xref: /linux/kernel/cgroup/cgroup.c (revision bc75dffadc063eb46200611cc41d1e2373219e11)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/sched/deadline.h>
61 #include <linux/psi.h>
62 #include <net/sock.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/cgroup.h>
66 
67 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
68 					 MAX_CFTYPE_NAME + 2)
69 /* let's not notify more than 100 times per second */
70 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
71 
72 /*
73  * To avoid confusing the compiler (and generating warnings) with code
74  * that attempts to access what would be a 0-element array (i.e. sized
75  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
76  * constant expression can be added.
77  */
78 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
79 
80 /*
81  * cgroup_mutex is the master lock.  Any modification to cgroup or its
82  * hierarchy must be performed while holding it.
83  *
84  * css_set_lock protects task->cgroups pointer, the list of css_set
85  * objects, and the chain of tasks off each css_set.
86  *
87  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88  * cgroup.h can use them for lockdep annotations.
89  */
90 DEFINE_MUTEX(cgroup_mutex);
91 DEFINE_SPINLOCK(css_set_lock);
92 
93 #ifdef CONFIG_PROVE_RCU
94 EXPORT_SYMBOL_GPL(cgroup_mutex);
95 EXPORT_SYMBOL_GPL(css_set_lock);
96 #endif
97 
98 DEFINE_SPINLOCK(trace_cgroup_path_lock);
99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
100 static bool cgroup_debug __read_mostly;
101 
102 /*
103  * Protects cgroup_idr and css_idr so that IDs can be released without
104  * grabbing cgroup_mutex.
105  */
106 static DEFINE_SPINLOCK(cgroup_idr_lock);
107 
108 /*
109  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
110  * against file removal/re-creation across css hiding.
111  */
112 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
113 
114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
115 
116 #define cgroup_assert_mutex_or_rcu_locked()				\
117 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
118 			   !lockdep_is_held(&cgroup_mutex),		\
119 			   "cgroup_mutex or RCU read lock required");
120 
121 /*
122  * cgroup destruction makes heavy use of work items and there can be a lot
123  * of concurrent destructions.  Use a separate workqueue so that cgroup
124  * destruction work items don't end up filling up max_active of system_wq
125  * which may lead to deadlock.
126  */
127 static struct workqueue_struct *cgroup_destroy_wq;
128 
129 /* generate an array of cgroup subsystem pointers */
130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
131 struct cgroup_subsys *cgroup_subsys[] = {
132 #include <linux/cgroup_subsys.h>
133 };
134 #undef SUBSYS
135 
136 /* array of cgroup subsystem names */
137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
138 static const char *cgroup_subsys_name[] = {
139 #include <linux/cgroup_subsys.h>
140 };
141 #undef SUBSYS
142 
143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
144 #define SUBSYS(_x)								\
145 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
146 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
147 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
148 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
149 #include <linux/cgroup_subsys.h>
150 #undef SUBSYS
151 
152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
153 static struct static_key_true *cgroup_subsys_enabled_key[] = {
154 #include <linux/cgroup_subsys.h>
155 };
156 #undef SUBSYS
157 
158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
160 #include <linux/cgroup_subsys.h>
161 };
162 #undef SUBSYS
163 
164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
165 
166 /* the default hierarchy */
167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
168 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
169 
170 /*
171  * The default hierarchy always exists but is hidden until mounted for the
172  * first time.  This is for backward compatibility.
173  */
174 static bool cgrp_dfl_visible;
175 
176 /* some controllers are not supported in the default hierarchy */
177 static u16 cgrp_dfl_inhibit_ss_mask;
178 
179 /* some controllers are implicitly enabled on the default hierarchy */
180 static u16 cgrp_dfl_implicit_ss_mask;
181 
182 /* some controllers can be threaded on the default hierarchy */
183 static u16 cgrp_dfl_threaded_ss_mask;
184 
185 /* The list of hierarchy roots */
186 LIST_HEAD(cgroup_roots);
187 static int cgroup_root_count;
188 
189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
190 static DEFINE_IDR(cgroup_hierarchy_idr);
191 
192 /*
193  * Assign a monotonically increasing serial number to csses.  It guarantees
194  * cgroups with bigger numbers are newer than those with smaller numbers.
195  * Also, as csses are always appended to the parent's ->children list, it
196  * guarantees that sibling csses are always sorted in the ascending serial
197  * number order on the list.  Protected by cgroup_mutex.
198  */
199 static u64 css_serial_nr_next = 1;
200 
201 /*
202  * These bitmasks identify subsystems with specific features to avoid
203  * having to do iterative checks repeatedly.
204  */
205 static u16 have_fork_callback __read_mostly;
206 static u16 have_exit_callback __read_mostly;
207 static u16 have_release_callback __read_mostly;
208 static u16 have_canfork_callback __read_mostly;
209 
210 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
211 
212 /* cgroup namespace for init task */
213 struct cgroup_namespace init_cgroup_ns = {
214 	.ns.count	= REFCOUNT_INIT(2),
215 	.user_ns	= &init_user_ns,
216 	.ns.ops		= &cgroupns_operations,
217 	.ns.inum	= PROC_CGROUP_INIT_INO,
218 	.root_cset	= &init_css_set,
219 };
220 
221 static struct file_system_type cgroup2_fs_type;
222 static struct cftype cgroup_base_files[];
223 static struct cftype cgroup_psi_files[];
224 
225 /* cgroup optional features */
226 enum cgroup_opt_features {
227 #ifdef CONFIG_PSI
228 	OPT_FEATURE_PRESSURE,
229 #endif
230 	OPT_FEATURE_COUNT
231 };
232 
233 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
234 #ifdef CONFIG_PSI
235 	"pressure",
236 #endif
237 };
238 
239 static u16 cgroup_feature_disable_mask __read_mostly;
240 
241 static int cgroup_apply_control(struct cgroup *cgrp);
242 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
243 static void css_task_iter_skip(struct css_task_iter *it,
244 			       struct task_struct *task);
245 static int cgroup_destroy_locked(struct cgroup *cgrp);
246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
247 					      struct cgroup_subsys *ss);
248 static void css_release(struct percpu_ref *ref);
249 static void kill_css(struct cgroup_subsys_state *css);
250 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
251 			      struct cgroup *cgrp, struct cftype cfts[],
252 			      bool is_add);
253 
254 #ifdef CONFIG_DEBUG_CGROUP_REF
255 #define CGROUP_REF_FN_ATTRS	noinline
256 #define CGROUP_REF_EXPORT(fn)	EXPORT_SYMBOL_GPL(fn);
257 #include <linux/cgroup_refcnt.h>
258 #endif
259 
260 /**
261  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
262  * @ssid: subsys ID of interest
263  *
264  * cgroup_subsys_enabled() can only be used with literal subsys names which
265  * is fine for individual subsystems but unsuitable for cgroup core.  This
266  * is slower static_key_enabled() based test indexed by @ssid.
267  */
268 bool cgroup_ssid_enabled(int ssid)
269 {
270 	if (!CGROUP_HAS_SUBSYS_CONFIG)
271 		return false;
272 
273 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
274 }
275 
276 /**
277  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
278  * @cgrp: the cgroup of interest
279  *
280  * The default hierarchy is the v2 interface of cgroup and this function
281  * can be used to test whether a cgroup is on the default hierarchy for
282  * cases where a subsystem should behave differently depending on the
283  * interface version.
284  *
285  * List of changed behaviors:
286  *
287  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
288  *   and "name" are disallowed.
289  *
290  * - When mounting an existing superblock, mount options should match.
291  *
292  * - rename(2) is disallowed.
293  *
294  * - "tasks" is removed.  Everything should be at process granularity.  Use
295  *   "cgroup.procs" instead.
296  *
297  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
298  *   recycled in-between reads.
299  *
300  * - "release_agent" and "notify_on_release" are removed.  Replacement
301  *   notification mechanism will be implemented.
302  *
303  * - "cgroup.clone_children" is removed.
304  *
305  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
306  *   and its descendants contain no task; otherwise, 1.  The file also
307  *   generates kernfs notification which can be monitored through poll and
308  *   [di]notify when the value of the file changes.
309  *
310  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
311  *   take masks of ancestors with non-empty cpus/mems, instead of being
312  *   moved to an ancestor.
313  *
314  * - cpuset: a task can be moved into an empty cpuset, and again it takes
315  *   masks of ancestors.
316  *
317  * - blkcg: blk-throttle becomes properly hierarchical.
318  */
319 bool cgroup_on_dfl(const struct cgroup *cgrp)
320 {
321 	return cgrp->root == &cgrp_dfl_root;
322 }
323 
324 /* IDR wrappers which synchronize using cgroup_idr_lock */
325 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
326 			    gfp_t gfp_mask)
327 {
328 	int ret;
329 
330 	idr_preload(gfp_mask);
331 	spin_lock_bh(&cgroup_idr_lock);
332 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
333 	spin_unlock_bh(&cgroup_idr_lock);
334 	idr_preload_end();
335 	return ret;
336 }
337 
338 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
339 {
340 	void *ret;
341 
342 	spin_lock_bh(&cgroup_idr_lock);
343 	ret = idr_replace(idr, ptr, id);
344 	spin_unlock_bh(&cgroup_idr_lock);
345 	return ret;
346 }
347 
348 static void cgroup_idr_remove(struct idr *idr, int id)
349 {
350 	spin_lock_bh(&cgroup_idr_lock);
351 	idr_remove(idr, id);
352 	spin_unlock_bh(&cgroup_idr_lock);
353 }
354 
355 static bool cgroup_has_tasks(struct cgroup *cgrp)
356 {
357 	return cgrp->nr_populated_csets;
358 }
359 
360 static bool cgroup_is_threaded(struct cgroup *cgrp)
361 {
362 	return cgrp->dom_cgrp != cgrp;
363 }
364 
365 /* can @cgrp host both domain and threaded children? */
366 static bool cgroup_is_mixable(struct cgroup *cgrp)
367 {
368 	/*
369 	 * Root isn't under domain level resource control exempting it from
370 	 * the no-internal-process constraint, so it can serve as a thread
371 	 * root and a parent of resource domains at the same time.
372 	 */
373 	return !cgroup_parent(cgrp);
374 }
375 
376 /* can @cgrp become a thread root? Should always be true for a thread root */
377 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
378 {
379 	/* mixables don't care */
380 	if (cgroup_is_mixable(cgrp))
381 		return true;
382 
383 	/* domain roots can't be nested under threaded */
384 	if (cgroup_is_threaded(cgrp))
385 		return false;
386 
387 	/* can only have either domain or threaded children */
388 	if (cgrp->nr_populated_domain_children)
389 		return false;
390 
391 	/* and no domain controllers can be enabled */
392 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
393 		return false;
394 
395 	return true;
396 }
397 
398 /* is @cgrp root of a threaded subtree? */
399 static bool cgroup_is_thread_root(struct cgroup *cgrp)
400 {
401 	/* thread root should be a domain */
402 	if (cgroup_is_threaded(cgrp))
403 		return false;
404 
405 	/* a domain w/ threaded children is a thread root */
406 	if (cgrp->nr_threaded_children)
407 		return true;
408 
409 	/*
410 	 * A domain which has tasks and explicit threaded controllers
411 	 * enabled is a thread root.
412 	 */
413 	if (cgroup_has_tasks(cgrp) &&
414 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
415 		return true;
416 
417 	return false;
418 }
419 
420 /* a domain which isn't connected to the root w/o brekage can't be used */
421 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
422 {
423 	/* the cgroup itself can be a thread root */
424 	if (cgroup_is_threaded(cgrp))
425 		return false;
426 
427 	/* but the ancestors can't be unless mixable */
428 	while ((cgrp = cgroup_parent(cgrp))) {
429 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
430 			return false;
431 		if (cgroup_is_threaded(cgrp))
432 			return false;
433 	}
434 
435 	return true;
436 }
437 
438 /* subsystems visibly enabled on a cgroup */
439 static u16 cgroup_control(struct cgroup *cgrp)
440 {
441 	struct cgroup *parent = cgroup_parent(cgrp);
442 	u16 root_ss_mask = cgrp->root->subsys_mask;
443 
444 	if (parent) {
445 		u16 ss_mask = parent->subtree_control;
446 
447 		/* threaded cgroups can only have threaded controllers */
448 		if (cgroup_is_threaded(cgrp))
449 			ss_mask &= cgrp_dfl_threaded_ss_mask;
450 		return ss_mask;
451 	}
452 
453 	if (cgroup_on_dfl(cgrp))
454 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
455 				  cgrp_dfl_implicit_ss_mask);
456 	return root_ss_mask;
457 }
458 
459 /* subsystems enabled on a cgroup */
460 static u16 cgroup_ss_mask(struct cgroup *cgrp)
461 {
462 	struct cgroup *parent = cgroup_parent(cgrp);
463 
464 	if (parent) {
465 		u16 ss_mask = parent->subtree_ss_mask;
466 
467 		/* threaded cgroups can only have threaded controllers */
468 		if (cgroup_is_threaded(cgrp))
469 			ss_mask &= cgrp_dfl_threaded_ss_mask;
470 		return ss_mask;
471 	}
472 
473 	return cgrp->root->subsys_mask;
474 }
475 
476 /**
477  * cgroup_css - obtain a cgroup's css for the specified subsystem
478  * @cgrp: the cgroup of interest
479  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
480  *
481  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
482  * function must be called either under cgroup_mutex or rcu_read_lock() and
483  * the caller is responsible for pinning the returned css if it wants to
484  * keep accessing it outside the said locks.  This function may return
485  * %NULL if @cgrp doesn't have @subsys_id enabled.
486  */
487 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
488 					      struct cgroup_subsys *ss)
489 {
490 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
491 		return rcu_dereference_check(cgrp->subsys[ss->id],
492 					lockdep_is_held(&cgroup_mutex));
493 	else
494 		return &cgrp->self;
495 }
496 
497 /**
498  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499  * @cgrp: the cgroup of interest
500  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
501  *
502  * Similar to cgroup_css() but returns the effective css, which is defined
503  * as the matching css of the nearest ancestor including self which has @ss
504  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
505  * function is guaranteed to return non-NULL css.
506  */
507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508 							struct cgroup_subsys *ss)
509 {
510 	lockdep_assert_held(&cgroup_mutex);
511 
512 	if (!ss)
513 		return &cgrp->self;
514 
515 	/*
516 	 * This function is used while updating css associations and thus
517 	 * can't test the csses directly.  Test ss_mask.
518 	 */
519 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
520 		cgrp = cgroup_parent(cgrp);
521 		if (!cgrp)
522 			return NULL;
523 	}
524 
525 	return cgroup_css(cgrp, ss);
526 }
527 
528 /**
529  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530  * @cgrp: the cgroup of interest
531  * @ss: the subsystem of interest
532  *
533  * Find and get the effective css of @cgrp for @ss.  The effective css is
534  * defined as the matching css of the nearest ancestor including self which
535  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
536  * the root css is returned, so this function always returns a valid css.
537  *
538  * The returned css is not guaranteed to be online, and therefore it is the
539  * callers responsibility to try get a reference for it.
540  */
541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542 					 struct cgroup_subsys *ss)
543 {
544 	struct cgroup_subsys_state *css;
545 
546 	if (!CGROUP_HAS_SUBSYS_CONFIG)
547 		return NULL;
548 
549 	do {
550 		css = cgroup_css(cgrp, ss);
551 
552 		if (css)
553 			return css;
554 		cgrp = cgroup_parent(cgrp);
555 	} while (cgrp);
556 
557 	return init_css_set.subsys[ss->id];
558 }
559 
560 /**
561  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
562  * @cgrp: the cgroup of interest
563  * @ss: the subsystem of interest
564  *
565  * Find and get the effective css of @cgrp for @ss.  The effective css is
566  * defined as the matching css of the nearest ancestor including self which
567  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
568  * the root css is returned, so this function always returns a valid css.
569  * The returned css must be put using css_put().
570  */
571 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
572 					     struct cgroup_subsys *ss)
573 {
574 	struct cgroup_subsys_state *css;
575 
576 	if (!CGROUP_HAS_SUBSYS_CONFIG)
577 		return NULL;
578 
579 	rcu_read_lock();
580 
581 	do {
582 		css = cgroup_css(cgrp, ss);
583 
584 		if (css && css_tryget_online(css))
585 			goto out_unlock;
586 		cgrp = cgroup_parent(cgrp);
587 	} while (cgrp);
588 
589 	css = init_css_set.subsys[ss->id];
590 	css_get(css);
591 out_unlock:
592 	rcu_read_unlock();
593 	return css;
594 }
595 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
596 
597 static void cgroup_get_live(struct cgroup *cgrp)
598 {
599 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
600 	cgroup_get(cgrp);
601 }
602 
603 /**
604  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
605  * is responsible for taking the css_set_lock.
606  * @cgrp: the cgroup in question
607  */
608 int __cgroup_task_count(const struct cgroup *cgrp)
609 {
610 	int count = 0;
611 	struct cgrp_cset_link *link;
612 
613 	lockdep_assert_held(&css_set_lock);
614 
615 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
616 		count += link->cset->nr_tasks;
617 
618 	return count;
619 }
620 
621 /**
622  * cgroup_task_count - count the number of tasks in a cgroup.
