1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/fs_parser.h> 58 #include <linux/sched/cputime.h> 59 #include <linux/psi.h> 60 #include <net/sock.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/cgroup.h> 64 65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 66 MAX_CFTYPE_NAME + 2) 67 /* let's not notify more than 100 times per second */ 68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 69 70 /* 71 * cgroup_mutex is the master lock. Any modification to cgroup or its 72 * hierarchy must be performed while holding it. 73 * 74 * css_set_lock protects task->cgroups pointer, the list of css_set 75 * objects, and the chain of tasks off each css_set. 76 * 77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 78 * cgroup.h can use them for lockdep annotations. 79 */ 80 DEFINE_MUTEX(cgroup_mutex); 81 DEFINE_SPINLOCK(css_set_lock); 82 83 #ifdef CONFIG_PROVE_RCU 84 EXPORT_SYMBOL_GPL(cgroup_mutex); 85 EXPORT_SYMBOL_GPL(css_set_lock); 86 #endif 87 88 DEFINE_SPINLOCK(trace_cgroup_path_lock); 89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 90 bool cgroup_debug __read_mostly; 91 92 /* 93 * Protects cgroup_idr and css_idr so that IDs can be released without 94 * grabbing cgroup_mutex. 95 */ 96 static DEFINE_SPINLOCK(cgroup_idr_lock); 97 98 /* 99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 100 * against file removal/re-creation across css hiding. 101 */ 102 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 103 104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 105 106 #define cgroup_assert_mutex_or_rcu_locked() \ 107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 108 !lockdep_is_held(&cgroup_mutex), \ 109 "cgroup_mutex or RCU read lock required"); 110 111 /* 112 * cgroup destruction makes heavy use of work items and there can be a lot 113 * of concurrent destructions. Use a separate workqueue so that cgroup 114 * destruction work items don't end up filling up max_active of system_wq 115 * which may lead to deadlock. 116 */ 117 static struct workqueue_struct *cgroup_destroy_wq; 118 119 /* generate an array of cgroup subsystem pointers */ 120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 121 struct cgroup_subsys *cgroup_subsys[] = { 122 #include <linux/cgroup_subsys.h> 123 }; 124 #undef SUBSYS 125 126 /* array of cgroup subsystem names */ 127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 128 static const char *cgroup_subsys_name[] = { 129 #include <linux/cgroup_subsys.h> 130 }; 131 #undef SUBSYS 132 133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 134 #define SUBSYS(_x) \ 135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 139 #include <linux/cgroup_subsys.h> 140 #undef SUBSYS 141 142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 143 static struct static_key_true *cgroup_subsys_enabled_key[] = { 144 #include <linux/cgroup_subsys.h> 145 }; 146 #undef SUBSYS 147 148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 150 #include <linux/cgroup_subsys.h> 151 }; 152 #undef SUBSYS 153 154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 155 156 /* the default hierarchy */ 157 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 158 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 159 160 /* 161 * The default hierarchy always exists but is hidden until mounted for the 162 * first time. This is for backward compatibility. 163 */ 164 static bool cgrp_dfl_visible; 165 166 /* some controllers are not supported in the default hierarchy */ 167 static u16 cgrp_dfl_inhibit_ss_mask; 168 169 /* some controllers are implicitly enabled on the default hierarchy */ 170 static u16 cgrp_dfl_implicit_ss_mask; 171 172 /* some controllers can be threaded on the default hierarchy */ 173 static u16 cgrp_dfl_threaded_ss_mask; 174 175 /* The list of hierarchy roots */ 176 LIST_HEAD(cgroup_roots); 177 static int cgroup_root_count; 178 179 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 180 static DEFINE_IDR(cgroup_hierarchy_idr); 181 182 /* 183 * Assign a monotonically increasing serial number to csses. It guarantees 184 * cgroups with bigger numbers are newer than those with smaller numbers. 185 * Also, as csses are always appended to the parent's ->children list, it 186 * guarantees that sibling csses are always sorted in the ascending serial 187 * number order on the list. Protected by cgroup_mutex. 188 */ 189 static u64 css_serial_nr_next = 1; 190 191 /* 192 * These bitmasks identify subsystems with specific features to avoid 193 * having to do iterative checks repeatedly. 194 */ 195 static u16 have_fork_callback __read_mostly; 196 static u16 have_exit_callback __read_mostly; 197 static u16 have_release_callback __read_mostly; 198 static u16 have_canfork_callback __read_mostly; 199 200 /* cgroup namespace for init task */ 201 struct cgroup_namespace init_cgroup_ns = { 202 .count = REFCOUNT_INIT(2), 203 .user_ns = &init_user_ns, 204 .ns.ops = &cgroupns_operations, 205 .ns.inum = PROC_CGROUP_INIT_INO, 206 .root_cset = &init_css_set, 207 }; 208 209 static struct file_system_type cgroup2_fs_type; 210 static struct cftype cgroup_base_files[]; 211 212 static int cgroup_apply_control(struct cgroup *cgrp); 213 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 214 static void css_task_iter_skip(struct css_task_iter *it, 215 struct task_struct *task); 216 static int cgroup_destroy_locked(struct cgroup *cgrp); 217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 218 struct cgroup_subsys *ss); 219 static void css_release(struct percpu_ref *ref); 220 static void kill_css(struct cgroup_subsys_state *css); 221 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 222 struct cgroup *cgrp, struct cftype cfts[], 223 bool is_add); 224 225 /** 226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 227 * @ssid: subsys ID of interest 228 * 229 * cgroup_subsys_enabled() can only be used with literal subsys names which 230 * is fine for individual subsystems but unsuitable for cgroup core. This 231 * is slower static_key_enabled() based test indexed by @ssid. 232 */ 233 bool cgroup_ssid_enabled(int ssid) 234 { 235 if (CGROUP_SUBSYS_COUNT == 0) 236 return false; 237 238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 239 } 240 241 /** 242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 243 * @cgrp: the cgroup of interest 244 * 245 * The default hierarchy is the v2 interface of cgroup and this function 246 * can be used to test whether a cgroup is on the default hierarchy for 247 * cases where a subsystem should behave differnetly depending on the 248 * interface version. 249 * 250 * List of changed behaviors: 251 * 252 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 253 * and "name" are disallowed. 254 * 255 * - When mounting an existing superblock, mount options should match. 256 * 257 * - Remount is disallowed. 258 * 259 * - rename(2) is disallowed. 260 * 261 * - "tasks" is removed. Everything should be at process granularity. Use 262 * "cgroup.procs" instead. 263 * 264 * - "cgroup.procs" is not sorted. pids will be unique unless they got 265 * recycled inbetween reads. 266 * 267 * - "release_agent" and "notify_on_release" are removed. Replacement 268 * notification mechanism will be implemented. 269 * 270 * - "cgroup.clone_children" is removed. 271 * 272 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 273 * and its descendants contain no task; otherwise, 1. The file also 274 * generates kernfs notification which can be monitored through poll and 275 * [di]notify when the value of the file changes. 276 * 277 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 278 * take masks of ancestors with non-empty cpus/mems, instead of being 279 * moved to an ancestor. 280 * 281 * - cpuset: a task can be moved into an empty cpuset, and again it takes 282 * masks of ancestors. 283 * 284 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 285 * is not created. 286 * 287 * - blkcg: blk-throttle becomes properly hierarchical. 288 * 289 * - debug: disallowed on the default hierarchy. 290 */ 291 bool cgroup_on_dfl(const struct cgroup *cgrp) 292 { 293 return cgrp->root == &cgrp_dfl_root; 294 } 295 296 /* IDR wrappers which synchronize using cgroup_idr_lock */ 297 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 298 gfp_t gfp_mask) 299 { 300 int ret; 301 302 idr_preload(gfp_mask); 303 spin_lock_bh(&cgroup_idr_lock); 304 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 305 spin_unlock_bh(&cgroup_idr_lock); 306 idr_preload_end(); 307 return ret; 308 } 309 310 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 311 { 312 void *ret; 313 314 spin_lock_bh(&cgroup_idr_lock); 315 ret = idr_replace(idr, ptr, id); 316 spin_unlock_bh(&cgroup_idr_lock); 317 return ret; 318 } 319 320 static void cgroup_idr_remove(struct idr *idr, int id) 321 { 322 spin_lock_bh(&cgroup_idr_lock); 323 idr_remove(idr, id); 324 spin_unlock_bh(&cgroup_idr_lock); 325 } 326 327 static bool cgroup_has_tasks(struct cgroup *cgrp) 328 { 329 return cgrp->nr_populated_csets; 330 } 331 332 bool cgroup_is_threaded(struct cgroup *cgrp) 333 { 334 return cgrp->dom_cgrp != cgrp; 335 } 336 337 /* can @cgrp host both domain and threaded children? */ 338 static bool cgroup_is_mixable(struct cgroup *cgrp) 339 { 340 /* 341 * Root isn't under domain level resource control exempting it from 342 * the no-internal-process constraint, so it can serve as a thread 343 * root and a parent of resource domains at the same time. 344 */ 345 return !cgroup_parent(cgrp); 346 } 347 348 /* can @cgrp become a thread root? should always be true for a thread root */ 349 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 350 { 351 /* mixables don't care */ 352 if (cgroup_is_mixable(cgrp)) 353 return true; 354 355 /* domain roots can't be nested under threaded */ 356 if (cgroup_is_threaded(cgrp)) 357 return false; 358 359 /* can only have either domain or threaded children */ 360 if (cgrp->nr_populated_domain_children) 361 return false; 362 363 /* and no domain controllers can be enabled */ 364 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 365 return false; 366 367 return true; 368 } 369 370 /* is @cgrp root of a threaded subtree? */ 371 bool cgroup_is_thread_root(struct cgroup *cgrp) 372 { 373 /* thread root should be a domain */ 374 if (cgroup_is_threaded(cgrp)) 375 return false; 376 377 /* a domain w/ threaded children is a thread root */ 378 if (cgrp->nr_threaded_children) 379 return true; 380 381 /* 382 * A domain which has tasks and explicit threaded controllers 383 * enabled is a thread root. 384 */ 385 if (cgroup_has_tasks(cgrp) && 386 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 387 return true; 388 389 return false; 390 } 391 392 /* a domain which isn't connected to the root w/o brekage can't be used */ 393 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 394 { 395 /* the cgroup itself can be a thread root */ 396 if (cgroup_is_threaded(cgrp)) 397 return false; 398 399 /* but the ancestors can't be unless mixable */ 400 while ((cgrp = cgroup_parent(cgrp))) { 401 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 402 return false; 403 if (cgroup_is_threaded(cgrp)) 404 return false; 405 } 406 407 return true; 408 } 409 410 /* subsystems visibly enabled on a cgroup */ 411 static u16 cgroup_control(struct cgroup *cgrp) 412 { 413 struct cgroup *parent = cgroup_parent(cgrp); 414 u16 root_ss_mask = cgrp->root->subsys_mask; 415 416 if (parent) { 417 u16 ss_mask = parent->subtree_control; 418 419 /* threaded cgroups can only have threaded controllers */ 420 if (cgroup_is_threaded(cgrp)) 421 ss_mask &= cgrp_dfl_threaded_ss_mask; 422 return ss_mask; 423 } 424 425 if (cgroup_on_dfl(cgrp)) 426 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 427 cgrp_dfl_implicit_ss_mask); 428 return root_ss_mask; 429 } 430 431 /* subsystems enabled on a cgroup */ 432 static u16 cgroup_ss_mask(struct cgroup *cgrp) 433 { 434 struct cgroup *parent = cgroup_parent(cgrp); 435 436 if (parent) { 437 u16 ss_mask = parent->subtree_ss_mask; 438 439 /* threaded cgroups can only have threaded controllers */ 440 if (cgroup_is_threaded(cgrp)) 441 ss_mask &= cgrp_dfl_threaded_ss_mask; 442 return ss_mask; 443 } 444 445 return cgrp->root->subsys_mask; 446 } 447 448 /** 449 * cgroup_css - obtain a cgroup's css for the specified subsystem 450 * @cgrp: the cgroup of interest 451 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 452 * 453 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 454 * function must be called either under cgroup_mutex or rcu_read_lock() and 455 * the caller is responsible for pinning the returned css if it wants to 456 * keep accessing it outside the said locks. This function may return 457 * %NULL if @cgrp doesn't have @subsys_id enabled. 458 */ 459 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 460 struct cgroup_subsys *ss) 461 { 462 if (ss) 463 return rcu_dereference_check(cgrp->subsys[ss->id], 464 lockdep_is_held(&cgroup_mutex)); 465 else 466 return &cgrp->self; 467 } 468 469 /** 470 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 471 * @cgrp: the cgroup of interest 472 * @ss: the subsystem of interest 473 * 474 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist 475 * or is offline, %NULL is returned. 476 */ 477 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 478 struct cgroup_subsys *ss) 479 { 480 struct cgroup_subsys_state *css; 481 482 rcu_read_lock(); 483 css = cgroup_css(cgrp, ss); 484 if (css && !css_tryget_online(css)) 485 css = NULL; 486 rcu_read_unlock(); 487 488 return css; 489 } 490 491 /** 492 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 493 * @cgrp: the cgroup of interest 494 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 495 * 496 * Similar to cgroup_css() but returns the effective css, which is defined 497 * as the matching css of the nearest ancestor including self which has @ss 498 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 499 * function is guaranteed to return non-NULL css. 500 */ 501 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 502 struct cgroup_subsys *ss) 503 { 504 lockdep_assert_held(&cgroup_mutex); 505 506 if (!ss) 507 return &cgrp->self; 508 509 /* 510 * This function is used while updating css associations and thus 511 * can't test the csses directly. Test ss_mask. 512 */ 513 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 514 cgrp = cgroup_parent(cgrp); 515 if (!cgrp) 516 return NULL; 517 } 518 519 return cgroup_css(cgrp, ss); 520 } 521 522 /** 523 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 524 * @cgrp: the cgroup of interest 525 * @ss: the subsystem of interest 526 * 527 * Find and get the effective css of @cgrp for @ss. The effective css is 528 * defined as the matching css of the nearest ancestor including self which 529 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 530 * the root css is returned, so this function always returns a valid css. 531 * 532 * The returned css is not guaranteed to be online, and therefore it is the 533 * callers responsiblity to tryget a reference for it. 534 */ 535 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 536 struct cgroup_subsys *ss) 537 { 538 struct cgroup_subsys_state *css; 539 540 do { 541 css = cgroup_css(cgrp, ss); 542 543 if (css) 544 return css; 545 cgrp = cgroup_parent(cgrp); 546 } while (cgrp); 547 548 return init_css_set.subsys[ss->id]; 549 } 550 551 /** 552 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 553 * @cgrp: the cgroup of interest 554 * @ss: the subsystem of interest 555 * 556 * Find and get the effective css of @cgrp for @ss. The effective css is 557 * defined as the matching css of the nearest ancestor including self which 558 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 559 * the root css is returned, so this function always returns a valid css. 560 * The returned css must be put using css_put(). 561 */ 562 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 563 struct cgroup_subsys *ss) 564 { 565 struct cgroup_subsys_state *css; 566 567 rcu_read_lock(); 568 569 do { 570 css = cgroup_css(cgrp, ss); 571 572 if (css && css_tryget_online(css)) 573 goto out_unlock; 574 cgrp = cgroup_parent(cgrp); 575 } while (cgrp); 576 577 css = init_css_set.subsys[ss->id]; 578 css_get(css); 579 out_unlock: 580 rcu_read_unlock(); 581 return css; 582 } 583 584 static void cgroup_get_live(struct cgroup *cgrp) 585 { 586 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 587 css_get(&cgrp->self); 588 } 589 590 /** 591 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 592 * is responsible for taking the css_set_lock. 593 * @cgrp: the cgroup in question 594 */ 595 int __cgroup_task_count(const struct cgroup *cgrp) 596 { 597 int count = 0; 598 struct cgrp_cset_link *link; 599 600 lockdep_assert_held(&css_set_lock); 601 602 list_for_each_entry(link, &cgrp->cset_links, cset_link) 603 count += link->cset->nr_tasks; 604 605 return count; 606 } 607 608 /** 609 * cgroup_task_count - count the number of tasks in a cgroup. 610 * @cgrp: the cgroup in question 611 */ 612 int cgroup_task_count(const struct cgroup *cgrp) 613 { 614 int count; 615 616 spin_lock_irq(&css_set_lock); 617 count = __cgroup_task_count(cgrp); 618 spin_unlock_irq(&css_set_lock); 619 620 return count; 621 } 622 623 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 624 { 625 struct cgroup *cgrp = of->kn->parent->priv; 626 struct cftype *cft = of_cft(of); 627 628 /* 629 * This is open and unprotected implementation of cgroup_css(). 630 * seq_css() is only called from a kernfs file operation which has 631 * an active reference on the file. Because all the subsystem 632 * files are drained before a css is disassociated with a cgroup, 633 * the matching css from the cgroup's subsys table is guaranteed to 634 * be and stay valid until the enclosing operation is complete. 635 */ 636 if (cft->ss) 637 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 638 else 639 return &cgrp->self; 640 } 641 EXPORT_SYMBOL_GPL(of_css); 642 643 /** 644 * for_each_css - iterate all css's of a cgroup 645 * @css: the iteration cursor 646 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 647 * @cgrp: the target cgroup to iterate css's of 648 * 649 * Should be called under cgroup_[tree_]mutex. 650 */ 651 #define for_each_css(css, ssid, cgrp) \ 652 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 653 if (!((css) = rcu_dereference_check( \ 654 (cgrp)->subsys[(ssid)], \ 655 lockdep_is_held(&cgroup_mutex)))) { } \ 656 else 657 658 /** 659 * for_each_e_css - iterate all effective css's of a cgroup 660 * @css: the iteration cursor 661 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 662 * @cgrp: the target cgroup to iterate css's of 663 * 664 * Should be called under cgroup_[tree_]mutex. 665 */ 666 #define for_each_e_css(css, ssid, cgrp) \ 667 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 668 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 669 cgroup_subsys[(ssid)]))) \ 670 ; \ 671 else 672 673 /** 674 * do_each_subsys_mask - filter for_each_subsys with a bitmask 675 * @ss: the iteration cursor 676 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 677 * @ss_mask: the bitmask 678 * 679 * The block will only run for cases where the ssid-th bit (1 << ssid) of 680 * @ss_mask is set. 681 */ 682 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 683 unsigned long __ss_mask = (ss_mask); \ 684 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 685 (ssid) = 0; \ 686 break; \ 687 } \ 688 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 689 (ss) = cgroup_subsys[ssid]; \ 690 { 691 692 #define while_each_subsys_mask() \ 693 } \ 694 } \ 695 } while (false) 696 697 /* iterate over child cgrps, lock should be held throughout iteration */ 698 #define cgroup_for_each_live_child(child, cgrp) \ 699 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 700 if (({ lockdep_assert_held(&cgroup_mutex); \ 701 cgroup_is_dead(child); })) \ 702 ; \ 703 else 704 705 /* walk live descendants in preorder */ 706 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 707 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 708 if (({ lockdep_assert_held(&cgroup_mutex); \ 709 (dsct) = (d_css)->cgroup; \ 710 cgroup_is_dead(dsct); })) \ 711 ; \ 712 else 713 714 /* walk live descendants in postorder */ 715 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 716 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 717 if (({ lockdep_assert_held(&cgroup_mutex); \ 718 (dsct) = (d_css)->cgroup; \ 719 cgroup_is_dead(dsct); })) \ 720 ; \ 721 else 722 723 /* 724 * The default css_set - used by init and its children prior to any 725 * hierarchies being mounted. It contains a pointer to the root state 726 * for each subsystem. Also used to anchor the list of css_sets. Not 727 * reference-counted, to improve performance when child cgroups 728 * haven't been created. 729 */ 730 struct css_set init_css_set = { 731 .refcount = REFCOUNT_INIT(1), 732 .dom_cset = &init_css_set, 733 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 734 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 735 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 736 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 737 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 738 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 739 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 740 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 741 742 /* 743 * The following field is re-initialized when this cset gets linked 744 * in cgroup_init(). However, let's initialize the field 745 * statically too so that the default cgroup can be accessed safely 746 * early during boot. 747 */ 748 .dfl_cgrp = &cgrp_dfl_root.cgrp, 749 }; 750 751 static int css_set_count = 1; /* 1 for init_css_set */ 752 753 static bool css_set_threaded(struct css_set *cset) 754 { 755 return cset->dom_cset != cset; 756 } 757 758 /** 759 * css_set_populated - does a css_set contain any tasks? 760 * @cset: target css_set 761 * 762 * css_set_populated() should be the same as !!cset->nr_tasks at steady 763 * state. However, css_set_populated() can be called while a task is being 764 * added to or removed from the linked list before the nr_tasks is 765 * properly updated. Hence, we can't just look at ->nr_tasks here. 766 */ 767 static bool css_set_populated(struct css_set *cset) 768 { 769 lockdep_assert_held(&css_set_lock); 770 771 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 772 } 773 774 /** 775 * cgroup_update_populated - update the populated count of a cgroup 776 * @cgrp: the target cgroup 777 * @populated: inc or dec populated count 778 * 779 * One of the css_sets associated with @cgrp is either getting its first 780 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 781 * count is propagated towards root so that a given cgroup's 782 * nr_populated_children is zero iff none of its descendants contain any 783 * tasks. 784 * 785 * @cgrp's interface file "cgroup.populated" is zero if both 786 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 787 * 1 otherwise. When the sum changes from or to zero, userland is notified 788 * that the content of the interface file has changed. This can be used to 789 * detect when @cgrp and its descendants become populated or empty. 790 */ 791 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 792 { 793 struct cgroup *child = NULL; 794 int adj = populated ? 1 : -1; 795 796 lockdep_assert_held(&css_set_lock); 797 798 do { 799 bool was_populated = cgroup_is_populated(cgrp); 800 801 if (!child) { 802 cgrp->nr_populated_csets += adj; 803 } else { 804 if (cgroup_is_threaded(child)) 805 cgrp->nr_populated_threaded_children += adj; 806 else 807 cgrp->nr_populated_domain_children += adj; 808 } 809 810 if (was_populated == cgroup_is_populated(cgrp)) 811 break; 812 813 cgroup1_check_for_release(cgrp); 814 TRACE_CGROUP_PATH(notify_populated, cgrp, 815 cgroup_is_populated(cgrp)); 816 cgroup_file_notify(&cgrp->events_file); 817 818 child = cgrp; 819 cgrp = cgroup_parent(cgrp); 820 } while (cgrp); 821 } 822 823 /** 824 * css_set_update_populated - update populated state of a css_set 825 * @cset: target css_set 826 * @populated: whether @cset is populated or depopulated 827 * 828 * @cset is either getting the first task or losing the last. Update the 829 * populated counters of all associated cgroups accordingly. 