_group *psi = cgroup_psi(cgrp); 3944 3945 seq_printf(seq, "%d\n", psi->enabled); 3946 3947 return 0; 3948 } 3949 3950 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3951 char *buf, size_t nbytes, 3952 loff_t off) 3953 { 3954 ssize_t ret; 3955 int enable; 3956 struct cgroup *cgrp; 3957 struct psi_group *psi; 3958 3959 ret = kstrtoint(strstrip(buf), 0, &enable); 3960 if (ret) 3961 return ret; 3962 3963 if (enable < 0 || enable > 1) 3964 return -ERANGE; 3965 3966 cgrp = cgroup_kn_lock_live(of->kn, false); 3967 if (!cgrp) 3968 return -ENOENT; 3969 3970 psi = cgroup_psi(cgrp); 3971 if (psi->enabled != enable) { 3972 int i; 3973 3974 /* show or hide {cpu,memory,io,irq}.pressure files */ 3975 for (i = 0; i < NR_PSI_RESOURCES; i++) 3976 cgroup_file_show(&cgrp->psi_files[i], enable); 3977 3978 psi->enabled = enable; 3979 if (enable) 3980 psi_cgroup_restart(psi); 3981 } 3982 3983 cgroup_kn_unlock(of->kn); 3984 3985 return nbytes; 3986 } 3987 3988 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3989 poll_table *pt) 3990 { 3991 struct cgroup_file_ctx *ctx = of->priv; 3992 3993 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3994 } 3995 3996 static void cgroup_pressure_release(struct kernfs_open_file *of) 3997 { 3998 struct cgroup_file_ctx *ctx = of->priv; 3999 4000 psi_trigger_destroy(ctx->psi.trigger); 4001 } 4002 4003 bool cgroup_psi_enabled(void) 4004 { 4005 if (static_branch_likely(&psi_disabled)) 4006 return false; 4007 4008 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 4009 } 4010 4011 #else /* CONFIG_PSI */ 4012 bool cgroup_psi_enabled(void) 4013 { 4014 return false; 4015 } 4016 4017 #endif /* CONFIG_PSI */ 4018 4019 static int cgroup_freeze_show(struct seq_file *seq, void *v) 4020 { 4021 struct cgroup *cgrp = seq_css(seq)->cgroup; 4022 4023 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 4024 4025 return 0; 4026 } 4027 4028 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 4029 char *buf, size_t nbytes, loff_t off) 4030 { 4031 struct cgroup *cgrp; 4032 ssize_t ret; 4033 int freeze; 4034 4035 ret = kstrtoint(strstrip(buf), 0, &freeze); 4036 if (ret) 4037 return ret; 4038 4039 if (freeze < 0 || freeze > 1) 4040 return -ERANGE; 4041 4042 cgrp = cgroup_kn_lock_live(of->kn, false); 4043 if (!cgrp) 4044 return -ENOENT; 4045 4046 cgroup_freeze(cgrp, freeze); 4047 4048 cgroup_kn_unlock(of->kn); 4049 4050 return nbytes; 4051 } 4052 4053 static void __cgroup_kill(struct cgroup *cgrp) 4054 { 4055 struct css_task_iter it; 4056 struct task_struct *task; 4057 4058 lockdep_assert_held(&cgroup_mutex); 4059 4060 spin_lock_irq(&css_set_lock); 4061 cgrp->kill_seq++; 4062 spin_unlock_irq(&css_set_lock); 4063 4064 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 4065 while ((task = css_task_iter_next(&it))) { 4066 /* Ignore kernel threads here. */ 4067 if (task->flags & PF_KTHREAD) 4068 continue; 4069 4070 /* Skip tasks that are already dying. */ 4071 if (__fatal_signal_pending(task)) 4072 continue; 4073 4074 send_sig(SIGKILL, task, 0); 4075 } 4076 css_task_iter_end(&it); 4077 } 4078 4079 static void cgroup_kill(struct cgroup *cgrp) 4080 { 4081 struct cgroup_subsys_state *css; 4082 struct cgroup *dsct; 4083 4084 lockdep_assert_held(&cgroup_mutex); 4085 4086 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 4087 __cgroup_kill(dsct); 4088 } 4089 4090 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 4091 size_t nbytes, loff_t off) 4092 { 4093 ssize_t ret = 0; 4094 int kill; 4095 struct cgroup *cgrp; 4096 4097 ret = kstrtoint(strstrip(buf), 0, &kill); 4098 if (ret) 4099 return ret; 4100 4101 if (kill != 1) 4102 return -ERANGE; 4103 4104 cgrp = cgroup_kn_lock_live(of->kn, false); 4105 if (!cgrp) 4106 return -ENOENT; 4107 4108 /* 4109 * Killing is a process directed operation, i.e. the whole thread-group 4110 * is taken down so act like we do for cgroup.procs and only make this 4111 * writable in non-threaded cgroups. 4112 */ 4113 if (cgroup_is_threaded(cgrp)) 4114 ret = -EOPNOTSUPP; 4115 else 4116 cgroup_kill(cgrp); 4117 4118 cgroup_kn_unlock(of->kn); 4119 4120 return ret ?: nbytes; 4121 } 4122 4123 static int cgroup_file_open(struct kernfs_open_file *of) 4124 { 4125 struct cftype *cft = of_cft(of); 4126 struct cgroup_file_ctx *ctx; 4127 int ret; 4128 4129 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 4130 if (!ctx) 4131 return -ENOMEM; 4132 4133 ctx->ns = current->nsproxy->cgroup_ns; 4134 get_cgroup_ns(ctx->ns); 4135 of->priv = ctx; 4136 4137 if (!cft->open) 4138 return 0; 4139 4140 ret = cft->open(of); 4141 if (ret) { 4142 put_cgroup_ns(ctx->ns); 4143 kfree(ctx); 4144 } 4145 return ret; 4146 } 4147 4148 static void cgroup_file_release(struct kernfs_open_file *of) 4149 { 4150 struct cftype *cft = of_cft(of); 4151 struct cgroup_file_ctx *ctx = of->priv; 4152 4153 if (cft->release) 4154 cft->release(of); 4155 put_cgroup_ns(ctx->ns); 4156 kfree(ctx); 4157 } 4158 4159 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4160 size_t nbytes, loff_t off) 4161 { 4162 struct cgroup_file_ctx *ctx = of->priv; 4163 struct cgroup *cgrp = kn_priv(of->kn); 4164 struct cftype *cft = of_cft(of); 4165 struct cgroup_subsys_state *css; 4166 int ret; 4167 4168 if (!nbytes) 4169 return 0; 4170 4171 /* 4172 * If namespaces are delegation boundaries, disallow writes to 4173 * files in an non-init namespace root from inside the namespace 4174 * except for the files explicitly marked delegatable - 4175 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control. 4176 */ 4177 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4178 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4179 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4180 return -EPERM; 4181 4182 if (cft->write) 4183 return cft->write(of, buf, nbytes, off); 4184 4185 /* 4186 * kernfs guarantees that a file isn't deleted with operations in 4187 * flight, which means that the matching css is and stays alive and 4188 * doesn't need to be pinned. The RCU locking is not necessary 4189 * either. It's just for the convenience of using cgroup_css(). 4190 */ 4191 rcu_read_lock(); 4192 css = cgroup_css(cgrp, cft->ss); 4193 rcu_read_unlock(); 4194 4195 if (cft->write_u64) { 4196 unsigned long long v; 4197 ret = kstrtoull(buf, 0, &v); 4198 if (!ret) 4199 ret = cft->write_u64(css, cft, v); 4200 } else if (cft->write_s64) { 4201 long long v; 4202 ret = kstrtoll(buf, 0, &v); 4203 if (!ret) 4204 ret = cft->write_s64(css, cft, v); 4205 } else { 4206 ret = -EINVAL; 4207 } 4208 4209 return ret ?: nbytes; 4210 } 4211 4212 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4213 { 4214 struct cftype *cft = of_cft(of); 4215 4216 if (cft->poll) 4217 return cft->poll(of, pt); 4218 4219 return kernfs_generic_poll(of, pt); 4220 } 4221 4222 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4223 { 4224 return seq_cft(seq)->seq_start(seq, ppos); 4225 } 4226 4227 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4228 { 4229 return seq_cft(seq)->seq_next(seq, v, ppos); 4230 } 4231 4232 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4233 { 4234 if (seq_cft(seq)->seq_stop) 4235 seq_cft(seq)->seq_stop(seq, v); 4236 } 4237 4238 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4239 { 4240 struct cftype *cft = seq_cft(m); 4241 struct cgroup_subsys_state *css = seq_css(m); 4242 4243 if (cft->seq_show) 4244 return cft->seq_show(m, arg); 4245 4246 if (cft->read_u64) 4247 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4248 else if (cft->read_s64) 4249 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4250 else 4251 return -EINVAL; 4252 return 0; 4253 } 4254 4255 static struct kernfs_ops cgroup_kf_single_ops = { 4256 .atomic_write_len = PAGE_SIZE, 4257 .open = cgroup_file_open, 4258 .release = cgroup_file_release, 4259 .write = cgroup_file_write, 4260 .poll = cgroup_file_poll, 4261 .seq_show = cgroup_seqfile_show, 4262 }; 4263 4264 static struct kernfs_ops cgroup_kf_ops = { 4265 .atomic_write_len = PAGE_SIZE, 4266 .open = cgroup_file_open, 4267 .release = cgroup_file_release, 4268 .write = cgroup_file_write, 4269 .poll = cgroup_file_poll, 4270 .seq_start = cgroup_seqfile_start, 4271 .seq_next = cgroup_seqfile_next, 4272 .seq_stop = cgroup_seqfile_stop, 4273 .seq_show = cgroup_seqfile_show, 4274 }; 4275 4276 static void cgroup_file_notify_timer(struct timer_list *timer) 4277 { 4278 cgroup_file_notify(container_of(timer, struct cgroup_file, 4279 notify_timer)); 4280 } 4281 4282 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4283 struct cftype *cft) 4284 { 4285 char name[CGROUP_FILE_NAME_MAX]; 4286 struct kernfs_node *kn; 4287 struct lock_class_key *key = NULL; 4288 4289 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4290 key = &cft->lockdep_key; 4291 #endif 4292 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4293 cgroup_file_mode(cft), 4294 current_fsuid(), current_fsgid(), 4295 0, cft->kf_ops, cft, 4296 NULL, key); 4297 if (IS_ERR(kn)) 4298 return PTR_ERR(kn); 4299 4300 if (cft->file_offset) { 4301 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4302 4303 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4304 4305 spin_lock_irq(&cgroup_file_kn_lock); 4306 cfile->kn = kn; 4307 spin_unlock_irq(&cgroup_file_kn_lock); 4308 } 4309 4310 return 0; 4311 } 4312 4313 /** 4314 * cgroup_addrm_files - add or remove files to a cgroup directory 4315 * @css: the target css 4316 * @cgrp: the target cgroup (usually css->cgroup) 4317 * @cfts: array of cftypes to be added 4318 * @is_add: whether to add or remove 4319 * 4320 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4321 * For removals, this function never fails. 4322 */ 4323 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4324 struct cgroup *cgrp, struct cftype cfts[], 4325 bool is_add) 4326 { 4327 struct cftype *cft, *cft_end = NULL; 4328 int ret = 0; 4329 4330 lockdep_assert_held(&cgroup_mutex); 4331 4332 restart: 4333 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4334 /* does cft->flags tell us to skip this file on @cgrp? */ 4335 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4336 continue; 4337 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4338 continue; 4339 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4340 continue; 4341 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4342 continue; 4343 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4344 continue; 4345 if (is_add) { 4346 ret = cgroup_add_file(css, cgrp, cft); 4347 if (ret) { 4348 pr_warn("%s: failed to add %s, err=%d\n", 4349 __func__, cft->name, ret); 4350 cft_end = cft; 4351 is_add = false; 4352 goto restart; 4353 } 4354 } else { 4355 cgroup_rm_file(cgrp, cft); 4356 } 4357 } 4358 return ret; 4359 } 4360 4361 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4362 { 4363 struct cgroup_subsys *ss = cfts[0].ss; 4364 struct cgroup *root = &ss->root->cgrp; 4365 struct cgroup_subsys_state *css; 4366 int ret = 0; 4367 4368 lockdep_assert_held(&cgroup_mutex); 4369 4370 /* add/rm files for all cgroups created before */ 4371 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4372 struct cgroup *cgrp = css->cgroup; 4373 4374 if (!