623  * @cgrp: the cgroup in question
624  */
625 int cgroup_task_count(const struct cgroup *cgrp)
626 {
627 	int count;
628 
629 	spin_lock_irq(&css_set_lock);
630 	count = __cgroup_task_count(cgrp);
631 	spin_unlock_irq(&css_set_lock);
632 
633 	return count;
634 }
635 
636 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
637 {
638 	struct cgroup *cgrp = of->kn->parent->priv;
639 	struct cftype *cft = of_cft(of);
640 
641 	/*
642 	 * This is open and unprotected implementation of cgroup_css().
643 	 * seq_css() is only called from a kernfs file operation which has
644 	 * an active reference on the file.  Because all the subsystem
645 	 * files are drained before a css is disassociated with a cgroup,
646 	 * the matching css from the cgroup's subsys table is guaranteed to
647 	 * be and stay valid until the enclosing operation is complete.
648 	 */
649 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
650 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
651 	else
652 		return &cgrp->self;
653 }
654 EXPORT_SYMBOL_GPL(of_css);
655 
656 /**
657  * for_each_css - iterate all css's of a cgroup
658  * @css: the iteration cursor
659  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
660  * @cgrp: the target cgroup to iterate css's of
661  *
662  * Should be called under cgroup_mutex.
663  */
664 #define for_each_css(css, ssid, cgrp)					\
665 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
666 		if (!((css) = rcu_dereference_check(			\
667 				(cgrp)->subsys[(ssid)],			\
668 				lockdep_is_held(&cgroup_mutex)))) { }	\
669 		else
670 
671 /**
672  * do_each_subsys_mask - filter for_each_subsys with a bitmask
673  * @ss: the iteration cursor
674  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
675  * @ss_mask: the bitmask
676  *
677  * The block will only run for cases where the ssid-th bit (1 << ssid) of
678  * @ss_mask is set.
679  */
680 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
681 	unsigned long __ss_mask = (ss_mask);				\
682 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
683 		(ssid) = 0;						\
684 		break;							\
685 	}								\
686 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
687 		(ss) = cgroup_subsys[ssid];				\
688 		{
689 
690 #define while_each_subsys_mask()					\
691 		}							\
692 	}								\
693 } while (false)
694 
695 /* iterate over child cgrps, lock should be held throughout iteration */
696 #define cgroup_for_each_live_child(child, cgrp)				\
697 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
698 		if (({ lockdep_assert_held(&cgroup_mutex);		\
699 		       cgroup_is_dead(child); }))			\
700 			;						\
701 		else
702 
703 /* walk live descendants in pre order */
704 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
705 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
706 		if (({ lockdep_assert_held(&cgroup_mutex);		\
707 		       (dsct) = (d_css)->cgroup;			\
708 		       cgroup_is_dead(dsct); }))			\
709 			;						\
710 		else
711 
712 /* walk live descendants in postorder */
713 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
714 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
715 		if (({ lockdep_assert_held(&cgroup_mutex);		\
716 		       (dsct) = (d_css)->cgroup;			\
717 		       cgroup_is_dead(dsct); }))			\
718 			;						\
719 		else
720 
721 /*
722  * The default css_set - used by init and its children prior to any
723  * hierarchies being mounted. It contains a pointer to the root state
724  * for each subsystem. Also used to anchor the list of css_sets. Not
725  * reference-counted, to improve performance when child cgroups
726  * haven't been created.
727  */
728 struct css_set init_css_set = {
729 	.refcount		= REFCOUNT_INIT(1),
730 	.dom_cset		= &init_css_set,
731 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
732 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
733 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
734 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
735 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
736 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
737 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
738 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
739 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
740 
741 	/*
742 	 * The following field is re-initialized when this cset gets linked
743 	 * in cgroup_init().  However, let's initialize the field
744 	 * statically too so that the default cgroup can be accessed safely
745 	 * early during boot.
746 	 */
747 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
748 };
749 
750 static int css_set_count	= 1;	/* 1 for init_css_set */
751 
752 static bool css_set_threaded(struct css_set *cset)
753 {
754 	return cset->dom_cset != cset;
755 }
756 
757 /**
758  * css_set_populated - does a css_set contain any tasks?
759  * @cset: target css_set
760  *
761  * css_set_populated() should be the same as !!cset->nr_tasks at steady
762  * state. However, css_set_populated() can be called while a task is being
763  * added to or removed from the linked list before the nr_tasks is
764  * properly updated. Hence, we can't just look at ->nr_tasks here.
765  */
766 static bool css_set_populated(struct css_set *cset)
767 {
768 	lockdep_assert_held(&css_set_lock);
769 
770 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
771 }
772 
773 /**
774  * cgroup_update_populated - update the populated count of a cgroup
775  * @cgrp: the target cgroup
776  * @populated: inc or dec populated count
777  *
778  * One of the css_sets associated with @cgrp is either getting its first
779  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
780  * count is propagated towards root so that a given cgroup's
781  * nr_populated_children is zero iff none of its descendants contain any
782  * tasks.
783  *
784  * @cgrp's interface file "cgroup.populated" is zero if both
785  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
786  * 1 otherwise.  When the sum changes from or to zero, userland is notified
787  * that the content of the interface file has changed.  This can be used to
788  * detect when @cgrp and its descendants become populated or empty.
789  */
790 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
791 {
792 	struct cgroup *child = NULL;
793 	int adj = populated ? 1 : -1;
794 
795 	lockdep_assert_held(&css_set_lock);
796 
797 	do {
798 		bool was_populated = cgroup_is_populated(cgrp);
799 
800 		if (!child) {
801 			cgrp->nr_populated_csets += adj;
802 		} else {
803 			if (cgroup_is_threaded(child))
804 				cgrp->nr_populated_threaded_children += adj;
805 			else
806 				cgrp->nr_populated_domain_children += adj;
807 		}
808 
809 		if (was_populated == cgroup_is_populated(cgrp))
810 			break;
811 
812 		cgroup1_check_for_release(cgrp);
813 		TRACE_CGROUP_PATH(notify_populated, cgrp,
814 				  cgroup_is_populated(cgrp));
815 		cgroup_file_notify(&cgrp->events_file);
816 
817 		child = cgrp;
818 		cgrp = cgroup_parent(cgrp);
819 	} while (cgrp);
820 }
821 
822 /**
823  * css_set_update_populated - update populated state of a css_set
824  * @cset: target css_set
825  * @populated: whether @cset is populated or depopulated
826  *
827  * @cset is either getting the first task or losing the last.  Update the
828  * populated counters of all associated cgroups accordingly.
829  */
830 static void css_set_update_populated(struct css_set *cset, bool populated)
831 {
832 	struct cgrp_cset_link *link;
833 
834 	lockdep_assert_held(&css_set_lock);
835 
836 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
837 		cgroup_update_populated(link->cgrp, populated);
838 }
839 
840 /*
841  * @task is leaving, advance task iterators which are pointing to it so
842  * that they can resume at the next position.  Advancing an iterator might
843  * remove it from the list, use safe walk.  See css_task_iter_skip() for
844  * details.
845  */
846 static void css_set_skip_task_iters(struct css_set *cset,
847 				    struct task_struct *task)
848 {
849 	struct css_task_iter *it, *pos;
850 
851 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
852 		css_task_iter_skip(it, task);
853 }
854 
855 /**
856  * css_set_move_task - move a task from one css_set to another
857  * @task: task being moved
858  * @from_cset: css_set @task currently belongs to (may be NULL)
859  * @to_cset: new css_set @task is being moved to (may be NULL)
860  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
861  *
862  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
863  * css_set, @from_cset can be NULL.  If @task is being disassociated
864  * instead of moved, @to_cset can be NULL.
865  *
866  * This function automatically handles populated counter updates and
867  * css_task_iter adjustments but the caller is responsible for managing
868  * @from_cset and @to_cset's reference counts.
869  */
870 static void css_set_move_task(struct task_struct *task,
871 			      struct css_set *from_cset, struct css_set *to_cset,
872 			      bool use_mg_tasks)
873 {
874 	lockdep_assert_held(&css_set_lock);
875 
876 	if (to_cset && !css_set_populated(to_cset))
877 		css_set_update_populated(to_cset, true);
878 
879 	if (from_cset) {
880 		WARN_ON_ONCE(list_empty(&task->cg_list));
881 
882 		css_set_skip_task_iters(from_cset, task);
883 		list_del_init(&task->cg_list);
884 		if (!css_set_populated(from_cset))
885 			css_set_update_populated(from_cset, false);
886 	} else {
887 		WARN_ON_ONCE(!list_empty(&task->cg_list));
888 	}
889 
890 	if (to_cset) {
891 		/*
892 		 * We are synchronized through cgroup_threadgroup_rwsem
893 		 * against PF_EXITING setting such that we can't race
894 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
895 		 */
896 		WARN_ON_ONCE(task->flags & PF_EXITING);
897 
898 		cgroup_move_task(task, to_cset);
899 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
900 							     &to_cset->tasks);
901 	}
902 }
903 
904 /*
905  * hash table for cgroup groups. This improves the performance to find
906  * an existing css_set. This hash doesn't (currently) take into
907  * account cgroups in empty hierarchies.
908  */
909 #define CSS_SET_HASH_BITS	7
910 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
911 
912 static unsigned long css_set_hash(struct cgroup_subsys_state **css)
913 {
914 	unsigned long key = 0UL;
915 	struct cgroup_subsys *ss;
916 	int i;
917 
918 	for_each_subsys(ss, i)
919 		key += (unsigned long)css[i];
920 	key = (key >> 16) ^ key;
921 
922 	return key;
923 }
924 
925 void put_css_set_locked(struct css_set *cset)
926 {
927 	struct cgrp_cset_link *link, *tmp_link;
928 	struct cgroup_subsys *ss;
929 	int ssid;
930 
931 	lockdep_assert_held(&css_set_lock);
932 
933 	if (!refcount_dec_and_test(&cset->refcount))
934 		return;
935 
936 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
937 
938 	/* This css_set is dead. Unlink it and release cgroup and css refs */
939 	for_each_subsys(ss, ssid) {
940 		list_del(&cset->e_cset_node[ssid]);
941 		css_put(cset->subsys[ssid]);
942 	}
943 	hash_del(&cset->hlist);
944 	css_set_count--;
945 
946 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
947 		list_del(&link->cset_link);
948 		list_del(&link->cgrp_link);
949 		if (cgroup_parent(link->cgrp))
950 			cgroup_put(link->cgrp);
951 		kfree(link);
952 	}
953 
954 	if (css_set_threaded(cset)) {
955 		list_del(&cset->threaded_csets_node);
956 		put_css_set_locked(cset->dom_cset);
957 	}
958 
959 	kfree_rcu(cset, rcu_head);
960 }
961 
962 /**
963  * compare_css_sets - helper function for find_existing_css_set().
964  * @cset: candidate css_set being tested
965  * @old_cset: existing css_set for a task
966  * @new_cgrp: cgroup that's being entered by the task
967  * @template: desired set of css pointers in css_set (pre-calculated)
968  *
969  * Returns true if "cset" matches "old_cset" except for the hierarchy
970  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
971  */
972 static bool compare_css_sets(struct css_set *cset,
973 			     struct css_set *old_cset,
974 			     struct cgroup *new_cgrp,
975 			     struct cgroup_subsys_state *template[])
976 {
977 	struct cgroup *new_dfl_cgrp;
978 	struct list_head *l1, *l2;
979 
980 	/*
981 	 * On the default hierarchy, there can be csets which are
982 	 * associated with the same set of cgroups but different csses.
983 	 * Let's first ensure that csses match.
984 	 */
985 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
986 		return false;
987 
988 
989 	/* @cset's domain should match the default cgroup's */
990 	if (cgroup_on_dfl(new_cgrp))
991 		new_dfl_cgrp = new_cgrp;
992 	else
993 		new_dfl_cgrp = old_cset->dfl_cgrp;
994 
995 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
996 		return false;
997 
998 	/*
999 	 * Compare cgroup pointers in order to distinguish between
1000 	 * different cgroups in hierarchies.  As different cgroups may
1001 	 * share the same effective css, this comparison is always
1002 	 * necessary.
1003 	 */
1004 	l1 = &cset->cgrp_links;
1005 	l2 = &old_cset->cgrp_links;
1006 	while (1) {
1007 		struct cgrp_cset_link *link1, *link2;
1008 		struct cgroup *cgrp1, *cgrp2;
1009 
1010 		l1 = l1->next;
1011 		l2 = l2->next;
1012 		/* See if we reached the end - both lists are equal length. */
1013 		if (l1 == &cset->cgrp_links) {
1014 			BUG_ON(l2 != &old_cset->cgrp_links);
1015 			break;
1016 		} else {
1017 			BUG_ON(l2 == &old_cset->cgrp_links);
1018 		}
1019 		/* Locate the cgroups associated with these links. */
1020 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1021 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1022 		cgrp1 = link1->cgrp;
1023 		cgrp2 = link2->cgrp;
1024 		/* Hierarchies should be linked in the same order. */
1025 		BUG_ON(cgrp1->root != cgrp2->root);
1026 
1027 		/*
1028 		 * If this hierarchy is the hierarchy of the cgroup
1029 		 * that's changing, then we need to check that this
1030 		 * css_set points to the new cgroup; if it's any other
1031 		 * hierarchy, then this css_set should point to the
1032 		 * same cgroup as the old css_set.
1033 		 */
1034 		if (cgrp1->root == new_cgrp->root) {
1035 			if (cgrp1 != new_cgrp)
1036 				return false;
1037 		} else {
1038 			if (cgrp1 != cgrp2)
1039 				return false;
1040 		}
1041 	}
1042 	return true;
1043 }
1044 
1045 /**
1046  * find_existing_css_set - init css array and find the matching css_set
1047  * @old_cset: the css_set that we're using before the cgroup transition
1048  * @cgrp: the cgroup that we're moving into
1049  * @template: out param for the new set of csses, should be clear on entry
1050  */
1051 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1052 					struct cgroup *cgrp,
1053 					struct cgroup_subsys_state **template)
1054 {
1055 	struct cgroup_root *root = cgrp->root;
1056 	struct cgroup_subsys *ss;
1057 	struct css_set *cset;
1058 	unsigned long key;
1059 	int i;
1060 
1061 	/*
1062 	 * Build the set of subsystem state objects that we want to see in the
1063 	 * new css_set. While subsystems can change globally, the entries here
1064 	 * won't change, so no need for locking.
1065 	 */
1066 	for_each_subsys(ss, i) {
1067 		if (root->subsys_mask & (1UL << i)) {
1068 			/*
1069 			 * @ss is in this hierarchy, so we want the
1070 			 * effective css from @cgrp.
1071 			 */
1072 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1073 		} else {
1074 			/*
1075 			 * @ss is not in this hierarchy, so we don't want
1076 			 * to change the css.
1077 			 */
1078 			template[i] = old_cset->subsys[i];
1079 		}
1080 	}
1081 
1082 	key = css_set_hash(template);
1083 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1084 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1085 			continue;
1086 
1087 		/* This css_set matches what we need */
1088 		return cset;
1089 	}
1090 
1091 	/* No existing cgroup group matched */
1092 	return NULL;
1093 }
1094 
1095 static void free_cgrp_cset_links(struct list_head *links_to_free)
1096 {
1097 	struct cgrp_cset_link *link, *tmp_link;
1098 
1099 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1100 		list_del(&link->cset_link);
1101 		kfree(link);
1102 	}
1103 }
1104 
1105 /**
1106  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1107  * @count: the number of links to allocate
1108  * @tmp_links: list_head the allocated links are put on
1109  *
1110  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1111  * through ->cset_link.  Returns 0 on success or -errno.
1112  */
1113 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1114 {
1115 	struct cgrp_cset_link *link;
1116 	int i;
1117 
1118 	INIT_LIST_HEAD(tmp_links);
1119 
1120 	for (i = 0; i < count; i++) {
1121 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1122 		if (!link) {
1123 			free_cgrp_cset_links(tmp_links);
1124 			return -ENOMEM;
1125 		}
1126 		list_add(&link->cset_link, tmp_links);
1127 	}
1128 	return 0;
1129 }
1130 
1131 /**
1132  * link_css_set - a helper function to link a css_set to a cgroup
1133  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1134  * @cset: the css_set to be linked
1135  * @cgrp: the destination cgroup
1136  */
1137 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1138 			 struct cgroup *cgrp)
1139 {
1140 	struct cgrp_cset_link *link;
1141 
1142 	BUG_ON(list_empty(tmp_links));
1143 
1144 	if (cgroup_on_dfl(cgrp))
1145 		cset->dfl_cgrp = cgrp;
1146 
1147 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1148 	link->cset = cset;
1149 	link->cgrp = cgrp;
1150 
1151 	/*
1152 	 * Always add links to the tail of the lists so that the lists are
1153 	 * in chronological order.