830 */ 831 static void css_set_update_populated(struct css_set *cset, bool populated) 832 { 833 struct cgrp_cset_link *link; 834 835 lockdep_assert_held(&css_set_lock); 836 837 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 838 cgroup_update_populated(link->cgrp, populated); 839 } 840 841 /* 842 * @task is leaving, advance task iterators which are pointing to it so 843 * that they can resume at the next position. Advancing an iterator might 844 * remove it from the list, use safe walk. See css_task_iter_skip() for 845 * details. 846 */ 847 static void css_set_skip_task_iters(struct css_set *cset, 848 struct task_struct *task) 849 { 850 struct css_task_iter *it, *pos; 851 852 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 853 css_task_iter_skip(it, task); 854 } 855 856 /** 857 * css_set_move_task - move a task from one css_set to another 858 * @task: task being moved 859 * @from_cset: css_set @task currently belongs to (may be NULL) 860 * @to_cset: new css_set @task is being moved to (may be NULL) 861 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 862 * 863 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 864 * css_set, @from_cset can be NULL. If @task is being disassociated 865 * instead of moved, @to_cset can be NULL. 866 * 867 * This function automatically handles populated counter updates and 868 * css_task_iter adjustments but the caller is responsible for managing 869 * @from_cset and @to_cset's reference counts. 870 */ 871 static void css_set_move_task(struct task_struct *task, 872 struct css_set *from_cset, struct css_set *to_cset, 873 bool use_mg_tasks) 874 { 875 lockdep_assert_held(&css_set_lock); 876 877 if (to_cset && !css_set_populated(to_cset)) 878 css_set_update_populated(to_cset, true); 879 880 if (from_cset) { 881 WARN_ON_ONCE(list_empty(&task->cg_list)); 882 883 css_set_skip_task_iters(from_cset, task); 884 list_del_init(&task->cg_list); 885 if (!css_set_populated(from_cset)) 886 css_set_update_populated(from_cset, false); 887 } else { 888 WARN_ON_ONCE(!list_empty(&task->cg_list)); 889 } 890 891 if (to_cset) { 892 /* 893 * We are synchronized through cgroup_threadgroup_rwsem 894 * against PF_EXITING setting such that we can't race 895 * against cgroup_exit()/cgroup_free() dropping the css_set. 896 */ 897 WARN_ON_ONCE(task->flags & PF_EXITING); 898 899 cgroup_move_task(task, to_cset); 900 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 901 &to_cset->tasks); 902 } 903 } 904 905 /* 906 * hash table for cgroup groups. This improves the performance to find 907 * an existing css_set. This hash doesn't (currently) take into 908 * account cgroups in empty hierarchies. 909 */ 910 #define CSS_SET_HASH_BITS 7 911 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 912 913 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 914 { 915 unsigned long key = 0UL; 916 struct cgroup_subsys *ss; 917 int i; 918 919 for_each_subsys(ss, i) 920 key += (unsigned long)css[i]; 921 key = (key >> 16) ^ key; 922 923 return key; 924 } 925 926 void put_css_set_locked(struct css_set *cset) 927 { 928 struct cgrp_cset_link *link, *tmp_link; 929 struct cgroup_subsys *ss; 930 int ssid; 931 932 lockdep_assert_held(&css_set_lock); 933 934 if (!refcount_dec_and_test(&cset->refcount)) 935 return; 936 937 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 938 939 /* This css_set is dead. unlink it and release cgroup and css refs */ 940 for_each_subsys(ss, ssid) { 941 list_del(&cset->e_cset_node[ssid]); 942 css_put(cset->subsys[ssid]); 943 } 944 hash_del(&cset->hlist); 945 css_set_count--; 946 947 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 948 list_del(&link->cset_link); 949 list_del(&link->cgrp_link); 950 if (cgroup_parent(link->cgrp)) 951 cgroup_put(link->cgrp); 952 kfree(link); 953 } 954 955 if (css_set_threaded(cset)) { 956 list_del(&cset->threaded_csets_node); 957 put_css_set_locked(cset->dom_cset); 958 } 959 960 kfree_rcu(cset, rcu_head); 961 } 962 963 /** 964 * compare_css_sets - helper function for find_existing_css_set(). 965 * @cset: candidate css_set being tested 966 * @old_cset: existing css_set for a task 967 * @new_cgrp: cgroup that's being entered by the task 968 * @template: desired set of css pointers in css_set (pre-calculated) 969 * 970 * Returns true if "cset" matches "old_cset" except for the hierarchy 971 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 972 */ 973 static bool compare_css_sets(struct css_set *cset, 974 struct css_set *old_cset, 975 struct cgroup *new_cgrp, 976 struct cgroup_subsys_state *template[]) 977 { 978 struct cgroup *new_dfl_cgrp; 979 struct list_head *l1, *l2; 980 981 /* 982 * On the default hierarchy, there can be csets which are 983 * associated with the same set of cgroups but different csses. 984 * Let's first ensure that csses match. 985 */ 986 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 987 return false; 988 989 990 /* @cset's domain should match the default cgroup's */ 991 if (cgroup_on_dfl(new_cgrp)) 992 new_dfl_cgrp = new_cgrp; 993 else 994 new_dfl_cgrp = old_cset->dfl_cgrp; 995 996 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 997 return false; 998 999 /* 1000 * Compare cgroup pointers in order to distinguish between 1001 * different cgroups in hierarchies. As different cgroups may 1002 * share the same effective css, this comparison is always 1003 * necessary. 1004 */ 1005 l1 = &cset->cgrp_links; 1006 l2 = &old_cset->cgrp_links; 1007 while (1) { 1008 struct cgrp_cset_link *link1, *link2; 1009 struct cgroup *cgrp1, *cgrp2; 1010 1011 l1 = l1->next; 1012 l2 = l2->next; 1013 /* See if we reached the end - both lists are equal length. */ 1014 if (l1 == &cset->cgrp_links) { 1015 BUG_ON(l2 != &old_cset->cgrp_links); 1016 break; 1017 } else { 1018 BUG_ON(l2 == &old_cset->cgrp_links); 1019 } 1020 /* Locate the cgroups associated with these links. */ 1021 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1022 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1023 cgrp1 = link1->cgrp; 1024 cgrp2 = link2->cgrp; 1025 /* Hierarchies should be linked in the same order. */ 1026 BUG_ON(cgrp1->root != cgrp2->root); 1027 1028 /* 1029 * If this hierarchy is the hierarchy of the cgroup 1030 * that's changing, then we need to check that this 1031 * css_set points to the new cgroup; if it's any other 1032 * hierarchy, then this css_set should point to the 1033 * same cgroup as the old css_set. 1034 */ 1035 if (cgrp1->root == new_cgrp->root) { 1036 if (cgrp1 != new_cgrp) 1037 return false; 1038 } else { 1039 if (cgrp1 != cgrp2) 1040 return false; 1041 } 1042 } 1043 return true; 1044 } 1045 1046 /** 1047 * find_existing_css_set - init css array and find the matching css_set 1048 * @old_cset: the css_set that we're using before the cgroup transition 1049 * @cgrp: the cgroup that we're moving into 1050 * @template: out param for the new set of csses, should be clear on entry 1051 */ 1052 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1053 struct cgroup *cgrp, 1054 struct cgroup_subsys_state *template[]) 1055 { 1056 struct cgroup_root *root = cgrp->root; 1057 struct cgroup_subsys *ss; 1058 struct css_set *cset; 1059 unsigned long key; 1060 int i; 1061 1062 /* 1063 * Build the set of subsystem state objects that we want to see in the 1064 * new css_set. while subsystems can change globally, the entries here 1065 * won't change, so no need for locking. 1066 */ 1067 for_each_subsys(ss, i) { 1068 if (root->subsys_mask & (1UL << i)) { 1069 /* 1070 * @ss is in this hierarchy, so we want the 1071 * effective css from @cgrp. 1072 */ 1073 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1074 } else { 1075 /* 1076 * @ss is not in this hierarchy, so we don't want 1077 * to change the css. 1078 */ 1079 template[i] = old_cset->subsys[i]; 1080 } 1081 } 1082 1083 key = css_set_hash(template); 1084 hash_for_each_possible(css_set_table, cset, hlist, key) { 1085 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1086 continue; 1087 1088 /* This css_set matches what we need */ 1089 return cset; 1090 } 1091 1092 /* No existing cgroup group matched */ 1093 return NULL; 1094 } 1095 1096 static void free_cgrp_cset_links(struct list_head *links_to_free) 1097 { 1098 struct cgrp_cset_link *link, *tmp_link; 1099 1100 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1101 list_del(&link->cset_link); 1102 kfree(link); 1103 } 1104 } 1105 1106 /** 1107 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1108 * @count: the number of links to allocate 1109 * @tmp_links: list_head the allocated links are put on 1110 * 1111 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1112 * through ->cset_link. Returns 0 on success or -errno. 1113 */ 1114 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1115 { 1116 struct cgrp_cset_link *link; 1117 int i; 1118 1119 INIT_LIST_HEAD(tmp_links); 1120 1121 for (i = 0; i < count; i++) { 1122 link = kzalloc(sizeof(*link), GFP_KERNEL); 1123 if (!link) { 1124 free_cgrp_cset_links(tmp_links); 1125 return -ENOMEM; 1126 } 1127 list_add(&link->cset_link, tmp_links); 1128 } 1129 return 0; 1130 } 1131 1132 /** 1133 * link_css_set - a helper function to link a css_set to a cgroup 1134 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1135 * @cset: the css_set to be linked 1136 * @cgrp: the destination cgroup 1137 */ 1138 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1139 struct cgroup *cgrp) 1140 { 1141 struct cgrp_cset_link *link; 1142 1143 BUG_ON(list_empty(tmp_links)); 1144 1145 if (cgroup_on_dfl(cgrp)) 1146 cset->dfl_cgrp = cgrp; 1147 1148 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1149 link->cset = cset; 1150 link->cgrp = cgrp; 1151 1152 /* 1153 * Always add links to the tail of the lists so that the lists are 1154 * in choronological order. 1155 */ 1156 list_move_tail(&link->cset_link, &cgrp->cset_links); 1157 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1158 1159 if (cgroup_parent(cgrp)) 1160 cgroup_get_live(cgrp); 1161 } 1162 1163 /** 1164 * find_css_set - return a new css_set with one cgroup updated 1165 * @old_cset: the baseline css_set 1166 * @cgrp: the cgroup to be updated 1167 * 1168 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1169 * substituted into the appropriate hierarchy. 1170 */ 1171 static struct css_set *find_css_set(struct css_set *old_cset, 1172 struct cgroup *cgrp) 1173 { 1174 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1175 struct css_set *cset; 1176 struct list_head tmp_links; 1177 struct cgrp_cset_link *link; 1178 struct cgroup_subsys *ss; 1179 unsigned long key; 1180 int ssid; 1181 1182 lockdep_assert_held(&cgroup_mutex); 1183 1184 /* First see if we already have a cgroup group that matches 1185 * the desired set */ 1186 spin_lock_irq(&css_set_lock); 1187 cset = find_existing_css_set(old_cset, cgrp, template); 1188 if (cset) 1189 get_css_set(cset); 1190 spin_unlock_irq(&css_set_lock); 1191 1192 if (cset) 1193 return cset; 1194 1195 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1196 if (!cset) 1197 return NULL; 1198 1199 /* Allocate all the cgrp_cset_link objects that we'll need */ 1200 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1201 kfree(cset); 1202 return NULL; 1203 } 1204 1205 refcount_set(&cset->refcount, 1); 1206 cset->dom_cset = cset; 1207 INIT_LIST_HEAD(&cset->tasks); 1208 INIT_LIST_HEAD(&cset->mg_tasks); 1209 INIT_LIST_HEAD(&cset->dying_tasks); 1210 INIT_LIST_HEAD(&cset->task_iters); 1211 INIT_LIST_HEAD(&cset->threaded_csets); 1212 INIT_HLIST_NODE(&cset->hlist); 1213 INIT_LIST_HEAD(&cset->cgrp_links); 1214 INIT_LIST_HEAD(&cset->mg_preload_node); 1215 INIT_LIST_HEAD(&cset->mg_node); 1216 1217 /* Copy the set of subsystem state objects generated in 1218 * find_existing_css_set() */ 1219 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1220 1221 spin_lock_irq(&css_set_lock); 1222 /* Add reference counts and links from the new css_set. */ 1223 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1224 struct cgroup *c = link->cgrp; 1225 1226 if (c->root == cgrp->root) 1227 c = cgrp; 1228 link_css_set(&tmp_links, cset, c); 1229 } 1230 1231 BUG_ON(!list_empty(&tmp_links)); 1232 1233 css_set_count++; 1234 1235 /* Add @cset to the hash table */ 1236 key = css_set_hash(cset->subsys); 1237 hash_add(css_set_table, &cset->hlist, key); 1238 1239 for_each_subsys(ss, ssid) { 1240 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1241 1242 list_add_tail(&cset->e_cset_node[ssid], 1243 &css->cgroup->e_csets[ssid]); 1244 css_get(css); 1245 } 1246 1247 spin_unlock_irq(&css_set_lock); 1248 1249 /* 1250 * If @cset should be threaded, look up the matching dom_cset and 1251 * link them up. We first fully initialize @cset then look for the 1252 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1253 * to stay empty until we return. 1254 */ 1255 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1256 struct css_set *dcset; 1257 1258 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1259 if (!dcset) { 1260 put_css_set(cset); 1261 return NULL; 1262 } 1263 1264 spin_lock_irq(&css_set_lock); 1265 cset->dom_cset = dcset; 1266 list_add_tail(&cset->threaded_csets_node, 1267 &dcset->threaded_csets); 1268 spin_unlock_irq(&css_set_lock); 1269 } 1270 1271 return cset; 1272 } 1273 1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1275 { 1276 struct cgroup *root_cgrp = kf_root->kn->priv; 1277 1278 return root_cgrp->root; 1279 } 1280 1281 static int cgroup_init_root_id(struct cgroup_root *root) 1282 { 1283 int id; 1284 1285 lockdep_assert_held(&cgroup_mutex); 1286 1287 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1288 if (id < 0) 1289 return id; 1290 1291 root->hierarchy_id = id; 1292 return 0; 1293 } 1294 1295 static void cgroup_exit_root_id(struct cgroup_root *root) 1296 { 1297 lockdep_assert_held(&cgroup_mutex); 1298 1299 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1300 } 1301 1302 void cgroup_free_root(struct cgroup_root *root) 1303 { 1304 kfree(root); 1305 } 1306 1307 static void cgroup_destroy_root(struct cgroup_root *root) 1308 { 1309 struct cgroup *cgrp = &root->cgrp; 1310 struct cgrp_cset_link *link, *tmp_link; 1311 1312 trace_cgroup_destroy_root(root); 1313 1314 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1315 1316 BUG_ON(atomic_read(&root->nr_cgrps)); 1317 BUG_ON(!list_empty(&cgrp->self.children)); 1318 1319 /* Rebind all subsystems back to the default hierarchy */ 1320 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1321 1322 /* 1323 * Release all the links from cset_links to this hierarchy's 1324 * root cgroup 1325 */ 1326 spin_lock_irq(&css_set_lock); 1327 1328 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1329 list_del(&link->cset_link); 1330 list_del(&link->cgrp_link); 1331 kfree(link); 1332 } 1333 1334 spin_unlock_irq(&css_set_lock); 1335 1336 if (!list_empty(&root->root_list)) { 1337 list_del(&root->root_list); 1338 cgroup_root_count--; 1339 } 1340 1341 cgroup_exit_root_id(root); 1342 1343 mutex_unlock(&cgroup_mutex); 1344 1345 kernfs_destroy_root(root->kf_root); 1346 cgroup_free_root(root); 1347 } 1348 1349 /* 1350 * look up cgroup associated with current task's cgroup namespace on the 1351 * specified hierarchy 1352 */ 1353 static struct cgroup * 1354 current_cgns_cgroup_from_root(struct cgroup_root *root) 1355 { 1356 struct cgroup *res = NULL; 1357 struct css_set *cset; 1358 1359 lockdep_assert_held(&css_set_lock); 1360 1361 rcu_read_lock(); 1362 1363 cset = current->nsproxy->cgroup_ns->root_cset; 1364 if (cset == &init_css_set) { 1365 res = &root->cgrp; 1366 } else if (root == &cgrp_dfl_root) { 1367 res = cset->dfl_cgrp; 1368 } else { 1369 struct cgrp_cset_link *link; 1370 1371 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1372 struct cgroup *c = link->cgrp; 1373 1374 if (c->root == root) { 1375 res = c; 1376 break; 1377 } 1378 } 1379 } 1380 rcu_read_unlock(); 1381 1382 BUG_ON(!res); 1383 return res; 1384 } 1385 1386 /* look up cgroup associated with given css_set on the specified hierarchy */ 1387 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1388 struct cgroup_root *root) 1389 { 1390 struct cgroup *res = NULL; 1391 1392 lockdep_assert_held(&cgroup_mutex); 1393 lockdep_assert_held(&css_set_lock); 1394 1395 if (cset == &init_css_set) { 1396 res = &root->cgrp; 1397 } else if (root == &cgrp_dfl_root) { 1398 res = cset->dfl_cgrp; 1399 } else { 1400 struct cgrp_cset_link *link; 1401 1402 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1403 struct cgroup *c = link->cgrp; 1404 1405 if (c->root == root) { 1406 res = c; 1407 break; 1408 } 1409 } 1410 } 1411 1412 BUG_ON(!res); 1413 return res; 1414 } 1415 1416 /* 1417 * Return the cgroup for "task" from the given hierarchy. Must be 1418 * called with cgroup_mutex and css_set_lock held. 1419 */ 1420 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1421 struct cgroup_root *root) 1422 { 1423 /* 1424 * No need to lock the task - since we hold css_set_lock the 1425 * task can't change groups. 1426 */ 1427 return cset_cgroup_from_root(task_css_set(task), root); 1428 } 1429 1430 /* 1431 * A task must hold cgroup_mutex to modify cgroups. 1432 * 1433 * Any task can increment and decrement the count field without lock. 1434 * So in general, code holding cgroup_mutex can't rely on the count 1435 * field not changing. However, if the count goes to zero, then only 1436 * cgroup_attach_task() can increment it again. Because a count of zero 1437 * means that no tasks are currently attached, therefore there is no 1438 * way a task attached to that cgroup can fork (the other way to 1439 * increment the count). So code holding cgroup_mutex can safely 1440 * assume that if the count is zero, it will stay zero. Similarly, if 1441 * a task holds cgroup_mutex on a cgroup with zero count, it 1442 * knows that the cgroup won't be removed, as cgroup_rmdir() 1443 * needs that mutex. 1444 * 1445 * A cgroup can only be deleted if both its 'count' of using tasks 1446 * is zero, and its list of 'children' cgroups is empty. Since all 1447 * tasks in the system use _some_ cgroup, and since there is always at 1448 * least one task in the system (init, pid == 1), therefore, root cgroup 1449 * always has either children cgroups and/or using tasks. So we don't 1450 * need a special hack to ensure that root cgroup cannot be deleted. 1451 * 1452 * P.S. One more locking exception. RCU is used to guard the 1453 * update of a tasks cgroup pointer by cgroup_attach_task() 1454 */ 1455 1456 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1457 1458 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1459 char *buf) 1460 { 1461 struct cgroup_subsys *ss = cft->ss; 1462 1463 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1464 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1465 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1466 1467 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1468 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1469 cft->name); 1470 } else { 1471 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1472 } 1473 return buf; 1474 } 1475 1476 /** 1477 * cgroup_file_mode - deduce file mode of a control file 1478 * @cft: the control file in question 1479 * 1480 * S_IRUGO for read, S_IWUSR for write. 1481 */ 1482 static umode_t cgroup_file_mode(const struct cftype *cft) 1483 { 1484 umode_t mode = 0; 1485 1486 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1487 mode |= S_IRUGO; 1488 1489 if (cft->write_u64 || cft->write_s64 || cft->write) { 1490 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1491 mode |= S_IWUGO; 1492 else 1493 mode |= S_IWUSR; 1494 } 1495 1496 return mode; 1497 } 1498 1499 /** 1500 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1501 * @subtree_control: the new subtree_control mask to consider 1502 * @this_ss_mask: available subsystems 1503 * 1504 * On the default hierarchy, a subsystem may request other subsystems to be 1505 * enabled together through its ->depends_on mask. In such cases, more 1506 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1507 * 1508 * This function calculates which subsystems need to be enabled if 1509 * @subtree_control is to be applied while restricted to @this_ss_mask. 1510 */ 1511 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1512 { 1513 u16 cur_ss_mask = subtree_control; 1514 struct cgroup_subsys *ss; 1515 int ssid; 1516 1517 lockdep_assert_held(&cgroup_mutex); 1518 1519 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1520 1521 while (true) { 1522 u16 new_ss_mask = cur_ss_mask; 1523 1524 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1525 new_ss_mask |= ss->depends_on; 1526 } while_each_subsys_mask(); 1527 1528 /* 1529 * Mask out subsystems which aren't available. This can 1530 * happen only if some depended-upon subsystems were bound 1531 * to non-default hierarchies. 1532 */ 1533 new_ss_mask &= this_ss_mask; 1534 1535 if (new_ss_mask == cur_ss_mask) 1536 break; 1537 cur_ss_mask = new_ss_mask; 1538 } 1539 1540 return cur_ss_mask; 1541 } 1542 1543 /** 1544 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1545 * @kn: the kernfs_node being serviced 1546 * 1547 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1548 * the method finishes if locking succeeded. Note that once this function 1549 * returns the cgroup returned by cgroup_kn_lock_live() may become 1550 * inaccessible any time. If the caller intends to continue to access the 1551 * cgroup, it should pin it before invoking this function. 1552 */ 1553 void cgroup_kn_unlock(struct kernfs_node *kn) 1554 { 1555 struct cgroup *cgrp; 1556 1557 if (kernfs_type(kn) == KERNFS_DIR) 1558 cgrp = kn->priv; 1559 else 1560 cgrp = kn->parent->priv; 1561 1562 mutex_unlock(&cgroup_mutex); 1563 1564 kernfs_unbreak_active_protection(kn); 1565 cgroup_put(cgrp); 1566 } 1567 1568 /** 1569 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1570 * @kn: the kernfs_node being serviced 1571 * @drain_offline: perform offline draining on the cgroup 1572 * 1573 * This helper is to be used by a cgroup kernfs method currently servicing 1574 * @kn. It breaks the active protection, performs cgroup locking and 1575 * verifies that the associated cgroup is alive. Returns the cgroup if 1576 * alive; otherwise, %NULL. A successful return should be undone by a 1577 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1578 * cgroup is drained of offlining csses before return. 1579 * 1580 * Any cgroup kernfs method implementation which requires locking the 1581 * associated cgroup should use this helper. It avoids nesting cgroup 1582 * locking under kernfs active protection and allows all kernfs operations 1583 * including self-removal. 1584 */ 1585 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1586 { 1587 struct cgroup *cgrp; 1588 1589 if (kernfs_type(kn) == KERNFS_DIR) 1590 cgrp = kn->priv; 1591 else 1592 cgrp = kn->parent->priv; 1593 1594 /* 1595 * We're gonna grab cgroup_mutex which nests outside kernfs 1596 * active_ref. cgroup liveliness check alone provides enough 1597 * protection against removal. Ensure @cgrp stays accessible and 1598 * break the active_ref protection. 