1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/sched/deadline.h> 61 #include <linux/psi.h> 62 #include <net/sock.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/cgroup.h> 66 67 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 68 MAX_CFTYPE_NAME + 2) 69 /* let's not notify more than 100 times per second */ 70 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 71 72 /* 73 * To avoid confusing the compiler (and generating warnings) with code 74 * that attempts to access what would be a 0-element array (i.e. sized 75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 76 * constant expression can be added. 77 */ 78 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 79 80 /* 81 * cgroup_mutex is the master lock. Any modification to cgroup or its 82 * hierarchy must be performed while holding it. 83 * 84 * css_set_lock protects task->cgroups pointer, the list of css_set 85 * objects, and the chain of tasks off each css_set. 86 * 87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 88 * cgroup.h can use them for lockdep annotations. 89 */ 90 DEFINE_MUTEX(cgroup_mutex); 91 DEFINE_SPINLOCK(css_set_lock); 92 93 #ifdef CONFIG_PROVE_RCU 94 EXPORT_SYMBOL_GPL(cgroup_mutex); 95 EXPORT_SYMBOL_GPL(css_set_lock); 96 #endif 97 98 DEFINE_SPINLOCK(trace_cgroup_path_lock); 99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 100 static bool cgroup_debug __read_mostly; 101 102 /* 103 * Protects cgroup_idr and css_idr so that IDs can be released without 104 * grabbing cgroup_mutex. 105 */ 106 static DEFINE_SPINLOCK(cgroup_idr_lock); 107 108 /* 109 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 110 * against file removal/re-creation across css hiding. 111 */ 112 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 113 114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 115 116 #define cgroup_assert_mutex_or_rcu_locked() \ 117 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 118 !lockdep_is_held(&cgroup_mutex), \ 119 "cgroup_mutex or RCU read lock required"); 120 121 /* 122 * cgroup destruction makes heavy use of work items and there can be a lot 123 * of concurrent destructions. Use a separate workqueue so that cgroup 124 * destruction work items don't end up filling up max_active of system_wq 125 * which may lead to deadlock. 126 */ 127 static struct workqueue_struct *cgroup_destroy_wq; 128 129 /* generate an array of cgroup subsystem pointers */ 130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 131 struct cgroup_subsys *cgroup_subsys[] = { 132 #include <linux/cgroup_subsys.h> 133 }; 134 #undef SUBSYS 135 136 /* array of cgroup subsystem names */ 137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 138 static const char *cgroup_subsys_name[] = { 139 #include <linux/cgroup_subsys.h> 140 }; 141 #undef SUBSYS 142 143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 144 #define SUBSYS(_x) \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 146 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 148 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 149 #include <linux/cgroup_subsys.h> 150 #undef SUBSYS 151 152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 153 static struct static_key_true *cgroup_subsys_enabled_key[] = { 154 #include <linux/cgroup_subsys.h> 155 }; 156 #undef SUBSYS 157 158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 160 #include <linux/cgroup_subsys.h> 161 }; 162 #undef SUBSYS 163 164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 165 166 /* the default hierarchy */ 167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 168 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 169 170 /* 171 * The default hierarchy always exists but is hidden until mounted for the 172 * first time. This is for backward compatibility. 173 */ 174 static bool cgrp_dfl_visible; 175 176 /* some controllers are not supported in the default hierarchy */ 177 static u16 cgrp_dfl_inhibit_ss_mask; 178 179 /* some controllers are implicitly enabled on the default hierarchy */ 180 static u16 cgrp_dfl_implicit_ss_mask; 181 182 /* some controllers can be threaded on the default hierarchy */ 183 static u16 cgrp_dfl_threaded_ss_mask; 184 185 /* The list of hierarchy roots */ 186 LIST_HEAD(cgroup_roots); 187 static int cgroup_root_count; 188 189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 190 static DEFINE_IDR(cgroup_hierarchy_idr); 191 192 /* 193 * Assign a monotonically increasing serial number to csses. It guarantees 194 * cgroups with bigger numbers are newer than those with smaller numbers. 195 * Also, as csses are always appended to the parent's ->children list, it 196 * guarantees that sibling csses are always sorted in the ascending serial 197 * number order on the list. Protected by cgroup_mutex. 198 */ 199 static u64 css_serial_nr_next = 1; 200 201 /* 202 * These bitmasks identify subsystems with specific features to avoid 203 * having to do iterative checks repeatedly. 204 */ 205 static u16 have_fork_callback __read_mostly; 206 static u16 have_exit_callback __read_mostly; 207 static u16 have_release_callback __read_mostly; 208 static u16 have_canfork_callback __read_mostly; 209 210 /* cgroup namespace for init task */ 211 struct cgroup_namespace init_cgroup_ns = { 212 .ns.count = REFCOUNT_INIT(2), 213 .user_ns = &init_user_ns, 214 .ns.ops = &cgroupns_operations, 215 .ns.inum = PROC_CGROUP_INIT_INO, 216 .root_cset = &init_css_set, 217 }; 218 219 static struct file_system_type cgroup2_fs_type; 220 static struct cftype cgroup_base_files[]; 221 static struct cftype cgroup_psi_files[]; 222 223 /* cgroup optional features */ 224 enum cgroup_opt_features { 225 #ifdef CONFIG_PSI 226 OPT_FEATURE_PRESSURE, 227 #endif 228 OPT_FEATURE_COUNT 229 }; 230 231 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 232 #ifdef CONFIG_PSI 233 "pressure", 234 #endif 235 }; 236 237 static u16 cgroup_feature_disable_mask __read_mostly; 238 239 static int cgroup_apply_control(struct cgroup *cgrp); 240 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 241 static void css_task_iter_skip(struct css_task_iter *it, 242 struct task_struct *task); 243 static int cgroup_destroy_locked(struct cgroup *cgrp); 244 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 245 struct cgroup_subsys *ss); 246 static void css_release(struct percpu_ref *ref); 247 static void kill_css(struct cgroup_subsys_state *css); 248 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 249 struct cgroup *cgrp, struct cftype cfts[], 250 bool is_add); 251 252 #ifdef CONFIG_DEBUG_CGROUP_REF 253 #define CGROUP_REF_FN_ATTRS noinline 254 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); 255 #include <linux/cgroup_refcnt.h> 256 #endif 257 258 /** 259 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 260 * @ssid: subsys ID of interest 261 * 262 * cgroup_subsys_enabled() can only be used with literal subsys names which 263 * is fine for individual subsystems but unsuitable for cgroup core. This 264 * is slower static_key_enabled() based test indexed by @ssid. 265 */ 266 bool cgroup_ssid_enabled(int ssid) 267 { 268 if (!CGROUP_HAS_SUBSYS_CONFIG) 269 return false; 270 271 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 272 } 273 274 /** 275 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 276 * @cgrp: the cgroup of interest 277 * 278 * The default hierarchy is the v2 interface of cgroup and this function 279 * can be used to test whether a cgroup is on the default hierarchy for 280 * cases where a subsystem should behave differently depending on the 281 * interface version. 282 * 283 * List of changed behaviors: 284 * 285 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 286 * and "name" are disallowed. 287 * 288 * - When mounting an existing superblock, mount options should match. 289 * 290 * - rename(2) is disallowed. 291 * 292 * - "tasks" is removed. Everything should be at process granularity. Use 293 * "cgroup.procs" instead. 294 * 295 * - "cgroup.procs" is not sorted. pids will be unique unless they got 296 * recycled in-between reads. 297 * 298 * - "release_agent" and "notify_on_release" are removed. Replacement 299 * notification mechanism will be implemented. 300 * 301 * - "cgroup.clone_children" is removed. 302 * 303 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 304 * and its descendants contain no task; otherwise, 1. The file also 305 * generates kernfs notification which can be monitored through poll and 306 * [di]notify when the value of the file changes. 307 * 308 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 309 * take masks of ancestors with non-empty cpus/mems, instead of being 310 * moved to an ancestor. 311 * 312 * - cpuset: a task can be moved into an empty cpuset, and again it takes 313 * masks of ancestors. 314 * 315 * - blkcg: blk-throttle becomes properly hierarchical. 316 */ 317 bool cgroup_on_dfl(const struct cgroup *cgrp) 318 { 319 return cgrp->root == &cgrp_dfl_root; 320 } 321 322 /* IDR wrappers which synchronize using cgroup_idr_lock */ 323 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 324 gfp_t gfp_mask) 325 { 326 int ret; 327 328 idr_preload(gfp_mask); 329 spin_lock_bh(&cgroup_idr_lock); 330 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 331 spin_unlock_bh(&cgroup_idr_lock); 332 idr_preload_end(); 333 return ret; 334 } 335 336 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 337 { 338 void *ret; 339 340 spin_lock_bh(&cgroup_idr_lock); 341 ret = idr_replace(idr, ptr, id); 342 spin_unlock_bh(&cgroup_idr_lock); 343 return ret; 344 } 345 346 static void cgroup_idr_remove(struct idr *idr, int id) 347 { 348 spin_lock_bh(&cgroup_idr_lock); 349 idr_remove(idr, id); 350 spin_unlock_bh(&cgroup_idr_lock); 351 } 352 353 static bool cgroup_has_tasks(struct cgroup *cgrp) 354 { 355 return cgrp->nr_populated_csets; 356 } 357 358 static bool cgroup_is_threaded(struct cgroup *cgrp) 359 { 360 return cgrp->dom_cgrp != cgrp; 361 } 362 363 /* can @cgrp host both domain and threaded children? */ 364 static bool cgroup_is_mixable(struct cgroup *cgrp) 365 { 366 /* 367 * Root isn't under domain level resource control exempting it from 368 * the no-internal-process constraint, so it can serve as a thread 369 * root and a parent of resource domains at the same time. 370 */ 371 return !cgroup_parent(cgrp); 372 } 373 374 /* can @cgrp become a thread root? Should always be true for a thread root */ 375 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 376 { 377 /* mixables don't care */ 378 if (cgroup_is_mixable(cgrp)) 379 return true; 380 381 /* domain roots can't be nested under threaded */ 382 if (cgroup_is_threaded(cgrp)) 383 return false; 384 385 /* can only have either domain or threaded children */ 386 if (cgrp->nr_populated_domain_children) 387 return false; 388 389 /* and no domain controllers can be enabled */ 390 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 391 return false; 392 393 return true; 394 } 395 396 /* is @cgrp root of a threaded subtree? */ 397 static bool cgroup_is_thread_root(struct cgroup *cgrp) 398 { 399 /* thread root should be a domain */ 400 if (cgroup_is_threaded(cgrp)) 401 return false; 402 403 /* a domain w/ threaded children is a thread root */ 404 if (cgrp->nr_threaded_children) 405 return true; 406 407 /* 408 * A domain which has tasks and explicit threaded controllers 409 * enabled is a thread root. 410 */ 411 if (cgroup_has_tasks(cgrp) && 412 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 413 return true; 414 415 return false; 416 } 417 418 /* a domain which isn't connected to the root w/o brekage can't be used */ 419 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 420 { 421 /* the cgroup itself can be a thread root */ 422 if (cgroup_is_threaded(cgrp)) 423 return false; 424 425 /* but the ancestors can't be unless mixable */ 426 while ((cgrp = cgroup_parent(cgrp))) { 427 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 428 return false; 429 if (cgroup_is_threaded(cgrp)) 430 return false; 431 } 432 433 return true; 434 } 435 436 /* subsystems visibly enabled on a cgroup */ 437 static u16 cgroup_control(struct cgroup *cgrp) 438 { 439 struct cgroup *parent = cgroup_parent(cgrp); 440 u16 root_ss_mask = cgrp->root->subsys_mask; 441 442 if (parent) { 443 u16 ss_mask = parent->subtree_control; 444 445 /* threaded cgroups can only have threaded controllers */ 446 if (cgroup_is_threaded(cgrp)) 447 ss_mask &= cgrp_dfl_threaded_ss_mask; 448 return ss_mask; 449 } 450 451 if (cgroup_on_dfl(cgrp)) 452 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 453 cgrp_dfl_implicit_ss_mask); 454 return root_ss_mask; 455 } 456 457 /* subsystems enabled on a cgroup */ 458 static u16 cgroup_ss_mask(struct cgroup *cgrp) 459 { 460 struct cgroup *parent = cgroup_parent(cgrp); 461 462 if (parent) { 463 u16 ss_mask = parent->subtree_ss_mask; 464 465 /* threaded cgroups can only have threaded controllers */ 466 if (cgroup_is_threaded(cgrp)) 467 ss_mask &= cgrp_dfl_threaded_ss_mask; 468 return ss_mask; 469 } 470 471 return cgrp->root->subsys_mask; 472 } 473 474 /** 475 * cgroup_css - obtain a cgroup's css for the specified subsystem 476 * @cgrp: the cgroup of interest 477 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 478 * 479 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 480 * function must be called either under cgroup_mutex or rcu_read_lock() and 481 * the caller is responsible for pinning the returned css if it wants to 482 * keep accessing it outside the said locks. This function may return 483 * %NULL if @cgrp doesn't have @subsys_id enabled. 484 */ 485 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 486 struct cgroup_subsys *ss) 487 { 488 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 489 return rcu_dereference_check(cgrp->subsys[ss->id], 490 lockdep_is_held(&cgroup_mutex)); 491 else 492 return &cgrp->self; 493 } 494 495 /** 496 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 497 * @cgrp: the cgroup of interest 498 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 499 * 500 * Similar to cgroup_css() but returns the effective css, which is defined 501 * as the matching css of the nearest ancestor including self which has @ss 502 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 503 * function is guaranteed to return non-NULL css. 504 */ 505 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 506 struct cgroup_subsys *ss) 507 { 508 lockdep_assert_held(&cgroup_mutex); 509 510 if (!ss) 511 return &cgrp->self; 512 513 /* 514 * This function is used while updating css associations and thus 515 * can't test the csses directly. Test ss_mask. 516 */ 517 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 518 cgrp = cgroup_parent(cgrp); 519 if (!cgrp) 520 return NULL; 521 } 522 523 return cgroup_css(cgrp, ss); 524 } 525 526 /** 527 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 528 * @cgrp: the cgroup of interest 529 * @ss: the subsystem of interest 530 * 531 * Find and get the effective css of @cgrp for @ss. The effective css is 532 * defined as the matching css of the nearest ancestor including self which 533 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 534 * the root css is returned, so this function always returns a valid css. 535 * 536 * The returned css is not guaranteed to be online, and therefore it is the 537 * callers responsibility to try get a reference for it. 538 */ 539 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 540 struct cgroup_subsys *ss) 541 { 542 struct cgroup_subsys_state *css; 543 544 if (!CGROUP_HAS_SUBSYS_CONFIG) 545 return NULL; 546 547 do { 548 css = cgroup_css(cgrp, ss); 549 550 if (css) 551 return css; 552 cgrp = cgroup_parent(cgrp); 553 } while (cgrp); 554 555 return init_css_set.subsys[ss->id]; 556 } 557 558 /** 559 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 560 * @cgrp: the cgroup of interest 561 * @ss: the subsystem of interest 562 * 563 * Find and get the effective css of @cgrp for @ss. The effective css is 564 * defined as the matching css of the nearest ancestor including self which 565 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 566 * the root css is returned, so this function always returns a valid css. 567 * The returned css must be put using css_put(). 568 */ 569 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 570 struct cgroup_subsys *ss) 571 { 572 struct cgroup_subsys_state *css; 573 574 if (!CGROUP_HAS_SUBSYS_CONFIG) 575 return NULL; 576 577 rcu_read_lock(); 578 579 do { 580 css = cgroup_css(cgrp, ss); 581 582 if (css && css_tryget_online(css)) 583 goto out_unlock; 584 cgrp = cgroup_parent(cgrp); 585 } while (cgrp); 586 587 css = init_css_set.subsys[ss->id]; 588 css_get(css); 589 out_unlock: 590 rcu_read_unlock(); 591 return css; 592 } 593 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 594 595 static void cgroup_get_live(struct cgroup *cgrp) 596 { 597 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 598 cgroup_get(cgrp); 599 } 600 601 /** 602 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 603 * is responsible for taking the css_set_lock. 604 * @cgrp: the cgroup in question 605 */ 606 int __cgroup_task_count(const struct cgroup *cgrp) 607 { 608 int count = 0; 609 struct cgrp_cset_link *link; 610 611 lockdep_assert_held(&css_set_lock); 612 613 list_for_each_entry(link, &cgrp->cset_links, cset_link) 614 count += link->cset->nr_tasks; 615 616 return count; 617 } 618 619 /** 620 * cgroup_task_count - count the number of tasks in a cgroup. 621 * @cgrp: the cgroup in question 622 */ 623 int cgroup_task_count(const struct cgroup *cgrp) 624 { 625 int count; 626 627 spin_lock_irq(&css_set_lock); 628 count = __cgroup_task_count(cgrp); 629 spin_unlock_irq(&css_set_lock); 630 631 return count; 632 } 633 634 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 635 { 636 struct cgroup *cgrp = of->kn->parent->priv; 637 struct cftype *cft = of_cft(of); 638 639 /* 640 * This is open and unprotected implementation of cgroup_css(). 641 * seq_css() is only called from a kernfs file operation which has 642 * an active reference on the file. Because all the subsystem 643 * files are drained before a css is disassociated with a cgroup, 644 * the matching css from the cgroup's subsys table is guaranteed to 645 * be and stay valid until the enclosing operation is complete. 646 */ 647 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 648 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 649 else 650 return &cgrp->self; 651 } 652 EXPORT_SYMBOL_GPL(of_css); 653 654 /** 655 * for_each_css - iterate all css's of a cgroup 656 * @css: the iteration cursor 657 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 658 * @cgrp: the target cgroup to iterate css's of 659 * 660 * Should be called under cgroup_mutex. 661 */ 662 #define for_each_css(css, ssid, cgrp) \ 663 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 664 if (!((css) = rcu_dereference_check( \ 665 (cgrp)->subsys[(ssid)], \ 666 lockdep_is_held(&cgroup_mutex)))) { } \ 667 else 668 669 /** 670 * do_each_subsys_mask - filter for_each_subsys with a bitmask 671 * @ss: the iteration cursor 672 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 673 * @ss_mask: the bitmask 674 * 675 * The block will only run for cases where the ssid-th bit (1 << ssid) of 676 * @ss_mask is set. 677 */ 678 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 679 unsigned long __ss_mask = (ss_mask); \ 680 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 681 (ssid) = 0; \ 682 break; \ 683 } \ 684 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 685 (ss) = cgroup_subsys[ssid]; \ 686 { 687 688 #define while_each_subsys_mask() \ 689 } \ 690 } \ 691 } while (false) 692 693 /* iterate over child cgrps, lock should be held throughout iteration */ 694 #define cgroup_for_each_live_child(child, cgrp) \ 695 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 696 if (({ lockdep_assert_held(&cgroup_mutex); \ 697 cgroup_is_dead(child); })) \ 698 ; \ 699 else 700 701 /* walk live descendants in pre order */ 702 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 703 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 704 if (({ lockdep_assert_held(&cgroup_mutex); \ 705 (dsct) = (d_css)->cgroup; \ 706 cgroup_is_dead(dsct); })) \ 707 ; \ 708 else 709 710 /* walk live descendants in postorder */ 711 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 712 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 713 if (({ lockdep_assert_held(&cgroup_mutex); \ 714 (dsct) = (d_css)->cgroup; \ 715 cgroup_is_dead(dsct); })) \ 716 ; \ 717 else 718 719 /* 720 * The default css_set - used by init and its children prior to any 721 * hierarchies being mounted. It contains a pointer to the root state 722 * for each subsystem. Also used to anchor the list of css_sets. Not 723 * reference-counted, to improve performance when child cgroups 724 * haven't been created. 725 */ 726 struct css_set init_css_set = { 727 .refcount = REFCOUNT_INIT(1), 728 .dom_cset = &init_css_set, 729 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 730 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 731 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 732 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 733 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 734 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 735 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 736 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 737 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 738 739 /* 740 * The following field is re-initialized when this cset gets linked 741 * in cgroup_init(). However, let's initialize the field 742 * statically too so that the default cgroup can be accessed safely 743 * early during boot. 744 */ 745 .dfl_cgrp = &cgrp_dfl_root.cgrp, 746 }; 747 748 static int css_set_count = 1; /* 1 for init_css_set */ 749 750 static bool css_set_threaded(struct css_set *cset) 751 { 752 return cset->dom_cset != cset; 753 } 754 755 /** 756 * css_set_populated - does a css_set contain any tasks? 757 * @cset: target css_set 758 * 759 * css_set_populated() should be the same as !!cset->nr_tasks at steady 760 * state. However, css_set_populated() can be called while a task is being 761 * added to or removed from the linked list before the nr_tasks is 762 * properly updated. Hence, we can't just look at ->nr_tasks here. 763 */ 764 static bool css_set_populated(struct css_set *cset) 765 { 766 lockdep_assert_held(&css_set_lock); 767 768 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 769 } 770 771 /** 772 * cgroup_update_populated - update the populated count of a cgroup 773 * @cgrp: the target cgroup 774 * @populated: inc or dec populated count 775 * 776 * One of the css_sets associated with @cgrp is either getting its first 777 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 778 * count is propagated towards root so that a given cgroup's 779 * nr_populated_children is zero iff none of its descendants contain any 780 * tasks. 781 * 782 * @cgrp's interface file "cgroup.populated" is zero if both 783 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 784 * 1 otherwise. When the sum changes from or to zero, userland is notified 785 * that the content of the interface file has changed. This can be used to 786 * detect when @cgrp and its descendants become populated or empty. 787 */ 788 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 789 { 790 struct cgroup *child = NULL; 791 int adj = populated ? 1 : -1; 792 793 lockdep_assert_held(&css_set_lock); 794 795 do { 796 bool was_populated = cgroup_is_populated(cgrp); 797 798 if (!child) { 799 cgrp->nr_populated_csets += adj; 800 } else { 801 if (cgroup_is_threaded(child)) 802 cgrp->nr_populated_threaded_children += adj; 803 else 804 cgrp->nr_populated_domain_children += adj; 805 } 806 807 if (was_populated == cgroup_is_populated(cgrp)) 808 break; 809 810 cgroup1_check_for_release(cgrp); 811 TRACE_CGROUP_PATH(notify_populated, cgrp, 812 cgroup_is_populated(cgrp)); 813 cgroup_file_notify(&cgrp->events_file); 814 815 child = cgrp; 816 cgrp = cgroup_parent(cgrp); 817 } while (cgrp); 818 } 819 820 /** 821 * css_set_update_populated - update populated state of a css_set 822 * @cset: target css_set 823 * @populated: whether @cset is populated or depopulated 824 * 825 * @cset is either getting the first task or losing the last. Update the 826 * populated counters of all associated cgroups accordingly. 827 */ 828 static void css_set_update_populated(struct css_set *cset, bool populated) 829 { 830 struct cgrp_cset_link *link; 831 832 lockdep_assert_held(&css_set_lock); 833 834 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 835 cgroup_update_populated(link->cgrp, populated); 836 } 837 838 /* 839 * @task is leaving, advance task iterators which are pointing to it so 840 * that they can resume at the next position. Advancing an iterator might 841 * remove it from the list, use safe walk. See css_task_iter_skip() for 842 * details. 843 */ 844 static void css_set_skip_task_iters(struct css_set *cset, 845 struct task_struct *task) 846 { 847 struct css_task_iter *it, *pos; 848 849 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 850 css_task_iter_skip(it, task); 851 } 852 853 /** 854 * css_set_move_task - move a task from one css_set to another 855 * @task: task being moved 856 * @from_cset: css_set @task currently belongs to (may be NULL) 857 * @to_cset: new css_set @task is being moved to (may be NULL) 858 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 859 * 860 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 861 * css_set, @from_cset can be NULL. If @task is being disassociated 862 * instead of moved, @to_cset can be NULL. 863 * 864 * This function automatically handles populated counter updates and 865 * css_task_iter adjustments but the caller is responsible for managing 866 * @from_cset and @to_cset's reference counts. 