xref: /linux/kernel/cgroup/cgroup.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/sched/cputime.h>
58 #include <net/sock.h>
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/cgroup.h>
62 
63 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
64 					 MAX_CFTYPE_NAME + 2)
65 /* let's not notify more than 100 times per second */
66 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
67 
68 /*
69  * cgroup_mutex is the master lock.  Any modification to cgroup or its
70  * hierarchy must be performed while holding it.
71  *
72  * css_set_lock protects task->cgroups pointer, the list of css_set
73  * objects, and the chain of tasks off each css_set.
74  *
75  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
76  * cgroup.h can use them for lockdep annotations.
77  */
78 DEFINE_MUTEX(cgroup_mutex);
79 DEFINE_SPINLOCK(css_set_lock);
80 
81 #ifdef CONFIG_PROVE_RCU
82 EXPORT_SYMBOL_GPL(cgroup_mutex);
83 EXPORT_SYMBOL_GPL(css_set_lock);
84 #endif
85 
86 DEFINE_SPINLOCK(trace_cgroup_path_lock);
87 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
88 
89 /*
90  * Protects cgroup_idr and css_idr so that IDs can be released without
91  * grabbing cgroup_mutex.
92  */
93 static DEFINE_SPINLOCK(cgroup_idr_lock);
94 
95 /*
96  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
97  * against file removal/re-creation across css hiding.
98  */
99 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
100 
101 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
102 
103 #define cgroup_assert_mutex_or_rcu_locked()				\
104 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
105 			   !lockdep_is_held(&cgroup_mutex),		\
106 			   "cgroup_mutex or RCU read lock required");
107 
108 /*
109  * cgroup destruction makes heavy use of work items and there can be a lot
110  * of concurrent destructions.  Use a separate workqueue so that cgroup
111  * destruction work items don't end up filling up max_active of system_wq
112  * which may lead to deadlock.
113  */
114 static struct workqueue_struct *cgroup_destroy_wq;
115 
116 /* generate an array of cgroup subsystem pointers */
117 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
118 struct cgroup_subsys *cgroup_subsys[] = {
119 #include <linux/cgroup_subsys.h>
120 };
121 #undef SUBSYS
122 
123 /* array of cgroup subsystem names */
124 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
125 static const char *cgroup_subsys_name[] = {
126 #include <linux/cgroup_subsys.h>
127 };
128 #undef SUBSYS
129 
130 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
131 #define SUBSYS(_x)								\
132 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
133 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
134 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
135 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
136 #include <linux/cgroup_subsys.h>
137 #undef SUBSYS
138 
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
140 static struct static_key_true *cgroup_subsys_enabled_key[] = {
141 #include <linux/cgroup_subsys.h>
142 };
143 #undef SUBSYS
144 
145 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
146 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
147 #include <linux/cgroup_subsys.h>
148 };
149 #undef SUBSYS
150 
151 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
152 
153 /*
154  * The default hierarchy, reserved for the subsystems that are otherwise
155  * unattached - it never has more than a single cgroup, and all tasks are
156  * part of that cgroup.
157  */
158 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
159 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
160 
161 /*
162  * The default hierarchy always exists but is hidden until mounted for the
163  * first time.  This is for backward compatibility.
164  */
165 static bool cgrp_dfl_visible;
166 
167 /* some controllers are not supported in the default hierarchy */
168 static u16 cgrp_dfl_inhibit_ss_mask;
169 
170 /* some controllers are implicitly enabled on the default hierarchy */
171 static u16 cgrp_dfl_implicit_ss_mask;
172 
173 /* some controllers can be threaded on the default hierarchy */
174 static u16 cgrp_dfl_threaded_ss_mask;
175 
176 /* The list of hierarchy roots */
177 LIST_HEAD(cgroup_roots);
178 static int cgroup_root_count;
179 
180 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
181 static DEFINE_IDR(cgroup_hierarchy_idr);
182 
183 /*
184  * Assign a monotonically increasing serial number to csses.  It guarantees
185  * cgroups with bigger numbers are newer than those with smaller numbers.
186  * Also, as csses are always appended to the parent's ->children list, it
187  * guarantees that sibling csses are always sorted in the ascending serial
188  * number order on the list.  Protected by cgroup_mutex.
189  */
190 static u64 css_serial_nr_next = 1;
191 
192 /*
193  * These bitmasks identify subsystems with specific features to avoid
194  * having to do iterative checks repeatedly.
195  */
196 static u16 have_fork_callback __read_mostly;
197 static u16 have_exit_callback __read_mostly;
198 static u16 have_free_callback __read_mostly;
199 static u16 have_canfork_callback __read_mostly;
200 
201 /* cgroup namespace for init task */
202 struct cgroup_namespace init_cgroup_ns = {
203 	.count		= REFCOUNT_INIT(2),
204 	.user_ns	= &init_user_ns,
205 	.ns.ops		= &cgroupns_operations,
206 	.ns.inum	= PROC_CGROUP_INIT_INO,
207 	.root_cset	= &init_css_set,
208 };
209 
210 static struct file_system_type cgroup2_fs_type;
211 static struct cftype cgroup_base_files[];
212 
213 static int cgroup_apply_control(struct cgroup *cgrp);
214 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
215 static void css_task_iter_advance(struct css_task_iter *it);
216 static int cgroup_destroy_locked(struct cgroup *cgrp);
217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
218 					      struct cgroup_subsys *ss);
219 static void css_release(struct percpu_ref *ref);
220 static void kill_css(struct cgroup_subsys_state *css);
221 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
222 			      struct cgroup *cgrp, struct cftype cfts[],
223 			      bool is_add);
224 
225 /**
226  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227  * @ssid: subsys ID of interest
228  *
229  * cgroup_subsys_enabled() can only be used with literal subsys names which
230  * is fine for individual subsystems but unsuitable for cgroup core.  This
231  * is slower static_key_enabled() based test indexed by @ssid.
232  */
233 bool cgroup_ssid_enabled(int ssid)
234 {
235 	if (CGROUP_SUBSYS_COUNT == 0)
236 		return false;
237 
238 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239 }
240 
241 /**
242  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243  * @cgrp: the cgroup of interest
244  *
245  * The default hierarchy is the v2 interface of cgroup and this function
246  * can be used to test whether a cgroup is on the default hierarchy for
247  * cases where a subsystem should behave differnetly depending on the
248  * interface version.
249  *
250  * The set of behaviors which change on the default hierarchy are still
251  * being determined and the mount option is prefixed with __DEVEL__.
252  *
253  * List of changed behaviors:
254  *
255  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
256  *   and "name" are disallowed.
257  *
258  * - When mounting an existing superblock, mount options should match.
259  *
260  * - Remount is disallowed.
261  *
262  * - rename(2) is disallowed.
263  *
264  * - "tasks" is removed.  Everything should be at process granularity.  Use
265  *   "cgroup.procs" instead.
266  *
267  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
268  *   recycled inbetween reads.
269  *
270  * - "release_agent" and "notify_on_release" are removed.  Replacement
271  *   notification mechanism will be implemented.
272  *
273  * - "cgroup.clone_children" is removed.
274  *
275  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
276  *   and its descendants contain no task; otherwise, 1.  The file also
277  *   generates kernfs notification which can be monitored through poll and
278  *   [di]notify when the value of the file changes.
279  *
280  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
281  *   take masks of ancestors with non-empty cpus/mems, instead of being
282  *   moved to an ancestor.
283  *
284  * - cpuset: a task can be moved into an empty cpuset, and again it takes
285  *   masks of ancestors.
286  *
287  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
288  *   is not created.
289  *
290  * - blkcg: blk-throttle becomes properly hierarchical.
291  *
292  * - debug: disallowed on the default hierarchy.
293  */
294 bool cgroup_on_dfl(const struct cgroup *cgrp)
295 {
296 	return cgrp->root == &cgrp_dfl_root;
297 }
298 
299 /* IDR wrappers which synchronize using cgroup_idr_lock */
300 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
301 			    gfp_t gfp_mask)
302 {
303 	int ret;
304 
305 	idr_preload(gfp_mask);
306 	spin_lock_bh(&cgroup_idr_lock);
307 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
308 	spin_unlock_bh(&cgroup_idr_lock);
309 	idr_preload_end();
310 	return ret;
311 }
312 
313 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
314 {
315 	void *ret;
316 
317 	spin_lock_bh(&cgroup_idr_lock);
318 	ret = idr_replace(idr, ptr, id);
319 	spin_unlock_bh(&cgroup_idr_lock);
320 	return ret;
321 }
322 
323 static void cgroup_idr_remove(struct idr *idr, int id)
324 {
325 	spin_lock_bh(&cgroup_idr_lock);
326 	idr_remove(idr, id);
327 	spin_unlock_bh(&cgroup_idr_lock);
328 }
329 
330 static bool cgroup_has_tasks(struct cgroup *cgrp)
331 {
332 	return cgrp->nr_populated_csets;
333 }
334 
335 bool cgroup_is_threaded(struct cgroup *cgrp)
336 {
337 	return cgrp->dom_cgrp != cgrp;
338 }
339 
340 /* can @cgrp host both domain and threaded children? */
341 static bool cgroup_is_mixable(struct cgroup *cgrp)
342 {
343 	/*
344 	 * Root isn't under domain level resource control exempting it from
345 	 * the no-internal-process constraint, so it can serve as a thread
346 	 * root and a parent of resource domains at the same time.
347 	 */
348 	return !cgroup_parent(cgrp);
349 }
350 
351 /* can @cgrp become a thread root? should always be true for a thread root */
352 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
353 {
354 	/* mixables don't care */
355 	if (cgroup_is_mixable(cgrp))
356 		return true;
357 
358 	/* domain roots can't be nested under threaded */
359 	if (cgroup_is_threaded(cgrp))
360 		return false;
361 
362 	/* can only have either domain or threaded children */
363 	if (cgrp->nr_populated_domain_children)
364 		return false;
365 
366 	/* and no domain controllers can be enabled */
367 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
368 		return false;
369 
370 	return true;
371 }
372 
373 /* is @cgrp root of a threaded subtree? */
374 bool cgroup_is_thread_root(struct cgroup *cgrp)
375 {
376 	/* thread root should be a domain */
377 	if (cgroup_is_threaded(cgrp))
378 		return false;
379 
380 	/* a domain w/ threaded children is a thread root */
381 	if (cgrp->nr_threaded_children)
382 		return true;
383 
384 	/*
385 	 * A domain which has tasks and explicit threaded controllers
386 	 * enabled is a thread root.
387 	 */
388 	if (cgroup_has_tasks(cgrp) &&
389 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
390 		return true;
391 
392 	return false;
393 }
394 
395 /* a domain which isn't connected to the root w/o brekage can't be used */
396 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
397 {
398 	/* the cgroup itself can be a thread root */
399 	if (cgroup_is_threaded(cgrp))
400 		return false;
401 
402 	/* but the ancestors can't be unless mixable */
403 	while ((cgrp = cgroup_parent(cgrp))) {
404 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
405 			return false;
406 		if (cgroup_is_threaded(cgrp))
407 			return false;
408 	}
409 
410 	return true;
411 }
412 
413 /* subsystems visibly enabled on a cgroup */
414 static u16 cgroup_control(struct cgroup *cgrp)
415 {
416 	struct cgroup *parent = cgroup_parent(cgrp);
417 	u16 root_ss_mask = cgrp->root->subsys_mask;
418 
419 	if (parent) {
420 		u16 ss_mask = parent->subtree_control;
421 
422 		/* threaded cgroups can only have threaded controllers */
423 		if (cgroup_is_threaded(cgrp))
424 			ss_mask &= cgrp_dfl_threaded_ss_mask;
425 		return ss_mask;
426 	}
427 
428 	if (cgroup_on_dfl(cgrp))
429 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
430 				  cgrp_dfl_implicit_ss_mask);
431 	return root_ss_mask;
432 }
433 
434 /* subsystems enabled on a cgroup */
435 static u16 cgroup_ss_mask(struct cgroup *cgrp)
436 {
437 	struct cgroup *parent = cgroup_parent(cgrp);
438 
439 	if (parent) {
440 		u16 ss_mask = parent->subtree_ss_mask;
441 
442 		/* threaded cgroups can only have threaded controllers */
443 		if (cgroup_is_threaded(cgrp))
444 			ss_mask &= cgrp_dfl_threaded_ss_mask;
445 		return ss_mask;
446 	}
447 
448 	return cgrp->root->subsys_mask;
449 }
450 
451 /**
452  * cgroup_css - obtain a cgroup's css for the specified subsystem
453  * @cgrp: the cgroup of interest
454  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
455  *
456  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
457  * function must be called either under cgroup_mutex or rcu_read_lock() and
458  * the caller is responsible for pinning the returned css if it wants to
459  * keep accessing it outside the said locks.  This function may return
460  * %NULL if @cgrp doesn't have @subsys_id enabled.
461  */
462 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
463 					      struct cgroup_subsys *ss)
464 {
465 	if (ss)
466 		return rcu_dereference_check(cgrp->subsys[ss->id],
467 					lockdep_is_held(&cgroup_mutex));
468 	else
469 		return &cgrp->self;
470 }
471 
472 /**
473  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
474  * @cgrp: the cgroup of interest
475  * @ss: the subsystem of interest
476  *
477  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
478  * or is offline, %NULL is returned.
479  */
480 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
481 						     struct cgroup_subsys *ss)
482 {
483 	struct cgroup_subsys_state *css;
484 
485 	rcu_read_lock();
486 	css = cgroup_css(cgrp, ss);
487 	if (!css || !css_tryget_online(css))
488 		css = NULL;
489 	rcu_read_unlock();
490 
491 	return css;
492 }
493 
494 /**
495  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
496  * @cgrp: the cgroup of interest
497  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
498  *
499  * Similar to cgroup_css() but returns the effective css, which is defined
500  * as the matching css of the nearest ancestor including self which has @ss
501  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
502  * function is guaranteed to return non-NULL css.
503  */
504 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
505 						struct cgroup_subsys *ss)
506 {
507 	lockdep_assert_held(&cgroup_mutex);
508 
509 	if (!ss)
510 		return &cgrp->self;
511 
512 	/*
513 	 * This function is used while updating css associations and thus
514 	 * can't test the csses directly.  Test ss_mask.
515 	 */
516 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
517 		cgrp = cgroup_parent(cgrp);
518 		if (!cgrp)
519 			return NULL;
520 	}
521 
522 	return cgroup_css(cgrp, ss);
523 }
524 
525 /**
526  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
527  * @cgrp: the cgroup of interest
528  * @ss: the subsystem of interest
529  *
530  * Find and get the effective css of @cgrp for @ss.  The effective css is
531  * defined as the matching css of the nearest ancestor including self which
532  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
533  * the root css is returned, so this function always returns a valid css.
534  * The returned css must be put using css_put().
535  */
536 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
537 					     struct cgroup_subsys *ss)
538 {
539 	struct cgroup_subsys_state *css;
540 
541 	rcu_read_lock();
542 
543 	do {
544 		css = cgroup_css(cgrp, ss);
545 
546 		if (css && css_tryget_online(css))
547 			goto out_unlock;
548 		cgrp = cgroup_parent(cgrp);
549 	} while (cgrp);
550 
551 	css = init_css_set.subsys[ss->id];
552 	css_get(css);
553 out_unlock:
554 	rcu_read_unlock();
555 	return css;
556 }
557 
558 static void cgroup_get_live(struct cgroup *cgrp)
559 {
560 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
561 	css_get(&cgrp->self);
562 }
563 
564 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
565 {
566 	struct cgroup *cgrp = of->kn->parent->priv;
567 	struct cftype *cft = of_cft(of);
568 
569 	/*
570 	 * This is open and unprotected implementation of cgroup_css().
571 	 * seq_css() is only called from a kernfs file operation which has
572 	 * an active reference on the file.  Because all the subsystem
573 	 * files are drained before a css is disassociated with a cgroup,
574 	 * the matching css from the cgroup's subsys table is guaranteed to
575 	 * be and stay valid until the enclosing operation is complete.
576 	 */
577 	if (cft->ss)
578 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
579 	else
580 		return &cgrp->self;
581 }
582 EXPORT_SYMBOL_GPL(of_css);
583 
584 /**
585  * for_each_css - iterate all css's of a cgroup
586  * @css: the iteration cursor
587  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
588  * @cgrp: the target cgroup to iterate css's of
589  *
590  * Should be called under cgroup_[tree_]mutex.
591  */
592 #define for_each_css(css, ssid, cgrp)					\
593 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
594 		if (!((css) = rcu_dereference_check(			\
595 				(cgrp)->subsys[(ssid)],			\
596 				lockdep_is_held(&cgroup_mutex)))) { }	\
597 		else
598 
599 /**
600  * for_each_e_css - iterate all effective css's of a cgroup
601  * @css: the iteration cursor
602  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
603  * @cgrp: the target cgroup to iterate css's of
604  *
605  * Should be called under cgroup_[tree_]mutex.
606  */
607 #define for_each_e_css(css, ssid, cgrp)					\
608 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
609 		if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
610 			;						\
611 		else
612 
613 /**
614  * do_each_subsys_mask - filter for_each_subsys with a bitmask
615  * @ss: the iteration cursor
616  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
617  * @ss_mask: the bitmask
618  *
619  * The block will only run for cases where the ssid-th bit (1 << ssid) of
620  * @ss_mask is set.
621  */
622 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
623 	unsigned long __ss_mask = (ss_mask);				\
624 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
625 		(ssid) = 0;						\
626 		break;							\
627 	}								\
628 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
629 		(ss) = cgroup_subsys[ssid];				\
630 		{
631 
632 #define while_each_subsys_mask()					\
633 		}							\
634 	}								\
635 } while (false)
636 
637 /* iterate over child cgrps, lock should be held throughout iteration */
638 #define cgroup_for_each_live_child(child, cgrp)				\
639 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
640 		if (({ lockdep_assert_held(&cgroup_mutex);		\
641 		       cgroup_is_dead(child); }))			\
642 			;						\
643 		else
644 
645 /* walk live descendants in preorder */
646 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
647 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
648 		if (({ lockdep_assert_held(&cgroup_mutex);		\
649 		       (dsct) = (d_css)->cgroup;			\
650 		       cgroup_is_dead(dsct); }))			\
651 			;						\
652 		else
653 
654 /* walk live descendants in postorder */
655 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
656 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
657 		if (({ lockdep_assert_held(&cgroup_mutex);		\
658 		       (dsct) = (d_css)->cgroup;			\
659 		       cgroup_is_dead(dsct); }))			\
660 			;						\
661 		else
662 
663 /*
664  * The default css_set - used by init and its children prior to any
665  * hierarchies being mounted. It contains a pointer to the root state
666  * for each subsystem. Also used to anchor the list of css_sets. Not
667  * reference-counted, to improve performance when child cgroups
668  * haven't been created.
669  */
670 struct css_set init_css_set = {
671 	.refcount		= REFCOUNT_INIT(1),
672 	.dom_cset		= &init_css_set,
673 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
674 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
675 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
676 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
677 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
678 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
679 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
680 
681 	/*
682 	 * The following field is re-initialized when this cset gets linked
683 	 * in cgroup_init().  However, let's initialize the field
684 	 * statically too so that the default cgroup can be accessed safely
685 	 * early during boot.
686 	 */
687 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
688 };
689 
690 static int css_set_count	= 1;	/* 1 for init_css_set */
691 
692 static bool css_set_threaded(struct css_set *cset)
693 {
694 	return cset->dom_cset != cset;
695 }
696 
697 /**
698  * css_set_populated - does a css_set contain any tasks?
699  * @cset: target css_set
700  *
701  * css_set_populated() should be the same as !!cset->nr_tasks at steady
702  * state. However, css_set_populated() can be called while a task is being
703  * added to or removed from the linked list before the nr_tasks is
704  * properly updated. Hence, we can't just look at ->nr_tasks here.
705  */
706 static bool css_set_populated(struct css_set *cset)
707 {
708 	lockdep_assert_held(&css_set_lock);
709 
710 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
711 }
712 
713 /**
714  * cgroup_update_populated - update the populated count of a cgroup
715  * @cgrp: the target cgroup
716  * @populated: inc or dec populated count
717  *
718  * One of the css_sets associated with @cgrp is either getting its first
719  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
720  * count is propagated towards root so that a given cgroup's
721  * nr_populated_children is zero iff none of its descendants contain any
722  * tasks.
723  *
724  * @cgrp's interface file "cgroup.populated" is zero if both
725  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
726  * 1 otherwise.  When the sum changes from or to zero, userland is notified
727  * that the content of the interface file has changed.  This can be used to
728  * detect when @cgrp and its descendants become populated or empty.
729  */
730 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
731 {
732 	struct cgroup *child = NULL;
733 	int adj = populated ? 1 : -1;
734 
735 	lockdep_assert_held(&css_set_lock);
736 
737 	do {
738 		bool was_populated = cgroup_is_populated(cgrp);
739 
740 		if (!child) {
741 			cgrp->nr_populated_csets += adj;
742 		} else {
743 			if (cgroup_is_threaded(child))
744 				cgrp->nr_populated_threaded_children += adj;
745 			else
746 				cgrp->nr_populated_domain_children += adj;
747 		}
748 
749 		if (was_populated == cgroup_is_populated(cgrp))
750 			break;
751 
752 		cgroup1_check_for_release(cgrp);
753 		cgroup_file_notify(&cgrp->events_file);
754 
755 		child = cgrp;
756 		cgrp = cgroup_parent(cgrp);
757 	} while (cgrp);
758 }
759 
760 /**
761  * css_set_update_populated - update populated state of a css_set
762  * @cset: target css_set
763  * @populated: whether @cset is populated or depopulated
764  *
765  * @cset is either getting the first task or losing the last.  Update the
766  * populated counters of all associated cgroups accordingly.
767  */
768 static void css_set_update_populated(struct css_set *cset, bool populated)
769 {
770 	struct cgrp_cset_link *link;
771 
772 	lockdep_assert_held(&css_set_lock);
773 
774 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
775 		cgroup_update_populated(link->cgrp, populated);
776 }
777 
778 /**
779  * css_set_move_task - move a task from one css_set to another
780  * @task: task being moved
781  * @from_cset: css_set @task currently belongs to (may be NULL)
782  * @to_cset: new css_set @task is being moved to (may be NULL)
783  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
784  *
785  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
786  * css_set, @from_cset can be NULL.  If @task is being disassociated
787  * instead of moved, @to_cset can be NULL.
788  *
789  * This function automatically handles populated counter updates and
790  * css_task_iter adjustments but the caller is responsible for managing
791  * @from_cset and @to_cset's reference counts.
792  */
793 static void css_set_move_task(struct task_struct *task,
794 			      struct css_set *from_cset, struct css_set *to_cset,
795 			      bool use_mg_tasks)
796 {
797 	lockdep_assert_held(&css_set_lock);
798 
799 	if (to_cset && !css_set_populated(to_cset))
800 		css_set_update_populated(to_cset, true);
801 
802 	if (from_cset) {
803 		struct css_task_iter *it, *pos;
804 
805 		WARN_ON_ONCE(list_empty(&task->cg_list));
806 
807 		/*
808 		 * @task is leaving, advance task iterators which are
809 		 * pointing to it so that they can resume at the next
810 		 * position.  Advancing an iterator might remove it from
811 		 * the list, use safe walk.  See css_task_iter_advance*()
812 		 * for details.