1599 */ 1600 if (!cgroup_tryget(cgrp)) 1601 return NULL; 1602 kernfs_break_active_protection(kn); 1603 1604 if (drain_offline) 1605 cgroup_lock_and_drain_offline(cgrp); 1606 else 1607 mutex_lock(&cgroup_mutex); 1608 1609 if (!cgroup_is_dead(cgrp)) 1610 return cgrp; 1611 1612 cgroup_kn_unlock(kn); 1613 return NULL; 1614 } 1615 1616 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1617 { 1618 char name[CGROUP_FILE_NAME_MAX]; 1619 1620 lockdep_assert_held(&cgroup_mutex); 1621 1622 if (cft->file_offset) { 1623 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1624 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1625 1626 spin_lock_irq(&cgroup_file_kn_lock); 1627 cfile->kn = NULL; 1628 spin_unlock_irq(&cgroup_file_kn_lock); 1629 1630 del_timer_sync(&cfile->notify_timer); 1631 } 1632 1633 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1634 } 1635 1636 /** 1637 * css_clear_dir - remove subsys files in a cgroup directory 1638 * @css: taget css 1639 */ 1640 static void css_clear_dir(struct cgroup_subsys_state *css) 1641 { 1642 struct cgroup *cgrp = css->cgroup; 1643 struct cftype *cfts; 1644 1645 if (!(css->flags & CSS_VISIBLE)) 1646 return; 1647 1648 css->flags &= ~CSS_VISIBLE; 1649 1650 if (!css->ss) { 1651 if (cgroup_on_dfl(cgrp)) 1652 cfts = cgroup_base_files; 1653 else 1654 cfts = cgroup1_base_files; 1655 1656 cgroup_addrm_files(css, cgrp, cfts, false); 1657 } else { 1658 list_for_each_entry(cfts, &css->ss->cfts, node) 1659 cgroup_addrm_files(css, cgrp, cfts, false); 1660 } 1661 } 1662 1663 /** 1664 * css_populate_dir - create subsys files in a cgroup directory 1665 * @css: target css 1666 * 1667 * On failure, no file is added. 1668 */ 1669 static int css_populate_dir(struct cgroup_subsys_state *css) 1670 { 1671 struct cgroup *cgrp = css->cgroup; 1672 struct cftype *cfts, *failed_cfts; 1673 int ret; 1674 1675 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1676 return 0; 1677 1678 if (!css->ss) { 1679 if (cgroup_on_dfl(cgrp)) 1680 cfts = cgroup_base_files; 1681 else 1682 cfts = cgroup1_base_files; 1683 1684 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1685 if (ret < 0) 1686 return ret; 1687 } else { 1688 list_for_each_entry(cfts, &css->ss->cfts, node) { 1689 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1690 if (ret < 0) { 1691 failed_cfts = cfts; 1692 goto err; 1693 } 1694 } 1695 } 1696 1697 css->flags |= CSS_VISIBLE; 1698 1699 return 0; 1700 err: 1701 list_for_each_entry(cfts, &css->ss->cfts, node) { 1702 if (cfts == failed_cfts) 1703 break; 1704 cgroup_addrm_files(css, cgrp, cfts, false); 1705 } 1706 return ret; 1707 } 1708 1709 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1710 { 1711 struct cgroup *dcgrp = &dst_root->cgrp; 1712 struct cgroup_subsys *ss; 1713 int ssid, i, ret; 1714 1715 lockdep_assert_held(&cgroup_mutex); 1716 1717 do_each_subsys_mask(ss, ssid, ss_mask) { 1718 /* 1719 * If @ss has non-root csses attached to it, can't move. 1720 * If @ss is an implicit controller, it is exempt from this 1721 * rule and can be stolen. 1722 */ 1723 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1724 !ss->implicit_on_dfl) 1725 return -EBUSY; 1726 1727 /* can't move between two non-dummy roots either */ 1728 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1729 return -EBUSY; 1730 } while_each_subsys_mask(); 1731 1732 do_each_subsys_mask(ss, ssid, ss_mask) { 1733 struct cgroup_root *src_root = ss->root; 1734 struct cgroup *scgrp = &src_root->cgrp; 1735 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1736 struct css_set *cset; 1737 1738 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1739 1740 /* disable from the source */ 1741 src_root->subsys_mask &= ~(1 << ssid); 1742 WARN_ON(cgroup_apply_control(scgrp)); 1743 cgroup_finalize_control(scgrp, 0); 1744 1745 /* rebind */ 1746 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1747 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1748 ss->root = dst_root; 1749 css->cgroup = dcgrp; 1750 1751 spin_lock_irq(&css_set_lock); 1752 hash_for_each(css_set_table, i, cset, hlist) 1753 list_move_tail(&cset->e_cset_node[ss->id], 1754 &dcgrp->e_csets[ss->id]); 1755 spin_unlock_irq(&css_set_lock); 1756 1757 /* default hierarchy doesn't enable controllers by default */ 1758 dst_root->subsys_mask |= 1 << ssid; 1759 if (dst_root == &cgrp_dfl_root) { 1760 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1761 } else { 1762 dcgrp->subtree_control |= 1 << ssid; 1763 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1764 } 1765 1766 ret = cgroup_apply_control(dcgrp); 1767 if (ret) 1768 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1769 ss->name, ret); 1770 1771 if (ss->bind) 1772 ss->bind(css); 1773 } while_each_subsys_mask(); 1774 1775 kernfs_activate(dcgrp->kn); 1776 return 0; 1777 } 1778 1779 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1780 struct kernfs_root *kf_root) 1781 { 1782 int len = 0; 1783 char *buf = NULL; 1784 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1785 struct cgroup *ns_cgroup; 1786 1787 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1788 if (!buf) 1789 return -ENOMEM; 1790 1791 spin_lock_irq(&css_set_lock); 1792 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1793 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1794 spin_unlock_irq(&css_set_lock); 1795 1796 if (len >= PATH_MAX) 1797 len = -ERANGE; 1798 else if (len > 0) { 1799 seq_escape(sf, buf, " \t\n\\"); 1800 len = 0; 1801 } 1802 kfree(buf); 1803 return len; 1804 } 1805 1806 enum cgroup2_param { 1807 Opt_nsdelegate, 1808 Opt_memory_localevents, 1809 Opt_memory_recursiveprot, 1810 nr__cgroup2_params 1811 }; 1812 1813 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1814 fsparam_flag("nsdelegate", Opt_nsdelegate), 1815 fsparam_flag("memory_localevents", Opt_memory_localevents), 1816 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1817 {} 1818 }; 1819 1820 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1821 { 1822 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1823 struct fs_parse_result result; 1824 int opt; 1825 1826 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1827 if (opt < 0) 1828 return opt; 1829 1830 switch (opt) { 1831 case Opt_nsdelegate: 1832 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1833 return 0; 1834 case Opt_memory_localevents: 1835 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1836 return 0; 1837 case Opt_memory_recursiveprot: 1838 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1839 return 0; 1840 } 1841 return -EINVAL; 1842 } 1843 1844 static void apply_cgroup_root_flags(unsigned int root_flags) 1845 { 1846 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1847 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1848 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1849 else 1850 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1851 1852 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1853 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1854 else 1855 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1856 1857 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1858 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1859 else 1860 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1861 } 1862 } 1863 1864 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1865 { 1866 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1867 seq_puts(seq, ",nsdelegate"); 1868 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1869 seq_puts(seq, ",memory_localevents"); 1870 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1871 seq_puts(seq, ",memory_recursiveprot"); 1872 return 0; 1873 } 1874 1875 static int cgroup_reconfigure(struct fs_context *fc) 1876 { 1877 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1878 1879 apply_cgroup_root_flags(ctx->flags); 1880 return 0; 1881 } 1882 1883 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1884 { 1885 struct cgroup_subsys *ss; 1886 int ssid; 1887 1888 INIT_LIST_HEAD(&cgrp->self.sibling); 1889 INIT_LIST_HEAD(&cgrp->self.children); 1890 INIT_LIST_HEAD(&cgrp->cset_links); 1891 INIT_LIST_HEAD(&cgrp->pidlists); 1892 mutex_init(&cgrp->pidlist_mutex); 1893 cgrp->self.cgroup = cgrp; 1894 cgrp->self.flags |= CSS_ONLINE; 1895 cgrp->dom_cgrp = cgrp; 1896 cgrp->max_descendants = INT_MAX; 1897 cgrp->max_depth = INT_MAX; 1898 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1899 prev_cputime_init(&cgrp->prev_cputime); 1900 1901 for_each_subsys(ss, ssid) 1902 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1903 1904 init_waitqueue_head(&cgrp->offline_waitq); 1905 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1906 } 1907 1908 void init_cgroup_root(struct cgroup_fs_context *ctx) 1909 { 1910 struct cgroup_root *root = ctx->root; 1911 struct cgroup *cgrp = &root->cgrp; 1912 1913 INIT_LIST_HEAD(&root->root_list); 1914 atomic_set(&root->nr_cgrps, 1); 1915 cgrp->root = root; 1916 init_cgroup_housekeeping(cgrp); 1917 1918 root->flags = ctx->flags; 1919 if (ctx->release_agent) 1920 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1921 if (ctx->name) 1922 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1923 if (ctx->cpuset_clone_children) 1924 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1925 } 1926 1927 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1928 { 1929 LIST_HEAD(tmp_links); 1930 struct cgroup *root_cgrp = &root->cgrp; 1931 struct kernfs_syscall_ops *kf_sops; 1932 struct css_set *cset; 1933 int i, ret; 1934 1935 lockdep_assert_held(&cgroup_mutex); 1936 1937 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1938 0, GFP_KERNEL); 1939 if (ret) 1940 goto out; 1941 1942 /* 1943 * We're accessing css_set_count without locking css_set_lock here, 1944 * but that's OK - it can only be increased by someone holding 1945 * cgroup_lock, and that's us. Later rebinding may disable 1946 * controllers on the default hierarchy and thus create new csets, 1947 * which can't be more than the existing ones. Allocate 2x. 1948 */ 1949 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1950 if (ret) 1951 goto cancel_ref; 1952 1953 ret = cgroup_init_root_id(root); 1954 if (ret) 1955 goto cancel_ref; 1956 1957 kf_sops = root == &cgrp_dfl_root ? 1958 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1959 1960 root->kf_root = kernfs_create_root(kf_sops, 1961 KERNFS_ROOT_CREATE_DEACTIVATED | 1962 KERNFS_ROOT_SUPPORT_EXPORTOP | 1963 KERNFS_ROOT_SUPPORT_USER_XATTR, 1964 root_cgrp); 1965 if (IS_ERR(root->kf_root)) { 1966 ret = PTR_ERR(root->kf_root); 1967 goto exit_root_id; 1968 } 1969 root_cgrp->kn = root->kf_root->kn; 1970 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 1971 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp); 1972 1973 ret = css_populate_dir(&root_cgrp->self); 1974 if (ret) 1975 goto destroy_root; 1976 1977 ret = rebind_subsystems(root, ss_mask); 1978 if (ret) 1979 goto destroy_root; 1980 1981 ret = cgroup_bpf_inherit(root_cgrp); 1982 WARN_ON_ONCE(ret); 1983 1984 trace_cgroup_setup_root(root); 1985 1986 /* 1987 * There must be no failure case after here, since rebinding takes 1988 * care of subsystems' refcounts, which are explicitly dropped in 1989 * the failure exit path. 1990 */ 1991 list_add(&root->root_list, &cgroup_roots); 1992 cgroup_root_count++; 1993 1994 /* 1995 * Link the root cgroup in this hierarchy into all the css_set 1996 * objects. 1997 */ 1998 spin_lock_irq(&css_set_lock); 1999 hash_for_each(css_set_table, i, cset, hlist) { 2000 link_css_set(&tmp_links, cset, root_cgrp); 2001 if (css_set_populated(cset)) 2002 cgroup_update_populated(root_cgrp, true); 2003 } 2004 spin_unlock_irq(&css_set_lock); 2005 2006 BUG_ON(!list_empty(&root_cgrp->self.children)); 2007 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2008 2009 kernfs_activate(root_cgrp->kn); 2010 ret = 0; 2011 goto out; 2012 2013 destroy_root: 2014 kernfs_destroy_root(root->kf_root); 2015 root->kf_root = NULL; 2016 exit_root_id: 2017 cgroup_exit_root_id(root); 2018 cancel_ref: 2019 percpu_ref_exit(&root_cgrp->self.refcnt); 2020 out: 2021 free_cgrp_cset_links(&tmp_links); 2022 return ret; 2023 } 2024 2025 int cgroup_do_get_tree(struct fs_context *fc) 2026 { 2027 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2028 int ret; 2029 2030 ctx->kfc.root = ctx->root->kf_root; 2031 if (fc->fs_type == &cgroup2_fs_type) 2032 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2033 else 2034 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2035 ret = kernfs_get_tree(fc); 2036 2037 /* 2038 * In non-init cgroup namespace, instead of root cgroup's dentry, 2039 * we return the dentry corresponding to the cgroupns->root_cgrp. 2040 */ 2041 if (!ret && ctx->ns != &init_cgroup_ns) { 2042 struct dentry *nsdentry; 2043 struct super_block *sb = fc->root->d_sb; 2044 struct cgroup *cgrp; 2045 2046 mutex_lock(&cgroup_mutex); 2047 spin_lock_irq(&css_set_lock); 2048 2049 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2050 2051 spin_unlock_irq(&css_set_lock); 2052 mutex_unlock(&cgroup_mutex); 2053 2054 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2055 dput(fc->root); 2056 if (IS_ERR(nsdentry)) { 2057 deactivate_locked_super(sb); 2058 ret = PTR_ERR(nsdentry); 2059 nsdentry = NULL; 2060 } 2061 fc->root = nsdentry; 2062 } 2063 2064 if (!ctx->kfc.new_sb_created) 2065 cgroup_put(&ctx->root->cgrp); 2066 2067 return ret; 2068 } 2069 2070 /* 2071 * Destroy a cgroup filesystem context. 2072 */ 2073 static void cgroup_fs_context_free(struct fs_context *fc) 2074 { 2075 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2076 2077 kfree(ctx->name); 2078 kfree(ctx->release_agent); 2079 put_cgroup_ns(ctx->ns); 2080 kernfs_free_fs_context(fc); 2081 kfree(ctx); 2082 } 2083 2084 static int cgroup_get_tree(struct fs_context *fc) 2085 { 2086 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2087 int ret; 2088 2089 cgrp_dfl_visible = true; 2090 cgroup_get_live(&cgrp_dfl_root.cgrp); 2091 ctx->root = &cgrp_dfl_root; 2092 2093 ret = cgroup_do_get_tree(fc); 2094 if (!ret) 2095 apply_cgroup_root_flags(ctx->flags); 2096 return ret; 2097 } 2098 2099 static const struct fs_context_operations cgroup_fs_context_ops = { 2100 .free = cgroup_fs_context_free, 2101 .parse_param = cgroup2_parse_param, 2102 .get_tree = cgroup_get_tree, 2103 .reconfigure = cgroup_reconfigure, 2104 }; 2105 2106 static const struct fs_context_operations cgroup1_fs_context_ops = { 2107 .free = cgroup_fs_context_free, 2108 .parse_param = cgroup1_parse_param, 2109 .get_tree = cgroup1_get_tree, 2110 .reconfigure = cgroup1_reconfigure, 2111 }; 2112 2113 /* 2114 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2115 * we select the namespace we're going to use. 2116 */ 2117 static int cgroup_init_fs_context(struct fs_context *fc) 2118 { 2119 struct cgroup_fs_context *ctx; 2120 2121 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2122 if (!ctx) 2123 return -ENOMEM; 2124 2125 ctx->ns = current->nsproxy->cgroup_ns; 2126 get_cgroup_ns(ctx->ns); 2127 fc->fs_private = &ctx->kfc; 2128 if (fc->fs_type == &cgroup2_fs_type) 2129 fc->ops = &cgroup_fs_context_ops; 2130 else 2131 fc->ops = &cgroup1_fs_context_ops; 2132 put_user_ns(fc->user_ns); 2133 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2134 fc->global = true; 2135 return 0; 2136 } 2137 2138 static void cgroup_kill_sb(struct super_block *sb) 2139 { 2140 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2141 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2142 2143 /* 2144 * If @root doesn't have any children, start killing it. 2145 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2146 * cgroup_mount() may wait for @root's release. 2147 * 2148 * And don't kill the default root. 2149 */ 2150 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2151 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2152 percpu_ref_kill(&root->cgrp.self.refcnt); 2153 cgroup_put(&root->cgrp); 2154 kernfs_kill_sb(sb); 2155 } 2156 2157 struct file_system_type cgroup_fs_type = { 2158 .name = "cgroup", 2159 .init_fs_context = cgroup_init_fs_context, 2160 .parameters = cgroup1_fs_parameters, 2161 .kill_sb = cgroup_kill_sb, 2162 .fs_flags = FS_USERNS_MOUNT, 2163 }; 2164 2165 static struct file_system_type cgroup2_fs_type = { 2166 .name = "cgroup2", 2167 .init_fs_context = cgroup_init_fs_context, 2168 .parameters = cgroup2_fs_parameters, 2169 .kill_sb = cgroup_kill_sb, 2170 .fs_flags = FS_USERNS_MOUNT, 2171 }; 2172 2173 #ifdef CONFIG_CPUSETS 2174 static const struct fs_context_operations cpuset_fs_context_ops = { 2175 .get_tree = cgroup1_get_tree, 2176 .free = cgroup_fs_context_free, 2177 }; 2178 2179 /* 2180 * This is ugly, but preserves the userspace API for existing cpuset 2181 * users. If someone tries to mount the "cpuset" filesystem, we 2182 * silently switch it to mount "cgroup" instead 2183 */ 2184 static int cpuset_init_fs_context(struct fs_context *fc) 2185 { 2186 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2187 struct cgroup_fs_context *ctx; 2188 int err; 2189 2190 err = cgroup_init_fs_context(fc); 2191 if (err) { 2192 kfree(agent); 2193 return err; 2194 } 2195 2196 fc->ops = &cpuset_fs_context_ops; 2197 2198 ctx = cgroup_fc2context(fc); 2199 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2200 ctx->flags |= CGRP_ROOT_NOPREFIX; 2201 ctx->release_agent = agent; 2202 2203 get_filesystem(&cgroup_fs_type); 2204 put_filesystem(fc->fs_type); 2205 fc->fs_type = &cgroup_fs_type; 2206 2207 return 0; 2208 } 2209 2210 static struct file_system_type cpuset_fs_type = { 2211 .name = "cpuset", 2212 .init_fs_context = cpuset_init_fs_context, 2213 .fs_flags = FS_USERNS_MOUNT, 2214 }; 2215 #endif 2216 2217 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2218 struct cgroup_namespace *ns) 2219 { 2220 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2221 2222 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2223 } 2224 2225 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2226 struct cgroup_namespace *ns) 2227 { 2228 int ret; 2229 2230 mutex_lock(&cgroup_mutex); 2231 spin_lock_irq(&css_set_lock); 2232 2233 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2234 2235 spin_unlock_irq(&css_set_lock); 2236 mutex_unlock(&cgroup_mutex); 2237 2238 return ret; 2239 } 2240 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2241 2242 /** 2243 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2244 * @task: target task 2245 * @buf: the buffer to write the path into 2246 * @buflen: the length of the buffer 2247 * 2248 * Determine @task's cgroup on the first (the one with the lowest non-zero 2249 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2250 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2251 * cgroup controller callbacks. 2252 * 2253 * Return value is the same as kernfs_path(). 2254 */ 2255 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2256 { 2257 struct cgroup_root *root; 2258 struct cgroup *cgrp; 2259 int hierarchy_id = 1; 2260 int ret; 2261 2262 mutex_lock(&cgroup_mutex); 2263 spin_lock_irq(&css_set_lock); 2264 2265 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2266 2267 if (root) { 2268 cgrp = task_cgroup_from_root(task, root); 2269 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2270 } else { 2271 /* if no hierarchy exists, everyone is in "/" */ 2272 ret = strlcpy(buf, "/", buflen); 2273 } 2274 2275 spin_unlock_irq(&css_set_lock); 2276 mutex_unlock(&cgroup_mutex); 2277 return ret; 2278 } 2279 EXPORT_SYMBOL_GPL(task_cgroup_path); 2280 2281 /** 2282 * cgroup_migrate_add_task - add a migration target task to a migration context 2283 * @task: target task 2284 * @mgctx: target migration context 2285 * 2286 * Add @task, which is a migration target, to @mgctx->tset. This function 2287 * becomes noop if @task doesn't need to be migrated. @task's css_set 2288 * should have been added as a migration source and @task->cg_list will be 2289 * moved from the css_set's tasks list to mg_tasks one. 2290 */ 2291 static void cgroup_migrate_add_task(struct task_struct *task, 2292 struct cgroup_mgctx *mgctx) 2293 { 2294 struct css_set *cset; 2295 2296 lockdep_assert_held(&css_set_lock); 2297 2298 /* @task either already exited or can't exit until the end */ 2299 if (task->flags & PF_EXITING) 2300 return; 2301 2302 /* cgroup_threadgroup_rwsem protects racing against forks */ 2303 WARN_ON_ONCE(list_empty(&task->cg_list)); 2304 2305 cset = task_css_set(task); 2306 if (!cset->mg_src_cgrp) 2307 return; 2308 2309 mgctx->tset.nr_tasks++; 2310 2311 list_move_tail(&task->cg_list, &cset->mg_tasks); 2312 if (list_empty(&cset->mg_node)) 2313 list_add_tail(&cset->mg_node, 2314 &mgctx->tset.src_csets); 2315 if (list_empty(&cset->mg_dst_cset->mg_node)) 2316 list_add_tail(&cset->mg_dst_cset->mg_node, 2317 &mgctx->tset.dst_csets); 2318 } 2319 2320 /** 2321 * cgroup_taskset_first - reset taskset and return the first task 2322 * @tset: taskset of interest 2323 * @dst_cssp: output variable for the destination css 2324 * 2325 * @tset iteration is initialized and the first task is returned. 2326 */ 2327 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2328 struct cgroup_subsys_state **dst_cssp) 2329 { 2330 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2331 tset->cur_task = NULL; 2332 2333 return cgroup_taskset_next(tset, dst_cssp); 2334 } 2335 2336 /** 2337 * cgroup_taskset_next - iterate to the next task in taskset 2338 * @tset: taskset of interest 2339 * @dst_cssp: output variable for the destination css 2340 * 2341 * Return the next task in @tset. Iteration must have been initialized 2342 * with cgroup_taskset_first(). 2343 */ 2344 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2345 struct cgroup_subsys_state **dst_cssp) 2346 { 2347 struct css_set *cset = tset->cur_cset; 2348 struct task_struct *task = tset->cur_task; 2349 2350 while (&cset->mg_node != tset->csets) { 2351 if (!task) 2352 task = list_first_entry(&cset->mg_tasks, 2353 struct task_struct, cg_list); 2354 else 2355 task = list_next_entry(task, cg_list); 2356 2357 if (&task->cg_list != &cset->mg_tasks) { 2358 tset->cur_cset = cset; 2359 tset->cur_task = task; 2360 2361 /* 2362 * This function may be called both before and 2363 * after cgroup_taskset_migrate(). The two cases 2364 * can be distinguished by looking at whether @cset 2365 * has its ->mg_dst_cset set. 2366 */ 2367 if (cset->mg_dst_cset) 2368 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2369 else 2370 *dst_cssp = cset->subsys[tset->ssid]; 2371 2372 return task; 2373 } 2374 2375 cset = list_next_entry(cset, mg_node); 2376 task = NULL; 2377 } 2378 2379 return NULL; 2380 } 2381 2382 /** 2383 * cgroup_taskset_migrate - migrate a taskset 2384 * @mgctx: migration context 2385 * 2386 * Migrate tasks in @mgctx as setup by migration preparation functions. 2387 * This function fails iff one of the ->can_attach callbacks fails and 2388 * guarantees that either all or none of the tasks in @mgctx are migrated. 2389 * @mgctx is consumed regardless of success. 2390 */ 2391 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2392 { 2393 struct cgroup_taskset *tset = &mgctx->tset; 2394 struct cgroup_subsys *ss; 2395 struct task_struct *task, *tmp_task; 2396 struct css_set *cset, *tmp_cset; 2397 int ssid, failed_ssid, ret; 2398 2399 /* check that we can legitimately attach to the cgroup */ 2400 if (tset->nr_tasks) { 2401 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2402 if (ss->can_attach) { 2403 tset->ssid = ssid; 2404 ret = ss->can_attach(tset); 2405 if (ret) { 2406 failed_ssid = ssid; 2407 goto out_cancel_attach; 2408 } 2409 } 2410 } while_each_subsys_mask(); 2411 } 2412 2413 /* 2414 * Now that we're guaranteed success, proceed to move all tasks to 2415 * the new cgroup. There are no failure cases after here, so this 2416 * is the commit point. 2417 */ 2418 spin_lock_irq(&css_set_lock); 2419 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2420 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2421 struct css_set *from_cset = task_css_set(task); 2422 struct css_set *to_cset = cset->mg_dst_cset; 2423 2424 get_css_set(to_cset); 2425 to_cset->nr_tasks++; 2426 css_set_move_task(task, from_cset, to_cset, true); 2427 from_cset->nr_tasks--; 2428 /* 2429 * If the source or destination cgroup is frozen, 2430 * the task might require to change its state. 2431 */ 2432 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2433 to_cset->dfl_cgrp); 2434 put_css_set_locked(from_cset); 2435 2436 } 2437 } 2438 spin_unlock_irq(&css_set_lock); 2439 2440 /* 2441 * Migration is committed, all target tasks are now on dst_csets. 