867 */ 868 static void css_set_move_task(struct task_struct *task, 869 struct css_set *from_cset, struct css_set *to_cset, 870 bool use_mg_tasks) 871 { 872 lockdep_assert_held(&css_set_lock); 873 874 if (to_cset && !css_set_populated(to_cset)) 875 css_set_update_populated(to_cset, true); 876 877 if (from_cset) { 878 WARN_ON_ONCE(list_empty(&task->cg_list)); 879 880 css_set_skip_task_iters(from_cset, task); 881 list_del_init(&task->cg_list); 882 if (!css_set_populated(from_cset)) 883 css_set_update_populated(from_cset, false); 884 } else { 885 WARN_ON_ONCE(!list_empty(&task->cg_list)); 886 } 887 888 if (to_cset) { 889 /* 890 * We are synchronized through cgroup_threadgroup_rwsem 891 * against PF_EXITING setting such that we can't race 892 * against cgroup_exit()/cgroup_free() dropping the css_set. 893 */ 894 WARN_ON_ONCE(task->flags & PF_EXITING); 895 896 cgroup_move_task(task, to_cset); 897 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 898 &to_cset->tasks); 899 } 900 } 901 902 /* 903 * hash table for cgroup groups. This improves the performance to find 904 * an existing css_set. This hash doesn't (currently) take into 905 * account cgroups in empty hierarchies. 906 */ 907 #define CSS_SET_HASH_BITS 7 908 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 909 910 static unsigned long css_set_hash(struct cgroup_subsys_state **css) 911 { 912 unsigned long key = 0UL; 913 struct cgroup_subsys *ss; 914 int i; 915 916 for_each_subsys(ss, i) 917 key += (unsigned long)css[i]; 918 key = (key >> 16) ^ key; 919 920 return key; 921 } 922 923 void put_css_set_locked(struct css_set *cset) 924 { 925 struct cgrp_cset_link *link, *tmp_link; 926 struct cgroup_subsys *ss; 927 int ssid; 928 929 lockdep_assert_held(&css_set_lock); 930 931 if (!refcount_dec_and_test(&cset->refcount)) 932 return; 933 934 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 935 936 /* This css_set is dead. Unlink it and release cgroup and css refs */ 937 for_each_subsys(ss, ssid) { 938 list_del(&cset->e_cset_node[ssid]); 939 css_put(cset->subsys[ssid]); 940 } 941 hash_del(&cset->hlist); 942 css_set_count--; 943 944 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 945 list_del(&link->cset_link); 946 list_del(&link->cgrp_link); 947 if (cgroup_parent(link->cgrp)) 948 cgroup_put(link->cgrp); 949 kfree(link); 950 } 951 952 if (css_set_threaded(cset)) { 953 list_del(&cset->threaded_csets_node); 954 put_css_set_locked(cset->dom_cset); 955 } 956 957 kfree_rcu(cset, rcu_head); 958 } 959 960 /** 961 * compare_css_sets - helper function for find_existing_css_set(). 962 * @cset: candidate css_set being tested 963 * @old_cset: existing css_set for a task 964 * @new_cgrp: cgroup that's being entered by the task 965 * @template: desired set of css pointers in css_set (pre-calculated) 966 * 967 * Returns true if "cset" matches "old_cset" except for the hierarchy 968 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 969 */ 970 static bool compare_css_sets(struct css_set *cset, 971 struct css_set *old_cset, 972 struct cgroup *new_cgrp, 973 struct cgroup_subsys_state *template[]) 974 { 975 struct cgroup *new_dfl_cgrp; 976 struct list_head *l1, *l2; 977 978 /* 979 * On the default hierarchy, there can be csets which are 980 * associated with the same set of cgroups but different csses. 981 * Let's first ensure that csses match. 982 */ 983 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 984 return false; 985 986 987 /* @cset's domain should match the default cgroup's */ 988 if (cgroup_on_dfl(new_cgrp)) 989 new_dfl_cgrp = new_cgrp; 990 else 991 new_dfl_cgrp = old_cset->dfl_cgrp; 992 993 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 994 return false; 995 996 /* 997 * Compare cgroup pointers in order to distinguish between 998 * different cgroups in hierarchies. As different cgroups may 999 * share the same effective css, this comparison is always 1000 * necessary. 1001 */ 1002 l1 = &cset->cgrp_links; 1003 l2 = &old_cset->cgrp_links; 1004 while (1) { 1005 struct cgrp_cset_link *link1, *link2; 1006 struct cgroup *cgrp1, *cgrp2; 1007 1008 l1 = l1->next; 1009 l2 = l2->next; 1010 /* See if we reached the end - both lists are equal length. */ 1011 if (l1 == &cset->cgrp_links) { 1012 BUG_ON(l2 != &old_cset->cgrp_links); 1013 break; 1014 } else { 1015 BUG_ON(l2 == &old_cset->cgrp_links); 1016 } 1017 /* Locate the cgroups associated with these links. */ 1018 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1019 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1020 cgrp1 = link1->cgrp; 1021 cgrp2 = link2->cgrp; 1022 /* Hierarchies should be linked in the same order. */ 1023 BUG_ON(cgrp1->root != cgrp2->root); 1024 1025 /* 1026 * If this hierarchy is the hierarchy of the cgroup 1027 * that's changing, then we need to check that this 1028 * css_set points to the new cgroup; if it's any other 1029 * hierarchy, then this css_set should point to the 1030 * same cgroup as the old css_set. 1031 */ 1032 if (cgrp1->root == new_cgrp->root) { 1033 if (cgrp1 != new_cgrp) 1034 return false; 1035 } else { 1036 if (cgrp1 != cgrp2) 1037 return false; 1038 } 1039 } 1040 return true; 1041 } 1042 1043 /** 1044 * find_existing_css_set - init css array and find the matching css_set 1045 * @old_cset: the css_set that we're using before the cgroup transition 1046 * @cgrp: the cgroup that we're moving into 1047 * @template: out param for the new set of csses, should be clear on entry 1048 */ 1049 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1050 struct cgroup *cgrp, 1051 struct cgroup_subsys_state **template) 1052 { 1053 struct cgroup_root *root = cgrp->root; 1054 struct cgroup_subsys *ss; 1055 struct css_set *cset; 1056 unsigned long key; 1057 int i; 1058 1059 /* 1060 * Build the set of subsystem state objects that we want to see in the 1061 * new css_set. While subsystems can change globally, the entries here 1062 * won't change, so no need for locking. 1063 */ 1064 for_each_subsys(ss, i) { 1065 if (root->subsys_mask & (1UL << i)) { 1066 /* 1067 * @ss is in this hierarchy, so we want the 1068 * effective css from @cgrp. 1069 */ 1070 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1071 } else { 1072 /* 1073 * @ss is not in this hierarchy, so we don't want 1074 * to change the css. 1075 */ 1076 template[i] = old_cset->subsys[i]; 1077 } 1078 } 1079 1080 key = css_set_hash(template); 1081 hash_for_each_possible(css_set_table, cset, hlist, key) { 1082 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1083 continue; 1084 1085 /* This css_set matches what we need */ 1086 return cset; 1087 } 1088 1089 /* No existing cgroup group matched */ 1090 return NULL; 1091 } 1092 1093 static void free_cgrp_cset_links(struct list_head *links_to_free) 1094 { 1095 struct cgrp_cset_link *link, *tmp_link; 1096 1097 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1098 list_del(&link->cset_link); 1099 kfree(link); 1100 } 1101 } 1102 1103 /** 1104 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1105 * @count: the number of links to allocate 1106 * @tmp_links: list_head the allocated links are put on 1107 * 1108 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1109 * through ->cset_link. Returns 0 on success or -errno. 1110 */ 1111 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1112 { 1113 struct cgrp_cset_link *link; 1114 int i; 1115 1116 INIT_LIST_HEAD(tmp_links); 1117 1118 for (i = 0; i < count; i++) { 1119 link = kzalloc(sizeof(*link), GFP_KERNEL); 1120 if (!link) { 1121 free_cgrp_cset_links(tmp_links); 1122 return -ENOMEM; 1123 } 1124 list_add(&link->cset_link, tmp_links); 1125 } 1126 return 0; 1127 } 1128 1129 /** 1130 * link_css_set - a helper function to link a css_set to a cgroup 1131 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1132 * @cset: the css_set to be linked 1133 * @cgrp: the destination cgroup 1134 */ 1135 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1136 struct cgroup *cgrp) 1137 { 1138 struct cgrp_cset_link *link; 1139 1140 BUG_ON(list_empty(tmp_links)); 1141 1142 if (cgroup_on_dfl(cgrp)) 1143 cset->dfl_cgrp = cgrp; 1144 1145 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1146 link->cset = cset; 1147 link->cgrp = cgrp; 1148 1149 /* 1150 * Always add links to the tail of the lists so that the lists are 1151 * in chronological order. 1152 */ 1153 list_move_tail(&link->cset_link, &cgrp->cset_links); 1154 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1155 1156 if (cgroup_parent(cgrp)) 1157 cgroup_get_live(cgrp); 1158 } 1159 1160 /** 1161 * find_css_set - return a new css_set with one cgroup updated 1162 * @old_cset: the baseline css_set 1163 * @cgrp: the cgroup to be updated 1164 * 1165 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1166 * substituted into the appropriate hierarchy. 1167 */ 1168 static struct css_set *find_css_set(struct css_set *old_cset, 1169 struct cgroup *cgrp) 1170 { 1171 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1172 struct css_set *cset; 1173 struct list_head tmp_links; 1174 struct cgrp_cset_link *link; 1175 struct cgroup_subsys *ss; 1176 unsigned long key; 1177 int ssid; 1178 1179 lockdep_assert_held(&cgroup_mutex); 1180 1181 /* First see if we already have a cgroup group that matches 1182 * the desired set */ 1183 spin_lock_irq(&css_set_lock); 1184 cset = find_existing_css_set(old_cset, cgrp, template); 1185 if (cset) 1186 get_css_set(cset); 1187 spin_unlock_irq(&css_set_lock); 1188 1189 if (cset) 1190 return cset; 1191 1192 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1193 if (!cset) 1194 return NULL; 1195 1196 /* Allocate all the cgrp_cset_link objects that we'll need */ 1197 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1198 kfree(cset); 1199 return NULL; 1200 } 1201 1202 refcount_set(&cset->refcount, 1); 1203 cset->dom_cset = cset; 1204 INIT_LIST_HEAD(&cset->tasks); 1205 INIT_LIST_HEAD(&cset->mg_tasks); 1206 INIT_LIST_HEAD(&cset->dying_tasks); 1207 INIT_LIST_HEAD(&cset->task_iters); 1208 INIT_LIST_HEAD(&cset->threaded_csets); 1209 INIT_HLIST_NODE(&cset->hlist); 1210 INIT_LIST_HEAD(&cset->cgrp_links); 1211 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1212 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1213 INIT_LIST_HEAD(&cset->mg_node); 1214 1215 /* Copy the set of subsystem state objects generated in 1216 * find_existing_css_set() */ 1217 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1218 1219 spin_lock_irq(&css_set_lock); 1220 /* Add reference counts and links from the new css_set. */ 1221 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1222 struct cgroup *c = link->cgrp; 1223 1224 if (c->root == cgrp->root) 1225 c = cgrp; 1226 link_css_set(&tmp_links, cset, c); 1227 } 1228 1229 BUG_ON(!list_empty(&tmp_links)); 1230 1231 css_set_count++; 1232 1233 /* Add @cset to the hash table */ 1234 key = css_set_hash(cset->subsys); 1235 hash_add(css_set_table, &cset->hlist, key); 1236 1237 for_each_subsys(ss, ssid) { 1238 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1239 1240 list_add_tail(&cset->e_cset_node[ssid], 1241 &css->cgroup->e_csets[ssid]); 1242 css_get(css); 1243 } 1244 1245 spin_unlock_irq(&css_set_lock); 1246 1247 /* 1248 * If @cset should be threaded, look up the matching dom_cset and 1249 * link them up. We first fully initialize @cset then look for the 1250 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1251 * to stay empty until we return. 1252 */ 1253 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1254 struct css_set *dcset; 1255 1256 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1257 if (!dcset) { 1258 put_css_set(cset); 1259 return NULL; 1260 } 1261 1262 spin_lock_irq(&css_set_lock); 1263 cset->dom_cset = dcset; 1264 list_add_tail(&cset->threaded_csets_node, 1265 &dcset->threaded_csets); 1266 spin_unlock_irq(&css_set_lock); 1267 } 1268 1269 return cset; 1270 } 1271 1272 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1273 { 1274 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1275 1276 return root_cgrp->root; 1277 } 1278 1279 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1280 { 1281 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1282 1283 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1284 if (favor && !favoring) { 1285 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1286 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1287 } else if (!favor && favoring) { 1288 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1289 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1290 } 1291 } 1292 1293 static int cgroup_init_root_id(struct cgroup_root *root) 1294 { 1295 int id; 1296 1297 lockdep_assert_held(&cgroup_mutex); 1298 1299 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1300 if (id < 0) 1301 return id; 1302 1303 root->hierarchy_id = id; 1304 return 0; 1305 } 1306 1307 static void cgroup_exit_root_id(struct cgroup_root *root) 1308 { 1309 lockdep_assert_held(&cgroup_mutex); 1310 1311 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1312 } 1313 1314 void cgroup_free_root(struct cgroup_root *root) 1315 { 1316 kfree(root); 1317 } 1318 1319 static void cgroup_destroy_root(struct cgroup_root *root) 1320 { 1321 struct cgroup *cgrp = &root->cgrp; 1322 struct cgrp_cset_link *link, *tmp_link; 1323 1324 trace_cgroup_destroy_root(root); 1325 1326 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1327 1328 BUG_ON(atomic_read(&root->nr_cgrps)); 1329 BUG_ON(!list_empty(&cgrp->self.children)); 1330 1331 /* Rebind all subsystems back to the default hierarchy */ 1332 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1333 1334 /* 1335 * Release all the links from cset_links to this hierarchy's 1336 * root cgroup 1337 */ 1338 spin_lock_irq(&css_set_lock); 1339 1340 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1341 list_del(&link->cset_link); 1342 list_del(&link->cgrp_link); 1343 kfree(link); 1344 } 1345 1346 spin_unlock_irq(&css_set_lock); 1347 1348 if (!list_empty(&root->root_list)) { 1349 list_del(&root->root_list); 1350 cgroup_root_count--; 1351 } 1352 1353 cgroup_favor_dynmods(root, false); 1354 cgroup_exit_root_id(root); 1355 1356 cgroup_unlock(); 1357 1358 cgroup_rstat_exit(cgrp); 1359 kernfs_destroy_root(root->kf_root); 1360 cgroup_free_root(root); 1361 } 1362 1363 /* 1364 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1365 */ 1366 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1367 struct cgroup_root *root) 1368 { 1369 struct cgroup *res_cgroup = NULL; 1370 1371 if (cset == &init_css_set) { 1372 res_cgroup = &root->cgrp; 1373 } else if (root == &cgrp_dfl_root) { 1374 res_cgroup = cset->dfl_cgrp; 1375 } else { 1376 struct cgrp_cset_link *link; 1377 lockdep_assert_held(&css_set_lock); 1378 1379 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1380 struct cgroup *c = link->cgrp; 1381 1382 if (c->root == root) { 1383 res_cgroup = c; 1384 break; 1385 } 1386 } 1387 } 1388 1389 BUG_ON(!res_cgroup); 1390 return res_cgroup; 1391 } 1392 1393 /* 1394 * look up cgroup associated with current task's cgroup namespace on the 1395 * specified hierarchy 1396 */ 1397 static struct cgroup * 1398 current_cgns_cgroup_from_root(struct cgroup_root *root) 1399 { 1400 struct cgroup *res = NULL; 1401 struct css_set *cset; 1402 1403 lockdep_assert_held(&css_set_lock); 1404 1405 rcu_read_lock(); 1406 1407 cset = current->nsproxy->cgroup_ns->root_cset; 1408 res = __cset_cgroup_from_root(cset, root); 1409 1410 rcu_read_unlock(); 1411 1412 return res; 1413 } 1414 1415 /* 1416 * Look up cgroup associated with current task's cgroup namespace on the default 1417 * hierarchy. 1418 * 1419 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1420 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1421 * pointers. 1422 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1423 * - As a bonus returned cgrp is pinned with the current because it cannot 1424 * switch cgroup_ns asynchronously. 1425 */ 1426 static struct cgroup *current_cgns_cgroup_dfl(void) 1427 { 1428 struct css_set *cset; 1429 1430 if (current->nsproxy) { 1431 cset = current->nsproxy->cgroup_ns->root_cset; 1432 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1433 } else { 1434 /* 1435 * NOTE: This function may be called from bpf_cgroup_from_id() 1436 * on a task which has already passed exit_task_namespaces() and 1437 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all 1438 * cgroups visible for lookups. 1439 */ 1440 return &cgrp_dfl_root.cgrp; 1441 } 1442 } 1443 1444 /* look up cgroup associated with given css_set on the specified hierarchy */ 1445 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1446 struct cgroup_root *root) 1447 { 1448 lockdep_assert_held(&cgroup_mutex); 1449 lockdep_assert_held(&css_set_lock); 1450 1451 return __cset_cgroup_from_root(cset, root); 1452 } 1453 1454 /* 1455 * Return the cgroup for "task" from the given hierarchy. Must be 1456 * called with cgroup_mutex and css_set_lock held. 1457 */ 1458 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1459 struct cgroup_root *root) 1460 { 1461 /* 1462 * No need to lock the task - since we hold css_set_lock the 1463 * task can't change groups. 1464 */ 1465 return cset_cgroup_from_root(task_css_set(task), root); 1466 } 1467 1468 /* 1469 * A task must hold cgroup_mutex to modify cgroups. 1470 * 1471 * Any task can increment and decrement the count field without lock. 1472 * So in general, code holding cgroup_mutex can't rely on the count 1473 * field not changing. However, if the count goes to zero, then only 1474 * cgroup_attach_task() can increment it again. Because a count of zero 1475 * means that no tasks are currently attached, therefore there is no 1476 * way a task attached to that cgroup can fork (the other way to 1477 * increment the count). So code holding cgroup_mutex can safely 1478 * assume that if the count is zero, it will stay zero. Similarly, if 1479 * a task holds cgroup_mutex on a cgroup with zero count, it 1480 * knows that the cgroup won't be removed, as cgroup_rmdir() 1481 * needs that mutex. 1482 * 1483 * A cgroup can only be deleted if both its 'count' of using tasks 1484 * is zero, and its list of 'children' cgroups is empty. Since all 1485 * tasks in the system use _some_ cgroup, and since there is always at 1486 * least one task in the system (init, pid == 1), therefore, root cgroup 1487 * always has either children cgroups and/or using tasks. So we don't 1488 * need a special hack to ensure that root cgroup cannot be deleted. 1489 * 1490 * P.S. One more locking exception. RCU is used to guard the 1491 * update of a tasks cgroup pointer by cgroup_attach_task() 1492 */ 1493 1494 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1495 1496 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1497 char *buf) 1498 { 1499 struct cgroup_subsys *ss = cft->ss; 1500 1501 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1502 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1503 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1504 1505 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1506 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1507 cft->name); 1508 } else { 1509 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1510 } 1511 return buf; 1512 } 1513 1514 /** 1515 * cgroup_file_mode - deduce file mode of a control file 1516 * @cft: the control file in question 1517 * 1518 * S_IRUGO for read, S_IWUSR for write. 1519 */ 1520 static umode_t cgroup_file_mode(const struct cftype *cft) 1521 { 1522 umode_t mode = 0; 1523 1524 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1525 mode |= S_IRUGO; 1526 1527 if (cft->write_u64 || cft->write_s64 || cft->write) { 1528 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1529 mode |= S_IWUGO; 1530 else 1531 mode |= S_IWUSR; 1532 } 1533 1534 return mode; 1535 } 1536 1537 /** 1538 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1539 * @subtree_control: the new subtree_control mask to consider 1540 * @this_ss_mask: available subsystems 1541 * 1542 * On the default hierarchy, a subsystem may request other subsystems to be 1543 * enabled together through its ->depends_on mask. In such cases, more 1544 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1545 * 1546 * This function calculates which subsystems need to be enabled if 1547 * @subtree_control is to be applied while restricted to @this_ss_mask. 1548 */ 1549 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1550 { 1551 u16 cur_ss_mask = subtree_control; 1552 struct cgroup_subsys *ss; 1553 int ssid; 1554 1555 lockdep_assert_held(&cgroup_mutex); 1556 1557 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1558 1559 while (true) { 1560 u16 new_ss_mask = cur_ss_mask; 1561 1562 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1563 new_ss_mask |= ss->depends_on; 1564 } while_each_subsys_mask(); 1565 1566 /* 1567 * Mask out subsystems which aren't available. This can 1568 * happen only if some depended-upon subsystems were bound 1569 * to non-default hierarchies. 1570 */ 1571 new_ss_mask &= this_ss_mask; 1572 1573 if (new_ss_mask == cur_ss_mask) 1574 break; 1575 cur_ss_mask = new_ss_mask; 1576 } 1577 1578 return cur_ss_mask; 1579 } 1580 1581 /** 1582 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1583 * @kn: the kernfs_node being serviced 1584 * 1585 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1586 * the method finishes if locking succeeded. Note that once this function 1587 * returns the cgroup returned by cgroup_kn_lock_live() may become 1588 * inaccessible any time. If the caller intends to continue to access the 1589 * cgroup, it should pin it before invoking this function. 1590 */ 1591 void cgroup_kn_unlock(struct kernfs_node *kn) 1592 { 1593 struct cgroup *cgrp; 1594 1595 if (kernfs_type(kn) == KERNFS_DIR) 1596 cgrp = kn->priv; 1597 else 1598 cgrp = kn->parent->priv; 1599 1600 cgroup_unlock(); 1601 1602 kernfs_unbreak_active_protection(kn); 1603 cgroup_put(cgrp); 1604 } 1605 1606 /** 1607 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1608 * @kn: the kernfs_node being serviced 1609 * @drain_offline: perform offline draining on the cgroup 1610 * 1611 * This helper is to be used by a cgroup kernfs method currently servicing 1612 * @kn. It breaks the active protection, performs cgroup locking and 1613 * verifies that the associated cgroup is alive. Returns the cgroup if 1614 * alive; otherwise, %NULL. A successful return should be undone by a 1615 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1616 * cgroup is drained of offlining csses before return. 1617 * 1618 * Any cgroup kernfs method implementation which requires locking the 1619 * associated cgroup should use this helper. It avoids nesting cgroup 1620 * locking under kernfs active protection and allows all kernfs operations 1621 * including self-removal. 1622 */ 1623 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1624 { 1625 struct cgroup *cgrp; 1626 1627 if (kernfs_type(kn) == KERNFS_DIR) 1628 cgrp = kn->priv; 1629 else 1630 cgrp = kn->parent->priv; 1631 1632 /* 1633 * We're gonna grab cgroup_mutex which nests outside kernfs 1634 * active_ref. cgroup liveliness check alone provides enough 1635 * protection against removal. Ensure @cgrp stays accessible and 1636 * break the active_ref protection. 1637 */ 1638 if (!cgroup_tryget(cgrp)) 1639 return NULL; 1640 kernfs_break_active_protection(kn); 1641 1642 if (drain_offline) 1643 cgroup_lock_and_drain_offline(cgrp); 1644 else 1645 cgroup_lock(); 1646 1647 if (!cgroup_is_dead(cgrp)) 1648 return cgrp; 1649 1650 cgroup_kn_unlock(kn); 1651 return NULL; 1652 } 1653 1654 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1655 { 1656 char name[CGROUP_FILE_NAME_MAX]; 1657 1658 lockdep_assert_held(&cgroup_mutex); 1659 1660 if (cft->file_offset) { 1661 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1662 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1663 1664 spin_lock_irq(&cgroup_file_kn_lock); 1665 cfile->kn = NULL; 1666 spin_unlock_irq(&cgroup_file_kn_lock); 1667 1668 del_timer_sync(&cfile->notify_timer); 1669 } 1670 1671 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1672 } 1673 1674 /** 1675 * css_clear_dir - remove subsys files in a cgroup directory 1676 * @css: target css 1677 */ 1678 static void css_clear_dir(struct cgroup_subsys_state *css) 1679 { 1680 struct cgroup *cgrp = css->cgroup; 1681 struct cftype *cfts; 1682 1683 if (!(css->flags & CSS_VISIBLE)) 1684 return; 1685 1686 css->flags &= ~CSS_VISIBLE; 1687 1688 if (!css->ss) { 1689 if (cgroup_on_dfl(cgrp)) { 1690 cgroup_addrm_files(css, cgrp, 1691 cgroup_base_files, false); 1692 if (cgroup_psi_enabled()) 1693 cgroup_addrm_files(css, cgrp, 1694 cgroup_psi_files, false); 1695 } else { 1696 cgroup_addrm_files(css, cgrp, 1697 cgroup1_base_files, false); 1698 } 1699 } else { 1700 list_for_each_entry(cfts, &css->ss->cfts, node) 1701 cgroup_addrm_files(css, cgrp, cfts, false); 1702 } 1703 } 1704 1705 /** 1706 * css_populate_dir - create subsys files in a cgroup directory 1707 * @css: target css 1708 * 1709 * On failure, no file is added. 