813 		 */
814 		list_for_each_entry_safe(it, pos, &from_cset->task_iters,
815 					 iters_node)
816 			if (it->task_pos == &task->cg_list)
817 				css_task_iter_advance(it);
818 
819 		list_del_init(&task->cg_list);
820 		if (!css_set_populated(from_cset))
821 			css_set_update_populated(from_cset, false);
822 	} else {
823 		WARN_ON_ONCE(!list_empty(&task->cg_list));
824 	}
825 
826 	if (to_cset) {
827 		/*
828 		 * We are synchronized through cgroup_threadgroup_rwsem
829 		 * against PF_EXITING setting such that we can't race
830 		 * against cgroup_exit() changing the css_set to
831 		 * init_css_set and dropping the old one.
832 		 */
833 		WARN_ON_ONCE(task->flags & PF_EXITING);
834 
835 		rcu_assign_pointer(task->cgroups, to_cset);
836 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
837 							     &to_cset->tasks);
838 	}
839 }
840 
841 /*
842  * hash table for cgroup groups. This improves the performance to find
843  * an existing css_set. This hash doesn't (currently) take into
844  * account cgroups in empty hierarchies.
845  */
846 #define CSS_SET_HASH_BITS	7
847 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
848 
849 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
850 {
851 	unsigned long key = 0UL;
852 	struct cgroup_subsys *ss;
853 	int i;
854 
855 	for_each_subsys(ss, i)
856 		key += (unsigned long)css[i];
857 	key = (key >> 16) ^ key;
858 
859 	return key;
860 }
861 
862 void put_css_set_locked(struct css_set *cset)
863 {
864 	struct cgrp_cset_link *link, *tmp_link;
865 	struct cgroup_subsys *ss;
866 	int ssid;
867 
868 	lockdep_assert_held(&css_set_lock);
869 
870 	if (!refcount_dec_and_test(&cset->refcount))
871 		return;
872 
873 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
874 
875 	/* This css_set is dead. unlink it and release cgroup and css refs */
876 	for_each_subsys(ss, ssid) {
877 		list_del(&cset->e_cset_node[ssid]);
878 		css_put(cset->subsys[ssid]);
879 	}
880 	hash_del(&cset->hlist);
881 	css_set_count--;
882 
883 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
884 		list_del(&link->cset_link);
885 		list_del(&link->cgrp_link);
886 		if (cgroup_parent(link->cgrp))
887 			cgroup_put(link->cgrp);
888 		kfree(link);
889 	}
890 
891 	if (css_set_threaded(cset)) {
892 		list_del(&cset->threaded_csets_node);
893 		put_css_set_locked(cset->dom_cset);
894 	}
895 
896 	kfree_rcu(cset, rcu_head);
897 }
898 
899 /**
900  * compare_css_sets - helper function for find_existing_css_set().
901  * @cset: candidate css_set being tested
902  * @old_cset: existing css_set for a task
903  * @new_cgrp: cgroup that's being entered by the task
904  * @template: desired set of css pointers in css_set (pre-calculated)
905  *
906  * Returns true if "cset" matches "old_cset" except for the hierarchy
907  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
908  */
909 static bool compare_css_sets(struct css_set *cset,
910 			     struct css_set *old_cset,
911 			     struct cgroup *new_cgrp,
912 			     struct cgroup_subsys_state *template[])
913 {
914 	struct cgroup *new_dfl_cgrp;
915 	struct list_head *l1, *l2;
916 
917 	/*
918 	 * On the default hierarchy, there can be csets which are
919 	 * associated with the same set of cgroups but different csses.
920 	 * Let's first ensure that csses match.
921 	 */
922 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
923 		return false;
924 
925 
926 	/* @cset's domain should match the default cgroup's */
927 	if (cgroup_on_dfl(new_cgrp))
928 		new_dfl_cgrp = new_cgrp;
929 	else
930 		new_dfl_cgrp = old_cset->dfl_cgrp;
931 
932 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
933 		return false;
934 
935 	/*
936 	 * Compare cgroup pointers in order to distinguish between
937 	 * different cgroups in hierarchies.  As different cgroups may
938 	 * share the same effective css, this comparison is always
939 	 * necessary.
940 	 */
941 	l1 = &cset->cgrp_links;
942 	l2 = &old_cset->cgrp_links;
943 	while (1) {
944 		struct cgrp_cset_link *link1, *link2;
945 		struct cgroup *cgrp1, *cgrp2;
946 
947 		l1 = l1->next;
948 		l2 = l2->next;
949 		/* See if we reached the end - both lists are equal length. */
950 		if (l1 == &cset->cgrp_links) {
951 			BUG_ON(l2 != &old_cset->cgrp_links);
952 			break;
953 		} else {
954 			BUG_ON(l2 == &old_cset->cgrp_links);
955 		}
956 		/* Locate the cgroups associated with these links. */
957 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
958 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
959 		cgrp1 = link1->cgrp;
960 		cgrp2 = link2->cgrp;
961 		/* Hierarchies should be linked in the same order. */
962 		BUG_ON(cgrp1->root != cgrp2->root);
963 
964 		/*
965 		 * If this hierarchy is the hierarchy of the cgroup
966 		 * that's changing, then we need to check that this
967 		 * css_set points to the new cgroup; if it's any other
968 		 * hierarchy, then this css_set should point to the
969 		 * same cgroup as the old css_set.
970 		 */
971 		if (cgrp1->root == new_cgrp->root) {
972 			if (cgrp1 != new_cgrp)
973 				return false;
974 		} else {
975 			if (cgrp1 != cgrp2)
976 				return false;
977 		}
978 	}
979 	return true;
980 }
981 
982 /**
983  * find_existing_css_set - init css array and find the matching css_set
984  * @old_cset: the css_set that we're using before the cgroup transition
985  * @cgrp: the cgroup that we're moving into
986  * @template: out param for the new set of csses, should be clear on entry
987  */
988 static struct css_set *find_existing_css_set(struct css_set *old_cset,
989 					struct cgroup *cgrp,
990 					struct cgroup_subsys_state *template[])
991 {
992 	struct cgroup_root *root = cgrp->root;
993 	struct cgroup_subsys *ss;
994 	struct css_set *cset;
995 	unsigned long key;
996 	int i;
997 
998 	/*
999 	 * Build the set of subsystem state objects that we want to see in the
1000 	 * new css_set. while subsystems can change globally, the entries here
1001 	 * won't change, so no need for locking.
1002 	 */
1003 	for_each_subsys(ss, i) {
1004 		if (root->subsys_mask & (1UL << i)) {
1005 			/*
1006 			 * @ss is in this hierarchy, so we want the
1007 			 * effective css from @cgrp.
1008 			 */
1009 			template[i] = cgroup_e_css(cgrp, ss);
1010 		} else {
1011 			/*
1012 			 * @ss is not in this hierarchy, so we don't want
1013 			 * to change the css.
1014 			 */
1015 			template[i] = old_cset->subsys[i];
1016 		}
1017 	}
1018 
1019 	key = css_set_hash(template);
1020 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1021 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1022 			continue;
1023 
1024 		/* This css_set matches what we need */
1025 		return cset;
1026 	}
1027 
1028 	/* No existing cgroup group matched */
1029 	return NULL;
1030 }
1031 
1032 static void free_cgrp_cset_links(struct list_head *links_to_free)
1033 {
1034 	struct cgrp_cset_link *link, *tmp_link;
1035 
1036 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1037 		list_del(&link->cset_link);
1038 		kfree(link);
1039 	}
1040 }
1041 
1042 /**
1043  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1044  * @count: the number of links to allocate
1045  * @tmp_links: list_head the allocated links are put on
1046  *
1047  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1048  * through ->cset_link.  Returns 0 on success or -errno.
1049  */
1050 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1051 {
1052 	struct cgrp_cset_link *link;
1053 	int i;
1054 
1055 	INIT_LIST_HEAD(tmp_links);
1056 
1057 	for (i = 0; i < count; i++) {
1058 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1059 		if (!link) {
1060 			free_cgrp_cset_links(tmp_links);
1061 			return -ENOMEM;
1062 		}
1063 		list_add(&link->cset_link, tmp_links);
1064 	}
1065 	return 0;
1066 }
1067 
1068 /**
1069  * link_css_set - a helper function to link a css_set to a cgroup
1070  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1071  * @cset: the css_set to be linked
1072  * @cgrp: the destination cgroup
1073  */
1074 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1075 			 struct cgroup *cgrp)
1076 {
1077 	struct cgrp_cset_link *link;
1078 
1079 	BUG_ON(list_empty(tmp_links));
1080 
1081 	if (cgroup_on_dfl(cgrp))
1082 		cset->dfl_cgrp = cgrp;
1083 
1084 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1085 	link->cset = cset;
1086 	link->cgrp = cgrp;
1087 
1088 	/*
1089 	 * Always add links to the tail of the lists so that the lists are
1090 	 * in choronological order.
1091 	 */
1092 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1093 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1094 
1095 	if (cgroup_parent(cgrp))
1096 		cgroup_get_live(cgrp);
1097 }
1098 
1099 /**
1100  * find_css_set - return a new css_set with one cgroup updated
1101  * @old_cset: the baseline css_set
1102  * @cgrp: the cgroup to be updated
1103  *
1104  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1105  * substituted into the appropriate hierarchy.
1106  */
1107 static struct css_set *find_css_set(struct css_set *old_cset,
1108 				    struct cgroup *cgrp)
1109 {
1110 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1111 	struct css_set *cset;
1112 	struct list_head tmp_links;
1113 	struct cgrp_cset_link *link;
1114 	struct cgroup_subsys *ss;
1115 	unsigned long key;
1116 	int ssid;
1117 
1118 	lockdep_assert_held(&cgroup_mutex);
1119 
1120 	/* First see if we already have a cgroup group that matches
1121 	 * the desired set */
1122 	spin_lock_irq(&css_set_lock);
1123 	cset = find_existing_css_set(old_cset, cgrp, template);
1124 	if (cset)
1125 		get_css_set(cset);
1126 	spin_unlock_irq(&css_set_lock);
1127 
1128 	if (cset)
1129 		return cset;
1130 
1131 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1132 	if (!cset)
1133 		return NULL;
1134 
1135 	/* Allocate all the cgrp_cset_link objects that we'll need */
1136 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1137 		kfree(cset);
1138 		return NULL;
1139 	}
1140 
1141 	refcount_set(&cset->refcount, 1);
1142 	cset->dom_cset = cset;
1143 	INIT_LIST_HEAD(&cset->tasks);
1144 	INIT_LIST_HEAD(&cset->mg_tasks);
1145 	INIT_LIST_HEAD(&cset->task_iters);
1146 	INIT_LIST_HEAD(&cset->threaded_csets);
1147 	INIT_HLIST_NODE(&cset->hlist);
1148 	INIT_LIST_HEAD(&cset->cgrp_links);
1149 	INIT_LIST_HEAD(&cset->mg_preload_node);
1150 	INIT_LIST_HEAD(&cset->mg_node);
1151 
1152 	/* Copy the set of subsystem state objects generated in
1153 	 * find_existing_css_set() */
1154 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1155 
1156 	spin_lock_irq(&css_set_lock);
1157 	/* Add reference counts and links from the new css_set. */
1158 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1159 		struct cgroup *c = link->cgrp;
1160 
1161 		if (c->root == cgrp->root)
1162 			c = cgrp;
1163 		link_css_set(&tmp_links, cset, c);
1164 	}
1165 
1166 	BUG_ON(!list_empty(&tmp_links));
1167 
1168 	css_set_count++;
1169 
1170 	/* Add @cset to the hash table */
1171 	key = css_set_hash(cset->subsys);
1172 	hash_add(css_set_table, &cset->hlist, key);
1173 
1174 	for_each_subsys(ss, ssid) {
1175 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1176 
1177 		list_add_tail(&cset->e_cset_node[ssid],
1178 			      &css->cgroup->e_csets[ssid]);
1179 		css_get(css);
1180 	}
1181 
1182 	spin_unlock_irq(&css_set_lock);
1183 
1184 	/*
1185 	 * If @cset should be threaded, look up the matching dom_cset and
1186 	 * link them up.  We first fully initialize @cset then look for the
1187 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1188 	 * to stay empty until we return.
1189 	 */
1190 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1191 		struct css_set *dcset;
1192 
1193 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1194 		if (!dcset) {
1195 			put_css_set(cset);
1196 			return NULL;
1197 		}
1198 
1199 		spin_lock_irq(&css_set_lock);
1200 		cset->dom_cset = dcset;
1201 		list_add_tail(&cset->threaded_csets_node,
1202 			      &dcset->threaded_csets);
1203 		spin_unlock_irq(&css_set_lock);
1204 	}
1205 
1206 	return cset;
1207 }
1208 
1209 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1210 {
1211 	struct cgroup *root_cgrp = kf_root->kn->priv;
1212 
1213 	return root_cgrp->root;
1214 }
1215 
1216 static int cgroup_init_root_id(struct cgroup_root *root)
1217 {
1218 	int id;
1219 
1220 	lockdep_assert_held(&cgroup_mutex);
1221 
1222 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1223 	if (id < 0)
1224 		return id;
1225 
1226 	root->hierarchy_id = id;
1227 	return 0;
1228 }
1229 
1230 static void cgroup_exit_root_id(struct cgroup_root *root)
1231 {
1232 	lockdep_assert_held(&cgroup_mutex);
1233 
1234 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1235 }
1236 
1237 void cgroup_free_root(struct cgroup_root *root)
1238 {
1239 	if (root) {
1240 		idr_destroy(&root->cgroup_idr);
1241 		kfree(root);
1242 	}
1243 }
1244 
1245 static void cgroup_destroy_root(struct cgroup_root *root)
1246 {
1247 	struct cgroup *cgrp = &root->cgrp;
1248 	struct cgrp_cset_link *link, *tmp_link;
1249 
1250 	trace_cgroup_destroy_root(root);
1251 
1252 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1253 
1254 	BUG_ON(atomic_read(&root->nr_cgrps));
1255 	BUG_ON(!list_empty(&cgrp->self.children));
1256 
1257 	/* Rebind all subsystems back to the default hierarchy */
1258 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1259 
1260 	/*
1261 	 * Release all the links from cset_links to this hierarchy's
1262 	 * root cgroup
1263 	 */
1264 	spin_lock_irq(&css_set_lock);
1265 
1266 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1267 		list_del(&link->cset_link);
1268 		list_del(&link->cgrp_link);
1269 		kfree(link);
1270 	}
1271 
1272 	spin_unlock_irq(&css_set_lock);
1273 
1274 	if (!list_empty(&root->root_list)) {
1275 		list_del(&root->root_list);
1276 		cgroup_root_count--;
1277 	}
1278 
1279 	cgroup_exit_root_id(root);
1280 
1281 	mutex_unlock(&cgroup_mutex);
1282 
1283 	kernfs_destroy_root(root->kf_root);
1284 	cgroup_free_root(root);
1285 }
1286 
1287 /*
1288  * look up cgroup associated with current task's cgroup namespace on the
1289  * specified hierarchy
1290  */
1291 static struct cgroup *
1292 current_cgns_cgroup_from_root(struct cgroup_root *root)
1293 {
1294 	struct cgroup *res = NULL;
1295 	struct css_set *cset;
1296 
1297 	lockdep_assert_held(&css_set_lock);
1298 
1299 	rcu_read_lock();
1300 
1301 	cset = current->nsproxy->cgroup_ns->root_cset;
1302 	if (cset == &init_css_set) {
1303 		res = &root->cgrp;
1304 	} else {
1305 		struct cgrp_cset_link *link;
1306 
1307 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1308 			struct cgroup *c = link->cgrp;
1309 
1310 			if (c->root == root) {
1311 				res = c;
1312 				break;
1313 			}
1314 		}
1315 	}
1316 	rcu_read_unlock();
1317 
1318 	BUG_ON(!res);
1319 	return res;
1320 }
1321 
1322 /* look up cgroup associated with given css_set on the specified hierarchy */
1323 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1324 					    struct cgroup_root *root)
1325 {
1326 	struct cgroup *res = NULL;
1327 
1328 	lockdep_assert_held(&cgroup_mutex);
1329 	lockdep_assert_held(&css_set_lock);
1330 
1331 	if (cset == &init_css_set) {
1332 		res = &root->cgrp;
1333 	} else if (root == &cgrp_dfl_root) {
1334 		res = cset->dfl_cgrp;
1335 	} else {
1336 		struct cgrp_cset_link *link;
1337 
1338 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1339 			struct cgroup *c = link->cgrp;
1340 
1341 			if (c->root == root) {
1342 				res = c;
1343 				break;
1344 			}
1345 		}
1346 	}
1347 
1348 	BUG_ON(!res);
1349 	return res;
1350 }
1351 
1352 /*
1353  * Return the cgroup for "task" from the given hierarchy. Must be
1354  * called with cgroup_mutex and css_set_lock held.
1355  */
1356 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1357 				     struct cgroup_root *root)
1358 {
1359 	/*
1360 	 * No need to lock the task - since we hold cgroup_mutex the
1361 	 * task can't change groups, so the only thing that can happen
1362 	 * is that it exits and its css is set back to init_css_set.
1363 	 */
1364 	return cset_cgroup_from_root(task_css_set(task), root);
1365 }
1366 
1367 /*
1368  * A task must hold cgroup_mutex to modify cgroups.
1369  *
1370  * Any task can increment and decrement the count field without lock.
1371  * So in general, code holding cgroup_mutex can't rely on the count
1372  * field not changing.  However, if the count goes to zero, then only
1373  * cgroup_attach_task() can increment it again.  Because a count of zero
1374  * means that no tasks are currently attached, therefore there is no
1375  * way a task attached to that cgroup can fork (the other way to
1376  * increment the count).  So code holding cgroup_mutex can safely
1377  * assume that if the count is zero, it will stay zero. Similarly, if
1378  * a task holds cgroup_mutex on a cgroup with zero count, it
1379  * knows that the cgroup won't be removed, as cgroup_rmdir()
1380  * needs that mutex.
1381  *
1382  * A cgroup can only be deleted if both its 'count' of using tasks
1383  * is zero, and its list of 'children' cgroups is empty.  Since all
1384  * tasks in the system use _some_ cgroup, and since there is always at
1385  * least one task in the system (init, pid == 1), therefore, root cgroup
1386  * always has either children cgroups and/or using tasks.  So we don't
1387  * need a special hack to ensure that root cgroup cannot be deleted.
1388  *
1389  * P.S.  One more locking exception.  RCU is used to guard the
1390  * update of a tasks cgroup pointer by cgroup_attach_task()
1391  */
1392 
1393 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1394 
1395 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1396 			      char *buf)
1397 {
1398 	struct cgroup_subsys *ss = cft->ss;
1399 
1400 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1401 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1402 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1403 			 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1404 			 cft->name);
1405 	else
1406 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1407 	return buf;
1408 }
1409 
1410 /**
1411  * cgroup_file_mode - deduce file mode of a control file
1412  * @cft: the control file in question
1413  *
1414  * S_IRUGO for read, S_IWUSR for write.
1415  */
1416 static umode_t cgroup_file_mode(const struct cftype *cft)
1417 {
1418 	umode_t mode = 0;
1419 
1420 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1421 		mode |= S_IRUGO;
1422 
1423 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1424 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1425 			mode |= S_IWUGO;
1426 		else
1427 			mode |= S_IWUSR;
1428 	}
1429 
1430 	return mode;
1431 }
1432 
1433 /**
1434  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1435  * @subtree_control: the new subtree_control mask to consider
1436  * @this_ss_mask: available subsystems
1437  *
1438  * On the default hierarchy, a subsystem may request other subsystems to be
1439  * enabled together through its ->depends_on mask.  In such cases, more
1440  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1441  *
1442  * This function calculates which subsystems need to be enabled if
1443  * @subtree_control is to be applied while restricted to @this_ss_mask.
1444  */
1445 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1446 {
1447 	u16 cur_ss_mask = subtree_control;
1448 	struct cgroup_subsys *ss;
1449 	int ssid;
1450 
1451 	lockdep_assert_held(&cgroup_mutex);
1452 
1453 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1454 
1455 	while (true) {
1456 		u16 new_ss_mask = cur_ss_mask;
1457 
1458 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1459 			new_ss_mask |= ss->depends_on;
1460 		} while_each_subsys_mask();
1461 
1462 		/*
1463 		 * Mask out subsystems which aren't available.  This can
1464 		 * happen only if some depended-upon subsystems were bound
1465 		 * to non-default hierarchies.
1466 		 */
1467 		new_ss_mask &= this_ss_mask;
1468 
1469 		if (new_ss_mask == cur_ss_mask)
1470 			break;
1471 		cur_ss_mask = new_ss_mask;
1472 	}
1473 
1474 	return cur_ss_mask;
1475 }
1476 
1477 /**
1478  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1479  * @kn: the kernfs_node being serviced
1480  *
1481  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1482  * the method finishes if locking succeeded.  Note that once this function
1483  * returns the cgroup returned by cgroup_kn_lock_live() may become
1484  * inaccessible any time.  If the caller intends to continue to access the
1485  * cgroup, it should pin it before invoking this function.
1486  */
1487 void cgroup_kn_unlock(struct kernfs_node *kn)
1488 {
1489 	struct cgroup *cgrp;
1490 
1491 	if (kernfs_type(kn) == KERNFS_DIR)
1492 		cgrp = kn->priv;
1493 	else
1494 		cgrp = kn->parent->priv;
1495 
1496 	mutex_unlock(&cgroup_mutex);
1497 
1498 	kernfs_unbreak_active_protection(kn);
1499 	cgroup_put(cgrp);
1500 }
1501 
1502 /**
1503  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1504  * @kn: the kernfs_node being serviced
1505  * @drain_offline: perform offline draining on the cgroup
1506  *
1507  * This helper is to be used by a cgroup kernfs method currently servicing
1508  * @kn.  It breaks the active protection, performs cgroup locking and
1509  * verifies that the associated cgroup is alive.  Returns the cgroup if
1510  * alive; otherwise, %NULL.  A successful return should be undone by a
1511  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1512  * cgroup is drained of offlining csses before return.
1513  *
1514  * Any cgroup kernfs method implementation which requires locking the
1515  * associated cgroup should use this helper.  It avoids nesting cgroup
1516  * locking under kernfs active protection and allows all kernfs operations
1517  * including self-removal.
1518  */
1519 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1520 {
1521 	struct cgroup *cgrp;
1522 
1523 	if (kernfs_type(kn) == KERNFS_DIR)
1524 		cgrp = kn->priv;
1525 	else
1526 		cgrp = kn->parent->priv;
1527 
1528 	/*
1529 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1530 	 * active_ref.  cgroup liveliness check alone provides enough
1531 	 * protection against removal.  Ensure @cgrp stays accessible and
1532 	 * break the active_ref protection.