2442 * Nothing is sensitive to fork() after this point. Notify 2443 * controllers that migration is complete. 2444 */ 2445 tset->csets = &tset->dst_csets; 2446 2447 if (tset->nr_tasks) { 2448 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2449 if (ss->attach) { 2450 tset->ssid = ssid; 2451 ss->attach(tset); 2452 } 2453 } while_each_subsys_mask(); 2454 } 2455 2456 ret = 0; 2457 goto out_release_tset; 2458 2459 out_cancel_attach: 2460 if (tset->nr_tasks) { 2461 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2462 if (ssid == failed_ssid) 2463 break; 2464 if (ss->cancel_attach) { 2465 tset->ssid = ssid; 2466 ss->cancel_attach(tset); 2467 } 2468 } while_each_subsys_mask(); 2469 } 2470 out_release_tset: 2471 spin_lock_irq(&css_set_lock); 2472 list_splice_init(&tset->dst_csets, &tset->src_csets); 2473 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2474 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2475 list_del_init(&cset->mg_node); 2476 } 2477 spin_unlock_irq(&css_set_lock); 2478 2479 /* 2480 * Re-initialize the cgroup_taskset structure in case it is reused 2481 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2482 * iteration. 2483 */ 2484 tset->nr_tasks = 0; 2485 tset->csets = &tset->src_csets; 2486 return ret; 2487 } 2488 2489 /** 2490 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2491 * @dst_cgrp: destination cgroup to test 2492 * 2493 * On the default hierarchy, except for the mixable, (possible) thread root 2494 * and threaded cgroups, subtree_control must be zero for migration 2495 * destination cgroups with tasks so that child cgroups don't compete 2496 * against tasks. 2497 */ 2498 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2499 { 2500 /* v1 doesn't have any restriction */ 2501 if (!cgroup_on_dfl(dst_cgrp)) 2502 return 0; 2503 2504 /* verify @dst_cgrp can host resources */ 2505 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2506 return -EOPNOTSUPP; 2507 2508 /* mixables don't care */ 2509 if (cgroup_is_mixable(dst_cgrp)) 2510 return 0; 2511 2512 /* 2513 * If @dst_cgrp is already or can become a thread root or is 2514 * threaded, it doesn't matter. 2515 */ 2516 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2517 return 0; 2518 2519 /* apply no-internal-process constraint */ 2520 if (dst_cgrp->subtree_control) 2521 return -EBUSY; 2522 2523 return 0; 2524 } 2525 2526 /** 2527 * cgroup_migrate_finish - cleanup after attach 2528 * @mgctx: migration context 2529 * 2530 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2531 * those functions for details. 2532 */ 2533 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2534 { 2535 LIST_HEAD(preloaded); 2536 struct css_set *cset, *tmp_cset; 2537 2538 lockdep_assert_held(&cgroup_mutex); 2539 2540 spin_lock_irq(&css_set_lock); 2541 2542 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2543 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2544 2545 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2546 cset->mg_src_cgrp = NULL; 2547 cset->mg_dst_cgrp = NULL; 2548 cset->mg_dst_cset = NULL; 2549 list_del_init(&cset->mg_preload_node); 2550 put_css_set_locked(cset); 2551 } 2552 2553 spin_unlock_irq(&css_set_lock); 2554 } 2555 2556 /** 2557 * cgroup_migrate_add_src - add a migration source css_set 2558 * @src_cset: the source css_set to add 2559 * @dst_cgrp: the destination cgroup 2560 * @mgctx: migration context 2561 * 2562 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2563 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2564 * up by cgroup_migrate_finish(). 2565 * 2566 * This function may be called without holding cgroup_threadgroup_rwsem 2567 * even if the target is a process. Threads may be created and destroyed 2568 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2569 * into play and the preloaded css_sets are guaranteed to cover all 2570 * migrations. 2571 */ 2572 void cgroup_migrate_add_src(struct css_set *src_cset, 2573 struct cgroup *dst_cgrp, 2574 struct cgroup_mgctx *mgctx) 2575 { 2576 struct cgroup *src_cgrp; 2577 2578 lockdep_assert_held(&cgroup_mutex); 2579 lockdep_assert_held(&css_set_lock); 2580 2581 /* 2582 * If ->dead, @src_set is associated with one or more dead cgroups 2583 * and doesn't contain any migratable tasks. Ignore it early so 2584 * that the rest of migration path doesn't get confused by it. 2585 */ 2586 if (src_cset->dead) 2587 return; 2588 2589 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2590 2591 if (!list_empty(&src_cset->mg_preload_node)) 2592 return; 2593 2594 WARN_ON(src_cset->mg_src_cgrp); 2595 WARN_ON(src_cset->mg_dst_cgrp); 2596 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2597 WARN_ON(!list_empty(&src_cset->mg_node)); 2598 2599 src_cset->mg_src_cgrp = src_cgrp; 2600 src_cset->mg_dst_cgrp = dst_cgrp; 2601 get_css_set(src_cset); 2602 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2603 } 2604 2605 /** 2606 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2607 * @mgctx: migration context 2608 * 2609 * Tasks are about to be moved and all the source css_sets have been 2610 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2611 * pins all destination css_sets, links each to its source, and append them 2612 * to @mgctx->preloaded_dst_csets. 2613 * 2614 * This function must be called after cgroup_migrate_add_src() has been 2615 * called on each migration source css_set. After migration is performed 2616 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2617 * @mgctx. 2618 */ 2619 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2620 { 2621 struct css_set *src_cset, *tmp_cset; 2622 2623 lockdep_assert_held(&cgroup_mutex); 2624 2625 /* look up the dst cset for each src cset and link it to src */ 2626 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2627 mg_preload_node) { 2628 struct css_set *dst_cset; 2629 struct cgroup_subsys *ss; 2630 int ssid; 2631 2632 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2633 if (!dst_cset) 2634 return -ENOMEM; 2635 2636 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2637 2638 /* 2639 * If src cset equals dst, it's noop. Drop the src. 2640 * cgroup_migrate() will skip the cset too. Note that we 2641 * can't handle src == dst as some nodes are used by both. 2642 */ 2643 if (src_cset == dst_cset) { 2644 src_cset->mg_src_cgrp = NULL; 2645 src_cset->mg_dst_cgrp = NULL; 2646 list_del_init(&src_cset->mg_preload_node); 2647 put_css_set(src_cset); 2648 put_css_set(dst_cset); 2649 continue; 2650 } 2651 2652 src_cset->mg_dst_cset = dst_cset; 2653 2654 if (list_empty(&dst_cset->mg_preload_node)) 2655 list_add_tail(&dst_cset->mg_preload_node, 2656 &mgctx->preloaded_dst_csets); 2657 else 2658 put_css_set(dst_cset); 2659 2660 for_each_subsys(ss, ssid) 2661 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2662 mgctx->ss_mask |= 1 << ssid; 2663 } 2664 2665 return 0; 2666 } 2667 2668 /** 2669 * cgroup_migrate - migrate a process or task to a cgroup 2670 * @leader: the leader of the process or the task to migrate 2671 * @threadgroup: whether @leader points to the whole process or a single task 2672 * @mgctx: migration context 2673 * 2674 * Migrate a process or task denoted by @leader. If migrating a process, 2675 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2676 * responsible for invoking cgroup_migrate_add_src() and 2677 * cgroup_migrate_prepare_dst() on the targets before invoking this 2678 * function and following up with cgroup_migrate_finish(). 2679 * 2680 * As long as a controller's ->can_attach() doesn't fail, this function is 2681 * guaranteed to succeed. This means that, excluding ->can_attach() 2682 * failure, when migrating multiple targets, the success or failure can be 2683 * decided for all targets by invoking group_migrate_prepare_dst() before 2684 * actually starting migrating. 2685 */ 2686 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2687 struct cgroup_mgctx *mgctx) 2688 { 2689 struct task_struct *task; 2690 2691 /* 2692 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2693 * already PF_EXITING could be freed from underneath us unless we 2694 * take an rcu_read_lock. 2695 */ 2696 spin_lock_irq(&css_set_lock); 2697 rcu_read_lock(); 2698 task = leader; 2699 do { 2700 cgroup_migrate_add_task(task, mgctx); 2701 if (!threadgroup) 2702 break; 2703 } while_each_thread(leader, task); 2704 rcu_read_unlock(); 2705 spin_unlock_irq(&css_set_lock); 2706 2707 return cgroup_migrate_execute(mgctx); 2708 } 2709 2710 /** 2711 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2712 * @dst_cgrp: the cgroup to attach to 2713 * @leader: the task or the leader of the threadgroup to be attached 2714 * @threadgroup: attach the whole threadgroup? 2715 * 2716 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2717 */ 2718 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2719 bool threadgroup) 2720 { 2721 DEFINE_CGROUP_MGCTX(mgctx); 2722 struct task_struct *task; 2723 int ret = 0; 2724 2725 /* look up all src csets */ 2726 spin_lock_irq(&css_set_lock); 2727 rcu_read_lock(); 2728 task = leader; 2729 do { 2730 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2731 if (!threadgroup) 2732 break; 2733 } while_each_thread(leader, task); 2734 rcu_read_unlock(); 2735 spin_unlock_irq(&css_set_lock); 2736 2737 /* prepare dst csets and commit */ 2738 ret = cgroup_migrate_prepare_dst(&mgctx); 2739 if (!ret) 2740 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2741 2742 cgroup_migrate_finish(&mgctx); 2743 2744 if (!ret) 2745 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2746 2747 return ret; 2748 } 2749 2750 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2751 bool *locked) 2752 __acquires(&cgroup_threadgroup_rwsem) 2753 { 2754 struct task_struct *tsk; 2755 pid_t pid; 2756 2757 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2758 return ERR_PTR(-EINVAL); 2759 2760 /* 2761 * If we migrate a single thread, we don't care about threadgroup 2762 * stability. If the thread is `current`, it won't exit(2) under our 2763 * hands or change PID through exec(2). We exclude 2764 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2765 * callers by cgroup_mutex. 2766 * Therefore, we can skip the global lock. 2767 */ 2768 lockdep_assert_held(&cgroup_mutex); 2769 if (pid || threadgroup) { 2770 percpu_down_write(&cgroup_threadgroup_rwsem); 2771 *locked = true; 2772 } else { 2773 *locked = false; 2774 } 2775 2776 rcu_read_lock(); 2777 if (pid) { 2778 tsk = find_task_by_vpid(pid); 2779 if (!tsk) { 2780 tsk = ERR_PTR(-ESRCH); 2781 goto out_unlock_threadgroup; 2782 } 2783 } else { 2784 tsk = current; 2785 } 2786 2787 if (threadgroup) 2788 tsk = tsk->group_leader; 2789 2790 /* 2791 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2792 * If userland migrates such a kthread to a non-root cgroup, it can 2793 * become trapped in a cpuset, or RT kthread may be born in a 2794 * cgroup with no rt_runtime allocated. Just say no. 2795 */ 2796 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2797 tsk = ERR_PTR(-EINVAL); 2798 goto out_unlock_threadgroup; 2799 } 2800 2801 get_task_struct(tsk); 2802 goto out_unlock_rcu; 2803 2804 out_unlock_threadgroup: 2805 if (*locked) { 2806 percpu_up_write(&cgroup_threadgroup_rwsem); 2807 *locked = false; 2808 } 2809 out_unlock_rcu: 2810 rcu_read_unlock(); 2811 return tsk; 2812 } 2813 2814 void cgroup_procs_write_finish(struct task_struct *task, bool locked) 2815 __releases(&cgroup_threadgroup_rwsem) 2816 { 2817 struct cgroup_subsys *ss; 2818 int ssid; 2819 2820 /* release reference from cgroup_procs_write_start() */ 2821 put_task_struct(task); 2822 2823 if (locked) 2824 percpu_up_write(&cgroup_threadgroup_rwsem); 2825 for_each_subsys(ss, ssid) 2826 if (ss->post_attach) 2827 ss->post_attach(); 2828 } 2829 2830 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2831 { 2832 struct cgroup_subsys *ss; 2833 bool printed = false; 2834 int ssid; 2835 2836 do_each_subsys_mask(ss, ssid, ss_mask) { 2837 if (printed) 2838 seq_putc(seq, ' '); 2839 seq_puts(seq, ss->name); 2840 printed = true; 2841 } while_each_subsys_mask(); 2842 if (printed) 2843 seq_putc(seq, '\n'); 2844 } 2845 2846 /* show controllers which are enabled from the parent */ 2847 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2848 { 2849 struct cgroup *cgrp = seq_css(seq)->cgroup; 2850 2851 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2852 return 0; 2853 } 2854 2855 /* show controllers which are enabled for a given cgroup's children */ 2856 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2857 { 2858 struct cgroup *cgrp = seq_css(seq)->cgroup; 2859 2860 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2861 return 0; 2862 } 2863 2864 /** 2865 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2866 * @cgrp: root of the subtree to update csses for 2867 * 2868 * @cgrp's control masks have changed and its subtree's css associations 2869 * need to be updated accordingly. This function looks up all css_sets 2870 * which are attached to the subtree, creates the matching updated css_sets 2871 * and migrates the tasks to the new ones. 2872 */ 2873 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2874 { 2875 DEFINE_CGROUP_MGCTX(mgctx); 2876 struct cgroup_subsys_state *d_css; 2877 struct cgroup *dsct; 2878 struct css_set *src_cset; 2879 int ret; 2880 2881 lockdep_assert_held(&cgroup_mutex); 2882 2883 percpu_down_write(&cgroup_threadgroup_rwsem); 2884 2885 /* look up all csses currently attached to @cgrp's subtree */ 2886 spin_lock_irq(&css_set_lock); 2887 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2888 struct cgrp_cset_link *link; 2889 2890 list_for_each_entry(link, &dsct->cset_links, cset_link) 2891 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2892 } 2893 spin_unlock_irq(&css_set_lock); 2894 2895 /* NULL dst indicates self on default hierarchy */ 2896 ret = cgroup_migrate_prepare_dst(&mgctx); 2897 if (ret) 2898 goto out_finish; 2899 2900 spin_lock_irq(&css_set_lock); 2901 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2902 struct task_struct *task, *ntask; 2903 2904 /* all tasks in src_csets need to be migrated */ 2905 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2906 cgroup_migrate_add_task(task, &mgctx); 2907 } 2908 spin_unlock_irq(&css_set_lock); 2909 2910 ret = cgroup_migrate_execute(&mgctx); 2911 out_finish: 2912 cgroup_migrate_finish(&mgctx); 2913 percpu_up_write(&cgroup_threadgroup_rwsem); 2914 return ret; 2915 } 2916 2917 /** 2918 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2919 * @cgrp: root of the target subtree 2920 * 2921 * Because css offlining is asynchronous, userland may try to re-enable a 2922 * controller while the previous css is still around. This function grabs 2923 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2924 */ 2925 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2926 __acquires(&cgroup_mutex) 2927 { 2928 struct cgroup *dsct; 2929 struct cgroup_subsys_state *d_css; 2930 struct cgroup_subsys *ss; 2931 int ssid; 2932 2933 restart: 2934 mutex_lock(&cgroup_mutex); 2935 2936 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2937 for_each_subsys(ss, ssid) { 2938 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2939 DEFINE_WAIT(wait); 2940 2941 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2942 continue; 2943 2944 cgroup_get_live(dsct); 2945 prepare_to_wait(&dsct->offline_waitq, &wait, 2946 TASK_UNINTERRUPTIBLE); 2947 2948 mutex_unlock(&cgroup_mutex); 2949 schedule(); 2950 finish_wait(&dsct->offline_waitq, &wait); 2951 2952 cgroup_put(dsct); 2953 goto restart; 2954 } 2955 } 2956 } 2957 2958 /** 2959 * cgroup_save_control - save control masks and dom_cgrp of a subtree 2960 * @cgrp: root of the target subtree 2961 * 2962 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 2963 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2964 * itself. 2965 */ 2966 static void cgroup_save_control(struct cgroup *cgrp) 2967 { 2968 struct cgroup *dsct; 2969 struct cgroup_subsys_state *d_css; 2970 2971 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2972 dsct->old_subtree_control = dsct->subtree_control; 2973 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2974 dsct->old_dom_cgrp = dsct->dom_cgrp; 2975 } 2976 } 2977 2978 /** 2979 * cgroup_propagate_control - refresh control masks of a subtree 2980 * @cgrp: root of the target subtree 2981 * 2982 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2983 * ->subtree_control and propagate controller availability through the 2984 * subtree so that descendants don't have unavailable controllers enabled. 2985 */ 2986 static void cgroup_propagate_control(struct cgroup *cgrp) 2987 { 2988 struct cgroup *dsct; 2989 struct cgroup_subsys_state *d_css; 2990 2991 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2992 dsct->subtree_control &= cgroup_control(dsct); 2993 dsct->subtree_ss_mask = 2994 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2995 cgroup_ss_mask(dsct)); 2996 } 2997 } 2998 2999 /** 3000 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3001 * @cgrp: root of the target subtree 3002 * 3003 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3004 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3005 * itself. 3006 */ 3007 static void cgroup_restore_control(struct cgroup *cgrp) 3008 { 3009 struct cgroup *dsct; 3010 struct cgroup_subsys_state *d_css; 3011 3012 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3013 dsct->subtree_control = dsct->old_subtree_control; 3014 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3015 dsct->dom_cgrp = dsct->old_dom_cgrp; 3016 } 3017 } 3018 3019 static bool css_visible(struct cgroup_subsys_state *css) 3020 { 3021 struct cgroup_subsys *ss = css->ss; 3022 struct cgroup *cgrp = css->cgroup; 3023 3024 if (cgroup_control(cgrp) & (1 << ss->id)) 3025 return true; 3026 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3027 return false; 3028 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3029 } 3030 3031 /** 3032 * cgroup_apply_control_enable - enable or show csses according to control 3033 * @cgrp: root of the target subtree 3034 * 3035 * Walk @cgrp's subtree and create new csses or make the existing ones 3036 * visible. A css is created invisible if it's being implicitly enabled 3037 * through dependency. An invisible css is made visible when the userland 3038 * explicitly enables it. 3039 * 3040 * Returns 0 on success, -errno on failure. On failure, csses which have 3041 * been processed already aren't cleaned up. The caller is responsible for 3042 * cleaning up with cgroup_apply_control_disable(). 3043 */ 3044 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3045 { 3046 struct cgroup *dsct; 3047 struct cgroup_subsys_state *d_css; 3048 struct cgroup_subsys *ss; 3049 int ssid, ret; 3050 3051 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3052 for_each_subsys(ss, ssid) { 3053 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3054 3055 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3056 continue; 3057 3058 if (!css) { 3059 css = css_create(dsct, ss); 3060 if (IS_ERR(css)) 3061 return PTR_ERR(css); 3062 } 3063 3064 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3065 3066 if (css_visible(css)) { 3067 ret = css_populate_dir(css); 3068 if (ret) 3069 return ret; 3070 } 3071 } 3072 } 3073 3074 return 0; 3075 } 3076 3077 /** 3078 * cgroup_apply_control_disable - kill or hide csses according to control 3079 * @cgrp: root of the target subtree 3080 * 3081 * Walk @cgrp's subtree and kill and hide csses so that they match 3082 * cgroup_ss_mask() and cgroup_visible_mask(). 3083 * 3084 * A css is hidden when the userland requests it to be disabled while other 3085 * subsystems are still depending on it. The css must not actively control 3086 * resources and be in the vanilla state if it's made visible again later. 3087 * Controllers which may be depended upon should provide ->css_reset() for 3088 * this purpose. 3089 */ 3090 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3091 { 3092 struct cgroup *dsct; 3093 struct cgroup_subsys_state *d_css; 3094 struct cgroup_subsys *ss; 3095 int ssid; 3096 3097 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3098 for_each_subsys(ss, ssid) { 3099 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3100 3101 if (!css) 3102 continue; 3103 3104 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3105 3106 if (css->parent && 3107 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3108 kill_css(css); 3109 } else if (!css_visible(css)) { 3110 css_clear_dir(css); 3111 if (ss->css_reset) 3112 ss->css_reset(css); 3113 } 3114 } 3115 } 3116 } 3117 3118 /** 3119 * cgroup_apply_control - apply control mask updates to the subtree 3120 * @cgrp: root of the target subtree 3121 * 3122 * subsystems can be enabled and disabled in a subtree using the following 3123 * steps. 3124 * 3125 * 1. Call cgroup_save_control() to stash the current state. 3126 * 2. Update ->subtree_control masks in the subtree as desired. 3127 * 3. Call cgroup_apply_control() to apply the changes. 3128 * 4. Optionally perform other related operations. 3129 * 5. Call cgroup_finalize_control() to finish up. 3130 * 3131 * This function implements step 3 and propagates the mask changes 3132 * throughout @cgrp's subtree, updates csses accordingly and perform 3133 * process migrations. 3134 */ 3135 static int cgroup_apply_control(struct cgroup *cgrp) 3136 { 3137 int ret; 3138 3139 cgroup_propagate_control(cgrp); 3140 3141 ret = cgroup_apply_control_enable(cgrp); 3142 if (ret) 3143 return ret; 3144 3145 /* 3146 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3147 * making the following cgroup_update_dfl_csses() properly update 3148 * css associations of all tasks in the subtree. 3149 */ 3150 ret = cgroup_update_dfl_csses(cgrp); 3151 if (ret) 3152 return ret; 3153 3154 return 0; 3155 } 3156 3157 /** 3158 * cgroup_finalize_control - finalize control mask update 3159 * @cgrp: root of the target subtree 3160 * @ret: the result of the update 3161 * 3162 * Finalize control mask update. See cgroup_apply_control() for more info. 3163 */ 3164 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3165 { 3166 if (ret) { 3167 cgroup_restore_control(cgrp); 3168 cgroup_propagate_control(cgrp); 3169 } 3170 3171 cgroup_apply_control_disable(cgrp); 3172 } 3173 3174 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3175 { 3176 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3177 3178 /* if nothing is getting enabled, nothing to worry about */ 3179 if (!enable) 3180 return 0; 3181 3182 /* can @cgrp host any resources? */ 3183 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3184 return -EOPNOTSUPP; 3185 3186 /* mixables don't care */ 3187 if (cgroup_is_mixable(cgrp)) 3188 return 0; 3189 3190 if (domain_enable) { 3191 /* can't enable domain controllers inside a thread subtree */ 3192 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3193 return -EOPNOTSUPP; 3194 } else { 3195 /* 3196 * Threaded controllers can handle internal competitions 3197 * and are always allowed inside a (prospective) thread 3198 * subtree. 3199 */ 3200 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3201 return 0; 3202 } 3203 3204 /* 3205 * Controllers can't be enabled for a cgroup with tasks to avoid 3206 * child cgroups competing against tasks. 3207 */ 3208 if (cgroup_has_tasks(cgrp)) 3209 return -EBUSY; 3210 3211 return 0; 3212 } 3213 3214 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3215 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3216 char *buf, size_t nbytes, 3217 loff_t off) 3218 { 3219 u16 enable = 0, disable = 0; 3220 struct cgroup *cgrp, *child; 3221 struct cgroup_subsys *ss; 3222 char *tok; 3223 int ssid, ret; 3224 3225 /* 3226 * Parse input - space separated list of subsystem names prefixed 3227 * with either + or -. 