1710 */ 1711 static int css_populate_dir(struct cgroup_subsys_state *css) 1712 { 1713 struct cgroup *cgrp = css->cgroup; 1714 struct cftype *cfts, *failed_cfts; 1715 int ret; 1716 1717 if (css->flags & CSS_VISIBLE) 1718 return 0; 1719 1720 if (!css->ss) { 1721 if (cgroup_on_dfl(cgrp)) { 1722 ret = cgroup_addrm_files(&cgrp->self, cgrp, 1723 cgroup_base_files, true); 1724 if (ret < 0) 1725 return ret; 1726 1727 if (cgroup_psi_enabled()) { 1728 ret = cgroup_addrm_files(&cgrp->self, cgrp, 1729 cgroup_psi_files, true); 1730 if (ret < 0) 1731 return ret; 1732 } 1733 } else { 1734 cgroup_addrm_files(css, cgrp, 1735 cgroup1_base_files, true); 1736 } 1737 } else { 1738 list_for_each_entry(cfts, &css->ss->cfts, node) { 1739 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1740 if (ret < 0) { 1741 failed_cfts = cfts; 1742 goto err; 1743 } 1744 } 1745 } 1746 1747 css->flags |= CSS_VISIBLE; 1748 1749 return 0; 1750 err: 1751 list_for_each_entry(cfts, &css->ss->cfts, node) { 1752 if (cfts == failed_cfts) 1753 break; 1754 cgroup_addrm_files(css, cgrp, cfts, false); 1755 } 1756 return ret; 1757 } 1758 1759 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1760 { 1761 struct cgroup *dcgrp = &dst_root->cgrp; 1762 struct cgroup_subsys *ss; 1763 int ssid, ret; 1764 u16 dfl_disable_ss_mask = 0; 1765 1766 lockdep_assert_held(&cgroup_mutex); 1767 1768 do_each_subsys_mask(ss, ssid, ss_mask) { 1769 /* 1770 * If @ss has non-root csses attached to it, can't move. 1771 * If @ss is an implicit controller, it is exempt from this 1772 * rule and can be stolen. 1773 */ 1774 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1775 !ss->implicit_on_dfl) 1776 return -EBUSY; 1777 1778 /* can't move between two non-dummy roots either */ 1779 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1780 return -EBUSY; 1781 1782 /* 1783 * Collect ssid's that need to be disabled from default 1784 * hierarchy. 1785 */ 1786 if (ss->root == &cgrp_dfl_root) 1787 dfl_disable_ss_mask |= 1 << ssid; 1788 1789 } while_each_subsys_mask(); 1790 1791 if (dfl_disable_ss_mask) { 1792 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1793 1794 /* 1795 * Controllers from default hierarchy that need to be rebound 1796 * are all disabled together in one go. 1797 */ 1798 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1799 WARN_ON(cgroup_apply_control(scgrp)); 1800 cgroup_finalize_control(scgrp, 0); 1801 } 1802 1803 do_each_subsys_mask(ss, ssid, ss_mask) { 1804 struct cgroup_root *src_root = ss->root; 1805 struct cgroup *scgrp = &src_root->cgrp; 1806 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1807 struct css_set *cset, *cset_pos; 1808 struct css_task_iter *it; 1809 1810 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1811 1812 if (src_root != &cgrp_dfl_root) { 1813 /* disable from the source */ 1814 src_root->subsys_mask &= ~(1 << ssid); 1815 WARN_ON(cgroup_apply_control(scgrp)); 1816 cgroup_finalize_control(scgrp, 0); 1817 } 1818 1819 /* rebind */ 1820 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1821 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1822 ss->root = dst_root; 1823 css->cgroup = dcgrp; 1824 1825 spin_lock_irq(&css_set_lock); 1826 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); 1827 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], 1828 e_cset_node[ss->id]) { 1829 list_move_tail(&cset->e_cset_node[ss->id], 1830 &dcgrp->e_csets[ss->id]); 1831 /* 1832 * all css_sets of scgrp together in same order to dcgrp, 1833 * patch in-flight iterators to preserve correct iteration. 1834 * since the iterator is always advanced right away and 1835 * finished when it->cset_pos meets it->cset_head, so only 1836 * update it->cset_head is enough here. 1837 */ 1838 list_for_each_entry(it, &cset->task_iters, iters_node) 1839 if (it->cset_head == &scgrp->e_csets[ss->id]) 1840 it->cset_head = &dcgrp->e_csets[ss->id]; 1841 } 1842 spin_unlock_irq(&css_set_lock); 1843 1844 if (ss->css_rstat_flush) { 1845 list_del_rcu(&css->rstat_css_node); 1846 synchronize_rcu(); 1847 list_add_rcu(&css->rstat_css_node, 1848 &dcgrp->rstat_css_list); 1849 } 1850 1851 /* default hierarchy doesn't enable controllers by default */ 1852 dst_root->subsys_mask |= 1 << ssid; 1853 if (dst_root == &cgrp_dfl_root) { 1854 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1855 } else { 1856 dcgrp->subtree_control |= 1 << ssid; 1857 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1858 } 1859 1860 ret = cgroup_apply_control(dcgrp); 1861 if (ret) 1862 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1863 ss->name, ret); 1864 1865 if (ss->bind) 1866 ss->bind(css); 1867 } while_each_subsys_mask(); 1868 1869 kernfs_activate(dcgrp->kn); 1870 return 0; 1871 } 1872 1873 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1874 struct kernfs_root *kf_root) 1875 { 1876 int len = 0; 1877 char *buf = NULL; 1878 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1879 struct cgroup *ns_cgroup; 1880 1881 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1882 if (!buf) 1883 return -ENOMEM; 1884 1885 spin_lock_irq(&css_set_lock); 1886 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1887 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1888 spin_unlock_irq(&css_set_lock); 1889 1890 if (len >= PATH_MAX) 1891 len = -ERANGE; 1892 else if (len > 0) { 1893 seq_escape(sf, buf, " \t\n\\"); 1894 len = 0; 1895 } 1896 kfree(buf); 1897 return len; 1898 } 1899 1900 enum cgroup2_param { 1901 Opt_nsdelegate, 1902 Opt_favordynmods, 1903 Opt_memory_localevents, 1904 Opt_memory_recursiveprot, 1905 nr__cgroup2_params 1906 }; 1907 1908 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1909 fsparam_flag("nsdelegate", Opt_nsdelegate), 1910 fsparam_flag("favordynmods", Opt_favordynmods), 1911 fsparam_flag("memory_localevents", Opt_memory_localevents), 1912 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1913 {} 1914 }; 1915 1916 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1917 { 1918 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1919 struct fs_parse_result result; 1920 int opt; 1921 1922 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1923 if (opt < 0) 1924 return opt; 1925 1926 switch (opt) { 1927 case Opt_nsdelegate: 1928 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1929 return 0; 1930 case Opt_favordynmods: 1931 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1932 return 0; 1933 case Opt_memory_localevents: 1934 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1935 return 0; 1936 case Opt_memory_recursiveprot: 1937 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1938 return 0; 1939 } 1940 return -EINVAL; 1941 } 1942 1943 static void apply_cgroup_root_flags(unsigned int root_flags) 1944 { 1945 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1946 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1947 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1948 else 1949 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1950 1951 cgroup_favor_dynmods(&cgrp_dfl_root, 1952 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 1953 1954 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1955 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1956 else 1957 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1958 1959 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1960 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1961 else 1962 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1963 } 1964 } 1965 1966 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1967 { 1968 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1969 seq_puts(seq, ",nsdelegate"); 1970 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 1971 seq_puts(seq, ",favordynmods"); 1972 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1973 seq_puts(seq, ",memory_localevents"); 1974 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1975 seq_puts(seq, ",memory_recursiveprot"); 1976 return 0; 1977 } 1978 1979 static int cgroup_reconfigure(struct fs_context *fc) 1980 { 1981 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1982 1983 apply_cgroup_root_flags(ctx->flags); 1984 return 0; 1985 } 1986 1987 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1988 { 1989 struct cgroup_subsys *ss; 1990 int ssid; 1991 1992 INIT_LIST_HEAD(&cgrp->self.sibling); 1993 INIT_LIST_HEAD(&cgrp->self.children); 1994 INIT_LIST_HEAD(&cgrp->cset_links); 1995 INIT_LIST_HEAD(&cgrp->pidlists); 1996 mutex_init(&cgrp->pidlist_mutex); 1997 cgrp->self.cgroup = cgrp; 1998 cgrp->self.flags |= CSS_ONLINE; 1999 cgrp->dom_cgrp = cgrp; 2000 cgrp->max_descendants = INT_MAX; 2001 cgrp->max_depth = INT_MAX; 2002 INIT_LIST_HEAD(&cgrp->rstat_css_list); 2003 prev_cputime_init(&cgrp->prev_cputime); 2004 2005 for_each_subsys(ss, ssid) 2006 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2007 2008 init_waitqueue_head(&cgrp->offline_waitq); 2009 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2010 } 2011 2012 void init_cgroup_root(struct cgroup_fs_context *ctx) 2013 { 2014 struct cgroup_root *root = ctx->root; 2015 struct cgroup *cgrp = &root->cgrp; 2016 2017 INIT_LIST_HEAD(&root->root_list); 2018 atomic_set(&root->nr_cgrps, 1); 2019 cgrp->root = root; 2020 init_cgroup_housekeeping(cgrp); 2021 2022 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2023 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2024 if (ctx->release_agent) 2025 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2026 if (ctx->name) 2027 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2028 if (ctx->cpuset_clone_children) 2029 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2030 } 2031 2032 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2033 { 2034 LIST_HEAD(tmp_links); 2035 struct cgroup *root_cgrp = &root->cgrp; 2036 struct kernfs_syscall_ops *kf_sops; 2037 struct css_set *cset; 2038 int i, ret; 2039 2040 lockdep_assert_held(&cgroup_mutex); 2041 2042 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2043 0, GFP_KERNEL); 2044 if (ret) 2045 goto out; 2046 2047 /* 2048 * We're accessing css_set_count without locking css_set_lock here, 2049 * but that's OK - it can only be increased by someone holding 2050 * cgroup_lock, and that's us. Later rebinding may disable 2051 * controllers on the default hierarchy and thus create new csets, 2052 * which can't be more than the existing ones. Allocate 2x. 2053 */ 2054 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2055 if (ret) 2056 goto cancel_ref; 2057 2058 ret = cgroup_init_root_id(root); 2059 if (ret) 2060 goto cancel_ref; 2061 2062 kf_sops = root == &cgrp_dfl_root ? 2063 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2064 2065 root->kf_root = kernfs_create_root(kf_sops, 2066 KERNFS_ROOT_CREATE_DEACTIVATED | 2067 KERNFS_ROOT_SUPPORT_EXPORTOP | 2068 KERNFS_ROOT_SUPPORT_USER_XATTR, 2069 root_cgrp); 2070 if (IS_ERR(root->kf_root)) { 2071 ret = PTR_ERR(root->kf_root); 2072 goto exit_root_id; 2073 } 2074 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2075 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2076 root_cgrp->ancestors[0] = root_cgrp; 2077 2078 ret = css_populate_dir(&root_cgrp->self); 2079 if (ret) 2080 goto destroy_root; 2081 2082 ret = cgroup_rstat_init(root_cgrp); 2083 if (ret) 2084 goto destroy_root; 2085 2086 ret = rebind_subsystems(root, ss_mask); 2087 if (ret) 2088 goto exit_stats; 2089 2090 ret = cgroup_bpf_inherit(root_cgrp); 2091 WARN_ON_ONCE(ret); 2092 2093 trace_cgroup_setup_root(root); 2094 2095 /* 2096 * There must be no failure case after here, since rebinding takes 2097 * care of subsystems' refcounts, which are explicitly dropped in 2098 * the failure exit path. 2099 */ 2100 list_add(&root->root_list, &cgroup_roots); 2101 cgroup_root_count++; 2102 2103 /* 2104 * Link the root cgroup in this hierarchy into all the css_set 2105 * objects. 2106 */ 2107 spin_lock_irq(&css_set_lock); 2108 hash_for_each(css_set_table, i, cset, hlist) { 2109 link_css_set(&tmp_links, cset, root_cgrp); 2110 if (css_set_populated(cset)) 2111 cgroup_update_populated(root_cgrp, true); 2112 } 2113 spin_unlock_irq(&css_set_lock); 2114 2115 BUG_ON(!list_empty(&root_cgrp->self.children)); 2116 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2117 2118 ret = 0; 2119 goto out; 2120 2121 exit_stats: 2122 cgroup_rstat_exit(root_cgrp); 2123 destroy_root: 2124 kernfs_destroy_root(root->kf_root); 2125 root->kf_root = NULL; 2126 exit_root_id: 2127 cgroup_exit_root_id(root); 2128 cancel_ref: 2129 percpu_ref_exit(&root_cgrp->self.refcnt); 2130 out: 2131 free_cgrp_cset_links(&tmp_links); 2132 return ret; 2133 } 2134 2135 int cgroup_do_get_tree(struct fs_context *fc) 2136 { 2137 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2138 int ret; 2139 2140 ctx->kfc.root = ctx->root->kf_root; 2141 if (fc->fs_type == &cgroup2_fs_type) 2142 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2143 else 2144 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2145 ret = kernfs_get_tree(fc); 2146 2147 /* 2148 * In non-init cgroup namespace, instead of root cgroup's dentry, 2149 * we return the dentry corresponding to the cgroupns->root_cgrp. 2150 */ 2151 if (!ret && ctx->ns != &init_cgroup_ns) { 2152 struct dentry *nsdentry; 2153 struct super_block *sb = fc->root->d_sb; 2154 struct cgroup *cgrp; 2155 2156 cgroup_lock(); 2157 spin_lock_irq(&css_set_lock); 2158 2159 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2160 2161 spin_unlock_irq(&css_set_lock); 2162 cgroup_unlock(); 2163 2164 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2165 dput(fc->root); 2166 if (IS_ERR(nsdentry)) { 2167 deactivate_locked_super(sb); 2168 ret = PTR_ERR(nsdentry); 2169 nsdentry = NULL; 2170 } 2171 fc->root = nsdentry; 2172 } 2173 2174 if (!ctx->kfc.new_sb_created) 2175 cgroup_put(&ctx->root->cgrp); 2176 2177 return ret; 2178 } 2179 2180 /* 2181 * Destroy a cgroup filesystem context. 2182 */ 2183 static void cgroup_fs_context_free(struct fs_context *fc) 2184 { 2185 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2186 2187 kfree(ctx->name); 2188 kfree(ctx->release_agent); 2189 put_cgroup_ns(ctx->ns); 2190 kernfs_free_fs_context(fc); 2191 kfree(ctx); 2192 } 2193 2194 static int cgroup_get_tree(struct fs_context *fc) 2195 { 2196 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2197 int ret; 2198 2199 WRITE_ONCE(cgrp_dfl_visible, true); 2200 cgroup_get_live(&cgrp_dfl_root.cgrp); 2201 ctx->root = &cgrp_dfl_root; 2202 2203 ret = cgroup_do_get_tree(fc); 2204 if (!ret) 2205 apply_cgroup_root_flags(ctx->flags); 2206 return ret; 2207 } 2208 2209 static const struct fs_context_operations cgroup_fs_context_ops = { 2210 .free = cgroup_fs_context_free, 2211 .parse_param = cgroup2_parse_param, 2212 .get_tree = cgroup_get_tree, 2213 .reconfigure = cgroup_reconfigure, 2214 }; 2215 2216 static const struct fs_context_operations cgroup1_fs_context_ops = { 2217 .free = cgroup_fs_context_free, 2218 .parse_param = cgroup1_parse_param, 2219 .get_tree = cgroup1_get_tree, 2220 .reconfigure = cgroup1_reconfigure, 2221 }; 2222 2223 /* 2224 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2225 * we select the namespace we're going to use. 2226 */ 2227 static int cgroup_init_fs_context(struct fs_context *fc) 2228 { 2229 struct cgroup_fs_context *ctx; 2230 2231 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2232 if (!ctx) 2233 return -ENOMEM; 2234 2235 ctx->ns = current->nsproxy->cgroup_ns; 2236 get_cgroup_ns(ctx->ns); 2237 fc->fs_private = &ctx->kfc; 2238 if (fc->fs_type == &cgroup2_fs_type) 2239 fc->ops = &cgroup_fs_context_ops; 2240 else 2241 fc->ops = &cgroup1_fs_context_ops; 2242 put_user_ns(fc->user_ns); 2243 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2244 fc->global = true; 2245 2246 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS 2247 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2248 #endif 2249 return 0; 2250 } 2251 2252 static void cgroup_kill_sb(struct super_block *sb) 2253 { 2254 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2255 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2256 2257 /* 2258 * If @root doesn't have any children, start killing it. 2259 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2260 * 2261 * And don't kill the default root. 2262 */ 2263 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2264 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2265 cgroup_bpf_offline(&root->cgrp); 2266 percpu_ref_kill(&root->cgrp.self.refcnt); 2267 } 2268 cgroup_put(&root->cgrp); 2269 kernfs_kill_sb(sb); 2270 } 2271 2272 struct file_system_type cgroup_fs_type = { 2273 .name = "cgroup", 2274 .init_fs_context = cgroup_init_fs_context, 2275 .parameters = cgroup1_fs_parameters, 2276 .kill_sb = cgroup_kill_sb, 2277 .fs_flags = FS_USERNS_MOUNT, 2278 }; 2279 2280 static struct file_system_type cgroup2_fs_type = { 2281 .name = "cgroup2", 2282 .init_fs_context = cgroup_init_fs_context, 2283 .parameters = cgroup2_fs_parameters, 2284 .kill_sb = cgroup_kill_sb, 2285 .fs_flags = FS_USERNS_MOUNT, 2286 }; 2287 2288 #ifdef CONFIG_CPUSETS 2289 static const struct fs_context_operations cpuset_fs_context_ops = { 2290 .get_tree = cgroup1_get_tree, 2291 .free = cgroup_fs_context_free, 2292 }; 2293 2294 /* 2295 * This is ugly, but preserves the userspace API for existing cpuset 2296 * users. If someone tries to mount the "cpuset" filesystem, we 2297 * silently switch it to mount "cgroup" instead 2298 */ 2299 static int cpuset_init_fs_context(struct fs_context *fc) 2300 { 2301 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2302 struct cgroup_fs_context *ctx; 2303 int err; 2304 2305 err = cgroup_init_fs_context(fc); 2306 if (err) { 2307 kfree(agent); 2308 return err; 2309 } 2310 2311 fc->ops = &cpuset_fs_context_ops; 2312 2313 ctx = cgroup_fc2context(fc); 2314 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2315 ctx->flags |= CGRP_ROOT_NOPREFIX; 2316 ctx->release_agent = agent; 2317 2318 get_filesystem(&cgroup_fs_type); 2319 put_filesystem(fc->fs_type); 2320 fc->fs_type = &cgroup_fs_type; 2321 2322 return 0; 2323 } 2324 2325 static struct file_system_type cpuset_fs_type = { 2326 .name = "cpuset", 2327 .init_fs_context = cpuset_init_fs_context, 2328 .fs_flags = FS_USERNS_MOUNT, 2329 }; 2330 #endif 2331 2332 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2333 struct cgroup_namespace *ns) 2334 { 2335 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2336 2337 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2338 } 2339 2340 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2341 struct cgroup_namespace *ns) 2342 { 2343 int ret; 2344 2345 cgroup_lock(); 2346 spin_lock_irq(&css_set_lock); 2347 2348 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2349 2350 spin_unlock_irq(&css_set_lock); 2351 cgroup_unlock(); 2352 2353 return ret; 2354 } 2355 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2356 2357 /** 2358 * cgroup_attach_lock - Lock for ->attach() 2359 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2360 * 2361 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2362 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2363 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2364 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2365 * lead to deadlocks. 2366 * 2367 * Bringing up a CPU may involve creating and destroying tasks which requires 2368 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2369 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2370 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2371 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2372 * the threadgroup_rwsem to be released to create new tasks. For more details: 2373 * 2374 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2375 * 2376 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2377 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2378 * CPU hotplug is disabled on entry. 2379 */ 2380 void cgroup_attach_lock(bool lock_threadgroup) 2381 { 2382 cpus_read_lock(); 2383 if (lock_threadgroup) 2384 percpu_down_write(&cgroup_threadgroup_rwsem); 2385 } 2386 2387 /** 2388 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2389 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2390 */ 2391 void cgroup_attach_unlock(bool lock_threadgroup) 2392 { 2393 if (lock_threadgroup) 2394 percpu_up_write(&cgroup_threadgroup_rwsem); 2395 cpus_read_unlock(); 2396 } 2397 2398 /** 2399 * cgroup_migrate_add_task - add a migration target task to a migration context 2400 * @task: target task 2401 * @mgctx: target migration context 2402 * 2403 * Add @task, which is a migration target, to @mgctx->tset. This function 2404 * becomes noop if @task doesn't need to be migrated. @task's css_set 2405 * should have been added as a migration source and @task->cg_list will be 2406 * moved from the css_set's tasks list to mg_tasks one. 2407 */ 2408 static void cgroup_migrate_add_task(struct task_struct *task, 2409 struct cgroup_mgctx *mgctx) 2410 { 2411 struct css_set *cset; 2412 2413 lockdep_assert_held(&css_set_lock); 2414 2415 /* @task either already exited or can't exit until the end */ 2416 if (task->flags & PF_EXITING) 2417 return; 2418 2419 /* cgroup_threadgroup_rwsem protects racing against forks */ 2420 WARN_ON_ONCE(list_empty(&task->cg_list)); 2421 2422 cset = task_css_set(task); 2423 if (!cset->mg_src_cgrp) 2424 return; 2425 2426 mgctx->tset.nr_tasks++; 2427 2428 list_move_tail(&task->cg_list, &cset->mg_tasks); 2429 if (list_empty(&cset->mg_node)) 2430 list_add_tail(&cset->mg_node, 2431 &mgctx->tset.src_csets); 2432 if (list_empty(&cset->mg_dst_cset->mg_node)) 2433 list_add_tail(&cset->mg_dst_cset->mg_node, 2434 &mgctx->tset.dst_csets); 2435 } 2436 2437 /** 2438 * cgroup_taskset_first - reset taskset and return the first task 2439 * @tset: taskset of interest 2440 * @dst_cssp: output variable for the destination css 2441 * 2442 * @tset iteration is initialized and the first task is returned. 2443 */ 2444 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2445 struct cgroup_subsys_state **dst_cssp) 2446 { 2447 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2448 tset->cur_task = NULL; 2449 2450 return cgroup_taskset_next(tset, dst_cssp); 2451 } 2452 2453 /** 2454 * cgroup_taskset_next - iterate to the next task in taskset 2455 * @tset: taskset of interest 2456 * @dst_cssp: output variable for the destination css 2457 * 2458 * Return the next task in @tset. Iteration must have been initialized 2459 * with cgroup_taskset_first(). 2460 */ 2461 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2462 struct cgroup_subsys_state **dst_cssp) 2463 { 2464 struct css_set *cset = tset->cur_cset; 2465 struct task_struct *task = tset->cur_task; 2466 2467 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2468 if (!task) 2469 task = list_first_entry(&cset->mg_tasks, 2470 struct task_struct, cg_list); 2471 else 2472 task = list_next_entry(task, cg_list); 2473 2474 if (&task->cg_list != &cset->mg_tasks) { 2475 tset->cur_cset = cset; 2476 tset->cur_task = task; 2477 2478 /* 2479 * This function may be called both before and 2480 * after cgroup_migrate_execute(). The two cases 2481 * can be distinguished by looking at whether @cset 2482 * has its ->mg_dst_cset set. 2483 */ 2484 if (cset->mg_dst_cset) 2485 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2486 else 2487 *dst_cssp = cset->subsys[tset->ssid]; 2488 2489 return task; 2490 } 2491 2492 cset = list_next_entry(cset, mg_node); 2493 task = NULL; 2494 } 2495 2496 return NULL; 2497 } 2498 2499 /** 2500 * cgroup_migrate_execute - migrate a taskset 2501 * @mgctx: migration context 2502 * 2503 * Migrate tasks in @mgctx as setup by migration preparation functions. 2504 * This function fails iff one of the ->can_attach callbacks fails and 2505 * guarantees that either all or none of the tasks in @mgctx are migrated. 2506 * @mgctx is consumed regardless of success. 2507 */ 2508 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2509 { 2510 struct cgroup_taskset *tset = &mgctx->tset; 2511 struct cgroup_subsys *ss; 2512 struct task_struct *task, *tmp_task; 2513 struct css_set *cset, *tmp_cset; 2514 int ssid, failed_ssid, ret; 2515 2516 /* check that we can legitimately attach to the cgroup */ 2517 if (tset->nr_tasks) { 2518 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2519 if (ss->can_attach) { 2520 tset->ssid = ssid; 2521 ret = ss->can_attach(tset); 2522 if (ret) { 2523 failed_ssid = ssid; 2524 goto out_cancel_attach; 2525 } 2526 } 2527 } while_each_subsys_mask(); 2528 } 2529 2530 /* 2531 * Now that we're guaranteed success, proceed to move all tasks to 2532 * the new cgroup. There are no failure cases after here, so this 2533 * is the commit point. 2534 */ 2535 spin_lock_irq(&css_set_lock); 2536 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2537 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2538 struct css_set *from_cset = task_css_set(task); 2539 struct css_set *to_cset = cset->mg_dst_cset; 2540 2541 get_css_set(to_cset); 2542 to_cset->nr_tasks++; 2543 css_set_move_task(task, from_cset, to_cset, true); 2544 from_cset->nr_tasks--; 2545 /* 2546 * If the source or destination cgroup is frozen, 2547 * the task might require to change its state. 2548 */ 2549 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2550 to_cset->dfl_cgrp); 2551 put_css_set_locked(from_cset); 2552 2553 } 2554 } 2555 spin_unlock_irq(&css_set_lock); 2556 2557 /* 2558 * Migration is committed, all target tasks are now on dst_csets. 2559 * Nothing is sensitive to fork() after this point. Notify 2560 * controllers that migration is complete. 2561 */ 2562 tset->csets = &tset->dst_csets; 2563 2564 if (tset->nr_tasks) { 2565 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2566 if (ss->attach) { 2567 tset->ssid = ssid; 2568 ss->attach(tset); 2569 } 2570 } while_each_subsys_mask(); 2571 } 2572 2573 ret = 0; 2574 goto out_release_tset; 2575 2576 out_cancel_attach: 2577 if (tset->nr_tasks) { 2578 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2579 if (ssid == failed_ssid) 2580 break; 2581 if (ss->cancel_attach) { 2582 tset->ssid = ssid; 2583 ss->cancel_attach(tset); 2584 } 2585 } while_each_subsys_mask(); 2586 } 2587 out_release_tset: 2588 spin_lock_irq(&css_set_lock); 2589 list_splice_init(&tset->dst_csets, &tset->src_csets); 2590 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2591 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2592 list_del_init(&cset->mg_node); 2593 } 2594 spin_unlock_irq(&css_set_lock); 2595 2596 /* 2597 * Re-initialize the cgroup_taskset structure in case it is reused 2598 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2599 * iteration. 