(css->flags & CSS_VISIBLE)) 4375 continue; 4376 4377 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4378 if (ret) 4379 break; 4380 } 4381 4382 if (is_add && !ret) 4383 kernfs_activate(root->kn); 4384 return ret; 4385 } 4386 4387 static void cgroup_exit_cftypes(struct cftype *cfts) 4388 { 4389 struct cftype *cft; 4390 4391 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4392 /* free copy for custom atomic_write_len, see init_cftypes() */ 4393 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4394 kfree(cft->kf_ops); 4395 cft->kf_ops = NULL; 4396 cft->ss = NULL; 4397 4398 /* revert flags set by cgroup core while adding @cfts */ 4399 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4400 __CFTYPE_ADDED); 4401 } 4402 } 4403 4404 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4405 { 4406 struct cftype *cft; 4407 int ret = 0; 4408 4409 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4410 struct kernfs_ops *kf_ops; 4411 4412 WARN_ON(cft->ss || cft->kf_ops); 4413 4414 if (cft->flags & __CFTYPE_ADDED) { 4415 ret = -EBUSY; 4416 break; 4417 } 4418 4419 if (cft->seq_start) 4420 kf_ops = &cgroup_kf_ops; 4421 else 4422 kf_ops = &cgroup_kf_single_ops; 4423 4424 /* 4425 * Ugh... if @cft wants a custom max_write_len, we need to 4426 * make a copy of kf_ops to set its atomic_write_len. 4427 */ 4428 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4429 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4430 if (!kf_ops) { 4431 ret = -ENOMEM; 4432 break; 4433 } 4434 kf_ops->atomic_write_len = cft->max_write_len; 4435 } 4436 4437 cft->kf_ops = kf_ops; 4438 cft->ss = ss; 4439 cft->flags |= __CFTYPE_ADDED; 4440 } 4441 4442 if (ret) 4443 cgroup_exit_cftypes(cfts); 4444 return ret; 4445 } 4446 4447 static void cgroup_rm_cftypes_locked(struct cftype *cfts) 4448 { 4449 lockdep_assert_held(&cgroup_mutex); 4450 4451 list_del(&cfts->node); 4452 cgroup_apply_cftypes(cfts, false); 4453 cgroup_exit_cftypes(cfts); 4454 } 4455 4456 /** 4457 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4458 * @cfts: zero-length name terminated array of cftypes 4459 * 4460 * Unregister @cfts. Files described by @cfts are removed from all 4461 * existing cgroups and all future cgroups won't have them either. This 4462 * function can be called anytime whether @cfts' subsys is attached or not. 4463 * 4464 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4465 * registered. 4466 */ 4467 int cgroup_rm_cftypes(struct cftype *cfts) 4468 { 4469 if (!cfts || cfts[0].name[0] == '\0') 4470 return 0; 4471 4472 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4473 return -ENOENT; 4474 4475 cgroup_lock(); 4476 cgroup_rm_cftypes_locked(cfts); 4477 cgroup_unlock(); 4478 return 0; 4479 } 4480 4481 /** 4482 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4483 * @ss: target cgroup subsystem 4484 * @cfts: zero-length name terminated array of cftypes 4485 * 4486 * Register @cfts to @ss. Files described by @cfts are created for all 4487 * existing cgroups to which @ss is attached and all future cgroups will 4488 * have them too. This function can be called anytime whether @ss is 4489 * attached or not. 4490 * 4491 * Returns 0 on successful registration, -errno on failure. Note that this 4492 * function currently returns 0 as long as @cfts registration is successful 4493 * even if some file creation attempts on existing cgroups fail. 4494 */ 4495 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4496 { 4497 int ret; 4498 4499 if (!cgroup_ssid_enabled(ss->id)) 4500 return 0; 4501 4502 if (!cfts || cfts[0].name[0] == '\0') 4503 return 0; 4504 4505 ret = cgroup_init_cftypes(ss, cfts); 4506 if (ret) 4507 return ret; 4508 4509 cgroup_lock(); 4510 4511 list_add_tail(&cfts->node, &ss->cfts); 4512 ret = cgroup_apply_cftypes(cfts, true); 4513 if (ret) 4514 cgroup_rm_cftypes_locked(cfts); 4515 4516 cgroup_unlock(); 4517 return ret; 4518 } 4519 4520 /** 4521 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4522 * @ss: target cgroup subsystem 4523 * @cfts: zero-length name terminated array of cftypes 4524 * 4525 * Similar to cgroup_add_cftypes() but the added files are only used for 4526 * the default hierarchy. 4527 */ 4528 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4529 { 4530 struct cftype *cft; 4531 4532 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4533 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4534 return cgroup_add_cftypes(ss, cfts); 4535 } 4536 4537 /** 4538 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4539 * @ss: target cgroup subsystem 4540 * @cfts: zero-length name terminated array of cftypes 4541 * 4542 * Similar to cgroup_add_cftypes() but the added files are only used for 4543 * the legacy hierarchies. 4544 */ 4545 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4546 { 4547 struct cftype *cft; 4548 4549 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4550 cft->flags |= __CFTYPE_NOT_ON_DFL; 4551 return cgroup_add_cftypes(ss, cfts); 4552 } 4553 4554 /** 4555 * cgroup_file_notify - generate a file modified event for a cgroup_file 4556 * @cfile: target cgroup_file 4557 * 4558 * @cfile must have been obtained by setting cftype->file_offset. 4559 */ 4560 void cgroup_file_notify(struct cgroup_file *cfile) 4561 { 4562 unsigned long flags; 4563 4564 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4565 if (cfile->kn) { 4566 unsigned long last = cfile->notified_at; 4567 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4568 4569 if (time_in_range(jiffies, last, next)) { 4570 timer_reduce(&cfile->notify_timer, next); 4571 } else { 4572 kernfs_notify(cfile->kn); 4573 cfile->notified_at = jiffies; 4574 } 4575 } 4576 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4577 } 4578 4579 /** 4580 * cgroup_file_show - show or hide a hidden cgroup file 4581 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4582 * @show: whether to show or hide 4583 */ 4584 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4585 { 4586 struct kernfs_node *kn; 4587 4588 spin_lock_irq(&cgroup_file_kn_lock); 4589 kn = cfile->kn; 4590 kernfs_get(kn); 4591 spin_unlock_irq(&cgroup_file_kn_lock); 4592 4593 if (kn) 4594 kernfs_show(kn, show); 4595 4596 kernfs_put(kn); 4597 } 4598 4599 /** 4600 * css_next_child - find the next child of a given css 4601 * @pos: the current position (%NULL to initiate traversal) 4602 * @parent: css whose children to walk 4603 * 4604 * This function returns the next child of @parent and should be called 4605 * under either cgroup_mutex or RCU read lock. The only requirement is 4606 * that @parent and @pos are accessible. The next sibling is guaranteed to 4607 * be returned regardless of their states. 4608 * 4609 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4610 * css which finished ->css_online() is guaranteed to be visible in the 4611 * future iterations and will stay visible until the last reference is put. 4612 * A css which hasn't finished ->css_online() or already finished 4613 * ->css_offline() may show up during traversal. It's each subsystem's 4614 * responsibility to synchronize against on/offlining. 4615 */ 4616 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4617 struct cgroup_subsys_state *parent) 4618 { 4619 struct cgroup_subsys_state *next; 4620 4621 cgroup_assert_mutex_or_rcu_locked(); 4622 4623 /* 4624 * @pos could already have been unlinked from the sibling list. 4625 * Once a cgroup is removed, its ->sibling.next is no longer 4626 * updated when its next sibling changes. CSS_RELEASED is set when 4627 * @pos is taken off list, at which time its next pointer is valid, 4628 * and, as releases are serialized, the one pointed to by the next 4629 * pointer is guaranteed to not have started release yet. This 4630 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4631 * critical section, the one pointed to by its next pointer is 4632 * guaranteed to not have finished its RCU grace period even if we 4633 * have dropped rcu_read_lock() in-between iterations. 4634 * 4635 * If @pos has CSS_RELEASED set, its next pointer can't be 4636 * dereferenced; however, as each css is given a monotonically 4637 * increasing unique serial number and always appended to the 4638 * sibling list, the next one can be found by walking the parent's 4639 * children until the first css with higher serial number than 4640 * @pos's. While this path can be slower, it happens iff iteration 4641 * races against release and the race window is very small. 4642 */ 4643 if (!pos) { 4644 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4645 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4646 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4647 } else { 4648 list_for_each_entry_rcu(next, &parent->children, sibling, 4649 lockdep_is_held(&cgroup_mutex)) 4650 if (next->serial_nr > pos->serial_nr) 4651 break; 4652 } 4653 4654 /* 4655 * @next, if not pointing to the head, can be dereferenced and is 4656 * the next sibling. 4657 */ 4658 if (&next->sibling != &parent->children) 4659 return next; 4660 return NULL; 4661 } 4662 4663 /** 4664 * css_next_descendant_pre - find the next descendant for pre-order walk 4665 * @pos: the current position (%NULL to initiate traversal) 4666 * @root: css whose descendants to walk 4667 * 4668 * To be used by css_for_each_descendant_pre(). Find the next descendant 4669 * to visit for pre-order traversal of @root's descendants. @root is 4670 * included in the iteration and the first node to be visited. 4671 * 4672 * While this function requires cgroup_mutex or RCU read locking, it 4673 * doesn't require the whole traversal to be contained in a single critical 4674 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4675 * This function will return the correct next descendant as long as both @pos 4676 * and @root are accessible and @pos is a descendant of @root. 4677 * 4678 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4679 * css which finished ->css_online() is guaranteed to be visible in the 4680 * future iterations and will stay visible until the last reference is put. 4681 * A css which hasn't finished ->css_online() or already finished 4682 * ->css_offline() may show up during traversal. It's each subsystem's 4683 * responsibility to synchronize against on/offlining. 4684 */ 4685 struct cgroup_subsys_state * 4686 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4687 struct cgroup_subsys_state *root) 4688 { 4689 struct cgroup_subsys_state *next; 4690 4691 cgroup_assert_mutex_or_rcu_locked(); 4692 4693 /* if first iteration, visit @root */ 4694 if (!pos) 4695 return root; 4696 4697 /* visit the first child if exists */ 4698 next = css_next_child(NULL, pos); 4699 if (next) 4700 return next; 4701 4702 /* no child, visit my or the closest ancestor's next sibling */ 4703 while (pos != root) { 4704 next = css_next_child(pos, pos->parent); 4705 if (next) 4706 return next; 4707 pos = pos->parent; 4708 } 4709 4710 return NULL; 4711 } 4712 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4713 4714 /** 4715 * css_rightmost_descendant - return the rightmost descendant of a css 4716 * @pos: css of interest 4717 * 4718 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4719 * is returned. This can be used during pre-order traversal to skip 4720 * subtree of @pos. 4721 * 4722 * While this function requires cgroup_mutex or RCU read locking, it 4723 * doesn't require the whole traversal to be contained in a single critical 4724 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4725 * This function will return the correct rightmost descendant as long as @pos 4726 * is accessible. 4727 */ 4728 struct cgroup_subsys_state * 4729 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4730 { 4731 struct cgroup_subsys_state *last, *tmp; 4732 4733 cgroup_assert_mutex_or_rcu_locked(); 4734 4735 do { 4736 last = pos; 4737 /* ->prev isn't RCU safe, walk ->next till the end */ 4738 pos = NULL; 4739 css_for_each_child(tmp, last) 4740 pos = tmp; 4741 } while (pos); 4742 4743 return last; 4744 } 4745 4746 static struct cgroup_subsys_state * 4747 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4748 { 4749 struct cgroup_subsys_state *last; 4750 4751 do { 4752 last = pos; 4753 pos = css_next_child(NULL, pos); 4754 } while (pos); 4755 4756 return last; 4757 } 4758 4759 /** 4760 * css_next_descendant_post - find the next descendant for post-order walk 4761 * @pos: the current position (%NULL to initiate traversal) 4762 * @root: css whose descendants to walk 4763 * 4764 * To be used by css_for_each_descendant_post(). Find the next descendant 4765 * to visit for post-order traversal of @root's descendants. @root is 4766 * included in the iteration and the last node to be visited. 