3228 */ 3229 buf = strstrip(buf); 3230 while ((tok = strsep(&buf, " "))) { 3231 if (tok[0] == '\0') 3232 continue; 3233 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3234 if (!cgroup_ssid_enabled(ssid) || 3235 strcmp(tok + 1, ss->name)) 3236 continue; 3237 3238 if (*tok == '+') { 3239 enable |= 1 << ssid; 3240 disable &= ~(1 << ssid); 3241 } else if (*tok == '-') { 3242 disable |= 1 << ssid; 3243 enable &= ~(1 << ssid); 3244 } else { 3245 return -EINVAL; 3246 } 3247 break; 3248 } while_each_subsys_mask(); 3249 if (ssid == CGROUP_SUBSYS_COUNT) 3250 return -EINVAL; 3251 } 3252 3253 cgrp = cgroup_kn_lock_live(of->kn, true); 3254 if (!cgrp) 3255 return -ENODEV; 3256 3257 for_each_subsys(ss, ssid) { 3258 if (enable & (1 << ssid)) { 3259 if (cgrp->subtree_control & (1 << ssid)) { 3260 enable &= ~(1 << ssid); 3261 continue; 3262 } 3263 3264 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3265 ret = -ENOENT; 3266 goto out_unlock; 3267 } 3268 } else if (disable & (1 << ssid)) { 3269 if (!(cgrp->subtree_control & (1 << ssid))) { 3270 disable &= ~(1 << ssid); 3271 continue; 3272 } 3273 3274 /* a child has it enabled? */ 3275 cgroup_for_each_live_child(child, cgrp) { 3276 if (child->subtree_control & (1 << ssid)) { 3277 ret = -EBUSY; 3278 goto out_unlock; 3279 } 3280 } 3281 } 3282 } 3283 3284 if (!enable && !disable) { 3285 ret = 0; 3286 goto out_unlock; 3287 } 3288 3289 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3290 if (ret) 3291 goto out_unlock; 3292 3293 /* save and update control masks and prepare csses */ 3294 cgroup_save_control(cgrp); 3295 3296 cgrp->subtree_control |= enable; 3297 cgrp->subtree_control &= ~disable; 3298 3299 ret = cgroup_apply_control(cgrp); 3300 cgroup_finalize_control(cgrp, ret); 3301 if (ret) 3302 goto out_unlock; 3303 3304 kernfs_activate(cgrp->kn); 3305 out_unlock: 3306 cgroup_kn_unlock(of->kn); 3307 return ret ?: nbytes; 3308 } 3309 3310 /** 3311 * cgroup_enable_threaded - make @cgrp threaded 3312 * @cgrp: the target cgroup 3313 * 3314 * Called when "threaded" is written to the cgroup.type interface file and 3315 * tries to make @cgrp threaded and join the parent's resource domain. 3316 * This function is never called on the root cgroup as cgroup.type doesn't 3317 * exist on it. 3318 */ 3319 static int cgroup_enable_threaded(struct cgroup *cgrp) 3320 { 3321 struct cgroup *parent = cgroup_parent(cgrp); 3322 struct cgroup *dom_cgrp = parent->dom_cgrp; 3323 struct cgroup *dsct; 3324 struct cgroup_subsys_state *d_css; 3325 int ret; 3326 3327 lockdep_assert_held(&cgroup_mutex); 3328 3329 /* noop if already threaded */ 3330 if (cgroup_is_threaded(cgrp)) 3331 return 0; 3332 3333 /* 3334 * If @cgroup is populated or has domain controllers enabled, it 3335 * can't be switched. While the below cgroup_can_be_thread_root() 3336 * test can catch the same conditions, that's only when @parent is 3337 * not mixable, so let's check it explicitly. 3338 */ 3339 if (cgroup_is_populated(cgrp) || 3340 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3341 return -EOPNOTSUPP; 3342 3343 /* we're joining the parent's domain, ensure its validity */ 3344 if (!cgroup_is_valid_domain(dom_cgrp) || 3345 !cgroup_can_be_thread_root(dom_cgrp)) 3346 return -EOPNOTSUPP; 3347 3348 /* 3349 * The following shouldn't cause actual migrations and should 3350 * always succeed. 3351 */ 3352 cgroup_save_control(cgrp); 3353 3354 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3355 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3356 dsct->dom_cgrp = dom_cgrp; 3357 3358 ret = cgroup_apply_control(cgrp); 3359 if (!ret) 3360 parent->nr_threaded_children++; 3361 3362 cgroup_finalize_control(cgrp, ret); 3363 return ret; 3364 } 3365 3366 static int cgroup_type_show(struct seq_file *seq, void *v) 3367 { 3368 struct cgroup *cgrp = seq_css(seq)->cgroup; 3369 3370 if (cgroup_is_threaded(cgrp)) 3371 seq_puts(seq, "threaded\n"); 3372 else if (!cgroup_is_valid_domain(cgrp)) 3373 seq_puts(seq, "domain invalid\n"); 3374 else if (cgroup_is_thread_root(cgrp)) 3375 seq_puts(seq, "domain threaded\n"); 3376 else 3377 seq_puts(seq, "domain\n"); 3378 3379 return 0; 3380 } 3381 3382 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3383 size_t nbytes, loff_t off) 3384 { 3385 struct cgroup *cgrp; 3386 int ret; 3387 3388 /* only switching to threaded mode is supported */ 3389 if (strcmp(strstrip(buf), "threaded")) 3390 return -EINVAL; 3391 3392 /* drain dying csses before we re-apply (threaded) subtree control */ 3393 cgrp = cgroup_kn_lock_live(of->kn, true); 3394 if (!cgrp) 3395 return -ENOENT; 3396 3397 /* threaded can only be enabled */ 3398 ret = cgroup_enable_threaded(cgrp); 3399 3400 cgroup_kn_unlock(of->kn); 3401 return ret ?: nbytes; 3402 } 3403 3404 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3405 { 3406 struct cgroup *cgrp = seq_css(seq)->cgroup; 3407 int descendants = READ_ONCE(cgrp->max_descendants); 3408 3409 if (descendants == INT_MAX) 3410 seq_puts(seq, "max\n"); 3411 else 3412 seq_printf(seq, "%d\n", descendants); 3413 3414 return 0; 3415 } 3416 3417 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3418 char *buf, size_t nbytes, loff_t off) 3419 { 3420 struct cgroup *cgrp; 3421 int descendants; 3422 ssize_t ret; 3423 3424 buf = strstrip(buf); 3425 if (!strcmp(buf, "max")) { 3426 descendants = INT_MAX; 3427 } else { 3428 ret = kstrtoint(buf, 0, &descendants); 3429 if (ret) 3430 return ret; 3431 } 3432 3433 if (descendants < 0) 3434 return -ERANGE; 3435 3436 cgrp = cgroup_kn_lock_live(of->kn, false); 3437 if (!cgrp) 3438 return -ENOENT; 3439 3440 cgrp->max_descendants = descendants; 3441 3442 cgroup_kn_unlock(of->kn); 3443 3444 return nbytes; 3445 } 3446 3447 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3448 { 3449 struct cgroup *cgrp = seq_css(seq)->cgroup; 3450 int depth = READ_ONCE(cgrp->max_depth); 3451 3452 if (depth == INT_MAX) 3453 seq_puts(seq, "max\n"); 3454 else 3455 seq_printf(seq, "%d\n", depth); 3456 3457 return 0; 3458 } 3459 3460 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3461 char *buf, size_t nbytes, loff_t off) 3462 { 3463 struct cgroup *cgrp; 3464 ssize_t ret; 3465 int depth; 3466 3467 buf = strstrip(buf); 3468 if (!strcmp(buf, "max")) { 3469 depth = INT_MAX; 3470 } else { 3471 ret = kstrtoint(buf, 0, &depth); 3472 if (ret) 3473 return ret; 3474 } 3475 3476 if (depth < 0) 3477 return -ERANGE; 3478 3479 cgrp = cgroup_kn_lock_live(of->kn, false); 3480 if (!cgrp) 3481 return -ENOENT; 3482 3483 cgrp->max_depth = depth; 3484 3485 cgroup_kn_unlock(of->kn); 3486 3487 return nbytes; 3488 } 3489 3490 static int cgroup_events_show(struct seq_file *seq, void *v) 3491 { 3492 struct cgroup *cgrp = seq_css(seq)->cgroup; 3493 3494 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3495 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3496 3497 return 0; 3498 } 3499 3500 static int cgroup_stat_show(struct seq_file *seq, void *v) 3501 { 3502 struct cgroup *cgroup = seq_css(seq)->cgroup; 3503 3504 seq_printf(seq, "nr_descendants %d\n", 3505 cgroup->nr_descendants); 3506 seq_printf(seq, "nr_dying_descendants %d\n", 3507 cgroup->nr_dying_descendants); 3508 3509 return 0; 3510 } 3511 3512 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3513 struct cgroup *cgrp, int ssid) 3514 { 3515 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3516 struct cgroup_subsys_state *css; 3517 int ret; 3518 3519 if (!ss->css_extra_stat_show) 3520 return 0; 3521 3522 css = cgroup_tryget_css(cgrp, ss); 3523 if (!css) 3524 return 0; 3525 3526 ret = ss->css_extra_stat_show(seq, css); 3527 css_put(css); 3528 return ret; 3529 } 3530 3531 static int cpu_stat_show(struct seq_file *seq, void *v) 3532 { 3533 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3534 int ret = 0; 3535 3536 cgroup_base_stat_cputime_show(seq); 3537 #ifdef CONFIG_CGROUP_SCHED 3538 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3539 #endif 3540 return ret; 3541 } 3542 3543 #ifdef CONFIG_PSI 3544 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3545 { 3546 struct cgroup *cgrp = seq_css(seq)->cgroup; 3547 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3548 3549 return psi_show(seq, psi, PSI_IO); 3550 } 3551 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3552 { 3553 struct cgroup *cgrp = seq_css(seq)->cgroup; 3554 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3555 3556 return psi_show(seq, psi, PSI_MEM); 3557 } 3558 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3559 { 3560 struct cgroup *cgrp = seq_css(seq)->cgroup; 3561 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi; 3562 3563 return psi_show(seq, psi, PSI_CPU); 3564 } 3565 3566 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3567 size_t nbytes, enum psi_res res) 3568 { 3569 struct psi_trigger *new; 3570 struct cgroup *cgrp; 3571 3572 cgrp = cgroup_kn_lock_live(of->kn, false); 3573 if (!cgrp) 3574 return -ENODEV; 3575 3576 cgroup_get(cgrp); 3577 cgroup_kn_unlock(of->kn); 3578 3579 new = psi_trigger_create(&cgrp->psi, buf, nbytes, res); 3580 if (IS_ERR(new)) { 3581 cgroup_put(cgrp); 3582 return PTR_ERR(new); 3583 } 3584 3585 psi_trigger_replace(&of->priv, new); 3586 3587 cgroup_put(cgrp); 3588 3589 return nbytes; 3590 } 3591 3592 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3593 char *buf, size_t nbytes, 3594 loff_t off) 3595 { 3596 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3597 } 3598 3599 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3600 char *buf, size_t nbytes, 3601 loff_t off) 3602 { 3603 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3604 } 3605 3606 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3607 char *buf, size_t nbytes, 3608 loff_t off) 3609 { 3610 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3611 } 3612 3613 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3614 poll_table *pt) 3615 { 3616 return psi_trigger_poll(&of->priv, of->file, pt); 3617 } 3618 3619 static void cgroup_pressure_release(struct kernfs_open_file *of) 3620 { 3621 psi_trigger_replace(&of->priv, NULL); 3622 } 3623 #endif /* CONFIG_PSI */ 3624 3625 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3626 { 3627 struct cgroup *cgrp = seq_css(seq)->cgroup; 3628 3629 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3630 3631 return 0; 3632 } 3633 3634 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3635 char *buf, size_t nbytes, loff_t off) 3636 { 3637 struct cgroup *cgrp; 3638 ssize_t ret; 3639 int freeze; 3640 3641 ret = kstrtoint(strstrip(buf), 0, &freeze); 3642 if (ret) 3643 return ret; 3644 3645 if (freeze < 0 || freeze > 1) 3646 return -ERANGE; 3647 3648 cgrp = cgroup_kn_lock_live(of->kn, false); 3649 if (!cgrp) 3650 return -ENOENT; 3651 3652 cgroup_freeze(cgrp, freeze); 3653 3654 cgroup_kn_unlock(of->kn); 3655 3656 return nbytes; 3657 } 3658 3659 static int cgroup_file_open(struct kernfs_open_file *of) 3660 { 3661 struct cftype *cft = of->kn->priv; 3662 3663 if (cft->open) 3664 return cft->open(of); 3665 return 0; 3666 } 3667 3668 static void cgroup_file_release(struct kernfs_open_file *of) 3669 { 3670 struct cftype *cft = of->kn->priv; 3671 3672 if (cft->release) 3673 cft->release(of); 3674 } 3675 3676 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3677 size_t nbytes, loff_t off) 3678 { 3679 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3680 struct cgroup *cgrp = of->kn->parent->priv; 3681 struct cftype *cft = of->kn->priv; 3682 struct cgroup_subsys_state *css; 3683 int ret; 3684 3685 /* 3686 * If namespaces are delegation boundaries, disallow writes to 3687 * files in an non-init namespace root from inside the namespace 3688 * except for the files explicitly marked delegatable - 3689 * cgroup.procs and cgroup.subtree_control. 3690 */ 3691 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3692 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3693 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3694 return -EPERM; 3695 3696 if (cft->write) 3697 return cft->write(of, buf, nbytes, off); 3698 3699 /* 3700 * kernfs guarantees that a file isn't deleted with operations in 3701 * flight, which means that the matching css is and stays alive and 3702 * doesn't need to be pinned. The RCU locking is not necessary 3703 * either. It's just for the convenience of using cgroup_css(). 3704 */ 3705 rcu_read_lock(); 3706 css = cgroup_css(cgrp, cft->ss); 3707 rcu_read_unlock(); 3708 3709 if (cft->write_u64) { 3710 unsigned long long v; 3711 ret = kstrtoull(buf, 0, &v); 3712 if (!ret) 3713 ret = cft->write_u64(css, cft, v); 3714 } else if (cft->write_s64) { 3715 long long v; 3716 ret = kstrtoll(buf, 0, &v); 3717 if (!ret) 3718 ret = cft->write_s64(css, cft, v); 3719 } else { 3720 ret = -EINVAL; 3721 } 3722 3723 return ret ?: nbytes; 3724 } 3725 3726 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3727 { 3728 struct cftype *cft = of->kn->priv; 3729 3730 if (cft->poll) 3731 return cft->poll(of, pt); 3732 3733 return kernfs_generic_poll(of, pt); 3734 } 3735 3736 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3737 { 3738 return seq_cft(seq)->seq_start(seq, ppos); 3739 } 3740 3741 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3742 { 3743 return seq_cft(seq)->seq_next(seq, v, ppos); 3744 } 3745 3746 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3747 { 3748 if (seq_cft(seq)->seq_stop) 3749 seq_cft(seq)->seq_stop(seq, v); 3750 } 3751 3752 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3753 { 3754 struct cftype *cft = seq_cft(m); 3755 struct cgroup_subsys_state *css = seq_css(m); 3756 3757 if (cft->seq_show) 3758 return cft->seq_show(m, arg); 3759 3760 if (cft->read_u64) 3761 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3762 else if (cft->read_s64) 3763 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3764 else 3765 return -EINVAL; 3766 return 0; 3767 } 3768 3769 static struct kernfs_ops cgroup_kf_single_ops = { 3770 .atomic_write_len = PAGE_SIZE, 3771 .open = cgroup_file_open, 3772 .release = cgroup_file_release, 3773 .write = cgroup_file_write, 3774 .poll = cgroup_file_poll, 3775 .seq_show = cgroup_seqfile_show, 3776 }; 3777 3778 static struct kernfs_ops cgroup_kf_ops = { 3779 .atomic_write_len = PAGE_SIZE, 3780 .open = cgroup_file_open, 3781 .release = cgroup_file_release, 3782 .write = cgroup_file_write, 3783 .poll = cgroup_file_poll, 3784 .seq_start = cgroup_seqfile_start, 3785 .seq_next = cgroup_seqfile_next, 3786 .seq_stop = cgroup_seqfile_stop, 3787 .seq_show = cgroup_seqfile_show, 3788 }; 3789 3790 /* set uid and gid of cgroup dirs and files to that of the creator */ 3791 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3792 { 3793 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3794 .ia_uid = current_fsuid(), 3795 .ia_gid = current_fsgid(), }; 3796 3797 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3798 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3799 return 0; 3800 3801 return kernfs_setattr(kn, &iattr); 3802 } 3803 3804 static void cgroup_file_notify_timer(struct timer_list *timer) 3805 { 3806 cgroup_file_notify(container_of(timer, struct cgroup_file, 3807 notify_timer)); 3808 } 3809 3810 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3811 struct cftype *cft) 3812 { 3813 char name[CGROUP_FILE_NAME_MAX]; 3814 struct kernfs_node *kn; 3815 struct lock_class_key *key = NULL; 3816 int ret; 3817 3818 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3819 key = &cft->lockdep_key; 3820 #endif 3821 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3822 cgroup_file_mode(cft), 3823 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3824 0, cft->kf_ops, cft, 3825 NULL, key); 3826 if (IS_ERR(kn)) 3827 return PTR_ERR(kn); 3828 3829 ret = cgroup_kn_set_ugid(kn); 3830 if (ret) { 3831 kernfs_remove(kn); 3832 return ret; 3833 } 3834 3835 if (cft->file_offset) { 3836 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3837 3838 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3839 3840 spin_lock_irq(&cgroup_file_kn_lock); 3841 cfile->kn = kn; 3842 spin_unlock_irq(&cgroup_file_kn_lock); 3843 } 3844 3845 return 0; 3846 } 3847 3848 /** 3849 * cgroup_addrm_files - add or remove files to a cgroup directory 3850 * @css: the target css 3851 * @cgrp: the target cgroup (usually css->cgroup) 3852 * @cfts: array of cftypes to be added 3853 * @is_add: whether to add or remove 3854 * 3855 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3856 * For removals, this function never fails. 3857 */ 3858 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3859 struct cgroup *cgrp, struct cftype cfts[], 3860 bool is_add) 3861 { 3862 struct cftype *cft, *cft_end = NULL; 3863 int ret = 0; 3864 3865 lockdep_assert_held(&cgroup_mutex); 3866 3867 restart: 3868 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3869 /* does cft->flags tell us to skip this file on @cgrp? */ 3870 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3871 continue; 3872 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3873 continue; 3874 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3875 continue; 3876 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3877 continue; 3878 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 3879 continue; 3880 if (is_add) { 3881 ret = cgroup_add_file(css, cgrp, cft); 3882 if (ret) { 3883 pr_warn("%s: failed to add %s, err=%d\n", 3884 __func__, cft->name, ret); 3885 cft_end = cft; 3886 is_add = false; 3887 goto restart; 3888 } 3889 } else { 3890 cgroup_rm_file(cgrp, cft); 3891 } 3892 } 3893 return ret; 3894 } 3895 3896 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3897 { 3898 struct cgroup_subsys *ss = cfts[0].ss; 3899 struct cgroup *root = &ss->root->cgrp; 3900 struct cgroup_subsys_state *css; 3901 int ret = 0; 3902 3903 lockdep_assert_held(&cgroup_mutex); 3904 3905 /* add/rm files for all cgroups created before */ 3906 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3907 struct cgroup *cgrp = css->cgroup; 3908 3909 if (!(css->flags & CSS_VISIBLE)) 3910 continue; 3911 3912 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3913 if (ret) 3914 break; 3915 } 3916 3917 if (is_add && !ret) 3918 kernfs_activate(root->kn); 3919 return ret; 3920 } 3921 3922 static void cgroup_exit_cftypes(struct cftype *cfts) 3923 { 3924 struct cftype *cft; 3925 3926 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3927 /* free copy for custom atomic_write_len, see init_cftypes() */ 3928 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3929 kfree(cft->kf_ops); 3930 cft->kf_ops = NULL; 3931 cft->ss = NULL; 3932 3933 /* revert flags set by cgroup core while adding @cfts */ 3934 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3935 } 3936 } 3937 3938 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3939 { 3940 struct cftype *cft; 3941 3942 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3943 struct kernfs_ops *kf_ops; 3944 3945 WARN_ON(cft->ss || cft->kf_ops); 3946 3947 if (cft->seq_start) 3948 kf_ops = &cgroup_kf_ops; 3949 else 3950 kf_ops = &cgroup_kf_single_ops; 3951 3952 /* 3953 * Ugh... if @cft wants a custom max_write_len, we need to 3954 * make a copy of kf_ops to set its atomic_write_len. 3955 */ 3956 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3957 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3958 if (!kf_ops) { 3959 cgroup_exit_cftypes(cfts); 3960 return -ENOMEM; 3961 } 3962 kf_ops->atomic_write_len = cft->max_write_len; 3963 } 3964 3965 cft->kf_ops = kf_ops; 3966 cft->ss = ss; 3967 } 3968 3969 return 0; 3970 } 3971 3972 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3973 { 3974 lockdep_assert_held(&cgroup_mutex); 3975 3976 if (!cfts || !cfts[0].ss) 3977 return -ENOENT; 3978 3979 list_del(&cfts->node); 3980 cgroup_apply_cftypes(cfts, false); 3981 cgroup_exit_cftypes(cfts); 3982 return 0; 3983 } 3984 3985 /** 3986 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3987 * @cfts: zero-length name terminated array of cftypes 3988 * 3989 * Unregister @cfts. Files described by @cfts are removed from all 3990 * existing cgroups and all future cgroups won't have them either. This 3991 * function can be called anytime whether @cfts' subsys is attached or not. 3992 * 3993 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3994 * registered. 3995 */ 3996 int cgroup_rm_cftypes(struct cftype *cfts) 3997 { 3998 int ret; 3999 4000 mutex_lock(&cgroup_mutex); 4001 ret = cgroup_rm_cftypes_locked(cfts); 4002 mutex_unlock(&cgroup_mutex); 4003 return ret; 4004 } 4005 4006 /** 4007 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4008 * @ss: target cgroup subsystem 4009 * @cfts: zero-length name terminated array of cftypes 4010 * 4011 * Register @cfts to @ss. Files described by @cfts are created for all 4012 * existing cgroups to which @ss is attached and all future cgroups will 4013 * have them too. This function can be called anytime whether @ss is 4014 * attached or not. 4015 * 4016 * Returns 0 on successful registration, -errno on failure. Note that this 4017 * function currently returns 0 as long as @cfts registration is successful 4018 * even if some file creation attempts on existing cgroups fail. 4019 */ 4020 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4021 { 4022 int ret; 4023 4024 if (!cgroup_ssid_enabled(ss->id)) 4025 return 0; 4026 4027 if (!cfts || cfts[0].name[0] == '\0') 4028 return 0; 4029 4030 ret = cgroup_init_cftypes(ss, cfts); 4031 if (ret) 4032 return ret; 4033 4034 mutex_lock(&cgroup_mutex); 4035 4036 list_add_tail(&cfts->node, &ss->cfts); 4037 ret = cgroup_apply_cftypes(cfts, true); 4038 if (ret) 4039 cgroup_rm_cftypes_locked(cfts); 4040 4041 mutex_unlock(&cgroup_mutex); 4042 return ret; 4043 } 4044 4045 /** 4046 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4047 * @ss: target cgroup subsystem 4048 * @cfts: zero-length name terminated array of cftypes 4049 * 4050 * Similar to cgroup_add_cftypes() but the added files are only used for 4051 * the default hierarchy. 4052 */ 4053 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4054 { 4055 struct cftype *cft; 4056 4057 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4058 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4059 return cgroup_add_cftypes(ss, cfts); 4060 } 4061 4062 /** 4063 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4064 * @ss: target cgroup subsystem 4065 * @cfts: zero-length name terminated array of cftypes 4066 * 4067 * Similar to cgroup_add_cftypes() but the added files are only used for 4068 * the legacy hierarchies. 4069 */ 4070 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4071 { 4072 struct cftype *cft; 4073 4074 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4075 cft->flags |= __CFTYPE_NOT_ON_DFL; 4076 return cgroup_add_cftypes(ss, cfts); 4077 } 4078 4079 /** 4080 * cgroup_file_notify - generate a file modified event for a cgroup_file 4081 * @cfile: target cgroup_file 4082 * 4083 * @cfile must have been obtained by setting cftype->file_offset. 4084 */ 4085 void cgroup_file_notify(struct cgroup_file *cfile) 4086 { 4087 unsigned long flags; 4088 4089 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4090 if (cfile->kn) { 4091 unsigned long last = cfile->notified_at; 4092 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4093 4094 if (time_in_range(jiffies, last, next)) { 4095 timer_reduce(&cfile->notify_timer, next); 4096 } else { 4097 kernfs_notify(cfile->kn); 4098 cfile->notified_at = jiffies; 4099 } 4100 } 4101 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4102 } 4103 4104 /** 4105 * css_next_child - find the next child of a given css 4106 * @pos: the current position (%NULL to initiate traversal) 4107 * @parent: css whose children to walk 4108 * 4109 * This function returns the next child of @parent and should be called 4110 * under either cgroup_mutex or RCU read lock. The only requirement is 4111 * that @parent and @pos are accessible. The next sibling is guaranteed to 4112 * be returned regardless of their states. 4113 * 4114 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4115 * css which finished ->css_online() is guaranteed to be visible in the 4116 * future iterations and will stay visible until the last reference is put. 4117 * A css which hasn't finished ->css_online() or already finished 4118 * ->css_offline() may show up during traversal. It's each subsystem's 4119 * responsibility to synchronize against on/offlining. 