1154 	 */
1155 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1156 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1157 
1158 	if (cgroup_parent(cgrp))
1159 		cgroup_get_live(cgrp);
1160 }
1161 
1162 /**
1163  * find_css_set - return a new css_set with one cgroup updated
1164  * @old_cset: the baseline css_set
1165  * @cgrp: the cgroup to be updated
1166  *
1167  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1168  * substituted into the appropriate hierarchy.
1169  */
1170 static struct css_set *find_css_set(struct css_set *old_cset,
1171 				    struct cgroup *cgrp)
1172 {
1173 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1174 	struct css_set *cset;
1175 	struct list_head tmp_links;
1176 	struct cgrp_cset_link *link;
1177 	struct cgroup_subsys *ss;
1178 	unsigned long key;
1179 	int ssid;
1180 
1181 	lockdep_assert_held(&cgroup_mutex);
1182 
1183 	/* First see if we already have a cgroup group that matches
1184 	 * the desired set */
1185 	spin_lock_irq(&css_set_lock);
1186 	cset = find_existing_css_set(old_cset, cgrp, template);
1187 	if (cset)
1188 		get_css_set(cset);
1189 	spin_unlock_irq(&css_set_lock);
1190 
1191 	if (cset)
1192 		return cset;
1193 
1194 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1195 	if (!cset)
1196 		return NULL;
1197 
1198 	/* Allocate all the cgrp_cset_link objects that we'll need */
1199 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1200 		kfree(cset);
1201 		return NULL;
1202 	}
1203 
1204 	refcount_set(&cset->refcount, 1);
1205 	cset->dom_cset = cset;
1206 	INIT_LIST_HEAD(&cset->tasks);
1207 	INIT_LIST_HEAD(&cset->mg_tasks);
1208 	INIT_LIST_HEAD(&cset->dying_tasks);
1209 	INIT_LIST_HEAD(&cset->task_iters);
1210 	INIT_LIST_HEAD(&cset->threaded_csets);
1211 	INIT_HLIST_NODE(&cset->hlist);
1212 	INIT_LIST_HEAD(&cset->cgrp_links);
1213 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1214 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1215 	INIT_LIST_HEAD(&cset->mg_node);
1216 
1217 	/* Copy the set of subsystem state objects generated in
1218 	 * find_existing_css_set() */
1219 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1220 
1221 	spin_lock_irq(&css_set_lock);
1222 	/* Add reference counts and links from the new css_set. */
1223 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224 		struct cgroup *c = link->cgrp;
1225 
1226 		if (c->root == cgrp->root)
1227 			c = cgrp;
1228 		link_css_set(&tmp_links, cset, c);
1229 	}
1230 
1231 	BUG_ON(!list_empty(&tmp_links));
1232 
1233 	css_set_count++;
1234 
1235 	/* Add @cset to the hash table */
1236 	key = css_set_hash(cset->subsys);
1237 	hash_add(css_set_table, &cset->hlist, key);
1238 
1239 	for_each_subsys(ss, ssid) {
1240 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1241 
1242 		list_add_tail(&cset->e_cset_node[ssid],
1243 			      &css->cgroup->e_csets[ssid]);
1244 		css_get(css);
1245 	}
1246 
1247 	spin_unlock_irq(&css_set_lock);
1248 
1249 	/*
1250 	 * If @cset should be threaded, look up the matching dom_cset and
1251 	 * link them up.  We first fully initialize @cset then look for the
1252 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1253 	 * to stay empty until we return.
1254 	 */
1255 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256 		struct css_set *dcset;
1257 
1258 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259 		if (!dcset) {
1260 			put_css_set(cset);
1261 			return NULL;
1262 		}
1263 
1264 		spin_lock_irq(&css_set_lock);
1265 		cset->dom_cset = dcset;
1266 		list_add_tail(&cset->threaded_csets_node,
1267 			      &dcset->threaded_csets);
1268 		spin_unlock_irq(&css_set_lock);
1269 	}
1270 
1271 	return cset;
1272 }
1273 
1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275 {
1276 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1277 
1278 	return root_cgrp->root;
1279 }
1280 
1281 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1282 {
1283 	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1284 
1285 	/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1286 	if (favor && !favoring) {
1287 		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1288 		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1289 	} else if (!favor && favoring) {
1290 		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1291 		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1292 	}
1293 }
1294 
1295 static int cgroup_init_root_id(struct cgroup_root *root)
1296 {
1297 	int id;
1298 
1299 	lockdep_assert_held(&cgroup_mutex);
1300 
1301 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1302 	if (id < 0)
1303 		return id;
1304 
1305 	root->hierarchy_id = id;
1306 	return 0;
1307 }
1308 
1309 static void cgroup_exit_root_id(struct cgroup_root *root)
1310 {
1311 	lockdep_assert_held(&cgroup_mutex);
1312 
1313 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1314 }
1315 
1316 void cgroup_free_root(struct cgroup_root *root)
1317 {
1318 	kfree_rcu(root, rcu);
1319 }
1320 
1321 static void cgroup_destroy_root(struct cgroup_root *root)
1322 {
1323 	struct cgroup *cgrp = &root->cgrp;
1324 	struct cgrp_cset_link *link, *tmp_link;
1325 
1326 	trace_cgroup_destroy_root(root);
1327 
1328 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1329 
1330 	BUG_ON(atomic_read(&root->nr_cgrps));
1331 	BUG_ON(!list_empty(&cgrp->self.children));
1332 
1333 	/* Rebind all subsystems back to the default hierarchy */
1334 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1335 
1336 	/*
1337 	 * Release all the links from cset_links to this hierarchy's
1338 	 * root cgroup
1339 	 */
1340 	spin_lock_irq(&css_set_lock);
1341 
1342 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1343 		list_del(&link->cset_link);
1344 		list_del(&link->cgrp_link);
1345 		kfree(link);
1346 	}
1347 
1348 	spin_unlock_irq(&css_set_lock);
1349 
1350 	WARN_ON_ONCE(list_empty(&root->root_list));
1351 	list_del_rcu(&root->root_list);
1352 	cgroup_root_count--;
1353 
1354 	if (!have_favordynmods)
1355 		cgroup_favor_dynmods(root, false);
1356 
1357 	cgroup_exit_root_id(root);
1358 
1359 	cgroup_unlock();
1360 
1361 	cgroup_rstat_exit(cgrp);
1362 	kernfs_destroy_root(root->kf_root);
1363 	cgroup_free_root(root);
1364 }
1365 
1366 /*
1367  * Returned cgroup is without refcount but it's valid as long as cset pins it.
1368  */
1369 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1370 					    struct cgroup_root *root)
1371 {
1372 	struct cgroup *res_cgroup = NULL;
1373 
1374 	if (cset == &init_css_set) {
1375 		res_cgroup = &root->cgrp;
1376 	} else if (root == &cgrp_dfl_root) {
1377 		res_cgroup = cset->dfl_cgrp;
1378 	} else {
1379 		struct cgrp_cset_link *link;
1380 		lockdep_assert_held(&css_set_lock);
1381 
1382 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1383 			struct cgroup *c = link->cgrp;
1384 
1385 			if (c->root == root) {
1386 				res_cgroup = c;
1387 				break;
1388 			}
1389 		}
1390 	}
1391 
1392 	/*
1393 	 * If cgroup_mutex is not held, the cgrp_cset_link will be freed
1394 	 * before we remove the cgroup root from the root_list. Consequently,
1395 	 * when accessing a cgroup root, the cset_link may have already been
1396 	 * freed, resulting in a NULL res_cgroup. However, by holding the
1397 	 * cgroup_mutex, we ensure that res_cgroup can't be NULL.
1398 	 * If we don't hold cgroup_mutex in the caller, we must do the NULL
1399 	 * check.
1400 	 */
1401 	return res_cgroup;
1402 }
1403 
1404 /*
1405  * look up cgroup associated with current task's cgroup namespace on the
1406  * specified hierarchy
1407  */
1408 static struct cgroup *
1409 current_cgns_cgroup_from_root(struct cgroup_root *root)
1410 {
1411 	struct cgroup *res = NULL;
1412 	struct css_set *cset;
1413 
1414 	lockdep_assert_held(&css_set_lock);
1415 
1416 	rcu_read_lock();
1417 
1418 	cset = current->nsproxy->cgroup_ns->root_cset;
1419 	res = __cset_cgroup_from_root(cset, root);
1420 
1421 	rcu_read_unlock();
1422 
1423 	/*
1424 	 * The namespace_sem is held by current, so the root cgroup can't
1425 	 * be umounted. Therefore, we can ensure that the res is non-NULL.
1426 	 */
1427 	WARN_ON_ONCE(!res);
1428 	return res;
1429 }
1430 
1431 /*
1432  * Look up cgroup associated with current task's cgroup namespace on the default
1433  * hierarchy.
1434  *
1435  * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1436  * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1437  *   pointers.
1438  * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1439  * - As a bonus returned cgrp is pinned with the current because it cannot
1440  *   switch cgroup_ns asynchronously.
1441  */
1442 static struct cgroup *current_cgns_cgroup_dfl(void)
1443 {
1444 	struct css_set *cset;
1445 
1446 	if (current->nsproxy) {
1447 		cset = current->nsproxy->cgroup_ns->root_cset;
1448 		return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1449 	} else {
1450 		/*
1451 		 * NOTE: This function may be called from bpf_cgroup_from_id()
1452 		 * on a task which has already passed exit_task_namespaces() and
1453 		 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1454 		 * cgroups visible for lookups.
1455 		 */
1456 		return &cgrp_dfl_root.cgrp;
1457 	}
1458 }
1459 
1460 /* look up cgroup associated with given css_set on the specified hierarchy */
1461 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1462 					    struct cgroup_root *root)
1463 {
1464 	lockdep_assert_held(&css_set_lock);
1465 
1466 	return __cset_cgroup_from_root(cset, root);
1467 }
1468 
1469 /*
1470  * Return the cgroup for "task" from the given hierarchy. Must be
1471  * called with css_set_lock held to prevent task's groups from being modified.
1472  * Must be called with either cgroup_mutex or rcu read lock to prevent the
1473  * cgroup root from being destroyed.
1474  */
1475 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1476 				     struct cgroup_root *root)
1477 {
1478 	/*
1479 	 * No need to lock the task - since we hold css_set_lock the
1480 	 * task can't change groups.
1481 	 */
1482 	return cset_cgroup_from_root(task_css_set(task), root);
1483 }
1484 
1485 /*
1486  * A task must hold cgroup_mutex to modify cgroups.
1487  *
1488  * Any task can increment and decrement the count field without lock.
1489  * So in general, code holding cgroup_mutex can't rely on the count
1490  * field not changing.  However, if the count goes to zero, then only
1491  * cgroup_attach_task() can increment it again.  Because a count of zero
1492  * means that no tasks are currently attached, therefore there is no
1493  * way a task attached to that cgroup can fork (the other way to
1494  * increment the count).  So code holding cgroup_mutex can safely
1495  * assume that if the count is zero, it will stay zero. Similarly, if
1496  * a task holds cgroup_mutex on a cgroup with zero count, it
1497  * knows that the cgroup won't be removed, as cgroup_rmdir()
1498  * needs that mutex.
1499  *
1500  * A cgroup can only be deleted if both its 'count' of using tasks
1501  * is zero, and its list of 'children' cgroups is empty.  Since all
1502  * tasks in the system use _some_ cgroup, and since there is always at
1503  * least one task in the system (init, pid == 1), therefore, root cgroup
1504  * always has either children cgroups and/or using tasks.  So we don't
1505  * need a special hack to ensure that root cgroup cannot be deleted.
1506  *
1507  * P.S.  One more locking exception.  RCU is used to guard the
1508  * update of a tasks cgroup pointer by cgroup_attach_task()
1509  */
1510 
1511 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1512 
1513 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1514 			      char *buf)
1515 {
1516 	struct cgroup_subsys *ss = cft->ss;
1517 
1518 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1519 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1520 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1521 
1522 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1523 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1524 			 cft->name);
1525 	} else {
1526 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1527 	}
1528 	return buf;
1529 }
1530 
1531 /**
1532  * cgroup_file_mode - deduce file mode of a control file
1533  * @cft: the control file in question
1534  *
1535  * S_IRUGO for read, S_IWUSR for write.
1536  */
1537 static umode_t cgroup_file_mode(const struct cftype *cft)
1538 {
1539 	umode_t mode = 0;
1540 
1541 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1542 		mode |= S_IRUGO;
1543 
1544 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1545 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1546 			mode |= S_IWUGO;
1547 		else
1548 			mode |= S_IWUSR;
1549 	}
1550 
1551 	return mode;
1552 }
1553 
1554 /**
1555  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1556  * @subtree_control: the new subtree_control mask to consider
1557  * @this_ss_mask: available subsystems
1558  *
1559  * On the default hierarchy, a subsystem may request other subsystems to be
1560  * enabled together through its ->depends_on mask.  In such cases, more
1561  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1562  *
1563  * This function calculates which subsystems need to be enabled if
1564  * @subtree_control is to be applied while restricted to @this_ss_mask.
1565  */
1566 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1567 {
1568 	u16 cur_ss_mask = subtree_control;
1569 	struct cgroup_subsys *ss;
1570 	int ssid;
1571 
1572 	lockdep_assert_held(&cgroup_mutex);
1573 
1574 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1575 
1576 	while (true) {
1577 		u16 new_ss_mask = cur_ss_mask;
1578 
1579 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1580 			new_ss_mask |= ss->depends_on;
1581 		} while_each_subsys_mask();
1582 
1583 		/*
1584 		 * Mask out subsystems which aren't available.  This can
1585 		 * happen only if some depended-upon subsystems were bound
1586 		 * to non-default hierarchies.
1587 		 */
1588 		new_ss_mask &= this_ss_mask;
1589 
1590 		if (new_ss_mask == cur_ss_mask)
1591 			break;
1592 		cur_ss_mask = new_ss_mask;
1593 	}
1594 
1595 	return cur_ss_mask;
1596 }
1597 
1598 /**
1599  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1600  * @kn: the kernfs_node being serviced
1601  *
1602  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1603  * the method finishes if locking succeeded.  Note that once this function
1604  * returns the cgroup returned by cgroup_kn_lock_live() may become
1605  * inaccessible any time.  If the caller intends to continue to access the
1606  * cgroup, it should pin it before invoking this function.
1607  */
1608 void cgroup_kn_unlock(struct kernfs_node *kn)
1609 {
1610 	struct cgroup *cgrp;
1611 
1612 	if (kernfs_type(kn) == KERNFS_DIR)
1613 		cgrp = kn->priv;
1614 	else
1615 		cgrp = kn->parent->priv;
1616 
1617 	cgroup_unlock();
1618 
1619 	kernfs_unbreak_active_protection(kn);
1620 	cgroup_put(cgrp);
1621 }
1622 
1623 /**
1624  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1625  * @kn: the kernfs_node being serviced
1626  * @drain_offline: perform offline draining on the cgroup
1627  *
1628  * This helper is to be used by a cgroup kernfs method currently servicing
1629  * @kn.  It breaks the active protection, performs cgroup locking and
1630  * verifies that the associated cgroup is alive.  Returns the cgroup if
1631  * alive; otherwise, %NULL.  A successful return should be undone by a
1632  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1633  * cgroup is drained of offlining csses before return.
1634  *
1635  * Any cgroup kernfs method implementation which requires locking the
1636  * associated cgroup should use this helper.  It avoids nesting cgroup
1637  * locking under kernfs active protection and allows all kernfs operations
1638  * including self-removal.
1639  */
1640 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1641 {
1642 	struct cgroup *cgrp;
1643 
1644 	if (kernfs_type(kn) == KERNFS_DIR)
1645 		cgrp = kn->priv;
1646 	else
1647 		cgrp = kn->parent->priv;
1648 
1649 	/*
1650 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1651 	 * active_ref.  cgroup liveliness check alone provides enough
1652 	 * protection against removal.  Ensure @cgrp stays accessible and
1653 	 * break the active_ref protection.
1654 	 */
1655 	if (!cgroup_tryget(cgrp))
1656 		return NULL;
1657 	kernfs_break_active_protection(kn);
1658 
1659 	if (drain_offline)
1660 		cgroup_lock_and_drain_offline(cgrp);
1661 	else
1662 		cgroup_lock();
1663 
1664 	if (!cgroup_is_dead(cgrp))
1665 		return cgrp;
1666 
1667 	cgroup_kn_unlock(kn);
1668 	return NULL;
1669 }
1670 
1671 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1672 {
1673 	char name[CGROUP_FILE_NAME_MAX];
1674 
1675 	lockdep_assert_held(&cgroup_mutex);
1676 
1677 	if (cft->file_offset) {
1678 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1679 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1680 
1681 		spin_lock_irq(&cgroup_file_kn_lock);
1682 		cfile->kn = NULL;
1683 		spin_unlock_irq(&cgroup_file_kn_lock);
1684 
1685 		del_timer_sync(&cfile->notify_timer);
1686 	}
1687 
1688 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1689 }
1690 
1691 /**
1692  * css_clear_dir - remove subsys files in a cgroup directory
1693  * @css: target css
1694  */
1695 static void css_clear_dir(struct cgroup_subsys_state *css)
1696 {
1697 	struct cgroup *cgrp = css->cgroup;
1698 	struct cftype *cfts;
1699 
1700 	if (!(css->flags & CSS_VISIBLE))
1701 		return;
1702 
1703 	css->flags &= ~CSS_VISIBLE;
1704 
1705 	if (!css->ss) {
1706 		if (cgroup_on_dfl(cgrp)) {
1707 			cgroup_addrm_files(css, cgrp,
1708 					   cgroup_base_files, false);
1709 			if (cgroup_psi_enabled())
1710 				cgroup_addrm_files(css, cgrp,
1711 						   cgroup_psi_files, false);
1712 		} else {
1713 			cgroup_addrm_files(css, cgrp,
1714 					   cgroup1_base_files, false);
1715 		}
1716 	} else {
1717 		list_for_each_entry(cfts, &css->ss->cfts, node)
1718 			cgroup_addrm_files(css, cgrp, cfts, false);
1719 	}
1720 }
1721 
1722 /**
1723  * css_populate_dir - create subsys files in a cgroup directory
1724  * @css: target css
1725  *
1726  * On failure, no file is added.