4767 * 4768 * While this function requires cgroup_mutex or RCU read locking, it 4769 * doesn't require the whole traversal to be contained in a single critical 4770 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4771 * This function will return the correct next descendant as long as both @pos 4772 * and @cgroup are accessible and @pos is a descendant of @cgroup. 4773 * 4774 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4775 * css which finished ->css_online() is guaranteed to be visible in the 4776 * future iterations and will stay visible until the last reference is put. 4777 * A css which hasn't finished ->css_online() or already finished 4778 * ->css_offline() may show up during traversal. It's each subsystem's 4779 * responsibility to synchronize against on/offlining. 4780 */ 4781 struct cgroup_subsys_state * 4782 css_next_descendant_post(struct cgroup_subsys_state *pos, 4783 struct cgroup_subsys_state *root) 4784 { 4785 struct cgroup_subsys_state *next; 4786 4787 cgroup_assert_mutex_or_rcu_locked(); 4788 4789 /* if first iteration, visit leftmost descendant which may be @root */ 4790 if (!pos) 4791 return css_leftmost_descendant(root); 4792 4793 /* if we visited @root, we're done */ 4794 if (pos == root) 4795 return NULL; 4796 4797 /* if there's an unvisited sibling, visit its leftmost descendant */ 4798 next = css_next_child(pos, pos->parent); 4799 if (next) 4800 return css_leftmost_descendant(next); 4801 4802 /* no sibling left, visit parent */ 4803 return pos->parent; 4804 } 4805 4806 /** 4807 * css_has_online_children - does a css have online children 4808 * @css: the target css 4809 * 4810 * Returns %true if @css has any online children; otherwise, %false. This 4811 * function can be called from any context but the caller is responsible 4812 * for synchronizing against on/offlining as necessary. 4813 */ 4814 bool css_has_online_children(struct cgroup_subsys_state *css) 4815 { 4816 struct cgroup_subsys_state *child; 4817 bool ret = false; 4818 4819 rcu_read_lock(); 4820 css_for_each_child(child, css) { 4821 if (child->flags & CSS_ONLINE) { 4822 ret = true; 4823 break; 4824 } 4825 } 4826 rcu_read_unlock(); 4827 return ret; 4828 } 4829 4830 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4831 { 4832 struct list_head *l; 4833 struct cgrp_cset_link *link; 4834 struct css_set *cset; 4835 4836 lockdep_assert_held(&css_set_lock); 4837 4838 /* find the next threaded cset */ 4839 if (it->tcset_pos) { 4840 l = it->tcset_pos->next; 4841 4842 if (l != it->tcset_head) { 4843 it->tcset_pos = l; 4844 return container_of(l, struct css_set, 4845 threaded_csets_node); 4846 } 4847 4848 it->tcset_pos = NULL; 4849 } 4850 4851 /* find the next cset */ 4852 l = it->cset_pos; 4853 l = l->next; 4854 if (l == it->cset_head) { 4855 it->cset_pos = NULL; 4856 return NULL; 4857 } 4858 4859 if (it->ss) { 4860 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4861 } else { 4862 link = list_entry(l, struct cgrp_cset_link, cset_link); 4863 cset = link->cset; 4864 } 4865 4866 it->cset_pos = l; 4867 4868 /* initialize threaded css_set walking */ 4869 if (it->flags & CSS_TASK_ITER_THREADED) { 4870 if (it->cur_dcset) 4871 put_css_set_locked(it->cur_dcset); 4872 it->cur_dcset = cset; 4873 get_css_set(cset); 4874 4875 it->tcset_head = &cset->threaded_csets; 4876 it->tcset_pos = &cset->threaded_csets; 4877 } 4878 4879 return cset; 4880 } 4881 4882 /** 4883 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4884 * @it: the iterator to advance 4885 * 4886 * Advance @it to the next css_set to walk. 4887 */ 4888 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4889 { 4890 struct css_set *cset; 4891 4892 lockdep_assert_held(&css_set_lock); 4893 4894 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4895 while ((cset = css_task_iter_next_css_set(it))) { 4896 if (!list_empty(&cset->tasks)) { 4897 it->cur_tasks_head = &cset->tasks; 4898 break; 4899 } else if (!list_empty(&cset->mg_tasks)) { 4900 it->cur_tasks_head = &cset->mg_tasks; 4901 break; 4902 } else if (!list_empty(&cset->dying_tasks)) { 4903 it->cur_tasks_head = &cset->dying_tasks; 4904 break; 4905 } 4906 } 4907 if (!cset) { 4908 it->task_pos = NULL; 4909 return; 4910 } 4911 it->task_pos = it->cur_tasks_head->next; 4912 4913 /* 4914 * We don't keep css_sets locked across iteration steps and thus 4915 * need to take steps to ensure that iteration can be resumed after 4916 * the lock is re-acquired. Iteration is performed at two levels - 4917 * css_sets and tasks in them. 4918 * 4919 * Once created, a css_set never leaves its cgroup lists, so a 4920 * pinned css_set is guaranteed to stay put and we can resume 4921 * iteration afterwards. 4922 * 4923 * Tasks may leave @cset across iteration steps. This is resolved 4924 * by registering each iterator with the css_set currently being 4925 * walked and making css_set_move_task() advance iterators whose 4926 * next task is leaving. 4927 */ 4928 if (it->cur_cset) { 4929 list_del(&it->iters_node); 4930 put_css_set_locked(it->cur_cset); 4931 } 4932 get_css_set(cset); 4933 it->cur_cset = cset; 4934 list_add(&it->iters_node, &cset->task_iters); 4935 } 4936 4937 static void css_task_iter_skip(struct css_task_iter *it, 4938 struct task_struct *task) 4939 { 4940 lockdep_assert_held(&css_set_lock); 4941 4942 if (it->task_pos == &task->cg_list) { 4943 it->task_pos = it->task_pos->next; 4944 it->flags |= CSS_TASK_ITER_SKIPPED; 4945 } 4946 } 4947 4948 static void css_task_iter_advance(struct css_task_iter *it) 4949 { 4950 struct task_struct *task; 4951 4952 lockdep_assert_held(&css_set_lock); 4953 repeat: 4954 if (it->task_pos) { 4955 /* 4956 * Advance iterator to find next entry. We go through cset 4957 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4958 * the next cset. 4959 */ 4960 if (it->flags & CSS_TASK_ITER_SKIPPED) 4961 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4962 else 4963 it->task_pos = it->task_pos->next; 4964 4965 if (it->task_pos == &it->cur_cset->tasks) { 4966 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4967 it->task_pos = it->cur_tasks_head->next; 4968 } 4969 if (it->task_pos == &it->cur_cset->mg_tasks) { 4970 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4971 it->task_pos = it->cur_tasks_head->next; 4972 } 4973 if (it->task_pos == &it->cur_cset->dying_tasks) 4974 css_task_iter_advance_css_set(it); 4975 } else { 4976 /* called from start, proceed to the first cset */ 4977 css_task_iter_advance_css_set(it); 4978 } 4979 4980 if (!it->task_pos) 4981 return; 4982 4983 task = list_entry(it->task_pos, struct task_struct, cg_list); 4984 4985 if (it->flags & CSS_TASK_ITER_PROCS) { 4986 /* if PROCS, skip over tasks which aren't group leaders */ 4987 if (!thread_group_leader(task)) 4988 goto repeat; 4989 4990 /* and dying leaders w/o live member threads */ 4991 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4992 !atomic_read(&task->signal->live)) 4993 goto repeat; 4994 } else { 4995 /* skip all dying ones */ 4996 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4997 goto repeat; 4998 } 4999 } 5000 5001 /** 5002 * css_task_iter_start - initiate task iteration 5003 * @css: the css to walk tasks of 5004 * @flags: CSS_TASK_ITER_* flags 5005 * @it: the task iterator to use 5006 * 5007 * Initiate iteration through the tasks of @css. The caller can call 5008 * css_task_iter_next() to walk through the tasks until the function 5009 * returns NULL. On completion of iteration, css_task_iter_end() must be 5010 * called. 5011 */ 5012 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 5013 struct css_task_iter *it) 5014 { 5015 unsigned long irqflags; 5016 5017 memset(it, 0, sizeof(*it)); 5018 5019 spin_lock_irqsave(&css_set_lock, irqflags); 5020 5021 it->ss = css->ss; 5022 it->flags = flags; 5023 5024 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 5025 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 5026 else 5027 it->cset_pos = &css->cgroup->cset_links; 5028 5029 it->cset_head = it->cset_pos; 5030 5031 css_task_iter_advance(it); 5032 5033 spin_unlock_irqrestore(&css_set_lock, irqflags); 5034 } 5035 5036 /** 5037 * css_task_iter_next - return the next task for the iterator 5038 * @it: the task iterator being iterated 5039 * 5040 * The "next" function for task iteration. @it should have been 5041 * initialized via css_task_iter_start(). Returns NULL when the iteration 5042 * reaches the end. 5043 */ 5044 struct task_struct *css_task_iter_next(struct css_task_iter *it) 5045 { 5046 unsigned long irqflags; 5047 5048 if (it->cur_task) { 5049 put_task_struct(it->cur_task); 5050 it->cur_task = NULL; 5051 } 5052 5053 spin_lock_irqsave(&css_set_lock, irqflags); 5054 5055 /* @it may be half-advanced by skips, finish advancing */ 5056 if (it->flags & CSS_TASK_ITER_SKIPPED) 5057 css_task_iter_advance(it); 5058 5059 if (it->task_pos) { 5060 it->cur_task = list_entry(it->task_pos, struct task_struct, 5061 cg_list); 5062 get_task_struct(it->cur_task); 5063 css_task_iter_advance(it); 5064 } 5065 5066 spin_unlock_irqrestore(&css_set_lock, irqflags); 5067 5068 return it->cur_task; 5069 } 5070 5071 /** 5072 * css_task_iter_end - finish task iteration 5073 * @it: the task iterator to finish 5074 * 5075 * Finish task iteration started by css_task_iter_start(). 5076 */ 5077 void css_task_iter_end(struct css_task_iter *it) 5078 { 5079 unsigned long irqflags; 5080 5081 if (it->cur_cset) { 5082 spin_lock_irqsave(&css_set_lock, irqflags); 5083 list_del(&it->iters_node); 5084 put_css_set_locked(it->cur_cset); 5085 spin_unlock_irqrestore(&css_set_lock, irqflags); 5086 } 5087 5088 if (it->cur_dcset) 5089 put_css_set(it->cur_dcset); 5090 5091 if (it->cur_task) 5092 put_task_struct(it->cur_task); 5093 } 5094 5095 static void cgroup_procs_release(struct kernfs_open_file *of) 5096 { 5097 struct cgroup_file_ctx *ctx = of->priv; 5098 5099 if (ctx->procs.started) 5100 css_task_iter_end(&ctx->procs.iter); 5101 } 5102 5103 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 5104 { 5105 struct kernfs_open_file *of = s->private; 5106 struct cgroup_file_ctx *ctx = of->priv; 5107 5108 if (pos) 5109 (*pos)++; 5110 5111 return css_task_iter_next(&ctx->procs.iter); 5112 } 5113 5114 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 5115 unsigned int iter_flags) 5116 { 5117 struct kernfs_open_file *of = s->private; 5118 struct cgroup *cgrp = seq_css(s)->cgroup; 5119 struct cgroup_file_ctx *ctx = of->priv; 5120 struct css_task_iter *it = &ctx->procs.iter; 5121 5122 /* 5123 * When a seq_file is seeked, it's always traversed sequentially 5124 * from position 0, so we can simply keep iterating on !0 *pos. 5125 */ 5126 if (!ctx->procs.started) { 5127 if (WARN_ON_ONCE((*pos))) 5128 return ERR_PTR(-EINVAL); 5129 css_task_iter_start(&cgrp->self, iter_flags, it); 5130 ctx->procs.started = true; 5131 } else if (!(*pos)) { 5132 css_task_iter_end(it); 5133 css_task_iter_start(&cgrp->self, iter_flags, it); 5134 } else 5135 return it->cur_task; 5136 5137 return cgroup_procs_next(s, NULL, NULL); 5138 } 5139 5140 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5141 { 5142 struct cgroup *cgrp = seq_css(s)->cgroup; 5143 5144 /* 5145 * All processes of a threaded subtree belong to the domain cgroup 5146 * of the subtree. Only threads can be distributed across the 5147 * subtree. Reject reads on cgroup.procs in the subtree proper. 5148 * They're always empty anyway. 