4120 */ 4121 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4122 struct cgroup_subsys_state *parent) 4123 { 4124 struct cgroup_subsys_state *next; 4125 4126 cgroup_assert_mutex_or_rcu_locked(); 4127 4128 /* 4129 * @pos could already have been unlinked from the sibling list. 4130 * Once a cgroup is removed, its ->sibling.next is no longer 4131 * updated when its next sibling changes. CSS_RELEASED is set when 4132 * @pos is taken off list, at which time its next pointer is valid, 4133 * and, as releases are serialized, the one pointed to by the next 4134 * pointer is guaranteed to not have started release yet. This 4135 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4136 * critical section, the one pointed to by its next pointer is 4137 * guaranteed to not have finished its RCU grace period even if we 4138 * have dropped rcu_read_lock() inbetween iterations. 4139 * 4140 * If @pos has CSS_RELEASED set, its next pointer can't be 4141 * dereferenced; however, as each css is given a monotonically 4142 * increasing unique serial number and always appended to the 4143 * sibling list, the next one can be found by walking the parent's 4144 * children until the first css with higher serial number than 4145 * @pos's. While this path can be slower, it happens iff iteration 4146 * races against release and the race window is very small. 4147 */ 4148 if (!pos) { 4149 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4150 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4151 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4152 } else { 4153 list_for_each_entry_rcu(next, &parent->children, sibling, 4154 lockdep_is_held(&cgroup_mutex)) 4155 if (next->serial_nr > pos->serial_nr) 4156 break; 4157 } 4158 4159 /* 4160 * @next, if not pointing to the head, can be dereferenced and is 4161 * the next sibling. 4162 */ 4163 if (&next->sibling != &parent->children) 4164 return next; 4165 return NULL; 4166 } 4167 4168 /** 4169 * css_next_descendant_pre - find the next descendant for pre-order walk 4170 * @pos: the current position (%NULL to initiate traversal) 4171 * @root: css whose descendants to walk 4172 * 4173 * To be used by css_for_each_descendant_pre(). Find the next descendant 4174 * to visit for pre-order traversal of @root's descendants. @root is 4175 * included in the iteration and the first node to be visited. 4176 * 4177 * While this function requires cgroup_mutex or RCU read locking, it 4178 * doesn't require the whole traversal to be contained in a single critical 4179 * section. This function will return the correct next descendant as long 4180 * as both @pos and @root are accessible and @pos is a descendant of @root. 4181 * 4182 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4183 * css which finished ->css_online() is guaranteed to be visible in the 4184 * future iterations and will stay visible until the last reference is put. 4185 * A css which hasn't finished ->css_online() or already finished 4186 * ->css_offline() may show up during traversal. It's each subsystem's 4187 * responsibility to synchronize against on/offlining. 4188 */ 4189 struct cgroup_subsys_state * 4190 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4191 struct cgroup_subsys_state *root) 4192 { 4193 struct cgroup_subsys_state *next; 4194 4195 cgroup_assert_mutex_or_rcu_locked(); 4196 4197 /* if first iteration, visit @root */ 4198 if (!pos) 4199 return root; 4200 4201 /* visit the first child if exists */ 4202 next = css_next_child(NULL, pos); 4203 if (next) 4204 return next; 4205 4206 /* no child, visit my or the closest ancestor's next sibling */ 4207 while (pos != root) { 4208 next = css_next_child(pos, pos->parent); 4209 if (next) 4210 return next; 4211 pos = pos->parent; 4212 } 4213 4214 return NULL; 4215 } 4216 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4217 4218 /** 4219 * css_rightmost_descendant - return the rightmost descendant of a css 4220 * @pos: css of interest 4221 * 4222 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4223 * is returned. This can be used during pre-order traversal to skip 4224 * subtree of @pos. 4225 * 4226 * While this function requires cgroup_mutex or RCU read locking, it 4227 * doesn't require the whole traversal to be contained in a single critical 4228 * section. This function will return the correct rightmost descendant as 4229 * long as @pos is accessible. 4230 */ 4231 struct cgroup_subsys_state * 4232 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4233 { 4234 struct cgroup_subsys_state *last, *tmp; 4235 4236 cgroup_assert_mutex_or_rcu_locked(); 4237 4238 do { 4239 last = pos; 4240 /* ->prev isn't RCU safe, walk ->next till the end */ 4241 pos = NULL; 4242 css_for_each_child(tmp, last) 4243 pos = tmp; 4244 } while (pos); 4245 4246 return last; 4247 } 4248 4249 static struct cgroup_subsys_state * 4250 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4251 { 4252 struct cgroup_subsys_state *last; 4253 4254 do { 4255 last = pos; 4256 pos = css_next_child(NULL, pos); 4257 } while (pos); 4258 4259 return last; 4260 } 4261 4262 /** 4263 * css_next_descendant_post - find the next descendant for post-order walk 4264 * @pos: the current position (%NULL to initiate traversal) 4265 * @root: css whose descendants to walk 4266 * 4267 * To be used by css_for_each_descendant_post(). Find the next descendant 4268 * to visit for post-order traversal of @root's descendants. @root is 4269 * included in the iteration and the last node to be visited. 4270 * 4271 * While this function requires cgroup_mutex or RCU read locking, it 4272 * doesn't require the whole traversal to be contained in a single critical 4273 * section. This function will return the correct next descendant as long 4274 * as both @pos and @cgroup are accessible and @pos is a descendant of 4275 * @cgroup. 4276 * 4277 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4278 * css which finished ->css_online() is guaranteed to be visible in the 4279 * future iterations and will stay visible until the last reference is put. 4280 * A css which hasn't finished ->css_online() or already finished 4281 * ->css_offline() may show up during traversal. It's each subsystem's 4282 * responsibility to synchronize against on/offlining. 4283 */ 4284 struct cgroup_subsys_state * 4285 css_next_descendant_post(struct cgroup_subsys_state *pos, 4286 struct cgroup_subsys_state *root) 4287 { 4288 struct cgroup_subsys_state *next; 4289 4290 cgroup_assert_mutex_or_rcu_locked(); 4291 4292 /* if first iteration, visit leftmost descendant which may be @root */ 4293 if (!pos) 4294 return css_leftmost_descendant(root); 4295 4296 /* if we visited @root, we're done */ 4297 if (pos == root) 4298 return NULL; 4299 4300 /* if there's an unvisited sibling, visit its leftmost descendant */ 4301 next = css_next_child(pos, pos->parent); 4302 if (next) 4303 return css_leftmost_descendant(next); 4304 4305 /* no sibling left, visit parent */ 4306 return pos->parent; 4307 } 4308 4309 /** 4310 * css_has_online_children - does a css have online children 4311 * @css: the target css 4312 * 4313 * Returns %true if @css has any online children; otherwise, %false. This 4314 * function can be called from any context but the caller is responsible 4315 * for synchronizing against on/offlining as necessary. 4316 */ 4317 bool css_has_online_children(struct cgroup_subsys_state *css) 4318 { 4319 struct cgroup_subsys_state *child; 4320 bool ret = false; 4321 4322 rcu_read_lock(); 4323 css_for_each_child(child, css) { 4324 if (child->flags & CSS_ONLINE) { 4325 ret = true; 4326 break; 4327 } 4328 } 4329 rcu_read_unlock(); 4330 return ret; 4331 } 4332 4333 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4334 { 4335 struct list_head *l; 4336 struct cgrp_cset_link *link; 4337 struct css_set *cset; 4338 4339 lockdep_assert_held(&css_set_lock); 4340 4341 /* find the next threaded cset */ 4342 if (it->tcset_pos) { 4343 l = it->tcset_pos->next; 4344 4345 if (l != it->tcset_head) { 4346 it->tcset_pos = l; 4347 return container_of(l, struct css_set, 4348 threaded_csets_node); 4349 } 4350 4351 it->tcset_pos = NULL; 4352 } 4353 4354 /* find the next cset */ 4355 l = it->cset_pos; 4356 l = l->next; 4357 if (l == it->cset_head) { 4358 it->cset_pos = NULL; 4359 return NULL; 4360 } 4361 4362 if (it->ss) { 4363 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4364 } else { 4365 link = list_entry(l, struct cgrp_cset_link, cset_link); 4366 cset = link->cset; 4367 } 4368 4369 it->cset_pos = l; 4370 4371 /* initialize threaded css_set walking */ 4372 if (it->flags & CSS_TASK_ITER_THREADED) { 4373 if (it->cur_dcset) 4374 put_css_set_locked(it->cur_dcset); 4375 it->cur_dcset = cset; 4376 get_css_set(cset); 4377 4378 it->tcset_head = &cset->threaded_csets; 4379 it->tcset_pos = &cset->threaded_csets; 4380 } 4381 4382 return cset; 4383 } 4384 4385 /** 4386 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4387 * @it: the iterator to advance 4388 * 4389 * Advance @it to the next css_set to walk. 4390 */ 4391 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4392 { 4393 struct css_set *cset; 4394 4395 lockdep_assert_held(&css_set_lock); 4396 4397 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4398 while ((cset = css_task_iter_next_css_set(it))) { 4399 if (!list_empty(&cset->tasks)) { 4400 it->cur_tasks_head = &cset->tasks; 4401 break; 4402 } else if (!list_empty(&cset->mg_tasks)) { 4403 it->cur_tasks_head = &cset->mg_tasks; 4404 break; 4405 } else if (!list_empty(&cset->dying_tasks)) { 4406 it->cur_tasks_head = &cset->dying_tasks; 4407 break; 4408 } 4409 } 4410 if (!cset) { 4411 it->task_pos = NULL; 4412 return; 4413 } 4414 it->task_pos = it->cur_tasks_head->next; 4415 4416 /* 4417 * We don't keep css_sets locked across iteration steps and thus 4418 * need to take steps to ensure that iteration can be resumed after 4419 * the lock is re-acquired. Iteration is performed at two levels - 4420 * css_sets and tasks in them. 4421 * 4422 * Once created, a css_set never leaves its cgroup lists, so a 4423 * pinned css_set is guaranteed to stay put and we can resume 4424 * iteration afterwards. 4425 * 4426 * Tasks may leave @cset across iteration steps. This is resolved 4427 * by registering each iterator with the css_set currently being 4428 * walked and making css_set_move_task() advance iterators whose 4429 * next task is leaving. 4430 */ 4431 if (it->cur_cset) { 4432 list_del(&it->iters_node); 4433 put_css_set_locked(it->cur_cset); 4434 } 4435 get_css_set(cset); 4436 it->cur_cset = cset; 4437 list_add(&it->iters_node, &cset->task_iters); 4438 } 4439 4440 static void css_task_iter_skip(struct css_task_iter *it, 4441 struct task_struct *task) 4442 { 4443 lockdep_assert_held(&css_set_lock); 4444 4445 if (it->task_pos == &task->cg_list) { 4446 it->task_pos = it->task_pos->next; 4447 it->flags |= CSS_TASK_ITER_SKIPPED; 4448 } 4449 } 4450 4451 static void css_task_iter_advance(struct css_task_iter *it) 4452 { 4453 struct task_struct *task; 4454 4455 lockdep_assert_held(&css_set_lock); 4456 repeat: 4457 if (it->task_pos) { 4458 /* 4459 * Advance iterator to find next entry. We go through cset 4460 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4461 * the next cset. 4462 */ 4463 if (it->flags & CSS_TASK_ITER_SKIPPED) 4464 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4465 else 4466 it->task_pos = it->task_pos->next; 4467 4468 if (it->task_pos == &it->cur_cset->tasks) { 4469 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4470 it->task_pos = it->cur_tasks_head->next; 4471 } 4472 if (it->task_pos == &it->cur_cset->mg_tasks) { 4473 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4474 it->task_pos = it->cur_tasks_head->next; 4475 } 4476 if (it->task_pos == &it->cur_cset->dying_tasks) 4477 css_task_iter_advance_css_set(it); 4478 } else { 4479 /* called from start, proceed to the first cset */ 4480 css_task_iter_advance_css_set(it); 4481 } 4482 4483 if (!it->task_pos) 4484 return; 4485 4486 task = list_entry(it->task_pos, struct task_struct, cg_list); 4487 4488 if (it->flags & CSS_TASK_ITER_PROCS) { 4489 /* if PROCS, skip over tasks which aren't group leaders */ 4490 if (!thread_group_leader(task)) 4491 goto repeat; 4492 4493 /* and dying leaders w/o live member threads */ 4494 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4495 !atomic_read(&task->signal->live)) 4496 goto repeat; 4497 } else { 4498 /* skip all dying ones */ 4499 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4500 goto repeat; 4501 } 4502 } 4503 4504 /** 4505 * css_task_iter_start - initiate task iteration 4506 * @css: the css to walk tasks of 4507 * @flags: CSS_TASK_ITER_* flags 4508 * @it: the task iterator to use 4509 * 4510 * Initiate iteration through the tasks of @css. The caller can call 4511 * css_task_iter_next() to walk through the tasks until the function 4512 * returns NULL. On completion of iteration, css_task_iter_end() must be 4513 * called. 4514 */ 4515 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4516 struct css_task_iter *it) 4517 { 4518 memset(it, 0, sizeof(*it)); 4519 4520 spin_lock_irq(&css_set_lock); 4521 4522 it->ss = css->ss; 4523 it->flags = flags; 4524 4525 if (it->ss) 4526 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4527 else 4528 it->cset_pos = &css->cgroup->cset_links; 4529 4530 it->cset_head = it->cset_pos; 4531 4532 css_task_iter_advance(it); 4533 4534 spin_unlock_irq(&css_set_lock); 4535 } 4536 4537 /** 4538 * css_task_iter_next - return the next task for the iterator 4539 * @it: the task iterator being iterated 4540 * 4541 * The "next" function for task iteration. @it should have been 4542 * initialized via css_task_iter_start(). Returns NULL when the iteration 4543 * reaches the end. 4544 */ 4545 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4546 { 4547 if (it->cur_task) { 4548 put_task_struct(it->cur_task); 4549 it->cur_task = NULL; 4550 } 4551 4552 spin_lock_irq(&css_set_lock); 4553 4554 /* @it may be half-advanced by skips, finish advancing */ 4555 if (it->flags & CSS_TASK_ITER_SKIPPED) 4556 css_task_iter_advance(it); 4557 4558 if (it->task_pos) { 4559 it->cur_task = list_entry(it->task_pos, struct task_struct, 4560 cg_list); 4561 get_task_struct(it->cur_task); 4562 css_task_iter_advance(it); 4563 } 4564 4565 spin_unlock_irq(&css_set_lock); 4566 4567 return it->cur_task; 4568 } 4569 4570 /** 4571 * css_task_iter_end - finish task iteration 4572 * @it: the task iterator to finish 4573 * 4574 * Finish task iteration started by css_task_iter_start(). 4575 */ 4576 void css_task_iter_end(struct css_task_iter *it) 4577 { 4578 if (it->cur_cset) { 4579 spin_lock_irq(&css_set_lock); 4580 list_del(&it->iters_node); 4581 put_css_set_locked(it->cur_cset); 4582 spin_unlock_irq(&css_set_lock); 4583 } 4584 4585 if (it->cur_dcset) 4586 put_css_set(it->cur_dcset); 4587 4588 if (it->cur_task) 4589 put_task_struct(it->cur_task); 4590 } 4591 4592 static void cgroup_procs_release(struct kernfs_open_file *of) 4593 { 4594 if (of->priv) { 4595 css_task_iter_end(of->priv); 4596 kfree(of->priv); 4597 } 4598 } 4599 4600 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4601 { 4602 struct kernfs_open_file *of = s->private; 4603 struct css_task_iter *it = of->priv; 4604 4605 if (pos) 4606 (*pos)++; 4607 4608 return css_task_iter_next(it); 4609 } 4610 4611 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4612 unsigned int iter_flags) 4613 { 4614 struct kernfs_open_file *of = s->private; 4615 struct cgroup *cgrp = seq_css(s)->cgroup; 4616 struct css_task_iter *it = of->priv; 4617 4618 /* 4619 * When a seq_file is seeked, it's always traversed sequentially 4620 * from position 0, so we can simply keep iterating on !0 *pos. 4621 */ 4622 if (!it) { 4623 if (WARN_ON_ONCE((*pos))) 4624 return ERR_PTR(-EINVAL); 4625 4626 it = kzalloc(sizeof(*it), GFP_KERNEL); 4627 if (!it) 4628 return ERR_PTR(-ENOMEM); 4629 of->priv = it; 4630 css_task_iter_start(&cgrp->self, iter_flags, it); 4631 } else if (!(*pos)) { 4632 css_task_iter_end(it); 4633 css_task_iter_start(&cgrp->self, iter_flags, it); 4634 } else 4635 return it->cur_task; 4636 4637 return cgroup_procs_next(s, NULL, NULL); 4638 } 4639 4640 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4641 { 4642 struct cgroup *cgrp = seq_css(s)->cgroup; 4643 4644 /* 4645 * All processes of a threaded subtree belong to the domain cgroup 4646 * of the subtree. Only threads can be distributed across the 4647 * subtree. Reject reads on cgroup.procs in the subtree proper. 4648 * They're always empty anyway. 4649 */ 4650 if (cgroup_is_threaded(cgrp)) 4651 return ERR_PTR(-EOPNOTSUPP); 4652 4653 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4654 CSS_TASK_ITER_THREADED); 4655 } 4656 4657 static int cgroup_procs_show(struct seq_file *s, void *v) 4658 { 4659 seq_printf(s, "%d\n", task_pid_vnr(v)); 4660 return 0; 4661 } 4662 4663 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 4664 { 4665 int ret; 4666 struct inode *inode; 4667 4668 lockdep_assert_held(&cgroup_mutex); 4669 4670 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 4671 if (!inode) 4672 return -ENOMEM; 4673 4674 ret = inode_permission(inode, MAY_WRITE); 4675 iput(inode); 4676 return ret; 4677 } 4678 4679 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4680 struct cgroup *dst_cgrp, 4681 struct super_block *sb) 4682 { 4683 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4684 struct cgroup *com_cgrp = src_cgrp; 4685 int ret; 4686 4687 lockdep_assert_held(&cgroup_mutex); 4688 4689 /* find the common ancestor */ 4690 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4691 com_cgrp = cgroup_parent(com_cgrp); 4692 4693 /* %current should be authorized to migrate to the common ancestor */ 4694 ret = cgroup_may_write(com_cgrp, sb); 4695 if (ret) 4696 return ret; 4697 4698 /* 4699 * If namespaces are delegation boundaries, %current must be able 4700 * to see both source and destination cgroups from its namespace. 4701 */ 4702 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4703 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4704 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4705 return -ENOENT; 4706 4707 return 0; 4708 } 4709 4710 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 4711 struct cgroup *dst_cgrp, 4712 struct super_block *sb, bool threadgroup) 4713 { 4714 int ret = 0; 4715 4716 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb); 4717 if (ret) 4718 return ret; 4719 4720 ret = cgroup_migrate_vet_dst(dst_cgrp); 4721 if (ret) 4722 return ret; 4723 4724 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 4725 ret = -EOPNOTSUPP; 4726 4727 return ret; 4728 } 4729 4730 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4731 char *buf, size_t nbytes, loff_t off) 4732 { 4733 struct cgroup *src_cgrp, *dst_cgrp; 4734 struct task_struct *task; 4735 ssize_t ret; 4736 bool locked; 4737 4738 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4739 if (!dst_cgrp) 4740 return -ENODEV; 4741 4742 task = cgroup_procs_write_start(buf, true, &locked); 4743 ret = PTR_ERR_OR_ZERO(task); 4744 if (ret) 4745 goto out_unlock; 4746 4747 /* find the source cgroup */ 4748 spin_lock_irq(&css_set_lock); 4749 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4750 spin_unlock_irq(&css_set_lock); 4751 4752 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 4753 of->file->f_path.dentry->d_sb, true); 4754 if (ret) 4755 goto out_finish; 4756 4757 ret = cgroup_attach_task(dst_cgrp, task, true); 4758 4759 out_finish: 4760 cgroup_procs_write_finish(task, locked); 4761 out_unlock: 4762 cgroup_kn_unlock(of->kn); 4763 4764 return ret ?: nbytes; 4765 } 4766 4767 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4768 { 4769 return __cgroup_procs_start(s, pos, 0); 4770 } 4771 4772 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4773 char *buf, size_t nbytes, loff_t off) 4774 { 4775 struct cgroup *src_cgrp, *dst_cgrp; 4776 struct task_struct *task; 4777 ssize_t ret; 4778 bool locked; 4779 4780 buf = strstrip(buf); 4781 4782 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4783 if (!dst_cgrp) 4784 return -ENODEV; 4785 4786 task = cgroup_procs_write_start(buf, false, &locked); 4787 ret = PTR_ERR_OR_ZERO(task); 4788 if (ret) 4789 goto out_unlock; 4790 4791 /* find the source cgroup */ 4792 spin_lock_irq(&css_set_lock); 4793 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4794 spin_unlock_irq(&css_set_lock); 4795 4796 /* thread migrations follow the cgroup.procs delegation rule */ 4797 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 4798 of->file->f_path.dentry->d_sb, false); 4799 if (ret) 4800 goto out_finish; 4801 4802 ret = cgroup_attach_task(dst_cgrp, task, false); 4803 4804 out_finish: 4805 cgroup_procs_write_finish(task, locked); 4806 out_unlock: 4807 cgroup_kn_unlock(of->kn); 4808 4809 return ret ?: nbytes; 4810 } 4811 4812 /* cgroup core interface files for the default hierarchy */ 4813 static struct cftype cgroup_base_files[] = { 4814 { 4815 .name = "cgroup.type", 4816 .flags = CFTYPE_NOT_ON_ROOT, 4817 .seq_show = cgroup_type_show, 4818 .write = cgroup_type_write, 4819 }, 4820 { 4821 .name = "cgroup.procs", 4822 .flags = CFTYPE_NS_DELEGATABLE, 4823 .file_offset = offsetof(struct cgroup, procs_file), 4824 .release = cgroup_procs_release, 4825 .seq_start = cgroup_procs_start, 4826 .seq_next = cgroup_procs_next, 4827 .seq_show = cgroup_procs_show, 4828 .write = cgroup_procs_write, 4829 }, 4830 { 4831 .name = "cgroup.threads", 4832 .flags = CFTYPE_NS_DELEGATABLE, 4833 .release = cgroup_procs_release, 4834 .seq_start = cgroup_threads_start, 4835 .seq_next = cgroup_procs_next, 4836 .seq_show = cgroup_procs_show, 4837 .write = cgroup_threads_write, 4838 }, 4839 { 4840 .name = "cgroup.controllers", 4841 .seq_show = cgroup_controllers_show, 4842 }, 4843 { 4844 .name = "cgroup.subtree_control", 4845 .flags = CFTYPE_NS_DELEGATABLE, 4846 .seq_show = cgroup_subtree_control_show, 4847 .write = cgroup_subtree_control_write, 4848 }, 4849 { 4850 .name = "cgroup.events", 4851 .flags = CFTYPE_NOT_ON_ROOT, 4852 .file_offset = offsetof(struct cgroup, events_file), 4853 .seq_show = cgroup_events_show, 4854 }, 4855 { 4856 .name = "cgroup.max.descendants", 4857 .seq_show = cgroup_max_descendants_show, 4858 .write = cgroup_max_descendants_write, 4859 }, 4860 { 4861 .name = "cgroup.max.depth", 4862 .seq_show = cgroup_max_depth_show, 4863 .write = cgroup_max_depth_write, 4864 }, 4865 { 4866 .name = "cgroup.stat", 4867 .seq_show = cgroup_stat_show, 4868 }, 4869 { 4870 .name = "cgroup.freeze", 4871 .flags = CFTYPE_NOT_ON_ROOT, 4872 .seq_show = cgroup_freeze_show, 4873 .write = cgroup_freeze_write, 4874 }, 4875 { 4876 .name = "cpu.stat", 4877 .seq_show = cpu_stat_show, 4878 }, 4879 #ifdef CONFIG_PSI 4880 { 4881 .name = "io.pressure", 4882 .seq_show = cgroup_io_pressure_show, 4883 .write = cgroup_io_pressure_write, 4884 .poll = cgroup_pressure_poll, 4885 .release = cgroup_pressure_release, 4886 }, 4887 { 4888 .name = "memory.pressure", 4889 .seq_show = cgroup_memory_pressure_show, 4890 .write = cgroup_memory_pressure_write, 4891 .poll = cgroup_pressure_poll, 4892 .release = cgroup_pressure_release, 4893 }, 4894 { 4895 .name = "cpu.pressure", 4896 .seq_show = cgroup_cpu_pressure_show, 4897 .write = cgroup_cpu_pressure_write, 4898 .poll = cgroup_pressure_poll, 4899 .release = cgroup_pressure_release, 4900 }, 4901 #endif /* CONFIG_PSI */ 4902 { } /* terminate */ 4903 }; 4904 4905 /* 4906 * css destruction is four-stage process. 4907 * 4908 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4909 * Implemented in kill_css(). 4910 * 4911 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4912 * and thus css_tryget_online() is guaranteed to fail, the css can be 4913 * offlined by invoking offline_css(). After offlining, the base ref is 4914 * put. Implemented in css_killed_work_fn(). 