1727  */
1728 static int css_populate_dir(struct cgroup_subsys_state *css)
1729 {
1730 	struct cgroup *cgrp = css->cgroup;
1731 	struct cftype *cfts, *failed_cfts;
1732 	int ret;
1733 
1734 	if (css->flags & CSS_VISIBLE)
1735 		return 0;
1736 
1737 	if (!css->ss) {
1738 		if (cgroup_on_dfl(cgrp)) {
1739 			ret = cgroup_addrm_files(css, cgrp,
1740 						 cgroup_base_files, true);
1741 			if (ret < 0)
1742 				return ret;
1743 
1744 			if (cgroup_psi_enabled()) {
1745 				ret = cgroup_addrm_files(css, cgrp,
1746 							 cgroup_psi_files, true);
1747 				if (ret < 0)
1748 					return ret;
1749 			}
1750 		} else {
1751 			ret = cgroup_addrm_files(css, cgrp,
1752 						 cgroup1_base_files, true);
1753 			if (ret < 0)
1754 				return ret;
1755 		}
1756 	} else {
1757 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1758 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1759 			if (ret < 0) {
1760 				failed_cfts = cfts;
1761 				goto err;
1762 			}
1763 		}
1764 	}
1765 
1766 	css->flags |= CSS_VISIBLE;
1767 
1768 	return 0;
1769 err:
1770 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1771 		if (cfts == failed_cfts)
1772 			break;
1773 		cgroup_addrm_files(css, cgrp, cfts, false);
1774 	}
1775 	return ret;
1776 }
1777 
1778 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1779 {
1780 	struct cgroup *dcgrp = &dst_root->cgrp;
1781 	struct cgroup_subsys *ss;
1782 	int ssid, ret;
1783 	u16 dfl_disable_ss_mask = 0;
1784 
1785 	lockdep_assert_held(&cgroup_mutex);
1786 
1787 	do_each_subsys_mask(ss, ssid, ss_mask) {
1788 		/*
1789 		 * If @ss has non-root csses attached to it, can't move.
1790 		 * If @ss is an implicit controller, it is exempt from this
1791 		 * rule and can be stolen.
1792 		 */
1793 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1794 		    !ss->implicit_on_dfl)
1795 			return -EBUSY;
1796 
1797 		/* can't move between two non-dummy roots either */
1798 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1799 			return -EBUSY;
1800 
1801 		/*
1802 		 * Collect ssid's that need to be disabled from default
1803 		 * hierarchy.
1804 		 */
1805 		if (ss->root == &cgrp_dfl_root)
1806 			dfl_disable_ss_mask |= 1 << ssid;
1807 
1808 	} while_each_subsys_mask();
1809 
1810 	if (dfl_disable_ss_mask) {
1811 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1812 
1813 		/*
1814 		 * Controllers from default hierarchy that need to be rebound
1815 		 * are all disabled together in one go.
1816 		 */
1817 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1818 		WARN_ON(cgroup_apply_control(scgrp));
1819 		cgroup_finalize_control(scgrp, 0);
1820 	}
1821 
1822 	do_each_subsys_mask(ss, ssid, ss_mask) {
1823 		struct cgroup_root *src_root = ss->root;
1824 		struct cgroup *scgrp = &src_root->cgrp;
1825 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1826 		struct css_set *cset, *cset_pos;
1827 		struct css_task_iter *it;
1828 
1829 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1830 
1831 		if (src_root != &cgrp_dfl_root) {
1832 			/* disable from the source */
1833 			src_root->subsys_mask &= ~(1 << ssid);
1834 			WARN_ON(cgroup_apply_control(scgrp));
1835 			cgroup_finalize_control(scgrp, 0);
1836 		}
1837 
1838 		/* rebind */
1839 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1840 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1841 		ss->root = dst_root;
1842 		css->cgroup = dcgrp;
1843 
1844 		spin_lock_irq(&css_set_lock);
1845 		WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1846 		list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1847 					 e_cset_node[ss->id]) {
1848 			list_move_tail(&cset->e_cset_node[ss->id],
1849 				       &dcgrp->e_csets[ss->id]);
1850 			/*
1851 			 * all css_sets of scgrp together in same order to dcgrp,
1852 			 * patch in-flight iterators to preserve correct iteration.
1853 			 * since the iterator is always advanced right away and
1854 			 * finished when it->cset_pos meets it->cset_head, so only
1855 			 * update it->cset_head is enough here.
1856 			 */
1857 			list_for_each_entry(it, &cset->task_iters, iters_node)
1858 				if (it->cset_head == &scgrp->e_csets[ss->id])
1859 					it->cset_head = &dcgrp->e_csets[ss->id];
1860 		}
1861 		spin_unlock_irq(&css_set_lock);
1862 
1863 		if (ss->css_rstat_flush) {
1864 			list_del_rcu(&css->rstat_css_node);
1865 			synchronize_rcu();
1866 			list_add_rcu(&css->rstat_css_node,
1867 				     &dcgrp->rstat_css_list);
1868 		}
1869 
1870 		/* default hierarchy doesn't enable controllers by default */
1871 		dst_root->subsys_mask |= 1 << ssid;
1872 		if (dst_root == &cgrp_dfl_root) {
1873 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1874 		} else {
1875 			dcgrp->subtree_control |= 1 << ssid;
1876 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1877 		}
1878 
1879 		ret = cgroup_apply_control(dcgrp);
1880 		if (ret)
1881 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1882 				ss->name, ret);
1883 
1884 		if (ss->bind)
1885 			ss->bind(css);
1886 	} while_each_subsys_mask();
1887 
1888 	kernfs_activate(dcgrp->kn);
1889 	return 0;
1890 }
1891 
1892 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1893 		     struct kernfs_root *kf_root)
1894 {
1895 	int len = 0;
1896 	char *buf = NULL;
1897 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1898 	struct cgroup *ns_cgroup;
1899 
1900 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1901 	if (!buf)
1902 		return -ENOMEM;
1903 
1904 	spin_lock_irq(&css_set_lock);
1905 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1906 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1907 	spin_unlock_irq(&css_set_lock);
1908 
1909 	if (len == -E2BIG)
1910 		len = -ERANGE;
1911 	else if (len > 0) {
1912 		seq_escape(sf, buf, " \t\n\\");
1913 		len = 0;
1914 	}
1915 	kfree(buf);
1916 	return len;
1917 }
1918 
1919 enum cgroup2_param {
1920 	Opt_nsdelegate,
1921 	Opt_favordynmods,
1922 	Opt_memory_localevents,
1923 	Opt_memory_recursiveprot,
1924 	Opt_memory_hugetlb_accounting,
1925 	nr__cgroup2_params
1926 };
1927 
1928 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1929 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1930 	fsparam_flag("favordynmods",		Opt_favordynmods),
1931 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1932 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1933 	fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
1934 	{}
1935 };
1936 
1937 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1938 {
1939 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1940 	struct fs_parse_result result;
1941 	int opt;
1942 
1943 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1944 	if (opt < 0)
1945 		return opt;
1946 
1947 	switch (opt) {
1948 	case Opt_nsdelegate:
1949 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1950 		return 0;
1951 	case Opt_favordynmods:
1952 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1953 		return 0;
1954 	case Opt_memory_localevents:
1955 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1956 		return 0;
1957 	case Opt_memory_recursiveprot:
1958 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1959 		return 0;
1960 	case Opt_memory_hugetlb_accounting:
1961 		ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1962 		return 0;
1963 	}
1964 	return -EINVAL;
1965 }
1966 
1967 static void apply_cgroup_root_flags(unsigned int root_flags)
1968 {
1969 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1970 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1971 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1972 		else
1973 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1974 
1975 		cgroup_favor_dynmods(&cgrp_dfl_root,
1976 				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1977 
1978 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1979 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1980 		else
1981 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1982 
1983 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1984 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1985 		else
1986 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1987 
1988 		if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
1989 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1990 		else
1991 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1992 	}
1993 }
1994 
1995 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1996 {
1997 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1998 		seq_puts(seq, ",nsdelegate");
1999 	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2000 		seq_puts(seq, ",favordynmods");
2001 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2002 		seq_puts(seq, ",memory_localevents");
2003 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2004 		seq_puts(seq, ",memory_recursiveprot");
2005 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2006 		seq_puts(seq, ",memory_hugetlb_accounting");
2007 	return 0;
2008 }
2009 
2010 static int cgroup_reconfigure(struct fs_context *fc)
2011 {
2012 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2013 
2014 	apply_cgroup_root_flags(ctx->flags);
2015 	return 0;
2016 }
2017 
2018 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2019 {
2020 	struct cgroup_subsys *ss;
2021 	int ssid;
2022 
2023 	INIT_LIST_HEAD(&cgrp->self.sibling);
2024 	INIT_LIST_HEAD(&cgrp->self.children);
2025 	INIT_LIST_HEAD(&cgrp->cset_links);
2026 	INIT_LIST_HEAD(&cgrp->pidlists);
2027 	mutex_init(&cgrp->pidlist_mutex);
2028 	cgrp->self.cgroup = cgrp;
2029 	cgrp->self.flags |= CSS_ONLINE;
2030 	cgrp->dom_cgrp = cgrp;
2031 	cgrp->max_descendants = INT_MAX;
2032 	cgrp->max_depth = INT_MAX;
2033 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
2034 	prev_cputime_init(&cgrp->prev_cputime);
2035 
2036 	for_each_subsys(ss, ssid)
2037 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2038 
2039 	init_waitqueue_head(&cgrp->offline_waitq);
2040 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2041 }
2042 
2043 void init_cgroup_root(struct cgroup_fs_context *ctx)
2044 {
2045 	struct cgroup_root *root = ctx->root;
2046 	struct cgroup *cgrp = &root->cgrp;
2047 
2048 	INIT_LIST_HEAD_RCU(&root->root_list);
2049 	atomic_set(&root->nr_cgrps, 1);
2050 	cgrp->root = root;
2051 	init_cgroup_housekeeping(cgrp);
2052 
2053 	/* DYNMODS must be modified through cgroup_favor_dynmods() */
2054 	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2055 	if (ctx->release_agent)
2056 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2057 	if (ctx->name)
2058 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2059 	if (ctx->cpuset_clone_children)
2060 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2061 }
2062 
2063 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2064 {
2065 	LIST_HEAD(tmp_links);
2066 	struct cgroup *root_cgrp = &root->cgrp;
2067 	struct kernfs_syscall_ops *kf_sops;
2068 	struct css_set *cset;
2069 	int i, ret;
2070 
2071 	lockdep_assert_held(&cgroup_mutex);
2072 
2073 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2074 			      0, GFP_KERNEL);
2075 	if (ret)
2076 		goto out;
2077 
2078 	/*
2079 	 * We're accessing css_set_count without locking css_set_lock here,
2080 	 * but that's OK - it can only be increased by someone holding
2081 	 * cgroup_lock, and that's us.  Later rebinding may disable
2082 	 * controllers on the default hierarchy and thus create new csets,
2083 	 * which can't be more than the existing ones.  Allocate 2x.
2084 	 */
2085 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2086 	if (ret)
2087 		goto cancel_ref;
2088 
2089 	ret = cgroup_init_root_id(root);
2090 	if (ret)
2091 		goto cancel_ref;
2092 
2093 	kf_sops = root == &cgrp_dfl_root ?
2094 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2095 
2096 	root->kf_root = kernfs_create_root(kf_sops,
2097 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2098 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2099 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2100 					   root_cgrp);
2101 	if (IS_ERR(root->kf_root)) {
2102 		ret = PTR_ERR(root->kf_root);
2103 		goto exit_root_id;
2104 	}
2105 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2106 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2107 	root_cgrp->ancestors[0] = root_cgrp;
2108 
2109 	ret = css_populate_dir(&root_cgrp->self);
2110 	if (ret)
2111 		goto destroy_root;
2112 
2113 	ret = cgroup_rstat_init(root_cgrp);
2114 	if (ret)
2115 		goto destroy_root;
2116 
2117 	ret = rebind_subsystems(root, ss_mask);
2118 	if (ret)
2119 		goto exit_stats;
2120 
2121 	ret = cgroup_bpf_inherit(root_cgrp);
2122 	WARN_ON_ONCE(ret);
2123 
2124 	trace_cgroup_setup_root(root);
2125 
2126 	/*
2127 	 * There must be no failure case after here, since rebinding takes
2128 	 * care of subsystems' refcounts, which are explicitly dropped in
2129 	 * the failure exit path.
2130 	 */
2131 	list_add_rcu(&root->root_list, &cgroup_roots);
2132 	cgroup_root_count++;
2133 
2134 	/*
2135 	 * Link the root cgroup in this hierarchy into all the css_set
2136 	 * objects.
2137 	 */
2138 	spin_lock_irq(&css_set_lock);
2139 	hash_for_each(css_set_table, i, cset, hlist) {
2140 		link_css_set(&tmp_links, cset, root_cgrp);
2141 		if (css_set_populated(cset))
2142 			cgroup_update_populated(root_cgrp, true);
2143 	}
2144 	spin_unlock_irq(&css_set_lock);
2145 
2146 	BUG_ON(!list_empty(&root_cgrp->self.children));
2147 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2148 
2149 	ret = 0;
2150 	goto out;
2151 
2152 exit_stats:
2153 	cgroup_rstat_exit(root_cgrp);
2154 destroy_root:
2155 	kernfs_destroy_root(root->kf_root);
2156 	root->kf_root = NULL;
2157 exit_root_id:
2158 	cgroup_exit_root_id(root);
2159 cancel_ref:
2160 	percpu_ref_exit(&root_cgrp->self.refcnt);
2161 out:
2162 	free_cgrp_cset_links(&tmp_links);
2163 	return ret;
2164 }
2165 
2166 int cgroup_do_get_tree(struct fs_context *fc)
2167 {
2168 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2169 	int ret;
2170 
2171 	ctx->kfc.root = ctx->root->kf_root;
2172 	if (fc->fs_type == &cgroup2_fs_type)
2173 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2174 	else
2175 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2176 	ret = kernfs_get_tree(fc);
2177 
2178 	/*
2179 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2180 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2181 	 */
2182 	if (!ret && ctx->ns != &init_cgroup_ns) {
2183 		struct dentry *nsdentry;
2184 		struct super_block *sb = fc->root->d_sb;
2185 		struct cgroup *cgrp;
2186 
2187 		cgroup_lock();
2188 		spin_lock_irq(&css_set_lock);
2189 
2190 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2191 
2192 		spin_unlock_irq(&css_set_lock);
2193 		cgroup_unlock();
2194 
2195 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2196 		dput(fc->root);
2197 		if (IS_ERR(nsdentry)) {
2198 			deactivate_locked_super(sb);
2199 			ret = PTR_ERR(nsdentry);
2200 			nsdentry = NULL;
2201 		}
2202 		fc->root = nsdentry;
2203 	}
2204 
2205 	if (!ctx->kfc.new_sb_created)
2206 		cgroup_put(&ctx->root->cgrp);
2207 
2208 	return ret;
2209 }
2210 
2211 /*
2212  * Destroy a cgroup filesystem context.
2213  */
2214 static void cgroup_fs_context_free(struct fs_context *fc)
2215 {
2216 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2217 
2218 	kfree(ctx->name);
2219 	kfree(ctx->release_agent);
2220 	put_cgroup_ns(ctx->ns);
2221 	kernfs_free_fs_context(fc);
2222 	kfree(ctx);
2223 }
2224 
2225 static int cgroup_get_tree(struct fs_context *fc)
2226 {
2227 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2228 	int ret;
2229 
2230 	WRITE_ONCE(cgrp_dfl_visible, true);
2231 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2232 	ctx->root = &cgrp_dfl_root;
2233 
2234 	ret = cgroup_do_get_tree(fc);
2235 	if (!ret)
2236 		apply_cgroup_root_flags(ctx->flags);
2237 	return ret;
2238 }
2239 
2240 static const struct fs_context_operations cgroup_fs_context_ops = {
2241 	.free		= cgroup_fs_context_free,
2242 	.parse_param	= cgroup2_parse_param,
2243 	.get_tree	= cgroup_get_tree,
2244 	.reconfigure	= cgroup_reconfigure,
2245 };
2246 
2247 static const struct fs_context_operations cgroup1_fs_context_ops = {
2248 	.free		= cgroup_fs_context_free,
2249 	.parse_param	= cgroup1_parse_param,
2250 	.get_tree	= cgroup1_get_tree,
2251 	.reconfigure	= cgroup1_reconfigure,
2252 };
2253 
2254 /*
2255  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2256  * we select the namespace we're going to use.