2600 */ 2601 tset->nr_tasks = 0; 2602 tset->csets = &tset->src_csets; 2603 return ret; 2604 } 2605 2606 /** 2607 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2608 * @dst_cgrp: destination cgroup to test 2609 * 2610 * On the default hierarchy, except for the mixable, (possible) thread root 2611 * and threaded cgroups, subtree_control must be zero for migration 2612 * destination cgroups with tasks so that child cgroups don't compete 2613 * against tasks. 2614 */ 2615 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2616 { 2617 /* v1 doesn't have any restriction */ 2618 if (!cgroup_on_dfl(dst_cgrp)) 2619 return 0; 2620 2621 /* verify @dst_cgrp can host resources */ 2622 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2623 return -EOPNOTSUPP; 2624 2625 /* 2626 * If @dst_cgrp is already or can become a thread root or is 2627 * threaded, it doesn't matter. 2628 */ 2629 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2630 return 0; 2631 2632 /* apply no-internal-process constraint */ 2633 if (dst_cgrp->subtree_control) 2634 return -EBUSY; 2635 2636 return 0; 2637 } 2638 2639 /** 2640 * cgroup_migrate_finish - cleanup after attach 2641 * @mgctx: migration context 2642 * 2643 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2644 * those functions for details. 2645 */ 2646 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2647 { 2648 struct css_set *cset, *tmp_cset; 2649 2650 lockdep_assert_held(&cgroup_mutex); 2651 2652 spin_lock_irq(&css_set_lock); 2653 2654 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2655 mg_src_preload_node) { 2656 cset->mg_src_cgrp = NULL; 2657 cset->mg_dst_cgrp = NULL; 2658 cset->mg_dst_cset = NULL; 2659 list_del_init(&cset->mg_src_preload_node); 2660 put_css_set_locked(cset); 2661 } 2662 2663 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2664 mg_dst_preload_node) { 2665 cset->mg_src_cgrp = NULL; 2666 cset->mg_dst_cgrp = NULL; 2667 cset->mg_dst_cset = NULL; 2668 list_del_init(&cset->mg_dst_preload_node); 2669 put_css_set_locked(cset); 2670 } 2671 2672 spin_unlock_irq(&css_set_lock); 2673 } 2674 2675 /** 2676 * cgroup_migrate_add_src - add a migration source css_set 2677 * @src_cset: the source css_set to add 2678 * @dst_cgrp: the destination cgroup 2679 * @mgctx: migration context 2680 * 2681 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2682 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2683 * up by cgroup_migrate_finish(). 2684 * 2685 * This function may be called without holding cgroup_threadgroup_rwsem 2686 * even if the target is a process. Threads may be created and destroyed 2687 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2688 * into play and the preloaded css_sets are guaranteed to cover all 2689 * migrations. 2690 */ 2691 void cgroup_migrate_add_src(struct css_set *src_cset, 2692 struct cgroup *dst_cgrp, 2693 struct cgroup_mgctx *mgctx) 2694 { 2695 struct cgroup *src_cgrp; 2696 2697 lockdep_assert_held(&cgroup_mutex); 2698 lockdep_assert_held(&css_set_lock); 2699 2700 /* 2701 * If ->dead, @src_set is associated with one or more dead cgroups 2702 * and doesn't contain any migratable tasks. Ignore it early so 2703 * that the rest of migration path doesn't get confused by it. 2704 */ 2705 if (src_cset->dead) 2706 return; 2707 2708 if (!list_empty(&src_cset->mg_src_preload_node)) 2709 return; 2710 2711 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2712 2713 WARN_ON(src_cset->mg_src_cgrp); 2714 WARN_ON(src_cset->mg_dst_cgrp); 2715 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2716 WARN_ON(!list_empty(&src_cset->mg_node)); 2717 2718 src_cset->mg_src_cgrp = src_cgrp; 2719 src_cset->mg_dst_cgrp = dst_cgrp; 2720 get_css_set(src_cset); 2721 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2722 } 2723 2724 /** 2725 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2726 * @mgctx: migration context 2727 * 2728 * Tasks are about to be moved and all the source css_sets have been 2729 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2730 * pins all destination css_sets, links each to its source, and append them 2731 * to @mgctx->preloaded_dst_csets. 2732 * 2733 * This function must be called after cgroup_migrate_add_src() has been 2734 * called on each migration source css_set. After migration is performed 2735 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2736 * @mgctx. 2737 */ 2738 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2739 { 2740 struct css_set *src_cset, *tmp_cset; 2741 2742 lockdep_assert_held(&cgroup_mutex); 2743 2744 /* look up the dst cset for each src cset and link it to src */ 2745 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2746 mg_src_preload_node) { 2747 struct css_set *dst_cset; 2748 struct cgroup_subsys *ss; 2749 int ssid; 2750 2751 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2752 if (!dst_cset) 2753 return -ENOMEM; 2754 2755 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2756 2757 /* 2758 * If src cset equals dst, it's noop. Drop the src. 2759 * cgroup_migrate() will skip the cset too. Note that we 2760 * can't handle src == dst as some nodes are used by both. 2761 */ 2762 if (src_cset == dst_cset) { 2763 src_cset->mg_src_cgrp = NULL; 2764 src_cset->mg_dst_cgrp = NULL; 2765 list_del_init(&src_cset->mg_src_preload_node); 2766 put_css_set(src_cset); 2767 put_css_set(dst_cset); 2768 continue; 2769 } 2770 2771 src_cset->mg_dst_cset = dst_cset; 2772 2773 if (list_empty(&dst_cset->mg_dst_preload_node)) 2774 list_add_tail(&dst_cset->mg_dst_preload_node, 2775 &mgctx->preloaded_dst_csets); 2776 else 2777 put_css_set(dst_cset); 2778 2779 for_each_subsys(ss, ssid) 2780 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2781 mgctx->ss_mask |= 1 << ssid; 2782 } 2783 2784 return 0; 2785 } 2786 2787 /** 2788 * cgroup_migrate - migrate a process or task to a cgroup 2789 * @leader: the leader of the process or the task to migrate 2790 * @threadgroup: whether @leader points to the whole process or a single task 2791 * @mgctx: migration context 2792 * 2793 * Migrate a process or task denoted by @leader. If migrating a process, 2794 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2795 * responsible for invoking cgroup_migrate_add_src() and 2796 * cgroup_migrate_prepare_dst() on the targets before invoking this 2797 * function and following up with cgroup_migrate_finish(). 2798 * 2799 * As long as a controller's ->can_attach() doesn't fail, this function is 2800 * guaranteed to succeed. This means that, excluding ->can_attach() 2801 * failure, when migrating multiple targets, the success or failure can be 2802 * decided for all targets by invoking group_migrate_prepare_dst() before 2803 * actually starting migrating. 2804 */ 2805 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2806 struct cgroup_mgctx *mgctx) 2807 { 2808 struct task_struct *task; 2809 2810 /* 2811 * The following thread iteration should be inside an RCU critical 2812 * section to prevent tasks from being freed while taking the snapshot. 2813 * spin_lock_irq() implies RCU critical section here. 2814 */ 2815 spin_lock_irq(&css_set_lock); 2816 task = leader; 2817 do { 2818 cgroup_migrate_add_task(task, mgctx); 2819 if (!threadgroup) 2820 break; 2821 } while_each_thread(leader, task); 2822 spin_unlock_irq(&css_set_lock); 2823 2824 return cgroup_migrate_execute(mgctx); 2825 } 2826 2827 /** 2828 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2829 * @dst_cgrp: the cgroup to attach to 2830 * @leader: the task or the leader of the threadgroup to be attached 2831 * @threadgroup: attach the whole threadgroup? 2832 * 2833 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2834 */ 2835 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2836 bool threadgroup) 2837 { 2838 DEFINE_CGROUP_MGCTX(mgctx); 2839 struct task_struct *task; 2840 int ret = 0; 2841 2842 /* look up all src csets */ 2843 spin_lock_irq(&css_set_lock); 2844 rcu_read_lock(); 2845 task = leader; 2846 do { 2847 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2848 if (!threadgroup) 2849 break; 2850 } while_each_thread(leader, task); 2851 rcu_read_unlock(); 2852 spin_unlock_irq(&css_set_lock); 2853 2854 /* prepare dst csets and commit */ 2855 ret = cgroup_migrate_prepare_dst(&mgctx); 2856 if (!ret) 2857 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2858 2859 cgroup_migrate_finish(&mgctx); 2860 2861 if (!ret) 2862 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2863 2864 return ret; 2865 } 2866 2867 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2868 bool *threadgroup_locked) 2869 { 2870 struct task_struct *tsk; 2871 pid_t pid; 2872 2873 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2874 return ERR_PTR(-EINVAL); 2875 2876 /* 2877 * If we migrate a single thread, we don't care about threadgroup 2878 * stability. If the thread is `current`, it won't exit(2) under our 2879 * hands or change PID through exec(2). We exclude 2880 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2881 * callers by cgroup_mutex. 2882 * Therefore, we can skip the global lock. 2883 */ 2884 lockdep_assert_held(&cgroup_mutex); 2885 *threadgroup_locked = pid || threadgroup; 2886 cgroup_attach_lock(*threadgroup_locked); 2887 2888 rcu_read_lock(); 2889 if (pid) { 2890 tsk = find_task_by_vpid(pid); 2891 if (!tsk) { 2892 tsk = ERR_PTR(-ESRCH); 2893 goto out_unlock_threadgroup; 2894 } 2895 } else { 2896 tsk = current; 2897 } 2898 2899 if (threadgroup) 2900 tsk = tsk->group_leader; 2901 2902 /* 2903 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2904 * If userland migrates such a kthread to a non-root cgroup, it can 2905 * become trapped in a cpuset, or RT kthread may be born in a 2906 * cgroup with no rt_runtime allocated. Just say no. 2907 */ 2908 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2909 tsk = ERR_PTR(-EINVAL); 2910 goto out_unlock_threadgroup; 2911 } 2912 2913 get_task_struct(tsk); 2914 goto out_unlock_rcu; 2915 2916 out_unlock_threadgroup: 2917 cgroup_attach_unlock(*threadgroup_locked); 2918 *threadgroup_locked = false; 2919 out_unlock_rcu: 2920 rcu_read_unlock(); 2921 return tsk; 2922 } 2923 2924 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 2925 { 2926 struct cgroup_subsys *ss; 2927 int ssid; 2928 2929 /* release reference from cgroup_procs_write_start() */ 2930 put_task_struct(task); 2931 2932 cgroup_attach_unlock(threadgroup_locked); 2933 2934 for_each_subsys(ss, ssid) 2935 if (ss->post_attach) 2936 ss->post_attach(); 2937 } 2938 2939 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2940 { 2941 struct cgroup_subsys *ss; 2942 bool printed = false; 2943 int ssid; 2944 2945 do_each_subsys_mask(ss, ssid, ss_mask) { 2946 if (printed) 2947 seq_putc(seq, ' '); 2948 seq_puts(seq, ss->name); 2949 printed = true; 2950 } while_each_subsys_mask(); 2951 if (printed) 2952 seq_putc(seq, '\n'); 2953 } 2954 2955 /* show controllers which are enabled from the parent */ 2956 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2957 { 2958 struct cgroup *cgrp = seq_css(seq)->cgroup; 2959 2960 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2961 return 0; 2962 } 2963 2964 /* show controllers which are enabled for a given cgroup's children */ 2965 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2966 { 2967 struct cgroup *cgrp = seq_css(seq)->cgroup; 2968 2969 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2970 return 0; 2971 } 2972 2973 /** 2974 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2975 * @cgrp: root of the subtree to update csses for 2976 * 2977 * @cgrp's control masks have changed and its subtree's css associations 2978 * need to be updated accordingly. This function looks up all css_sets 2979 * which are attached to the subtree, creates the matching updated css_sets 2980 * and migrates the tasks to the new ones. 2981 */ 2982 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2983 { 2984 DEFINE_CGROUP_MGCTX(mgctx); 2985 struct cgroup_subsys_state *d_css; 2986 struct cgroup *dsct; 2987 struct css_set *src_cset; 2988 bool has_tasks; 2989 int ret; 2990 2991 lockdep_assert_held(&cgroup_mutex); 2992 2993 /* look up all csses currently attached to @cgrp's subtree */ 2994 spin_lock_irq(&css_set_lock); 2995 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2996 struct cgrp_cset_link *link; 2997 2998 /* 2999 * As cgroup_update_dfl_csses() is only called by 3000 * cgroup_apply_control(). The csses associated with the 3001 * given cgrp will not be affected by changes made to 3002 * its subtree_control file. We can skip them. 3003 */ 3004 if (dsct == cgrp) 3005 continue; 3006 3007 list_for_each_entry(link, &dsct->cset_links, cset_link) 3008 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3009 } 3010 spin_unlock_irq(&css_set_lock); 3011 3012 /* 3013 * We need to write-lock threadgroup_rwsem while migrating tasks. 3014 * However, if there are no source csets for @cgrp, changing its 3015 * controllers isn't gonna produce any task migrations and the 3016 * write-locking can be skipped safely. 3017 */ 3018 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3019 cgroup_attach_lock(has_tasks); 3020 3021 /* NULL dst indicates self on default hierarchy */ 3022 ret = cgroup_migrate_prepare_dst(&mgctx); 3023 if (ret) 3024 goto out_finish; 3025 3026 spin_lock_irq(&css_set_lock); 3027 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3028 mg_src_preload_node) { 3029 struct task_struct *task, *ntask; 3030 3031 /* all tasks in src_csets need to be migrated */ 3032 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3033 cgroup_migrate_add_task(task, &mgctx); 3034 } 3035 spin_unlock_irq(&css_set_lock); 3036 3037 ret = cgroup_migrate_execute(&mgctx); 3038 out_finish: 3039 cgroup_migrate_finish(&mgctx); 3040 cgroup_attach_unlock(has_tasks); 3041 return ret; 3042 } 3043 3044 /** 3045 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3046 * @cgrp: root of the target subtree 3047 * 3048 * Because css offlining is asynchronous, userland may try to re-enable a 3049 * controller while the previous css is still around. This function grabs 3050 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3051 */ 3052 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3053 __acquires(&cgroup_mutex) 3054 { 3055 struct cgroup *dsct; 3056 struct cgroup_subsys_state *d_css; 3057 struct cgroup_subsys *ss; 3058 int ssid; 3059 3060 restart: 3061 cgroup_lock(); 3062 3063 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3064 for_each_subsys(ss, ssid) { 3065 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3066 DEFINE_WAIT(wait); 3067 3068 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3069 continue; 3070 3071 cgroup_get_live(dsct); 3072 prepare_to_wait(&dsct->offline_waitq, &wait, 3073 TASK_UNINTERRUPTIBLE); 3074 3075 cgroup_unlock(); 3076 schedule(); 3077 finish_wait(&dsct->offline_waitq, &wait); 3078 3079 cgroup_put(dsct); 3080 goto restart; 3081 } 3082 } 3083 } 3084 3085 /** 3086 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3087 * @cgrp: root of the target subtree 3088 * 3089 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3090 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3091 * itself. 3092 */ 3093 static void cgroup_save_control(struct cgroup *cgrp) 3094 { 3095 struct cgroup *dsct; 3096 struct cgroup_subsys_state *d_css; 3097 3098 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3099 dsct->old_subtree_control = dsct->subtree_control; 3100 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3101 dsct->old_dom_cgrp = dsct->dom_cgrp; 3102 } 3103 } 3104 3105 /** 3106 * cgroup_propagate_control - refresh control masks of a subtree 3107 * @cgrp: root of the target subtree 3108 * 3109 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3110 * ->subtree_control and propagate controller availability through the 3111 * subtree so that descendants don't have unavailable controllers enabled. 3112 */ 3113 static void cgroup_propagate_control(struct cgroup *cgrp) 3114 { 3115 struct cgroup *dsct; 3116 struct cgroup_subsys_state *d_css; 3117 3118 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3119 dsct->subtree_control &= cgroup_control(dsct); 3120 dsct->subtree_ss_mask = 3121 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3122 cgroup_ss_mask(dsct)); 3123 } 3124 } 3125 3126 /** 3127 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3128 * @cgrp: root of the target subtree 3129 * 3130 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3131 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3132 * itself. 3133 */ 3134 static void cgroup_restore_control(struct cgroup *cgrp) 3135 { 3136 struct cgroup *dsct; 3137 struct cgroup_subsys_state *d_css; 3138 3139 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3140 dsct->subtree_control = dsct->old_subtree_control; 3141 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3142 dsct->dom_cgrp = dsct->old_dom_cgrp; 3143 } 3144 } 3145 3146 static bool css_visible(struct cgroup_subsys_state *css) 3147 { 3148 struct cgroup_subsys *ss = css->ss; 3149 struct cgroup *cgrp = css->cgroup; 3150 3151 if (cgroup_control(cgrp) & (1 << ss->id)) 3152 return true; 3153 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3154 return false; 3155 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3156 } 3157 3158 /** 3159 * cgroup_apply_control_enable - enable or show csses according to control 3160 * @cgrp: root of the target subtree 3161 * 3162 * Walk @cgrp's subtree and create new csses or make the existing ones 3163 * visible. A css is created invisible if it's being implicitly enabled 3164 * through dependency. An invisible css is made visible when the userland 3165 * explicitly enables it. 3166 * 3167 * Returns 0 on success, -errno on failure. On failure, csses which have 3168 * been processed already aren't cleaned up. The caller is responsible for 3169 * cleaning up with cgroup_apply_control_disable(). 3170 */ 3171 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3172 { 3173 struct cgroup *dsct; 3174 struct cgroup_subsys_state *d_css; 3175 struct cgroup_subsys *ss; 3176 int ssid, ret; 3177 3178 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3179 for_each_subsys(ss, ssid) { 3180 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3181 3182 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3183 continue; 3184 3185 if (!css) { 3186 css = css_create(dsct, ss); 3187 if (IS_ERR(css)) 3188 return PTR_ERR(css); 3189 } 3190 3191 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3192 3193 if (css_visible(css)) { 3194 ret = css_populate_dir(css); 3195 if (ret) 3196 return ret; 3197 } 3198 } 3199 } 3200 3201 return 0; 3202 } 3203 3204 /** 3205 * cgroup_apply_control_disable - kill or hide csses according to control 3206 * @cgrp: root of the target subtree 3207 * 3208 * Walk @cgrp's subtree and kill and hide csses so that they match 3209 * cgroup_ss_mask() and cgroup_visible_mask(). 3210 * 3211 * A css is hidden when the userland requests it to be disabled while other 3212 * subsystems are still depending on it. The css must not actively control 3213 * resources and be in the vanilla state if it's made visible again later. 3214 * Controllers which may be depended upon should provide ->css_reset() for 3215 * this purpose. 3216 */ 3217 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3218 { 3219 struct cgroup *dsct; 3220 struct cgroup_subsys_state *d_css; 3221 struct cgroup_subsys *ss; 3222 int ssid; 3223 3224 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3225 for_each_subsys(ss, ssid) { 3226 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3227 3228 if (!css) 3229 continue; 3230 3231 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3232 3233 if (css->parent && 3234 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3235 kill_css(css); 3236 } else if (!css_visible(css)) { 3237 css_clear_dir(css); 3238 if (ss->css_reset) 3239 ss->css_reset(css); 3240 } 3241 } 3242 } 3243 } 3244 3245 /** 3246 * cgroup_apply_control - apply control mask updates to the subtree 3247 * @cgrp: root of the target subtree 3248 * 3249 * subsystems can be enabled and disabled in a subtree using the following 3250 * steps. 3251 * 3252 * 1. Call cgroup_save_control() to stash the current state. 3253 * 2. Update ->subtree_control masks in the subtree as desired. 3254 * 3. Call cgroup_apply_control() to apply the changes. 3255 * 4. Optionally perform other related operations. 3256 * 5. Call cgroup_finalize_control() to finish up. 3257 * 3258 * This function implements step 3 and propagates the mask changes 3259 * throughout @cgrp's subtree, updates csses accordingly and perform 3260 * process migrations. 3261 */ 3262 static int cgroup_apply_control(struct cgroup *cgrp) 3263 { 3264 int ret; 3265 3266 cgroup_propagate_control(cgrp); 3267 3268 ret = cgroup_apply_control_enable(cgrp); 3269 if (ret) 3270 return ret; 3271 3272 /* 3273 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3274 * making the following cgroup_update_dfl_csses() properly update 3275 * css associations of all tasks in the subtree. 3276 */ 3277 return cgroup_update_dfl_csses(cgrp); 3278 } 3279 3280 /** 3281 * cgroup_finalize_control - finalize control mask update 3282 * @cgrp: root of the target subtree 3283 * @ret: the result of the update 3284 * 3285 * Finalize control mask update. See cgroup_apply_control() for more info. 3286 */ 3287 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3288 { 3289 if (ret) { 3290 cgroup_restore_control(cgrp); 3291 cgroup_propagate_control(cgrp); 3292 } 3293 3294 cgroup_apply_control_disable(cgrp); 3295 } 3296 3297 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3298 { 3299 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3300 3301 /* if nothing is getting enabled, nothing to worry about */ 3302 if (!enable) 3303 return 0; 3304 3305 /* can @cgrp host any resources? */ 3306 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3307 return -EOPNOTSUPP; 3308 3309 /* mixables don't care */ 3310 if (cgroup_is_mixable(cgrp)) 3311 return 0; 3312 3313 if (domain_enable) { 3314 /* can't enable domain controllers inside a thread subtree */ 3315 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3316 return -EOPNOTSUPP; 3317 } else { 3318 /* 3319 * Threaded controllers can handle internal competitions 3320 * and are always allowed inside a (prospective) thread 3321 * subtree. 3322 */ 3323 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3324 return 0; 3325 } 3326 3327 /* 3328 * Controllers can't be enabled for a cgroup with tasks to avoid 3329 * child cgroups competing against tasks. 3330 */ 3331 if (cgroup_has_tasks(cgrp)) 3332 return -EBUSY; 3333 3334 return 0; 3335 } 3336 3337 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3338 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3339 char *buf, size_t nbytes, 3340 loff_t off) 3341 { 3342 u16 enable = 0, disable = 0; 3343 struct cgroup *cgrp, *child; 3344 struct cgroup_subsys *ss; 3345 char *tok; 3346 int ssid, ret; 3347 3348 /* 3349 * Parse input - space separated list of subsystem names prefixed 3350 * with either + or -. 3351 */ 3352 buf = strstrip(buf); 3353 while ((tok = strsep(&buf, " "))) { 3354 if (tok[0] == '\0') 3355 continue; 3356 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3357 if (!cgroup_ssid_enabled(ssid) || 3358 strcmp(tok + 1, ss->name)) 3359 continue; 3360 3361 if (*tok == '+') { 3362 enable |= 1 << ssid; 3363 disable &= ~(1 << ssid); 3364 } else if (*tok == '-') { 3365 disable |= 1 << ssid; 3366 enable &= ~(1 << ssid); 3367 } else { 3368 return -EINVAL; 3369 } 3370 break; 3371 } while_each_subsys_mask(); 3372 if (ssid == CGROUP_SUBSYS_COUNT) 3373 return -EINVAL; 3374 } 3375 3376 cgrp = cgroup_kn_lock_live(of->kn, true); 3377 if (!cgrp) 3378 return -ENODEV; 3379 3380 for_each_subsys(ss, ssid) { 3381 if (enable & (1 << ssid)) { 3382 if (cgrp->subtree_control & (1 << ssid)) { 3383 enable &= ~(1 << ssid); 3384 continue; 3385 } 3386 3387 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3388 ret = -ENOENT; 3389 goto out_unlock; 3390 } 3391 } else if (disable & (1 << ssid)) { 3392 if (!(cgrp->subtree_control & (1 << ssid))) { 3393 disable &= ~(1 << ssid); 3394 continue; 3395 } 3396 3397 /* a child has it enabled? */ 3398 cgroup_for_each_live_child(child, cgrp) { 3399 if (child->subtree_control & (1 << ssid)) { 3400 ret = -EBUSY; 3401 goto out_unlock; 3402 } 3403 } 3404 } 3405 } 3406 3407 if (!enable && !disable) { 3408 ret = 0; 3409 goto out_unlock; 3410 } 3411 3412 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3413 if (ret) 3414 goto out_unlock; 3415 3416 /* save and update control masks and prepare csses */ 3417 cgroup_save_control(cgrp); 3418 3419 cgrp->subtree_control |= enable; 3420 cgrp->subtree_control &= ~disable; 3421 3422 ret = cgroup_apply_control(cgrp); 3423 cgroup_finalize_control(cgrp, ret); 3424 if (ret) 3425 goto out_unlock; 3426 3427 kernfs_activate(cgrp->kn); 3428 out_unlock: 3429 cgroup_kn_unlock(of->kn); 3430 return ret ?: nbytes; 3431 } 3432 3433 /** 3434 * cgroup_enable_threaded - make @cgrp threaded 3435 * @cgrp: the target cgroup 3436 * 3437 * Called when "threaded" is written to the cgroup.type interface file and 3438 * tries to make @cgrp threaded and join the parent's resource domain. 