5149 */ 5150 if (cgroup_is_threaded(cgrp)) 5151 return ERR_PTR(-EOPNOTSUPP); 5152 5153 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5154 CSS_TASK_ITER_THREADED); 5155 } 5156 5157 static int cgroup_procs_show(struct seq_file *s, void *v) 5158 { 5159 seq_printf(s, "%d\n", task_pid_vnr(v)); 5160 return 0; 5161 } 5162 5163 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5164 { 5165 int ret; 5166 struct inode *inode; 5167 5168 lockdep_assert_held(&cgroup_mutex); 5169 5170 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5171 if (!inode) 5172 return -ENOMEM; 5173 5174 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); 5175 iput(inode); 5176 return ret; 5177 } 5178 5179 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5180 struct cgroup *dst_cgrp, 5181 struct super_block *sb, 5182 struct cgroup_namespace *ns) 5183 { 5184 struct cgroup *com_cgrp = src_cgrp; 5185 int ret; 5186 5187 lockdep_assert_held(&cgroup_mutex); 5188 5189 /* find the common ancestor */ 5190 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5191 com_cgrp = cgroup_parent(com_cgrp); 5192 5193 /* %current should be authorized to migrate to the common ancestor */ 5194 ret = cgroup_may_write(com_cgrp, sb); 5195 if (ret) 5196 return ret; 5197 5198 /* 5199 * If namespaces are delegation boundaries, %current must be able 5200 * to see both source and destination cgroups from its namespace. 5201 */ 5202 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5203 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5204 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5205 return -ENOENT; 5206 5207 return 0; 5208 } 5209 5210 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5211 struct cgroup *dst_cgrp, 5212 struct super_block *sb, bool threadgroup, 5213 struct cgroup_namespace *ns) 5214 { 5215 int ret = 0; 5216 5217 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5218 if (ret) 5219 return ret; 5220 5221 ret = cgroup_migrate_vet_dst(dst_cgrp); 5222 if (ret) 5223 return ret; 5224 5225 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5226 ret = -EOPNOTSUPP; 5227 5228 return ret; 5229 } 5230 5231 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5232 bool threadgroup) 5233 { 5234 struct cgroup_file_ctx *ctx = of->priv; 5235 struct cgroup *src_cgrp, *dst_cgrp; 5236 struct task_struct *task; 5237 const struct cred *saved_cred; 5238 ssize_t ret; 5239 bool threadgroup_locked; 5240 5241 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5242 if (!dst_cgrp) 5243 return -ENODEV; 5244 5245 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5246 ret = PTR_ERR_OR_ZERO(task); 5247 if (ret) 5248 goto out_unlock; 5249 5250 /* find the source cgroup */ 5251 spin_lock_irq(&css_set_lock); 5252 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5253 spin_unlock_irq(&css_set_lock); 5254 5255 /* 5256 * Process and thread migrations follow same delegation rule. Check 5257 * permissions using the credentials from file open to protect against 5258 * inherited fd attacks. 5259 */ 5260 saved_cred = override_creds(of->file->f_cred); 5261 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5262 of->file->f_path.dentry->d_sb, 5263 threadgroup, ctx->ns); 5264 revert_creds(saved_cred); 5265 if (ret) 5266 goto out_finish; 5267 5268 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5269 5270 out_finish: 5271 cgroup_procs_write_finish(task, threadgroup_locked); 5272 out_unlock: 5273 cgroup_kn_unlock(of->kn); 5274 5275 return ret; 5276 } 5277 5278 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5279 char *buf, size_t nbytes, loff_t off) 5280 { 5281 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5282 } 5283 5284 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5285 { 5286 return __cgroup_procs_start(s, pos, 0); 5287 } 5288 5289 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5290 char *buf, size_t nbytes, loff_t off) 5291 { 5292 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5293 } 5294 5295 /* cgroup core interface files for the default hierarchy */ 5296 static struct cftype cgroup_base_files[] = { 5297 { 5298 .name = "cgroup.type", 5299 .flags = CFTYPE_NOT_ON_ROOT, 5300 .seq_show = cgroup_type_show, 5301 .write = cgroup_type_write, 5302 }, 5303 { 5304 .name = "cgroup.procs", 5305 .flags = CFTYPE_NS_DELEGATABLE, 5306 .file_offset = offsetof(struct cgroup, procs_file), 5307 .release = cgroup_procs_release, 5308 .seq_start = cgroup_procs_start, 5309 .seq_next = cgroup_procs_next, 5310 .seq_show = cgroup_procs_show, 5311 .write = cgroup_procs_write, 5312 }, 5313 { 5314 .name = "cgroup.threads", 5315 .flags = CFTYPE_NS_DELEGATABLE, 5316 .release = cgroup_procs_release, 5317 .seq_start = cgroup_threads_start, 5318 .seq_next = cgroup_procs_next, 5319 .seq_show = cgroup_procs_show, 5320 .write = cgroup_threads_write, 5321 }, 5322 { 5323 .name = "cgroup.controllers", 5324 .seq_show = cgroup_controllers_show, 5325 }, 5326 { 5327 .name = "cgroup.subtree_control", 5328 .flags = CFTYPE_NS_DELEGATABLE, 5329 .seq_show = cgroup_subtree_control_show, 5330 .write = cgroup_subtree_control_write, 5331 }, 5332 { 5333 .name = "cgroup.events", 5334 .flags = CFTYPE_NOT_ON_ROOT, 5335 .file_offset = offsetof(struct cgroup, events_file), 5336 .seq_show = cgroup_events_show, 5337 }, 5338 { 5339 .name = "cgroup.max.descendants", 5340 .seq_show = cgroup_max_descendants_show, 5341 .write = cgroup_max_descendants_write, 5342 }, 5343 { 5344 .name = "cgroup.max.depth", 5345 .seq_show = cgroup_max_depth_show, 5346 .write = cgroup_max_depth_write, 5347 }, 5348 { 5349 .name = "cgroup.stat", 5350 .seq_show = cgroup_stat_show, 5351 }, 5352 { 5353 .name = "cgroup.freeze", 5354 .flags = CFTYPE_NOT_ON_ROOT, 5355 .seq_show = cgroup_freeze_show, 5356 .write = cgroup_freeze_write, 5357 }, 5358 { 5359 .name = "cgroup.kill", 5360 .flags = CFTYPE_NOT_ON_ROOT, 5361 .write = cgroup_kill_write, 5362 }, 5363 { 5364 .name = "cpu.stat", 5365 .seq_show = cpu_stat_show, 5366 }, 5367 { 5368 .name = "cpu.stat.local", 5369 .seq_show = cpu_local_stat_show, 5370 }, 5371 { } /* terminate */ 5372 }; 5373 5374 static struct cftype cgroup_psi_files[] = { 5375 #ifdef CONFIG_PSI 5376 { 5377 .name = "io.pressure", 5378 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5379 .seq_show = cgroup_io_pressure_show, 5380 .write = cgroup_io_pressure_write, 5381 .poll = cgroup_pressure_poll, 5382 .release = cgroup_pressure_release, 5383 }, 5384 { 5385 .name = "memory.pressure", 5386 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5387 .seq_show = cgroup_memory_pressure_show, 5388 .write = cgroup_memory_pressure_write, 5389 .poll = cgroup_pressure_poll, 5390 .release = cgroup_pressure_release, 5391 }, 5392 { 5393 .name = "cpu.pressure", 5394 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5395 .seq_show = cgroup_cpu_pressure_show, 5396 .write = cgroup_cpu_pressure_write, 5397 .poll = cgroup_pressure_poll, 5398 .release = cgroup_pressure_release, 5399 }, 5400 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5401 { 5402 .name = "irq.pressure", 5403 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5404 .seq_show = cgroup_irq_pressure_show, 5405 .write = cgroup_irq_pressure_write, 5406 .poll = cgroup_pressure_poll, 5407 .release = cgroup_pressure_release, 5408 }, 5409 #endif 5410 { 5411 .name = "cgroup.pressure", 5412 .seq_show = cgroup_pressure_show, 5413 .write = cgroup_pressure_write, 5414 }, 5415 #endif /* CONFIG_PSI */ 5416 { } /* terminate */ 5417 }; 5418 5419 /* 5420 * css destruction is four-stage process. 5421 * 5422 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5423 * Implemented in kill_css(). 5424 * 5425 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5426 * and thus css_tryget_online() is guaranteed to fail, the css can be 5427 * offlined by invoking offline_css(). After offlining, the base ref is 5428 * put. Implemented in css_killed_work_fn(). 5429 * 5430 * 3. When the percpu_ref reaches zero, the only possible remaining 5431 * accessors are inside RCU read sections. css_release() schedules the 5432 * RCU callback. 5433 * 5434 * 4. After the grace period, the css can be freed. Implemented in 5435 * css_free_rwork_fn(). 5436 * 5437 * It is actually hairier because both step 2 and 4 require process context 5438 * and thus involve punting to css->destroy_work adding two additional 5439 * steps to the already complex sequence. 5440 */ 5441 static void css_free_rwork_fn(struct work_struct *work) 5442 { 5443 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5444 struct cgroup_subsys_state, destroy_rwork); 5445 struct cgroup_subsys *ss = css->ss; 5446 struct cgroup *cgrp = css->cgroup; 5447 5448 percpu_ref_exit(&css->refcnt); 5449 css_rstat_exit(css); 5450 5451 if (!css_is_self(css)) { 5452 /* css free path */ 5453 struct cgroup_subsys_state *parent = css->parent; 5454 int id = css->id; 5455 5456 ss->css_free(css); 5457 cgroup_idr_remove(&ss->css_idr, id); 5458 cgroup_put(cgrp); 5459 5460 if (parent) 5461 css_put(parent); 5462 } else { 5463 /* cgroup free path */ 5464 atomic_dec(&cgrp->root->nr_cgrps); 5465 if (!cgroup_on_dfl(cgrp)) 5466 cgroup1_pidlist_destroy_all(cgrp); 5467 cancel_work_sync(&cgrp->release_agent_work); 5468 bpf_cgrp_storage_free(cgrp); 5469 5470 if (cgroup_parent(cgrp)) { 5471 /* 5472 * We get a ref to the parent, and put the ref when 5473 * this cgroup is being freed, so it's guaranteed 5474 * that the parent won't be destroyed before its 5475 * children. 5476 */ 5477 cgroup_put(cgroup_parent(cgrp)); 5478 kernfs_put(cgrp->kn); 5479 psi_cgroup_free(cgrp); 5480 kfree(cgrp); 5481 } else { 5482 /* 5483 * This is root cgroup's refcnt reaching zero, 5484 * which indicates that the root should be 5485 * released. 5486 */ 5487 cgroup_destroy_root(cgrp->root); 5488 } 5489 } 5490 } 5491 5492 static void css_release_work_fn(struct work_struct *work) 5493 { 5494 struct cgroup_subsys_state *css = 5495 container_of(work, struct cgroup_subsys_state, destroy_work); 5496 struct cgroup_subsys *ss = css->ss; 5497 struct cgroup *cgrp = css->cgroup; 5498 5499 cgroup_lock(); 5500 5501 css->flags |= CSS_RELEASED; 5502 list_del_rcu(&css->sibling); 5503 5504 if (!css_is_self(css)) { 5505 struct cgroup *parent_cgrp; 5506 5507 css_rstat_flush(css); 5508 5509 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5510 if (ss->css_released) 5511 ss->css_released(css); 5512 5513 cgrp->nr_dying_subsys[ss->id]--; 5514 /* 5515 * When a css is released and ready to be freed, its 5516 * nr_descendants must be zero. However, the corresponding 5517 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem 5518 * is activated and deactivated multiple times with one or 5519 * more of its previous activation leaving behind dying csses. 5520 */ 5521 WARN_ON_ONCE(css->nr_descendants); 5522 parent_cgrp = cgroup_parent(cgrp); 5523 while (parent_cgrp) { 5524 parent_cgrp->nr_dying_subsys[ss->id]--; 5525 parent_cgrp = cgroup_parent(parent_cgrp); 5526 } 5527 } else { 5528 struct cgroup *tcgrp; 5529 5530 /* cgroup release path */ 5531 TRACE_CGROUP_PATH(release, cgrp); 5532 5533 css_rstat_flush(&cgrp->self); 5534 5535 spin_lock_irq(&css_set_lock); 5536 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5537 tcgrp = cgroup_parent(tcgrp)) 5538 tcgrp->nr_dying_descendants--; 5539 spin_unlock_irq(&css_set_lock); 5540 5541 /* 5542 * There are two control paths which try to determine 5543 * cgroup from dentry without going through kernfs - 5544 * cgroupstats_build() and css_tryget_online_from_dir(). 5545 * Those are supported by RCU protecting clearing of 5546 * cgrp->kn->priv backpointer. 