4915 * 4916 * 3. When the percpu_ref reaches zero, the only possible remaining 4917 * accessors are inside RCU read sections. css_release() schedules the 4918 * RCU callback. 4919 * 4920 * 4. After the grace period, the css can be freed. Implemented in 4921 * css_free_work_fn(). 4922 * 4923 * It is actually hairier because both step 2 and 4 require process context 4924 * and thus involve punting to css->destroy_work adding two additional 4925 * steps to the already complex sequence. 4926 */ 4927 static void css_free_rwork_fn(struct work_struct *work) 4928 { 4929 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 4930 struct cgroup_subsys_state, destroy_rwork); 4931 struct cgroup_subsys *ss = css->ss; 4932 struct cgroup *cgrp = css->cgroup; 4933 4934 percpu_ref_exit(&css->refcnt); 4935 4936 if (ss) { 4937 /* css free path */ 4938 struct cgroup_subsys_state *parent = css->parent; 4939 int id = css->id; 4940 4941 ss->css_free(css); 4942 cgroup_idr_remove(&ss->css_idr, id); 4943 cgroup_put(cgrp); 4944 4945 if (parent) 4946 css_put(parent); 4947 } else { 4948 /* cgroup free path */ 4949 atomic_dec(&cgrp->root->nr_cgrps); 4950 cgroup1_pidlist_destroy_all(cgrp); 4951 cancel_work_sync(&cgrp->release_agent_work); 4952 4953 if (cgroup_parent(cgrp)) { 4954 /* 4955 * We get a ref to the parent, and put the ref when 4956 * this cgroup is being freed, so it's guaranteed 4957 * that the parent won't be destroyed before its 4958 * children. 4959 */ 4960 cgroup_put(cgroup_parent(cgrp)); 4961 kernfs_put(cgrp->kn); 4962 psi_cgroup_free(cgrp); 4963 if (cgroup_on_dfl(cgrp)) 4964 cgroup_rstat_exit(cgrp); 4965 kfree(cgrp); 4966 } else { 4967 /* 4968 * This is root cgroup's refcnt reaching zero, 4969 * which indicates that the root should be 4970 * released. 4971 */ 4972 cgroup_destroy_root(cgrp->root); 4973 } 4974 } 4975 } 4976 4977 static void css_release_work_fn(struct work_struct *work) 4978 { 4979 struct cgroup_subsys_state *css = 4980 container_of(work, struct cgroup_subsys_state, destroy_work); 4981 struct cgroup_subsys *ss = css->ss; 4982 struct cgroup *cgrp = css->cgroup; 4983 4984 mutex_lock(&cgroup_mutex); 4985 4986 css->flags |= CSS_RELEASED; 4987 list_del_rcu(&css->sibling); 4988 4989 if (ss) { 4990 /* css release path */ 4991 if (!list_empty(&css->rstat_css_node)) { 4992 cgroup_rstat_flush(cgrp); 4993 list_del_rcu(&css->rstat_css_node); 4994 } 4995 4996 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4997 if (ss->css_released) 4998 ss->css_released(css); 4999 } else { 5000 struct cgroup *tcgrp; 5001 5002 /* cgroup release path */ 5003 TRACE_CGROUP_PATH(release, cgrp); 5004 5005 if (cgroup_on_dfl(cgrp)) 5006 cgroup_rstat_flush(cgrp); 5007 5008 spin_lock_irq(&css_set_lock); 5009 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5010 tcgrp = cgroup_parent(tcgrp)) 5011 tcgrp->nr_dying_descendants--; 5012 spin_unlock_irq(&css_set_lock); 5013 5014 /* 5015 * There are two control paths which try to determine 5016 * cgroup from dentry without going through kernfs - 5017 * cgroupstats_build() and css_tryget_online_from_dir(). 5018 * Those are supported by RCU protecting clearing of 5019 * cgrp->kn->priv backpointer. 5020 */ 5021 if (cgrp->kn) 5022 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5023 NULL); 5024 } 5025 5026 mutex_unlock(&cgroup_mutex); 5027 5028 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5029 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5030 } 5031 5032 static void css_release(struct percpu_ref *ref) 5033 { 5034 struct cgroup_subsys_state *css = 5035 container_of(ref, struct cgroup_subsys_state, refcnt); 5036 5037 INIT_WORK(&css->destroy_work, css_release_work_fn); 5038 queue_work(cgroup_destroy_wq, &css->destroy_work); 5039 } 5040 5041 static void init_and_link_css(struct cgroup_subsys_state *css, 5042 struct cgroup_subsys *ss, struct cgroup *cgrp) 5043 { 5044 lockdep_assert_held(&cgroup_mutex); 5045 5046 cgroup_get_live(cgrp); 5047 5048 memset(css, 0, sizeof(*css)); 5049 css->cgroup = cgrp; 5050 css->ss = ss; 5051 css->id = -1; 5052 INIT_LIST_HEAD(&css->sibling); 5053 INIT_LIST_HEAD(&css->children); 5054 INIT_LIST_HEAD(&css->rstat_css_node); 5055 css->serial_nr = css_serial_nr_next++; 5056 atomic_set(&css->online_cnt, 0); 5057 5058 if (cgroup_parent(cgrp)) { 5059 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5060 css_get(css->parent); 5061 } 5062 5063 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush) 5064 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5065 5066 BUG_ON(cgroup_css(cgrp, ss)); 5067 } 5068 5069 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5070 static int online_css(struct cgroup_subsys_state *css) 5071 { 5072 struct cgroup_subsys *ss = css->ss; 5073 int ret = 0; 5074 5075 lockdep_assert_held(&cgroup_mutex); 5076 5077 if (ss->css_online) 5078 ret = ss->css_online(css); 5079 if (!ret) { 5080 css->flags |= CSS_ONLINE; 5081 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5082 5083 atomic_inc(&css->online_cnt); 5084 if (css->parent) 5085 atomic_inc(&css->parent->online_cnt); 5086 } 5087 return ret; 5088 } 5089 5090 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5091 static void offline_css(struct cgroup_subsys_state *css) 5092 { 5093 struct cgroup_subsys *ss = css->ss; 5094 5095 lockdep_assert_held(&cgroup_mutex); 5096 5097 if (!(css->flags & CSS_ONLINE)) 5098 return; 5099 5100 if (ss->css_offline) 5101 ss->css_offline(css); 5102 5103 css->flags &= ~CSS_ONLINE; 5104 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5105 5106 wake_up_all(&css->cgroup->offline_waitq); 5107 } 5108 5109 /** 5110 * css_create - create a cgroup_subsys_state 5111 * @cgrp: the cgroup new css will be associated with 5112 * @ss: the subsys of new css 5113 * 5114 * Create a new css associated with @cgrp - @ss pair. On success, the new 5115 * css is online and installed in @cgrp. This function doesn't create the 5116 * interface files. Returns 0 on success, -errno on failure. 5117 */ 5118 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5119 struct cgroup_subsys *ss) 5120 { 5121 struct cgroup *parent = cgroup_parent(cgrp); 5122 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5123 struct cgroup_subsys_state *css; 5124 int err; 5125 5126 lockdep_assert_held(&cgroup_mutex); 5127 5128 css = ss->css_alloc(parent_css); 5129 if (!css) 5130 css = ERR_PTR(-ENOMEM); 5131 if (IS_ERR(css)) 5132 return css; 5133 5134 init_and_link_css(css, ss, cgrp); 5135 5136 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5137 if (err) 5138 goto err_free_css; 5139 5140 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5141 if (err < 0) 5142 goto err_free_css; 5143 css->id = err; 5144 5145 /* @css is ready to be brought online now, make it visible */ 5146 list_add_tail_rcu(&css->sibling, &parent_css->children); 5147 cgroup_idr_replace(&ss->css_idr, css, css->id); 5148 5149 err = online_css(css); 5150 if (err) 5151 goto err_list_del; 5152 5153 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 5154 cgroup_parent(parent)) { 5155 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 5156 current->comm, current->pid, ss->name); 5157 if (!strcmp(ss->name, "memory")) 5158 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 5159 ss->warned_broken_hierarchy = true; 5160 } 5161 5162 return css; 5163 5164 err_list_del: 5165 list_del_rcu(&css->sibling); 5166 err_free_css: 5167 list_del_rcu(&css->rstat_css_node); 5168 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5169 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5170 return ERR_PTR(err); 5171 } 5172 5173 /* 5174 * The returned cgroup is fully initialized including its control mask, but 5175 * it isn't associated with its kernfs_node and doesn't have the control 5176 * mask applied. 5177 */ 5178 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5179 umode_t mode) 5180 { 5181 struct cgroup_root *root = parent->root; 5182 struct cgroup *cgrp, *tcgrp; 5183 struct kernfs_node *kn; 5184 int level = parent->level + 1; 5185 int ret; 5186 5187 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5188 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5189 GFP_KERNEL); 5190 if (!cgrp) 5191 return ERR_PTR(-ENOMEM); 5192 5193 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5194 if (ret) 5195 goto out_free_cgrp; 5196 5197 if (cgroup_on_dfl(parent)) { 5198 ret = cgroup_rstat_init(cgrp); 5199 if (ret) 5200 goto out_cancel_ref; 5201 } 5202 5203 /* create the directory */ 5204 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5205 if (IS_ERR(kn)) { 5206 ret = PTR_ERR(kn); 5207 goto out_stat_exit; 5208 } 5209 cgrp->kn = kn; 5210 5211 init_cgroup_housekeeping(cgrp); 5212 5213 cgrp->self.parent = &parent->self; 5214 cgrp->root = root; 5215 cgrp->level = level; 5216 5217 ret = psi_cgroup_alloc(cgrp); 5218 if (ret) 5219 goto out_kernfs_remove; 5220 5221 ret = cgroup_bpf_inherit(cgrp); 5222 if (ret) 5223 goto out_psi_free; 5224 5225 /* 5226 * New cgroup inherits effective freeze counter, and 5227 * if the parent has to be frozen, the child has too. 5228 */ 5229 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5230 if (cgrp->freezer.e_freeze) { 5231 /* 5232 * Set the CGRP_FREEZE flag, so when a process will be 5233 * attached to the child cgroup, it will become frozen. 5234 * At this point the new cgroup is unpopulated, so we can 5235 * consider it frozen immediately. 5236 */ 5237 set_bit(CGRP_FREEZE, &cgrp->flags); 5238 set_bit(CGRP_FROZEN, &cgrp->flags); 5239 } 5240 5241 spin_lock_irq(&css_set_lock); 5242 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5243 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp); 5244 5245 if (tcgrp != cgrp) { 5246 tcgrp->nr_descendants++; 5247 5248 /* 5249 * If the new cgroup is frozen, all ancestor cgroups 5250 * get a new frozen descendant, but their state can't 5251 * change because of this. 5252 */ 5253 if (cgrp->freezer.e_freeze) 5254 tcgrp->freezer.nr_frozen_descendants++; 5255 } 5256 } 5257 spin_unlock_irq(&css_set_lock); 5258 5259 if (notify_on_release(parent)) 5260 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5261 5262 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5263 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5264 5265 cgrp->self.serial_nr = css_serial_nr_next++; 5266 5267 /* allocation complete, commit to creation */ 5268 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5269 atomic_inc(&root->nr_cgrps); 5270 cgroup_get_live(parent); 5271 5272 /* 5273 * On the default hierarchy, a child doesn't automatically inherit 5274 * subtree_control from the parent. Each is configured manually. 5275 */ 5276 if (!cgroup_on_dfl(cgrp)) 5277 cgrp->subtree_control = cgroup_control(cgrp); 5278 5279 cgroup_propagate_control(cgrp); 5280 5281 return cgrp; 5282 5283 out_psi_free: 5284 psi_cgroup_free(cgrp); 5285 out_kernfs_remove: 5286 kernfs_remove(cgrp->kn); 5287 out_stat_exit: 5288 if (cgroup_on_dfl(parent)) 5289 cgroup_rstat_exit(cgrp); 5290 out_cancel_ref: 5291 percpu_ref_exit(&cgrp->self.refcnt); 5292 out_free_cgrp: 5293 kfree(cgrp); 5294 return ERR_PTR(ret); 5295 } 5296 5297 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5298 { 5299 struct cgroup *cgroup; 5300 int ret = false; 5301 int level = 1; 5302 5303 lockdep_assert_held(&cgroup_mutex); 5304 5305 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5306 if (cgroup->nr_descendants >= cgroup->max_descendants) 5307 goto fail; 5308 5309 if (level > cgroup->max_depth) 5310 goto fail; 5311 5312 level++; 5313 } 5314 5315 ret = true; 5316 fail: 5317 return ret; 5318 } 5319 5320 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5321 { 5322 struct cgroup *parent, *cgrp; 5323 int ret; 5324 5325 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5326 if (strchr(name, '\n')) 5327 return -EINVAL; 5328 5329 parent = cgroup_kn_lock_live(parent_kn, false); 5330 if (!parent) 5331 return -ENODEV; 5332 5333 if (!cgroup_check_hierarchy_limits(parent)) { 5334 ret = -EAGAIN; 5335 goto out_unlock; 5336 } 5337 5338 cgrp = cgroup_create(parent, name, mode); 5339 if (IS_ERR(cgrp)) { 5340 ret = PTR_ERR(cgrp); 5341 goto out_unlock; 5342 } 5343 5344 /* 5345 * This extra ref will be put in cgroup_free_fn() and guarantees 5346 * that @cgrp->kn is always accessible. 5347 */ 5348 kernfs_get(cgrp->kn); 5349 5350 ret = cgroup_kn_set_ugid(cgrp->kn); 5351 if (ret) 5352 goto out_destroy; 5353 5354 ret = css_populate_dir(&cgrp->self); 5355 if (ret) 5356 goto out_destroy; 5357 5358 ret = cgroup_apply_control_enable(cgrp); 5359 if (ret) 5360 goto out_destroy; 5361 5362 TRACE_CGROUP_PATH(mkdir, cgrp); 5363 5364 /* let's create and online css's */ 5365 kernfs_activate(cgrp->kn); 5366 5367 ret = 0; 5368 goto out_unlock; 5369 5370 out_destroy: 5371 cgroup_destroy_locked(cgrp); 5372 out_unlock: 5373 cgroup_kn_unlock(parent_kn); 5374 return ret; 5375 } 5376 5377 /* 5378 * This is called when the refcnt of a css is confirmed to be killed. 5379 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5380 * initate destruction and put the css ref from kill_css(). 5381 */ 5382 static void css_killed_work_fn(struct work_struct *work) 5383 { 5384 struct cgroup_subsys_state *css = 5385 container_of(work, struct cgroup_subsys_state, destroy_work); 5386 5387 mutex_lock(&cgroup_mutex); 5388 5389 do { 5390 offline_css(css); 5391 css_put(css); 5392 /* @css can't go away while we're holding cgroup_mutex */ 5393 css = css->parent; 5394 } while (css && atomic_dec_and_test(&css->online_cnt)); 5395 5396 mutex_unlock(&cgroup_mutex); 5397 } 5398 5399 /* css kill confirmation processing requires process context, bounce */ 5400 static void css_killed_ref_fn(struct percpu_ref *ref) 5401 { 5402 struct cgroup_subsys_state *css = 5403 container_of(ref, struct cgroup_subsys_state, refcnt); 5404 5405 if (atomic_dec_and_test(&css->online_cnt)) { 5406 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5407 queue_work(cgroup_destroy_wq, &css->destroy_work); 5408 } 5409 } 5410 5411 /** 5412 * kill_css - destroy a css 5413 * @css: css to destroy 5414 * 5415 * This function initiates destruction of @css by removing cgroup interface 5416 * files and putting its base reference. ->css_offline() will be invoked 5417 * asynchronously once css_tryget_online() is guaranteed to fail and when 5418 * the reference count reaches zero, @css will be released. 5419 */ 5420 static void kill_css(struct cgroup_subsys_state *css) 5421 { 5422 lockdep_assert_held(&cgroup_mutex); 5423 5424 if (css->flags & CSS_DYING) 5425 return; 5426 5427 css->flags |= CSS_DYING; 5428 5429 /* 5430 * This must happen before css is disassociated with its cgroup. 5431 * See seq_css() for details. 5432 */ 5433 css_clear_dir(css); 5434 5435 /* 5436 * Killing would put the base ref, but we need to keep it alive 5437 * until after ->css_offline(). 5438 */ 5439 css_get(css); 5440 5441 /* 5442 * cgroup core guarantees that, by the time ->css_offline() is 5443 * invoked, no new css reference will be given out via 5444 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5445 * proceed to offlining css's because percpu_ref_kill() doesn't 5446 * guarantee that the ref is seen as killed on all CPUs on return. 5447 * 5448 * Use percpu_ref_kill_and_confirm() to get notifications as each 5449 * css is confirmed to be seen as killed on all CPUs. 5450 */ 5451 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5452 } 5453 5454 /** 5455 * cgroup_destroy_locked - the first stage of cgroup destruction 5456 * @cgrp: cgroup to be destroyed 5457 * 5458 * css's make use of percpu refcnts whose killing latency shouldn't be 5459 * exposed to userland and are RCU protected. Also, cgroup core needs to 5460 * guarantee that css_tryget_online() won't succeed by the time 5461 * ->css_offline() is invoked. To satisfy all the requirements, 5462 * destruction is implemented in the following two steps. 5463 * 5464 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5465 * userland visible parts and start killing the percpu refcnts of 5466 * css's. Set up so that the next stage will be kicked off once all 5467 * the percpu refcnts are confirmed to be killed. 5468 * 5469 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5470 * rest of destruction. Once all cgroup references are gone, the 5471 * cgroup is RCU-freed. 5472 * 5473 * This function implements s1. After this step, @cgrp is gone as far as 5474 * the userland is concerned and a new cgroup with the same name may be 5475 * created. As cgroup doesn't care about the names internally, this 5476 * doesn't cause any problem. 5477 */ 5478 static int cgroup_destroy_locked(struct cgroup *cgrp) 5479 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5480 { 5481 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5482 struct cgroup_subsys_state *css; 5483 struct cgrp_cset_link *link; 5484 int ssid; 5485 5486 lockdep_assert_held(&cgroup_mutex); 5487 5488 /* 5489 * Only migration can raise populated from zero and we're already 5490 * holding cgroup_mutex. 5491 */ 5492 if (cgroup_is_populated(cgrp)) 5493 return -EBUSY; 5494 5495 /* 5496 * Make sure there's no live children. We can't test emptiness of 5497 * ->self.children as dead children linger on it while being 5498 * drained; otherwise, "rmdir parent/child parent" may fail. 5499 */ 5500 if (css_has_online_children(&cgrp->self)) 5501 return -EBUSY; 5502 5503 /* 5504 * Mark @cgrp and the associated csets dead. The former prevents 5505 * further task migration and child creation by disabling 5506 * cgroup_lock_live_group(). The latter makes the csets ignored by 5507 * the migration path. 5508 */ 5509 cgrp->self.flags &= ~CSS_ONLINE; 5510 5511 spin_lock_irq(&css_set_lock); 5512 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5513 link->cset->dead = true; 5514 spin_unlock_irq(&css_set_lock); 5515 5516 /* initiate massacre of all css's */ 5517 for_each_css(css, ssid, cgrp) 5518 kill_css(css); 5519 5520 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5521 css_clear_dir(&cgrp->self); 5522 kernfs_remove(cgrp->kn); 5523 5524 if (parent && cgroup_is_threaded(cgrp)) 5525 parent->nr_threaded_children--; 5526 5527 spin_lock_irq(&css_set_lock); 5528 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5529 tcgrp->nr_descendants--; 5530 tcgrp->nr_dying_descendants++; 5531 /* 5532 * If the dying cgroup is frozen, decrease frozen descendants 5533 * counters of ancestor cgroups. 5534 */ 5535 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5536 tcgrp->freezer.nr_frozen_descendants--; 5537 } 5538 spin_unlock_irq(&css_set_lock); 5539 5540 cgroup1_check_for_release(parent); 5541 5542 cgroup_bpf_offline(cgrp); 5543 5544 /* put the base reference */ 5545 percpu_ref_kill(&cgrp->self.refcnt); 5546 5547 return 0; 5548 }; 5549 5550 int cgroup_rmdir(struct kernfs_node *kn) 5551 { 5552 struct cgroup *cgrp; 5553 int ret = 0; 5554 5555 cgrp = cgroup_kn_lock_live(kn, false); 5556 if (!cgrp) 5557 return 0; 5558 5559 ret = cgroup_destroy_locked(cgrp); 5560 if (!ret) 5561 TRACE_CGROUP_PATH(rmdir, cgrp); 5562 5563 cgroup_kn_unlock(kn); 5564 return ret; 5565 } 5566 5567 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5568 .show_options = cgroup_show_options, 5569 .mkdir = cgroup_mkdir, 5570 .rmdir = cgroup_rmdir, 5571 .show_path = cgroup_show_path, 5572 }; 5573 5574 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5575 { 5576 struct cgroup_subsys_state *css; 5577 5578 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5579 5580 mutex_lock(&cgroup_mutex); 5581 5582 idr_init(&ss->css_idr); 5583 INIT_LIST_HEAD(&ss->cfts); 5584 5585 /* Create the root cgroup state for this subsystem */ 5586 ss->root = &cgrp_dfl_root; 5587 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5588 /* We don't handle early failures gracefully */ 5589 BUG_ON(IS_ERR(css)); 5590 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5591 5592 /* 5593 * Root csses are never destroyed and we can't initialize 5594 * percpu_ref during early init. Disable refcnting. 5595 */ 5596 css->flags |= CSS_NO_REF; 5597 5598 if (early) { 5599 /* allocation can't be done safely during early init */ 5600 css->id = 1; 5601 } else { 5602 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5603 BUG_ON(css->id < 0); 5604 } 5605 5606 /* Update the init_css_set to contain a subsys 5607 * pointer to this state - since the subsystem is 5608 * newly registered, all tasks and hence the 5609 * init_css_set is in the subsystem's root cgroup. */ 5610 init_css_set.subsys[ss->id] = css; 5611 5612 have_fork_callback |= (bool)ss->fork << ss->id; 5613 have_exit_callback |= (bool)ss->exit << ss->id; 5614 have_release_callback |= (bool)ss->release << ss->id; 5615 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5616 5617 /* At system boot, before all subsystems have been 5618 * registered, no tasks have been forked, so we don't 5619 * need to invoke fork callbacks here. */ 5620 BUG_ON(!list_empty(&init_task.tasks)); 5621 5622 BUG_ON(online_css(css)); 5623 5624 mutex_unlock(&cgroup_mutex); 5625 } 5626 5627 /** 5628 * cgroup_init_early - cgroup initialization at system boot 5629 * 5630 * Initialize cgroups at system boot, and initialize any 5631 * subsystems that request early init. 5632 */ 5633 int __init cgroup_init_early(void) 5634 { 5635 static struct cgroup_fs_context __initdata ctx; 5636 struct cgroup_subsys *ss; 5637 int i; 5638 5639 ctx.root = &cgrp_dfl_root; 5640 init_cgroup_root(&ctx); 5641 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5642 5643 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5644 5645 for_each_subsys(ss, i) { 5646 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5647 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5648 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5649 ss->id, ss->name); 5650 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5651 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5652 5653 ss->id = i; 5654 ss->name = cgroup_subsys_name[i]; 5655 if (!ss->legacy_name) 5656 ss->legacy_name = cgroup_subsys_name[i]; 5657 5658 if (ss->early_init) 5659 cgroup_init_subsys(ss, true); 5660 } 5661 return 0; 5662 } 5663 5664 static u16 cgroup_disable_mask __initdata; 5665 5666 /** 5667 * cgroup_init - cgroup initialization 5668 * 5669 * Register cgroup filesystem and /proc file, and initialize 5670 * any subsystems that didn't request early init. 5671 */ 5672 int __init cgroup_init(void) 5673 { 5674 struct cgroup_subsys *ss; 5675 int ssid; 5676 5677 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5678 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5679 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5680 5681 cgroup_rstat_boot(); 5682 5683 /* 5684 * The latency of the synchronize_rcu() is too high for cgroups, 5685 * avoid it at the cost of forcing all readers into the slow path. 5686 */ 5687 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5688 5689 get_user_ns(init_cgroup_ns.user_ns); 5690 5691 mutex_lock(&cgroup_mutex); 5692 5693 /* 5694 * Add init_css_set to the hash table so that dfl_root can link to 5695 * it during init. 5696 */ 5697 hash_add(css_set_table, &init_css_set.hlist, 5698 css_set_hash(init_css_set.subsys)); 5699 5700 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5701 5702 mutex_unlock(&cgroup_mutex); 5703 5704 for_each_subsys(ss, ssid) { 5705 if (ss->early_init) { 5706 struct cgroup_subsys_state *css = 5707 init_css_set.subsys[ss->id]; 5708 5709 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5710 GFP_KERNEL); 5711 BUG_ON(css->id < 0); 5712 } else { 5713 cgroup_init_subsys(ss, false); 5714 } 5715 5716 list_add_tail(&init_css_set.e_cset_node[ssid], 5717 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5718 5719 /* 5720 * Setting dfl_root subsys_mask needs to consider the 5721 * disabled flag and cftype registration needs kmalloc, 5722 * both of which aren't available during early_init. 5723 */ 5724 if (cgroup_disable_mask & (1 << ssid)) { 5725 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5726 printk(KERN_INFO "Disabling %s control group subsystem\n", 5727 ss->name); 5728 continue; 5729 } 5730 5731 if (cgroup1_ssid_disabled(ssid)) 5732 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5733 ss->name); 5734 5735 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5736 5737 /* implicit controllers must be threaded too */ 5738 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5739 5740 if (ss->implicit_on_dfl) 5741 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5742 else if (!ss->dfl_cftypes) 5743 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5744 5745 if (ss->threaded) 5746 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5747 5748 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5749 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5750 } else { 5751 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5752 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5753 } 5754 5755 if (ss->bind) 5756 ss->bind(init_css_set.subsys[ssid]); 5757 5758 mutex_lock(&cgroup_mutex); 5759 css_populate_dir(init_css_set.subsys[ssid]); 5760 mutex_unlock(&cgroup_mutex); 5761 } 5762 5763 /* init_css_set.subsys[] has been updated, re-hash */ 5764 hash_del(&init_css_set.hlist); 5765 hash_add(css_set_table, &init_css_set.hlist, 5766 css_set_hash(init_css_set.subsys)); 5767 5768 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5769 WARN_ON(register_filesystem(&cgroup_fs_type)); 5770 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5771 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5772 #ifdef CONFIG_CPUSETS 5773 WARN_ON(register_filesystem(&cpuset_fs_type)); 5774 #endif 5775 5776 return 0; 5777 } 5778 5779 static int __init cgroup_wq_init(void) 5780 { 5781 /* 5782 * There isn't much point in executing destruction path in 5783 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5784 * Use 1 for @max_active. 