1533 	 */
1534 	if (!cgroup_tryget(cgrp))
1535 		return NULL;
1536 	kernfs_break_active_protection(kn);
1537 
1538 	if (drain_offline)
1539 		cgroup_lock_and_drain_offline(cgrp);
1540 	else
1541 		mutex_lock(&cgroup_mutex);
1542 
1543 	if (!cgroup_is_dead(cgrp))
1544 		return cgrp;
1545 
1546 	cgroup_kn_unlock(kn);
1547 	return NULL;
1548 }
1549 
1550 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1551 {
1552 	char name[CGROUP_FILE_NAME_MAX];
1553 
1554 	lockdep_assert_held(&cgroup_mutex);
1555 
1556 	if (cft->file_offset) {
1557 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1558 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1559 
1560 		spin_lock_irq(&cgroup_file_kn_lock);
1561 		cfile->kn = NULL;
1562 		spin_unlock_irq(&cgroup_file_kn_lock);
1563 
1564 		del_timer_sync(&cfile->notify_timer);
1565 	}
1566 
1567 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1568 }
1569 
1570 /**
1571  * css_clear_dir - remove subsys files in a cgroup directory
1572  * @css: taget css
1573  */
1574 static void css_clear_dir(struct cgroup_subsys_state *css)
1575 {
1576 	struct cgroup *cgrp = css->cgroup;
1577 	struct cftype *cfts;
1578 
1579 	if (!(css->flags & CSS_VISIBLE))
1580 		return;
1581 
1582 	css->flags &= ~CSS_VISIBLE;
1583 
1584 	if (!css->ss) {
1585 		if (cgroup_on_dfl(cgrp))
1586 			cfts = cgroup_base_files;
1587 		else
1588 			cfts = cgroup1_base_files;
1589 
1590 		cgroup_addrm_files(css, cgrp, cfts, false);
1591 	} else {
1592 		list_for_each_entry(cfts, &css->ss->cfts, node)
1593 			cgroup_addrm_files(css, cgrp, cfts, false);
1594 	}
1595 }
1596 
1597 /**
1598  * css_populate_dir - create subsys files in a cgroup directory
1599  * @css: target css
1600  *
1601  * On failure, no file is added.
1602  */
1603 static int css_populate_dir(struct cgroup_subsys_state *css)
1604 {
1605 	struct cgroup *cgrp = css->cgroup;
1606 	struct cftype *cfts, *failed_cfts;
1607 	int ret;
1608 
1609 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1610 		return 0;
1611 
1612 	if (!css->ss) {
1613 		if (cgroup_on_dfl(cgrp))
1614 			cfts = cgroup_base_files;
1615 		else
1616 			cfts = cgroup1_base_files;
1617 
1618 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1619 		if (ret < 0)
1620 			return ret;
1621 	} else {
1622 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1623 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1624 			if (ret < 0) {
1625 				failed_cfts = cfts;
1626 				goto err;
1627 			}
1628 		}
1629 	}
1630 
1631 	css->flags |= CSS_VISIBLE;
1632 
1633 	return 0;
1634 err:
1635 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1636 		if (cfts == failed_cfts)
1637 			break;
1638 		cgroup_addrm_files(css, cgrp, cfts, false);
1639 	}
1640 	return ret;
1641 }
1642 
1643 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1644 {
1645 	struct cgroup *dcgrp = &dst_root->cgrp;
1646 	struct cgroup_subsys *ss;
1647 	int ssid, i, ret;
1648 
1649 	lockdep_assert_held(&cgroup_mutex);
1650 
1651 	do_each_subsys_mask(ss, ssid, ss_mask) {
1652 		/*
1653 		 * If @ss has non-root csses attached to it, can't move.
1654 		 * If @ss is an implicit controller, it is exempt from this
1655 		 * rule and can be stolen.
1656 		 */
1657 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1658 		    !ss->implicit_on_dfl)
1659 			return -EBUSY;
1660 
1661 		/* can't move between two non-dummy roots either */
1662 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1663 			return -EBUSY;
1664 	} while_each_subsys_mask();
1665 
1666 	do_each_subsys_mask(ss, ssid, ss_mask) {
1667 		struct cgroup_root *src_root = ss->root;
1668 		struct cgroup *scgrp = &src_root->cgrp;
1669 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1670 		struct css_set *cset;
1671 
1672 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1673 
1674 		/* disable from the source */
1675 		src_root->subsys_mask &= ~(1 << ssid);
1676 		WARN_ON(cgroup_apply_control(scgrp));
1677 		cgroup_finalize_control(scgrp, 0);
1678 
1679 		/* rebind */
1680 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1681 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1682 		ss->root = dst_root;
1683 		css->cgroup = dcgrp;
1684 
1685 		spin_lock_irq(&css_set_lock);
1686 		hash_for_each(css_set_table, i, cset, hlist)
1687 			list_move_tail(&cset->e_cset_node[ss->id],
1688 				       &dcgrp->e_csets[ss->id]);
1689 		spin_unlock_irq(&css_set_lock);
1690 
1691 		/* default hierarchy doesn't enable controllers by default */
1692 		dst_root->subsys_mask |= 1 << ssid;
1693 		if (dst_root == &cgrp_dfl_root) {
1694 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1695 		} else {
1696 			dcgrp->subtree_control |= 1 << ssid;
1697 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1698 		}
1699 
1700 		ret = cgroup_apply_control(dcgrp);
1701 		if (ret)
1702 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1703 				ss->name, ret);
1704 
1705 		if (ss->bind)
1706 			ss->bind(css);
1707 	} while_each_subsys_mask();
1708 
1709 	kernfs_activate(dcgrp->kn);
1710 	return 0;
1711 }
1712 
1713 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1714 		     struct kernfs_root *kf_root)
1715 {
1716 	int len = 0;
1717 	char *buf = NULL;
1718 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1719 	struct cgroup *ns_cgroup;
1720 
1721 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1722 	if (!buf)
1723 		return -ENOMEM;
1724 
1725 	spin_lock_irq(&css_set_lock);
1726 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1727 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1728 	spin_unlock_irq(&css_set_lock);
1729 
1730 	if (len >= PATH_MAX)
1731 		len = -ERANGE;
1732 	else if (len > 0) {
1733 		seq_escape(sf, buf, " \t\n\\");
1734 		len = 0;
1735 	}
1736 	kfree(buf);
1737 	return len;
1738 }
1739 
1740 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1741 {
1742 	char *token;
1743 
1744 	*root_flags = 0;
1745 
1746 	if (!data)
1747 		return 0;
1748 
1749 	while ((token = strsep(&data, ",")) != NULL) {
1750 		if (!strcmp(token, "nsdelegate")) {
1751 			*root_flags |= CGRP_ROOT_NS_DELEGATE;
1752 			continue;
1753 		}
1754 
1755 		pr_err("cgroup2: unknown option \"%s\"\n", token);
1756 		return -EINVAL;
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 static void apply_cgroup_root_flags(unsigned int root_flags)
1763 {
1764 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1765 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1766 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1767 		else
1768 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1769 	}
1770 }
1771 
1772 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1773 {
1774 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1775 		seq_puts(seq, ",nsdelegate");
1776 	return 0;
1777 }
1778 
1779 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1780 {
1781 	unsigned int root_flags;
1782 	int ret;
1783 
1784 	ret = parse_cgroup_root_flags(data, &root_flags);
1785 	if (ret)
1786 		return ret;
1787 
1788 	apply_cgroup_root_flags(root_flags);
1789 	return 0;
1790 }
1791 
1792 /*
1793  * To reduce the fork() overhead for systems that are not actually using
1794  * their cgroups capability, we don't maintain the lists running through
1795  * each css_set to its tasks until we see the list actually used - in other
1796  * words after the first mount.
1797  */
1798 static bool use_task_css_set_links __read_mostly;
1799 
1800 static void cgroup_enable_task_cg_lists(void)
1801 {
1802 	struct task_struct *p, *g;
1803 
1804 	/*
1805 	 * We need tasklist_lock because RCU is not safe against
1806 	 * while_each_thread(). Besides, a forking task that has passed
1807 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1808 	 * is not guaranteed to have its child immediately visible in the
1809 	 * tasklist if we walk through it with RCU.
1810 	 */
1811 	read_lock(&tasklist_lock);
1812 	spin_lock_irq(&css_set_lock);
1813 
1814 	if (use_task_css_set_links)
1815 		goto out_unlock;
1816 
1817 	use_task_css_set_links = true;
1818 
1819 	do_each_thread(g, p) {
1820 		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1821 			     task_css_set(p) != &init_css_set);
1822 
1823 		/*
1824 		 * We should check if the process is exiting, otherwise
1825 		 * it will race with cgroup_exit() in that the list
1826 		 * entry won't be deleted though the process has exited.
1827 		 * Do it while holding siglock so that we don't end up
1828 		 * racing against cgroup_exit().
1829 		 *
1830 		 * Interrupts were already disabled while acquiring
1831 		 * the css_set_lock, so we do not need to disable it
1832 		 * again when acquiring the sighand->siglock here.
1833 		 */
1834 		spin_lock(&p->sighand->siglock);
1835 		if (!(p->flags & PF_EXITING)) {
1836 			struct css_set *cset = task_css_set(p);
1837 
1838 			if (!css_set_populated(cset))
1839 				css_set_update_populated(cset, true);
1840 			list_add_tail(&p->cg_list, &cset->tasks);
1841 			get_css_set(cset);
1842 			cset->nr_tasks++;
1843 		}
1844 		spin_unlock(&p->sighand->siglock);
1845 	} while_each_thread(g, p);
1846 out_unlock:
1847 	spin_unlock_irq(&css_set_lock);
1848 	read_unlock(&tasklist_lock);
1849 }
1850 
1851 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1852 {
1853 	struct cgroup_subsys *ss;
1854 	int ssid;
1855 
1856 	INIT_LIST_HEAD(&cgrp->self.sibling);
1857 	INIT_LIST_HEAD(&cgrp->self.children);
1858 	INIT_LIST_HEAD(&cgrp->cset_links);
1859 	INIT_LIST_HEAD(&cgrp->pidlists);
1860 	mutex_init(&cgrp->pidlist_mutex);
1861 	cgrp->self.cgroup = cgrp;
1862 	cgrp->self.flags |= CSS_ONLINE;
1863 	cgrp->dom_cgrp = cgrp;
1864 	cgrp->max_descendants = INT_MAX;
1865 	cgrp->max_depth = INT_MAX;
1866 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1867 	prev_cputime_init(&cgrp->prev_cputime);
1868 
1869 	for_each_subsys(ss, ssid)
1870 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1871 
1872 	init_waitqueue_head(&cgrp->offline_waitq);
1873 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1874 }
1875 
1876 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1877 {
1878 	struct cgroup *cgrp = &root->cgrp;
1879 
1880 	INIT_LIST_HEAD(&root->root_list);
1881 	atomic_set(&root->nr_cgrps, 1);
1882 	cgrp->root = root;
1883 	init_cgroup_housekeeping(cgrp);
1884 	idr_init(&root->cgroup_idr);
1885 
1886 	root->flags = opts->flags;
1887 	if (opts->release_agent)
1888 		strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1889 	if (opts->name)
1890 		strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1891 	if (opts->cpuset_clone_children)
1892 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1893 }
1894 
1895 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1896 {
1897 	LIST_HEAD(tmp_links);
1898 	struct cgroup *root_cgrp = &root->cgrp;
1899 	struct kernfs_syscall_ops *kf_sops;
1900 	struct css_set *cset;
1901 	int i, ret;
1902 
1903 	lockdep_assert_held(&cgroup_mutex);
1904 
1905 	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1906 	if (ret < 0)
1907 		goto out;
1908 	root_cgrp->id = ret;
1909 	root_cgrp->ancestor_ids[0] = ret;
1910 
1911 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1912 			      ref_flags, GFP_KERNEL);
1913 	if (ret)
1914 		goto out;
1915 
1916 	/*
1917 	 * We're accessing css_set_count without locking css_set_lock here,
1918 	 * but that's OK - it can only be increased by someone holding
1919 	 * cgroup_lock, and that's us.  Later rebinding may disable
1920 	 * controllers on the default hierarchy and thus create new csets,
1921 	 * which can't be more than the existing ones.  Allocate 2x.
1922 	 */
1923 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1924 	if (ret)
1925 		goto cancel_ref;
1926 
1927 	ret = cgroup_init_root_id(root);
1928 	if (ret)
1929 		goto cancel_ref;
1930 
1931 	kf_sops = root == &cgrp_dfl_root ?
1932 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1933 
1934 	root->kf_root = kernfs_create_root(kf_sops,
1935 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1936 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
1937 					   root_cgrp);
1938 	if (IS_ERR(root->kf_root)) {
1939 		ret = PTR_ERR(root->kf_root);
1940 		goto exit_root_id;
1941 	}
1942 	root_cgrp->kn = root->kf_root->kn;
1943 
1944 	ret = css_populate_dir(&root_cgrp->self);
1945 	if (ret)
1946 		goto destroy_root;
1947 
1948 	ret = rebind_subsystems(root, ss_mask);
1949 	if (ret)
1950 		goto destroy_root;
1951 
1952 	ret = cgroup_bpf_inherit(root_cgrp);
1953 	WARN_ON_ONCE(ret);
1954 
1955 	trace_cgroup_setup_root(root);
1956 
1957 	/*
1958 	 * There must be no failure case after here, since rebinding takes
1959 	 * care of subsystems' refcounts, which are explicitly dropped in
1960 	 * the failure exit path.
1961 	 */
1962 	list_add(&root->root_list, &cgroup_roots);
1963 	cgroup_root_count++;
1964 
1965 	/*
1966 	 * Link the root cgroup in this hierarchy into all the css_set
1967 	 * objects.
1968 	 */
1969 	spin_lock_irq(&css_set_lock);
1970 	hash_for_each(css_set_table, i, cset, hlist) {
1971 		link_css_set(&tmp_links, cset, root_cgrp);
1972 		if (css_set_populated(cset))
1973 			cgroup_update_populated(root_cgrp, true);
1974 	}
1975 	spin_unlock_irq(&css_set_lock);
1976 
1977 	BUG_ON(!list_empty(&root_cgrp->self.children));
1978 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1979 
1980 	kernfs_activate(root_cgrp->kn);
1981 	ret = 0;
1982 	goto out;
1983 
1984 destroy_root:
1985 	kernfs_destroy_root(root->kf_root);
1986 	root->kf_root = NULL;
1987 exit_root_id:
1988 	cgroup_exit_root_id(root);
1989 cancel_ref:
1990 	percpu_ref_exit(&root_cgrp->self.refcnt);
1991 out:
1992 	free_cgrp_cset_links(&tmp_links);
1993 	return ret;
1994 }
1995 
1996 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1997 			       struct cgroup_root *root, unsigned long magic,
1998 			       struct cgroup_namespace *ns)
1999 {
2000 	struct dentry *dentry;
2001 	bool new_sb;
2002 
2003 	dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
2004 
2005 	/*
2006 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2007 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2008 	 */
2009 	if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2010 		struct dentry *nsdentry;
2011 		struct cgroup *cgrp;
2012 
2013 		mutex_lock(&cgroup_mutex);
2014 		spin_lock_irq(&css_set_lock);
2015 
2016 		cgrp = cset_cgroup_from_root(ns->root_cset, root);
2017 
2018 		spin_unlock_irq(&css_set_lock);
2019 		mutex_unlock(&cgroup_mutex);
2020 
2021 		nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2022 		dput(dentry);
2023 		dentry = nsdentry;
2024 	}
2025 
2026 	if (IS_ERR(dentry) || !new_sb)
2027 		cgroup_put(&root->cgrp);
2028 
2029 	return dentry;
2030 }
2031 
2032 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2033 			 int flags, const char *unused_dev_name,
2034 			 void *data)
2035 {
2036 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2037 	struct dentry *dentry;
2038 	int ret;
2039 
2040 	get_cgroup_ns(ns);
2041 
2042 	/* Check if the caller has permission to mount. */
2043 	if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2044 		put_cgroup_ns(ns);
2045 		return ERR_PTR(-EPERM);
2046 	}
2047 
2048 	/*
2049 	 * The first time anyone tries to mount a cgroup, enable the list
2050 	 * linking each css_set to its tasks and fix up all existing tasks.
2051 	 */
2052 	if (!use_task_css_set_links)
2053 		cgroup_enable_task_cg_lists();
2054 
2055 	if (fs_type == &cgroup2_fs_type) {
2056 		unsigned int root_flags;
2057 
2058 		ret = parse_cgroup_root_flags(data, &root_flags);
2059 		if (ret) {
2060 			put_cgroup_ns(ns);
2061 			return ERR_PTR(ret);
2062 		}
2063 
2064 		cgrp_dfl_visible = true;
2065 		cgroup_get_live(&cgrp_dfl_root.cgrp);
2066 
2067 		dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2068 					 CGROUP2_SUPER_MAGIC, ns);
2069 		if (!IS_ERR(dentry))
2070 			apply_cgroup_root_flags(root_flags);
2071 	} else {
2072 		dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2073 				       CGROUP_SUPER_MAGIC, ns);
2074 	}
2075 
2076 	put_cgroup_ns(ns);
2077 	return dentry;
2078 }
2079 
2080 static void cgroup_kill_sb(struct super_block *sb)
2081 {
2082 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2083 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2084 
2085 	/*
2086 	 * If @root doesn't have any mounts or children, start killing it.
2087 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2088 	 * cgroup_mount() may wait for @root's release.
2089 	 *
2090 	 * And don't kill the default root.
2091 	 */
2092 	if (!list_empty(&root->cgrp.self.children) ||
2093 	    root == &cgrp_dfl_root)
2094 		cgroup_put(&root->cgrp);
2095 	else
2096 		percpu_ref_kill(&root->cgrp.self.refcnt);
2097 
2098 	kernfs_kill_sb(sb);
2099 }
2100 
2101 struct file_system_type cgroup_fs_type = {
2102 	.name = "cgroup",
2103 	.mount = cgroup_mount,
2104 	.kill_sb = cgroup_kill_sb,
2105 	.fs_flags = FS_USERNS_MOUNT,
2106 };
2107 
2108 static struct file_system_type cgroup2_fs_type = {
2109 	.name = "cgroup2",
2110 	.mount = cgroup_mount,
2111 	.kill_sb = cgroup_kill_sb,
2112 	.fs_flags = FS_USERNS_MOUNT,
2113 };
2114 
2115 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2116 			  struct cgroup_namespace *ns)
2117 {
2118 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2119 
2120 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2121 }
2122 
2123 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2124 		   struct cgroup_namespace *ns)
2125 {
2126 	int ret;
2127 
2128 	mutex_lock(&cgroup_mutex);
2129 	spin_lock_irq(&css_set_lock);
2130 
2131 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2132 
2133 	spin_unlock_irq(&css_set_lock);
2134 	mutex_unlock(&cgroup_mutex);
2135 
2136 	return ret;
2137 }
2138 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2139 
2140 /**
2141  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2142  * @task: target task
2143  * @buf: the buffer to write the path into
2144  * @buflen: the length of the buffer
2145  *
2146  * Determine @task's cgroup on the first (the one with the lowest non-zero
2147  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2148  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2149  * cgroup controller callbacks.
2150  *
2151  * Return value is the same as kernfs_path().
2152  */
2153 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2154 {
2155 	struct cgroup_root *root;
2156 	struct cgroup *cgrp;
2157 	int hierarchy_id = 1;
2158 	int ret;
2159 
2160 	mutex_lock(&cgroup_mutex);
2161 	spin_lock_irq(&css_set_lock);
2162 
2163 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2164 
2165 	if (root) {
2166 		cgrp = task_cgroup_from_root(task, root);
2167 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2168 	} else {
2169 		/* if no hierarchy exists, everyone is in "/" */
2170 		ret = strlcpy(buf, "/", buflen);
2171 	}
2172 
2173 	spin_unlock_irq(&css_set_lock);
2174 	mutex_unlock(&cgroup_mutex);
2175 	return ret;
2176 }
2177 EXPORT_SYMBOL_GPL(task_cgroup_path);
2178 
2179 /**
2180  * cgroup_migrate_add_task - add a migration target task to a migration context
2181  * @task: target task
2182  * @mgctx: target migration context
2183  *
2184  * Add @task, which is a migration target, to @mgctx->tset.  This function
2185  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2186  * should have been added as a migration source and @task->cg_list will be
2187  * moved from the css_set's tasks list to mg_tasks one.
2188  */
2189 static void cgroup_migrate_add_task(struct task_struct *task,
2190 				    struct cgroup_mgctx *mgctx)
2191 {
2192 	struct css_set *cset;
2193 
2194 	lockdep_assert_held(&css_set_lock);
2195 
2196 	/* @task either already exited or can't exit until the end */
2197 	if (task->flags & PF_EXITING)
2198 		return;
2199 
2200 	/* leave @task alone if post_fork() hasn't linked it yet */
2201 	if (list_empty(&task->cg_list))
2202 		return;
2203 
2204 	cset = task_css_set(task);
2205 	if (!cset->mg_src_cgrp)
2206 		return;
2207 
2208 	mgctx->tset.nr_tasks++;
2209 
2210 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2211 	if (list_empty(&cset->mg_node))
2212 		list_add_tail(&cset->mg_node,
2213 			      &mgctx->tset.src_csets);
2214 	if (list_empty(&cset->mg_dst_cset->mg_node))
2215 		list_add_tail(&cset->mg_dst_cset->mg_node,
2216 			      &mgctx->tset.dst_csets);
2217 }
2218 
2219 /**
2220  * cgroup_taskset_first - reset taskset and return the first task
2221  * @tset: taskset of interest
2222  * @dst_cssp: output variable for the destination css
2223  *
2224  * @tset iteration is initialized and the first task is returned.
2225  */
2226 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2227 					 struct cgroup_subsys_state **dst_cssp)
2228 {
2229 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2230 	tset->cur_task = NULL;
2231 
2232 	return cgroup_taskset_next(tset, dst_cssp);
2233 }
2234 
2235 /**
2236  * cgroup_taskset_next - iterate to the next task in taskset
2237  * @tset: taskset of interest
2238  * @dst_cssp: output variable for the destination css
2239  *
2240  * Return the next task in @tset.  Iteration must have been initialized
2241  * with cgroup_taskset_first().
2242  */
2243 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2244 					struct cgroup_subsys_state **dst_cssp)
2245 {
2246 	struct css_set *cset = tset->cur_cset;
2247 	struct task_struct *task = tset->cur_task;
2248 
2249 	while (&cset->mg_node != tset->csets) {
2250 		if (!task)
2251 			task = list_first_entry(&cset->mg_tasks,
2252 						struct task_struct, cg_list);
2253 		else
2254 			task = list_next_entry(task, cg_list);
2255 
2256 		if (&task->cg_list != &cset->mg_tasks) {
2257 			tset->cur_cset = cset;
2258 			tset->cur_task = task;
2259 
2260 			/*
2261 			 * This function may be called both before and
2262 			 * after cgroup_taskset_migrate().  The two cases
2263 			 * can be distinguished by looking at whether @cset
2264 			 * has its ->mg_dst_cset set.
2265 			 */
2266 			if (cset->mg_dst_cset)
2267 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2268 			else
2269 				*dst_cssp = cset->subsys[tset->ssid];
2270 
2271 			return task;
2272 		}
2273 
2274 		cset = list_next_entry(cset, mg_node);
2275 		task = NULL;
2276 	}
2277 
2278 	return NULL;
2279 }
2280 
2281 /**
2282  * cgroup_taskset_migrate - migrate a taskset
2283  * @mgctx: migration context
2284  *
2285  * Migrate tasks in @mgctx as setup by migration preparation functions.
2286  * This function fails iff one of the ->can_attach callbacks fails and
2287  * guarantees that either all or none of the tasks in @mgctx are migrated.