2257  */
2258 static int cgroup_init_fs_context(struct fs_context *fc)
2259 {
2260 	struct cgroup_fs_context *ctx;
2261 
2262 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2263 	if (!ctx)
2264 		return -ENOMEM;
2265 
2266 	ctx->ns = current->nsproxy->cgroup_ns;
2267 	get_cgroup_ns(ctx->ns);
2268 	fc->fs_private = &ctx->kfc;
2269 	if (fc->fs_type == &cgroup2_fs_type)
2270 		fc->ops = &cgroup_fs_context_ops;
2271 	else
2272 		fc->ops = &cgroup1_fs_context_ops;
2273 	put_user_ns(fc->user_ns);
2274 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2275 	fc->global = true;
2276 
2277 	if (have_favordynmods)
2278 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2279 
2280 	return 0;
2281 }
2282 
2283 static void cgroup_kill_sb(struct super_block *sb)
2284 {
2285 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2286 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2287 
2288 	/*
2289 	 * If @root doesn't have any children, start killing it.
2290 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2291 	 *
2292 	 * And don't kill the default root.
2293 	 */
2294 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2295 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2296 		cgroup_bpf_offline(&root->cgrp);
2297 		percpu_ref_kill(&root->cgrp.self.refcnt);
2298 	}
2299 	cgroup_put(&root->cgrp);
2300 	kernfs_kill_sb(sb);
2301 }
2302 
2303 struct file_system_type cgroup_fs_type = {
2304 	.name			= "cgroup",
2305 	.init_fs_context	= cgroup_init_fs_context,
2306 	.parameters		= cgroup1_fs_parameters,
2307 	.kill_sb		= cgroup_kill_sb,
2308 	.fs_flags		= FS_USERNS_MOUNT,
2309 };
2310 
2311 static struct file_system_type cgroup2_fs_type = {
2312 	.name			= "cgroup2",
2313 	.init_fs_context	= cgroup_init_fs_context,
2314 	.parameters		= cgroup2_fs_parameters,
2315 	.kill_sb		= cgroup_kill_sb,
2316 	.fs_flags		= FS_USERNS_MOUNT,
2317 };
2318 
2319 #ifdef CONFIG_CPUSETS
2320 static const struct fs_context_operations cpuset_fs_context_ops = {
2321 	.get_tree	= cgroup1_get_tree,
2322 	.free		= cgroup_fs_context_free,
2323 };
2324 
2325 /*
2326  * This is ugly, but preserves the userspace API for existing cpuset
2327  * users. If someone tries to mount the "cpuset" filesystem, we
2328  * silently switch it to mount "cgroup" instead
2329  */
2330 static int cpuset_init_fs_context(struct fs_context *fc)
2331 {
2332 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2333 	struct cgroup_fs_context *ctx;
2334 	int err;
2335 
2336 	err = cgroup_init_fs_context(fc);
2337 	if (err) {
2338 		kfree(agent);
2339 		return err;
2340 	}
2341 
2342 	fc->ops = &cpuset_fs_context_ops;
2343 
2344 	ctx = cgroup_fc2context(fc);
2345 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2346 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2347 	ctx->release_agent = agent;
2348 
2349 	get_filesystem(&cgroup_fs_type);
2350 	put_filesystem(fc->fs_type);
2351 	fc->fs_type = &cgroup_fs_type;
2352 
2353 	return 0;
2354 }
2355 
2356 static struct file_system_type cpuset_fs_type = {
2357 	.name			= "cpuset",
2358 	.init_fs_context	= cpuset_init_fs_context,
2359 	.fs_flags		= FS_USERNS_MOUNT,
2360 };
2361 #endif
2362 
2363 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2364 			  struct cgroup_namespace *ns)
2365 {
2366 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2367 
2368 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2369 }
2370 
2371 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2372 		   struct cgroup_namespace *ns)
2373 {
2374 	int ret;
2375 
2376 	cgroup_lock();
2377 	spin_lock_irq(&css_set_lock);
2378 
2379 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2380 
2381 	spin_unlock_irq(&css_set_lock);
2382 	cgroup_unlock();
2383 
2384 	return ret;
2385 }
2386 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2387 
2388 /**
2389  * cgroup_attach_lock - Lock for ->attach()
2390  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2391  *
2392  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2393  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2394  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2395  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2396  * lead to deadlocks.
2397  *
2398  * Bringing up a CPU may involve creating and destroying tasks which requires
2399  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2400  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2401  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2402  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2403  * the threadgroup_rwsem to be released to create new tasks. For more details:
2404  *
2405  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2406  *
2407  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2408  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2409  * CPU hotplug is disabled on entry.
2410  */
2411 void cgroup_attach_lock(bool lock_threadgroup)
2412 {
2413 	cpus_read_lock();
2414 	if (lock_threadgroup)
2415 		percpu_down_write(&cgroup_threadgroup_rwsem);
2416 }
2417 
2418 /**
2419  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2420  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2421  */
2422 void cgroup_attach_unlock(bool lock_threadgroup)
2423 {
2424 	if (lock_threadgroup)
2425 		percpu_up_write(&cgroup_threadgroup_rwsem);
2426 	cpus_read_unlock();
2427 }
2428 
2429 /**
2430  * cgroup_migrate_add_task - add a migration target task to a migration context
2431  * @task: target task
2432  * @mgctx: target migration context
2433  *
2434  * Add @task, which is a migration target, to @mgctx->tset.  This function
2435  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2436  * should have been added as a migration source and @task->cg_list will be
2437  * moved from the css_set's tasks list to mg_tasks one.
2438  */
2439 static void cgroup_migrate_add_task(struct task_struct *task,
2440 				    struct cgroup_mgctx *mgctx)
2441 {
2442 	struct css_set *cset;
2443 
2444 	lockdep_assert_held(&css_set_lock);
2445 
2446 	/* @task either already exited or can't exit until the end */
2447 	if (task->flags & PF_EXITING)
2448 		return;
2449 
2450 	/* cgroup_threadgroup_rwsem protects racing against forks */
2451 	WARN_ON_ONCE(list_empty(&task->cg_list));
2452 
2453 	cset = task_css_set(task);
2454 	if (!cset->mg_src_cgrp)
2455 		return;
2456 
2457 	mgctx->tset.nr_tasks++;
2458 
2459 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2460 	if (list_empty(&cset->mg_node))
2461 		list_add_tail(&cset->mg_node,
2462 			      &mgctx->tset.src_csets);
2463 	if (list_empty(&cset->mg_dst_cset->mg_node))
2464 		list_add_tail(&cset->mg_dst_cset->mg_node,
2465 			      &mgctx->tset.dst_csets);
2466 }
2467 
2468 /**
2469  * cgroup_taskset_first - reset taskset and return the first task
2470  * @tset: taskset of interest
2471  * @dst_cssp: output variable for the destination css
2472  *
2473  * @tset iteration is initialized and the first task is returned.
2474  */
2475 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2476 					 struct cgroup_subsys_state **dst_cssp)
2477 {
2478 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2479 	tset->cur_task = NULL;
2480 
2481 	return cgroup_taskset_next(tset, dst_cssp);
2482 }
2483 
2484 /**
2485  * cgroup_taskset_next - iterate to the next task in taskset
2486  * @tset: taskset of interest
2487  * @dst_cssp: output variable for the destination css
2488  *
2489  * Return the next task in @tset.  Iteration must have been initialized
2490  * with cgroup_taskset_first().
2491  */
2492 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2493 					struct cgroup_subsys_state **dst_cssp)
2494 {
2495 	struct css_set *cset = tset->cur_cset;
2496 	struct task_struct *task = tset->cur_task;
2497 
2498 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2499 		if (!task)
2500 			task = list_first_entry(&cset->mg_tasks,
2501 						struct task_struct, cg_list);
2502 		else
2503 			task = list_next_entry(task, cg_list);
2504 
2505 		if (&task->cg_list != &cset->mg_tasks) {
2506 			tset->cur_cset = cset;
2507 			tset->cur_task = task;
2508 
2509 			/*
2510 			 * This function may be called both before and
2511 			 * after cgroup_migrate_execute().  The two cases
2512 			 * can be distinguished by looking at whether @cset
2513 			 * has its ->mg_dst_cset set.
2514 			 */
2515 			if (cset->mg_dst_cset)
2516 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2517 			else
2518 				*dst_cssp = cset->subsys[tset->ssid];
2519 
2520 			return task;
2521 		}
2522 
2523 		cset = list_next_entry(cset, mg_node);
2524 		task = NULL;
2525 	}
2526 
2527 	return NULL;
2528 }
2529 
2530 /**
2531  * cgroup_migrate_execute - migrate a taskset
2532  * @mgctx: migration context
2533  *
2534  * Migrate tasks in @mgctx as setup by migration preparation functions.
2535  * This function fails iff one of the ->can_attach callbacks fails and
2536  * guarantees that either all or none of the tasks in @mgctx are migrated.
2537  * @mgctx is consumed regardless of success.
2538  */
2539 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2540 {
2541 	struct cgroup_taskset *tset = &mgctx->tset;
2542 	struct cgroup_subsys *ss;
2543 	struct task_struct *task, *tmp_task;
2544 	struct css_set *cset, *tmp_cset;
2545 	int ssid, failed_ssid, ret;
2546 
2547 	/* check that we can legitimately attach to the cgroup */
2548 	if (tset->nr_tasks) {
2549 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2550 			if (ss->can_attach) {
2551 				tset->ssid = ssid;
2552 				ret = ss->can_attach(tset);
2553 				if (ret) {
2554 					failed_ssid = ssid;
2555 					goto out_cancel_attach;
2556 				}
2557 			}
2558 		} while_each_subsys_mask();
2559 	}
2560 
2561 	/*
2562 	 * Now that we're guaranteed success, proceed to move all tasks to
2563 	 * the new cgroup.  There are no failure cases after here, so this
2564 	 * is the commit point.
2565 	 */
2566 	spin_lock_irq(&css_set_lock);
2567 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2568 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2569 			struct css_set *from_cset = task_css_set(task);
2570 			struct css_set *to_cset = cset->mg_dst_cset;
2571 
2572 			get_css_set(to_cset);
2573 			to_cset->nr_tasks++;
2574 			css_set_move_task(task, from_cset, to_cset, true);
2575 			from_cset->nr_tasks--;
2576 			/*
2577 			 * If the source or destination cgroup is frozen,
2578 			 * the task might require to change its state.
2579 			 */
2580 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2581 						    to_cset->dfl_cgrp);
2582 			put_css_set_locked(from_cset);
2583 
2584 		}
2585 	}
2586 	spin_unlock_irq(&css_set_lock);
2587 
2588 	/*
2589 	 * Migration is committed, all target tasks are now on dst_csets.
2590 	 * Nothing is sensitive to fork() after this point.  Notify
2591 	 * controllers that migration is complete.
2592 	 */
2593 	tset->csets = &tset->dst_csets;
2594 
2595 	if (tset->nr_tasks) {
2596 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2597 			if (ss->attach) {
2598 				tset->ssid = ssid;
2599 				ss->attach(tset);
2600 			}
2601 		} while_each_subsys_mask();
2602 	}
2603 
2604 	ret = 0;
2605 	goto out_release_tset;
2606 
2607 out_cancel_attach:
2608 	if (tset->nr_tasks) {
2609 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2610 			if (ssid == failed_ssid)
2611 				break;
2612 			if (ss->cancel_attach) {
2613 				tset->ssid = ssid;
2614 				ss->cancel_attach(tset);
2615 			}
2616 		} while_each_subsys_mask();
2617 	}
2618 out_release_tset:
2619 	spin_lock_irq(&css_set_lock);
2620 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2621 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2622 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2623 		list_del_init(&cset->mg_node);
2624 	}
2625 	spin_unlock_irq(&css_set_lock);
2626 
2627 	/*
2628 	 * Re-initialize the cgroup_taskset structure in case it is reused
2629 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2630 	 * iteration.
2631 	 */
2632 	tset->nr_tasks = 0;
2633 	tset->csets    = &tset->src_csets;
2634 	return ret;
2635 }
2636 
2637 /**
2638  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2639  * @dst_cgrp: destination cgroup to test
2640  *
2641  * On the default hierarchy, except for the mixable, (possible) thread root
2642  * and threaded cgroups, subtree_control must be zero for migration
2643  * destination cgroups with tasks so that child cgroups don't compete
2644  * against tasks.
2645  */
2646 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2647 {
2648 	/* v1 doesn't have any restriction */
2649 	if (!cgroup_on_dfl(dst_cgrp))
2650 		return 0;
2651 
2652 	/* verify @dst_cgrp can host resources */
2653 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2654 		return -EOPNOTSUPP;
2655 
2656 	/*
2657 	 * If @dst_cgrp is already or can become a thread root or is
2658 	 * threaded, it doesn't matter.
2659 	 */
2660 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2661 		return 0;
2662 
2663 	/* apply no-internal-process constraint */
2664 	if (dst_cgrp->subtree_control)
2665 		return -EBUSY;
2666 
2667 	return 0;
2668 }
2669 
2670 /**
2671  * cgroup_migrate_finish - cleanup after attach
2672  * @mgctx: migration context
2673  *
2674  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2675  * those functions for details.
2676  */
2677 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2678 {
2679 	struct css_set *cset, *tmp_cset;
2680 
2681 	lockdep_assert_held(&cgroup_mutex);
2682 
2683 	spin_lock_irq(&css_set_lock);
2684 
2685 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2686 				 mg_src_preload_node) {
2687 		cset->mg_src_cgrp = NULL;
2688 		cset->mg_dst_cgrp = NULL;
2689 		cset->mg_dst_cset = NULL;
2690 		list_del_init(&cset->mg_src_preload_node);
2691 		put_css_set_locked(cset);
2692 	}
2693 
2694 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2695 				 mg_dst_preload_node) {
2696 		cset->mg_src_cgrp = NULL;
2697 		cset->mg_dst_cgrp = NULL;
2698 		cset->mg_dst_cset = NULL;
2699 		list_del_init(&cset->mg_dst_preload_node);
2700 		put_css_set_locked(cset);
2701 	}
2702 
2703 	spin_unlock_irq(&css_set_lock);
2704 }
2705 
2706 /**
2707  * cgroup_migrate_add_src - add a migration source css_set
2708  * @src_cset: the source css_set to add
2709  * @dst_cgrp: the destination cgroup
2710  * @mgctx: migration context
2711  *
2712  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2713  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2714  * up by cgroup_migrate_finish().
2715  *
2716  * This function may be called without holding cgroup_threadgroup_rwsem
2717  * even if the target is a process.  Threads may be created and destroyed
2718  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2719  * into play and the preloaded css_sets are guaranteed to cover all
2720  * migrations.
2721  */
2722 void cgroup_migrate_add_src(struct css_set *src_cset,
2723 			    struct cgroup *dst_cgrp,
2724 			    struct cgroup_mgctx *mgctx)
2725 {
2726 	struct cgroup *src_cgrp;
2727 
2728 	lockdep_assert_held(&cgroup_mutex);
2729 	lockdep_assert_held(&css_set_lock);
2730 
2731 	/*
2732 	 * If ->dead, @src_set is associated with one or more dead cgroups
2733 	 * and doesn't contain any migratable tasks.  Ignore it early so
2734 	 * that the rest of migration path doesn't get confused by it.
2735 	 */
2736 	if (src_cset->dead)
2737 		return;
2738 
2739 	if (!list_empty(&src_cset->mg_src_preload_node))
2740 		return;
2741 
2742 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2743 
2744 	WARN_ON(src_cset->mg_src_cgrp);
2745 	WARN_ON(src_cset->mg_dst_cgrp);
2746 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2747 	WARN_ON(!list_empty(&src_cset->mg_node));
2748 
2749 	src_cset->mg_src_cgrp = src_cgrp;
2750 	src_cset->mg_dst_cgrp = dst_cgrp;
2751 	get_css_set(src_cset);
2752 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2753 }
2754 
2755 /**
2756  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2757  * @mgctx: migration context
2758  *
2759  * Tasks are about to be moved and all the source css_sets have been
2760  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2761  * pins all destination css_sets, links each to its source, and append them
2762  * to @mgctx->preloaded_dst_csets.
2763  *
2764  * This function must be called after cgroup_migrate_add_src() has been
2765  * called on each migration source css_set.  After migration is performed
2766  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2767  * @mgctx.