5785 * 5786 * We would prefer to do this in cgroup_init() above, but that 5787 * is called before init_workqueues(): so leave this until after. 5788 */ 5789 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5790 BUG_ON(!cgroup_destroy_wq); 5791 return 0; 5792 } 5793 core_initcall(cgroup_wq_init); 5794 5795 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 5796 { 5797 struct kernfs_node *kn; 5798 5799 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 5800 if (!kn) 5801 return; 5802 kernfs_path(kn, buf, buflen); 5803 kernfs_put(kn); 5804 } 5805 5806 /* 5807 * proc_cgroup_show() 5808 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5809 * - Used for /proc/<pid>/cgroup. 5810 */ 5811 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5812 struct pid *pid, struct task_struct *tsk) 5813 { 5814 char *buf; 5815 int retval; 5816 struct cgroup_root *root; 5817 5818 retval = -ENOMEM; 5819 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5820 if (!buf) 5821 goto out; 5822 5823 mutex_lock(&cgroup_mutex); 5824 spin_lock_irq(&css_set_lock); 5825 5826 for_each_root(root) { 5827 struct cgroup_subsys *ss; 5828 struct cgroup *cgrp; 5829 int ssid, count = 0; 5830 5831 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5832 continue; 5833 5834 seq_printf(m, "%d:", root->hierarchy_id); 5835 if (root != &cgrp_dfl_root) 5836 for_each_subsys(ss, ssid) 5837 if (root->subsys_mask & (1 << ssid)) 5838 seq_printf(m, "%s%s", count++ ? "," : "", 5839 ss->legacy_name); 5840 if (strlen(root->name)) 5841 seq_printf(m, "%sname=%s", count ? "," : "", 5842 root->name); 5843 seq_putc(m, ':'); 5844 5845 cgrp = task_cgroup_from_root(tsk, root); 5846 5847 /* 5848 * On traditional hierarchies, all zombie tasks show up as 5849 * belonging to the root cgroup. On the default hierarchy, 5850 * while a zombie doesn't show up in "cgroup.procs" and 5851 * thus can't be migrated, its /proc/PID/cgroup keeps 5852 * reporting the cgroup it belonged to before exiting. If 5853 * the cgroup is removed before the zombie is reaped, 5854 * " (deleted)" is appended to the cgroup path. 5855 */ 5856 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5857 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5858 current->nsproxy->cgroup_ns); 5859 if (retval >= PATH_MAX) 5860 retval = -ENAMETOOLONG; 5861 if (retval < 0) 5862 goto out_unlock; 5863 5864 seq_puts(m, buf); 5865 } else { 5866 seq_puts(m, "/"); 5867 } 5868 5869 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5870 seq_puts(m, " (deleted)\n"); 5871 else 5872 seq_putc(m, '\n'); 5873 } 5874 5875 retval = 0; 5876 out_unlock: 5877 spin_unlock_irq(&css_set_lock); 5878 mutex_unlock(&cgroup_mutex); 5879 kfree(buf); 5880 out: 5881 return retval; 5882 } 5883 5884 /** 5885 * cgroup_fork - initialize cgroup related fields during copy_process() 5886 * @child: pointer to task_struct of forking parent process. 5887 * 5888 * A task is associated with the init_css_set until cgroup_post_fork() 5889 * attaches it to the target css_set. 5890 */ 5891 void cgroup_fork(struct task_struct *child) 5892 { 5893 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5894 INIT_LIST_HEAD(&child->cg_list); 5895 } 5896 5897 static struct cgroup *cgroup_get_from_file(struct file *f) 5898 { 5899 struct cgroup_subsys_state *css; 5900 struct cgroup *cgrp; 5901 5902 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5903 if (IS_ERR(css)) 5904 return ERR_CAST(css); 5905 5906 cgrp = css->cgroup; 5907 if (!cgroup_on_dfl(cgrp)) { 5908 cgroup_put(cgrp); 5909 return ERR_PTR(-EBADF); 5910 } 5911 5912 return cgrp; 5913 } 5914 5915 /** 5916 * cgroup_css_set_fork - find or create a css_set for a child process 5917 * @kargs: the arguments passed to create the child process 5918 * 5919 * This functions finds or creates a new css_set which the child 5920 * process will be attached to in cgroup_post_fork(). By default, 5921 * the child process will be given the same css_set as its parent. 5922 * 5923 * If CLONE_INTO_CGROUP is specified this function will try to find an 5924 * existing css_set which includes the requested cgroup and if not create 5925 * a new css_set that the child will be attached to later. If this function 5926 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 5927 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 5928 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 5929 * to the target cgroup. 5930 */ 5931 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 5932 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 5933 { 5934 int ret; 5935 struct cgroup *dst_cgrp = NULL; 5936 struct css_set *cset; 5937 struct super_block *sb; 5938 struct file *f; 5939 5940 if (kargs->flags & CLONE_INTO_CGROUP) 5941 mutex_lock(&cgroup_mutex); 5942 5943 cgroup_threadgroup_change_begin(current); 5944 5945 spin_lock_irq(&css_set_lock); 5946 cset = task_css_set(current); 5947 get_css_set(cset); 5948 spin_unlock_irq(&css_set_lock); 5949 5950 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 5951 kargs->cset = cset; 5952 return 0; 5953 } 5954 5955 f = fget_raw(kargs->cgroup); 5956 if (!f) { 5957 ret = -EBADF; 5958 goto err; 5959 } 5960 sb = f->f_path.dentry->d_sb; 5961 5962 dst_cgrp = cgroup_get_from_file(f); 5963 if (IS_ERR(dst_cgrp)) { 5964 ret = PTR_ERR(dst_cgrp); 5965 dst_cgrp = NULL; 5966 goto err; 5967 } 5968 5969 if (cgroup_is_dead(dst_cgrp)) { 5970 ret = -ENODEV; 5971 goto err; 5972 } 5973 5974 /* 5975 * Verify that we the target cgroup is writable for us. This is 5976 * usually done by the vfs layer but since we're not going through 5977 * the vfs layer here we need to do it "manually". 5978 */ 5979 ret = cgroup_may_write(dst_cgrp, sb); 5980 if (ret) 5981 goto err; 5982 5983 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 5984 !(kargs->flags & CLONE_THREAD)); 5985 if (ret) 5986 goto err; 5987 5988 kargs->cset = find_css_set(cset, dst_cgrp); 5989 if (!kargs->cset) { 5990 ret = -ENOMEM; 5991 goto err; 5992 } 5993 5994 put_css_set(cset); 5995 fput(f); 5996 kargs->cgrp = dst_cgrp; 5997 return ret; 5998 5999 err: 6000 cgroup_threadgroup_change_end(current); 6001 mutex_unlock(&cgroup_mutex); 6002 if (f) 6003 fput(f); 6004 if (dst_cgrp) 6005 cgroup_put(dst_cgrp); 6006 put_css_set(cset); 6007 if (kargs->cset) 6008 put_css_set(kargs->cset); 6009 return ret; 6010 } 6011 6012 /** 6013 * cgroup_css_set_put_fork - drop references we took during fork 6014 * @kargs: the arguments passed to create the child process 6015 * 6016 * Drop references to the prepared css_set and target cgroup if 6017 * CLONE_INTO_CGROUP was requested. 6018 */ 6019 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6020 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6021 { 6022 cgroup_threadgroup_change_end(current); 6023 6024 if (kargs->flags & CLONE_INTO_CGROUP) { 6025 struct cgroup *cgrp = kargs->cgrp; 6026 struct css_set *cset = kargs->cset; 6027 6028 mutex_unlock(&cgroup_mutex); 6029 6030 if (cset) { 6031 put_css_set(cset); 6032 kargs->cset = NULL; 6033 } 6034 6035 if (cgrp) { 6036 cgroup_put(cgrp); 6037 kargs->cgrp = NULL; 6038 } 6039 } 6040 } 6041 6042 /** 6043 * cgroup_can_fork - called on a new task before the process is exposed 6044 * @child: the child process 6045 * 6046 * This prepares a new css_set for the child process which the child will 6047 * be attached to in cgroup_post_fork(). 6048 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6049 * callback returns an error, the fork aborts with that error code. This 6050 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6051 */ 6052 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6053 { 6054 struct cgroup_subsys *ss; 6055 int i, j, ret; 6056 6057 ret = cgroup_css_set_fork(kargs); 6058 if (ret) 6059 return ret; 6060 6061 do_each_subsys_mask(ss, i, have_canfork_callback) { 6062 ret = ss->can_fork(child, kargs->cset); 6063 if (ret) 6064 goto out_revert; 6065 } while_each_subsys_mask(); 6066 6067 return 0; 6068 6069 out_revert: 6070 for_each_subsys(ss, j) { 6071 if (j >= i) 6072 break; 6073 if (ss->cancel_fork) 6074 ss->cancel_fork(child, kargs->cset); 6075 } 6076 6077 cgroup_css_set_put_fork(kargs); 6078 6079 return ret; 6080 } 6081 6082 /** 6083 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6084 * @child: the child process 6085 * @kargs: the arguments passed to create the child process 6086 * 6087 * This calls the cancel_fork() callbacks if a fork failed *after* 6088 * cgroup_can_fork() succeded and cleans up references we took to 6089 * prepare a new css_set for the child process in cgroup_can_fork(). 6090 */ 6091 void cgroup_cancel_fork(struct task_struct *child, 6092 struct kernel_clone_args *kargs) 6093 { 6094 struct cgroup_subsys *ss; 6095 int i; 6096 6097 for_each_subsys(ss, i) 6098 if (ss->cancel_fork) 6099 ss->cancel_fork(child, kargs->cset); 6100 6101 cgroup_css_set_put_fork(kargs); 6102 } 6103 6104 /** 6105 * cgroup_post_fork - finalize cgroup setup for the child process 6106 * @child: the child process 6107 * 6108 * Attach the child process to its css_set calling the subsystem fork() 6109 * callbacks. 6110 */ 6111 void cgroup_post_fork(struct task_struct *child, 6112 struct kernel_clone_args *kargs) 6113 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6114 { 6115 struct cgroup_subsys *ss; 6116 struct css_set *cset; 6117 int i; 6118 6119 cset = kargs->cset; 6120 kargs->cset = NULL; 6121 6122 spin_lock_irq(&css_set_lock); 6123 6124 /* init tasks are special, only link regular threads */ 6125 if (likely(child->pid)) { 6126 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6127 cset->nr_tasks++; 6128 css_set_move_task(child, NULL, cset, false); 6129 } else { 6130 put_css_set(cset); 6131 cset = NULL; 6132 } 6133 6134 /* 6135 * If the cgroup has to be frozen, the new task has too. Let's set 6136 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the 6137 * frozen state. 6138 */ 6139 if (unlikely(cgroup_task_freeze(child))) { 6140 spin_lock(&child->sighand->siglock); 6141 WARN_ON_ONCE(child->frozen); 6142 child->jobctl |= JOBCTL_TRAP_FREEZE; 6143 spin_unlock(&child->sighand->siglock); 6144 6145 /* 6146 * Calling cgroup_update_frozen() isn't required here, 6147 * because it will be called anyway a bit later from 6148 * do_freezer_trap(). So we avoid cgroup's transient switch 6149 * from the frozen state and back. 6150 */ 6151 } 6152 6153 spin_unlock_irq(&css_set_lock); 6154 6155 /* 6156 * Call ss->fork(). This must happen after @child is linked on 6157 * css_set; otherwise, @child might change state between ->fork() 6158 * and addition to css_set. 6159 */ 6160 do_each_subsys_mask(ss, i, have_fork_callback) { 6161 ss->fork(child); 6162 } while_each_subsys_mask(); 6163 6164 /* Make the new cset the root_cset of the new cgroup namespace. */ 6165 if (kargs->flags & CLONE_NEWCGROUP) { 6166 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6167 6168 get_css_set(cset); 6169 child->nsproxy->cgroup_ns->root_cset = cset; 6170 put_css_set(rcset); 6171 } 6172 6173 cgroup_css_set_put_fork(kargs); 6174 } 6175 6176 /** 6177 * cgroup_exit - detach cgroup from exiting task 6178 * @tsk: pointer to task_struct of exiting process 6179 * 6180 * Description: Detach cgroup from @tsk. 6181 * 6182 */ 6183 void cgroup_exit(struct task_struct *tsk) 6184 { 6185 struct cgroup_subsys *ss; 6186 struct css_set *cset; 6187 int i; 6188 6189 spin_lock_irq(&css_set_lock); 6190 6191 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6192 cset = task_css_set(tsk); 6193 css_set_move_task(tsk, cset, NULL, false); 6194 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6195 cset->nr_tasks--; 6196 6197 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6198 if (unlikely(cgroup_task_freeze(tsk))) 6199 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6200 6201 spin_unlock_irq(&css_set_lock); 6202 6203 /* see cgroup_post_fork() for details */ 6204 do_each_subsys_mask(ss, i, have_exit_callback) { 6205 ss->exit(tsk); 6206 } while_each_subsys_mask(); 6207 } 6208 6209 void cgroup_release(struct task_struct *task) 6210 { 6211 struct cgroup_subsys *ss; 6212 int ssid; 6213 6214 do_each_subsys_mask(ss, ssid, have_release_callback) { 6215 ss->release(task); 6216 } while_each_subsys_mask(); 6217 6218 spin_lock_irq(&css_set_lock); 6219 css_set_skip_task_iters(task_css_set(task), task); 6220 list_del_init(&task->cg_list); 6221 spin_unlock_irq(&css_set_lock); 6222 } 6223 6224 void cgroup_free(struct task_struct *task) 6225 { 6226 struct css_set *cset = task_css_set(task); 6227 put_css_set(cset); 6228 } 6229 6230 static int __init cgroup_disable(char *str) 6231 { 6232 struct cgroup_subsys *ss; 6233 char *token; 6234 int i; 6235 6236 while ((token = strsep(&str, ",")) != NULL) { 6237 if (!*token) 6238 continue; 6239 6240 for_each_subsys(ss, i) { 6241 if (strcmp(token, ss->name) && 6242 strcmp(token, ss->legacy_name)) 6243 continue; 6244 cgroup_disable_mask |= 1 << i; 6245 } 6246 } 6247 return 1; 6248 } 6249 __setup("cgroup_disable=", cgroup_disable); 6250 6251 void __init __weak enable_debug_cgroup(void) { } 6252 6253 static int __init enable_cgroup_debug(char *str) 6254 { 6255 cgroup_debug = true; 6256 enable_debug_cgroup(); 6257 return 1; 6258 } 6259 __setup("cgroup_debug", enable_cgroup_debug); 6260 6261 /** 6262 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6263 * @dentry: directory dentry of interest 6264 * @ss: subsystem of interest 6265 * 6266 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6267 * to get the corresponding css and return it. If such css doesn't exist 6268 * or can't be pinned, an ERR_PTR value is returned. 6269 */ 6270 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6271 struct cgroup_subsys *ss) 6272 { 6273 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6274 struct file_system_type *s_type = dentry->d_sb->s_type; 6275 struct cgroup_subsys_state *css = NULL; 6276 struct cgroup *cgrp; 6277 6278 /* is @dentry a cgroup dir? */ 6279 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6280 !kn || kernfs_type(kn) != KERNFS_DIR) 6281 return ERR_PTR(-EBADF); 6282 6283 rcu_read_lock(); 6284 6285 /* 6286 * This path doesn't originate from kernfs and @kn could already 6287 * have been or be removed at any point. @kn->priv is RCU 6288 * protected for this access. See css_release_work_fn() for details. 6289 */ 6290 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6291 if (cgrp) 6292 css = cgroup_css(cgrp, ss); 6293 6294 if (!css || !css_tryget_online(css)) 6295 css = ERR_PTR(-ENOENT); 6296 6297 rcu_read_unlock(); 6298 return css; 6299 } 6300 6301 /** 6302 * css_from_id - lookup css by id 6303 * @id: the cgroup id 6304 * @ss: cgroup subsys to be looked into 6305 * 6306 * Returns the css if there's valid one with @id, otherwise returns NULL. 6307 * Should be called under rcu_read_lock(). 6308 */ 6309 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6310 { 6311 WARN_ON_ONCE(!rcu_read_lock_held()); 6312 return idr_find(&ss->css_idr, id); 6313 } 6314 6315 /** 6316 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6317 * @path: path on the default hierarchy 6318 * 6319 * Find the cgroup at @path on the default hierarchy, increment its 6320 * reference count and return it. Returns pointer to the found cgroup on 6321 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 6322 * if @path points to a non-directory. 6323 */ 6324 struct cgroup *cgroup_get_from_path(const char *path) 6325 { 6326 struct kernfs_node *kn; 6327 struct cgroup *cgrp; 6328 6329 mutex_lock(&cgroup_mutex); 6330 6331 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6332 if (kn) { 6333 if (kernfs_type(kn) == KERNFS_DIR) { 6334 cgrp = kn->priv; 6335 cgroup_get_live(cgrp); 6336 } else { 6337 cgrp = ERR_PTR(-ENOTDIR); 6338 } 6339 kernfs_put(kn); 6340 } else { 6341 cgrp = ERR_PTR(-ENOENT); 6342 } 6343 6344 mutex_unlock(&cgroup_mutex); 6345 return cgrp; 6346 } 6347 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6348 6349 /** 6350 * cgroup_get_from_fd - get a cgroup pointer from a fd 6351 * @fd: fd obtained by open(cgroup2_dir) 6352 * 6353 * Find the cgroup from a fd which should be obtained 6354 * by opening a cgroup directory. Returns a pointer to the 6355 * cgroup on success. ERR_PTR is returned if the cgroup 6356 * cannot be found. 6357 */ 6358 struct cgroup *cgroup_get_from_fd(int fd) 6359 { 6360 struct cgroup *cgrp; 6361 struct file *f; 6362 6363 f = fget_raw(fd); 6364 if (!f) 6365 return ERR_PTR(-EBADF); 6366 6367 cgrp = cgroup_get_from_file(f); 6368 fput(f); 6369 return cgrp; 6370 } 6371 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6372 6373 static u64 power_of_ten(int power) 6374 { 6375 u64 v = 1; 6376 while (power--) 6377 v *= 10; 6378 return v; 6379 } 6380 6381 /** 6382 * cgroup_parse_float - parse a floating number 6383 * @input: input string 6384 * @dec_shift: number of decimal digits to shift 6385 * @v: output 6386 * 6387 * Parse a decimal floating point number in @input and store the result in 6388 * @v with decimal point right shifted @dec_shift times. For example, if 6389 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6390 * Returns 0 on success, -errno otherwise. 6391 * 6392 * There's nothing cgroup specific about this function except that it's 6393 * currently the only user. 6394 */ 6395 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6396 { 6397 s64 whole, frac = 0; 6398 int fstart = 0, fend = 0, flen; 6399 6400 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6401 return -EINVAL; 6402 if (frac < 0) 6403 return -EINVAL; 6404 6405 flen = fend > fstart ? fend - fstart : 0; 6406 if (flen < dec_shift) 6407 frac *= power_of_ten(dec_shift - flen); 6408 else 6409 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6410 6411 *v = whole * power_of_ten(dec_shift) + frac; 6412 return 0; 6413 } 6414 6415 /* 6416 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6417 * definition in cgroup-defs.h. 6418 */ 6419 #ifdef CONFIG_SOCK_CGROUP_DATA 6420 6421 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 6422 6423 DEFINE_SPINLOCK(cgroup_sk_update_lock); 6424 static bool cgroup_sk_alloc_disabled __read_mostly; 6425 6426 void cgroup_sk_alloc_disable(void) 6427 { 6428 if (cgroup_sk_alloc_disabled) 6429 return; 6430 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 6431 cgroup_sk_alloc_disabled = true; 6432 } 6433 6434 #else 6435 6436 #define cgroup_sk_alloc_disabled false 6437 6438 #endif 6439 6440 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6441 { 6442 if (cgroup_sk_alloc_disabled) 6443 return; 6444 6445 /* Socket clone path */ 6446 if (skcd->val) { 6447 /* 6448 * We might be cloning a socket which is left in an empty 6449 * cgroup and the cgroup might have already been rmdir'd. 6450 * Don't use cgroup_get_live(). 6451 */ 6452 cgroup_get(sock_cgroup_ptr(skcd)); 6453 cgroup_bpf_get(sock_cgroup_ptr(skcd)); 6454 return; 6455 } 6456 6457 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6458 if (in_interrupt()) 6459 return; 6460 6461 rcu_read_lock(); 6462 6463 while (true) { 6464 struct css_set *cset; 6465 6466 cset = task_css_set(current); 6467 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6468 skcd->val = (unsigned long)cset->dfl_cgrp; 6469 cgroup_bpf_get(cset->dfl_cgrp); 6470 break; 6471 } 6472 cpu_relax(); 6473 } 6474 6475 rcu_read_unlock(); 6476 } 6477 6478 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6479 { 6480 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6481 6482 cgroup_bpf_put(cgrp); 6483 cgroup_put(cgrp); 6484 } 6485 6486 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6487 6488 #ifdef CONFIG_CGROUP_BPF 6489 int cgroup_bpf_attach(struct cgroup *cgrp, 6490 struct bpf_prog *prog, struct bpf_prog *replace_prog, 6491 struct bpf_cgroup_link *link, 6492 enum bpf_attach_type type, 6493 u32 flags) 6494 { 6495 int ret; 6496 6497 mutex_lock(&cgroup_mutex); 6498 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags); 6499 mutex_unlock(&cgroup_mutex); 6500 return ret; 6501 } 6502 6503 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 6504 enum bpf_attach_type type) 6505 { 6506 int ret; 6507 6508 mutex_lock(&cgroup_mutex); 6509 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type); 6510 mutex_unlock(&cgroup_mutex); 6511 return ret; 6512 } 6513 6514 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 6515 union bpf_attr __user *uattr) 6516 { 6517 int ret; 6518 6519 mutex_lock(&cgroup_mutex); 6520 ret = __cgroup_bpf_query(cgrp, attr, uattr); 6521 mutex_unlock(&cgroup_mutex); 6522 return ret; 6523 } 6524 #endif /* CONFIG_CGROUP_BPF */ 6525 6526 #ifdef CONFIG_SYSFS 6527 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6528 ssize_t size, const char *prefix) 6529 { 6530 struct cftype *cft; 6531 ssize_t ret = 0; 6532 6533 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6534 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6535 continue; 6536 6537 if (prefix) 6538 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6539 6540 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6541 6542 if (WARN_ON(ret >= size)) 6543 break; 6544 } 6545 6546 return ret; 6547 } 6548 6549 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6550 char *buf) 6551 { 6552 struct cgroup_subsys *ss; 6553 int ssid; 6554 ssize_t ret = 0; 6555 6556 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6557 NULL); 6558 6559 for_each_subsys(ss, ssid) 6560 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6561 PAGE_SIZE - ret, 6562 cgroup_subsys_name[ssid]); 6563 6564 return ret; 6565 } 6566 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6567 6568 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6569 char *buf) 6570 { 6571 return snprintf(buf, PAGE_SIZE, 6572 "nsdelegate\n" 6573 "memory_localevents\n" 6574 "memory_recursiveprot\n"); 6575 } 6576 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6577 6578 static struct attribute *cgroup_sysfs_attrs[] = { 6579 &cgroup_delegate_attr.attr, 6580 &cgroup_features_attr.attr, 6581 NULL, 6582 }; 6583 6584 static const struct attribute_group cgroup_sysfs_attr_group = { 6585 .attrs = cgroup_sysfs_attrs, 6586 .name = "cgroup", 6587 }; 6588 6589 static int __init cgroup_sysfs_init(void) 6590 { 6591 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6592 } 6593 subsys_initcall(cgroup_sysfs_init); 6594 6595 #endif /* CONFIG_SYSFS */ 6596