2288  * @mgctx is consumed regardless of success.
2289  */
2290 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2291 {
2292 	struct cgroup_taskset *tset = &mgctx->tset;
2293 	struct cgroup_subsys *ss;
2294 	struct task_struct *task, *tmp_task;
2295 	struct css_set *cset, *tmp_cset;
2296 	int ssid, failed_ssid, ret;
2297 
2298 	/* check that we can legitimately attach to the cgroup */
2299 	if (tset->nr_tasks) {
2300 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2301 			if (ss->can_attach) {
2302 				tset->ssid = ssid;
2303 				ret = ss->can_attach(tset);
2304 				if (ret) {
2305 					failed_ssid = ssid;
2306 					goto out_cancel_attach;
2307 				}
2308 			}
2309 		} while_each_subsys_mask();
2310 	}
2311 
2312 	/*
2313 	 * Now that we're guaranteed success, proceed to move all tasks to
2314 	 * the new cgroup.  There are no failure cases after here, so this
2315 	 * is the commit point.
2316 	 */
2317 	spin_lock_irq(&css_set_lock);
2318 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2319 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2320 			struct css_set *from_cset = task_css_set(task);
2321 			struct css_set *to_cset = cset->mg_dst_cset;
2322 
2323 			get_css_set(to_cset);
2324 			to_cset->nr_tasks++;
2325 			css_set_move_task(task, from_cset, to_cset, true);
2326 			put_css_set_locked(from_cset);
2327 			from_cset->nr_tasks--;
2328 		}
2329 	}
2330 	spin_unlock_irq(&css_set_lock);
2331 
2332 	/*
2333 	 * Migration is committed, all target tasks are now on dst_csets.
2334 	 * Nothing is sensitive to fork() after this point.  Notify
2335 	 * controllers that migration is complete.
2336 	 */
2337 	tset->csets = &tset->dst_csets;
2338 
2339 	if (tset->nr_tasks) {
2340 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2341 			if (ss->attach) {
2342 				tset->ssid = ssid;
2343 				ss->attach(tset);
2344 			}
2345 		} while_each_subsys_mask();
2346 	}
2347 
2348 	ret = 0;
2349 	goto out_release_tset;
2350 
2351 out_cancel_attach:
2352 	if (tset->nr_tasks) {
2353 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2354 			if (ssid == failed_ssid)
2355 				break;
2356 			if (ss->cancel_attach) {
2357 				tset->ssid = ssid;
2358 				ss->cancel_attach(tset);
2359 			}
2360 		} while_each_subsys_mask();
2361 	}
2362 out_release_tset:
2363 	spin_lock_irq(&css_set_lock);
2364 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2365 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2366 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2367 		list_del_init(&cset->mg_node);
2368 	}
2369 	spin_unlock_irq(&css_set_lock);
2370 
2371 	/*
2372 	 * Re-initialize the cgroup_taskset structure in case it is reused
2373 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2374 	 * iteration.
2375 	 */
2376 	tset->nr_tasks = 0;
2377 	tset->csets    = &tset->src_csets;
2378 	return ret;
2379 }
2380 
2381 /**
2382  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2383  * @dst_cgrp: destination cgroup to test
2384  *
2385  * On the default hierarchy, except for the mixable, (possible) thread root
2386  * and threaded cgroups, subtree_control must be zero for migration
2387  * destination cgroups with tasks so that child cgroups don't compete
2388  * against tasks.
2389  */
2390 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2391 {
2392 	/* v1 doesn't have any restriction */
2393 	if (!cgroup_on_dfl(dst_cgrp))
2394 		return 0;
2395 
2396 	/* verify @dst_cgrp can host resources */
2397 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2398 		return -EOPNOTSUPP;
2399 
2400 	/* mixables don't care */
2401 	if (cgroup_is_mixable(dst_cgrp))
2402 		return 0;
2403 
2404 	/*
2405 	 * If @dst_cgrp is already or can become a thread root or is
2406 	 * threaded, it doesn't matter.
2407 	 */
2408 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2409 		return 0;
2410 
2411 	/* apply no-internal-process constraint */
2412 	if (dst_cgrp->subtree_control)
2413 		return -EBUSY;
2414 
2415 	return 0;
2416 }
2417 
2418 /**
2419  * cgroup_migrate_finish - cleanup after attach
2420  * @mgctx: migration context
2421  *
2422  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2423  * those functions for details.
2424  */
2425 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2426 {
2427 	LIST_HEAD(preloaded);
2428 	struct css_set *cset, *tmp_cset;
2429 
2430 	lockdep_assert_held(&cgroup_mutex);
2431 
2432 	spin_lock_irq(&css_set_lock);
2433 
2434 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2435 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2436 
2437 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2438 		cset->mg_src_cgrp = NULL;
2439 		cset->mg_dst_cgrp = NULL;
2440 		cset->mg_dst_cset = NULL;
2441 		list_del_init(&cset->mg_preload_node);
2442 		put_css_set_locked(cset);
2443 	}
2444 
2445 	spin_unlock_irq(&css_set_lock);
2446 }
2447 
2448 /**
2449  * cgroup_migrate_add_src - add a migration source css_set
2450  * @src_cset: the source css_set to add
2451  * @dst_cgrp: the destination cgroup
2452  * @mgctx: migration context
2453  *
2454  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2455  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2456  * up by cgroup_migrate_finish().
2457  *
2458  * This function may be called without holding cgroup_threadgroup_rwsem
2459  * even if the target is a process.  Threads may be created and destroyed
2460  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2461  * into play and the preloaded css_sets are guaranteed to cover all
2462  * migrations.
2463  */
2464 void cgroup_migrate_add_src(struct css_set *src_cset,
2465 			    struct cgroup *dst_cgrp,
2466 			    struct cgroup_mgctx *mgctx)
2467 {
2468 	struct cgroup *src_cgrp;
2469 
2470 	lockdep_assert_held(&cgroup_mutex);
2471 	lockdep_assert_held(&css_set_lock);
2472 
2473 	/*
2474 	 * If ->dead, @src_set is associated with one or more dead cgroups
2475 	 * and doesn't contain any migratable tasks.  Ignore it early so
2476 	 * that the rest of migration path doesn't get confused by it.
2477 	 */
2478 	if (src_cset->dead)
2479 		return;
2480 
2481 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2482 
2483 	if (!list_empty(&src_cset->mg_preload_node))
2484 		return;
2485 
2486 	WARN_ON(src_cset->mg_src_cgrp);
2487 	WARN_ON(src_cset->mg_dst_cgrp);
2488 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2489 	WARN_ON(!list_empty(&src_cset->mg_node));
2490 
2491 	src_cset->mg_src_cgrp = src_cgrp;
2492 	src_cset->mg_dst_cgrp = dst_cgrp;
2493 	get_css_set(src_cset);
2494 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2495 }
2496 
2497 /**
2498  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2499  * @mgctx: migration context
2500  *
2501  * Tasks are about to be moved and all the source css_sets have been
2502  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2503  * pins all destination css_sets, links each to its source, and append them
2504  * to @mgctx->preloaded_dst_csets.
2505  *
2506  * This function must be called after cgroup_migrate_add_src() has been
2507  * called on each migration source css_set.  After migration is performed
2508  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2509  * @mgctx.
2510  */
2511 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2512 {
2513 	struct css_set *src_cset, *tmp_cset;
2514 
2515 	lockdep_assert_held(&cgroup_mutex);
2516 
2517 	/* look up the dst cset for each src cset and link it to src */
2518 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2519 				 mg_preload_node) {
2520 		struct css_set *dst_cset;
2521 		struct cgroup_subsys *ss;
2522 		int ssid;
2523 
2524 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2525 		if (!dst_cset)
2526 			goto err;
2527 
2528 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2529 
2530 		/*
2531 		 * If src cset equals dst, it's noop.  Drop the src.
2532 		 * cgroup_migrate() will skip the cset too.  Note that we
2533 		 * can't handle src == dst as some nodes are used by both.
2534 		 */
2535 		if (src_cset == dst_cset) {
2536 			src_cset->mg_src_cgrp = NULL;
2537 			src_cset->mg_dst_cgrp = NULL;
2538 			list_del_init(&src_cset->mg_preload_node);
2539 			put_css_set(src_cset);
2540 			put_css_set(dst_cset);
2541 			continue;
2542 		}
2543 
2544 		src_cset->mg_dst_cset = dst_cset;
2545 
2546 		if (list_empty(&dst_cset->mg_preload_node))
2547 			list_add_tail(&dst_cset->mg_preload_node,
2548 				      &mgctx->preloaded_dst_csets);
2549 		else
2550 			put_css_set(dst_cset);
2551 
2552 		for_each_subsys(ss, ssid)
2553 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2554 				mgctx->ss_mask |= 1 << ssid;
2555 	}
2556 
2557 	return 0;
2558 err:
2559 	cgroup_migrate_finish(mgctx);
2560 	return -ENOMEM;
2561 }
2562 
2563 /**
2564  * cgroup_migrate - migrate a process or task to a cgroup
2565  * @leader: the leader of the process or the task to migrate
2566  * @threadgroup: whether @leader points to the whole process or a single task
2567  * @mgctx: migration context
2568  *
2569  * Migrate a process or task denoted by @leader.  If migrating a process,
2570  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2571  * responsible for invoking cgroup_migrate_add_src() and
2572  * cgroup_migrate_prepare_dst() on the targets before invoking this
2573  * function and following up with cgroup_migrate_finish().
2574  *
2575  * As long as a controller's ->can_attach() doesn't fail, this function is
2576  * guaranteed to succeed.  This means that, excluding ->can_attach()
2577  * failure, when migrating multiple targets, the success or failure can be
2578  * decided for all targets by invoking group_migrate_prepare_dst() before
2579  * actually starting migrating.
2580  */
2581 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2582 		   struct cgroup_mgctx *mgctx)
2583 {
2584 	struct task_struct *task;
2585 
2586 	/*
2587 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2588 	 * already PF_EXITING could be freed from underneath us unless we
2589 	 * take an rcu_read_lock.
2590 	 */
2591 	spin_lock_irq(&css_set_lock);
2592 	rcu_read_lock();
2593 	task = leader;
2594 	do {
2595 		cgroup_migrate_add_task(task, mgctx);
2596 		if (!threadgroup)
2597 			break;
2598 	} while_each_thread(leader, task);
2599 	rcu_read_unlock();
2600 	spin_unlock_irq(&css_set_lock);
2601 
2602 	return cgroup_migrate_execute(mgctx);
2603 }
2604 
2605 /**
2606  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2607  * @dst_cgrp: the cgroup to attach to
2608  * @leader: the task or the leader of the threadgroup to be attached
2609  * @threadgroup: attach the whole threadgroup?
2610  *
2611  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2612  */
2613 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2614 		       bool threadgroup)
2615 {
2616 	DEFINE_CGROUP_MGCTX(mgctx);
2617 	struct task_struct *task;
2618 	int ret;
2619 
2620 	ret = cgroup_migrate_vet_dst(dst_cgrp);
2621 	if (ret)
2622 		return ret;
2623 
2624 	/* look up all src csets */
2625 	spin_lock_irq(&css_set_lock);
2626 	rcu_read_lock();
2627 	task = leader;
2628 	do {
2629 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2630 		if (!threadgroup)
2631 			break;
2632 	} while_each_thread(leader, task);
2633 	rcu_read_unlock();
2634 	spin_unlock_irq(&css_set_lock);
2635 
2636 	/* prepare dst csets and commit */
2637 	ret = cgroup_migrate_prepare_dst(&mgctx);
2638 	if (!ret)
2639 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2640 
2641 	cgroup_migrate_finish(&mgctx);
2642 
2643 	if (!ret)
2644 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2645 
2646 	return ret;
2647 }
2648 
2649 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2650 	__acquires(&cgroup_threadgroup_rwsem)
2651 {
2652 	struct task_struct *tsk;
2653 	pid_t pid;
2654 
2655 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2656 		return ERR_PTR(-EINVAL);
2657 
2658 	percpu_down_write(&cgroup_threadgroup_rwsem);
2659 
2660 	rcu_read_lock();
2661 	if (pid) {
2662 		tsk = find_task_by_vpid(pid);
2663 		if (!tsk) {
2664 			tsk = ERR_PTR(-ESRCH);
2665 			goto out_unlock_threadgroup;
2666 		}
2667 	} else {
2668 		tsk = current;
2669 	}
2670 
2671 	if (threadgroup)
2672 		tsk = tsk->group_leader;
2673 
2674 	/*
2675 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2676 	 * If userland migrates such a kthread to a non-root cgroup, it can
2677 	 * become trapped in a cpuset, or RT kthread may be born in a
2678 	 * cgroup with no rt_runtime allocated.  Just say no.
2679 	 */
2680 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2681 		tsk = ERR_PTR(-EINVAL);
2682 		goto out_unlock_threadgroup;
2683 	}
2684 
2685 	get_task_struct(tsk);
2686 	goto out_unlock_rcu;
2687 
2688 out_unlock_threadgroup:
2689 	percpu_up_write(&cgroup_threadgroup_rwsem);
2690 out_unlock_rcu:
2691 	rcu_read_unlock();
2692 	return tsk;
2693 }
2694 
2695 void cgroup_procs_write_finish(struct task_struct *task)
2696 	__releases(&cgroup_threadgroup_rwsem)
2697 {
2698 	struct cgroup_subsys *ss;
2699 	int ssid;
2700 
2701 	/* release reference from cgroup_procs_write_start() */
2702 	put_task_struct(task);
2703 
2704 	percpu_up_write(&cgroup_threadgroup_rwsem);
2705 	for_each_subsys(ss, ssid)
2706 		if (ss->post_attach)
2707 			ss->post_attach();
2708 }
2709 
2710 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2711 {
2712 	struct cgroup_subsys *ss;
2713 	bool printed = false;
2714 	int ssid;
2715 
2716 	do_each_subsys_mask(ss, ssid, ss_mask) {
2717 		if (printed)
2718 			seq_putc(seq, ' ');
2719 		seq_printf(seq, "%s", ss->name);
2720 		printed = true;
2721 	} while_each_subsys_mask();
2722 	if (printed)
2723 		seq_putc(seq, '\n');
2724 }
2725 
2726 /* show controllers which are enabled from the parent */
2727 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2728 {
2729 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2730 
2731 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2732 	return 0;
2733 }
2734 
2735 /* show controllers which are enabled for a given cgroup's children */
2736 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2737 {
2738 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2739 
2740 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2741 	return 0;
2742 }
2743 
2744 /**
2745  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2746  * @cgrp: root of the subtree to update csses for
2747  *
2748  * @cgrp's control masks have changed and its subtree's css associations
2749  * need to be updated accordingly.  This function looks up all css_sets
2750  * which are attached to the subtree, creates the matching updated css_sets
2751  * and migrates the tasks to the new ones.
2752  */
2753 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2754 {
2755 	DEFINE_CGROUP_MGCTX(mgctx);
2756 	struct cgroup_subsys_state *d_css;
2757 	struct cgroup *dsct;
2758 	struct css_set *src_cset;
2759 	int ret;
2760 
2761 	lockdep_assert_held(&cgroup_mutex);
2762 
2763 	percpu_down_write(&cgroup_threadgroup_rwsem);
2764 
2765 	/* look up all csses currently attached to @cgrp's subtree */
2766 	spin_lock_irq(&css_set_lock);
2767 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2768 		struct cgrp_cset_link *link;
2769 
2770 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2771 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2772 	}
2773 	spin_unlock_irq(&css_set_lock);
2774 
2775 	/* NULL dst indicates self on default hierarchy */
2776 	ret = cgroup_migrate_prepare_dst(&mgctx);
2777 	if (ret)
2778 		goto out_finish;
2779 
2780 	spin_lock_irq(&css_set_lock);
2781 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2782 		struct task_struct *task, *ntask;
2783 
2784 		/* all tasks in src_csets need to be migrated */
2785 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2786 			cgroup_migrate_add_task(task, &mgctx);
2787 	}
2788 	spin_unlock_irq(&css_set_lock);
2789 
2790 	ret = cgroup_migrate_execute(&mgctx);
2791 out_finish:
2792 	cgroup_migrate_finish(&mgctx);
2793 	percpu_up_write(&cgroup_threadgroup_rwsem);
2794 	return ret;
2795 }
2796 
2797 /**
2798  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2799  * @cgrp: root of the target subtree
2800  *
2801  * Because css offlining is asynchronous, userland may try to re-enable a
2802  * controller while the previous css is still around.  This function grabs
2803  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2804  */
2805 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2806 	__acquires(&cgroup_mutex)
2807 {
2808 	struct cgroup *dsct;
2809 	struct cgroup_subsys_state *d_css;
2810 	struct cgroup_subsys *ss;
2811 	int ssid;
2812 
2813 restart:
2814 	mutex_lock(&cgroup_mutex);
2815 
2816 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2817 		for_each_subsys(ss, ssid) {
2818 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2819 			DEFINE_WAIT(wait);
2820 
2821 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2822 				continue;
2823 
2824 			cgroup_get_live(dsct);
2825 			prepare_to_wait(&dsct->offline_waitq, &wait,
2826 					TASK_UNINTERRUPTIBLE);
2827 
2828 			mutex_unlock(&cgroup_mutex);
2829 			schedule();
2830 			finish_wait(&dsct->offline_waitq, &wait);
2831 
2832 			cgroup_put(dsct);
2833 			goto restart;
2834 		}
2835 	}
2836 }
2837 
2838 /**
2839  * cgroup_save_control - save control masks of a subtree
2840  * @cgrp: root of the target subtree
2841  *
2842  * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2843  * prefixed fields for @cgrp's subtree including @cgrp itself.
2844  */
2845 static void cgroup_save_control(struct cgroup *cgrp)
2846 {
2847 	struct cgroup *dsct;
2848 	struct cgroup_subsys_state *d_css;
2849 
2850 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2851 		dsct->old_subtree_control = dsct->subtree_control;
2852 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2853 	}
2854 }
2855 
2856 /**
2857  * cgroup_propagate_control - refresh control masks of a subtree
2858  * @cgrp: root of the target subtree
2859  *
2860  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2861  * ->subtree_control and propagate controller availability through the
2862  * subtree so that descendants don't have unavailable controllers enabled.
2863  */
2864 static void cgroup_propagate_control(struct cgroup *cgrp)
2865 {
2866 	struct cgroup *dsct;
2867 	struct cgroup_subsys_state *d_css;
2868 
2869 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2870 		dsct->subtree_control &= cgroup_control(dsct);
2871 		dsct->subtree_ss_mask =
2872 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2873 						    cgroup_ss_mask(dsct));
2874 	}
2875 }
2876 
2877 /**
2878  * cgroup_restore_control - restore control masks of a subtree
2879  * @cgrp: root of the target subtree
2880  *
2881  * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2882  * prefixed fields for @cgrp's subtree including @cgrp itself.
2883  */
2884 static void cgroup_restore_control(struct cgroup *cgrp)
2885 {
2886 	struct cgroup *dsct;
2887 	struct cgroup_subsys_state *d_css;
2888 
2889 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2890 		dsct->subtree_control = dsct->old_subtree_control;
2891 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2892 	}
2893 }
2894 
2895 static bool css_visible(struct cgroup_subsys_state *css)
2896 {
2897 	struct cgroup_subsys *ss = css->ss;
2898 	struct cgroup *cgrp = css->cgroup;
2899 
2900 	if (cgroup_control(cgrp) & (1 << ss->id))
2901 		return true;
2902 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2903 		return false;
2904 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2905 }
2906 
2907 /**
2908  * cgroup_apply_control_enable - enable or show csses according to control
2909  * @cgrp: root of the target subtree
2910  *
2911  * Walk @cgrp's subtree and create new csses or make the existing ones
2912  * visible.  A css is created invisible if it's being implicitly enabled
2913  * through dependency.  An invisible css is made visible when the userland
2914  * explicitly enables it.
2915  *
2916  * Returns 0 on success, -errno on failure.  On failure, csses which have
2917  * been processed already aren't cleaned up.  The caller is responsible for
2918  * cleaning up with cgroup_apply_control_disable().
2919  */
2920 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2921 {
2922 	struct cgroup *dsct;
2923 	struct cgroup_subsys_state *d_css;
2924 	struct cgroup_subsys *ss;
2925 	int ssid, ret;
2926 
2927 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2928 		for_each_subsys(ss, ssid) {
2929 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2930 
2931 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2932 
2933 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2934 				continue;
2935 
2936 			if (!css) {
2937 				css = css_create(dsct, ss);
2938 				if (IS_ERR(css))
2939 					return PTR_ERR(css);
2940 			}
2941 
2942 			if (css_visible(css)) {
2943 				ret = css_populate_dir(css);
2944 				if (ret)
2945 					return ret;
2946 			}
2947 		}
2948 	}
2949 
2950 	return 0;
2951 }
2952 
2953 /**
2954  * cgroup_apply_control_disable - kill or hide csses according to control
2955  * @cgrp: root of the target subtree
2956  *
2957  * Walk @cgrp's subtree and kill and hide csses so that they match
2958  * cgroup_ss_mask() and cgroup_visible_mask().
2959  *
2960  * A css is hidden when the userland requests it to be disabled while other
2961  * subsystems are still depending on it.  The css must not actively control
2962  * resources and be in the vanilla state if it's made visible again later.
2963  * Controllers which may be depended upon should provide ->css_reset() for
2964  * this purpose.
2965  */
2966 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2967 {
2968 	struct cgroup *dsct;
2969 	struct cgroup_subsys_state *d_css;
2970 	struct cgroup_subsys *ss;
2971 	int ssid;
2972 
2973 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2974 		for_each_subsys(ss, ssid) {
2975 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2976 
2977 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2978 
2979 			if (!css)
2980 				continue;
2981 
2982 			if (css->parent &&
2983 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2984 				kill_css(css);
2985 			} else if (!css_visible(css)) {
2986 				css_clear_dir(css);
2987 				if (ss->css_reset)
2988 					ss->css_reset(css);
2989 			}
2990 		}
2991 	}
2992 }
2993 
2994 /**
2995  * cgroup_apply_control - apply control mask updates to the subtree
2996  * @cgrp: root of the target subtree
2997  *
2998  * subsystems can be enabled and disabled in a subtree using the following
2999  * steps.
3000  *
3001  * 1. Call cgroup_save_control() to stash the current state.
3002  * 2. Update ->subtree_control masks in the subtree as desired.
3003  * 3. Call cgroup_apply_control() to apply the changes.
3004  * 4. Optionally perform other related operations.
3005  * 5. Call cgroup_finalize_control() to finish up.
3006  *
3007  * This function implements step 3 and propagates the mask changes
3008  * throughout @cgrp's subtree, updates csses accordingly and perform
3009  * process migrations.
3010  */
3011 static int cgroup_apply_control(struct cgroup *cgrp)
3012 {
3013 	int ret;
3014 
3015 	cgroup_propagate_control(cgrp);
3016 
3017 	ret = cgroup_apply_control_enable(cgrp);
3018 	if (ret)
3019 		return ret;
3020 
3021 	/*
3022 	 * At this point, cgroup_e_css() results reflect the new csses
3023 	 * making the following cgroup_update_dfl_csses() properly update
3024 	 * css associations of all tasks in the subtree.