2768  */
2769 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2770 {
2771 	struct css_set *src_cset, *tmp_cset;
2772 
2773 	lockdep_assert_held(&cgroup_mutex);
2774 
2775 	/* look up the dst cset for each src cset and link it to src */
2776 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2777 				 mg_src_preload_node) {
2778 		struct css_set *dst_cset;
2779 		struct cgroup_subsys *ss;
2780 		int ssid;
2781 
2782 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2783 		if (!dst_cset)
2784 			return -ENOMEM;
2785 
2786 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2787 
2788 		/*
2789 		 * If src cset equals dst, it's noop.  Drop the src.
2790 		 * cgroup_migrate() will skip the cset too.  Note that we
2791 		 * can't handle src == dst as some nodes are used by both.
2792 		 */
2793 		if (src_cset == dst_cset) {
2794 			src_cset->mg_src_cgrp = NULL;
2795 			src_cset->mg_dst_cgrp = NULL;
2796 			list_del_init(&src_cset->mg_src_preload_node);
2797 			put_css_set(src_cset);
2798 			put_css_set(dst_cset);
2799 			continue;
2800 		}
2801 
2802 		src_cset->mg_dst_cset = dst_cset;
2803 
2804 		if (list_empty(&dst_cset->mg_dst_preload_node))
2805 			list_add_tail(&dst_cset->mg_dst_preload_node,
2806 				      &mgctx->preloaded_dst_csets);
2807 		else
2808 			put_css_set(dst_cset);
2809 
2810 		for_each_subsys(ss, ssid)
2811 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2812 				mgctx->ss_mask |= 1 << ssid;
2813 	}
2814 
2815 	return 0;
2816 }
2817 
2818 /**
2819  * cgroup_migrate - migrate a process or task to a cgroup
2820  * @leader: the leader of the process or the task to migrate
2821  * @threadgroup: whether @leader points to the whole process or a single task
2822  * @mgctx: migration context
2823  *
2824  * Migrate a process or task denoted by @leader.  If migrating a process,
2825  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2826  * responsible for invoking cgroup_migrate_add_src() and
2827  * cgroup_migrate_prepare_dst() on the targets before invoking this
2828  * function and following up with cgroup_migrate_finish().
2829  *
2830  * As long as a controller's ->can_attach() doesn't fail, this function is
2831  * guaranteed to succeed.  This means that, excluding ->can_attach()
2832  * failure, when migrating multiple targets, the success or failure can be
2833  * decided for all targets by invoking group_migrate_prepare_dst() before
2834  * actually starting migrating.
2835  */
2836 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2837 		   struct cgroup_mgctx *mgctx)
2838 {
2839 	struct task_struct *task;
2840 
2841 	/*
2842 	 * The following thread iteration should be inside an RCU critical
2843 	 * section to prevent tasks from being freed while taking the snapshot.
2844 	 * spin_lock_irq() implies RCU critical section here.
2845 	 */
2846 	spin_lock_irq(&css_set_lock);
2847 	task = leader;
2848 	do {
2849 		cgroup_migrate_add_task(task, mgctx);
2850 		if (!threadgroup)
2851 			break;
2852 	} while_each_thread(leader, task);
2853 	spin_unlock_irq(&css_set_lock);
2854 
2855 	return cgroup_migrate_execute(mgctx);
2856 }
2857 
2858 /**
2859  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2860  * @dst_cgrp: the cgroup to attach to
2861  * @leader: the task or the leader of the threadgroup to be attached
2862  * @threadgroup: attach the whole threadgroup?
2863  *
2864  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2865  */
2866 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2867 		       bool threadgroup)
2868 {
2869 	DEFINE_CGROUP_MGCTX(mgctx);
2870 	struct task_struct *task;
2871 	int ret = 0;
2872 
2873 	/* look up all src csets */
2874 	spin_lock_irq(&css_set_lock);
2875 	rcu_read_lock();
2876 	task = leader;
2877 	do {
2878 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2879 		if (!threadgroup)
2880 			break;
2881 	} while_each_thread(leader, task);
2882 	rcu_read_unlock();
2883 	spin_unlock_irq(&css_set_lock);
2884 
2885 	/* prepare dst csets and commit */
2886 	ret = cgroup_migrate_prepare_dst(&mgctx);
2887 	if (!ret)
2888 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2889 
2890 	cgroup_migrate_finish(&mgctx);
2891 
2892 	if (!ret)
2893 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2894 
2895 	return ret;
2896 }
2897 
2898 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2899 					     bool *threadgroup_locked)
2900 {
2901 	struct task_struct *tsk;
2902 	pid_t pid;
2903 
2904 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2905 		return ERR_PTR(-EINVAL);
2906 
2907 	/*
2908 	 * If we migrate a single thread, we don't care about threadgroup
2909 	 * stability. If the thread is `current`, it won't exit(2) under our
2910 	 * hands or change PID through exec(2). We exclude
2911 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2912 	 * callers by cgroup_mutex.
2913 	 * Therefore, we can skip the global lock.
2914 	 */
2915 	lockdep_assert_held(&cgroup_mutex);
2916 	*threadgroup_locked = pid || threadgroup;
2917 	cgroup_attach_lock(*threadgroup_locked);
2918 
2919 	rcu_read_lock();
2920 	if (pid) {
2921 		tsk = find_task_by_vpid(pid);
2922 		if (!tsk) {
2923 			tsk = ERR_PTR(-ESRCH);
2924 			goto out_unlock_threadgroup;
2925 		}
2926 	} else {
2927 		tsk = current;
2928 	}
2929 
2930 	if (threadgroup)
2931 		tsk = tsk->group_leader;
2932 
2933 	/*
2934 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2935 	 * If userland migrates such a kthread to a non-root cgroup, it can
2936 	 * become trapped in a cpuset, or RT kthread may be born in a
2937 	 * cgroup with no rt_runtime allocated.  Just say no.
2938 	 */
2939 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2940 		tsk = ERR_PTR(-EINVAL);
2941 		goto out_unlock_threadgroup;
2942 	}
2943 
2944 	get_task_struct(tsk);
2945 	goto out_unlock_rcu;
2946 
2947 out_unlock_threadgroup:
2948 	cgroup_attach_unlock(*threadgroup_locked);
2949 	*threadgroup_locked = false;
2950 out_unlock_rcu:
2951 	rcu_read_unlock();
2952 	return tsk;
2953 }
2954 
2955 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2956 {
2957 	struct cgroup_subsys *ss;
2958 	int ssid;
2959 
2960 	/* release reference from cgroup_procs_write_start() */
2961 	put_task_struct(task);
2962 
2963 	cgroup_attach_unlock(threadgroup_locked);
2964 
2965 	for_each_subsys(ss, ssid)
2966 		if (ss->post_attach)
2967 			ss->post_attach();
2968 }
2969 
2970 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2971 {
2972 	struct cgroup_subsys *ss;
2973 	bool printed = false;
2974 	int ssid;
2975 
2976 	do_each_subsys_mask(ss, ssid, ss_mask) {
2977 		if (printed)
2978 			seq_putc(seq, ' ');
2979 		seq_puts(seq, ss->name);
2980 		printed = true;
2981 	} while_each_subsys_mask();
2982 	if (printed)
2983 		seq_putc(seq, '\n');
2984 }
2985 
2986 /* show controllers which are enabled from the parent */
2987 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2988 {
2989 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2990 
2991 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2992 	return 0;
2993 }
2994 
2995 /* show controllers which are enabled for a given cgroup's children */
2996 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2997 {
2998 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2999 
3000 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
3001 	return 0;
3002 }
3003 
3004 /**
3005  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3006  * @cgrp: root of the subtree to update csses for
3007  *
3008  * @cgrp's control masks have changed and its subtree's css associations
3009  * need to be updated accordingly.  This function looks up all css_sets
3010  * which are attached to the subtree, creates the matching updated css_sets
3011  * and migrates the tasks to the new ones.
3012  */
3013 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3014 {
3015 	DEFINE_CGROUP_MGCTX(mgctx);
3016 	struct cgroup_subsys_state *d_css;
3017 	struct cgroup *dsct;
3018 	struct css_set *src_cset;
3019 	bool has_tasks;
3020 	int ret;
3021 
3022 	lockdep_assert_held(&cgroup_mutex);
3023 
3024 	/* look up all csses currently attached to @cgrp's subtree */
3025 	spin_lock_irq(&css_set_lock);
3026 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3027 		struct cgrp_cset_link *link;
3028 
3029 		/*
3030 		 * As cgroup_update_dfl_csses() is only called by
3031 		 * cgroup_apply_control(). The csses associated with the
3032 		 * given cgrp will not be affected by changes made to
3033 		 * its subtree_control file. We can skip them.
3034 		 */
3035 		if (dsct == cgrp)
3036 			continue;
3037 
3038 		list_for_each_entry(link, &dsct->cset_links, cset_link)
3039 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3040 	}
3041 	spin_unlock_irq(&css_set_lock);
3042 
3043 	/*
3044 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3045 	 * However, if there are no source csets for @cgrp, changing its
3046 	 * controllers isn't gonna produce any task migrations and the
3047 	 * write-locking can be skipped safely.
3048 	 */
3049 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3050 	cgroup_attach_lock(has_tasks);
3051 
3052 	/* NULL dst indicates self on default hierarchy */
3053 	ret = cgroup_migrate_prepare_dst(&mgctx);
3054 	if (ret)
3055 		goto out_finish;
3056 
3057 	spin_lock_irq(&css_set_lock);
3058 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3059 			    mg_src_preload_node) {
3060 		struct task_struct *task, *ntask;
3061 
3062 		/* all tasks in src_csets need to be migrated */
3063 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3064 			cgroup_migrate_add_task(task, &mgctx);
3065 	}
3066 	spin_unlock_irq(&css_set_lock);
3067 
3068 	ret = cgroup_migrate_execute(&mgctx);
3069 out_finish:
3070 	cgroup_migrate_finish(&mgctx);
3071 	cgroup_attach_unlock(has_tasks);
3072 	return ret;
3073 }
3074 
3075 /**
3076  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3077  * @cgrp: root of the target subtree
3078  *
3079  * Because css offlining is asynchronous, userland may try to re-enable a
3080  * controller while the previous css is still around.  This function grabs
3081  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3082  */
3083 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3084 	__acquires(&cgroup_mutex)
3085 {
3086 	struct cgroup *dsct;
3087 	struct cgroup_subsys_state *d_css;
3088 	struct cgroup_subsys *ss;
3089 	int ssid;
3090 
3091 restart:
3092 	cgroup_lock();
3093 
3094 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3095 		for_each_subsys(ss, ssid) {
3096 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3097 			DEFINE_WAIT(wait);
3098 
3099 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3100 				continue;
3101 
3102 			cgroup_get_live(dsct);
3103 			prepare_to_wait(&dsct->offline_waitq, &wait,
3104 					TASK_UNINTERRUPTIBLE);
3105 
3106 			cgroup_unlock();
3107 			schedule();
3108 			finish_wait(&dsct->offline_waitq, &wait);
3109 
3110 			cgroup_put(dsct);
3111 			goto restart;
3112 		}
3113 	}
3114 }
3115 
3116 /**
3117  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3118  * @cgrp: root of the target subtree
3119  *
3120  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3121  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3122  * itself.
3123  */
3124 static void cgroup_save_control(struct cgroup *cgrp)
3125 {
3126 	struct cgroup *dsct;
3127 	struct cgroup_subsys_state *d_css;
3128 
3129 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3130 		dsct->old_subtree_control = dsct->subtree_control;
3131 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3132 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3133 	}
3134 }
3135 
3136 /**
3137  * cgroup_propagate_control - refresh control masks of a subtree
3138  * @cgrp: root of the target subtree
3139  *
3140  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3141  * ->subtree_control and propagate controller availability through the
3142  * subtree so that descendants don't have unavailable controllers enabled.
3143  */
3144 static void cgroup_propagate_control(struct cgroup *cgrp)
3145 {
3146 	struct cgroup *dsct;
3147 	struct cgroup_subsys_state *d_css;
3148 
3149 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3150 		dsct->subtree_control &= cgroup_control(dsct);
3151 		dsct->subtree_ss_mask =
3152 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3153 						    cgroup_ss_mask(dsct));
3154 	}
3155 }
3156 
3157 /**
3158  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3159  * @cgrp: root of the target subtree
3160  *
3161  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3162  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3163  * itself.
3164  */
3165 static void cgroup_restore_control(struct cgroup *cgrp)
3166 {
3167 	struct cgroup *dsct;
3168 	struct cgroup_subsys_state *d_css;
3169 
3170 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3171 		dsct->subtree_control = dsct->old_subtree_control;
3172 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3173 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3174 	}
3175 }
3176 
3177 static bool css_visible(struct cgroup_subsys_state *css)
3178 {
3179 	struct cgroup_subsys *ss = css->ss;
3180 	struct cgroup *cgrp = css->cgroup;
3181 
3182 	if (cgroup_control(cgrp) & (1 << ss->id))
3183 		return true;
3184 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3185 		return false;
3186 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3187 }
3188 
3189 /**
3190  * cgroup_apply_control_enable - enable or show csses according to control
3191  * @cgrp: root of the target subtree
3192  *
3193  * Walk @cgrp's subtree and create new csses or make the existing ones
3194  * visible.  A css is created invisible if it's being implicitly enabled
3195  * through dependency.  An invisible css is made visible when the userland
3196  * explicitly enables it.
3197  *
3198  * Returns 0 on success, -errno on failure.  On failure, csses which have
3199  * been processed already aren't cleaned up.  The caller is responsible for
3200  * cleaning up with cgroup_apply_control_disable().
3201  */
3202 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3203 {
3204 	struct cgroup *dsct;
3205 	struct cgroup_subsys_state *d_css;
3206 	struct cgroup_subsys *ss;
3207 	int ssid, ret;
3208 
3209 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3210 		for_each_subsys(ss, ssid) {
3211 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3212 
3213 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3214 				continue;
3215 
3216 			if (!css) {
3217 				css = css_create(dsct, ss);
3218 				if (IS_ERR(css))
3219 					return PTR_ERR(css);
3220 			}
3221 
3222 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3223 
3224 			if (css_visible(css)) {
3225 				ret = css_populate_dir(css);
3226 				if (ret)
3227 					return ret;
3228 			}
3229 		}
3230 	}
3231 
3232 	return 0;
3233 }
3234 
3235 /**
3236  * cgroup_apply_control_disable - kill or hide csses according to control
3237  * @cgrp: root of the target subtree
3238  *
3239  * Walk @cgrp's subtree and kill and hide csses so that they match
3240  * cgroup_ss_mask() and cgroup_visible_mask().
3241  *
3242  * A css is hidden when the userland requests it to be disabled while other
3243  * subsystems are still depending on it.  The css must not actively control
3244  * resources and be in the vanilla state if it's made visible again later.
3245  * Controllers which may be depended upon should provide ->css_reset() for
3246  * this purpose.
3247  */
3248 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3249 {
3250 	struct cgroup *dsct;
3251 	struct cgroup_subsys_state *d_css;
3252 	struct cgroup_subsys *ss;
3253 	int ssid;
3254 
3255 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3256 		for_each_subsys(ss, ssid) {
3257 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3258 
3259 			if (!css)
3260 				continue;
3261 
3262 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3263 
3264 			if (css->parent &&
3265 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3266 				kill_css(css);
3267 			} else if (!css_visible(css)) {
3268 				css_clear_dir(css);
3269 				if (ss->css_reset)
3270 					ss->css_reset(css);
3271 			}
3272 		}
3273 	}
3274 }
3275 
3276 /**
3277  * cgroup_apply_control - apply control mask updates to the subtree
3278  * @cgrp: root of the target subtree
3279  *
3280  * subsystems can be enabled and disabled in a subtree using the following
3281  * steps.
3282  *
3283  * 1. Call cgroup_save_control() to stash the current state.
3284  * 2. Update ->subtree_control masks in the subtree as desired.
3285  * 3. Call cgroup_apply_control() to apply the changes.
3286  * 4. Optionally perform other related operations.
3287  * 5. Call cgroup_finalize_control() to finish up.
3288  *
3289  * This function implements step 3 and propagates the mask changes
3290  * throughout @cgrp's subtree, updates csses accordingly and perform
3291  * process migrations.
3292  */
3293 static int cgroup_apply_control(struct cgroup *cgrp)
3294 {
3295 	int ret;
3296 
3297 	cgroup_propagate_control(cgrp);
3298 
3299 	ret = cgroup_apply_control_enable(cgrp);
3300 	if (ret)
3301 		return ret;
3302 
3303 	/*
3304 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3305 	 * making the following cgroup_update_dfl_csses() properly update
3306 	 * css associations of all tasks in the subtree.
3307 	 */
3308 	return cgroup_update_dfl_csses(cgrp);
3309 }
3310 
3311 /**
3312  * cgroup_finalize_control - finalize control mask update
3313  * @cgrp: root of the target subtree
3314  * @ret: the result of the update
3315  *
3316  * Finalize control mask update.  See cgroup_apply_control() for more info.