3439 * This function is never called on the root cgroup as cgroup.type doesn't 3440 * exist on it. 3441 */ 3442 static int cgroup_enable_threaded(struct cgroup *cgrp) 3443 { 3444 struct cgroup *parent = cgroup_parent(cgrp); 3445 struct cgroup *dom_cgrp = parent->dom_cgrp; 3446 struct cgroup *dsct; 3447 struct cgroup_subsys_state *d_css; 3448 int ret; 3449 3450 lockdep_assert_held(&cgroup_mutex); 3451 3452 /* noop if already threaded */ 3453 if (cgroup_is_threaded(cgrp)) 3454 return 0; 3455 3456 /* 3457 * If @cgroup is populated or has domain controllers enabled, it 3458 * can't be switched. While the below cgroup_can_be_thread_root() 3459 * test can catch the same conditions, that's only when @parent is 3460 * not mixable, so let's check it explicitly. 3461 */ 3462 if (cgroup_is_populated(cgrp) || 3463 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3464 return -EOPNOTSUPP; 3465 3466 /* we're joining the parent's domain, ensure its validity */ 3467 if (!cgroup_is_valid_domain(dom_cgrp) || 3468 !cgroup_can_be_thread_root(dom_cgrp)) 3469 return -EOPNOTSUPP; 3470 3471 /* 3472 * The following shouldn't cause actual migrations and should 3473 * always succeed. 3474 */ 3475 cgroup_save_control(cgrp); 3476 3477 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3478 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3479 dsct->dom_cgrp = dom_cgrp; 3480 3481 ret = cgroup_apply_control(cgrp); 3482 if (!ret) 3483 parent->nr_threaded_children++; 3484 3485 cgroup_finalize_control(cgrp, ret); 3486 return ret; 3487 } 3488 3489 static int cgroup_type_show(struct seq_file *seq, void *v) 3490 { 3491 struct cgroup *cgrp = seq_css(seq)->cgroup; 3492 3493 if (cgroup_is_threaded(cgrp)) 3494 seq_puts(seq, "threaded\n"); 3495 else if (!cgroup_is_valid_domain(cgrp)) 3496 seq_puts(seq, "domain invalid\n"); 3497 else if (cgroup_is_thread_root(cgrp)) 3498 seq_puts(seq, "domain threaded\n"); 3499 else 3500 seq_puts(seq, "domain\n"); 3501 3502 return 0; 3503 } 3504 3505 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3506 size_t nbytes, loff_t off) 3507 { 3508 struct cgroup *cgrp; 3509 int ret; 3510 3511 /* only switching to threaded mode is supported */ 3512 if (strcmp(strstrip(buf), "threaded")) 3513 return -EINVAL; 3514 3515 /* drain dying csses before we re-apply (threaded) subtree control */ 3516 cgrp = cgroup_kn_lock_live(of->kn, true); 3517 if (!cgrp) 3518 return -ENOENT; 3519 3520 /* threaded can only be enabled */ 3521 ret = cgroup_enable_threaded(cgrp); 3522 3523 cgroup_kn_unlock(of->kn); 3524 return ret ?: nbytes; 3525 } 3526 3527 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3528 { 3529 struct cgroup *cgrp = seq_css(seq)->cgroup; 3530 int descendants = READ_ONCE(cgrp->max_descendants); 3531 3532 if (descendants == INT_MAX) 3533 seq_puts(seq, "max\n"); 3534 else 3535 seq_printf(seq, "%d\n", descendants); 3536 3537 return 0; 3538 } 3539 3540 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3541 char *buf, size_t nbytes, loff_t off) 3542 { 3543 struct cgroup *cgrp; 3544 int descendants; 3545 ssize_t ret; 3546 3547 buf = strstrip(buf); 3548 if (!strcmp(buf, "max")) { 3549 descendants = INT_MAX; 3550 } else { 3551 ret = kstrtoint(buf, 0, &descendants); 3552 if (ret) 3553 return ret; 3554 } 3555 3556 if (descendants < 0) 3557 return -ERANGE; 3558 3559 cgrp = cgroup_kn_lock_live(of->kn, false); 3560 if (!cgrp) 3561 return -ENOENT; 3562 3563 cgrp->max_descendants = descendants; 3564 3565 cgroup_kn_unlock(of->kn); 3566 3567 return nbytes; 3568 } 3569 3570 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3571 { 3572 struct cgroup *cgrp = seq_css(seq)->cgroup; 3573 int depth = READ_ONCE(cgrp->max_depth); 3574 3575 if (depth == INT_MAX) 3576 seq_puts(seq, "max\n"); 3577 else 3578 seq_printf(seq, "%d\n", depth); 3579 3580 return 0; 3581 } 3582 3583 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3584 char *buf, size_t nbytes, loff_t off) 3585 { 3586 struct cgroup *cgrp; 3587 ssize_t ret; 3588 int depth; 3589 3590 buf = strstrip(buf); 3591 if (!strcmp(buf, "max")) { 3592 depth = INT_MAX; 3593 } else { 3594 ret = kstrtoint(buf, 0, &depth); 3595 if (ret) 3596 return ret; 3597 } 3598 3599 if (depth < 0) 3600 return -ERANGE; 3601 3602 cgrp = cgroup_kn_lock_live(of->kn, false); 3603 if (!cgrp) 3604 return -ENOENT; 3605 3606 cgrp->max_depth = depth; 3607 3608 cgroup_kn_unlock(of->kn); 3609 3610 return nbytes; 3611 } 3612 3613 static int cgroup_events_show(struct seq_file *seq, void *v) 3614 { 3615 struct cgroup *cgrp = seq_css(seq)->cgroup; 3616 3617 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3618 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3619 3620 return 0; 3621 } 3622 3623 static int cgroup_stat_show(struct seq_file *seq, void *v) 3624 { 3625 struct cgroup *cgroup = seq_css(seq)->cgroup; 3626 3627 seq_printf(seq, "nr_descendants %d\n", 3628 cgroup->nr_descendants); 3629 seq_printf(seq, "nr_dying_descendants %d\n", 3630 cgroup->nr_dying_descendants); 3631 3632 return 0; 3633 } 3634 3635 #ifdef CONFIG_CGROUP_SCHED 3636 /** 3637 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 3638 * @cgrp: the cgroup of interest 3639 * @ss: the subsystem of interest 3640 * 3641 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 3642 * or is offline, %NULL is returned. 3643 */ 3644 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 3645 struct cgroup_subsys *ss) 3646 { 3647 struct cgroup_subsys_state *css; 3648 3649 rcu_read_lock(); 3650 css = cgroup_css(cgrp, ss); 3651 if (css && !css_tryget_online(css)) 3652 css = NULL; 3653 rcu_read_unlock(); 3654 3655 return css; 3656 } 3657 3658 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid) 3659 { 3660 struct cgroup *cgrp = seq_css(seq)->cgroup; 3661 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3662 struct cgroup_subsys_state *css; 3663 int ret; 3664 3665 if (!ss->css_extra_stat_show) 3666 return 0; 3667 3668 css = cgroup_tryget_css(cgrp, ss); 3669 if (!css) 3670 return 0; 3671 3672 ret = ss->css_extra_stat_show(seq, css); 3673 css_put(css); 3674 return ret; 3675 } 3676 3677 static int cgroup_local_stat_show(struct seq_file *seq, 3678 struct cgroup *cgrp, int ssid) 3679 { 3680 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3681 struct cgroup_subsys_state *css; 3682 int ret; 3683 3684 if (!ss->css_local_stat_show) 3685 return 0; 3686 3687 css = cgroup_tryget_css(cgrp, ss); 3688 if (!css) 3689 return 0; 3690 3691 ret = ss->css_local_stat_show(seq, css); 3692 css_put(css); 3693 return ret; 3694 } 3695 #endif 3696 3697 static int cpu_stat_show(struct seq_file *seq, void *v) 3698 { 3699 int ret = 0; 3700 3701 cgroup_base_stat_cputime_show(seq); 3702 #ifdef CONFIG_CGROUP_SCHED 3703 ret = cgroup_extra_stat_show(seq, cpu_cgrp_id); 3704 #endif 3705 return ret; 3706 } 3707 3708 static int cpu_local_stat_show(struct seq_file *seq, void *v) 3709 { 3710 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3711 int ret = 0; 3712 3713 #ifdef CONFIG_CGROUP_SCHED 3714 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id); 3715 #endif 3716 return ret; 3717 } 3718 3719 #ifdef CONFIG_PSI 3720 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3721 { 3722 struct cgroup *cgrp = seq_css(seq)->cgroup; 3723 struct psi_group *psi = cgroup_psi(cgrp); 3724 3725 return psi_show(seq, psi, PSI_IO); 3726 } 3727 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3728 { 3729 struct cgroup *cgrp = seq_css(seq)->cgroup; 3730 struct psi_group *psi = cgroup_psi(cgrp); 3731 3732 return psi_show(seq, psi, PSI_MEM); 3733 } 3734 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3735 { 3736 struct cgroup *cgrp = seq_css(seq)->cgroup; 3737 struct psi_group *psi = cgroup_psi(cgrp); 3738 3739 return psi_show(seq, psi, PSI_CPU); 3740 } 3741 3742 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3743 size_t nbytes, enum psi_res res) 3744 { 3745 struct cgroup_file_ctx *ctx = of->priv; 3746 struct psi_trigger *new; 3747 struct cgroup *cgrp; 3748 struct psi_group *psi; 3749 3750 cgrp = cgroup_kn_lock_live(of->kn, false); 3751 if (!cgrp) 3752 return -ENODEV; 3753 3754 cgroup_get(cgrp); 3755 cgroup_kn_unlock(of->kn); 3756 3757 /* Allow only one trigger per file descriptor */ 3758 if (ctx->psi.trigger) { 3759 cgroup_put(cgrp); 3760 return -EBUSY; 3761 } 3762 3763 psi = cgroup_psi(cgrp); 3764 new = psi_trigger_create(psi, buf, res, of->file, of); 3765 if (IS_ERR(new)) { 3766 cgroup_put(cgrp); 3767 return PTR_ERR(new); 3768 } 3769 3770 smp_store_release(&ctx->psi.trigger, new); 3771 cgroup_put(cgrp); 3772 3773 return nbytes; 3774 } 3775 3776 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3777 char *buf, size_t nbytes, 3778 loff_t off) 3779 { 3780 return pressure_write(of, buf, nbytes, PSI_IO); 3781 } 3782 3783 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3784 char *buf, size_t nbytes, 3785 loff_t off) 3786 { 3787 return pressure_write(of, buf, nbytes, PSI_MEM); 3788 } 3789 3790 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3791 char *buf, size_t nbytes, 3792 loff_t off) 3793 { 3794 return pressure_write(of, buf, nbytes, PSI_CPU); 3795 } 3796 3797 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3798 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3799 { 3800 struct cgroup *cgrp = seq_css(seq)->cgroup; 3801 struct psi_group *psi = cgroup_psi(cgrp); 3802 3803 return psi_show(seq, psi, PSI_IRQ); 3804 } 3805 3806 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3807 char *buf, size_t nbytes, 3808 loff_t off) 3809 { 3810 return pressure_write(of, buf, nbytes, PSI_IRQ); 3811 } 3812 #endif 3813 3814 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3815 { 3816 struct cgroup *cgrp = seq_css(seq)->cgroup; 3817 struct psi_group *psi = cgroup_psi(cgrp); 3818 3819 seq_printf(seq, "%d\n", psi->enabled); 3820 3821 return 0; 3822 } 3823 3824 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3825 char *buf, size_t nbytes, 3826 loff_t off) 3827 { 3828 ssize_t ret; 3829 int enable; 3830 struct cgroup *cgrp; 3831 struct psi_group *psi; 3832 3833 ret = kstrtoint(strstrip(buf), 0, &enable); 3834 if (ret) 3835 return ret; 3836 3837 if (enable < 0 || enable > 1) 3838 return -ERANGE; 3839 3840 cgrp = cgroup_kn_lock_live(of->kn, false); 3841 if (!cgrp) 3842 return -ENOENT; 3843 3844 psi = cgroup_psi(cgrp); 3845 if (psi->enabled != enable) { 3846 int i; 3847 3848 /* show or hide {cpu,memory,io,irq}.pressure files */ 3849 for (i = 0; i < NR_PSI_RESOURCES; i++) 3850 cgroup_file_show(&cgrp->psi_files[i], enable); 3851 3852 psi->enabled = enable; 3853 if (enable) 3854 psi_cgroup_restart(psi); 3855 } 3856 3857 cgroup_kn_unlock(of->kn); 3858 3859 return nbytes; 3860 } 3861 3862 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3863 poll_table *pt) 3864 { 3865 struct cgroup_file_ctx *ctx = of->priv; 3866 3867 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3868 } 3869 3870 static int cgroup_pressure_open(struct kernfs_open_file *of) 3871 { 3872 if (of->file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE)) 3873 return -EPERM; 3874 3875 return 0; 3876 } 3877 3878 static void cgroup_pressure_release(struct kernfs_open_file *of) 3879 { 3880 struct cgroup_file_ctx *ctx = of->priv; 3881 3882 psi_trigger_destroy(ctx->psi.trigger); 3883 } 3884 3885 bool cgroup_psi_enabled(void) 3886 { 3887 if (static_branch_likely(&psi_disabled)) 3888 return false; 3889 3890 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3891 } 3892 3893 #else /* CONFIG_PSI */ 3894 bool cgroup_psi_enabled(void) 3895 { 3896 return false; 3897 } 3898 3899 #endif /* CONFIG_PSI */ 3900 3901 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3902 { 3903 struct cgroup *cgrp = seq_css(seq)->cgroup; 3904 3905 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3906 3907 return 0; 3908 } 3909 3910 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3911 char *buf, size_t nbytes, loff_t off) 3912 { 3913 struct cgroup *cgrp; 3914 ssize_t ret; 3915 int freeze; 3916 3917 ret = kstrtoint(strstrip(buf), 0, &freeze); 3918 if (ret) 3919 return ret; 3920 3921 if (freeze < 0 || freeze > 1) 3922 return -ERANGE; 3923 3924 cgrp = cgroup_kn_lock_live(of->kn, false); 3925 if (!cgrp) 3926 return -ENOENT; 3927 3928 cgroup_freeze(cgrp, freeze); 3929 3930 cgroup_kn_unlock(of->kn); 3931 3932 return nbytes; 3933 } 3934 3935 static void __cgroup_kill(struct cgroup *cgrp) 3936 { 3937 struct css_task_iter it; 3938 struct task_struct *task; 3939 3940 lockdep_assert_held(&cgroup_mutex); 3941 3942 spin_lock_irq(&css_set_lock); 3943 set_bit(CGRP_KILL, &cgrp->flags); 3944 spin_unlock_irq(&css_set_lock); 3945 3946 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3947 while ((task = css_task_iter_next(&it))) { 3948 /* Ignore kernel threads here. */ 3949 if (task->flags & PF_KTHREAD) 3950 continue; 3951 3952 /* Skip tasks that are already dying. */ 3953 if (__fatal_signal_pending(task)) 3954 continue; 3955 3956 send_sig(SIGKILL, task, 0); 3957 } 3958 css_task_iter_end(&it); 3959 3960 spin_lock_irq(&css_set_lock); 3961 clear_bit(CGRP_KILL, &cgrp->flags); 3962 spin_unlock_irq(&css_set_lock); 3963 } 3964 3965 static void cgroup_kill(struct cgroup *cgrp) 3966 { 3967 struct cgroup_subsys_state *css; 3968 struct cgroup *dsct; 3969 3970 lockdep_assert_held(&cgroup_mutex); 3971 3972 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3973 __cgroup_kill(dsct); 3974 } 3975 3976 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3977 size_t nbytes, loff_t off) 3978 { 3979 ssize_t ret = 0; 3980 int kill; 3981 struct cgroup *cgrp; 3982 3983 ret = kstrtoint(strstrip(buf), 0, &kill); 3984 if (ret) 3985 return ret; 3986 3987 if (kill != 1) 3988 return -ERANGE; 3989 3990 cgrp = cgroup_kn_lock_live(of->kn, false); 3991 if (!cgrp) 3992 return -ENOENT; 3993 3994 /* 3995 * Killing is a process directed operation, i.e. the whole thread-group 3996 * is taken down so act like we do for cgroup.procs and only make this 3997 * writable in non-threaded cgroups. 3998 */ 3999 if (cgroup_is_threaded(cgrp)) 4000 ret = -EOPNOTSUPP; 4001 else 4002 cgroup_kill(cgrp); 4003 4004 cgroup_kn_unlock(of->kn); 4005 4006 return ret ?: nbytes; 4007 } 4008 4009 static int cgroup_file_open(struct kernfs_open_file *of) 4010 { 4011 struct cftype *cft = of_cft(of); 4012 struct cgroup_file_ctx *ctx; 4013 int ret; 4014 4015 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 4016 if (!ctx) 4017 return -ENOMEM; 4018 4019 ctx->ns = current->nsproxy->cgroup_ns; 4020 get_cgroup_ns(ctx->ns); 4021 of->priv = ctx; 4022 4023 if (!cft->open) 4024 return 0; 4025 4026 ret = cft->open(of); 4027 if (ret) { 4028 put_cgroup_ns(ctx->ns); 4029 kfree(ctx); 4030 } 4031 return ret; 4032 } 4033 4034 static void cgroup_file_release(struct kernfs_open_file *of) 4035 { 4036 struct cftype *cft = of_cft(of); 4037 struct cgroup_file_ctx *ctx = of->priv; 4038 4039 if (cft->release) 4040 cft->release(of); 4041 put_cgroup_ns(ctx->ns); 4042 kfree(ctx); 4043 } 4044 4045 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4046 size_t nbytes, loff_t off) 4047 { 4048 struct cgroup_file_ctx *ctx = of->priv; 4049 struct cgroup *cgrp = of->kn->parent->priv; 4050 struct cftype *cft = of_cft(of); 4051 struct cgroup_subsys_state *css; 4052 int ret; 4053 4054 if (!nbytes) 4055 return 0; 4056 4057 /* 4058 * If namespaces are delegation boundaries, disallow writes to 4059 * files in an non-init namespace root from inside the namespace 4060 * except for the files explicitly marked delegatable - 4061 * cgroup.procs and cgroup.subtree_control. 4062 */ 4063 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4064 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4065 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4066 return -EPERM; 4067 4068 if (cft->write) 4069 return cft->write(of, buf, nbytes, off); 4070 4071 /* 4072 * kernfs guarantees that a file isn't deleted with operations in 4073 * flight, which means that the matching css is and stays alive and 4074 * doesn't need to be pinned. The RCU locking is not necessary 4075 * either. It's just for the convenience of using cgroup_css(). 4076 */ 4077 rcu_read_lock(); 4078 css = cgroup_css(cgrp, cft->ss); 4079 rcu_read_unlock(); 4080 4081 if (cft->write_u64) { 4082 unsigned long long v; 4083 ret = kstrtoull(buf, 0, &v); 4084 if (!ret) 4085 ret = cft->write_u64(css, cft, v); 4086 } else if (cft->write_s64) { 4087 long long v; 4088 ret = kstrtoll(buf, 0, &v); 4089 if (!ret) 4090 ret = cft->write_s64(css, cft, v); 4091 } else { 4092 ret = -EINVAL; 4093 } 4094 4095 return ret ?: nbytes; 4096 } 4097 4098 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4099 { 4100 struct cftype *cft = of_cft(of); 4101 4102 if (cft->poll) 4103 return cft->poll(of, pt); 4104 4105 return kernfs_generic_poll(of, pt); 4106 } 4107 4108 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4109 { 4110 return seq_cft(seq)->seq_start(seq, ppos); 4111 } 4112 4113 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4114 { 4115 return seq_cft(seq)->seq_next(seq, v, ppos); 4116 } 4117 4118 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4119 { 4120 if (seq_cft(seq)->seq_stop) 4121 seq_cft(seq)->seq_stop(seq, v); 4122 } 4123 4124 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4125 { 4126 struct cftype *cft = seq_cft(m); 4127 struct cgroup_subsys_state *css = seq_css(m); 4128 4129 if (cft->seq_show) 4130 return cft->seq_show(m, arg); 4131 4132 if (cft->read_u64) 4133 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4134 else if (cft->read_s64) 4135 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4136 else 4137 return -EINVAL; 4138 return 0; 4139 } 4140 4141 static struct kernfs_ops cgroup_kf_single_ops = { 4142 .atomic_write_len = PAGE_SIZE, 4143 .open = cgroup_file_open, 4144 .release = cgroup_file_release, 4145 .write = cgroup_file_write, 4146 .poll = cgroup_file_poll, 4147 .seq_show = cgroup_seqfile_show, 4148 }; 4149 4150 static struct kernfs_ops cgroup_kf_ops = { 4151 .atomic_write_len = PAGE_SIZE, 4152 .open = cgroup_file_open, 4153 .release = cgroup_file_release, 4154 .write = cgroup_file_write, 4155 .poll = cgroup_file_poll, 4156 .seq_start = cgroup_seqfile_start, 4157 .seq_next = cgroup_seqfile_next, 4158 .seq_stop = cgroup_seqfile_stop, 4159 .seq_show = cgroup_seqfile_show, 4160 }; 4161 4162 /* set uid and gid of cgroup dirs and files to that of the creator */ 4163 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 4164 { 4165 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 4166 .ia_uid = current_fsuid(), 4167 .ia_gid = current_fsgid(), }; 4168 4169 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 4170 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 4171 return 0; 4172 4173 return kernfs_setattr(kn, &iattr); 4174 } 4175 4176 static void cgroup_file_notify_timer(struct timer_list *timer) 4177 { 4178 cgroup_file_notify(container_of(timer, struct cgroup_file, 4179 notify_timer)); 4180 } 4181 4182 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4183 struct cftype *cft) 4184 { 4185 char name[CGROUP_FILE_NAME_MAX]; 4186 struct kernfs_node *kn; 4187 struct lock_class_key *key = NULL; 4188 int ret; 4189 4190 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4191 key = &cft->lockdep_key; 4192 #endif 4193 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4194 cgroup_file_mode(cft), 4195 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 4196 0, cft->kf_ops, cft, 4197 NULL, key); 4198 if (IS_ERR(kn)) 4199 return PTR_ERR(kn); 4200 4201 ret = cgroup_kn_set_ugid(kn); 4202 if (ret) { 4203 kernfs_remove(kn); 4204 return ret; 4205 } 4206 4207 if (cft->file_offset) { 4208 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4209 4210 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4211 4212 spin_lock_irq(&cgroup_file_kn_lock); 4213 cfile->kn = kn; 4214 spin_unlock_irq(&cgroup_file_kn_lock); 4215 } 4216 4217 return 0; 4218 } 4219 4220 /** 4221 * cgroup_addrm_files - add or remove files to a cgroup directory 4222 * @css: the target css 4223 * @cgrp: the target cgroup (usually css->cgroup) 4224 * @cfts: array of cftypes to be added 4225 * @is_add: whether to add or remove 4226 * 4227 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4228 * For removals, this function never fails. 4229 */ 4230 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4231 struct cgroup *cgrp, struct cftype cfts[], 4232 bool is_add) 4233 { 4234 struct cftype *cft, *cft_end = NULL; 4235 int ret = 0; 4236 4237 lockdep_assert_held(&cgroup_mutex); 4238 4239 restart: 4240 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4241 /* does cft->flags tell us to skip this file on @cgrp? */ 4242 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4243 continue; 4244 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4245 continue; 4246 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4247 continue; 4248 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4249 continue; 4250 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4251 continue; 4252 if (is_add) { 4253 ret = cgroup_add_file(css, cgrp, cft); 4254 if (ret) { 4255 pr_warn("%s: failed to add %s, err=%d\n", 4256 __func__, cft->name, ret); 4257 cft_end = cft; 4258 is_add = false; 4259 goto restart; 4260 } 4261 } else { 4262 cgroup_rm_file(cgrp, cft); 4263 } 4264 } 4265 return ret; 4266 } 4267 4268 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4269 { 4270 struct cgroup_subsys *ss = cfts[0].ss; 4271 struct cgroup *root = &ss->root->cgrp; 4272 struct cgroup_subsys_state *css; 4273 int ret = 0; 4274 4275 lockdep_assert_held(&cgroup_mutex); 4276 4277 /* add/rm files for all cgroups created before */ 4278 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4279 struct cgroup *cgrp = css->cgroup; 4280 4281 if (!(css->flags & CSS_VISIBLE)) 4282 continue; 4283 4284 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4285 if (ret) 4286 break; 4287 } 4288 4289 if (is_add && !ret) 4290 kernfs_activate(root->kn); 4291 return ret; 4292 } 4293 4294 static void cgroup_exit_cftypes(struct cftype *cfts) 4295 { 4296 struct cftype *cft; 4297 4298 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4299 /* free copy for custom atomic_write_len, see init_cftypes() */ 4300 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4301 kfree(cft->kf_ops); 4302 cft->kf_ops = NULL; 4303 cft->ss = NULL; 4304 4305 /* revert flags set by cgroup core while adding @cfts */ 4306 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4307 __CFTYPE_ADDED); 4308 } 4309 } 4310 4311 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4312 { 4313 struct cftype *cft; 4314 int ret = 0; 4315 4316 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4317 struct kernfs_ops *kf_ops; 4318 4319 WARN_ON(cft->ss || cft->kf_ops); 4320 4321 if (cft->flags & __CFTYPE_ADDED) { 4322 ret = -EBUSY; 4323 break; 4324 } 4325 4326 if (cft->seq_start) 4327 kf_ops = &cgroup_kf_ops; 4328 else 4329 kf_ops = &cgroup_kf_single_ops; 4330 4331 /* 4332 * Ugh... if @cft wants a custom max_write_len, we need to 4333 * make a copy of kf_ops to set its atomic_write_len. 4334 */ 4335 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4336 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4337 if (!kf_ops) { 4338 ret = -ENOMEM; 4339 break; 4340 } 4341 kf_ops->atomic_write_len = cft->max_write_len; 4342 } 4343 4344 cft->kf_ops = kf_ops; 4345 cft->ss = ss; 4346 cft->flags |= __CFTYPE_ADDED; 4347 } 4348 4349 if (ret) 4350 cgroup_exit_cftypes(cfts); 4351 return ret; 4352 } 4353 4354 static void cgroup_rm_cftypes_locked(struct cftype *cfts) 4355 { 4356 lockdep_assert_held(&cgroup_mutex); 4357 4358 list_del(&cfts->node); 4359 cgroup_apply_cftypes(cfts, false); 4360 cgroup_exit_cftypes(cfts); 4361 } 4362 4363 /** 4364 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4365 * @cfts: zero-length name terminated array of cftypes 4366 * 4367 * Unregister @cfts. Files described by @cfts are removed from all 4368 * existing cgroups and all future cgroups won't have them either. This 4369 * function can be called anytime whether @cfts' subsys is attached or not. 4370 * 4371 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4372 * registered. 4373 */ 4374 int cgroup_rm_cftypes(struct cftype *cfts) 4375 { 4376 if (!cfts || cfts[0].name[0] == '\0') 4377 return 0; 4378 4379 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4380 return -ENOENT; 4381 4382 cgroup_lock(); 4383 cgroup_rm_cftypes_locked(cfts); 4384 cgroup_unlock(); 4385 return 0; 4386 } 4387 4388 /** 4389 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4390 * @ss: target cgroup subsystem 4391 * @cfts: zero-length name terminated array of cftypes 4392 * 4393 * Register @cfts to @ss. Files described by @cfts are created for all 4394 * existing cgroups to which @ss is attached and all future cgroups will 4395 * have them too. This function can be called anytime whether @ss is 4396 * attached or not. 4397 * 4398 * Returns 0 on successful registration, -errno on failure. Note that this 4399 * function currently returns 0 as long as @cfts registration is successful 4400 * even if some file creation attempts on existing cgroups fail. 4401 */ 4402 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4403 { 4404 int ret; 4405 4406 if (!cgroup_ssid_enabled(ss->id)) 4407 return 0; 4408 4409 if (!cfts || cfts[0].name[0] == '\0') 4410 return 0; 4411 4412 ret = cgroup_init_cftypes(ss, cfts); 4413 if (ret) 4414 return ret; 4415 4416 cgroup_lock(); 4417 4418 list_add_tail(&cfts->node, &ss->cfts); 4419 ret = cgroup_apply_cftypes(cfts, true); 4420 if (ret) 4421 cgroup_rm_cftypes_locked(cfts); 4422 4423 cgroup_unlock(); 4424 return ret; 4425 } 4426 4427 /** 4428 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4429 * @ss: target cgroup subsystem 4430 * @cfts: zero-length name terminated array of cftypes 4431 * 4432 * Similar to cgroup_add_cftypes() but the added files are only used for 4433 * the default hierarchy. 