3025 	 */
3026 	ret = cgroup_update_dfl_csses(cgrp);
3027 	if (ret)
3028 		return ret;
3029 
3030 	return 0;
3031 }
3032 
3033 /**
3034  * cgroup_finalize_control - finalize control mask update
3035  * @cgrp: root of the target subtree
3036  * @ret: the result of the update
3037  *
3038  * Finalize control mask update.  See cgroup_apply_control() for more info.
3039  */
3040 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3041 {
3042 	if (ret) {
3043 		cgroup_restore_control(cgrp);
3044 		cgroup_propagate_control(cgrp);
3045 	}
3046 
3047 	cgroup_apply_control_disable(cgrp);
3048 }
3049 
3050 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3051 {
3052 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3053 
3054 	/* if nothing is getting enabled, nothing to worry about */
3055 	if (!enable)
3056 		return 0;
3057 
3058 	/* can @cgrp host any resources? */
3059 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3060 		return -EOPNOTSUPP;
3061 
3062 	/* mixables don't care */
3063 	if (cgroup_is_mixable(cgrp))
3064 		return 0;
3065 
3066 	if (domain_enable) {
3067 		/* can't enable domain controllers inside a thread subtree */
3068 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3069 			return -EOPNOTSUPP;
3070 	} else {
3071 		/*
3072 		 * Threaded controllers can handle internal competitions
3073 		 * and are always allowed inside a (prospective) thread
3074 		 * subtree.
3075 		 */
3076 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3077 			return 0;
3078 	}
3079 
3080 	/*
3081 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3082 	 * child cgroups competing against tasks.
3083 	 */
3084 	if (cgroup_has_tasks(cgrp))
3085 		return -EBUSY;
3086 
3087 	return 0;
3088 }
3089 
3090 /* change the enabled child controllers for a cgroup in the default hierarchy */
3091 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3092 					    char *buf, size_t nbytes,
3093 					    loff_t off)
3094 {
3095 	u16 enable = 0, disable = 0;
3096 	struct cgroup *cgrp, *child;
3097 	struct cgroup_subsys *ss;
3098 	char *tok;
3099 	int ssid, ret;
3100 
3101 	/*
3102 	 * Parse input - space separated list of subsystem names prefixed
3103 	 * with either + or -.
3104 	 */
3105 	buf = strstrip(buf);
3106 	while ((tok = strsep(&buf, " "))) {
3107 		if (tok[0] == '\0')
3108 			continue;
3109 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3110 			if (!cgroup_ssid_enabled(ssid) ||
3111 			    strcmp(tok + 1, ss->name))
3112 				continue;
3113 
3114 			if (*tok == '+') {
3115 				enable |= 1 << ssid;
3116 				disable &= ~(1 << ssid);
3117 			} else if (*tok == '-') {
3118 				disable |= 1 << ssid;
3119 				enable &= ~(1 << ssid);
3120 			} else {
3121 				return -EINVAL;
3122 			}
3123 			break;
3124 		} while_each_subsys_mask();
3125 		if (ssid == CGROUP_SUBSYS_COUNT)
3126 			return -EINVAL;
3127 	}
3128 
3129 	cgrp = cgroup_kn_lock_live(of->kn, true);
3130 	if (!cgrp)
3131 		return -ENODEV;
3132 
3133 	for_each_subsys(ss, ssid) {
3134 		if (enable & (1 << ssid)) {
3135 			if (cgrp->subtree_control & (1 << ssid)) {
3136 				enable &= ~(1 << ssid);
3137 				continue;
3138 			}
3139 
3140 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3141 				ret = -ENOENT;
3142 				goto out_unlock;
3143 			}
3144 		} else if (disable & (1 << ssid)) {
3145 			if (!(cgrp->subtree_control & (1 << ssid))) {
3146 				disable &= ~(1 << ssid);
3147 				continue;
3148 			}
3149 
3150 			/* a child has it enabled? */
3151 			cgroup_for_each_live_child(child, cgrp) {
3152 				if (child->subtree_control & (1 << ssid)) {
3153 					ret = -EBUSY;
3154 					goto out_unlock;
3155 				}
3156 			}
3157 		}
3158 	}
3159 
3160 	if (!enable && !disable) {
3161 		ret = 0;
3162 		goto out_unlock;
3163 	}
3164 
3165 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3166 	if (ret)
3167 		goto out_unlock;
3168 
3169 	/* save and update control masks and prepare csses */
3170 	cgroup_save_control(cgrp);
3171 
3172 	cgrp->subtree_control |= enable;
3173 	cgrp->subtree_control &= ~disable;
3174 
3175 	ret = cgroup_apply_control(cgrp);
3176 	cgroup_finalize_control(cgrp, ret);
3177 	if (ret)
3178 		goto out_unlock;
3179 
3180 	kernfs_activate(cgrp->kn);
3181 out_unlock:
3182 	cgroup_kn_unlock(of->kn);
3183 	return ret ?: nbytes;
3184 }
3185 
3186 /**
3187  * cgroup_enable_threaded - make @cgrp threaded
3188  * @cgrp: the target cgroup
3189  *
3190  * Called when "threaded" is written to the cgroup.type interface file and
3191  * tries to make @cgrp threaded and join the parent's resource domain.
3192  * This function is never called on the root cgroup as cgroup.type doesn't
3193  * exist on it.
3194  */
3195 static int cgroup_enable_threaded(struct cgroup *cgrp)
3196 {
3197 	struct cgroup *parent = cgroup_parent(cgrp);
3198 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3199 	int ret;
3200 
3201 	lockdep_assert_held(&cgroup_mutex);
3202 
3203 	/* noop if already threaded */
3204 	if (cgroup_is_threaded(cgrp))
3205 		return 0;
3206 
3207 	/*
3208 	 * If @cgroup is populated or has domain controllers enabled, it
3209 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3210 	 * test can catch the same conditions, that's only when @parent is
3211 	 * not mixable, so let's check it explicitly.
3212 	 */
3213 	if (cgroup_is_populated(cgrp) ||
3214 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3215 		return -EOPNOTSUPP;
3216 
3217 	/* we're joining the parent's domain, ensure its validity */
3218 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3219 	    !cgroup_can_be_thread_root(dom_cgrp))
3220 		return -EOPNOTSUPP;
3221 
3222 	/*
3223 	 * The following shouldn't cause actual migrations and should
3224 	 * always succeed.
3225 	 */
3226 	cgroup_save_control(cgrp);
3227 
3228 	cgrp->dom_cgrp = dom_cgrp;
3229 	ret = cgroup_apply_control(cgrp);
3230 	if (!ret)
3231 		parent->nr_threaded_children++;
3232 	else
3233 		cgrp->dom_cgrp = cgrp;
3234 
3235 	cgroup_finalize_control(cgrp, ret);
3236 	return ret;
3237 }
3238 
3239 static int cgroup_type_show(struct seq_file *seq, void *v)
3240 {
3241 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3242 
3243 	if (cgroup_is_threaded(cgrp))
3244 		seq_puts(seq, "threaded\n");
3245 	else if (!cgroup_is_valid_domain(cgrp))
3246 		seq_puts(seq, "domain invalid\n");
3247 	else if (cgroup_is_thread_root(cgrp))
3248 		seq_puts(seq, "domain threaded\n");
3249 	else
3250 		seq_puts(seq, "domain\n");
3251 
3252 	return 0;
3253 }
3254 
3255 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3256 				 size_t nbytes, loff_t off)
3257 {
3258 	struct cgroup *cgrp;
3259 	int ret;
3260 
3261 	/* only switching to threaded mode is supported */
3262 	if (strcmp(strstrip(buf), "threaded"))
3263 		return -EINVAL;
3264 
3265 	cgrp = cgroup_kn_lock_live(of->kn, false);
3266 	if (!cgrp)
3267 		return -ENOENT;
3268 
3269 	/* threaded can only be enabled */
3270 	ret = cgroup_enable_threaded(cgrp);
3271 
3272 	cgroup_kn_unlock(of->kn);
3273 	return ret ?: nbytes;
3274 }
3275 
3276 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3277 {
3278 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3279 	int descendants = READ_ONCE(cgrp->max_descendants);
3280 
3281 	if (descendants == INT_MAX)
3282 		seq_puts(seq, "max\n");
3283 	else
3284 		seq_printf(seq, "%d\n", descendants);
3285 
3286 	return 0;
3287 }
3288 
3289 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3290 					   char *buf, size_t nbytes, loff_t off)
3291 {
3292 	struct cgroup *cgrp;
3293 	int descendants;
3294 	ssize_t ret;
3295 
3296 	buf = strstrip(buf);
3297 	if (!strcmp(buf, "max")) {
3298 		descendants = INT_MAX;
3299 	} else {
3300 		ret = kstrtoint(buf, 0, &descendants);
3301 		if (ret)
3302 			return ret;
3303 	}
3304 
3305 	if (descendants < 0)
3306 		return -ERANGE;
3307 
3308 	cgrp = cgroup_kn_lock_live(of->kn, false);
3309 	if (!cgrp)
3310 		return -ENOENT;
3311 
3312 	cgrp->max_descendants = descendants;
3313 
3314 	cgroup_kn_unlock(of->kn);
3315 
3316 	return nbytes;
3317 }
3318 
3319 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3320 {
3321 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3322 	int depth = READ_ONCE(cgrp->max_depth);
3323 
3324 	if (depth == INT_MAX)
3325 		seq_puts(seq, "max\n");
3326 	else
3327 		seq_printf(seq, "%d\n", depth);
3328 
3329 	return 0;
3330 }
3331 
3332 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3333 				      char *buf, size_t nbytes, loff_t off)
3334 {
3335 	struct cgroup *cgrp;
3336 	ssize_t ret;
3337 	int depth;
3338 
3339 	buf = strstrip(buf);
3340 	if (!strcmp(buf, "max")) {
3341 		depth = INT_MAX;
3342 	} else {
3343 		ret = kstrtoint(buf, 0, &depth);
3344 		if (ret)
3345 			return ret;
3346 	}
3347 
3348 	if (depth < 0)
3349 		return -ERANGE;
3350 
3351 	cgrp = cgroup_kn_lock_live(of->kn, false);
3352 	if (!cgrp)
3353 		return -ENOENT;
3354 
3355 	cgrp->max_depth = depth;
3356 
3357 	cgroup_kn_unlock(of->kn);
3358 
3359 	return nbytes;
3360 }
3361 
3362 static int cgroup_events_show(struct seq_file *seq, void *v)
3363 {
3364 	seq_printf(seq, "populated %d\n",
3365 		   cgroup_is_populated(seq_css(seq)->cgroup));
3366 	return 0;
3367 }
3368 
3369 static int cgroup_stat_show(struct seq_file *seq, void *v)
3370 {
3371 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3372 
3373 	seq_printf(seq, "nr_descendants %d\n",
3374 		   cgroup->nr_descendants);
3375 	seq_printf(seq, "nr_dying_descendants %d\n",
3376 		   cgroup->nr_dying_descendants);
3377 
3378 	return 0;
3379 }
3380 
3381 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3382 						 struct cgroup *cgrp, int ssid)
3383 {
3384 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3385 	struct cgroup_subsys_state *css;
3386 	int ret;
3387 
3388 	if (!ss->css_extra_stat_show)
3389 		return 0;
3390 
3391 	css = cgroup_tryget_css(cgrp, ss);
3392 	if (!css)
3393 		return 0;
3394 
3395 	ret = ss->css_extra_stat_show(seq, css);
3396 	css_put(css);
3397 	return ret;
3398 }
3399 
3400 static int cpu_stat_show(struct seq_file *seq, void *v)
3401 {
3402 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3403 	int ret = 0;
3404 
3405 	cgroup_base_stat_cputime_show(seq);
3406 #ifdef CONFIG_CGROUP_SCHED
3407 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3408 #endif
3409 	return ret;
3410 }
3411 
3412 static int cgroup_file_open(struct kernfs_open_file *of)
3413 {
3414 	struct cftype *cft = of->kn->priv;
3415 
3416 	if (cft->open)
3417 		return cft->open(of);
3418 	return 0;
3419 }
3420 
3421 static void cgroup_file_release(struct kernfs_open_file *of)
3422 {
3423 	struct cftype *cft = of->kn->priv;
3424 
3425 	if (cft->release)
3426 		cft->release(of);
3427 }
3428 
3429 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3430 				 size_t nbytes, loff_t off)
3431 {
3432 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3433 	struct cgroup *cgrp = of->kn->parent->priv;
3434 	struct cftype *cft = of->kn->priv;
3435 	struct cgroup_subsys_state *css;
3436 	int ret;
3437 
3438 	/*
3439 	 * If namespaces are delegation boundaries, disallow writes to
3440 	 * files in an non-init namespace root from inside the namespace
3441 	 * except for the files explicitly marked delegatable -
3442 	 * cgroup.procs and cgroup.subtree_control.
3443 	 */
3444 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3445 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3446 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3447 		return -EPERM;
3448 
3449 	if (cft->write)
3450 		return cft->write(of, buf, nbytes, off);
3451 
3452 	/*
3453 	 * kernfs guarantees that a file isn't deleted with operations in
3454 	 * flight, which means that the matching css is and stays alive and
3455 	 * doesn't need to be pinned.  The RCU locking is not necessary
3456 	 * either.  It's just for the convenience of using cgroup_css().
3457 	 */
3458 	rcu_read_lock();
3459 	css = cgroup_css(cgrp, cft->ss);
3460 	rcu_read_unlock();
3461 
3462 	if (cft->write_u64) {
3463 		unsigned long long v;
3464 		ret = kstrtoull(buf, 0, &v);
3465 		if (!ret)
3466 			ret = cft->write_u64(css, cft, v);
3467 	} else if (cft->write_s64) {
3468 		long long v;
3469 		ret = kstrtoll(buf, 0, &v);
3470 		if (!ret)
3471 			ret = cft->write_s64(css, cft, v);
3472 	} else {
3473 		ret = -EINVAL;
3474 	}
3475 
3476 	return ret ?: nbytes;
3477 }
3478 
3479 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3480 {
3481 	return seq_cft(seq)->seq_start(seq, ppos);
3482 }
3483 
3484 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3485 {
3486 	return seq_cft(seq)->seq_next(seq, v, ppos);
3487 }
3488 
3489 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3490 {
3491 	if (seq_cft(seq)->seq_stop)
3492 		seq_cft(seq)->seq_stop(seq, v);
3493 }
3494 
3495 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3496 {
3497 	struct cftype *cft = seq_cft(m);
3498 	struct cgroup_subsys_state *css = seq_css(m);
3499 
3500 	if (cft->seq_show)
3501 		return cft->seq_show(m, arg);
3502 
3503 	if (cft->read_u64)
3504 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3505 	else if (cft->read_s64)
3506 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3507 	else
3508 		return -EINVAL;
3509 	return 0;
3510 }
3511 
3512 static struct kernfs_ops cgroup_kf_single_ops = {
3513 	.atomic_write_len	= PAGE_SIZE,
3514 	.open			= cgroup_file_open,
3515 	.release		= cgroup_file_release,
3516 	.write			= cgroup_file_write,
3517 	.seq_show		= cgroup_seqfile_show,
3518 };
3519 
3520 static struct kernfs_ops cgroup_kf_ops = {
3521 	.atomic_write_len	= PAGE_SIZE,
3522 	.open			= cgroup_file_open,
3523 	.release		= cgroup_file_release,
3524 	.write			= cgroup_file_write,
3525 	.seq_start		= cgroup_seqfile_start,
3526 	.seq_next		= cgroup_seqfile_next,
3527 	.seq_stop		= cgroup_seqfile_stop,
3528 	.seq_show		= cgroup_seqfile_show,
3529 };
3530 
3531 /* set uid and gid of cgroup dirs and files to that of the creator */
3532 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3533 {
3534 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3535 			       .ia_uid = current_fsuid(),
3536 			       .ia_gid = current_fsgid(), };
3537 
3538 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3539 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3540 		return 0;
3541 
3542 	return kernfs_setattr(kn, &iattr);
3543 }
3544 
3545 static void cgroup_file_notify_timer(struct timer_list *timer)
3546 {
3547 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3548 					notify_timer));
3549 }
3550 
3551 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3552 			   struct cftype *cft)
3553 {
3554 	char name[CGROUP_FILE_NAME_MAX];
3555 	struct kernfs_node *kn;
3556 	struct lock_class_key *key = NULL;
3557 	int ret;
3558 
3559 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3560 	key = &cft->lockdep_key;
3561 #endif
3562 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3563 				  cgroup_file_mode(cft),
3564 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3565 				  0, cft->kf_ops, cft,
3566 				  NULL, key);
3567 	if (IS_ERR(kn))
3568 		return PTR_ERR(kn);
3569 
3570 	ret = cgroup_kn_set_ugid(kn);
3571 	if (ret) {
3572 		kernfs_remove(kn);
3573 		return ret;
3574 	}
3575 
3576 	if (cft->file_offset) {
3577 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3578 
3579 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3580 
3581 		spin_lock_irq(&cgroup_file_kn_lock);
3582 		cfile->kn = kn;
3583 		spin_unlock_irq(&cgroup_file_kn_lock);
3584 	}
3585 
3586 	return 0;
3587 }
3588 
3589 /**
3590  * cgroup_addrm_files - add or remove files to a cgroup directory
3591  * @css: the target css
3592  * @cgrp: the target cgroup (usually css->cgroup)
3593  * @cfts: array of cftypes to be added
3594  * @is_add: whether to add or remove
3595  *
3596  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3597  * For removals, this function never fails.
3598  */
3599 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3600 			      struct cgroup *cgrp, struct cftype cfts[],
3601 			      bool is_add)
3602 {
3603 	struct cftype *cft, *cft_end = NULL;
3604 	int ret = 0;
3605 
3606 	lockdep_assert_held(&cgroup_mutex);
3607 
3608 restart:
3609 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3610 		/* does cft->flags tell us to skip this file on @cgrp? */
3611 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3612 			continue;
3613 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3614 			continue;
3615 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3616 			continue;
3617 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3618 			continue;
3619 
3620 		if (is_add) {
3621 			ret = cgroup_add_file(css, cgrp, cft);
3622 			if (ret) {
3623 				pr_warn("%s: failed to add %s, err=%d\n",
3624 					__func__, cft->name, ret);
3625 				cft_end = cft;
3626 				is_add = false;
3627 				goto restart;
3628 			}
3629 		} else {
3630 			cgroup_rm_file(cgrp, cft);
3631 		}
3632 	}
3633 	return ret;
3634 }
3635 
3636 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3637 {
3638 	struct cgroup_subsys *ss = cfts[0].ss;
3639 	struct cgroup *root = &ss->root->cgrp;
3640 	struct cgroup_subsys_state *css;
3641 	int ret = 0;
3642 
3643 	lockdep_assert_held(&cgroup_mutex);
3644 
3645 	/* add/rm files for all cgroups created before */
3646 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3647 		struct cgroup *cgrp = css->cgroup;
3648 
3649 		if (!(css->flags & CSS_VISIBLE))
3650 			continue;
3651 
3652 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3653 		if (ret)
3654 			break;
3655 	}
3656 
3657 	if (is_add && !ret)
3658 		kernfs_activate(root->kn);
3659 	return ret;
3660 }
3661 
3662 static void cgroup_exit_cftypes(struct cftype *cfts)
3663 {
3664 	struct cftype *cft;
3665 
3666 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3667 		/* free copy for custom atomic_write_len, see init_cftypes() */
3668 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3669 			kfree(cft->kf_ops);
3670 		cft->kf_ops = NULL;
3671 		cft->ss = NULL;
3672 
3673 		/* revert flags set by cgroup core while adding @cfts */
3674 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3675 	}
3676 }
3677 
3678 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3679 {
3680 	struct cftype *cft;
3681 
3682 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3683 		struct kernfs_ops *kf_ops;
3684 
3685 		WARN_ON(cft->ss || cft->kf_ops);
3686 
3687 		if (cft->seq_start)
3688 			kf_ops = &cgroup_kf_ops;
3689 		else
3690 			kf_ops = &cgroup_kf_single_ops;
3691 
3692 		/*
3693 		 * Ugh... if @cft wants a custom max_write_len, we need to
3694 		 * make a copy of kf_ops to set its atomic_write_len.
3695 		 */
3696 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3697 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3698 			if (!kf_ops) {
3699 				cgroup_exit_cftypes(cfts);
3700 				return -ENOMEM;
3701 			}
3702 			kf_ops->atomic_write_len = cft->max_write_len;
3703 		}
3704 
3705 		cft->kf_ops = kf_ops;
3706 		cft->ss = ss;
3707 	}
3708 
3709 	return 0;
3710 }
3711 
3712 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3713 {
3714 	lockdep_assert_held(&cgroup_mutex);
3715 
3716 	if (!cfts || !cfts[0].ss)
3717 		return -ENOENT;
3718 
3719 	list_del(&cfts->node);
3720 	cgroup_apply_cftypes(cfts, false);
3721 	cgroup_exit_cftypes(cfts);
3722 	return 0;
3723 }
3724 
3725 /**
3726  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3727  * @cfts: zero-length name terminated array of cftypes
3728  *
3729  * Unregister @cfts.  Files described by @cfts are removed from all
3730  * existing cgroups and all future cgroups won't have them either.  This
3731  * function can be called anytime whether @cfts' subsys is attached or not.
3732  *
3733  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3734  * registered.
3735  */
3736 int cgroup_rm_cftypes(struct cftype *cfts)
3737 {
3738 	int ret;
3739 
3740 	mutex_lock(&cgroup_mutex);
3741 	ret = cgroup_rm_cftypes_locked(cfts);
3742 	mutex_unlock(&cgroup_mutex);
3743 	return ret;
3744 }
3745 
3746 /**
3747  * cgroup_add_cftypes - add an array of cftypes to a subsystem
3748  * @ss: target cgroup subsystem
3749  * @cfts: zero-length name terminated array of cftypes
3750  *
3751  * Register @cfts to @ss.  Files described by @cfts are created for all
3752  * existing cgroups to which @ss is attached and all future cgroups will
3753  * have them too.  This function can be called anytime whether @ss is
3754  * attached or not.
3755  *
3756  * Returns 0 on successful registration, -errno on failure.  Note that this
3757  * function currently returns 0 as long as @cfts registration is successful
3758  * even if some file creation attempts on existing cgroups fail.
3759  */
3760 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3761 {
3762 	int ret;
3763 
3764 	if (!cgroup_ssid_enabled(ss->id))
3765 		return 0;
3766 
3767 	if (!cfts || cfts[0].name[0] == '\0')
3768 		return 0;
3769 
3770 	ret = cgroup_init_cftypes(ss, cfts);
3771 	if (ret)
3772 		return ret;
3773 
3774 	mutex_lock(&cgroup_mutex);
3775 
3776 	list_add_tail(&cfts->node, &ss->cfts);
3777 	ret = cgroup_apply_cftypes(cfts, true);
3778 	if (ret)
3779 		cgroup_rm_cftypes_locked(cfts);
3780 
3781 	mutex_unlock(&cgroup_mutex);
3782 	return ret;
3783 }
3784 
3785 /**
3786  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3787  * @ss: target cgroup subsystem
3788  * @cfts: zero-length name terminated array of cftypes
3789  *
3790  * Similar to cgroup_add_cftypes() but the added files are only used for
3791  * the default hierarchy.