5547 */ 5548 if (cgrp->kn) 5549 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5550 NULL); 5551 } 5552 5553 cgroup_unlock(); 5554 5555 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5556 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5557 } 5558 5559 static void css_release(struct percpu_ref *ref) 5560 { 5561 struct cgroup_subsys_state *css = 5562 container_of(ref, struct cgroup_subsys_state, refcnt); 5563 5564 INIT_WORK(&css->destroy_work, css_release_work_fn); 5565 queue_work(cgroup_destroy_wq, &css->destroy_work); 5566 } 5567 5568 static void init_and_link_css(struct cgroup_subsys_state *css, 5569 struct cgroup_subsys *ss, struct cgroup *cgrp) 5570 { 5571 lockdep_assert_held(&cgroup_mutex); 5572 5573 cgroup_get_live(cgrp); 5574 5575 memset(css, 0, sizeof(*css)); 5576 css->cgroup = cgrp; 5577 css->ss = ss; 5578 css->id = -1; 5579 INIT_LIST_HEAD(&css->sibling); 5580 INIT_LIST_HEAD(&css->children); 5581 css->serial_nr = css_serial_nr_next++; 5582 atomic_set(&css->online_cnt, 0); 5583 5584 if (cgroup_parent(cgrp)) { 5585 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5586 css_get(css->parent); 5587 } 5588 5589 BUG_ON(cgroup_css(cgrp, ss)); 5590 } 5591 5592 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5593 static int online_css(struct cgroup_subsys_state *css) 5594 { 5595 struct cgroup_subsys *ss = css->ss; 5596 int ret = 0; 5597 5598 lockdep_assert_held(&cgroup_mutex); 5599 5600 if (ss->css_online) 5601 ret = ss->css_online(css); 5602 if (!ret) { 5603 css->flags |= CSS_ONLINE; 5604 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5605 5606 atomic_inc(&css->online_cnt); 5607 if (css->parent) { 5608 atomic_inc(&css->parent->online_cnt); 5609 while ((css = css->parent)) 5610 css->nr_descendants++; 5611 } 5612 } 5613 return ret; 5614 } 5615 5616 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5617 static void offline_css(struct cgroup_subsys_state *css) 5618 { 5619 struct cgroup_subsys *ss = css->ss; 5620 5621 lockdep_assert_held(&cgroup_mutex); 5622 5623 if (!(css->flags & CSS_ONLINE)) 5624 return; 5625 5626 if (ss->css_offline) 5627 ss->css_offline(css); 5628 5629 css->flags &= ~CSS_ONLINE; 5630 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5631 5632 wake_up_all(&css->cgroup->offline_waitq); 5633 5634 css->cgroup->nr_dying_subsys[ss->id]++; 5635 /* 5636 * Parent css and cgroup cannot be freed until after the freeing 5637 * of child css, see css_free_rwork_fn(). 5638 */ 5639 while ((css = css->parent)) { 5640 css->nr_descendants--; 5641 css->cgroup->nr_dying_subsys[ss->id]++; 5642 } 5643 } 5644 5645 /** 5646 * css_create - create a cgroup_subsys_state 5647 * @cgrp: the cgroup new css will be associated with 5648 * @ss: the subsys of new css 5649 * 5650 * Create a new css associated with @cgrp - @ss pair. On success, the new 5651 * css is online and installed in @cgrp. This function doesn't create the 5652 * interface files. Returns 0 on success, -errno on failure. 5653 */ 5654 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5655 struct cgroup_subsys *ss) 5656 { 5657 struct cgroup *parent = cgroup_parent(cgrp); 5658 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5659 struct cgroup_subsys_state *css; 5660 int err; 5661 5662 lockdep_assert_held(&cgroup_mutex); 5663 5664 css = ss->css_alloc(parent_css); 5665 if (!css) 5666 css = ERR_PTR(-ENOMEM); 5667 if (IS_ERR(css)) 5668 return css; 5669 5670 init_and_link_css(css, ss, cgrp); 5671 5672 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5673 if (err) 5674 goto err_free_css; 5675 5676 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5677 if (err < 0) 5678 goto err_free_css; 5679 css->id = err; 5680 5681 err = css_rstat_init(css); 5682 if (err) 5683 goto err_free_css; 5684 5685 /* @css is ready to be brought online now, make it visible */ 5686 list_add_tail_rcu(&css->sibling, &parent_css->children); 5687 cgroup_idr_replace(&ss->css_idr, css, css->id); 5688 5689 err = online_css(css); 5690 if (err) 5691 goto err_list_del; 5692 5693 return css; 5694 5695 err_list_del: 5696 list_del_rcu(&css->sibling); 5697 err_free_css: 5698 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5699 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5700 return ERR_PTR(err); 5701 } 5702 5703 /* 5704 * The returned cgroup is fully initialized including its control mask, but 5705 * it doesn't have the control mask applied. 5706 */ 5707 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5708 umode_t mode) 5709 { 5710 struct cgroup_root *root = parent->root; 5711 struct cgroup *cgrp, *tcgrp; 5712 struct kernfs_node *kn; 5713 int i, level = parent->level + 1; 5714 int ret; 5715 5716 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5717 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5718 if (!cgrp) 5719 return ERR_PTR(-ENOMEM); 5720 5721 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5722 if (ret) 5723 goto out_free_cgrp; 5724 5725 /* create the directory */ 5726 kn = kernfs_create_dir_ns(parent->kn, name, mode, 5727 current_fsuid(), current_fsgid(), 5728 cgrp, NULL); 5729 if (IS_ERR(kn)) { 5730 ret = PTR_ERR(kn); 5731 goto out_cancel_ref; 5732 } 5733 cgrp->kn = kn; 5734 5735 init_cgroup_housekeeping(cgrp); 5736 5737 cgrp->self.parent = &parent->self; 5738 cgrp->root = root; 5739 cgrp->level = level; 5740 5741 /* 5742 * Now that init_cgroup_housekeeping() has been called and cgrp->self 5743 * is setup, it is safe to perform rstat initialization on it. 5744 */ 5745 ret = css_rstat_init(&cgrp->self); 5746 if (ret) 5747 goto out_kernfs_remove; 5748 5749 ret = psi_cgroup_alloc(cgrp); 5750 if (ret) 5751 goto out_stat_exit; 5752 5753 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) 5754 cgrp->ancestors[tcgrp->level] = tcgrp; 5755 5756 /* 5757 * New cgroup inherits effective freeze counter, and 5758 * if the parent has to be frozen, the child has too. 5759 */ 5760 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5761 if (cgrp->freezer.e_freeze) { 5762 /* 5763 * Set the CGRP_FREEZE flag, so when a process will be 5764 * attached to the child cgroup, it will become frozen. 5765 * At this point the new cgroup is unpopulated, so we can 5766 * consider it frozen immediately. 5767 */ 5768 set_bit(CGRP_FREEZE, &cgrp->flags); 5769 set_bit(CGRP_FROZEN, &cgrp->flags); 5770 } 5771 5772 if (notify_on_release(parent)) 5773 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5774 5775 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5776 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5777 5778 cgrp->self.serial_nr = css_serial_nr_next++; 5779 5780 ret = blocking_notifier_call_chain_robust(&cgroup_lifetime_notifier, 5781 CGROUP_LIFETIME_ONLINE, 5782 CGROUP_LIFETIME_OFFLINE, cgrp); 5783 ret = notifier_to_errno(ret); 5784 if (ret) 5785 goto out_psi_free; 5786 5787 /* allocation complete, commit to creation */ 5788 spin_lock_irq(&css_set_lock); 5789 for (i = 0; i < level; i++) { 5790 tcgrp = cgrp->ancestors[i]; 5791 tcgrp->nr_descendants++; 5792 5793 /* 5794 * If the new cgroup is frozen, all ancestor cgroups get a new 5795 * frozen descendant, but their state can't change because of 5796 * this. 5797 */ 5798 if (cgrp->freezer.e_freeze) 5799 tcgrp->freezer.nr_frozen_descendants++; 5800 } 5801 spin_unlock_irq(&css_set_lock); 5802 5803 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5804 atomic_inc(&root->nr_cgrps); 5805 cgroup_get_live(parent); 5806 5807 /* 5808 * On the default hierarchy, a child doesn't automatically inherit 5809 * subtree_control from the parent. Each is configured manually. 5810 */ 5811 if (!cgroup_on_dfl(cgrp)) 5812 cgrp->subtree_control = cgroup_control(cgrp); 5813 5814 cgroup_propagate_control(cgrp); 5815 5816 return cgrp; 5817 5818 out_psi_free: 5819 psi_cgroup_free(cgrp); 5820 out_stat_exit: 5821 css_rstat_exit(&cgrp->self); 5822 out_kernfs_remove: 5823 kernfs_remove(cgrp->kn); 5824 out_cancel_ref: 5825 percpu_ref_exit(&cgrp->self.refcnt); 5826 out_free_cgrp: 5827 kfree(cgrp); 5828 return ERR_PTR(ret); 5829 } 5830 5831 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5832 { 5833 struct cgroup *cgroup; 5834 int ret = false; 5835 int level = 0; 5836 5837 lockdep_assert_held(&cgroup_mutex); 5838 5839 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5840 if (cgroup->nr_descendants >= cgroup->max_descendants) 5841 goto fail; 5842 5843 if (level >= cgroup->max_depth) 5844 goto fail; 5845 5846 level++; 5847 } 5848 5849 ret = true; 5850 fail: 5851 return ret; 5852 } 5853 5854 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5855 { 5856 struct cgroup *parent, *cgrp; 5857 int ret; 5858 5859 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5860 if (strchr(name, '\n')) 5861 return -EINVAL; 5862 5863 parent = cgroup_kn_lock_live(parent_kn, false); 5864 if (!parent) 5865 return -ENODEV; 5866 5867 if (!cgroup_check_hierarchy_limits(parent)) { 5868 ret = -EAGAIN; 5869 goto out_unlock; 5870 } 5871 5872 cgrp = cgroup_create(parent, name, mode); 5873 if (IS_ERR(cgrp)) { 5874 ret = PTR_ERR(cgrp); 5875 goto out_unlock; 5876 } 5877 5878 /* 5879 * This extra ref will be put in css_free_rwork_fn() and guarantees 5880 * that @cgrp->kn is always accessible. 5881 */ 5882 kernfs_get(cgrp->kn); 5883 5884 ret = css_populate_dir(&cgrp->self); 5885 if (ret) 5886 goto out_destroy; 5887 5888 ret = cgroup_apply_control_enable(cgrp); 5889 if (ret) 5890 goto out_destroy; 5891 5892 TRACE_CGROUP_PATH(mkdir, cgrp); 5893 5894 /* let's create and online css's */ 5895 kernfs_activate(cgrp->kn); 5896 5897 ret = 0; 5898 goto out_unlock; 5899 5900 out_destroy: 5901 cgroup_destroy_locked(cgrp); 5902 out_unlock: 5903 cgroup_kn_unlock(parent_kn); 5904 return ret; 5905 } 5906 5907 /* 5908 * This is called when the refcnt of a css is confirmed to be killed. 5909 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5910 * initiate destruction and put the css ref from kill_css(). 5911 */ 5912 static void css_killed_work_fn(struct work_struct *work) 5913 { 5914 struct cgroup_subsys_state *css = 5915 container_of(work, struct cgroup_subsys_state, destroy_work); 5916 5917 cgroup_lock(); 5918 5919 do { 5920 offline_css(css); 5921 css_put(css); 5922 /* @css can't go away while we're holding cgroup_mutex */ 5923 css = css->parent; 5924 } while (css && atomic_dec_and_test(&css->online_cnt)); 5925 5926 cgroup_unlock(); 5927 } 5928 5929 /* css kill confirmation processing requires process context, bounce */ 5930 static void css_killed_ref_fn(struct percpu_ref *ref) 5931 { 5932 struct cgroup_subsys_state *css = 5933 container_of(ref, struct cgroup_subsys_state, refcnt); 5934 5935 if (atomic_dec_and_test(&css->online_cnt)) { 5936 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5937 queue_work(cgroup_destroy_wq, &css->destroy_work); 5938 } 5939 } 5940 5941 /** 5942 * kill_css - destroy a css 5943 * @css: css to destroy 5944 * 5945 * This function initiates destruction of @css by removing cgroup interface 5946 * files and putting its base reference. ->css_offline() will be invoked 5947 * asynchronously once css_tryget_online() is guaranteed to fail and when 5948 * the reference count reaches zero, @css will be released. 5949 */ 5950 static void kill_css(struct cgroup_subsys_state *css) 5951 { 5952 lockdep_assert_held(&cgroup_mutex); 5953 5954 if (css->flags & CSS_DYING) 5955 return; 5956 5957 /* 5958 * Call css_killed(), if defined, before setting the CSS_DYING flag 5959 */ 5960 if (css->ss->css_killed) 5961 css->ss->css_killed(css); 5962 5963 css->flags |= CSS_DYING; 5964 5965 /* 5966 * This must happen before css is disassociated with its cgroup. 5967 * See seq_css() for details. 5968 */ 5969 css_clear_dir(css); 5970 5971 /* 5972 * Killing would put the base ref, but we need to keep it alive 5973 * until after ->css_offline(). 5974 */ 5975 css_get(css); 5976 5977 /* 5978 * cgroup core guarantees that, by the time ->css_offline() is 5979 * invoked, no new css reference will be given out via 5980 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5981 * proceed to offlining css's because percpu_ref_kill() doesn't 5982 * guarantee that the ref is seen as killed on all CPUs on return. 5983 * 5984 * Use percpu_ref_kill_and_confirm() to get notifications as each 5985 * css is confirmed to be seen as killed on all CPUs. 5986 */ 5987 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5988 } 5989 5990 /** 5991 * cgroup_destroy_locked - the first stage of cgroup destruction 5992 * @cgrp: cgroup to be destroyed 5993 * 5994 * css's make use of percpu refcnts whose killing latency shouldn't be 5995 * exposed to userland and are RCU protected. Also, cgroup core needs to 5996 * guarantee that css_tryget_online() won't succeed by the time 5997 * ->css_offline() is invoked. To satisfy all the requirements, 5998 * destruction is implemented in the following two steps. 