4434 */ 4435 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4436 { 4437 struct cftype *cft; 4438 4439 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4440 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4441 return cgroup_add_cftypes(ss, cfts); 4442 } 4443 4444 /** 4445 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4446 * @ss: target cgroup subsystem 4447 * @cfts: zero-length name terminated array of cftypes 4448 * 4449 * Similar to cgroup_add_cftypes() but the added files are only used for 4450 * the legacy hierarchies. 4451 */ 4452 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4453 { 4454 struct cftype *cft; 4455 4456 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4457 cft->flags |= __CFTYPE_NOT_ON_DFL; 4458 return cgroup_add_cftypes(ss, cfts); 4459 } 4460 4461 /** 4462 * cgroup_file_notify - generate a file modified event for a cgroup_file 4463 * @cfile: target cgroup_file 4464 * 4465 * @cfile must have been obtained by setting cftype->file_offset. 4466 */ 4467 void cgroup_file_notify(struct cgroup_file *cfile) 4468 { 4469 unsigned long flags; 4470 4471 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4472 if (cfile->kn) { 4473 unsigned long last = cfile->notified_at; 4474 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4475 4476 if (time_in_range(jiffies, last, next)) { 4477 timer_reduce(&cfile->notify_timer, next); 4478 } else { 4479 kernfs_notify(cfile->kn); 4480 cfile->notified_at = jiffies; 4481 } 4482 } 4483 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4484 } 4485 4486 /** 4487 * cgroup_file_show - show or hide a hidden cgroup file 4488 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4489 * @show: whether to show or hide 4490 */ 4491 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4492 { 4493 struct kernfs_node *kn; 4494 4495 spin_lock_irq(&cgroup_file_kn_lock); 4496 kn = cfile->kn; 4497 kernfs_get(kn); 4498 spin_unlock_irq(&cgroup_file_kn_lock); 4499 4500 if (kn) 4501 kernfs_show(kn, show); 4502 4503 kernfs_put(kn); 4504 } 4505 4506 /** 4507 * css_next_child - find the next child of a given css 4508 * @pos: the current position (%NULL to initiate traversal) 4509 * @parent: css whose children to walk 4510 * 4511 * This function returns the next child of @parent and should be called 4512 * under either cgroup_mutex or RCU read lock. The only requirement is 4513 * that @parent and @pos are accessible. The next sibling is guaranteed to 4514 * be returned regardless of their states. 4515 * 4516 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4517 * css which finished ->css_online() is guaranteed to be visible in the 4518 * future iterations and will stay visible until the last reference is put. 4519 * A css which hasn't finished ->css_online() or already finished 4520 * ->css_offline() may show up during traversal. It's each subsystem's 4521 * responsibility to synchronize against on/offlining. 4522 */ 4523 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4524 struct cgroup_subsys_state *parent) 4525 { 4526 struct cgroup_subsys_state *next; 4527 4528 cgroup_assert_mutex_or_rcu_locked(); 4529 4530 /* 4531 * @pos could already have been unlinked from the sibling list. 4532 * Once a cgroup is removed, its ->sibling.next is no longer 4533 * updated when its next sibling changes. CSS_RELEASED is set when 4534 * @pos is taken off list, at which time its next pointer is valid, 4535 * and, as releases are serialized, the one pointed to by the next 4536 * pointer is guaranteed to not have started release yet. This 4537 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4538 * critical section, the one pointed to by its next pointer is 4539 * guaranteed to not have finished its RCU grace period even if we 4540 * have dropped rcu_read_lock() in-between iterations. 4541 * 4542 * If @pos has CSS_RELEASED set, its next pointer can't be 4543 * dereferenced; however, as each css is given a monotonically 4544 * increasing unique serial number and always appended to the 4545 * sibling list, the next one can be found by walking the parent's 4546 * children until the first css with higher serial number than 4547 * @pos's. While this path can be slower, it happens iff iteration 4548 * races against release and the race window is very small. 4549 */ 4550 if (!pos) { 4551 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4552 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4553 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4554 } else { 4555 list_for_each_entry_rcu(next, &parent->children, sibling, 4556 lockdep_is_held(&cgroup_mutex)) 4557 if (next->serial_nr > pos->serial_nr) 4558 break; 4559 } 4560 4561 /* 4562 * @next, if not pointing to the head, can be dereferenced and is 4563 * the next sibling. 4564 */ 4565 if (&next->sibling != &parent->children) 4566 return next; 4567 return NULL; 4568 } 4569 4570 /** 4571 * css_next_descendant_pre - find the next descendant for pre-order walk 4572 * @pos: the current position (%NULL to initiate traversal) 4573 * @root: css whose descendants to walk 4574 * 4575 * To be used by css_for_each_descendant_pre(). Find the next descendant 4576 * to visit for pre-order traversal of @root's descendants. @root is 4577 * included in the iteration and the first node to be visited. 4578 * 4579 * While this function requires cgroup_mutex or RCU read locking, it 4580 * doesn't require the whole traversal to be contained in a single critical 4581 * section. This function will return the correct next descendant as long 4582 * as both @pos and @root are accessible and @pos is a descendant of @root. 4583 * 4584 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4585 * css which finished ->css_online() is guaranteed to be visible in the 4586 * future iterations and will stay visible until the last reference is put. 4587 * A css which hasn't finished ->css_online() or already finished 4588 * ->css_offline() may show up during traversal. It's each subsystem's 4589 * responsibility to synchronize against on/offlining. 4590 */ 4591 struct cgroup_subsys_state * 4592 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4593 struct cgroup_subsys_state *root) 4594 { 4595 struct cgroup_subsys_state *next; 4596 4597 cgroup_assert_mutex_or_rcu_locked(); 4598 4599 /* if first iteration, visit @root */ 4600 if (!pos) 4601 return root; 4602 4603 /* visit the first child if exists */ 4604 next = css_next_child(NULL, pos); 4605 if (next) 4606 return next; 4607 4608 /* no child, visit my or the closest ancestor's next sibling */ 4609 while (pos != root) { 4610 next = css_next_child(pos, pos->parent); 4611 if (next) 4612 return next; 4613 pos = pos->parent; 4614 } 4615 4616 return NULL; 4617 } 4618 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4619 4620 /** 4621 * css_rightmost_descendant - return the rightmost descendant of a css 4622 * @pos: css of interest 4623 * 4624 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4625 * is returned. This can be used during pre-order traversal to skip 4626 * subtree of @pos. 4627 * 4628 * While this function requires cgroup_mutex or RCU read locking, it 4629 * doesn't require the whole traversal to be contained in a single critical 4630 * section. This function will return the correct rightmost descendant as 4631 * long as @pos is accessible. 4632 */ 4633 struct cgroup_subsys_state * 4634 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4635 { 4636 struct cgroup_subsys_state *last, *tmp; 4637 4638 cgroup_assert_mutex_or_rcu_locked(); 4639 4640 do { 4641 last = pos; 4642 /* ->prev isn't RCU safe, walk ->next till the end */ 4643 pos = NULL; 4644 css_for_each_child(tmp, last) 4645 pos = tmp; 4646 } while (pos); 4647 4648 return last; 4649 } 4650 4651 static struct cgroup_subsys_state * 4652 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4653 { 4654 struct cgroup_subsys_state *last; 4655 4656 do { 4657 last = pos; 4658 pos = css_next_child(NULL, pos); 4659 } while (pos); 4660 4661 return last; 4662 } 4663 4664 /** 4665 * css_next_descendant_post - find the next descendant for post-order walk 4666 * @pos: the current position (%NULL to initiate traversal) 4667 * @root: css whose descendants to walk 4668 * 4669 * To be used by css_for_each_descendant_post(). Find the next descendant 4670 * to visit for post-order traversal of @root's descendants. @root is 4671 * included in the iteration and the last node to be visited. 4672 * 4673 * While this function requires cgroup_mutex or RCU read locking, it 4674 * doesn't require the whole traversal to be contained in a single critical 4675 * section. This function will return the correct next descendant as long 4676 * as both @pos and @cgroup are accessible and @pos is a descendant of 4677 * @cgroup. 4678 * 4679 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4680 * css which finished ->css_online() is guaranteed to be visible in the 4681 * future iterations and will stay visible until the last reference is put. 4682 * A css which hasn't finished ->css_online() or already finished 4683 * ->css_offline() may show up during traversal. It's each subsystem's 4684 * responsibility to synchronize against on/offlining. 4685 */ 4686 struct cgroup_subsys_state * 4687 css_next_descendant_post(struct cgroup_subsys_state *pos, 4688 struct cgroup_subsys_state *root) 4689 { 4690 struct cgroup_subsys_state *next; 4691 4692 cgroup_assert_mutex_or_rcu_locked(); 4693 4694 /* if first iteration, visit leftmost descendant which may be @root */ 4695 if (!pos) 4696 return css_leftmost_descendant(root); 4697 4698 /* if we visited @root, we're done */ 4699 if (pos == root) 4700 return NULL; 4701 4702 /* if there's an unvisited sibling, visit its leftmost descendant */ 4703 next = css_next_child(pos, pos->parent); 4704 if (next) 4705 return css_leftmost_descendant(next); 4706 4707 /* no sibling left, visit parent */ 4708 return pos->parent; 4709 } 4710 4711 /** 4712 * css_has_online_children - does a css have online children 4713 * @css: the target css 4714 * 4715 * Returns %true if @css has any online children; otherwise, %false. This 4716 * function can be called from any context but the caller is responsible 4717 * for synchronizing against on/offlining as necessary. 4718 */ 4719 bool css_has_online_children(struct cgroup_subsys_state *css) 4720 { 4721 struct cgroup_subsys_state *child; 4722 bool ret = false; 4723 4724 rcu_read_lock(); 4725 css_for_each_child(child, css) { 4726 if (child->flags & CSS_ONLINE) { 4727 ret = true; 4728 break; 4729 } 4730 } 4731 rcu_read_unlock(); 4732 return ret; 4733 } 4734 4735 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4736 { 4737 struct list_head *l; 4738 struct cgrp_cset_link *link; 4739 struct css_set *cset; 4740 4741 lockdep_assert_held(&css_set_lock); 4742 4743 /* find the next threaded cset */ 4744 if (it->tcset_pos) { 4745 l = it->tcset_pos->next; 4746 4747 if (l != it->tcset_head) { 4748 it->tcset_pos = l; 4749 return container_of(l, struct css_set, 4750 threaded_csets_node); 4751 } 4752 4753 it->tcset_pos = NULL; 4754 } 4755 4756 /* find the next cset */ 4757 l = it->cset_pos; 4758 l = l->next; 4759 if (l == it->cset_head) { 4760 it->cset_pos = NULL; 4761 return NULL; 4762 } 4763 4764 if (it->ss) { 4765 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4766 } else { 4767 link = list_entry(l, struct cgrp_cset_link, cset_link); 4768 cset = link->cset; 4769 } 4770 4771 it->cset_pos = l; 4772 4773 /* initialize threaded css_set walking */ 4774 if (it->flags & CSS_TASK_ITER_THREADED) { 4775 if (it->cur_dcset) 4776 put_css_set_locked(it->cur_dcset); 4777 it->cur_dcset = cset; 4778 get_css_set(cset); 4779 4780 it->tcset_head = &cset->threaded_csets; 4781 it->tcset_pos = &cset->threaded_csets; 4782 } 4783 4784 return cset; 4785 } 4786 4787 /** 4788 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4789 * @it: the iterator to advance 4790 * 4791 * Advance @it to the next css_set to walk. 4792 */ 4793 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4794 { 4795 struct css_set *cset; 4796 4797 lockdep_assert_held(&css_set_lock); 4798 4799 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4800 while ((cset = css_task_iter_next_css_set(it))) { 4801 if (!list_empty(&cset->tasks)) { 4802 it->cur_tasks_head = &cset->tasks; 4803 break; 4804 } else if (!list_empty(&cset->mg_tasks)) { 4805 it->cur_tasks_head = &cset->mg_tasks; 4806 break; 4807 } else if (!list_empty(&cset->dying_tasks)) { 4808 it->cur_tasks_head = &cset->dying_tasks; 4809 break; 4810 } 4811 } 4812 if (!cset) { 4813 it->task_pos = NULL; 4814 return; 4815 } 4816 it->task_pos = it->cur_tasks_head->next; 4817 4818 /* 4819 * We don't keep css_sets locked across iteration steps and thus 4820 * need to take steps to ensure that iteration can be resumed after 4821 * the lock is re-acquired. Iteration is performed at two levels - 4822 * css_sets and tasks in them. 4823 * 4824 * Once created, a css_set never leaves its cgroup lists, so a 4825 * pinned css_set is guaranteed to stay put and we can resume 4826 * iteration afterwards. 4827 * 4828 * Tasks may leave @cset across iteration steps. This is resolved 4829 * by registering each iterator with the css_set currently being 4830 * walked and making css_set_move_task() advance iterators whose 4831 * next task is leaving. 4832 */ 4833 if (it->cur_cset) { 4834 list_del(&it->iters_node); 4835 put_css_set_locked(it->cur_cset); 4836 } 4837 get_css_set(cset); 4838 it->cur_cset = cset; 4839 list_add(&it->iters_node, &cset->task_iters); 4840 } 4841 4842 static void css_task_iter_skip(struct css_task_iter *it, 4843 struct task_struct *task) 4844 { 4845 lockdep_assert_held(&css_set_lock); 4846 4847 if (it->task_pos == &task->cg_list) { 4848 it->task_pos = it->task_pos->next; 4849 it->flags |= CSS_TASK_ITER_SKIPPED; 4850 } 4851 } 4852 4853 static void css_task_iter_advance(struct css_task_iter *it) 4854 { 4855 struct task_struct *task; 4856 4857 lockdep_assert_held(&css_set_lock); 4858 repeat: 4859 if (it->task_pos) { 4860 /* 4861 * Advance iterator to find next entry. We go through cset 4862 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4863 * the next cset. 4864 */ 4865 if (it->flags & CSS_TASK_ITER_SKIPPED) 4866 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4867 else 4868 it->task_pos = it->task_pos->next; 4869 4870 if (it->task_pos == &it->cur_cset->tasks) { 4871 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4872 it->task_pos = it->cur_tasks_head->next; 4873 } 4874 if (it->task_pos == &it->cur_cset->mg_tasks) { 4875 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4876 it->task_pos = it->cur_tasks_head->next; 4877 } 4878 if (it->task_pos == &it->cur_cset->dying_tasks) 4879 css_task_iter_advance_css_set(it); 4880 } else { 4881 /* called from start, proceed to the first cset */ 4882 css_task_iter_advance_css_set(it); 4883 } 4884 4885 if (!it->task_pos) 4886 return; 4887 4888 task = list_entry(it->task_pos, struct task_struct, cg_list); 4889 4890 if (it->flags & CSS_TASK_ITER_PROCS) { 4891 /* if PROCS, skip over tasks which aren't group leaders */ 4892 if (!thread_group_leader(task)) 4893 goto repeat; 4894 4895 /* and dying leaders w/o live member threads */ 4896 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4897 !atomic_read(&task->signal->live)) 4898 goto repeat; 4899 } else { 4900 /* skip all dying ones */ 4901 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4902 goto repeat; 4903 } 4904 } 4905 4906 /** 4907 * css_task_iter_start - initiate task iteration 4908 * @css: the css to walk tasks of 4909 * @flags: CSS_TASK_ITER_* flags 4910 * @it: the task iterator to use 4911 * 4912 * Initiate iteration through the tasks of @css. The caller can call 4913 * css_task_iter_next() to walk through the tasks until the function 4914 * returns NULL. On completion of iteration, css_task_iter_end() must be 4915 * called. 4916 */ 4917 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4918 struct css_task_iter *it) 4919 { 4920 memset(it, 0, sizeof(*it)); 4921 4922 spin_lock_irq(&css_set_lock); 4923 4924 it->ss = css->ss; 4925 it->flags = flags; 4926 4927 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4928 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4929 else 4930 it->cset_pos = &css->cgroup->cset_links; 4931 4932 it->cset_head = it->cset_pos; 4933 4934 css_task_iter_advance(it); 4935 4936 spin_unlock_irq(&css_set_lock); 4937 } 4938 4939 /** 4940 * css_task_iter_next - return the next task for the iterator 4941 * @it: the task iterator being iterated 4942 * 4943 * The "next" function for task iteration. @it should have been 4944 * initialized via css_task_iter_start(). Returns NULL when the iteration 4945 * reaches the end. 4946 */ 4947 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4948 { 4949 if (it->cur_task) { 4950 put_task_struct(it->cur_task); 4951 it->cur_task = NULL; 4952 } 4953 4954 spin_lock_irq(&css_set_lock); 4955 4956 /* @it may be half-advanced by skips, finish advancing */ 4957 if (it->flags & CSS_TASK_ITER_SKIPPED) 4958 css_task_iter_advance(it); 4959 4960 if (it->task_pos) { 4961 it->cur_task = list_entry(it->task_pos, struct task_struct, 4962 cg_list); 4963 get_task_struct(it->cur_task); 4964 css_task_iter_advance(it); 4965 } 4966 4967 spin_unlock_irq(&css_set_lock); 4968 4969 return it->cur_task; 4970 } 4971 4972 /** 4973 * css_task_iter_end - finish task iteration 4974 * @it: the task iterator to finish 4975 * 4976 * Finish task iteration started by css_task_iter_start(). 4977 */ 4978 void css_task_iter_end(struct css_task_iter *it) 4979 { 4980 if (it->cur_cset) { 4981 spin_lock_irq(&css_set_lock); 4982 list_del(&it->iters_node); 4983 put_css_set_locked(it->cur_cset); 4984 spin_unlock_irq(&css_set_lock); 4985 } 4986 4987 if (it->cur_dcset) 4988 put_css_set(it->cur_dcset); 4989 4990 if (it->cur_task) 4991 put_task_struct(it->cur_task); 4992 } 4993 4994 static void cgroup_procs_release(struct kernfs_open_file *of) 4995 { 4996 struct cgroup_file_ctx *ctx = of->priv; 4997 4998 if (ctx->procs.started) 4999 css_task_iter_end(&ctx->procs.iter); 5000 } 5001 5002 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 5003 { 5004 struct kernfs_open_file *of = s->private; 5005 struct cgroup_file_ctx *ctx = of->priv; 5006 5007 if (pos) 5008 (*pos)++; 5009 5010 return css_task_iter_next(&ctx->procs.iter); 5011 } 5012 5013 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 5014 unsigned int iter_flags) 5015 { 5016 struct kernfs_open_file *of = s->private; 5017 struct cgroup *cgrp = seq_css(s)->cgroup; 5018 struct cgroup_file_ctx *ctx = of->priv; 5019 struct css_task_iter *it = &ctx->procs.iter; 5020 5021 /* 5022 * When a seq_file is seeked, it's always traversed sequentially 5023 * from position 0, so we can simply keep iterating on !0 *pos. 5024 */ 5025 if (!ctx->procs.started) { 5026 if (WARN_ON_ONCE((*pos))) 5027 return ERR_PTR(-EINVAL); 5028 css_task_iter_start(&cgrp->self, iter_flags, it); 5029 ctx->procs.started = true; 5030 } else if (!(*pos)) { 5031 css_task_iter_end(it); 5032 css_task_iter_start(&cgrp->self, iter_flags, it); 5033 } else 5034 return it->cur_task; 5035 5036 return cgroup_procs_next(s, NULL, NULL); 5037 } 5038 5039 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5040 { 5041 struct cgroup *cgrp = seq_css(s)->cgroup; 5042 5043 /* 5044 * All processes of a threaded subtree belong to the domain cgroup 5045 * of the subtree. Only threads can be distributed across the 5046 * subtree. Reject reads on cgroup.procs in the subtree proper. 5047 * They're always empty anyway. 5048 */ 5049 if (cgroup_is_threaded(cgrp)) 5050 return ERR_PTR(-EOPNOTSUPP); 5051 5052 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5053 CSS_TASK_ITER_THREADED); 5054 } 5055 5056 static int cgroup_procs_show(struct seq_file *s, void *v) 5057 { 5058 seq_printf(s, "%d\n", task_pid_vnr(v)); 5059 return 0; 5060 } 5061 5062 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5063 { 5064 int ret; 5065 struct inode *inode; 5066 5067 lockdep_assert_held(&cgroup_mutex); 5068 5069 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5070 if (!inode) 5071 return -ENOMEM; 5072 5073 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); 5074 iput(inode); 5075 return ret; 5076 } 5077 5078 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5079 struct cgroup *dst_cgrp, 5080 struct super_block *sb, 5081 struct cgroup_namespace *ns) 5082 { 5083 struct cgroup *com_cgrp = src_cgrp; 5084 int ret; 5085 5086 lockdep_assert_held(&cgroup_mutex); 5087 5088 /* find the common ancestor */ 5089 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5090 com_cgrp = cgroup_parent(com_cgrp); 5091 5092 /* %current should be authorized to migrate to the common ancestor */ 5093 ret = cgroup_may_write(com_cgrp, sb); 5094 if (ret) 5095 return ret; 5096 5097 /* 5098 * If namespaces are delegation boundaries, %current must be able 5099 * to see both source and destination cgroups from its namespace. 5100 */ 5101 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5102 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5103 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5104 return -ENOENT; 5105 5106 return 0; 5107 } 5108 5109 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5110 struct cgroup *dst_cgrp, 5111 struct super_block *sb, bool threadgroup, 5112 struct cgroup_namespace *ns) 5113 { 5114 int ret = 0; 5115 5116 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5117 if (ret) 5118 return ret; 5119 5120 ret = cgroup_migrate_vet_dst(dst_cgrp); 5121 if (ret) 5122 return ret; 5123 5124 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5125 ret = -EOPNOTSUPP; 5126 5127 return ret; 5128 } 5129 5130 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5131 bool threadgroup) 5132 { 5133 struct cgroup_file_ctx *ctx = of->priv; 5134 struct cgroup *src_cgrp, *dst_cgrp; 5135 struct task_struct *task; 5136 const struct cred *saved_cred; 5137 ssize_t ret; 5138 bool threadgroup_locked; 5139 5140 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5141 if (!dst_cgrp) 5142 return -ENODEV; 5143 5144 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5145 ret = PTR_ERR_OR_ZERO(task); 5146 if (ret) 5147 goto out_unlock; 5148 5149 /* find the source cgroup */ 5150 spin_lock_irq(&css_set_lock); 5151 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5152 spin_unlock_irq(&css_set_lock); 5153 5154 /* 5155 * Process and thread migrations follow same delegation rule. Check 5156 * permissions using the credentials from file open to protect against 5157 * inherited fd attacks. 5158 */ 5159 saved_cred = override_creds(of->file->f_cred); 5160 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5161 of->file->f_path.dentry->d_sb, 5162 threadgroup, ctx->ns); 5163 revert_creds(saved_cred); 5164 if (ret) 5165 goto out_finish; 5166 5167 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5168 5169 out_finish: 5170 cgroup_procs_write_finish(task, threadgroup_locked); 5171 out_unlock: 5172 cgroup_kn_unlock(of->kn); 5173 5174 return ret; 5175 } 5176 5177 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5178 char *buf, size_t nbytes, loff_t off) 5179 { 5180 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5181 } 5182 5183 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5184 { 5185 return __cgroup_procs_start(s, pos, 0); 5186 } 5187 5188 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5189 char *buf, size_t nbytes, loff_t off) 5190 { 5191 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5192 } 5193 5194 /* cgroup core interface files for the default hierarchy */ 5195 static struct cftype cgroup_base_files[] = { 5196 { 5197 .name = "cgroup.type", 5198 .flags = CFTYPE_NOT_ON_ROOT, 5199 .seq_show = cgroup_type_show, 5200 .write = cgroup_type_write, 5201 }, 5202 { 5203 .name = "cgroup.procs", 5204 .flags = CFTYPE_NS_DELEGATABLE, 5205 .file_offset = offsetof(struct cgroup, procs_file), 5206 .release = cgroup_procs_release, 5207 .seq_start = cgroup_procs_start, 5208 .seq_next = cgroup_procs_next, 5209 .seq_show = cgroup_procs_show, 5210 .write = cgroup_procs_write, 5211 }, 5212 { 5213 .name = "cgroup.threads", 5214 .flags = CFTYPE_NS_DELEGATABLE, 5215 .release = cgroup_procs_release, 5216 .seq_start = cgroup_threads_start, 5217 .seq_next = cgroup_procs_next, 5218 .seq_show = cgroup_procs_show, 5219 .write = cgroup_threads_write, 5220 }, 5221 { 5222 .name = "cgroup.controllers", 5223 .seq_show = cgroup_controllers_show, 5224 }, 5225 { 5226 .name = "cgroup.subtree_control", 5227 .flags = CFTYPE_NS_DELEGATABLE, 5228 .seq_show = cgroup_subtree_control_show, 5229 .write = cgroup_subtree_control_write, 5230 }, 5231 { 5232 .name = "cgroup.events", 5233 .flags = CFTYPE_NOT_ON_ROOT, 5234 .file_offset = offsetof(struct cgroup, events_file), 5235 .seq_show = cgroup_events_show, 5236 }, 5237 { 5238 .name = "cgroup.max.descendants", 5239 .seq_show = cgroup_max_descendants_show, 5240 .write = cgroup_max_descendants_write, 5241 }, 5242 { 5243 .name = "cgroup.max.depth", 5244 .seq_show = cgroup_max_depth_show, 5245 .write = cgroup_max_depth_write, 5246 }, 5247 { 5248 .name = "cgroup.stat", 5249 .seq_show = cgroup_stat_show, 5250 }, 5251 { 5252 .name = "cgroup.freeze", 5253 .flags = CFTYPE_NOT_ON_ROOT, 5254 .seq_show = cgroup_freeze_show, 5255 .write = cgroup_freeze_write, 5256 }, 5257 { 5258 .name = "cgroup.kill", 5259 .flags = CFTYPE_NOT_ON_ROOT, 5260 .write = cgroup_kill_write, 5261 }, 5262 { 5263 .name = "cpu.stat", 5264 .seq_show = cpu_stat_show, 5265 }, 5266 { 5267 .name = "cpu.stat.local", 5268 .seq_show = cpu_local_stat_show, 5269 }, 5270 { } /* terminate */ 5271 }; 5272 5273 static struct cftype cgroup_psi_files[] = { 5274 #ifdef CONFIG_PSI 5275 { 5276 .name = "io.pressure", 5277 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5278 .open = cgroup_pressure_open, 5279 .seq_show = cgroup_io_pressure_show, 5280 .write = cgroup_io_pressure_write, 5281 .poll = cgroup_pressure_poll, 5282 .release = cgroup_pressure_release, 5283 }, 5284 { 5285 .name = "memory.pressure", 5286 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5287 .open = cgroup_pressure_open, 5288 .seq_show = cgroup_memory_pressure_show, 5289 .write = cgroup_memory_pressure_write, 5290 .poll = cgroup_pressure_poll, 5291 .release = cgroup_pressure_release, 5292 }, 5293 { 5294 .name = "cpu.pressure", 5295 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5296 .open = cgroup_pressure_open, 5297 .seq_show = cgroup_cpu_pressure_show, 5298 .write = cgroup_cpu_pressure_write, 5299 .poll = cgroup_pressure_poll, 5300 .release = cgroup_pressure_release, 5301 }, 5302 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5303 { 5304 .name = "irq.pressure", 5305 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5306 .open = cgroup_pressure_open, 5307 .seq_show = cgroup_irq_pressure_show, 5308 .write = cgroup_irq_pressure_write, 5309 .poll = cgroup_pressure_poll, 5310 .release = cgroup_pressure_release, 5311 }, 5312 #endif 5313 { 5314 .name = "cgroup.pressure", 5315 .seq_show = cgroup_pressure_show, 5316 .write = cgroup_pressure_write, 5317 }, 5318 #endif /* CONFIG_PSI */ 5319 { } /* terminate */ 5320 }; 5321 5322 /* 5323 * css destruction is four-stage process. 