3792  */
3793 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3794 {
3795 	struct cftype *cft;
3796 
3797 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3798 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
3799 	return cgroup_add_cftypes(ss, cfts);
3800 }
3801 
3802 /**
3803  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3804  * @ss: target cgroup subsystem
3805  * @cfts: zero-length name terminated array of cftypes
3806  *
3807  * Similar to cgroup_add_cftypes() but the added files are only used for
3808  * the legacy hierarchies.
3809  */
3810 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3811 {
3812 	struct cftype *cft;
3813 
3814 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3815 		cft->flags |= __CFTYPE_NOT_ON_DFL;
3816 	return cgroup_add_cftypes(ss, cfts);
3817 }
3818 
3819 /**
3820  * cgroup_file_notify - generate a file modified event for a cgroup_file
3821  * @cfile: target cgroup_file
3822  *
3823  * @cfile must have been obtained by setting cftype->file_offset.
3824  */
3825 void cgroup_file_notify(struct cgroup_file *cfile)
3826 {
3827 	unsigned long flags;
3828 
3829 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3830 	if (cfile->kn) {
3831 		unsigned long last = cfile->notified_at;
3832 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
3833 
3834 		if (time_in_range(jiffies, last, next)) {
3835 			timer_reduce(&cfile->notify_timer, next);
3836 		} else {
3837 			kernfs_notify(cfile->kn);
3838 			cfile->notified_at = jiffies;
3839 		}
3840 	}
3841 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3842 }
3843 
3844 /**
3845  * css_next_child - find the next child of a given css
3846  * @pos: the current position (%NULL to initiate traversal)
3847  * @parent: css whose children to walk
3848  *
3849  * This function returns the next child of @parent and should be called
3850  * under either cgroup_mutex or RCU read lock.  The only requirement is
3851  * that @parent and @pos are accessible.  The next sibling is guaranteed to
3852  * be returned regardless of their states.
3853  *
3854  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3855  * css which finished ->css_online() is guaranteed to be visible in the
3856  * future iterations and will stay visible until the last reference is put.
3857  * A css which hasn't finished ->css_online() or already finished
3858  * ->css_offline() may show up during traversal.  It's each subsystem's
3859  * responsibility to synchronize against on/offlining.
3860  */
3861 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3862 					   struct cgroup_subsys_state *parent)
3863 {
3864 	struct cgroup_subsys_state *next;
3865 
3866 	cgroup_assert_mutex_or_rcu_locked();
3867 
3868 	/*
3869 	 * @pos could already have been unlinked from the sibling list.
3870 	 * Once a cgroup is removed, its ->sibling.next is no longer
3871 	 * updated when its next sibling changes.  CSS_RELEASED is set when
3872 	 * @pos is taken off list, at which time its next pointer is valid,
3873 	 * and, as releases are serialized, the one pointed to by the next
3874 	 * pointer is guaranteed to not have started release yet.  This
3875 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3876 	 * critical section, the one pointed to by its next pointer is
3877 	 * guaranteed to not have finished its RCU grace period even if we
3878 	 * have dropped rcu_read_lock() inbetween iterations.
3879 	 *
3880 	 * If @pos has CSS_RELEASED set, its next pointer can't be
3881 	 * dereferenced; however, as each css is given a monotonically
3882 	 * increasing unique serial number and always appended to the
3883 	 * sibling list, the next one can be found by walking the parent's
3884 	 * children until the first css with higher serial number than
3885 	 * @pos's.  While this path can be slower, it happens iff iteration
3886 	 * races against release and the race window is very small.
3887 	 */
3888 	if (!pos) {
3889 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3890 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
3891 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3892 	} else {
3893 		list_for_each_entry_rcu(next, &parent->children, sibling)
3894 			if (next->serial_nr > pos->serial_nr)
3895 				break;
3896 	}
3897 
3898 	/*
3899 	 * @next, if not pointing to the head, can be dereferenced and is
3900 	 * the next sibling.
3901 	 */
3902 	if (&next->sibling != &parent->children)
3903 		return next;
3904 	return NULL;
3905 }
3906 
3907 /**
3908  * css_next_descendant_pre - find the next descendant for pre-order walk
3909  * @pos: the current position (%NULL to initiate traversal)
3910  * @root: css whose descendants to walk
3911  *
3912  * To be used by css_for_each_descendant_pre().  Find the next descendant
3913  * to visit for pre-order traversal of @root's descendants.  @root is
3914  * included in the iteration and the first node to be visited.
3915  *
3916  * While this function requires cgroup_mutex or RCU read locking, it
3917  * doesn't require the whole traversal to be contained in a single critical
3918  * section.  This function will return the correct next descendant as long
3919  * as both @pos and @root are accessible and @pos is a descendant of @root.
3920  *
3921  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3922  * css which finished ->css_online() is guaranteed to be visible in the
3923  * future iterations and will stay visible until the last reference is put.
3924  * A css which hasn't finished ->css_online() or already finished
3925  * ->css_offline() may show up during traversal.  It's each subsystem's
3926  * responsibility to synchronize against on/offlining.
3927  */
3928 struct cgroup_subsys_state *
3929 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3930 			struct cgroup_subsys_state *root)
3931 {
3932 	struct cgroup_subsys_state *next;
3933 
3934 	cgroup_assert_mutex_or_rcu_locked();
3935 
3936 	/* if first iteration, visit @root */
3937 	if (!pos)
3938 		return root;
3939 
3940 	/* visit the first child if exists */
3941 	next = css_next_child(NULL, pos);
3942 	if (next)
3943 		return next;
3944 
3945 	/* no child, visit my or the closest ancestor's next sibling */
3946 	while (pos != root) {
3947 		next = css_next_child(pos, pos->parent);
3948 		if (next)
3949 			return next;
3950 		pos = pos->parent;
3951 	}
3952 
3953 	return NULL;
3954 }
3955 
3956 /**
3957  * css_rightmost_descendant - return the rightmost descendant of a css
3958  * @pos: css of interest
3959  *
3960  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
3961  * is returned.  This can be used during pre-order traversal to skip
3962  * subtree of @pos.
3963  *
3964  * While this function requires cgroup_mutex or RCU read locking, it
3965  * doesn't require the whole traversal to be contained in a single critical
3966  * section.  This function will return the correct rightmost descendant as
3967  * long as @pos is accessible.
3968  */
3969 struct cgroup_subsys_state *
3970 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3971 {
3972 	struct cgroup_subsys_state *last, *tmp;
3973 
3974 	cgroup_assert_mutex_or_rcu_locked();
3975 
3976 	do {
3977 		last = pos;
3978 		/* ->prev isn't RCU safe, walk ->next till the end */
3979 		pos = NULL;
3980 		css_for_each_child(tmp, last)
3981 			pos = tmp;
3982 	} while (pos);
3983 
3984 	return last;
3985 }
3986 
3987 static struct cgroup_subsys_state *
3988 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3989 {
3990 	struct cgroup_subsys_state *last;
3991 
3992 	do {
3993 		last = pos;
3994 		pos = css_next_child(NULL, pos);
3995 	} while (pos);
3996 
3997 	return last;
3998 }
3999 
4000 /**
4001  * css_next_descendant_post - find the next descendant for post-order walk
4002  * @pos: the current position (%NULL to initiate traversal)
4003  * @root: css whose descendants to walk
4004  *
4005  * To be used by css_for_each_descendant_post().  Find the next descendant
4006  * to visit for post-order traversal of @root's descendants.  @root is
4007  * included in the iteration and the last node to be visited.
4008  *
4009  * While this function requires cgroup_mutex or RCU read locking, it
4010  * doesn't require the whole traversal to be contained in a single critical
4011  * section.  This function will return the correct next descendant as long
4012  * as both @pos and @cgroup are accessible and @pos is a descendant of
4013  * @cgroup.
4014  *
4015  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4016  * css which finished ->css_online() is guaranteed to be visible in the
4017  * future iterations and will stay visible until the last reference is put.
4018  * A css which hasn't finished ->css_online() or already finished
4019  * ->css_offline() may show up during traversal.  It's each subsystem's
4020  * responsibility to synchronize against on/offlining.
4021  */
4022 struct cgroup_subsys_state *
4023 css_next_descendant_post(struct cgroup_subsys_state *pos,
4024 			 struct cgroup_subsys_state *root)
4025 {
4026 	struct cgroup_subsys_state *next;
4027 
4028 	cgroup_assert_mutex_or_rcu_locked();
4029 
4030 	/* if first iteration, visit leftmost descendant which may be @root */
4031 	if (!pos)
4032 		return css_leftmost_descendant(root);
4033 
4034 	/* if we visited @root, we're done */
4035 	if (pos == root)
4036 		return NULL;
4037 
4038 	/* if there's an unvisited sibling, visit its leftmost descendant */
4039 	next = css_next_child(pos, pos->parent);
4040 	if (next)
4041 		return css_leftmost_descendant(next);
4042 
4043 	/* no sibling left, visit parent */
4044 	return pos->parent;
4045 }
4046 
4047 /**
4048  * css_has_online_children - does a css have online children
4049  * @css: the target css
4050  *
4051  * Returns %true if @css has any online children; otherwise, %false.  This
4052  * function can be called from any context but the caller is responsible
4053  * for synchronizing against on/offlining as necessary.
4054  */
4055 bool css_has_online_children(struct cgroup_subsys_state *css)
4056 {
4057 	struct cgroup_subsys_state *child;
4058 	bool ret = false;
4059 
4060 	rcu_read_lock();
4061 	css_for_each_child(child, css) {
4062 		if (child->flags & CSS_ONLINE) {
4063 			ret = true;
4064 			break;
4065 		}
4066 	}
4067 	rcu_read_unlock();
4068 	return ret;
4069 }
4070 
4071 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4072 {
4073 	struct list_head *l;
4074 	struct cgrp_cset_link *link;
4075 	struct css_set *cset;
4076 
4077 	lockdep_assert_held(&css_set_lock);
4078 
4079 	/* find the next threaded cset */
4080 	if (it->tcset_pos) {
4081 		l = it->tcset_pos->next;
4082 
4083 		if (l != it->tcset_head) {
4084 			it->tcset_pos = l;
4085 			return container_of(l, struct css_set,
4086 					    threaded_csets_node);
4087 		}
4088 
4089 		it->tcset_pos = NULL;
4090 	}
4091 
4092 	/* find the next cset */
4093 	l = it->cset_pos;
4094 	l = l->next;
4095 	if (l == it->cset_head) {
4096 		it->cset_pos = NULL;
4097 		return NULL;
4098 	}
4099 
4100 	if (it->ss) {
4101 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4102 	} else {
4103 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4104 		cset = link->cset;
4105 	}
4106 
4107 	it->cset_pos = l;
4108 
4109 	/* initialize threaded css_set walking */
4110 	if (it->flags & CSS_TASK_ITER_THREADED) {
4111 		if (it->cur_dcset)
4112 			put_css_set_locked(it->cur_dcset);
4113 		it->cur_dcset = cset;
4114 		get_css_set(cset);
4115 
4116 		it->tcset_head = &cset->threaded_csets;
4117 		it->tcset_pos = &cset->threaded_csets;
4118 	}
4119 
4120 	return cset;
4121 }
4122 
4123 /**
4124  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4125  * @it: the iterator to advance
4126  *
4127  * Advance @it to the next css_set to walk.
4128  */
4129 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4130 {
4131 	struct css_set *cset;
4132 
4133 	lockdep_assert_held(&css_set_lock);
4134 
4135 	/* Advance to the next non-empty css_set */
4136 	do {
4137 		cset = css_task_iter_next_css_set(it);
4138 		if (!cset) {
4139 			it->task_pos = NULL;
4140 			return;
4141 		}
4142 	} while (!css_set_populated(cset));
4143 
4144 	if (!list_empty(&cset->tasks))
4145 		it->task_pos = cset->tasks.next;
4146 	else
4147 		it->task_pos = cset->mg_tasks.next;
4148 
4149 	it->tasks_head = &cset->tasks;
4150 	it->mg_tasks_head = &cset->mg_tasks;
4151 
4152 	/*
4153 	 * We don't keep css_sets locked across iteration steps and thus
4154 	 * need to take steps to ensure that iteration can be resumed after
4155 	 * the lock is re-acquired.  Iteration is performed at two levels -
4156 	 * css_sets and tasks in them.
4157 	 *
4158 	 * Once created, a css_set never leaves its cgroup lists, so a
4159 	 * pinned css_set is guaranteed to stay put and we can resume
4160 	 * iteration afterwards.
4161 	 *
4162 	 * Tasks may leave @cset across iteration steps.  This is resolved
4163 	 * by registering each iterator with the css_set currently being
4164 	 * walked and making css_set_move_task() advance iterators whose
4165 	 * next task is leaving.
4166 	 */
4167 	if (it->cur_cset) {
4168 		list_del(&it->iters_node);
4169 		put_css_set_locked(it->cur_cset);
4170 	}
4171 	get_css_set(cset);
4172 	it->cur_cset = cset;
4173 	list_add(&it->iters_node, &cset->task_iters);
4174 }
4175 
4176 static void css_task_iter_advance(struct css_task_iter *it)
4177 {
4178 	struct list_head *next;
4179 
4180 	lockdep_assert_held(&css_set_lock);
4181 repeat:
4182 	/*
4183 	 * Advance iterator to find next entry.  cset->tasks is consumed
4184 	 * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
4185 	 * next cset.
4186 	 */
4187 	next = it->task_pos->next;
4188 
4189 	if (next == it->tasks_head)
4190 		next = it->mg_tasks_head->next;
4191 
4192 	if (next == it->mg_tasks_head)
4193 		css_task_iter_advance_css_set(it);
4194 	else
4195 		it->task_pos = next;
4196 
4197 	/* if PROCS, skip over tasks which aren't group leaders */
4198 	if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4199 	    !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4200 					    cg_list)))
4201 		goto repeat;
4202 }
4203 
4204 /**
4205  * css_task_iter_start - initiate task iteration
4206  * @css: the css to walk tasks of
4207  * @flags: CSS_TASK_ITER_* flags
4208  * @it: the task iterator to use
4209  *
4210  * Initiate iteration through the tasks of @css.  The caller can call
4211  * css_task_iter_next() to walk through the tasks until the function
4212  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4213  * called.
4214  */
4215 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4216 			 struct css_task_iter *it)
4217 {
4218 	/* no one should try to iterate before mounting cgroups */
4219 	WARN_ON_ONCE(!use_task_css_set_links);
4220 
4221 	memset(it, 0, sizeof(*it));
4222 
4223 	spin_lock_irq(&css_set_lock);
4224 
4225 	it->ss = css->ss;
4226 	it->flags = flags;
4227 
4228 	if (it->ss)
4229 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4230 	else
4231 		it->cset_pos = &css->cgroup->cset_links;
4232 
4233 	it->cset_head = it->cset_pos;
4234 
4235 	css_task_iter_advance_css_set(it);
4236 
4237 	spin_unlock_irq(&css_set_lock);
4238 }
4239 
4240 /**
4241  * css_task_iter_next - return the next task for the iterator
4242  * @it: the task iterator being iterated
4243  *
4244  * The "next" function for task iteration.  @it should have been
4245  * initialized via css_task_iter_start().  Returns NULL when the iteration
4246  * reaches the end.
4247  */
4248 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4249 {
4250 	if (it->cur_task) {
4251 		put_task_struct(it->cur_task);
4252 		it->cur_task = NULL;
4253 	}
4254 
4255 	spin_lock_irq(&css_set_lock);
4256 
4257 	if (it->task_pos) {
4258 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4259 					  cg_list);
4260 		get_task_struct(it->cur_task);
4261 		css_task_iter_advance(it);
4262 	}
4263 
4264 	spin_unlock_irq(&css_set_lock);
4265 
4266 	return it->cur_task;
4267 }
4268 
4269 /**
4270  * css_task_iter_end - finish task iteration
4271  * @it: the task iterator to finish
4272  *
4273  * Finish task iteration started by css_task_iter_start().
4274  */
4275 void css_task_iter_end(struct css_task_iter *it)
4276 {
4277 	if (it->cur_cset) {
4278 		spin_lock_irq(&css_set_lock);
4279 		list_del(&it->iters_node);
4280 		put_css_set_locked(it->cur_cset);
4281 		spin_unlock_irq(&css_set_lock);
4282 	}
4283 
4284 	if (it->cur_dcset)
4285 		put_css_set(it->cur_dcset);
4286 
4287 	if (it->cur_task)
4288 		put_task_struct(it->cur_task);
4289 }
4290 
4291 static void cgroup_procs_release(struct kernfs_open_file *of)
4292 {
4293 	if (of->priv) {
4294 		css_task_iter_end(of->priv);
4295 		kfree(of->priv);
4296 	}
4297 }
4298 
4299 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4300 {
4301 	struct kernfs_open_file *of = s->private;
4302 	struct css_task_iter *it = of->priv;
4303 
4304 	return css_task_iter_next(it);
4305 }
4306 
4307 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4308 				  unsigned int iter_flags)
4309 {
4310 	struct kernfs_open_file *of = s->private;
4311 	struct cgroup *cgrp = seq_css(s)->cgroup;
4312 	struct css_task_iter *it = of->priv;
4313 
4314 	/*
4315 	 * When a seq_file is seeked, it's always traversed sequentially
4316 	 * from position 0, so we can simply keep iterating on !0 *pos.
4317 	 */
4318 	if (!it) {
4319 		if (WARN_ON_ONCE((*pos)++))
4320 			return ERR_PTR(-EINVAL);
4321 
4322 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4323 		if (!it)
4324 			return ERR_PTR(-ENOMEM);
4325 		of->priv = it;
4326 		css_task_iter_start(&cgrp->self, iter_flags, it);
4327 	} else if (!(*pos)++) {
4328 		css_task_iter_end(it);
4329 		css_task_iter_start(&cgrp->self, iter_flags, it);
4330 	}
4331 
4332 	return cgroup_procs_next(s, NULL, NULL);
4333 }
4334 
4335 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4336 {
4337 	struct cgroup *cgrp = seq_css(s)->cgroup;
4338 
4339 	/*
4340 	 * All processes of a threaded subtree belong to the domain cgroup
4341 	 * of the subtree.  Only threads can be distributed across the
4342 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4343 	 * They're always empty anyway.
4344 	 */
4345 	if (cgroup_is_threaded(cgrp))
4346 		return ERR_PTR(-EOPNOTSUPP);
4347 
4348 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4349 					    CSS_TASK_ITER_THREADED);
4350 }
4351 
4352 static int cgroup_procs_show(struct seq_file *s, void *v)
4353 {
4354 	seq_printf(s, "%d\n", task_pid_vnr(v));
4355 	return 0;
4356 }
4357 
4358 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4359 					 struct cgroup *dst_cgrp,
4360 					 struct super_block *sb)
4361 {
4362 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4363 	struct cgroup *com_cgrp = src_cgrp;
4364 	struct inode *inode;
4365 	int ret;
4366 
4367 	lockdep_assert_held(&cgroup_mutex);
4368 
4369 	/* find the common ancestor */
4370 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4371 		com_cgrp = cgroup_parent(com_cgrp);
4372 
4373 	/* %current should be authorized to migrate to the common ancestor */
4374 	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4375 	if (!inode)
4376 		return -ENOMEM;
4377 
4378 	ret = inode_permission(inode, MAY_WRITE);
4379 	iput(inode);
4380 	if (ret)
4381 		return ret;
4382 
4383 	/*
4384 	 * If namespaces are delegation boundaries, %current must be able
4385 	 * to see both source and destination cgroups from its namespace.
4386 	 */
4387 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4388 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4389 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4390 		return -ENOENT;
4391 
4392 	return 0;
4393 }
4394 
4395 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4396 				  char *buf, size_t nbytes, loff_t off)
4397 {
4398 	struct cgroup *src_cgrp, *dst_cgrp;
4399 	struct task_struct *task;
4400 	ssize_t ret;
4401 
4402 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4403 	if (!dst_cgrp)
4404 		return -ENODEV;
4405 
4406 	task = cgroup_procs_write_start(buf, true);
4407 	ret = PTR_ERR_OR_ZERO(task);
4408 	if (ret)
4409 		goto out_unlock;
4410 
4411 	/* find the source cgroup */
4412 	spin_lock_irq(&css_set_lock);
4413 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4414 	spin_unlock_irq(&css_set_lock);
4415 
4416 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4417 					    of->file->f_path.dentry->d_sb);
4418 	if (ret)
4419 		goto out_finish;
4420 
4421 	ret = cgroup_attach_task(dst_cgrp, task, true);
4422 
4423 out_finish:
4424 	cgroup_procs_write_finish(task);
4425 out_unlock:
4426 	cgroup_kn_unlock(of->kn);
4427 
4428 	return ret ?: nbytes;
4429 }
4430 
4431 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4432 {
4433 	return __cgroup_procs_start(s, pos, 0);
4434 }
4435 
4436 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4437 				    char *buf, size_t nbytes, loff_t off)
4438 {
4439 	struct cgroup *src_cgrp, *dst_cgrp;
4440 	struct task_struct *task;
4441 	ssize_t ret;
4442 
4443 	buf = strstrip(buf);
4444 
4445 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4446 	if (!dst_cgrp)
4447 		return -ENODEV;
4448 
4449 	task = cgroup_procs_write_start(buf, false);
4450 	ret = PTR_ERR_OR_ZERO(task);
4451 	if (ret)
4452 		goto out_unlock;
4453 
4454 	/* find the source cgroup */
4455 	spin_lock_irq(&css_set_lock);
4456 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4457 	spin_unlock_irq(&css_set_lock);
4458 
4459 	/* thread migrations follow the cgroup.procs delegation rule */
4460 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4461 					    of->file->f_path.dentry->d_sb);
4462 	if (ret)
4463 		goto out_finish;
4464 
4465 	/* and must be contained in the same domain */
4466 	ret = -EOPNOTSUPP;
4467 	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4468 		goto out_finish;
4469 
4470 	ret = cgroup_attach_task(dst_cgrp, task, false);
4471 
4472 out_finish:
4473 	cgroup_procs_write_finish(task);
4474 out_unlock:
4475 	cgroup_kn_unlock(of->kn);
4476 
4477 	return ret ?: nbytes;
4478 }
4479 
4480 /* cgroup core interface files for the default hierarchy */
4481 static struct cftype cgroup_base_files[] = {
4482 	{
4483 		.name = "cgroup.type",
4484 		.flags = CFTYPE_NOT_ON_ROOT,
4485 		.seq_show = cgroup_type_show,
4486 		.write = cgroup_type_write,
4487 	},
4488 	{
4489 		.name = "cgroup.procs",
4490 		.flags = CFTYPE_NS_DELEGATABLE,
4491 		.file_offset = offsetof(struct cgroup, procs_file),
4492 		.release = cgroup_procs_release,
4493 		.seq_start = cgroup_procs_start,
4494 		.seq_next = cgroup_procs_next,
4495 		.seq_show = cgroup_procs_show,
4496 		.write = cgroup_procs_write,
4497 	},
4498 	{
4499 		.name = "cgroup.threads",
4500 		.flags = CFTYPE_NS_DELEGATABLE,
4501 		.release = cgroup_procs_release,
4502 		.seq_start = cgroup_threads_start,
4503 		.seq_next = cgroup_procs_next,
4504 		.seq_show = cgroup_procs_show,
4505 		.write = cgroup_threads_write,
4506 	},
4507 	{
4508 		.name = "cgroup.controllers",
4509 		.seq_show = cgroup_controllers_show,
4510 	},
4511 	{
4512 		.name = "cgroup.subtree_control",
4513 		.flags = CFTYPE_NS_DELEGATABLE,
4514 		.seq_show = cgroup_subtree_control_show,
4515 		.write = cgroup_subtree_control_write,
4516 	},
4517 	{
4518 		.name = "cgroup.events",
4519 		.flags = CFTYPE_NOT_ON_ROOT,
4520 		.file_offset = offsetof(struct cgroup, events_file),
4521 		.seq_show = cgroup_events_show,
4522 	},
4523 	{
4524 		.name = "cgroup.max.descendants",
4525 		.seq_show = cgroup_max_descendants_show,
4526 		.write = cgroup_max_descendants_write,
4527 	},
4528 	{
4529 		.name = "cgroup.max.depth",
4530 		.seq_show = cgroup_max_depth_show,
4531 		.write = cgroup_max_depth_write,
4532 	},
4533 	{
4534 		.name = "cgroup.stat",
4535 		.seq_show = cgroup_stat_show,
4536 	},
4537 	{
4538 		.name = "cpu.stat",
4539 		.flags = CFTYPE_NOT_ON_ROOT,
4540 		.seq_show = cpu_stat_show,
4541 	},
4542 	{ }	/* terminate */
4543 };
4544 
4545 /*
4546  * css destruction is four-stage process.