5999 * 6000 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 6001 * userland visible parts and start killing the percpu refcnts of 6002 * css's. Set up so that the next stage will be kicked off once all 6003 * the percpu refcnts are confirmed to be killed. 6004 * 6005 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 6006 * rest of destruction. Once all cgroup references are gone, the 6007 * cgroup is RCU-freed. 6008 * 6009 * This function implements s1. After this step, @cgrp is gone as far as 6010 * the userland is concerned and a new cgroup with the same name may be 6011 * created. As cgroup doesn't care about the names internally, this 6012 * doesn't cause any problem. 6013 */ 6014 static int cgroup_destroy_locked(struct cgroup *cgrp) 6015 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 6016 { 6017 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 6018 struct cgroup_subsys_state *css; 6019 struct cgrp_cset_link *link; 6020 int ssid, ret; 6021 6022 lockdep_assert_held(&cgroup_mutex); 6023 6024 /* 6025 * Only migration can raise populated from zero and we're already 6026 * holding cgroup_mutex. 6027 */ 6028 if (cgroup_is_populated(cgrp)) 6029 return -EBUSY; 6030 6031 /* 6032 * Make sure there's no live children. We can't test emptiness of 6033 * ->self.children as dead children linger on it while being 6034 * drained; otherwise, "rmdir parent/child parent" may fail. 6035 */ 6036 if (css_has_online_children(&cgrp->self)) 6037 return -EBUSY; 6038 6039 /* 6040 * Mark @cgrp and the associated csets dead. The former prevents 6041 * further task migration and child creation by disabling 6042 * cgroup_kn_lock_live(). The latter makes the csets ignored by 6043 * the migration path. 6044 */ 6045 cgrp->self.flags &= ~CSS_ONLINE; 6046 6047 spin_lock_irq(&css_set_lock); 6048 list_for_each_entry(link, &cgrp->cset_links, cset_link) 6049 link->cset->dead = true; 6050 spin_unlock_irq(&css_set_lock); 6051 6052 /* initiate massacre of all css's */ 6053 for_each_css(css, ssid, cgrp) 6054 kill_css(css); 6055 6056 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 6057 css_clear_dir(&cgrp->self); 6058 kernfs_remove(cgrp->kn); 6059 6060 if (cgroup_is_threaded(cgrp)) 6061 parent->nr_threaded_children--; 6062 6063 spin_lock_irq(&css_set_lock); 6064 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 6065 tcgrp->nr_descendants--; 6066 tcgrp->nr_dying_descendants++; 6067 /* 6068 * If the dying cgroup is frozen, decrease frozen descendants 6069 * counters of ancestor cgroups. 6070 */ 6071 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 6072 tcgrp->freezer.nr_frozen_descendants--; 6073 } 6074 spin_unlock_irq(&css_set_lock); 6075 6076 cgroup1_check_for_release(parent); 6077 6078 ret = blocking_notifier_call_chain(&cgroup_lifetime_notifier, 6079 CGROUP_LIFETIME_OFFLINE, cgrp); 6080 WARN_ON_ONCE(notifier_to_errno(ret)); 6081 6082 /* put the base reference */ 6083 percpu_ref_kill(&cgrp->self.refcnt); 6084 6085 return 0; 6086 }; 6087 6088 int cgroup_rmdir(struct kernfs_node *kn) 6089 { 6090 struct cgroup *cgrp; 6091 int ret = 0; 6092 6093 cgrp = cgroup_kn_lock_live(kn, false); 6094 if (!cgrp) 6095 return 0; 6096 6097 ret = cgroup_destroy_locked(cgrp); 6098 if (!ret) 6099 TRACE_CGROUP_PATH(rmdir, cgrp); 6100 6101 cgroup_kn_unlock(kn); 6102 return ret; 6103 } 6104 6105 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 6106 .show_options = cgroup_show_options, 6107 .mkdir = cgroup_mkdir, 6108 .rmdir = cgroup_rmdir, 6109 .show_path = cgroup_show_path, 6110 }; 6111 6112 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 6113 { 6114 struct cgroup_subsys_state *css; 6115 6116 pr_debug("Initializing cgroup subsys %s\n", ss->name); 6117 6118 cgroup_lock(); 6119 6120 idr_init(&ss->css_idr); 6121 INIT_LIST_HEAD(&ss->cfts); 6122 6123 /* Create the root cgroup state for this subsystem */ 6124 ss->root = &cgrp_dfl_root; 6125 css = ss->css_alloc(NULL); 6126 /* We don't handle early failures gracefully */ 6127 BUG_ON(IS_ERR(css)); 6128 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 6129 6130 /* 6131 * Root csses are never destroyed and we can't initialize 6132 * percpu_ref during early init. Disable refcnting. 6133 */ 6134 css->flags |= CSS_NO_REF; 6135 6136 if (early) { 6137 /* allocation can't be done safely during early init */ 6138 css->id = 1; 6139 } else { 6140 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 6141 BUG_ON(css->id < 0); 6142 6143 BUG_ON(ss_rstat_init(ss)); 6144 BUG_ON(css_rstat_init(css)); 6145 } 6146 6147 /* Update the init_css_set to contain a subsys 6148 * pointer to this state - since the subsystem is 6149 * newly registered, all tasks and hence the 6150 * init_css_set is in the subsystem's root cgroup. */ 6151 init_css_set.subsys[ss->id] = css; 6152 6153 have_fork_callback |= (bool)ss->fork << ss->id; 6154 have_exit_callback |= (bool)ss->exit << ss->id; 6155 have_release_callback |= (bool)ss->release << ss->id; 6156 have_canfork_callback |= (bool)ss->can_fork << ss->id; 6157 6158 /* At system boot, before all subsystems have been 6159 * registered, no tasks have been forked, so we don't 6160 * need to invoke fork callbacks here. */ 6161 BUG_ON(!list_empty(&init_task.tasks)); 6162 6163 BUG_ON(online_css(css)); 6164 6165 cgroup_unlock(); 6166 } 6167 6168 /** 6169 * cgroup_init_early - cgroup initialization at system boot 6170 * 6171 * Initialize cgroups at system boot, and initialize any 6172 * subsystems that request early init. 6173 */ 6174 int __init cgroup_init_early(void) 6175 { 6176 static struct cgroup_fs_context __initdata ctx; 6177 struct cgroup_subsys *ss; 6178 int i; 6179 6180 ctx.root = &cgrp_dfl_root; 6181 init_cgroup_root(&ctx); 6182 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6183 6184 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6185 6186 for_each_subsys(ss, i) { 6187 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6188 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6189 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6190 ss->id, ss->name); 6191 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6192 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6193 WARN(ss->early_init && ss->css_rstat_flush, 6194 "cgroup rstat cannot be used with early init subsystem\n"); 6195 6196 ss->id = i; 6197 ss->name = cgroup_subsys_name[i]; 6198 if (!ss->legacy_name) 6199 ss->legacy_name = cgroup_subsys_name[i]; 6200 6201 if (ss->early_init) 6202 cgroup_init_subsys(ss, true); 6203 } 6204 return 0; 6205 } 6206 6207 /** 6208 * cgroup_init - cgroup initialization 6209 * 6210 * Register cgroup filesystem and /proc file, and initialize 6211 * any subsystems that didn't request early init. 6212 */ 6213 int __init cgroup_init(void) 6214 { 6215 struct cgroup_subsys *ss; 6216 int ssid; 6217 6218 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6219 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6220 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6221 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6222 6223 BUG_ON(ss_rstat_init(NULL)); 6224 6225 get_user_ns(init_cgroup_ns.user_ns); 6226 6227 cgroup_lock(); 6228 6229 /* 6230 * Add init_css_set to the hash table so that dfl_root can link to 6231 * it during init. 6232 */ 6233 hash_add(css_set_table, &init_css_set.hlist, 6234 css_set_hash(init_css_set.subsys)); 6235 6236 cgroup_bpf_lifetime_notifier_init(); 6237 6238 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6239 6240 cgroup_unlock(); 6241 6242 for_each_subsys(ss, ssid) { 6243 if (ss->early_init) { 6244 struct cgroup_subsys_state *css = 6245 init_css_set.subsys[ss->id]; 6246 6247 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6248 GFP_KERNEL); 6249 BUG_ON(css->id < 0); 6250 } else { 6251 cgroup_init_subsys(ss, false); 6252 } 6253 6254 list_add_tail(&init_css_set.e_cset_node[ssid], 6255 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6256 6257 /* 6258 * Setting dfl_root subsys_mask needs to consider the 6259 * disabled flag and cftype registration needs kmalloc, 6260 * both of which aren't available during early_init. 6261 */ 6262 if (!cgroup_ssid_enabled(ssid)) 6263 continue; 6264 6265 if (cgroup1_ssid_disabled(ssid)) 6266 pr_info("Disabling %s control group subsystem in v1 mounts\n", 6267 ss->legacy_name); 6268 6269 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6270 6271 /* implicit controllers must be threaded too */ 6272 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6273 6274 if (ss->implicit_on_dfl) 6275 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6276 else if (!ss->dfl_cftypes) 6277 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6278 6279 if (ss->threaded) 6280 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6281 6282 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6283 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6284 } else { 6285 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6286 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6287 } 6288 6289 if (ss->bind) 6290 ss->bind(init_css_set.subsys[ssid]); 6291 6292 cgroup_lock(); 6293 css_populate_dir(init_css_set.subsys[ssid]); 6294 cgroup_unlock(); 6295 } 6296 6297 /* init_css_set.subsys[] has been updated, re-hash */ 6298 hash_del(&init_css_set.hlist); 6299 hash_add(css_set_table, &init_css_set.hlist, 6300 css_set_hash(init_css_set.subsys)); 6301 6302 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6303 WARN_ON(register_filesystem(&cgroup_fs_type)); 6304 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6305 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6306 #ifdef CONFIG_CPUSETS_V1 6307 WARN_ON(register_filesystem(&cpuset_fs_type)); 6308 #endif 6309 6310 return 0; 6311 } 6312 6313 static int __init cgroup_wq_init(void) 6314 { 6315 /* 6316 * There isn't much point in executing destruction path in 6317 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6318 * Use 1 for @max_active. 6319 * 6320 * We would prefer to do this in cgroup_init() above, but that 6321 * is called before init_workqueues(): so leave this until after. 6322 */ 6323 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6324 BUG_ON(!cgroup_destroy_wq); 6325 return 0; 6326 } 6327 core_initcall(cgroup_wq_init); 6328 6329 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6330 { 6331 struct kernfs_node *kn; 6332 6333 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6334 if (!kn) 6335 return; 6336 kernfs_path(kn, buf, buflen); 6337 kernfs_put(kn); 6338 } 6339 6340 /* 6341 * cgroup_get_from_id : get the cgroup associated with cgroup id 6342 * @id: cgroup id 6343 * On success return the cgrp or ERR_PTR on failure 6344 * Only cgroups within current task's cgroup NS are valid. 6345 */ 6346 struct cgroup *cgroup_get_from_id(u64 id) 6347 { 6348 struct kernfs_node *kn; 6349 struct cgroup *cgrp, *root_cgrp; 6350 6351 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6352 if (!kn) 6353 return ERR_PTR(-ENOENT); 6354 6355 if (kernfs_type(kn) != KERNFS_DIR) { 6356 kernfs_put(kn); 6357 return ERR_PTR(-ENOENT); 6358 } 6359 6360 rcu_read_lock(); 6361 6362 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6363 if (cgrp && !cgroup_tryget(cgrp)) 6364 cgrp = NULL; 6365 6366 rcu_read_unlock(); 6367 kernfs_put(kn); 6368 6369 if (!cgrp) 6370 return ERR_PTR(-ENOENT); 6371 6372 root_cgrp = current_cgns_cgroup_dfl(); 6373 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6374 cgroup_put(cgrp); 6375 return ERR_PTR(-ENOENT); 6376 } 6377 6378 return cgrp; 6379 } 6380 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6381 6382 /* 6383 * proc_cgroup_show() 6384 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6385 * - Used for /proc/<pid>/cgroup. 