3317  */
3318 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3319 {
3320 	if (ret) {
3321 		cgroup_restore_control(cgrp);
3322 		cgroup_propagate_control(cgrp);
3323 	}
3324 
3325 	cgroup_apply_control_disable(cgrp);
3326 }
3327 
3328 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3329 {
3330 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3331 
3332 	/* if nothing is getting enabled, nothing to worry about */
3333 	if (!enable)
3334 		return 0;
3335 
3336 	/* can @cgrp host any resources? */
3337 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3338 		return -EOPNOTSUPP;
3339 
3340 	/* mixables don't care */
3341 	if (cgroup_is_mixable(cgrp))
3342 		return 0;
3343 
3344 	if (domain_enable) {
3345 		/* can't enable domain controllers inside a thread subtree */
3346 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3347 			return -EOPNOTSUPP;
3348 	} else {
3349 		/*
3350 		 * Threaded controllers can handle internal competitions
3351 		 * and are always allowed inside a (prospective) thread
3352 		 * subtree.
3353 		 */
3354 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3355 			return 0;
3356 	}
3357 
3358 	/*
3359 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3360 	 * child cgroups competing against tasks.
3361 	 */
3362 	if (cgroup_has_tasks(cgrp))
3363 		return -EBUSY;
3364 
3365 	return 0;
3366 }
3367 
3368 /* change the enabled child controllers for a cgroup in the default hierarchy */
3369 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3370 					    char *buf, size_t nbytes,
3371 					    loff_t off)
3372 {
3373 	u16 enable = 0, disable = 0;
3374 	struct cgroup *cgrp, *child;
3375 	struct cgroup_subsys *ss;
3376 	char *tok;
3377 	int ssid, ret;
3378 
3379 	/*
3380 	 * Parse input - space separated list of subsystem names prefixed
3381 	 * with either + or -.
3382 	 */
3383 	buf = strstrip(buf);
3384 	while ((tok = strsep(&buf, " "))) {
3385 		if (tok[0] == '\0')
3386 			continue;
3387 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3388 			if (!cgroup_ssid_enabled(ssid) ||
3389 			    strcmp(tok + 1, ss->name))
3390 				continue;
3391 
3392 			if (*tok == '+') {
3393 				enable |= 1 << ssid;
3394 				disable &= ~(1 << ssid);
3395 			} else if (*tok == '-') {
3396 				disable |= 1 << ssid;
3397 				enable &= ~(1 << ssid);
3398 			} else {
3399 				return -EINVAL;
3400 			}
3401 			break;
3402 		} while_each_subsys_mask();
3403 		if (ssid == CGROUP_SUBSYS_COUNT)
3404 			return -EINVAL;
3405 	}
3406 
3407 	cgrp = cgroup_kn_lock_live(of->kn, true);
3408 	if (!cgrp)
3409 		return -ENODEV;
3410 
3411 	for_each_subsys(ss, ssid) {
3412 		if (enable & (1 << ssid)) {
3413 			if (cgrp->subtree_control & (1 << ssid)) {
3414 				enable &= ~(1 << ssid);
3415 				continue;
3416 			}
3417 
3418 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3419 				ret = -ENOENT;
3420 				goto out_unlock;
3421 			}
3422 		} else if (disable & (1 << ssid)) {
3423 			if (!(cgrp->subtree_control & (1 << ssid))) {
3424 				disable &= ~(1 << ssid);
3425 				continue;
3426 			}
3427 
3428 			/* a child has it enabled? */
3429 			cgroup_for_each_live_child(child, cgrp) {
3430 				if (child->subtree_control & (1 << ssid)) {
3431 					ret = -EBUSY;
3432 					goto out_unlock;
3433 				}
3434 			}
3435 		}
3436 	}
3437 
3438 	if (!enable && !disable) {
3439 		ret = 0;
3440 		goto out_unlock;
3441 	}
3442 
3443 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3444 	if (ret)
3445 		goto out_unlock;
3446 
3447 	/* save and update control masks and prepare csses */
3448 	cgroup_save_control(cgrp);
3449 
3450 	cgrp->subtree_control |= enable;
3451 	cgrp->subtree_control &= ~disable;
3452 
3453 	ret = cgroup_apply_control(cgrp);
3454 	cgroup_finalize_control(cgrp, ret);
3455 	if (ret)
3456 		goto out_unlock;
3457 
3458 	kernfs_activate(cgrp->kn);
3459 out_unlock:
3460 	cgroup_kn_unlock(of->kn);
3461 	return ret ?: nbytes;
3462 }
3463 
3464 /**
3465  * cgroup_enable_threaded - make @cgrp threaded
3466  * @cgrp: the target cgroup
3467  *
3468  * Called when "threaded" is written to the cgroup.type interface file and
3469  * tries to make @cgrp threaded and join the parent's resource domain.
3470  * This function is never called on the root cgroup as cgroup.type doesn't
3471  * exist on it.
3472  */
3473 static int cgroup_enable_threaded(struct cgroup *cgrp)
3474 {
3475 	struct cgroup *parent = cgroup_parent(cgrp);
3476 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3477 	struct cgroup *dsct;
3478 	struct cgroup_subsys_state *d_css;
3479 	int ret;
3480 
3481 	lockdep_assert_held(&cgroup_mutex);
3482 
3483 	/* noop if already threaded */
3484 	if (cgroup_is_threaded(cgrp))
3485 		return 0;
3486 
3487 	/*
3488 	 * If @cgroup is populated or has domain controllers enabled, it
3489 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3490 	 * test can catch the same conditions, that's only when @parent is
3491 	 * not mixable, so let's check it explicitly.
3492 	 */
3493 	if (cgroup_is_populated(cgrp) ||
3494 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3495 		return -EOPNOTSUPP;
3496 
3497 	/* we're joining the parent's domain, ensure its validity */
3498 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3499 	    !cgroup_can_be_thread_root(dom_cgrp))
3500 		return -EOPNOTSUPP;
3501 
3502 	/*
3503 	 * The following shouldn't cause actual migrations and should
3504 	 * always succeed.
3505 	 */
3506 	cgroup_save_control(cgrp);
3507 
3508 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3509 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3510 			dsct->dom_cgrp = dom_cgrp;
3511 
3512 	ret = cgroup_apply_control(cgrp);
3513 	if (!ret)
3514 		parent->nr_threaded_children++;
3515 
3516 	cgroup_finalize_control(cgrp, ret);
3517 	return ret;
3518 }
3519 
3520 static int cgroup_type_show(struct seq_file *seq, void *v)
3521 {
3522 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3523 
3524 	if (cgroup_is_threaded(cgrp))
3525 		seq_puts(seq, "threaded\n");
3526 	else if (!cgroup_is_valid_domain(cgrp))
3527 		seq_puts(seq, "domain invalid\n");
3528 	else if (cgroup_is_thread_root(cgrp))
3529 		seq_puts(seq, "domain threaded\n");
3530 	else
3531 		seq_puts(seq, "domain\n");
3532 
3533 	return 0;
3534 }
3535 
3536 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3537 				 size_t nbytes, loff_t off)
3538 {
3539 	struct cgroup *cgrp;
3540 	int ret;
3541 
3542 	/* only switching to threaded mode is supported */
3543 	if (strcmp(strstrip(buf), "threaded"))
3544 		return -EINVAL;
3545 
3546 	/* drain dying csses before we re-apply (threaded) subtree control */
3547 	cgrp = cgroup_kn_lock_live(of->kn, true);
3548 	if (!cgrp)
3549 		return -ENOENT;
3550 
3551 	/* threaded can only be enabled */
3552 	ret = cgroup_enable_threaded(cgrp);
3553 
3554 	cgroup_kn_unlock(of->kn);
3555 	return ret ?: nbytes;
3556 }
3557 
3558 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3559 {
3560 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3561 	int descendants = READ_ONCE(cgrp->max_descendants);
3562 
3563 	if (descendants == INT_MAX)
3564 		seq_puts(seq, "max\n");
3565 	else
3566 		seq_printf(seq, "%d\n", descendants);
3567 
3568 	return 0;
3569 }
3570 
3571 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3572 					   char *buf, size_t nbytes, loff_t off)
3573 {
3574 	struct cgroup *cgrp;
3575 	int descendants;
3576 	ssize_t ret;
3577 
3578 	buf = strstrip(buf);
3579 	if (!strcmp(buf, "max")) {
3580 		descendants = INT_MAX;
3581 	} else {
3582 		ret = kstrtoint(buf, 0, &descendants);
3583 		if (ret)
3584 			return ret;
3585 	}
3586 
3587 	if (descendants < 0)
3588 		return -ERANGE;
3589 
3590 	cgrp = cgroup_kn_lock_live(of->kn, false);
3591 	if (!cgrp)
3592 		return -ENOENT;
3593 
3594 	cgrp->max_descendants = descendants;
3595 
3596 	cgroup_kn_unlock(of->kn);
3597 
3598 	return nbytes;
3599 }
3600 
3601 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3602 {
3603 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3604 	int depth = READ_ONCE(cgrp->max_depth);
3605 
3606 	if (depth == INT_MAX)
3607 		seq_puts(seq, "max\n");
3608 	else
3609 		seq_printf(seq, "%d\n", depth);
3610 
3611 	return 0;
3612 }
3613 
3614 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3615 				      char *buf, size_t nbytes, loff_t off)
3616 {
3617 	struct cgroup *cgrp;
3618 	ssize_t ret;
3619 	int depth;
3620 
3621 	buf = strstrip(buf);
3622 	if (!strcmp(buf, "max")) {
3623 		depth = INT_MAX;
3624 	} else {
3625 		ret = kstrtoint(buf, 0, &depth);
3626 		if (ret)
3627 			return ret;
3628 	}
3629 
3630 	if (depth < 0)
3631 		return -ERANGE;
3632 
3633 	cgrp = cgroup_kn_lock_live(of->kn, false);
3634 	if (!cgrp)
3635 		return -ENOENT;
3636 
3637 	cgrp->max_depth = depth;
3638 
3639 	cgroup_kn_unlock(of->kn);
3640 
3641 	return nbytes;
3642 }
3643 
3644 static int cgroup_events_show(struct seq_file *seq, void *v)
3645 {
3646 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3647 
3648 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3649 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3650 
3651 	return 0;
3652 }
3653 
3654 static int cgroup_stat_show(struct seq_file *seq, void *v)
3655 {
3656 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3657 
3658 	seq_printf(seq, "nr_descendants %d\n",
3659 		   cgroup->nr_descendants);
3660 	seq_printf(seq, "nr_dying_descendants %d\n",
3661 		   cgroup->nr_dying_descendants);
3662 
3663 	return 0;
3664 }
3665 
3666 #ifdef CONFIG_CGROUP_SCHED
3667 /**
3668  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3669  * @cgrp: the cgroup of interest
3670  * @ss: the subsystem of interest
3671  *
3672  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
3673  * or is offline, %NULL is returned.
3674  */
3675 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3676 						     struct cgroup_subsys *ss)
3677 {
3678 	struct cgroup_subsys_state *css;
3679 
3680 	rcu_read_lock();
3681 	css = cgroup_css(cgrp, ss);
3682 	if (css && !css_tryget_online(css))
3683 		css = NULL;
3684 	rcu_read_unlock();
3685 
3686 	return css;
3687 }
3688 
3689 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3690 {
3691 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3692 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3693 	struct cgroup_subsys_state *css;
3694 	int ret;
3695 
3696 	if (!ss->css_extra_stat_show)
3697 		return 0;
3698 
3699 	css = cgroup_tryget_css(cgrp, ss);
3700 	if (!css)
3701 		return 0;
3702 
3703 	ret = ss->css_extra_stat_show(seq, css);
3704 	css_put(css);
3705 	return ret;
3706 }
3707 
3708 static int cgroup_local_stat_show(struct seq_file *seq,
3709 				  struct cgroup *cgrp, int ssid)
3710 {
3711 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3712 	struct cgroup_subsys_state *css;
3713 	int ret;
3714 
3715 	if (!ss->css_local_stat_show)
3716 		return 0;
3717 
3718 	css = cgroup_tryget_css(cgrp, ss);
3719 	if (!css)
3720 		return 0;
3721 
3722 	ret = ss->css_local_stat_show(seq, css);
3723 	css_put(css);
3724 	return ret;
3725 }
3726 #endif
3727 
3728 static int cpu_stat_show(struct seq_file *seq, void *v)
3729 {
3730 	int ret = 0;
3731 
3732 	cgroup_base_stat_cputime_show(seq);
3733 #ifdef CONFIG_CGROUP_SCHED
3734 	ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3735 #endif
3736 	return ret;
3737 }
3738 
3739 static int cpu_local_stat_show(struct seq_file *seq, void *v)
3740 {
3741 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3742 	int ret = 0;
3743 
3744 #ifdef CONFIG_CGROUP_SCHED
3745 	ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3746 #endif
3747 	return ret;
3748 }
3749 
3750 #ifdef CONFIG_PSI
3751 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3752 {
3753 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3754 	struct psi_group *psi = cgroup_psi(cgrp);
3755 
3756 	return psi_show(seq, psi, PSI_IO);
3757 }
3758 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3759 {
3760 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3761 	struct psi_group *psi = cgroup_psi(cgrp);
3762 
3763 	return psi_show(seq, psi, PSI_MEM);
3764 }
3765 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3766 {
3767 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3768 	struct psi_group *psi = cgroup_psi(cgrp);
3769 
3770 	return psi_show(seq, psi, PSI_CPU);
3771 }
3772 
3773 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3774 			      size_t nbytes, enum psi_res res)
3775 {
3776 	struct cgroup_file_ctx *ctx = of->priv;
3777 	struct psi_trigger *new;
3778 	struct cgroup *cgrp;
3779 	struct psi_group *psi;
3780 
3781 	cgrp = cgroup_kn_lock_live(of->kn, false);
3782 	if (!cgrp)
3783 		return -ENODEV;
3784 
3785 	cgroup_get(cgrp);
3786 	cgroup_kn_unlock(of->kn);
3787 
3788 	/* Allow only one trigger per file descriptor */
3789 	if (ctx->psi.trigger) {
3790 		cgroup_put(cgrp);
3791 		return -EBUSY;
3792 	}
3793 
3794 	psi = cgroup_psi(cgrp);
3795 	new = psi_trigger_create(psi, buf, res, of->file, of);
3796 	if (IS_ERR(new)) {
3797 		cgroup_put(cgrp);
3798 		return PTR_ERR(new);
3799 	}
3800 
3801 	smp_store_release(&ctx->psi.trigger, new);
3802 	cgroup_put(cgrp);
3803 
3804 	return nbytes;
3805 }
3806 
3807 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3808 					  char *buf, size_t nbytes,
3809 					  loff_t off)
3810 {
3811 	return pressure_write(of, buf, nbytes, PSI_IO);
3812 }
3813 
3814 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3815 					  char *buf, size_t nbytes,
3816 					  loff_t off)
3817 {
3818 	return pressure_write(of, buf, nbytes, PSI_MEM);
3819 }
3820 
3821 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3822 					  char *buf, size_t nbytes,
3823 					  loff_t off)
3824 {
3825 	return pressure_write(of, buf, nbytes, PSI_CPU);
3826 }
3827 
3828 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3829 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3830 {
3831 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3832 	struct psi_group *psi = cgroup_psi(cgrp);
3833 
3834 	return psi_show(seq, psi, PSI_IRQ);
3835 }
3836 
3837 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3838 					 char *buf, size_t nbytes,
3839 					 loff_t off)
3840 {
3841 	return pressure_write(of, buf, nbytes, PSI_IRQ);
3842 }
3843 #endif
3844 
3845 static int cgroup_pressure_show(struct seq_file *seq, void *v)
3846 {
3847 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3848 	struct psi_group *psi = cgroup_psi(cgrp);
3849 
3850 	seq_printf(seq, "%d\n", psi->enabled);
3851 
3852 	return 0;
3853 }
3854 
3855 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3856 				     char *buf, size_t nbytes,
3857 				     loff_t off)
3858 {
3859 	ssize_t ret;
3860 	int enable;
3861 	struct cgroup *cgrp;
3862 	struct psi_group *psi;
3863 
3864 	ret = kstrtoint(strstrip(buf), 0, &enable);
3865 	if (ret)
3866 		return ret;
3867 
3868 	if (enable < 0 || enable > 1)
3869 		return -ERANGE;
3870 
3871 	cgrp = cgroup_kn_lock_live(of->kn, false);
3872 	if (!cgrp)
3873 		return -ENOENT;
3874 
3875 	psi = cgroup_psi(cgrp);
3876 	if (psi->enabled != enable) {
3877 		int i;
3878 
3879 		/* show or hide {cpu,memory,io,irq}.pressure files */
3880 		for (i = 0; i < NR_PSI_RESOURCES; i++)
3881 			cgroup_file_show(&cgrp->psi_files[i], enable);
3882 
3883 		psi->enabled = enable;
3884 		if (enable)
3885 			psi_cgroup_restart(psi);
3886 	}
3887 
3888 	cgroup_kn_unlock(of->kn);
3889 
3890 	return nbytes;
3891 }
3892 
3893 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3894 					  poll_table *pt)
3895 {
3896 	struct cgroup_file_ctx *ctx = of->priv;
3897 
3898 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3899 }
3900 
3901 static void cgroup_pressure_release(struct kernfs_open_file *of)
3902 {
3903 	struct cgroup_file_ctx *ctx = of->priv;
3904 
3905 	psi_trigger_destroy(ctx->psi.trigger);
3906 }
3907 
3908 bool cgroup_psi_enabled(void)
3909 {
3910 	if (static_branch_likely(&psi_disabled))
3911 		return false;
3912 
3913 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3914 }
3915 
3916 #else /* CONFIG_PSI */
3917 bool cgroup_psi_enabled(void)
3918 {
3919 	return false;
3920 }
3921 
3922 #endif /* CONFIG_PSI */
3923 
3924 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3925 {
3926 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3927 
3928 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3929 
3930 	return 0;
3931 }
3932 
3933 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3934 				   char *buf, size_t nbytes, loff_t off)
3935 {
3936 	struct cgroup *cgrp;
3937 	ssize_t ret;
3938 	int freeze;
3939 
3940 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3941 	if (ret)
3942 		return ret;
3943 
3944 	if (freeze < 0 || freeze > 1)
3945 		return -ERANGE;
3946 
3947 	cgrp = cgroup_kn_lock_live(of->kn, false);
3948 	if (!cgrp)
3949 		return -ENOENT;
3950 
3951 	cgroup_freeze(cgrp, freeze);
3952 
3953 	cgroup_kn_unlock(of->kn);
3954 
3955 	return nbytes;
3956 }
3957 
3958 static void __cgroup_kill(struct cgroup *cgrp)
3959 {
3960 	struct css_task_iter it;
3961 	struct task_struct *task;
3962 
3963 	lockdep_assert_held(&cgroup_mutex);
3964 
3965 	spin_lock_irq(&css_set_lock);
3966 	set_bit(CGRP_KILL, &cgrp->flags);
3967 	spin_unlock_irq(&css_set_lock);
3968 
3969 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3970 	while ((task = css_task_iter_next(&it))) {
3971 		/* Ignore kernel threads here. */
3972 		if (task->flags & PF_KTHREAD)
3973 			continue;
3974 
3975 		/* Skip tasks that are already dying. */
3976 		if (__fatal_signal_pending(task))
3977 			continue;
3978 
3979 		send_sig(SIGKILL, task, 0);
3980 	}
3981 	css_task_iter_end(&it);
3982 
3983 	spin_lock_irq(&css_set_lock);
3984 	clear_bit(CGRP_KILL, &cgrp->flags);
3985 	spin_unlock_irq(&css_set_lock);
3986 }
3987 
3988 static void cgroup_kill(struct cgroup *cgrp)
3989 {
3990 	struct cgroup_subsys_state *css;
3991 	struct cgroup *dsct;
3992 
3993 	lockdep_assert_held(&cgroup_mutex);
3994 
3995 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3996 		__cgroup_kill(dsct);
3997 }
3998 
3999 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4000 				 size_t nbytes, loff_t off)
4001 {
4002 	ssize_t ret = 0;
4003 	int kill;
4004 	struct cgroup *cgrp;
4005 
4006 	ret = kstrtoint(strstrip(buf), 0, &kill);
4007 	if (ret)
4008 		return ret;
4009 
4010 	if (kill != 1)
4011 		return -ERANGE;
4012 
4013 	cgrp = cgroup_kn_lock_live(of->kn, false);
4014 	if (!cgrp)
4015 		return -ENOENT;
4016 
4017 	/*
4018 	 * Killing is a process directed operation, i.e. the whole thread-group
4019 	 * is taken down so act like we do for cgroup.procs and only make this
4020 	 * writable in non-threaded cgroups.