4547  *
4548  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4549  *    Implemented in kill_css().
4550  *
4551  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4552  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4553  *    offlined by invoking offline_css().  After offlining, the base ref is
4554  *    put.  Implemented in css_killed_work_fn().
4555  *
4556  * 3. When the percpu_ref reaches zero, the only possible remaining
4557  *    accessors are inside RCU read sections.  css_release() schedules the
4558  *    RCU callback.
4559  *
4560  * 4. After the grace period, the css can be freed.  Implemented in
4561  *    css_free_work_fn().
4562  *
4563  * It is actually hairier because both step 2 and 4 require process context
4564  * and thus involve punting to css->destroy_work adding two additional
4565  * steps to the already complex sequence.
4566  */
4567 static void css_free_rwork_fn(struct work_struct *work)
4568 {
4569 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4570 				struct cgroup_subsys_state, destroy_rwork);
4571 	struct cgroup_subsys *ss = css->ss;
4572 	struct cgroup *cgrp = css->cgroup;
4573 
4574 	percpu_ref_exit(&css->refcnt);
4575 
4576 	if (ss) {
4577 		/* css free path */
4578 		struct cgroup_subsys_state *parent = css->parent;
4579 		int id = css->id;
4580 
4581 		ss->css_free(css);
4582 		cgroup_idr_remove(&ss->css_idr, id);
4583 		cgroup_put(cgrp);
4584 
4585 		if (parent)
4586 			css_put(parent);
4587 	} else {
4588 		/* cgroup free path */
4589 		atomic_dec(&cgrp->root->nr_cgrps);
4590 		cgroup1_pidlist_destroy_all(cgrp);
4591 		cancel_work_sync(&cgrp->release_agent_work);
4592 
4593 		if (cgroup_parent(cgrp)) {
4594 			/*
4595 			 * We get a ref to the parent, and put the ref when
4596 			 * this cgroup is being freed, so it's guaranteed
4597 			 * that the parent won't be destroyed before its
4598 			 * children.
4599 			 */
4600 			cgroup_put(cgroup_parent(cgrp));
4601 			kernfs_put(cgrp->kn);
4602 			if (cgroup_on_dfl(cgrp))
4603 				cgroup_rstat_exit(cgrp);
4604 			kfree(cgrp);
4605 		} else {
4606 			/*
4607 			 * This is root cgroup's refcnt reaching zero,
4608 			 * which indicates that the root should be
4609 			 * released.
4610 			 */
4611 			cgroup_destroy_root(cgrp->root);
4612 		}
4613 	}
4614 }
4615 
4616 static void css_release_work_fn(struct work_struct *work)
4617 {
4618 	struct cgroup_subsys_state *css =
4619 		container_of(work, struct cgroup_subsys_state, destroy_work);
4620 	struct cgroup_subsys *ss = css->ss;
4621 	struct cgroup *cgrp = css->cgroup;
4622 
4623 	mutex_lock(&cgroup_mutex);
4624 
4625 	css->flags |= CSS_RELEASED;
4626 	list_del_rcu(&css->sibling);
4627 
4628 	if (ss) {
4629 		/* css release path */
4630 		if (!list_empty(&css->rstat_css_node)) {
4631 			cgroup_rstat_flush(cgrp);
4632 			list_del_rcu(&css->rstat_css_node);
4633 		}
4634 
4635 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4636 		if (ss->css_released)
4637 			ss->css_released(css);
4638 	} else {
4639 		struct cgroup *tcgrp;
4640 
4641 		/* cgroup release path */
4642 		TRACE_CGROUP_PATH(release, cgrp);
4643 
4644 		if (cgroup_on_dfl(cgrp))
4645 			cgroup_rstat_flush(cgrp);
4646 
4647 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4648 		     tcgrp = cgroup_parent(tcgrp))
4649 			tcgrp->nr_dying_descendants--;
4650 
4651 		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4652 		cgrp->id = -1;
4653 
4654 		/*
4655 		 * There are two control paths which try to determine
4656 		 * cgroup from dentry without going through kernfs -
4657 		 * cgroupstats_build() and css_tryget_online_from_dir().
4658 		 * Those are supported by RCU protecting clearing of
4659 		 * cgrp->kn->priv backpointer.
4660 		 */
4661 		if (cgrp->kn)
4662 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4663 					 NULL);
4664 
4665 		cgroup_bpf_put(cgrp);
4666 	}
4667 
4668 	mutex_unlock(&cgroup_mutex);
4669 
4670 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4671 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4672 }
4673 
4674 static void css_release(struct percpu_ref *ref)
4675 {
4676 	struct cgroup_subsys_state *css =
4677 		container_of(ref, struct cgroup_subsys_state, refcnt);
4678 
4679 	INIT_WORK(&css->destroy_work, css_release_work_fn);
4680 	queue_work(cgroup_destroy_wq, &css->destroy_work);
4681 }
4682 
4683 static void init_and_link_css(struct cgroup_subsys_state *css,
4684 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
4685 {
4686 	lockdep_assert_held(&cgroup_mutex);
4687 
4688 	cgroup_get_live(cgrp);
4689 
4690 	memset(css, 0, sizeof(*css));
4691 	css->cgroup = cgrp;
4692 	css->ss = ss;
4693 	css->id = -1;
4694 	INIT_LIST_HEAD(&css->sibling);
4695 	INIT_LIST_HEAD(&css->children);
4696 	INIT_LIST_HEAD(&css->rstat_css_node);
4697 	css->serial_nr = css_serial_nr_next++;
4698 	atomic_set(&css->online_cnt, 0);
4699 
4700 	if (cgroup_parent(cgrp)) {
4701 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4702 		css_get(css->parent);
4703 	}
4704 
4705 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
4706 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
4707 
4708 	BUG_ON(cgroup_css(cgrp, ss));
4709 }
4710 
4711 /* invoke ->css_online() on a new CSS and mark it online if successful */
4712 static int online_css(struct cgroup_subsys_state *css)
4713 {
4714 	struct cgroup_subsys *ss = css->ss;
4715 	int ret = 0;
4716 
4717 	lockdep_assert_held(&cgroup_mutex);
4718 
4719 	if (ss->css_online)
4720 		ret = ss->css_online(css);
4721 	if (!ret) {
4722 		css->flags |= CSS_ONLINE;
4723 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4724 
4725 		atomic_inc(&css->online_cnt);
4726 		if (css->parent)
4727 			atomic_inc(&css->parent->online_cnt);
4728 	}
4729 	return ret;
4730 }
4731 
4732 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4733 static void offline_css(struct cgroup_subsys_state *css)
4734 {
4735 	struct cgroup_subsys *ss = css->ss;
4736 
4737 	lockdep_assert_held(&cgroup_mutex);
4738 
4739 	if (!(css->flags & CSS_ONLINE))
4740 		return;
4741 
4742 	if (ss->css_offline)
4743 		ss->css_offline(css);
4744 
4745 	css->flags &= ~CSS_ONLINE;
4746 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4747 
4748 	wake_up_all(&css->cgroup->offline_waitq);
4749 }
4750 
4751 /**
4752  * css_create - create a cgroup_subsys_state
4753  * @cgrp: the cgroup new css will be associated with
4754  * @ss: the subsys of new css
4755  *
4756  * Create a new css associated with @cgrp - @ss pair.  On success, the new
4757  * css is online and installed in @cgrp.  This function doesn't create the
4758  * interface files.  Returns 0 on success, -errno on failure.
4759  */
4760 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4761 					      struct cgroup_subsys *ss)
4762 {
4763 	struct cgroup *parent = cgroup_parent(cgrp);
4764 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4765 	struct cgroup_subsys_state *css;
4766 	int err;
4767 
4768 	lockdep_assert_held(&cgroup_mutex);
4769 
4770 	css = ss->css_alloc(parent_css);
4771 	if (!css)
4772 		css = ERR_PTR(-ENOMEM);
4773 	if (IS_ERR(css))
4774 		return css;
4775 
4776 	init_and_link_css(css, ss, cgrp);
4777 
4778 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4779 	if (err)
4780 		goto err_free_css;
4781 
4782 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4783 	if (err < 0)
4784 		goto err_free_css;
4785 	css->id = err;
4786 
4787 	/* @css is ready to be brought online now, make it visible */
4788 	list_add_tail_rcu(&css->sibling, &parent_css->children);
4789 	cgroup_idr_replace(&ss->css_idr, css, css->id);
4790 
4791 	err = online_css(css);
4792 	if (err)
4793 		goto err_list_del;
4794 
4795 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4796 	    cgroup_parent(parent)) {
4797 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4798 			current->comm, current->pid, ss->name);
4799 		if (!strcmp(ss->name, "memory"))
4800 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4801 		ss->warned_broken_hierarchy = true;
4802 	}
4803 
4804 	return css;
4805 
4806 err_list_del:
4807 	list_del_rcu(&css->sibling);
4808 err_free_css:
4809 	list_del_rcu(&css->rstat_css_node);
4810 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4811 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4812 	return ERR_PTR(err);
4813 }
4814 
4815 /*
4816  * The returned cgroup is fully initialized including its control mask, but
4817  * it isn't associated with its kernfs_node and doesn't have the control
4818  * mask applied.
4819  */
4820 static struct cgroup *cgroup_create(struct cgroup *parent)
4821 {
4822 	struct cgroup_root *root = parent->root;
4823 	struct cgroup *cgrp, *tcgrp;
4824 	int level = parent->level + 1;
4825 	int ret;
4826 
4827 	/* allocate the cgroup and its ID, 0 is reserved for the root */
4828 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
4829 		       GFP_KERNEL);
4830 	if (!cgrp)
4831 		return ERR_PTR(-ENOMEM);
4832 
4833 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4834 	if (ret)
4835 		goto out_free_cgrp;
4836 
4837 	if (cgroup_on_dfl(parent)) {
4838 		ret = cgroup_rstat_init(cgrp);
4839 		if (ret)
4840 			goto out_cancel_ref;
4841 	}
4842 
4843 	/*
4844 	 * Temporarily set the pointer to NULL, so idr_find() won't return
4845 	 * a half-baked cgroup.
4846 	 */
4847 	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4848 	if (cgrp->id < 0) {
4849 		ret = -ENOMEM;
4850 		goto out_stat_exit;
4851 	}
4852 
4853 	init_cgroup_housekeeping(cgrp);
4854 
4855 	cgrp->self.parent = &parent->self;
4856 	cgrp->root = root;
4857 	cgrp->level = level;
4858 	ret = cgroup_bpf_inherit(cgrp);
4859 	if (ret)
4860 		goto out_idr_free;
4861 
4862 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4863 		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4864 
4865 		if (tcgrp != cgrp)
4866 			tcgrp->nr_descendants++;
4867 	}
4868 
4869 	if (notify_on_release(parent))
4870 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4871 
4872 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4873 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4874 
4875 	cgrp->self.serial_nr = css_serial_nr_next++;
4876 
4877 	/* allocation complete, commit to creation */
4878 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4879 	atomic_inc(&root->nr_cgrps);
4880 	cgroup_get_live(parent);
4881 
4882 	/*
4883 	 * @cgrp is now fully operational.  If something fails after this
4884 	 * point, it'll be released via the normal destruction path.
4885 	 */
4886 	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4887 
4888 	/*
4889 	 * On the default hierarchy, a child doesn't automatically inherit
4890 	 * subtree_control from the parent.  Each is configured manually.
4891 	 */
4892 	if (!cgroup_on_dfl(cgrp))
4893 		cgrp->subtree_control = cgroup_control(cgrp);
4894 
4895 	cgroup_propagate_control(cgrp);
4896 
4897 	return cgrp;
4898 
4899 out_idr_free:
4900 	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4901 out_stat_exit:
4902 	if (cgroup_on_dfl(parent))
4903 		cgroup_rstat_exit(cgrp);
4904 out_cancel_ref:
4905 	percpu_ref_exit(&cgrp->self.refcnt);
4906 out_free_cgrp:
4907 	kfree(cgrp);
4908 	return ERR_PTR(ret);
4909 }
4910 
4911 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4912 {
4913 	struct cgroup *cgroup;
4914 	int ret = false;
4915 	int level = 1;
4916 
4917 	lockdep_assert_held(&cgroup_mutex);
4918 
4919 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4920 		if (cgroup->nr_descendants >= cgroup->max_descendants)
4921 			goto fail;
4922 
4923 		if (level > cgroup->max_depth)
4924 			goto fail;
4925 
4926 		level++;
4927 	}
4928 
4929 	ret = true;
4930 fail:
4931 	return ret;
4932 }
4933 
4934 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4935 {
4936 	struct cgroup *parent, *cgrp;
4937 	struct kernfs_node *kn;
4938 	int ret;
4939 
4940 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4941 	if (strchr(name, '\n'))
4942 		return -EINVAL;
4943 
4944 	parent = cgroup_kn_lock_live(parent_kn, false);
4945 	if (!parent)
4946 		return -ENODEV;
4947 
4948 	if (!cgroup_check_hierarchy_limits(parent)) {
4949 		ret = -EAGAIN;
4950 		goto out_unlock;
4951 	}
4952 
4953 	cgrp = cgroup_create(parent);
4954 	if (IS_ERR(cgrp)) {
4955 		ret = PTR_ERR(cgrp);
4956 		goto out_unlock;
4957 	}
4958 
4959 	/* create the directory */
4960 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4961 	if (IS_ERR(kn)) {
4962 		ret = PTR_ERR(kn);
4963 		goto out_destroy;
4964 	}
4965 	cgrp->kn = kn;
4966 
4967 	/*
4968 	 * This extra ref will be put in cgroup_free_fn() and guarantees
4969 	 * that @cgrp->kn is always accessible.
4970 	 */
4971 	kernfs_get(kn);
4972 
4973 	ret = cgroup_kn_set_ugid(kn);
4974 	if (ret)
4975 		goto out_destroy;
4976 
4977 	ret = css_populate_dir(&cgrp->self);
4978 	if (ret)
4979 		goto out_destroy;
4980 
4981 	ret = cgroup_apply_control_enable(cgrp);
4982 	if (ret)
4983 		goto out_destroy;
4984 
4985 	TRACE_CGROUP_PATH(mkdir, cgrp);
4986 
4987 	/* let's create and online css's */
4988 	kernfs_activate(kn);
4989 
4990 	ret = 0;
4991 	goto out_unlock;
4992 
4993 out_destroy:
4994 	cgroup_destroy_locked(cgrp);
4995 out_unlock:
4996 	cgroup_kn_unlock(parent_kn);
4997 	return ret;
4998 }
4999 
5000 /*
5001  * This is called when the refcnt of a css is confirmed to be killed.
5002  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5003  * initate destruction and put the css ref from kill_css().
5004  */
5005 static void css_killed_work_fn(struct work_struct *work)
5006 {
5007 	struct cgroup_subsys_state *css =
5008 		container_of(work, struct cgroup_subsys_state, destroy_work);
5009 
5010 	mutex_lock(&cgroup_mutex);
5011 
5012 	do {
5013 		offline_css(css);
5014 		css_put(css);
5015 		/* @css can't go away while we're holding cgroup_mutex */
5016 		css = css->parent;
5017 	} while (css && atomic_dec_and_test(&css->online_cnt));
5018 
5019 	mutex_unlock(&cgroup_mutex);
5020 }
5021 
5022 /* css kill confirmation processing requires process context, bounce */
5023 static void css_killed_ref_fn(struct percpu_ref *ref)
5024 {
5025 	struct cgroup_subsys_state *css =
5026 		container_of(ref, struct cgroup_subsys_state, refcnt);
5027 
5028 	if (atomic_dec_and_test(&css->online_cnt)) {
5029 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5030 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5031 	}
5032 }
5033 
5034 /**
5035  * kill_css - destroy a css
5036  * @css: css to destroy
5037  *
5038  * This function initiates destruction of @css by removing cgroup interface
5039  * files and putting its base reference.  ->css_offline() will be invoked
5040  * asynchronously once css_tryget_online() is guaranteed to fail and when
5041  * the reference count reaches zero, @css will be released.
5042  */
5043 static void kill_css(struct cgroup_subsys_state *css)
5044 {
5045 	lockdep_assert_held(&cgroup_mutex);
5046 
5047 	if (css->flags & CSS_DYING)
5048 		return;
5049 
5050 	css->flags |= CSS_DYING;
5051 
5052 	/*
5053 	 * This must happen before css is disassociated with its cgroup.
5054 	 * See seq_css() for details.
5055 	 */
5056 	css_clear_dir(css);
5057 
5058 	/*
5059 	 * Killing would put the base ref, but we need to keep it alive
5060 	 * until after ->css_offline().
5061 	 */
5062 	css_get(css);
5063 
5064 	/*
5065 	 * cgroup core guarantees that, by the time ->css_offline() is
5066 	 * invoked, no new css reference will be given out via
5067 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5068 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5069 	 * guarantee that the ref is seen as killed on all CPUs on return.
5070 	 *
5071 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5072 	 * css is confirmed to be seen as killed on all CPUs.
5073 	 */
5074 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5075 }
5076 
5077 /**
5078  * cgroup_destroy_locked - the first stage of cgroup destruction
5079  * @cgrp: cgroup to be destroyed
5080  *
5081  * css's make use of percpu refcnts whose killing latency shouldn't be
5082  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5083  * guarantee that css_tryget_online() won't succeed by the time
5084  * ->css_offline() is invoked.  To satisfy all the requirements,
5085  * destruction is implemented in the following two steps.
5086  *
5087  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5088  *     userland visible parts and start killing the percpu refcnts of
5089  *     css's.  Set up so that the next stage will be kicked off once all
5090  *     the percpu refcnts are confirmed to be killed.
5091  *
5092  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5093  *     rest of destruction.  Once all cgroup references are gone, the
5094  *     cgroup is RCU-freed.
5095  *
5096  * This function implements s1.  After this step, @cgrp is gone as far as
5097  * the userland is concerned and a new cgroup with the same name may be
5098  * created.  As cgroup doesn't care about the names internally, this
5099  * doesn't cause any problem.
5100  */
5101 static int cgroup_destroy_locked(struct cgroup *cgrp)
5102 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5103 {
5104 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5105 	struct cgroup_subsys_state *css;
5106 	struct cgrp_cset_link *link;
5107 	int ssid;
5108 
5109 	lockdep_assert_held(&cgroup_mutex);
5110 
5111 	/*
5112 	 * Only migration can raise populated from zero and we're already
5113 	 * holding cgroup_mutex.
5114 	 */
5115 	if (cgroup_is_populated(cgrp))
5116 		return -EBUSY;
5117 
5118 	/*
5119 	 * Make sure there's no live children.  We can't test emptiness of
5120 	 * ->self.children as dead children linger on it while being
5121 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5122 	 */
5123 	if (css_has_online_children(&cgrp->self))
5124 		return -EBUSY;
5125 
5126 	/*
5127 	 * Mark @cgrp and the associated csets dead.  The former prevents
5128 	 * further task migration and child creation by disabling
5129 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5130 	 * the migration path.
5131 	 */
5132 	cgrp->self.flags &= ~CSS_ONLINE;
5133 
5134 	spin_lock_irq(&css_set_lock);
5135 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5136 		link->cset->dead = true;
5137 	spin_unlock_irq(&css_set_lock);
5138 
5139 	/* initiate massacre of all css's */
5140 	for_each_css(css, ssid, cgrp)
5141 		kill_css(css);
5142 
5143 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5144 	css_clear_dir(&cgrp->self);
5145 	kernfs_remove(cgrp->kn);
5146 
5147 	if (parent && cgroup_is_threaded(cgrp))
5148 		parent->nr_threaded_children--;
5149 
5150 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5151 		tcgrp->nr_descendants--;
5152 		tcgrp->nr_dying_descendants++;
5153 	}
5154 
5155 	cgroup1_check_for_release(parent);
5156 
5157 	/* put the base reference */
5158 	percpu_ref_kill(&cgrp->self.refcnt);
5159 
5160 	return 0;
5161 };
5162 
5163 int cgroup_rmdir(struct kernfs_node *kn)
5164 {
5165 	struct cgroup *cgrp;
5166 	int ret = 0;
5167 
5168 	cgrp = cgroup_kn_lock_live(kn, false);
5169 	if (!cgrp)
5170 		return 0;
5171 
5172 	ret = cgroup_destroy_locked(cgrp);
5173 	if (!ret)
5174 		TRACE_CGROUP_PATH(rmdir, cgrp);
5175 
5176 	cgroup_kn_unlock(kn);
5177 	return ret;
5178 }
5179 
5180 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5181 	.show_options		= cgroup_show_options,
5182 	.remount_fs		= cgroup_remount,
5183 	.mkdir			= cgroup_mkdir,
5184 	.rmdir			= cgroup_rmdir,
5185 	.show_path		= cgroup_show_path,
5186 };
5187 
5188 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5189 {
5190 	struct cgroup_subsys_state *css;
5191 
5192 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5193 
5194 	mutex_lock(&cgroup_mutex);
5195 
5196 	idr_init(&ss->css_idr);
5197 	INIT_LIST_HEAD(&ss->cfts);
5198 
5199 	/* Create the root cgroup state for this subsystem */
5200 	ss->root = &cgrp_dfl_root;
5201 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5202 	/* We don't handle early failures gracefully */
5203 	BUG_ON(IS_ERR(css));
5204 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5205 
5206 	/*
5207 	 * Root csses are never destroyed and we can't initialize
5208 	 * percpu_ref during early init.  Disable refcnting.