6386 */ 6387 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6388 struct pid *pid, struct task_struct *tsk) 6389 { 6390 char *buf; 6391 int retval; 6392 struct cgroup_root *root; 6393 6394 retval = -ENOMEM; 6395 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6396 if (!buf) 6397 goto out; 6398 6399 rcu_read_lock(); 6400 spin_lock_irq(&css_set_lock); 6401 6402 for_each_root(root) { 6403 struct cgroup_subsys *ss; 6404 struct cgroup *cgrp; 6405 int ssid, count = 0; 6406 6407 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6408 continue; 6409 6410 cgrp = task_cgroup_from_root(tsk, root); 6411 /* The root has already been unmounted. */ 6412 if (!cgrp) 6413 continue; 6414 6415 seq_printf(m, "%d:", root->hierarchy_id); 6416 if (root != &cgrp_dfl_root) 6417 for_each_subsys(ss, ssid) 6418 if (root->subsys_mask & (1 << ssid)) 6419 seq_printf(m, "%s%s", count++ ? "," : "", 6420 ss->legacy_name); 6421 if (strlen(root->name)) 6422 seq_printf(m, "%sname=%s", count ? "," : "", 6423 root->name); 6424 seq_putc(m, ':'); 6425 /* 6426 * On traditional hierarchies, all zombie tasks show up as 6427 * belonging to the root cgroup. On the default hierarchy, 6428 * while a zombie doesn't show up in "cgroup.procs" and 6429 * thus can't be migrated, its /proc/PID/cgroup keeps 6430 * reporting the cgroup it belonged to before exiting. If 6431 * the cgroup is removed before the zombie is reaped, 6432 * " (deleted)" is appended to the cgroup path. 6433 */ 6434 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6435 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6436 current->nsproxy->cgroup_ns); 6437 if (retval == -E2BIG) 6438 retval = -ENAMETOOLONG; 6439 if (retval < 0) 6440 goto out_unlock; 6441 6442 seq_puts(m, buf); 6443 } else { 6444 seq_puts(m, "/"); 6445 } 6446 6447 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6448 seq_puts(m, " (deleted)\n"); 6449 else 6450 seq_putc(m, '\n'); 6451 } 6452 6453 retval = 0; 6454 out_unlock: 6455 spin_unlock_irq(&css_set_lock); 6456 rcu_read_unlock(); 6457 kfree(buf); 6458 out: 6459 return retval; 6460 } 6461 6462 /** 6463 * cgroup_fork - initialize cgroup related fields during copy_process() 6464 * @child: pointer to task_struct of forking parent process. 6465 * 6466 * A task is associated with the init_css_set until cgroup_post_fork() 6467 * attaches it to the target css_set. 6468 */ 6469 void cgroup_fork(struct task_struct *child) 6470 { 6471 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6472 INIT_LIST_HEAD(&child->cg_list); 6473 } 6474 6475 /** 6476 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6477 * @f: file corresponding to cgroup_dir 6478 * 6479 * Find the cgroup from a file pointer associated with a cgroup directory. 6480 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6481 * cgroup cannot be found. 6482 */ 6483 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6484 { 6485 struct cgroup_subsys_state *css; 6486 6487 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6488 if (IS_ERR(css)) 6489 return ERR_CAST(css); 6490 6491 return css->cgroup; 6492 } 6493 6494 /** 6495 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6496 * cgroup2. 6497 * @f: file corresponding to cgroup2_dir 6498 */ 6499 static struct cgroup *cgroup_get_from_file(struct file *f) 6500 { 6501 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6502 6503 if (IS_ERR(cgrp)) 6504 return ERR_CAST(cgrp); 6505 6506 if (!cgroup_on_dfl(cgrp)) { 6507 cgroup_put(cgrp); 6508 return ERR_PTR(-EBADF); 6509 } 6510 6511 return cgrp; 6512 } 6513 6514 /** 6515 * cgroup_css_set_fork - find or create a css_set for a child process 6516 * @kargs: the arguments passed to create the child process 6517 * 6518 * This functions finds or creates a new css_set which the child 6519 * process will be attached to in cgroup_post_fork(). By default, 6520 * the child process will be given the same css_set as its parent. 6521 * 6522 * If CLONE_INTO_CGROUP is specified this function will try to find an 6523 * existing css_set which includes the requested cgroup and if not create 6524 * a new css_set that the child will be attached to later. If this function 6525 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6526 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6527 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6528 * to the target cgroup. 6529 */ 6530 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6531 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6532 { 6533 int ret; 6534 struct cgroup *dst_cgrp = NULL; 6535 struct css_set *cset; 6536 struct super_block *sb; 6537 6538 if (kargs->flags & CLONE_INTO_CGROUP) 6539 cgroup_lock(); 6540 6541 cgroup_threadgroup_change_begin(current); 6542 6543 spin_lock_irq(&css_set_lock); 6544 cset = task_css_set(current); 6545 get_css_set(cset); 6546 if (kargs->cgrp) 6547 kargs->kill_seq = kargs->cgrp->kill_seq; 6548 else 6549 kargs->kill_seq = cset->dfl_cgrp->kill_seq; 6550 spin_unlock_irq(&css_set_lock); 6551 6552 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6553 kargs->cset = cset; 6554 return 0; 6555 } 6556 6557 CLASS(fd_raw, f)(kargs->cgroup); 6558 if (fd_empty(f)) { 6559 ret = -EBADF; 6560 goto err; 6561 } 6562 sb = fd_file(f)->f_path.dentry->d_sb; 6563 6564 dst_cgrp = cgroup_get_from_file(fd_file(f)); 6565 if (IS_ERR(dst_cgrp)) { 6566 ret = PTR_ERR(dst_cgrp); 6567 dst_cgrp = NULL; 6568 goto err; 6569 } 6570 6571 if (cgroup_is_dead(dst_cgrp)) { 6572 ret = -ENODEV; 6573 goto err; 6574 } 6575 6576 /* 6577 * Verify that we the target cgroup is writable for us. This is 6578 * usually done by the vfs layer but since we're not going through 6579 * the vfs layer here we need to do it "manually". 6580 */ 6581 ret = cgroup_may_write(dst_cgrp, sb); 6582 if (ret) 6583 goto err; 6584 6585 /* 6586 * Spawning a task directly into a cgroup works by passing a file 6587 * descriptor to the target cgroup directory. This can even be an O_PATH 6588 * file descriptor. But it can never be a cgroup.procs file descriptor. 6589 * This was done on purpose so spawning into a cgroup could be 6590 * conceptualized as an atomic 6591 * 6592 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6593 * write(fd, <child-pid>, ...); 6594 * 6595 * sequence, i.e. it's a shorthand for the caller opening and writing 6596 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6597 * to always use the caller's credentials. 6598 */ 6599 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6600 !(kargs->flags & CLONE_THREAD), 6601 current->nsproxy->cgroup_ns); 6602 if (ret) 6603 goto err; 6604 6605 kargs->cset = find_css_set(cset, dst_cgrp); 6606 if (!kargs->cset) { 6607 ret = -ENOMEM; 6608 goto err; 6609 } 6610 6611 put_css_set(cset); 6612 kargs->cgrp = dst_cgrp; 6613 return ret; 6614 6615 err: 6616 cgroup_threadgroup_change_end(current); 6617 cgroup_unlock(); 6618 if (dst_cgrp) 6619 cgroup_put(dst_cgrp); 6620 put_css_set(cset); 6621 if (kargs->cset) 6622 put_css_set(kargs->cset); 6623 return ret; 6624 } 6625 6626 /** 6627 * cgroup_css_set_put_fork - drop references we took during fork 6628 * @kargs: the arguments passed to create the child process 6629 * 6630 * Drop references to the prepared css_set and target cgroup if 6631 * CLONE_INTO_CGROUP was requested. 6632 */ 6633 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6634 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6635 { 6636 struct cgroup *cgrp = kargs->cgrp; 6637 struct css_set *cset = kargs->cset; 6638 6639 cgroup_threadgroup_change_end(current); 6640 6641 if (cset) { 6642 put_css_set(cset); 6643 kargs->cset = NULL; 6644 } 6645 6646 if (kargs->flags & CLONE_INTO_CGROUP) { 6647 cgroup_unlock(); 6648 if (cgrp) { 6649 cgroup_put(cgrp); 6650 kargs->cgrp = NULL; 6651 } 6652 } 6653 } 6654 6655 /** 6656 * cgroup_can_fork - called on a new task before the process is exposed 6657 * @child: the child process 6658 * @kargs: the arguments passed to create the child process 6659 * 6660 * This prepares a new css_set for the child process which the child will 6661 * be attached to in cgroup_post_fork(). 6662 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6663 * callback returns an error, the fork aborts with that error code. This 6664 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6665 */ 6666 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6667 { 6668 struct cgroup_subsys *ss; 6669 int i, j, ret; 6670 6671 ret = cgroup_css_set_fork(kargs); 6672 if (ret) 6673 return ret; 6674 6675 do_each_subsys_mask(ss, i, have_canfork_callback) { 6676 ret = ss->can_fork(child, kargs->cset); 6677 if (ret) 6678 goto out_revert; 6679 } while_each_subsys_mask(); 6680 6681 return 0; 6682 6683 out_revert: 6684 for_each_subsys(ss, j) { 6685 if (j >= i) 6686 break; 6687 if (ss->cancel_fork) 6688 ss->cancel_fork(child, kargs->cset); 6689 } 6690 6691 cgroup_css_set_put_fork(kargs); 6692 6693 return ret; 6694 } 6695 6696 /** 6697 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6698 * @child: the child process 6699 * @kargs: the arguments passed to create the child process 6700 * 6701 * This calls the cancel_fork() callbacks if a fork failed *after* 6702 * cgroup_can_fork() succeeded and cleans up references we took to 6703 * prepare a new css_set for the child process in cgroup_can_fork(). 6704 */ 6705 void cgroup_cancel_fork(struct task_struct *child, 6706 struct kernel_clone_args *kargs) 6707 { 6708 struct cgroup_subsys *ss; 6709 int i; 6710 6711 for_each_subsys(ss, i) 6712 if (ss->cancel_fork) 6713 ss->cancel_fork(child, kargs->cset); 6714 6715 cgroup_css_set_put_fork(kargs); 6716 } 6717 6718 /** 6719 * cgroup_post_fork - finalize cgroup setup for the child process 6720 * @child: the child process 6721 * @kargs: the arguments passed to create the child process 6722 * 6723 * Attach the child process to its css_set calling the subsystem fork() 6724 * callbacks. 6725 */ 6726 void cgroup_post_fork(struct task_struct *child, 6727 struct kernel_clone_args *kargs) 6728 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6729 { 6730 unsigned int cgrp_kill_seq = 0; 6731 unsigned long cgrp_flags = 0; 6732 bool kill = false; 6733 struct cgroup_subsys *ss; 6734 struct css_set *cset; 6735 int i; 6736 6737 cset = kargs->cset; 6738 kargs->cset = NULL; 6739 6740 spin_lock_irq(&css_set_lock); 6741 6742 /* init tasks are special, only link regular threads */ 6743 if (likely(child->pid)) { 6744 if (kargs->cgrp) { 6745 cgrp_flags = kargs->cgrp->flags; 6746 cgrp_kill_seq = kargs->cgrp->kill_seq; 6747 } else { 6748 cgrp_flags = cset->dfl_cgrp->flags; 6749 cgrp_kill_seq = cset->dfl_cgrp->kill_seq; 6750 } 6751 6752 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6753 cset->nr_tasks++; 6754 css_set_move_task(child, NULL, cset, false); 6755 } else { 6756 put_css_set(cset); 6757 cset = NULL; 6758 } 6759 6760 if (!(child->flags & PF_KTHREAD)) { 6761 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6762 /* 6763 * If the cgroup has to be frozen, the new task has 6764 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6765 * get the task into the frozen state. 6766 */ 6767 spin_lock(&child->sighand->siglock); 6768 WARN_ON_ONCE(child->frozen); 6769 child->jobctl |= JOBCTL_TRAP_FREEZE; 6770 spin_unlock(&child->sighand->siglock); 6771 6772 /* 6773 * Calling cgroup_update_frozen() isn't required here, 6774 * because it will be called anyway a bit later from 6775 * do_freezer_trap(). So we avoid cgroup's transient 6776 * switch from the frozen state and back. 6777 */ 6778 } 6779 6780 /* 6781 * If the cgroup is to be killed notice it now and take the 6782 * child down right after we finished preparing it for 6783 * userspace. 