5324 * 5325 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5326 * Implemented in kill_css(). 5327 * 5328 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5329 * and thus css_tryget_online() is guaranteed to fail, the css can be 5330 * offlined by invoking offline_css(). After offlining, the base ref is 5331 * put. Implemented in css_killed_work_fn(). 5332 * 5333 * 3. When the percpu_ref reaches zero, the only possible remaining 5334 * accessors are inside RCU read sections. css_release() schedules the 5335 * RCU callback. 5336 * 5337 * 4. After the grace period, the css can be freed. Implemented in 5338 * css_free_rwork_fn(). 5339 * 5340 * It is actually hairier because both step 2 and 4 require process context 5341 * and thus involve punting to css->destroy_work adding two additional 5342 * steps to the already complex sequence. 5343 */ 5344 static void css_free_rwork_fn(struct work_struct *work) 5345 { 5346 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5347 struct cgroup_subsys_state, destroy_rwork); 5348 struct cgroup_subsys *ss = css->ss; 5349 struct cgroup *cgrp = css->cgroup; 5350 5351 percpu_ref_exit(&css->refcnt); 5352 5353 if (ss) { 5354 /* css free path */ 5355 struct cgroup_subsys_state *parent = css->parent; 5356 int id = css->id; 5357 5358 ss->css_free(css); 5359 cgroup_idr_remove(&ss->css_idr, id); 5360 cgroup_put(cgrp); 5361 5362 if (parent) 5363 css_put(parent); 5364 } else { 5365 /* cgroup free path */ 5366 atomic_dec(&cgrp->root->nr_cgrps); 5367 cgroup1_pidlist_destroy_all(cgrp); 5368 cancel_work_sync(&cgrp->release_agent_work); 5369 bpf_cgrp_storage_free(cgrp); 5370 5371 if (cgroup_parent(cgrp)) { 5372 /* 5373 * We get a ref to the parent, and put the ref when 5374 * this cgroup is being freed, so it's guaranteed 5375 * that the parent won't be destroyed before its 5376 * children. 5377 */ 5378 cgroup_put(cgroup_parent(cgrp)); 5379 kernfs_put(cgrp->kn); 5380 psi_cgroup_free(cgrp); 5381 cgroup_rstat_exit(cgrp); 5382 kfree(cgrp); 5383 } else { 5384 /* 5385 * This is root cgroup's refcnt reaching zero, 5386 * which indicates that the root should be 5387 * released. 5388 */ 5389 cgroup_destroy_root(cgrp->root); 5390 } 5391 } 5392 } 5393 5394 static void css_release_work_fn(struct work_struct *work) 5395 { 5396 struct cgroup_subsys_state *css = 5397 container_of(work, struct cgroup_subsys_state, destroy_work); 5398 struct cgroup_subsys *ss = css->ss; 5399 struct cgroup *cgrp = css->cgroup; 5400 5401 cgroup_lock(); 5402 5403 css->flags |= CSS_RELEASED; 5404 list_del_rcu(&css->sibling); 5405 5406 if (ss) { 5407 /* css release path */ 5408 if (!list_empty(&css->rstat_css_node)) { 5409 cgroup_rstat_flush(cgrp); 5410 list_del_rcu(&css->rstat_css_node); 5411 } 5412 5413 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5414 if (ss->css_released) 5415 ss->css_released(css); 5416 } else { 5417 struct cgroup *tcgrp; 5418 5419 /* cgroup release path */ 5420 TRACE_CGROUP_PATH(release, cgrp); 5421 5422 cgroup_rstat_flush(cgrp); 5423 5424 spin_lock_irq(&css_set_lock); 5425 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5426 tcgrp = cgroup_parent(tcgrp)) 5427 tcgrp->nr_dying_descendants--; 5428 spin_unlock_irq(&css_set_lock); 5429 5430 /* 5431 * There are two control paths which try to determine 5432 * cgroup from dentry without going through kernfs - 5433 * cgroupstats_build() and css_tryget_online_from_dir(). 5434 * Those are supported by RCU protecting clearing of 5435 * cgrp->kn->priv backpointer. 5436 */ 5437 if (cgrp->kn) 5438 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5439 NULL); 5440 } 5441 5442 cgroup_unlock(); 5443 5444 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5445 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5446 } 5447 5448 static void css_release(struct percpu_ref *ref) 5449 { 5450 struct cgroup_subsys_state *css = 5451 container_of(ref, struct cgroup_subsys_state, refcnt); 5452 5453 INIT_WORK(&css->destroy_work, css_release_work_fn); 5454 queue_work(cgroup_destroy_wq, &css->destroy_work); 5455 } 5456 5457 static void init_and_link_css(struct cgroup_subsys_state *css, 5458 struct cgroup_subsys *ss, struct cgroup *cgrp) 5459 { 5460 lockdep_assert_held(&cgroup_mutex); 5461 5462 cgroup_get_live(cgrp); 5463 5464 memset(css, 0, sizeof(*css)); 5465 css->cgroup = cgrp; 5466 css->ss = ss; 5467 css->id = -1; 5468 INIT_LIST_HEAD(&css->sibling); 5469 INIT_LIST_HEAD(&css->children); 5470 INIT_LIST_HEAD(&css->rstat_css_node); 5471 css->serial_nr = css_serial_nr_next++; 5472 atomic_set(&css->online_cnt, 0); 5473 5474 if (cgroup_parent(cgrp)) { 5475 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5476 css_get(css->parent); 5477 } 5478 5479 if (ss->css_rstat_flush) 5480 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5481 5482 BUG_ON(cgroup_css(cgrp, ss)); 5483 } 5484 5485 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5486 static int online_css(struct cgroup_subsys_state *css) 5487 { 5488 struct cgroup_subsys *ss = css->ss; 5489 int ret = 0; 5490 5491 lockdep_assert_held(&cgroup_mutex); 5492 5493 if (ss->css_online) 5494 ret = ss->css_online(css); 5495 if (!ret) { 5496 css->flags |= CSS_ONLINE; 5497 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5498 5499 atomic_inc(&css->online_cnt); 5500 if (css->parent) 5501 atomic_inc(&css->parent->online_cnt); 5502 } 5503 return ret; 5504 } 5505 5506 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5507 static void offline_css(struct cgroup_subsys_state *css) 5508 { 5509 struct cgroup_subsys *ss = css->ss; 5510 5511 lockdep_assert_held(&cgroup_mutex); 5512 5513 if (!(css->flags & CSS_ONLINE)) 5514 return; 5515 5516 if (ss->css_offline) 5517 ss->css_offline(css); 5518 5519 css->flags &= ~CSS_ONLINE; 5520 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5521 5522 wake_up_all(&css->cgroup->offline_waitq); 5523 } 5524 5525 /** 5526 * css_create - create a cgroup_subsys_state 5527 * @cgrp: the cgroup new css will be associated with 5528 * @ss: the subsys of new css 5529 * 5530 * Create a new css associated with @cgrp - @ss pair. On success, the new 5531 * css is online and installed in @cgrp. This function doesn't create the 5532 * interface files. Returns 0 on success, -errno on failure. 5533 */ 5534 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5535 struct cgroup_subsys *ss) 5536 { 5537 struct cgroup *parent = cgroup_parent(cgrp); 5538 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5539 struct cgroup_subsys_state *css; 5540 int err; 5541 5542 lockdep_assert_held(&cgroup_mutex); 5543 5544 css = ss->css_alloc(parent_css); 5545 if (!css) 5546 css = ERR_PTR(-ENOMEM); 5547 if (IS_ERR(css)) 5548 return css; 5549 5550 init_and_link_css(css, ss, cgrp); 5551 5552 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5553 if (err) 5554 goto err_free_css; 5555 5556 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5557 if (err < 0) 5558 goto err_free_css; 5559 css->id = err; 5560 5561 /* @css is ready to be brought online now, make it visible */ 5562 list_add_tail_rcu(&css->sibling, &parent_css->children); 5563 cgroup_idr_replace(&ss->css_idr, css, css->id); 5564 5565 err = online_css(css); 5566 if (err) 5567 goto err_list_del; 5568 5569 return css; 5570 5571 err_list_del: 5572 list_del_rcu(&css->sibling); 5573 err_free_css: 5574 list_del_rcu(&css->rstat_css_node); 5575 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5576 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5577 return ERR_PTR(err); 5578 } 5579 5580 /* 5581 * The returned cgroup is fully initialized including its control mask, but 5582 * it doesn't have the control mask applied. 5583 */ 5584 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5585 umode_t mode) 5586 { 5587 struct cgroup_root *root = parent->root; 5588 struct cgroup *cgrp, *tcgrp; 5589 struct kernfs_node *kn; 5590 int level = parent->level + 1; 5591 int ret; 5592 5593 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5594 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5595 if (!cgrp) 5596 return ERR_PTR(-ENOMEM); 5597 5598 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5599 if (ret) 5600 goto out_free_cgrp; 5601 5602 ret = cgroup_rstat_init(cgrp); 5603 if (ret) 5604 goto out_cancel_ref; 5605 5606 /* create the directory */ 5607 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5608 if (IS_ERR(kn)) { 5609 ret = PTR_ERR(kn); 5610 goto out_stat_exit; 5611 } 5612 cgrp->kn = kn; 5613 5614 init_cgroup_housekeeping(cgrp); 5615 5616 cgrp->self.parent = &parent->self; 5617 cgrp->root = root; 5618 cgrp->level = level; 5619 5620 ret = psi_cgroup_alloc(cgrp); 5621 if (ret) 5622 goto out_kernfs_remove; 5623 5624 ret = cgroup_bpf_inherit(cgrp); 5625 if (ret) 5626 goto out_psi_free; 5627 5628 /* 5629 * New cgroup inherits effective freeze counter, and 5630 * if the parent has to be frozen, the child has too. 5631 */ 5632 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5633 if (cgrp->freezer.e_freeze) { 5634 /* 5635 * Set the CGRP_FREEZE flag, so when a process will be 5636 * attached to the child cgroup, it will become frozen. 5637 * At this point the new cgroup is unpopulated, so we can 5638 * consider it frozen immediately. 5639 */ 5640 set_bit(CGRP_FREEZE, &cgrp->flags); 5641 set_bit(CGRP_FROZEN, &cgrp->flags); 5642 } 5643 5644 spin_lock_irq(&css_set_lock); 5645 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5646 cgrp->ancestors[tcgrp->level] = tcgrp; 5647 5648 if (tcgrp != cgrp) { 5649 tcgrp->nr_descendants++; 5650 5651 /* 5652 * If the new cgroup is frozen, all ancestor cgroups 5653 * get a new frozen descendant, but their state can't 5654 * change because of this. 5655 */ 5656 if (cgrp->freezer.e_freeze) 5657 tcgrp->freezer.nr_frozen_descendants++; 5658 } 5659 } 5660 spin_unlock_irq(&css_set_lock); 5661 5662 if (notify_on_release(parent)) 5663 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5664 5665 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5666 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5667 5668 cgrp->self.serial_nr = css_serial_nr_next++; 5669 5670 /* allocation complete, commit to creation */ 5671 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5672 atomic_inc(&root->nr_cgrps); 5673 cgroup_get_live(parent); 5674 5675 /* 5676 * On the default hierarchy, a child doesn't automatically inherit 5677 * subtree_control from the parent. Each is configured manually. 5678 */ 5679 if (!cgroup_on_dfl(cgrp)) 5680 cgrp->subtree_control = cgroup_control(cgrp); 5681 5682 cgroup_propagate_control(cgrp); 5683 5684 return cgrp; 5685 5686 out_psi_free: 5687 psi_cgroup_free(cgrp); 5688 out_kernfs_remove: 5689 kernfs_remove(cgrp->kn); 5690 out_stat_exit: 5691 cgroup_rstat_exit(cgrp); 5692 out_cancel_ref: 5693 percpu_ref_exit(&cgrp->self.refcnt); 5694 out_free_cgrp: 5695 kfree(cgrp); 5696 return ERR_PTR(ret); 5697 } 5698 5699 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5700 { 5701 struct cgroup *cgroup; 5702 int ret = false; 5703 int level = 1; 5704 5705 lockdep_assert_held(&cgroup_mutex); 5706 5707 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5708 if (cgroup->nr_descendants >= cgroup->max_descendants) 5709 goto fail; 5710 5711 if (level > cgroup->max_depth) 5712 goto fail; 5713 5714 level++; 5715 } 5716 5717 ret = true; 5718 fail: 5719 return ret; 5720 } 5721 5722 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5723 { 5724 struct cgroup *parent, *cgrp; 5725 int ret; 5726 5727 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5728 if (strchr(name, '\n')) 5729 return -EINVAL; 5730 5731 parent = cgroup_kn_lock_live(parent_kn, false); 5732 if (!parent) 5733 return -ENODEV; 5734 5735 if (!cgroup_check_hierarchy_limits(parent)) { 5736 ret = -EAGAIN; 5737 goto out_unlock; 5738 } 5739 5740 cgrp = cgroup_create(parent, name, mode); 5741 if (IS_ERR(cgrp)) { 5742 ret = PTR_ERR(cgrp); 5743 goto out_unlock; 5744 } 5745 5746 /* 5747 * This extra ref will be put in cgroup_free_fn() and guarantees 5748 * that @cgrp->kn is always accessible. 5749 */ 5750 kernfs_get(cgrp->kn); 5751 5752 ret = cgroup_kn_set_ugid(cgrp->kn); 5753 if (ret) 5754 goto out_destroy; 5755 5756 ret = css_populate_dir(&cgrp->self); 5757 if (ret) 5758 goto out_destroy; 5759 5760 ret = cgroup_apply_control_enable(cgrp); 5761 if (ret) 5762 goto out_destroy; 5763 5764 TRACE_CGROUP_PATH(mkdir, cgrp); 5765 5766 /* let's create and online css's */ 5767 kernfs_activate(cgrp->kn); 5768 5769 ret = 0; 5770 goto out_unlock; 5771 5772 out_destroy: 5773 cgroup_destroy_locked(cgrp); 5774 out_unlock: 5775 cgroup_kn_unlock(parent_kn); 5776 return ret; 5777 } 5778 5779 /* 5780 * This is called when the refcnt of a css is confirmed to be killed. 5781 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5782 * initiate destruction and put the css ref from kill_css(). 5783 */ 5784 static void css_killed_work_fn(struct work_struct *work) 5785 { 5786 struct cgroup_subsys_state *css = 5787 container_of(work, struct cgroup_subsys_state, destroy_work); 5788 5789 cgroup_lock(); 5790 5791 do { 5792 offline_css(css); 5793 css_put(css); 5794 /* @css can't go away while we're holding cgroup_mutex */ 5795 css = css->parent; 5796 } while (css && atomic_dec_and_test(&css->online_cnt)); 5797 5798 cgroup_unlock(); 5799 } 5800 5801 /* css kill confirmation processing requires process context, bounce */ 5802 static void css_killed_ref_fn(struct percpu_ref *ref) 5803 { 5804 struct cgroup_subsys_state *css = 5805 container_of(ref, struct cgroup_subsys_state, refcnt); 5806 5807 if (atomic_dec_and_test(&css->online_cnt)) { 5808 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5809 queue_work(cgroup_destroy_wq, &css->destroy_work); 5810 } 5811 } 5812 5813 /** 5814 * kill_css - destroy a css 5815 * @css: css to destroy 5816 * 5817 * This function initiates destruction of @css by removing cgroup interface 5818 * files and putting its base reference. ->css_offline() will be invoked 5819 * asynchronously once css_tryget_online() is guaranteed to fail and when 5820 * the reference count reaches zero, @css will be released. 5821 */ 5822 static void kill_css(struct cgroup_subsys_state *css) 5823 { 5824 lockdep_assert_held(&cgroup_mutex); 5825 5826 if (css->flags & CSS_DYING) 5827 return; 5828 5829 css->flags |= CSS_DYING; 5830 5831 /* 5832 * This must happen before css is disassociated with its cgroup. 5833 * See seq_css() for details. 5834 */ 5835 css_clear_dir(css); 5836 5837 /* 5838 * Killing would put the base ref, but we need to keep it alive 5839 * until after ->css_offline(). 5840 */ 5841 css_get(css); 5842 5843 /* 5844 * cgroup core guarantees that, by the time ->css_offline() is 5845 * invoked, no new css reference will be given out via 5846 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5847 * proceed to offlining css's because percpu_ref_kill() doesn't 5848 * guarantee that the ref is seen as killed on all CPUs on return. 5849 * 5850 * Use percpu_ref_kill_and_confirm() to get notifications as each 5851 * css is confirmed to be seen as killed on all CPUs. 5852 */ 5853 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5854 } 5855 5856 /** 5857 * cgroup_destroy_locked - the first stage of cgroup destruction 5858 * @cgrp: cgroup to be destroyed 5859 * 5860 * css's make use of percpu refcnts whose killing latency shouldn't be 5861 * exposed to userland and are RCU protected. Also, cgroup core needs to 5862 * guarantee that css_tryget_online() won't succeed by the time 5863 * ->css_offline() is invoked. To satisfy all the requirements, 5864 * destruction is implemented in the following two steps. 5865 * 5866 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5867 * userland visible parts and start killing the percpu refcnts of 5868 * css's. Set up so that the next stage will be kicked off once all 5869 * the percpu refcnts are confirmed to be killed. 5870 * 5871 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5872 * rest of destruction. Once all cgroup references are gone, the 5873 * cgroup is RCU-freed. 5874 * 5875 * This function implements s1. After this step, @cgrp is gone as far as 5876 * the userland is concerned and a new cgroup with the same name may be 5877 * created. As cgroup doesn't care about the names internally, this 5878 * doesn't cause any problem. 5879 */ 5880 static int cgroup_destroy_locked(struct cgroup *cgrp) 5881 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5882 { 5883 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5884 struct cgroup_subsys_state *css; 5885 struct cgrp_cset_link *link; 5886 int ssid; 5887 5888 lockdep_assert_held(&cgroup_mutex); 5889 5890 /* 5891 * Only migration can raise populated from zero and we're already 5892 * holding cgroup_mutex. 5893 */ 5894 if (cgroup_is_populated(cgrp)) 5895 return -EBUSY; 5896 5897 /* 5898 * Make sure there's no live children. We can't test emptiness of 5899 * ->self.children as dead children linger on it while being 5900 * drained; otherwise, "rmdir parent/child parent" may fail. 5901 */ 5902 if (css_has_online_children(&cgrp->self)) 5903 return -EBUSY; 5904 5905 /* 5906 * Mark @cgrp and the associated csets dead. The former prevents 5907 * further task migration and child creation by disabling 5908 * cgroup_kn_lock_live(). The latter makes the csets ignored by 5909 * the migration path. 5910 */ 5911 cgrp->self.flags &= ~CSS_ONLINE; 5912 5913 spin_lock_irq(&css_set_lock); 5914 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5915 link->cset->dead = true; 5916 spin_unlock_irq(&css_set_lock); 5917 5918 /* initiate massacre of all css's */ 5919 for_each_css(css, ssid, cgrp) 5920 kill_css(css); 5921 5922 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5923 css_clear_dir(&cgrp->self); 5924 kernfs_remove(cgrp->kn); 5925 5926 if (cgroup_is_threaded(cgrp)) 5927 parent->nr_threaded_children--; 5928 5929 spin_lock_irq(&css_set_lock); 5930 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5931 tcgrp->nr_descendants--; 5932 tcgrp->nr_dying_descendants++; 5933 /* 5934 * If the dying cgroup is frozen, decrease frozen descendants 5935 * counters of ancestor cgroups. 5936 */ 5937 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5938 tcgrp->freezer.nr_frozen_descendants--; 5939 } 5940 spin_unlock_irq(&css_set_lock); 5941 5942 cgroup1_check_for_release(parent); 5943 5944 cgroup_bpf_offline(cgrp); 5945 5946 /* put the base reference */ 5947 percpu_ref_kill(&cgrp->self.refcnt); 5948 5949 return 0; 5950 }; 5951 5952 int cgroup_rmdir(struct kernfs_node *kn) 5953 { 5954 struct cgroup *cgrp; 5955 int ret = 0; 5956 5957 cgrp = cgroup_kn_lock_live(kn, false); 5958 if (!cgrp) 5959 return 0; 5960 5961 ret = cgroup_destroy_locked(cgrp); 5962 if (!ret) 5963 TRACE_CGROUP_PATH(rmdir, cgrp); 5964 5965 cgroup_kn_unlock(kn); 5966 return ret; 5967 } 5968 5969 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5970 .show_options = cgroup_show_options, 5971 .mkdir = cgroup_mkdir, 5972 .rmdir = cgroup_rmdir, 5973 .show_path = cgroup_show_path, 5974 }; 5975 5976 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5977 { 5978 struct cgroup_subsys_state *css; 5979 5980 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5981 5982 cgroup_lock(); 5983 5984 idr_init(&ss->css_idr); 5985 INIT_LIST_HEAD(&ss->cfts); 5986 5987 /* Create the root cgroup state for this subsystem */ 5988 ss->root = &cgrp_dfl_root; 5989 css = ss->css_alloc(NULL); 5990 /* We don't handle early failures gracefully */ 5991 BUG_ON(IS_ERR(css)); 5992 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5993 5994 /* 5995 * Root csses are never destroyed and we can't initialize 5996 * percpu_ref during early init. Disable refcnting. 5997 */ 5998 css->flags |= CSS_NO_REF; 5999 6000 if (early) { 6001 /* allocation can't be done safely during early init */ 6002 css->id = 1; 6003 } else { 6004 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 6005 BUG_ON(css->id < 0); 6006 } 6007 6008 /* Update the init_css_set to contain a subsys 6009 * pointer to this state - since the subsystem is 6010 * newly registered, all tasks and hence the 6011 * init_css_set is in the subsystem's root cgroup. */ 6012 init_css_set.subsys[ss->id] = css; 6013 6014 have_fork_callback |= (bool)ss->fork << ss->id; 6015 have_exit_callback |= (bool)ss->exit << ss->id; 6016 have_release_callback |= (bool)ss->release << ss->id; 6017 have_canfork_callback |= (bool)ss->can_fork << ss->id; 6018 6019 /* At system boot, before all subsystems have been 6020 * registered, no tasks have been forked, so we don't 6021 * need to invoke fork callbacks here. */ 6022 BUG_ON(!list_empty(&init_task.tasks)); 6023 6024 BUG_ON(online_css(css)); 6025 6026 cgroup_unlock(); 6027 } 6028 6029 /** 6030 * cgroup_init_early - cgroup initialization at system boot 6031 * 6032 * Initialize cgroups at system boot, and initialize any 6033 * subsystems that request early init. 6034 */ 6035 int __init cgroup_init_early(void) 6036 { 6037 static struct cgroup_fs_context __initdata ctx; 6038 struct cgroup_subsys *ss; 6039 int i; 6040 6041 ctx.root = &cgrp_dfl_root; 6042 init_cgroup_root(&ctx); 6043 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6044 6045 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6046 6047 for_each_subsys(ss, i) { 6048 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6049 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6050 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6051 ss->id, ss->name); 6052 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6053 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6054 6055 ss->id = i; 6056 ss->name = cgroup_subsys_name[i]; 6057 if (!ss->legacy_name) 6058 ss->legacy_name = cgroup_subsys_name[i]; 6059 6060 if (ss->early_init) 6061 cgroup_init_subsys(ss, true); 6062 } 6063 return 0; 6064 } 6065 6066 /** 6067 * cgroup_init - cgroup initialization 6068 * 6069 * Register cgroup filesystem and /proc file, and initialize 6070 * any subsystems that didn't request early init. 6071 */ 6072 int __init cgroup_init(void) 6073 { 6074 struct cgroup_subsys *ss; 6075 int ssid; 6076 6077 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6078 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6079 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6080 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6081 6082 cgroup_rstat_boot(); 6083 6084 get_user_ns(init_cgroup_ns.user_ns); 6085 6086 cgroup_lock(); 6087 6088 /* 6089 * Add init_css_set to the hash table so that dfl_root can link to 6090 * it during init. 6091 */ 6092 hash_add(css_set_table, &init_css_set.hlist, 6093 css_set_hash(init_css_set.subsys)); 6094 6095 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6096 6097 cgroup_unlock(); 6098 6099 for_each_subsys(ss, ssid) { 6100 if (ss->early_init) { 6101 struct cgroup_subsys_state *css = 6102 init_css_set.subsys[ss->id]; 6103 6104 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6105 GFP_KERNEL); 6106 BUG_ON(css->id < 0); 6107 } else { 6108 cgroup_init_subsys(ss, false); 6109 } 6110 6111 list_add_tail(&init_css_set.e_cset_node[ssid], 6112 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6113 6114 /* 6115 * Setting dfl_root subsys_mask needs to consider the 6116 * disabled flag and cftype registration needs kmalloc, 6117 * both of which aren't available during early_init. 6118 */ 6119 if (!cgroup_ssid_enabled(ssid)) 6120 continue; 6121 6122 if (cgroup1_ssid_disabled(ssid)) 6123 pr_info("Disabling %s control group subsystem in v1 mounts\n", 6124 ss->name); 6125 6126 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6127 6128 /* implicit controllers must be threaded too */ 6129 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6130 6131 if (ss->implicit_on_dfl) 6132 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6133 else if (!ss->dfl_cftypes) 6134 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6135 6136 if (ss->threaded) 6137 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6138 6139 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6140 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6141 } else { 6142 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6143 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6144 } 6145 6146 if (ss->bind) 6147 ss->bind(init_css_set.subsys[ssid]); 6148 6149 cgroup_lock(); 6150 css_populate_dir(init_css_set.subsys[ssid]); 6151 cgroup_unlock(); 6152 } 6153 6154 /* init_css_set.subsys[] has been updated, re-hash */ 6155 hash_del(&init_css_set.hlist); 6156 hash_add(css_set_table, &init_css_set.hlist, 6157 css_set_hash(init_css_set.subsys)); 6158 6159 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6160 WARN_ON(register_filesystem(&cgroup_fs_type)); 6161 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6162 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6163 #ifdef CONFIG_CPUSETS 6164 WARN_ON(register_filesystem(&cpuset_fs_type)); 6165 #endif 6166 6167 return 0; 6168 } 6169 6170 static int __init cgroup_wq_init(void) 6171 { 6172 /* 6173 * There isn't much point in executing destruction path in 6174 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6175 * Use 1 for @max_active. 