5209 	 */
5210 	css->flags |= CSS_NO_REF;
5211 
5212 	if (early) {
5213 		/* allocation can't be done safely during early init */
5214 		css->id = 1;
5215 	} else {
5216 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5217 		BUG_ON(css->id < 0);
5218 	}
5219 
5220 	/* Update the init_css_set to contain a subsys
5221 	 * pointer to this state - since the subsystem is
5222 	 * newly registered, all tasks and hence the
5223 	 * init_css_set is in the subsystem's root cgroup. */
5224 	init_css_set.subsys[ss->id] = css;
5225 
5226 	have_fork_callback |= (bool)ss->fork << ss->id;
5227 	have_exit_callback |= (bool)ss->exit << ss->id;
5228 	have_free_callback |= (bool)ss->free << ss->id;
5229 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5230 
5231 	/* At system boot, before all subsystems have been
5232 	 * registered, no tasks have been forked, so we don't
5233 	 * need to invoke fork callbacks here. */
5234 	BUG_ON(!list_empty(&init_task.tasks));
5235 
5236 	BUG_ON(online_css(css));
5237 
5238 	mutex_unlock(&cgroup_mutex);
5239 }
5240 
5241 /**
5242  * cgroup_init_early - cgroup initialization at system boot
5243  *
5244  * Initialize cgroups at system boot, and initialize any
5245  * subsystems that request early init.
5246  */
5247 int __init cgroup_init_early(void)
5248 {
5249 	static struct cgroup_sb_opts __initdata opts;
5250 	struct cgroup_subsys *ss;
5251 	int i;
5252 
5253 	init_cgroup_root(&cgrp_dfl_root, &opts);
5254 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5255 
5256 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5257 
5258 	for_each_subsys(ss, i) {
5259 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5260 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5261 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5262 		     ss->id, ss->name);
5263 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5264 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5265 
5266 		ss->id = i;
5267 		ss->name = cgroup_subsys_name[i];
5268 		if (!ss->legacy_name)
5269 			ss->legacy_name = cgroup_subsys_name[i];
5270 
5271 		if (ss->early_init)
5272 			cgroup_init_subsys(ss, true);
5273 	}
5274 	return 0;
5275 }
5276 
5277 static u16 cgroup_disable_mask __initdata;
5278 
5279 /**
5280  * cgroup_init - cgroup initialization
5281  *
5282  * Register cgroup filesystem and /proc file, and initialize
5283  * any subsystems that didn't request early init.
5284  */
5285 int __init cgroup_init(void)
5286 {
5287 	struct cgroup_subsys *ss;
5288 	int ssid;
5289 
5290 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5291 	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5292 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5293 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5294 
5295 	cgroup_rstat_boot();
5296 
5297 	/*
5298 	 * The latency of the synchronize_sched() is too high for cgroups,
5299 	 * avoid it at the cost of forcing all readers into the slow path.
5300 	 */
5301 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5302 
5303 	get_user_ns(init_cgroup_ns.user_ns);
5304 
5305 	mutex_lock(&cgroup_mutex);
5306 
5307 	/*
5308 	 * Add init_css_set to the hash table so that dfl_root can link to
5309 	 * it during init.
5310 	 */
5311 	hash_add(css_set_table, &init_css_set.hlist,
5312 		 css_set_hash(init_css_set.subsys));
5313 
5314 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5315 
5316 	mutex_unlock(&cgroup_mutex);
5317 
5318 	for_each_subsys(ss, ssid) {
5319 		if (ss->early_init) {
5320 			struct cgroup_subsys_state *css =
5321 				init_css_set.subsys[ss->id];
5322 
5323 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5324 						   GFP_KERNEL);
5325 			BUG_ON(css->id < 0);
5326 		} else {
5327 			cgroup_init_subsys(ss, false);
5328 		}
5329 
5330 		list_add_tail(&init_css_set.e_cset_node[ssid],
5331 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5332 
5333 		/*
5334 		 * Setting dfl_root subsys_mask needs to consider the
5335 		 * disabled flag and cftype registration needs kmalloc,
5336 		 * both of which aren't available during early_init.
5337 		 */
5338 		if (cgroup_disable_mask & (1 << ssid)) {
5339 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5340 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5341 			       ss->name);
5342 			continue;
5343 		}
5344 
5345 		if (cgroup1_ssid_disabled(ssid))
5346 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5347 			       ss->name);
5348 
5349 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5350 
5351 		/* implicit controllers must be threaded too */
5352 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5353 
5354 		if (ss->implicit_on_dfl)
5355 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5356 		else if (!ss->dfl_cftypes)
5357 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5358 
5359 		if (ss->threaded)
5360 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5361 
5362 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5363 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5364 		} else {
5365 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5366 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5367 		}
5368 
5369 		if (ss->bind)
5370 			ss->bind(init_css_set.subsys[ssid]);
5371 
5372 		mutex_lock(&cgroup_mutex);
5373 		css_populate_dir(init_css_set.subsys[ssid]);
5374 		mutex_unlock(&cgroup_mutex);
5375 	}
5376 
5377 	/* init_css_set.subsys[] has been updated, re-hash */
5378 	hash_del(&init_css_set.hlist);
5379 	hash_add(css_set_table, &init_css_set.hlist,
5380 		 css_set_hash(init_css_set.subsys));
5381 
5382 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5383 	WARN_ON(register_filesystem(&cgroup_fs_type));
5384 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5385 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5386 
5387 	return 0;
5388 }
5389 
5390 static int __init cgroup_wq_init(void)
5391 {
5392 	/*
5393 	 * There isn't much point in executing destruction path in
5394 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5395 	 * Use 1 for @max_active.
5396 	 *
5397 	 * We would prefer to do this in cgroup_init() above, but that
5398 	 * is called before init_workqueues(): so leave this until after.
5399 	 */
5400 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5401 	BUG_ON(!cgroup_destroy_wq);
5402 	return 0;
5403 }
5404 core_initcall(cgroup_wq_init);
5405 
5406 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5407 					char *buf, size_t buflen)
5408 {
5409 	struct kernfs_node *kn;
5410 
5411 	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5412 	if (!kn)
5413 		return;
5414 	kernfs_path(kn, buf, buflen);
5415 	kernfs_put(kn);
5416 }
5417 
5418 /*
5419  * proc_cgroup_show()
5420  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5421  *  - Used for /proc/<pid>/cgroup.
5422  */
5423 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5424 		     struct pid *pid, struct task_struct *tsk)
5425 {
5426 	char *buf;
5427 	int retval;
5428 	struct cgroup_root *root;
5429 
5430 	retval = -ENOMEM;
5431 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5432 	if (!buf)
5433 		goto out;
5434 
5435 	mutex_lock(&cgroup_mutex);
5436 	spin_lock_irq(&css_set_lock);
5437 
5438 	for_each_root(root) {
5439 		struct cgroup_subsys *ss;
5440 		struct cgroup *cgrp;
5441 		int ssid, count = 0;
5442 
5443 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5444 			continue;
5445 
5446 		seq_printf(m, "%d:", root->hierarchy_id);
5447 		if (root != &cgrp_dfl_root)
5448 			for_each_subsys(ss, ssid)
5449 				if (root->subsys_mask & (1 << ssid))
5450 					seq_printf(m, "%s%s", count++ ? "," : "",
5451 						   ss->legacy_name);
5452 		if (strlen(root->name))
5453 			seq_printf(m, "%sname=%s", count ? "," : "",
5454 				   root->name);
5455 		seq_putc(m, ':');
5456 
5457 		cgrp = task_cgroup_from_root(tsk, root);
5458 
5459 		/*
5460 		 * On traditional hierarchies, all zombie tasks show up as
5461 		 * belonging to the root cgroup.  On the default hierarchy,
5462 		 * while a zombie doesn't show up in "cgroup.procs" and
5463 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5464 		 * reporting the cgroup it belonged to before exiting.  If
5465 		 * the cgroup is removed before the zombie is reaped,
5466 		 * " (deleted)" is appended to the cgroup path.
5467 		 */
5468 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5469 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5470 						current->nsproxy->cgroup_ns);
5471 			if (retval >= PATH_MAX)
5472 				retval = -ENAMETOOLONG;
5473 			if (retval < 0)
5474 				goto out_unlock;
5475 
5476 			seq_puts(m, buf);
5477 		} else {
5478 			seq_puts(m, "/");
5479 		}
5480 
5481 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5482 			seq_puts(m, " (deleted)\n");
5483 		else
5484 			seq_putc(m, '\n');
5485 	}
5486 
5487 	retval = 0;
5488 out_unlock:
5489 	spin_unlock_irq(&css_set_lock);
5490 	mutex_unlock(&cgroup_mutex);
5491 	kfree(buf);
5492 out:
5493 	return retval;
5494 }
5495 
5496 /**
5497  * cgroup_fork - initialize cgroup related fields during copy_process()
5498  * @child: pointer to task_struct of forking parent process.
5499  *
5500  * A task is associated with the init_css_set until cgroup_post_fork()
5501  * attaches it to the parent's css_set.  Empty cg_list indicates that
5502  * @child isn't holding reference to its css_set.
5503  */
5504 void cgroup_fork(struct task_struct *child)
5505 {
5506 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5507 	INIT_LIST_HEAD(&child->cg_list);
5508 }
5509 
5510 /**
5511  * cgroup_can_fork - called on a new task before the process is exposed
5512  * @child: the task in question.
5513  *
5514  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5515  * returns an error, the fork aborts with that error code. This allows for
5516  * a cgroup subsystem to conditionally allow or deny new forks.
5517  */
5518 int cgroup_can_fork(struct task_struct *child)
5519 {
5520 	struct cgroup_subsys *ss;
5521 	int i, j, ret;
5522 
5523 	do_each_subsys_mask(ss, i, have_canfork_callback) {
5524 		ret = ss->can_fork(child);
5525 		if (ret)
5526 			goto out_revert;
5527 	} while_each_subsys_mask();
5528 
5529 	return 0;
5530 
5531 out_revert:
5532 	for_each_subsys(ss, j) {
5533 		if (j >= i)
5534 			break;
5535 		if (ss->cancel_fork)
5536 			ss->cancel_fork(child);
5537 	}
5538 
5539 	return ret;
5540 }
5541 
5542 /**
5543  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5544  * @child: the task in question
5545  *
5546  * This calls the cancel_fork() callbacks if a fork failed *after*
5547  * cgroup_can_fork() succeded.
5548  */
5549 void cgroup_cancel_fork(struct task_struct *child)
5550 {
5551 	struct cgroup_subsys *ss;
5552 	int i;
5553 
5554 	for_each_subsys(ss, i)
5555 		if (ss->cancel_fork)
5556 			ss->cancel_fork(child);
5557 }
5558 
5559 /**
5560  * cgroup_post_fork - called on a new task after adding it to the task list
5561  * @child: the task in question
5562  *
5563  * Adds the task to the list running through its css_set if necessary and
5564  * call the subsystem fork() callbacks.  Has to be after the task is
5565  * visible on the task list in case we race with the first call to
5566  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5567  * list.
5568  */
5569 void cgroup_post_fork(struct task_struct *child)
5570 {
5571 	struct cgroup_subsys *ss;
5572 	int i;
5573 
5574 	/*
5575 	 * This may race against cgroup_enable_task_cg_lists().  As that
5576 	 * function sets use_task_css_set_links before grabbing
5577 	 * tasklist_lock and we just went through tasklist_lock to add
5578 	 * @child, it's guaranteed that either we see the set
5579 	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5580 	 * @child during its iteration.
5581 	 *
5582 	 * If we won the race, @child is associated with %current's
5583 	 * css_set.  Grabbing css_set_lock guarantees both that the
5584 	 * association is stable, and, on completion of the parent's
5585 	 * migration, @child is visible in the source of migration or
5586 	 * already in the destination cgroup.  This guarantee is necessary
5587 	 * when implementing operations which need to migrate all tasks of
5588 	 * a cgroup to another.
5589 	 *
5590 	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5591 	 * will remain in init_css_set.  This is safe because all tasks are
5592 	 * in the init_css_set before cg_links is enabled and there's no
5593 	 * operation which transfers all tasks out of init_css_set.
5594 	 */
5595 	if (use_task_css_set_links) {
5596 		struct css_set *cset;
5597 
5598 		spin_lock_irq(&css_set_lock);
5599 		cset = task_css_set(current);
5600 		if (list_empty(&child->cg_list)) {
5601 			get_css_set(cset);
5602 			cset->nr_tasks++;
5603 			css_set_move_task(child, NULL, cset, false);
5604 		}
5605 		spin_unlock_irq(&css_set_lock);
5606 	}
5607 
5608 	/*
5609 	 * Call ss->fork().  This must happen after @child is linked on
5610 	 * css_set; otherwise, @child might change state between ->fork()
5611 	 * and addition to css_set.
5612 	 */
5613 	do_each_subsys_mask(ss, i, have_fork_callback) {
5614 		ss->fork(child);
5615 	} while_each_subsys_mask();
5616 }
5617 
5618 /**
5619  * cgroup_exit - detach cgroup from exiting task
5620  * @tsk: pointer to task_struct of exiting process
5621  *
5622  * Description: Detach cgroup from @tsk and release it.
5623  *
5624  * Note that cgroups marked notify_on_release force every task in
5625  * them to take the global cgroup_mutex mutex when exiting.
5626  * This could impact scaling on very large systems.  Be reluctant to
5627  * use notify_on_release cgroups where very high task exit scaling
5628  * is required on large systems.
5629  *
5630  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5631  * call cgroup_exit() while the task is still competent to handle
5632  * notify_on_release(), then leave the task attached to the root cgroup in
5633  * each hierarchy for the remainder of its exit.  No need to bother with
5634  * init_css_set refcnting.  init_css_set never goes away and we can't race
5635  * with migration path - PF_EXITING is visible to migration path.
5636  */
5637 void cgroup_exit(struct task_struct *tsk)
5638 {
5639 	struct cgroup_subsys *ss;
5640 	struct css_set *cset;
5641 	int i;
5642 
5643 	/*
5644 	 * Unlink from @tsk from its css_set.  As migration path can't race
5645 	 * with us, we can check css_set and cg_list without synchronization.
5646 	 */
5647 	cset = task_css_set(tsk);
5648 
5649 	if (!list_empty(&tsk->cg_list)) {
5650 		spin_lock_irq(&css_set_lock);
5651 		css_set_move_task(tsk, cset, NULL, false);
5652 		cset->nr_tasks--;
5653 		spin_unlock_irq(&css_set_lock);
5654 	} else {
5655 		get_css_set(cset);
5656 	}
5657 
5658 	/* see cgroup_post_fork() for details */
5659 	do_each_subsys_mask(ss, i, have_exit_callback) {
5660 		ss->exit(tsk);
5661 	} while_each_subsys_mask();
5662 }
5663 
5664 void cgroup_free(struct task_struct *task)
5665 {
5666 	struct css_set *cset = task_css_set(task);
5667 	struct cgroup_subsys *ss;
5668 	int ssid;
5669 
5670 	do_each_subsys_mask(ss, ssid, have_free_callback) {
5671 		ss->free(task);
5672 	} while_each_subsys_mask();
5673 
5674 	put_css_set(cset);
5675 }
5676 
5677 static int __init cgroup_disable(char *str)
5678 {
5679 	struct cgroup_subsys *ss;
5680 	char *token;
5681 	int i;
5682 
5683 	while ((token = strsep(&str, ",")) != NULL) {
5684 		if (!*token)
5685 			continue;
5686 
5687 		for_each_subsys(ss, i) {
5688 			if (strcmp(token, ss->name) &&
5689 			    strcmp(token, ss->legacy_name))
5690 				continue;
5691 			cgroup_disable_mask |= 1 << i;
5692 		}
5693 	}
5694 	return 1;
5695 }
5696 __setup("cgroup_disable=", cgroup_disable);
5697 
5698 /**
5699  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5700  * @dentry: directory dentry of interest
5701  * @ss: subsystem of interest
5702  *
5703  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5704  * to get the corresponding css and return it.  If such css doesn't exist
5705  * or can't be pinned, an ERR_PTR value is returned.
5706  */
5707 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5708 						       struct cgroup_subsys *ss)
5709 {
5710 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5711 	struct file_system_type *s_type = dentry->d_sb->s_type;
5712 	struct cgroup_subsys_state *css = NULL;
5713 	struct cgroup *cgrp;
5714 
5715 	/* is @dentry a cgroup dir? */
5716 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5717 	    !kn || kernfs_type(kn) != KERNFS_DIR)
5718 		return ERR_PTR(-EBADF);
5719 
5720 	rcu_read_lock();
5721 
5722 	/*
5723 	 * This path doesn't originate from kernfs and @kn could already
5724 	 * have been or be removed at any point.  @kn->priv is RCU
5725 	 * protected for this access.  See css_release_work_fn() for details.
5726 	 */
5727 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5728 	if (cgrp)
5729 		css = cgroup_css(cgrp, ss);
5730 
5731 	if (!css || !css_tryget_online(css))
5732 		css = ERR_PTR(-ENOENT);
5733 
5734 	rcu_read_unlock();
5735 	return css;
5736 }
5737 
5738 /**
5739  * css_from_id - lookup css by id
5740  * @id: the cgroup id
5741  * @ss: cgroup subsys to be looked into
5742  *
5743  * Returns the css if there's valid one with @id, otherwise returns NULL.
5744  * Should be called under rcu_read_lock().
5745  */
5746 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5747 {
5748 	WARN_ON_ONCE(!rcu_read_lock_held());
5749 	return idr_find(&ss->css_idr, id);
5750 }
5751 
5752 /**
5753  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5754  * @path: path on the default hierarchy
5755  *
5756  * Find the cgroup at @path on the default hierarchy, increment its
5757  * reference count and return it.  Returns pointer to the found cgroup on
5758  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5759  * if @path points to a non-directory.
5760  */
5761 struct cgroup *cgroup_get_from_path(const char *path)
5762 {
5763 	struct kernfs_node *kn;
5764 	struct cgroup *cgrp;
5765 
5766 	mutex_lock(&cgroup_mutex);
5767 
5768 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5769 	if (kn) {
5770 		if (kernfs_type(kn) == KERNFS_DIR) {
5771 			cgrp = kn->priv;
5772 			cgroup_get_live(cgrp);
5773 		} else {
5774 			cgrp = ERR_PTR(-ENOTDIR);
5775 		}
5776 		kernfs_put(kn);
5777 	} else {
5778 		cgrp = ERR_PTR(-ENOENT);
5779 	}
5780 
5781 	mutex_unlock(&cgroup_mutex);
5782 	return cgrp;
5783 }
5784 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5785 
5786 /**
5787  * cgroup_get_from_fd - get a cgroup pointer from a fd
5788  * @fd: fd obtained by open(cgroup2_dir)
5789  *
5790  * Find the cgroup from a fd which should be obtained
5791  * by opening a cgroup directory.  Returns a pointer to the
5792  * cgroup on success. ERR_PTR is returned if the cgroup
5793  * cannot be found.
5794  */
5795 struct cgroup *cgroup_get_from_fd(int fd)
5796 {
5797 	struct cgroup_subsys_state *css;
5798 	struct cgroup *cgrp;
5799 	struct file *f;
5800 
5801 	f = fget_raw(fd);
5802 	if (!f)
5803 		return ERR_PTR(-EBADF);
5804 
5805 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5806 	fput(f);
5807 	if (IS_ERR(css))
5808 		return ERR_CAST(css);
5809 
5810 	cgrp = css->cgroup;
5811 	if (!cgroup_on_dfl(cgrp)) {
5812 		cgroup_put(cgrp);
5813 		return ERR_PTR(-EBADF);
5814 	}
5815 
5816 	return cgrp;
5817 }
5818 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5819 
5820 /*
5821  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
5822  * definition in cgroup-defs.h.
5823  */
5824 #ifdef CONFIG_SOCK_CGROUP_DATA
5825 
5826 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5827 
5828 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5829 static bool cgroup_sk_alloc_disabled __read_mostly;
5830 
5831 void cgroup_sk_alloc_disable(void)
5832 {
5833 	if (cgroup_sk_alloc_disabled)
5834 		return;
5835 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5836 	cgroup_sk_alloc_disabled = true;
5837 }
5838 
5839 #else
5840 
5841 #define cgroup_sk_alloc_disabled	false
5842 
5843 #endif
5844 
5845 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5846 {
5847 	if (cgroup_sk_alloc_disabled)
5848 		return;
5849 
5850 	/* Socket clone path */
5851 	if (skcd->val) {
5852 		/*
5853 		 * We might be cloning a socket which is left in an empty
5854 		 * cgroup and the cgroup might have already been rmdir'd.
5855 		 * Don't use cgroup_get_live().
5856 		 */
5857 		cgroup_get(sock_cgroup_ptr(skcd));
5858 		return;
5859 	}
5860 
5861 	rcu_read_lock();
5862 
5863 	while (true) {
5864 		struct css_set *cset;
5865 
5866 		cset = task_css_set(current);
5867 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5868 			skcd->val = (unsigned long)cset->dfl_cgrp;
5869 			break;
5870 		}
5871 		cpu_relax();
5872 	}
5873 
5874 	rcu_read_unlock();
5875 }
5876 
5877 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5878 {
5879 	cgroup_put(sock_cgroup_ptr(skcd));
5880 }
5881 
5882 #endif	/* CONFIG_SOCK_CGROUP_DATA */
5883 
5884 #ifdef CONFIG_CGROUP_BPF
5885 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5886 		      enum bpf_attach_type type, u32 flags)
5887 {
5888 	int ret;
5889 
5890 	mutex_lock(&cgroup_mutex);
5891 	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5892 	mutex_unlock(&cgroup_mutex);
5893 	return ret;
5894 }
5895 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5896 		      enum bpf_attach_type type, u32 flags)
5897 {
5898 	int ret;
5899 
5900 	mutex_lock(&cgroup_mutex);
5901 	ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5902 	mutex_unlock(&cgroup_mutex);
5903 	return ret;
5904 }
5905 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5906 		     union bpf_attr __user *uattr)
5907 {
5908 	int ret;
5909 
5910 	mutex_lock(&cgroup_mutex);
5911 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
5912 	mutex_unlock(&cgroup_mutex);
5913 	return ret;
5914 }
5915 #endif /* CONFIG_CGROUP_BPF */
5916 
5917 #ifdef CONFIG_SYSFS
5918 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5919 				      ssize_t size, const char *prefix)
5920 {
5921 	struct cftype *cft;
5922 	ssize_t ret = 0;
5923 
5924 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
5925 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
5926 			continue;
5927 
5928 		if (prefix)
5929 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
5930 
5931 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
5932 
5933 		if (unlikely(ret >= size)) {
5934 			WARN_ON(1);
5935 			break;
5936 		}
5937 	}
5938 
5939 	return ret;
5940 }
5941 
5942 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
5943 			      char *buf)
5944 {
5945 	struct cgroup_subsys *ss;
5946 	int ssid;
5947 	ssize_t ret = 0;
5948 
5949 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
5950 				     NULL);
5951 
5952 	for_each_subsys(ss, ssid)
5953 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
5954 					      PAGE_SIZE - ret,
5955 					      cgroup_subsys_name[ssid]);
5956 
5957 	return ret;
5958 }
5959 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
5960 
5961 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
5962 			     char *buf)
5963 {
5964 	return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
5965 }
5966 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
5967 
5968 static struct attribute *cgroup_sysfs_attrs[] = {
5969 	&cgroup_delegate_attr.attr,
5970 	&cgroup_features_attr.attr,
5971 	NULL,
5972 };
5973 
5974 static const struct attribute_group cgroup_sysfs_attr_group = {
5975 	.attrs = cgroup_sysfs_attrs,
5976 	.name = "cgroup",
5977 };
5978 
5979 static int __init cgroup_sysfs_init(void)
5980 {
5981 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
5982 }
5983 subsys_initcall(cgroup_sysfs_init);
5984 #endif /* CONFIG_SYSFS */
5985