6784 */ 6785 kill = kargs->kill_seq != cgrp_kill_seq; 6786 } 6787 6788 spin_unlock_irq(&css_set_lock); 6789 6790 /* 6791 * Call ss->fork(). This must happen after @child is linked on 6792 * css_set; otherwise, @child might change state between ->fork() 6793 * and addition to css_set. 6794 */ 6795 do_each_subsys_mask(ss, i, have_fork_callback) { 6796 ss->fork(child); 6797 } while_each_subsys_mask(); 6798 6799 /* Make the new cset the root_cset of the new cgroup namespace. */ 6800 if (kargs->flags & CLONE_NEWCGROUP) { 6801 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6802 6803 get_css_set(cset); 6804 child->nsproxy->cgroup_ns->root_cset = cset; 6805 put_css_set(rcset); 6806 } 6807 6808 /* Cgroup has to be killed so take down child immediately. */ 6809 if (unlikely(kill)) 6810 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6811 6812 cgroup_css_set_put_fork(kargs); 6813 } 6814 6815 /** 6816 * cgroup_exit - detach cgroup from exiting task 6817 * @tsk: pointer to task_struct of exiting process 6818 * 6819 * Description: Detach cgroup from @tsk. 6820 * 6821 */ 6822 void cgroup_exit(struct task_struct *tsk) 6823 { 6824 struct cgroup_subsys *ss; 6825 struct css_set *cset; 6826 int i; 6827 6828 spin_lock_irq(&css_set_lock); 6829 6830 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6831 cset = task_css_set(tsk); 6832 css_set_move_task(tsk, cset, NULL, false); 6833 cset->nr_tasks--; 6834 /* matches the signal->live check in css_task_iter_advance() */ 6835 if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live)) 6836 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6837 6838 if (dl_task(tsk)) 6839 dec_dl_tasks_cs(tsk); 6840 6841 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6842 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6843 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6844 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6845 6846 spin_unlock_irq(&css_set_lock); 6847 6848 /* see cgroup_post_fork() for details */ 6849 do_each_subsys_mask(ss, i, have_exit_callback) { 6850 ss->exit(tsk); 6851 } while_each_subsys_mask(); 6852 } 6853 6854 void cgroup_release(struct task_struct *task) 6855 { 6856 struct cgroup_subsys *ss; 6857 int ssid; 6858 6859 do_each_subsys_mask(ss, ssid, have_release_callback) { 6860 ss->release(task); 6861 } while_each_subsys_mask(); 6862 6863 if (!list_empty(&task->cg_list)) { 6864 spin_lock_irq(&css_set_lock); 6865 css_set_skip_task_iters(task_css_set(task), task); 6866 list_del_init(&task->cg_list); 6867 spin_unlock_irq(&css_set_lock); 6868 } 6869 } 6870 6871 void cgroup_free(struct task_struct *task) 6872 { 6873 struct css_set *cset = task_css_set(task); 6874 put_css_set(cset); 6875 } 6876 6877 static int __init cgroup_disable(char *str) 6878 { 6879 struct cgroup_subsys *ss; 6880 char *token; 6881 int i; 6882 6883 while ((token = strsep(&str, ",")) != NULL) { 6884 if (!*token) 6885 continue; 6886 6887 for_each_subsys(ss, i) { 6888 if (strcmp(token, ss->name) && 6889 strcmp(token, ss->legacy_name)) 6890 continue; 6891 6892 static_branch_disable(cgroup_subsys_enabled_key[i]); 6893 pr_info("Disabling %s control group subsystem\n", 6894 ss->name); 6895 } 6896 6897 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6898 if (strcmp(token, cgroup_opt_feature_names[i])) 6899 continue; 6900 cgroup_feature_disable_mask |= 1 << i; 6901 pr_info("Disabling %s control group feature\n", 6902 cgroup_opt_feature_names[i]); 6903 break; 6904 } 6905 } 6906 return 1; 6907 } 6908 __setup("cgroup_disable=", cgroup_disable); 6909 6910 void __init __weak enable_debug_cgroup(void) { } 6911 6912 static int __init enable_cgroup_debug(char *str) 6913 { 6914 cgroup_debug = true; 6915 enable_debug_cgroup(); 6916 return 1; 6917 } 6918 __setup("cgroup_debug", enable_cgroup_debug); 6919 6920 static int __init cgroup_favordynmods_setup(char *str) 6921 { 6922 return (kstrtobool(str, &have_favordynmods) == 0); 6923 } 6924 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup); 6925 6926 /** 6927 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6928 * @dentry: directory dentry of interest 6929 * @ss: subsystem of interest 6930 * 6931 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6932 * to get the corresponding css and return it. If such css doesn't exist 6933 * or can't be pinned, an ERR_PTR value is returned. 6934 */ 6935 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6936 struct cgroup_subsys *ss) 6937 { 6938 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6939 struct file_system_type *s_type = dentry->d_sb->s_type; 6940 struct cgroup_subsys_state *css = NULL; 6941 struct cgroup *cgrp; 6942 6943 /* is @dentry a cgroup dir? */ 6944 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6945 !kn || kernfs_type(kn) != KERNFS_DIR) 6946 return ERR_PTR(-EBADF); 6947 6948 rcu_read_lock(); 6949 6950 /* 6951 * This path doesn't originate from kernfs and @kn could already 6952 * have been or be removed at any point. @kn->priv is RCU 6953 * protected for this access. See css_release_work_fn() for details. 6954 */ 6955 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6956 if (cgrp) 6957 css = cgroup_css(cgrp, ss); 6958 6959 if (!css || !css_tryget_online(css)) 6960 css = ERR_PTR(-ENOENT); 6961 6962 rcu_read_unlock(); 6963 return css; 6964 } 6965 6966 /** 6967 * css_from_id - lookup css by id 6968 * @id: the cgroup id 6969 * @ss: cgroup subsys to be looked into 6970 * 6971 * Returns the css if there's valid one with @id, otherwise returns NULL. 6972 * Should be called under rcu_read_lock(). 6973 */ 6974 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6975 { 6976 WARN_ON_ONCE(!rcu_read_lock_held()); 6977 return idr_find(&ss->css_idr, id); 6978 } 6979 6980 /** 6981 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6982 * @path: path on the default hierarchy 6983 * 6984 * Find the cgroup at @path on the default hierarchy, increment its 6985 * reference count and return it. Returns pointer to the found cgroup on 6986 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6987 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6988 */ 6989 struct cgroup *cgroup_get_from_path(const char *path) 6990 { 6991 struct kernfs_node *kn; 6992 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6993 struct cgroup *root_cgrp; 6994 6995 root_cgrp = current_cgns_cgroup_dfl(); 6996 kn = kernfs_walk_and_get(root_cgrp->kn, path); 6997 if (!kn) 6998 goto out; 6999 7000 if (kernfs_type(kn) != KERNFS_DIR) { 7001 cgrp = ERR_PTR(-ENOTDIR); 7002 goto out_kernfs; 7003 } 7004 7005 rcu_read_lock(); 7006 7007 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 7008 if (!cgrp || !cgroup_tryget(cgrp)) 7009 cgrp = ERR_PTR(-ENOENT); 7010 7011 rcu_read_unlock(); 7012 7013 out_kernfs: 7014 kernfs_put(kn); 7015 out: 7016 return cgrp; 7017 } 7018 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 7019 7020 /** 7021 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 7022 * @fd: fd obtained by open(cgroup_dir) 7023 * 7024 * Find the cgroup from a fd which should be obtained 7025 * by opening a cgroup directory. Returns a pointer to the 7026 * cgroup on success. ERR_PTR is returned if the cgroup 7027 * cannot be found. 7028 */ 7029 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 7030 { 7031 CLASS(fd_raw, f)(fd); 7032 if (fd_empty(f)) 7033 return ERR_PTR(-EBADF); 7034 7035 return cgroup_v1v2_get_from_file(fd_file(f)); 7036 } 7037 7038 /** 7039 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 7040 * cgroup2. 7041 * @fd: fd obtained by open(cgroup2_dir) 7042 */ 7043 struct cgroup *cgroup_get_from_fd(int fd) 7044 { 7045 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 7046 7047 if (IS_ERR(cgrp)) 7048 return ERR_CAST(cgrp); 7049 7050 if (!cgroup_on_dfl(cgrp)) { 7051 cgroup_put(cgrp); 7052 return ERR_PTR(-EBADF); 7053 } 7054 return cgrp; 7055 } 7056 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 7057 7058 static u64 power_of_ten(int power) 7059 { 7060 u64 v = 1; 7061 while (power--) 7062 v *= 10; 7063 return v; 7064 } 7065 7066 /** 7067 * cgroup_parse_float - parse a floating number 7068 * @input: input string 7069 * @dec_shift: number of decimal digits to shift 7070 * @v: output 7071 * 7072 * Parse a decimal floating point number in @input and store the result in 7073 * @v with decimal point right shifted @dec_shift times. For example, if 7074 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 7075 * Returns 0 on success, -errno otherwise. 7076 * 7077 * There's nothing cgroup specific about this function except that it's 7078 * currently the only user. 7079 */ 7080 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 7081 { 7082 s64 whole, frac = 0; 7083 int fstart = 0, fend = 0, flen; 7084 7085 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 7086 return -EINVAL; 7087 if (frac < 0) 7088 return -EINVAL; 7089 7090 flen = fend > fstart ? fend - fstart : 0; 7091 if (flen < dec_shift) 7092 frac *= power_of_ten(dec_shift - flen); 7093 else 7094 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 7095 7096 *v = whole * power_of_ten(dec_shift) + frac; 7097 return 0; 7098 } 7099 7100 /* 7101 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 7102 * definition in cgroup-defs.h. 7103 */ 7104 #ifdef CONFIG_SOCK_CGROUP_DATA 7105 7106 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 7107 { 7108 struct cgroup *cgroup; 7109 7110 rcu_read_lock(); 7111 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 7112 if (in_interrupt()) { 7113 cgroup = &cgrp_dfl_root.cgrp; 7114 cgroup_get(cgroup); 7115 goto out; 7116 } 7117 7118 while (true) { 7119 struct css_set *cset; 7120 7121 cset = task_css_set(current); 7122 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 7123 cgroup = cset->dfl_cgrp; 7124 break; 7125 } 7126 cpu_relax(); 7127 } 7128 out: 7129 skcd->cgroup = cgroup; 7130 cgroup_bpf_get(cgroup); 7131 rcu_read_unlock(); 7132 } 7133 7134 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 7135 { 7136 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7137 7138 /* 7139 * We might be cloning a socket which is left in an empty 7140 * cgroup and the cgroup might have already been rmdir'd. 7141 * Don't use cgroup_get_live(). 7142 */ 7143 cgroup_get(cgrp); 7144 cgroup_bpf_get(cgrp); 7145 } 7146 7147 void cgroup_sk_free(struct sock_cgroup_data *skcd) 7148 { 7149 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7150 7151 cgroup_bpf_put(cgrp); 7152 cgroup_put(cgrp); 7153 } 7154 7155 #endif /* CONFIG_SOCK_CGROUP_DATA */ 7156 7157 #ifdef CONFIG_SYSFS 7158 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 7159 ssize_t size, const char *prefix) 7160 { 7161 struct cftype *cft; 7162 ssize_t ret = 0; 7163 7164 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 7165 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 7166 continue; 7167 7168 if (prefix) 7169 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 7170 7171 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 7172 7173 if (WARN_ON(ret >= size)) 7174 break; 7175 } 7176 7177 return ret; 7178 } 7179 7180 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 7181 char *buf) 7182 { 7183 struct cgroup_subsys *ss; 7184 int ssid; 7185 ssize_t ret = 0; 7186 7187 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7188 PAGE_SIZE - ret, NULL); 7189 if (cgroup_psi_enabled()) 7190 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7191 PAGE_SIZE - ret, NULL); 7192 7193 for_each_subsys(ss, ssid) 7194 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7195 PAGE_SIZE - ret, 7196 cgroup_subsys_name[ssid]); 7197 7198 return ret; 7199 } 7200 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7201 7202 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7203 char *buf) 7204 { 7205 return snprintf(buf, PAGE_SIZE, 7206 "nsdelegate\n" 7207 "favordynmods\n" 7208 "memory_localevents\n" 7209 "memory_recursiveprot\n" 7210 "memory_hugetlb_accounting\n" 7211 "pids_localevents\n"); 7212 } 7213 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7214 7215 static struct attribute *cgroup_sysfs_attrs[] = { 7216 &cgroup_delegate_attr.attr, 7217 &cgroup_features_attr.attr, 7218 NULL, 7219 }; 7220 7221 static const struct attribute_group cgroup_sysfs_attr_group = { 7222 .attrs = cgroup_sysfs_attrs, 7223 .name = "cgroup", 7224 }; 7225 7226 static int __init cgroup_sysfs_init(void) 7227 { 7228 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7229 } 7230 subsys_initcall(cgroup_sysfs_init); 7231 7232 #endif /* CONFIG_SYSFS */ 7233