6176 * 6177 * We would prefer to do this in cgroup_init() above, but that 6178 * is called before init_workqueues(): so leave this until after. 6179 */ 6180 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6181 BUG_ON(!cgroup_destroy_wq); 6182 return 0; 6183 } 6184 core_initcall(cgroup_wq_init); 6185 6186 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6187 { 6188 struct kernfs_node *kn; 6189 6190 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6191 if (!kn) 6192 return; 6193 kernfs_path(kn, buf, buflen); 6194 kernfs_put(kn); 6195 } 6196 6197 /* 6198 * cgroup_get_from_id : get the cgroup associated with cgroup id 6199 * @id: cgroup id 6200 * On success return the cgrp or ERR_PTR on failure 6201 * Only cgroups within current task's cgroup NS are valid. 6202 */ 6203 struct cgroup *cgroup_get_from_id(u64 id) 6204 { 6205 struct kernfs_node *kn; 6206 struct cgroup *cgrp, *root_cgrp; 6207 6208 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6209 if (!kn) 6210 return ERR_PTR(-ENOENT); 6211 6212 if (kernfs_type(kn) != KERNFS_DIR) { 6213 kernfs_put(kn); 6214 return ERR_PTR(-ENOENT); 6215 } 6216 6217 rcu_read_lock(); 6218 6219 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6220 if (cgrp && !cgroup_tryget(cgrp)) 6221 cgrp = NULL; 6222 6223 rcu_read_unlock(); 6224 kernfs_put(kn); 6225 6226 if (!cgrp) 6227 return ERR_PTR(-ENOENT); 6228 6229 root_cgrp = current_cgns_cgroup_dfl(); 6230 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6231 cgroup_put(cgrp); 6232 return ERR_PTR(-ENOENT); 6233 } 6234 6235 return cgrp; 6236 } 6237 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6238 6239 /* 6240 * proc_cgroup_show() 6241 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6242 * - Used for /proc/<pid>/cgroup. 6243 */ 6244 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6245 struct pid *pid, struct task_struct *tsk) 6246 { 6247 char *buf; 6248 int retval; 6249 struct cgroup_root *root; 6250 6251 retval = -ENOMEM; 6252 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6253 if (!buf) 6254 goto out; 6255 6256 cgroup_lock(); 6257 spin_lock_irq(&css_set_lock); 6258 6259 for_each_root(root) { 6260 struct cgroup_subsys *ss; 6261 struct cgroup *cgrp; 6262 int ssid, count = 0; 6263 6264 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6265 continue; 6266 6267 seq_printf(m, "%d:", root->hierarchy_id); 6268 if (root != &cgrp_dfl_root) 6269 for_each_subsys(ss, ssid) 6270 if (root->subsys_mask & (1 << ssid)) 6271 seq_printf(m, "%s%s", count++ ? "," : "", 6272 ss->legacy_name); 6273 if (strlen(root->name)) 6274 seq_printf(m, "%sname=%s", count ? "," : "", 6275 root->name); 6276 seq_putc(m, ':'); 6277 6278 cgrp = task_cgroup_from_root(tsk, root); 6279 6280 /* 6281 * On traditional hierarchies, all zombie tasks show up as 6282 * belonging to the root cgroup. On the default hierarchy, 6283 * while a zombie doesn't show up in "cgroup.procs" and 6284 * thus can't be migrated, its /proc/PID/cgroup keeps 6285 * reporting the cgroup it belonged to before exiting. If 6286 * the cgroup is removed before the zombie is reaped, 6287 * " (deleted)" is appended to the cgroup path. 6288 */ 6289 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6290 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6291 current->nsproxy->cgroup_ns); 6292 if (retval >= PATH_MAX) 6293 retval = -ENAMETOOLONG; 6294 if (retval < 0) 6295 goto out_unlock; 6296 6297 seq_puts(m, buf); 6298 } else { 6299 seq_puts(m, "/"); 6300 } 6301 6302 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6303 seq_puts(m, " (deleted)\n"); 6304 else 6305 seq_putc(m, '\n'); 6306 } 6307 6308 retval = 0; 6309 out_unlock: 6310 spin_unlock_irq(&css_set_lock); 6311 cgroup_unlock(); 6312 kfree(buf); 6313 out: 6314 return retval; 6315 } 6316 6317 /** 6318 * cgroup_fork - initialize cgroup related fields during copy_process() 6319 * @child: pointer to task_struct of forking parent process. 6320 * 6321 * A task is associated with the init_css_set until cgroup_post_fork() 6322 * attaches it to the target css_set. 6323 */ 6324 void cgroup_fork(struct task_struct *child) 6325 { 6326 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6327 INIT_LIST_HEAD(&child->cg_list); 6328 } 6329 6330 /** 6331 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6332 * @f: file corresponding to cgroup_dir 6333 * 6334 * Find the cgroup from a file pointer associated with a cgroup directory. 6335 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6336 * cgroup cannot be found. 6337 */ 6338 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6339 { 6340 struct cgroup_subsys_state *css; 6341 6342 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6343 if (IS_ERR(css)) 6344 return ERR_CAST(css); 6345 6346 return css->cgroup; 6347 } 6348 6349 /** 6350 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6351 * cgroup2. 6352 * @f: file corresponding to cgroup2_dir 6353 */ 6354 static struct cgroup *cgroup_get_from_file(struct file *f) 6355 { 6356 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6357 6358 if (IS_ERR(cgrp)) 6359 return ERR_CAST(cgrp); 6360 6361 if (!cgroup_on_dfl(cgrp)) { 6362 cgroup_put(cgrp); 6363 return ERR_PTR(-EBADF); 6364 } 6365 6366 return cgrp; 6367 } 6368 6369 /** 6370 * cgroup_css_set_fork - find or create a css_set for a child process 6371 * @kargs: the arguments passed to create the child process 6372 * 6373 * This functions finds or creates a new css_set which the child 6374 * process will be attached to in cgroup_post_fork(). By default, 6375 * the child process will be given the same css_set as its parent. 6376 * 6377 * If CLONE_INTO_CGROUP is specified this function will try to find an 6378 * existing css_set which includes the requested cgroup and if not create 6379 * a new css_set that the child will be attached to later. If this function 6380 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6381 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6382 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6383 * to the target cgroup. 6384 */ 6385 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6386 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6387 { 6388 int ret; 6389 struct cgroup *dst_cgrp = NULL; 6390 struct css_set *cset; 6391 struct super_block *sb; 6392 struct file *f; 6393 6394 if (kargs->flags & CLONE_INTO_CGROUP) 6395 cgroup_lock(); 6396 6397 cgroup_threadgroup_change_begin(current); 6398 6399 spin_lock_irq(&css_set_lock); 6400 cset = task_css_set(current); 6401 get_css_set(cset); 6402 spin_unlock_irq(&css_set_lock); 6403 6404 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6405 kargs->cset = cset; 6406 return 0; 6407 } 6408 6409 f = fget_raw(kargs->cgroup); 6410 if (!f) { 6411 ret = -EBADF; 6412 goto err; 6413 } 6414 sb = f->f_path.dentry->d_sb; 6415 6416 dst_cgrp = cgroup_get_from_file(f); 6417 if (IS_ERR(dst_cgrp)) { 6418 ret = PTR_ERR(dst_cgrp); 6419 dst_cgrp = NULL; 6420 goto err; 6421 } 6422 6423 if (cgroup_is_dead(dst_cgrp)) { 6424 ret = -ENODEV; 6425 goto err; 6426 } 6427 6428 /* 6429 * Verify that we the target cgroup is writable for us. This is 6430 * usually done by the vfs layer but since we're not going through 6431 * the vfs layer here we need to do it "manually". 6432 */ 6433 ret = cgroup_may_write(dst_cgrp, sb); 6434 if (ret) 6435 goto err; 6436 6437 /* 6438 * Spawning a task directly into a cgroup works by passing a file 6439 * descriptor to the target cgroup directory. This can even be an O_PATH 6440 * file descriptor. But it can never be a cgroup.procs file descriptor. 6441 * This was done on purpose so spawning into a cgroup could be 6442 * conceptualized as an atomic 6443 * 6444 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6445 * write(fd, <child-pid>, ...); 6446 * 6447 * sequence, i.e. it's a shorthand for the caller opening and writing 6448 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6449 * to always use the caller's credentials. 6450 */ 6451 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6452 !(kargs->flags & CLONE_THREAD), 6453 current->nsproxy->cgroup_ns); 6454 if (ret) 6455 goto err; 6456 6457 kargs->cset = find_css_set(cset, dst_cgrp); 6458 if (!kargs->cset) { 6459 ret = -ENOMEM; 6460 goto err; 6461 } 6462 6463 put_css_set(cset); 6464 fput(f); 6465 kargs->cgrp = dst_cgrp; 6466 return ret; 6467 6468 err: 6469 cgroup_threadgroup_change_end(current); 6470 cgroup_unlock(); 6471 if (f) 6472 fput(f); 6473 if (dst_cgrp) 6474 cgroup_put(dst_cgrp); 6475 put_css_set(cset); 6476 if (kargs->cset) 6477 put_css_set(kargs->cset); 6478 return ret; 6479 } 6480 6481 /** 6482 * cgroup_css_set_put_fork - drop references we took during fork 6483 * @kargs: the arguments passed to create the child process 6484 * 6485 * Drop references to the prepared css_set and target cgroup if 6486 * CLONE_INTO_CGROUP was requested. 6487 */ 6488 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6489 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6490 { 6491 struct cgroup *cgrp = kargs->cgrp; 6492 struct css_set *cset = kargs->cset; 6493 6494 cgroup_threadgroup_change_end(current); 6495 6496 if (cset) { 6497 put_css_set(cset); 6498 kargs->cset = NULL; 6499 } 6500 6501 if (kargs->flags & CLONE_INTO_CGROUP) { 6502 cgroup_unlock(); 6503 if (cgrp) { 6504 cgroup_put(cgrp); 6505 kargs->cgrp = NULL; 6506 } 6507 } 6508 } 6509 6510 /** 6511 * cgroup_can_fork - called on a new task before the process is exposed 6512 * @child: the child process 6513 * @kargs: the arguments passed to create the child process 6514 * 6515 * This prepares a new css_set for the child process which the child will 6516 * be attached to in cgroup_post_fork(). 6517 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6518 * callback returns an error, the fork aborts with that error code. This 6519 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6520 */ 6521 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6522 { 6523 struct cgroup_subsys *ss; 6524 int i, j, ret; 6525 6526 ret = cgroup_css_set_fork(kargs); 6527 if (ret) 6528 return ret; 6529 6530 do_each_subsys_mask(ss, i, have_canfork_callback) { 6531 ret = ss->can_fork(child, kargs->cset); 6532 if (ret) 6533 goto out_revert; 6534 } while_each_subsys_mask(); 6535 6536 return 0; 6537 6538 out_revert: 6539 for_each_subsys(ss, j) { 6540 if (j >= i) 6541 break; 6542 if (ss->cancel_fork) 6543 ss->cancel_fork(child, kargs->cset); 6544 } 6545 6546 cgroup_css_set_put_fork(kargs); 6547 6548 return ret; 6549 } 6550 6551 /** 6552 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6553 * @child: the child process 6554 * @kargs: the arguments passed to create the child process 6555 * 6556 * This calls the cancel_fork() callbacks if a fork failed *after* 6557 * cgroup_can_fork() succeeded and cleans up references we took to 6558 * prepare a new css_set for the child process in cgroup_can_fork(). 6559 */ 6560 void cgroup_cancel_fork(struct task_struct *child, 6561 struct kernel_clone_args *kargs) 6562 { 6563 struct cgroup_subsys *ss; 6564 int i; 6565 6566 for_each_subsys(ss, i) 6567 if (ss->cancel_fork) 6568 ss->cancel_fork(child, kargs->cset); 6569 6570 cgroup_css_set_put_fork(kargs); 6571 } 6572 6573 /** 6574 * cgroup_post_fork - finalize cgroup setup for the child process 6575 * @child: the child process 6576 * @kargs: the arguments passed to create the child process 6577 * 6578 * Attach the child process to its css_set calling the subsystem fork() 6579 * callbacks. 6580 */ 6581 void cgroup_post_fork(struct task_struct *child, 6582 struct kernel_clone_args *kargs) 6583 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6584 { 6585 unsigned long cgrp_flags = 0; 6586 bool kill = false; 6587 struct cgroup_subsys *ss; 6588 struct css_set *cset; 6589 int i; 6590 6591 cset = kargs->cset; 6592 kargs->cset = NULL; 6593 6594 spin_lock_irq(&css_set_lock); 6595 6596 /* init tasks are special, only link regular threads */ 6597 if (likely(child->pid)) { 6598 if (kargs->cgrp) 6599 cgrp_flags = kargs->cgrp->flags; 6600 else 6601 cgrp_flags = cset->dfl_cgrp->flags; 6602 6603 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6604 cset->nr_tasks++; 6605 css_set_move_task(child, NULL, cset, false); 6606 } else { 6607 put_css_set(cset); 6608 cset = NULL; 6609 } 6610 6611 if (!(child->flags & PF_KTHREAD)) { 6612 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6613 /* 6614 * If the cgroup has to be frozen, the new task has 6615 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6616 * get the task into the frozen state. 6617 */ 6618 spin_lock(&child->sighand->siglock); 6619 WARN_ON_ONCE(child->frozen); 6620 child->jobctl |= JOBCTL_TRAP_FREEZE; 6621 spin_unlock(&child->sighand->siglock); 6622 6623 /* 6624 * Calling cgroup_update_frozen() isn't required here, 6625 * because it will be called anyway a bit later from 6626 * do_freezer_trap(). So we avoid cgroup's transient 6627 * switch from the frozen state and back. 6628 */ 6629 } 6630 6631 /* 6632 * If the cgroup is to be killed notice it now and take the 6633 * child down right after we finished preparing it for 6634 * userspace. 6635 */ 6636 kill = test_bit(CGRP_KILL, &cgrp_flags); 6637 } 6638 6639 spin_unlock_irq(&css_set_lock); 6640 6641 /* 6642 * Call ss->fork(). This must happen after @child is linked on 6643 * css_set; otherwise, @child might change state between ->fork() 6644 * and addition to css_set. 6645 */ 6646 do_each_subsys_mask(ss, i, have_fork_callback) { 6647 ss->fork(child); 6648 } while_each_subsys_mask(); 6649 6650 /* Make the new cset the root_cset of the new cgroup namespace. */ 6651 if (kargs->flags & CLONE_NEWCGROUP) { 6652 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6653 6654 get_css_set(cset); 6655 child->nsproxy->cgroup_ns->root_cset = cset; 6656 put_css_set(rcset); 6657 } 6658 6659 /* Cgroup has to be killed so take down child immediately. */ 6660 if (unlikely(kill)) 6661 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6662 6663 cgroup_css_set_put_fork(kargs); 6664 } 6665 6666 /** 6667 * cgroup_exit - detach cgroup from exiting task 6668 * @tsk: pointer to task_struct of exiting process 6669 * 6670 * Description: Detach cgroup from @tsk. 6671 * 6672 */ 6673 void cgroup_exit(struct task_struct *tsk) 6674 { 6675 struct cgroup_subsys *ss; 6676 struct css_set *cset; 6677 int i; 6678 6679 spin_lock_irq(&css_set_lock); 6680 6681 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6682 cset = task_css_set(tsk); 6683 css_set_move_task(tsk, cset, NULL, false); 6684 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6685 cset->nr_tasks--; 6686 6687 if (dl_task(tsk)) 6688 dec_dl_tasks_cs(tsk); 6689 6690 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6691 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6692 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6693 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6694 6695 spin_unlock_irq(&css_set_lock); 6696 6697 /* see cgroup_post_fork() for details */ 6698 do_each_subsys_mask(ss, i, have_exit_callback) { 6699 ss->exit(tsk); 6700 } while_each_subsys_mask(); 6701 } 6702 6703 void cgroup_release(struct task_struct *task) 6704 { 6705 struct cgroup_subsys *ss; 6706 int ssid; 6707 6708 do_each_subsys_mask(ss, ssid, have_release_callback) { 6709 ss->release(task); 6710 } while_each_subsys_mask(); 6711 6712 spin_lock_irq(&css_set_lock); 6713 css_set_skip_task_iters(task_css_set(task), task); 6714 list_del_init(&task->cg_list); 6715 spin_unlock_irq(&css_set_lock); 6716 } 6717 6718 void cgroup_free(struct task_struct *task) 6719 { 6720 struct css_set *cset = task_css_set(task); 6721 put_css_set(cset); 6722 } 6723 6724 static int __init cgroup_disable(char *str) 6725 { 6726 struct cgroup_subsys *ss; 6727 char *token; 6728 int i; 6729 6730 while ((token = strsep(&str, ",")) != NULL) { 6731 if (!*token) 6732 continue; 6733 6734 for_each_subsys(ss, i) { 6735 if (strcmp(token, ss->name) && 6736 strcmp(token, ss->legacy_name)) 6737 continue; 6738 6739 static_branch_disable(cgroup_subsys_enabled_key[i]); 6740 pr_info("Disabling %s control group subsystem\n", 6741 ss->name); 6742 } 6743 6744 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6745 if (strcmp(token, cgroup_opt_feature_names[i])) 6746 continue; 6747 cgroup_feature_disable_mask |= 1 << i; 6748 pr_info("Disabling %s control group feature\n", 6749 cgroup_opt_feature_names[i]); 6750 break; 6751 } 6752 } 6753 return 1; 6754 } 6755 __setup("cgroup_disable=", cgroup_disable); 6756 6757 void __init __weak enable_debug_cgroup(void) { } 6758 6759 static int __init enable_cgroup_debug(char *str) 6760 { 6761 cgroup_debug = true; 6762 enable_debug_cgroup(); 6763 return 1; 6764 } 6765 __setup("cgroup_debug", enable_cgroup_debug); 6766 6767 /** 6768 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6769 * @dentry: directory dentry of interest 6770 * @ss: subsystem of interest 6771 * 6772 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6773 * to get the corresponding css and return it. If such css doesn't exist 6774 * or can't be pinned, an ERR_PTR value is returned. 6775 */ 6776 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6777 struct cgroup_subsys *ss) 6778 { 6779 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6780 struct file_system_type *s_type = dentry->d_sb->s_type; 6781 struct cgroup_subsys_state *css = NULL; 6782 struct cgroup *cgrp; 6783 6784 /* is @dentry a cgroup dir? */ 6785 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6786 !kn || kernfs_type(kn) != KERNFS_DIR) 6787 return ERR_PTR(-EBADF); 6788 6789 rcu_read_lock(); 6790 6791 /* 6792 * This path doesn't originate from kernfs and @kn could already 6793 * have been or be removed at any point. @kn->priv is RCU 6794 * protected for this access. See css_release_work_fn() for details. 6795 */ 6796 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6797 if (cgrp) 6798 css = cgroup_css(cgrp, ss); 6799 6800 if (!css || !css_tryget_online(css)) 6801 css = ERR_PTR(-ENOENT); 6802 6803 rcu_read_unlock(); 6804 return css; 6805 } 6806 6807 /** 6808 * css_from_id - lookup css by id 6809 * @id: the cgroup id 6810 * @ss: cgroup subsys to be looked into 6811 * 6812 * Returns the css if there's valid one with @id, otherwise returns NULL. 6813 * Should be called under rcu_read_lock(). 6814 */ 6815 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6816 { 6817 WARN_ON_ONCE(!rcu_read_lock_held()); 6818 return idr_find(&ss->css_idr, id); 6819 } 6820 6821 /** 6822 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6823 * @path: path on the default hierarchy 6824 * 6825 * Find the cgroup at @path on the default hierarchy, increment its 6826 * reference count and return it. Returns pointer to the found cgroup on 6827 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6828 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6829 */ 6830 struct cgroup *cgroup_get_from_path(const char *path) 6831 { 6832 struct kernfs_node *kn; 6833 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6834 struct cgroup *root_cgrp; 6835 6836 root_cgrp = current_cgns_cgroup_dfl(); 6837 kn = kernfs_walk_and_get(root_cgrp->kn, path); 6838 if (!kn) 6839 goto out; 6840 6841 if (kernfs_type(kn) != KERNFS_DIR) { 6842 cgrp = ERR_PTR(-ENOTDIR); 6843 goto out_kernfs; 6844 } 6845 6846 rcu_read_lock(); 6847 6848 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6849 if (!cgrp || !cgroup_tryget(cgrp)) 6850 cgrp = ERR_PTR(-ENOENT); 6851 6852 rcu_read_unlock(); 6853 6854 out_kernfs: 6855 kernfs_put(kn); 6856 out: 6857 return cgrp; 6858 } 6859 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6860 6861 /** 6862 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 6863 * @fd: fd obtained by open(cgroup_dir) 6864 * 6865 * Find the cgroup from a fd which should be obtained 6866 * by opening a cgroup directory. Returns a pointer to the 6867 * cgroup on success. ERR_PTR is returned if the cgroup 6868 * cannot be found. 6869 */ 6870 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 6871 { 6872 struct cgroup *cgrp; 6873 struct fd f = fdget_raw(fd); 6874 if (!f.file) 6875 return ERR_PTR(-EBADF); 6876 6877 cgrp = cgroup_v1v2_get_from_file(f.file); 6878 fdput(f); 6879 return cgrp; 6880 } 6881 6882 /** 6883 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 6884 * cgroup2. 6885 * @fd: fd obtained by open(cgroup2_dir) 6886 */ 6887 struct cgroup *cgroup_get_from_fd(int fd) 6888 { 6889 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 6890 6891 if (IS_ERR(cgrp)) 6892 return ERR_CAST(cgrp); 6893 6894 if (!cgroup_on_dfl(cgrp)) { 6895 cgroup_put(cgrp); 6896 return ERR_PTR(-EBADF); 6897 } 6898 return cgrp; 6899 } 6900 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6901 6902 static u64 power_of_ten(int power) 6903 { 6904 u64 v = 1; 6905 while (power--) 6906 v *= 10; 6907 return v; 6908 } 6909 6910 /** 6911 * cgroup_parse_float - parse a floating number 6912 * @input: input string 6913 * @dec_shift: number of decimal digits to shift 6914 * @v: output 6915 * 6916 * Parse a decimal floating point number in @input and store the result in 6917 * @v with decimal point right shifted @dec_shift times. For example, if 6918 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6919 * Returns 0 on success, -errno otherwise. 6920 * 6921 * There's nothing cgroup specific about this function except that it's 6922 * currently the only user. 6923 */ 6924 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6925 { 6926 s64 whole, frac = 0; 6927 int fstart = 0, fend = 0, flen; 6928 6929 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6930 return -EINVAL; 6931 if (frac < 0) 6932 return -EINVAL; 6933 6934 flen = fend > fstart ? fend - fstart : 0; 6935 if (flen < dec_shift) 6936 frac *= power_of_ten(dec_shift - flen); 6937 else 6938 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6939 6940 *v = whole * power_of_ten(dec_shift) + frac; 6941 return 0; 6942 } 6943 6944 /* 6945 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6946 * definition in cgroup-defs.h. 6947 */ 6948 #ifdef CONFIG_SOCK_CGROUP_DATA 6949 6950 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6951 { 6952 struct cgroup *cgroup; 6953 6954 rcu_read_lock(); 6955 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6956 if (in_interrupt()) { 6957 cgroup = &cgrp_dfl_root.cgrp; 6958 cgroup_get(cgroup); 6959 goto out; 6960 } 6961 6962 while (true) { 6963 struct css_set *cset; 6964 6965 cset = task_css_set(current); 6966 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6967 cgroup = cset->dfl_cgrp; 6968 break; 6969 } 6970 cpu_relax(); 6971 } 6972 out: 6973 skcd->cgroup = cgroup; 6974 cgroup_bpf_get(cgroup); 6975 rcu_read_unlock(); 6976 } 6977 6978 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6979 { 6980 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6981 6982 /* 6983 * We might be cloning a socket which is left in an empty 6984 * cgroup and the cgroup might have already been rmdir'd. 6985 * Don't use cgroup_get_live(). 6986 */ 6987 cgroup_get(cgrp); 6988 cgroup_bpf_get(cgrp); 6989 } 6990 6991 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6992 { 6993 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6994 6995 cgroup_bpf_put(cgrp); 6996 cgroup_put(cgrp); 6997 } 6998 6999 #endif /* CONFIG_SOCK_CGROUP_DATA */ 7000 7001 #ifdef CONFIG_SYSFS 7002 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 7003 ssize_t size, const char *prefix) 7004 { 7005 struct cftype *cft; 7006 ssize_t ret = 0; 7007 7008 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 7009 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 7010 continue; 7011 7012 if (prefix) 7013 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 7014 7015 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 7016 7017 if (WARN_ON(ret >= size)) 7018 break; 7019 } 7020 7021 return ret; 7022 } 7023 7024 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 7025 char *buf) 7026 { 7027 struct cgroup_subsys *ss; 7028 int ssid; 7029 ssize_t ret = 0; 7030 7031 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7032 PAGE_SIZE - ret, NULL); 7033 if (cgroup_psi_enabled()) 7034 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7035 PAGE_SIZE - ret, NULL); 7036 7037 for_each_subsys(ss, ssid) 7038 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7039 PAGE_SIZE - ret, 7040 cgroup_subsys_name[ssid]); 7041 7042 return ret; 7043 } 7044 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7045 7046 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7047 char *buf) 7048 { 7049 return snprintf(buf, PAGE_SIZE, 7050 "nsdelegate\n" 7051 "favordynmods\n" 7052 "memory_localevents\n" 7053 "memory_recursiveprot\n"); 7054 } 7055 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7056 7057 static struct attribute *cgroup_sysfs_attrs[] = { 7058 &cgroup_delegate_attr.attr, 7059 &cgroup_features_attr.attr, 7060 NULL, 7061 }; 7062 7063 static const struct attribute_group cgroup_sysfs_attr_group = { 7064 .attrs = cgroup_sysfs_attrs, 7065 .name = "cgroup", 7066 }; 7067 7068 static int __init cgroup_sysfs_init(void) 7069 { 7070 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7071 } 7072 subsys_initcall(cgroup_sysfs_init); 7073 7074 #endif /* CONFIG_SYSFS */ 7075