4021 	 */
4022 	if (cgroup_is_threaded(cgrp))
4023 		ret = -EOPNOTSUPP;
4024 	else
4025 		cgroup_kill(cgrp);
4026 
4027 	cgroup_kn_unlock(of->kn);
4028 
4029 	return ret ?: nbytes;
4030 }
4031 
4032 static int cgroup_file_open(struct kernfs_open_file *of)
4033 {
4034 	struct cftype *cft = of_cft(of);
4035 	struct cgroup_file_ctx *ctx;
4036 	int ret;
4037 
4038 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4039 	if (!ctx)
4040 		return -ENOMEM;
4041 
4042 	ctx->ns = current->nsproxy->cgroup_ns;
4043 	get_cgroup_ns(ctx->ns);
4044 	of->priv = ctx;
4045 
4046 	if (!cft->open)
4047 		return 0;
4048 
4049 	ret = cft->open(of);
4050 	if (ret) {
4051 		put_cgroup_ns(ctx->ns);
4052 		kfree(ctx);
4053 	}
4054 	return ret;
4055 }
4056 
4057 static void cgroup_file_release(struct kernfs_open_file *of)
4058 {
4059 	struct cftype *cft = of_cft(of);
4060 	struct cgroup_file_ctx *ctx = of->priv;
4061 
4062 	if (cft->release)
4063 		cft->release(of);
4064 	put_cgroup_ns(ctx->ns);
4065 	kfree(ctx);
4066 }
4067 
4068 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4069 				 size_t nbytes, loff_t off)
4070 {
4071 	struct cgroup_file_ctx *ctx = of->priv;
4072 	struct cgroup *cgrp = of->kn->parent->priv;
4073 	struct cftype *cft = of_cft(of);
4074 	struct cgroup_subsys_state *css;
4075 	int ret;
4076 
4077 	if (!nbytes)
4078 		return 0;
4079 
4080 	/*
4081 	 * If namespaces are delegation boundaries, disallow writes to
4082 	 * files in an non-init namespace root from inside the namespace
4083 	 * except for the files explicitly marked delegatable -
4084 	 * cgroup.procs and cgroup.subtree_control.
4085 	 */
4086 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4087 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4088 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4089 		return -EPERM;
4090 
4091 	if (cft->write)
4092 		return cft->write(of, buf, nbytes, off);
4093 
4094 	/*
4095 	 * kernfs guarantees that a file isn't deleted with operations in
4096 	 * flight, which means that the matching css is and stays alive and
4097 	 * doesn't need to be pinned.  The RCU locking is not necessary
4098 	 * either.  It's just for the convenience of using cgroup_css().
4099 	 */
4100 	rcu_read_lock();
4101 	css = cgroup_css(cgrp, cft->ss);
4102 	rcu_read_unlock();
4103 
4104 	if (cft->write_u64) {
4105 		unsigned long long v;
4106 		ret = kstrtoull(buf, 0, &v);
4107 		if (!ret)
4108 			ret = cft->write_u64(css, cft, v);
4109 	} else if (cft->write_s64) {
4110 		long long v;
4111 		ret = kstrtoll(buf, 0, &v);
4112 		if (!ret)
4113 			ret = cft->write_s64(css, cft, v);
4114 	} else {
4115 		ret = -EINVAL;
4116 	}
4117 
4118 	return ret ?: nbytes;
4119 }
4120 
4121 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4122 {
4123 	struct cftype *cft = of_cft(of);
4124 
4125 	if (cft->poll)
4126 		return cft->poll(of, pt);
4127 
4128 	return kernfs_generic_poll(of, pt);
4129 }
4130 
4131 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4132 {
4133 	return seq_cft(seq)->seq_start(seq, ppos);
4134 }
4135 
4136 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4137 {
4138 	return seq_cft(seq)->seq_next(seq, v, ppos);
4139 }
4140 
4141 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4142 {
4143 	if (seq_cft(seq)->seq_stop)
4144 		seq_cft(seq)->seq_stop(seq, v);
4145 }
4146 
4147 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4148 {
4149 	struct cftype *cft = seq_cft(m);
4150 	struct cgroup_subsys_state *css = seq_css(m);
4151 
4152 	if (cft->seq_show)
4153 		return cft->seq_show(m, arg);
4154 
4155 	if (cft->read_u64)
4156 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4157 	else if (cft->read_s64)
4158 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4159 	else
4160 		return -EINVAL;
4161 	return 0;
4162 }
4163 
4164 static struct kernfs_ops cgroup_kf_single_ops = {
4165 	.atomic_write_len	= PAGE_SIZE,
4166 	.open			= cgroup_file_open,
4167 	.release		= cgroup_file_release,
4168 	.write			= cgroup_file_write,
4169 	.poll			= cgroup_file_poll,
4170 	.seq_show		= cgroup_seqfile_show,
4171 };
4172 
4173 static struct kernfs_ops cgroup_kf_ops = {
4174 	.atomic_write_len	= PAGE_SIZE,
4175 	.open			= cgroup_file_open,
4176 	.release		= cgroup_file_release,
4177 	.write			= cgroup_file_write,
4178 	.poll			= cgroup_file_poll,
4179 	.seq_start		= cgroup_seqfile_start,
4180 	.seq_next		= cgroup_seqfile_next,
4181 	.seq_stop		= cgroup_seqfile_stop,
4182 	.seq_show		= cgroup_seqfile_show,
4183 };
4184 
4185 static void cgroup_file_notify_timer(struct timer_list *timer)
4186 {
4187 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4188 					notify_timer));
4189 }
4190 
4191 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4192 			   struct cftype *cft)
4193 {
4194 	char name[CGROUP_FILE_NAME_MAX];
4195 	struct kernfs_node *kn;
4196 	struct lock_class_key *key = NULL;
4197 
4198 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4199 	key = &cft->lockdep_key;
4200 #endif
4201 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4202 				  cgroup_file_mode(cft),
4203 				  current_fsuid(), current_fsgid(),
4204 				  0, cft->kf_ops, cft,
4205 				  NULL, key);
4206 	if (IS_ERR(kn))
4207 		return PTR_ERR(kn);
4208 
4209 	if (cft->file_offset) {
4210 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4211 
4212 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4213 
4214 		spin_lock_irq(&cgroup_file_kn_lock);
4215 		cfile->kn = kn;
4216 		spin_unlock_irq(&cgroup_file_kn_lock);
4217 	}
4218 
4219 	return 0;
4220 }
4221 
4222 /**
4223  * cgroup_addrm_files - add or remove files to a cgroup directory
4224  * @css: the target css
4225  * @cgrp: the target cgroup (usually css->cgroup)
4226  * @cfts: array of cftypes to be added
4227  * @is_add: whether to add or remove
4228  *
4229  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4230  * For removals, this function never fails.
4231  */
4232 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4233 			      struct cgroup *cgrp, struct cftype cfts[],
4234 			      bool is_add)
4235 {
4236 	struct cftype *cft, *cft_end = NULL;
4237 	int ret = 0;
4238 
4239 	lockdep_assert_held(&cgroup_mutex);
4240 
4241 restart:
4242 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4243 		/* does cft->flags tell us to skip this file on @cgrp? */
4244 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4245 			continue;
4246 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4247 			continue;
4248 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4249 			continue;
4250 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4251 			continue;
4252 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4253 			continue;
4254 		if (is_add) {
4255 			ret = cgroup_add_file(css, cgrp, cft);
4256 			if (ret) {
4257 				pr_warn("%s: failed to add %s, err=%d\n",
4258 					__func__, cft->name, ret);
4259 				cft_end = cft;
4260 				is_add = false;
4261 				goto restart;
4262 			}
4263 		} else {
4264 			cgroup_rm_file(cgrp, cft);
4265 		}
4266 	}
4267 	return ret;
4268 }
4269 
4270 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4271 {
4272 	struct cgroup_subsys *ss = cfts[0].ss;
4273 	struct cgroup *root = &ss->root->cgrp;
4274 	struct cgroup_subsys_state *css;
4275 	int ret = 0;
4276 
4277 	lockdep_assert_held(&cgroup_mutex);
4278 
4279 	/* add/rm files for all cgroups created before */
4280 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4281 		struct cgroup *cgrp = css->cgroup;
4282 
4283 		if (!(css->flags & CSS_VISIBLE))
4284 			continue;
4285 
4286 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4287 		if (ret)
4288 			break;
4289 	}
4290 
4291 	if (is_add && !ret)
4292 		kernfs_activate(root->kn);
4293 	return ret;
4294 }
4295 
4296 static void cgroup_exit_cftypes(struct cftype *cfts)
4297 {
4298 	struct cftype *cft;
4299 
4300 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4301 		/* free copy for custom atomic_write_len, see init_cftypes() */
4302 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4303 			kfree(cft->kf_ops);
4304 		cft->kf_ops = NULL;
4305 		cft->ss = NULL;
4306 
4307 		/* revert flags set by cgroup core while adding @cfts */
4308 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4309 				__CFTYPE_ADDED);
4310 	}
4311 }
4312 
4313 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4314 {
4315 	struct cftype *cft;
4316 	int ret = 0;
4317 
4318 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4319 		struct kernfs_ops *kf_ops;
4320 
4321 		WARN_ON(cft->ss || cft->kf_ops);
4322 
4323 		if (cft->flags & __CFTYPE_ADDED) {
4324 			ret = -EBUSY;
4325 			break;
4326 		}
4327 
4328 		if (cft->seq_start)
4329 			kf_ops = &cgroup_kf_ops;
4330 		else
4331 			kf_ops = &cgroup_kf_single_ops;
4332 
4333 		/*
4334 		 * Ugh... if @cft wants a custom max_write_len, we need to
4335 		 * make a copy of kf_ops to set its atomic_write_len.
4336 		 */
4337 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4338 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4339 			if (!kf_ops) {
4340 				ret = -ENOMEM;
4341 				break;
4342 			}
4343 			kf_ops->atomic_write_len = cft->max_write_len;
4344 		}
4345 
4346 		cft->kf_ops = kf_ops;
4347 		cft->ss = ss;
4348 		cft->flags |= __CFTYPE_ADDED;
4349 	}
4350 
4351 	if (ret)
4352 		cgroup_exit_cftypes(cfts);
4353 	return ret;
4354 }
4355 
4356 static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4357 {
4358 	lockdep_assert_held(&cgroup_mutex);
4359 
4360 	list_del(&cfts->node);
4361 	cgroup_apply_cftypes(cfts, false);
4362 	cgroup_exit_cftypes(cfts);
4363 }
4364 
4365 /**
4366  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4367  * @cfts: zero-length name terminated array of cftypes
4368  *
4369  * Unregister @cfts.  Files described by @cfts are removed from all
4370  * existing cgroups and all future cgroups won't have them either.  This
4371  * function can be called anytime whether @cfts' subsys is attached or not.
4372  *
4373  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4374  * registered.
4375  */
4376 int cgroup_rm_cftypes(struct cftype *cfts)
4377 {
4378 	if (!cfts || cfts[0].name[0] == '\0')
4379 		return 0;
4380 
4381 	if (!(cfts[0].flags & __CFTYPE_ADDED))
4382 		return -ENOENT;
4383 
4384 	cgroup_lock();
4385 	cgroup_rm_cftypes_locked(cfts);
4386 	cgroup_unlock();
4387 	return 0;
4388 }
4389 
4390 /**
4391  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4392  * @ss: target cgroup subsystem
4393  * @cfts: zero-length name terminated array of cftypes
4394  *
4395  * Register @cfts to @ss.  Files described by @cfts are created for all
4396  * existing cgroups to which @ss is attached and all future cgroups will
4397  * have them too.  This function can be called anytime whether @ss is
4398  * attached or not.
4399  *
4400  * Returns 0 on successful registration, -errno on failure.  Note that this
4401  * function currently returns 0 as long as @cfts registration is successful
4402  * even if some file creation attempts on existing cgroups fail.
4403  */
4404 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4405 {
4406 	int ret;
4407 
4408 	if (!cgroup_ssid_enabled(ss->id))
4409 		return 0;
4410 
4411 	if (!cfts || cfts[0].name[0] == '\0')
4412 		return 0;
4413 
4414 	ret = cgroup_init_cftypes(ss, cfts);
4415 	if (ret)
4416 		return ret;
4417 
4418 	cgroup_lock();
4419 
4420 	list_add_tail(&cfts->node, &ss->cfts);
4421 	ret = cgroup_apply_cftypes(cfts, true);
4422 	if (ret)
4423 		cgroup_rm_cftypes_locked(cfts);
4424 
4425 	cgroup_unlock();
4426 	return ret;
4427 }
4428 
4429 /**
4430  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4431  * @ss: target cgroup subsystem
4432  * @cfts: zero-length name terminated array of cftypes
4433  *
4434  * Similar to cgroup_add_cftypes() but the added files are only used for
4435  * the default hierarchy.
4436  */
4437 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4438 {
4439 	struct cftype *cft;
4440 
4441 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4442 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4443 	return cgroup_add_cftypes(ss, cfts);
4444 }
4445 
4446 /**
4447  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4448  * @ss: target cgroup subsystem
4449  * @cfts: zero-length name terminated array of cftypes
4450  *
4451  * Similar to cgroup_add_cftypes() but the added files are only used for
4452  * the legacy hierarchies.
4453  */
4454 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4455 {
4456 	struct cftype *cft;
4457 
4458 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4459 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4460 	return cgroup_add_cftypes(ss, cfts);
4461 }
4462 
4463 /**
4464  * cgroup_file_notify - generate a file modified event for a cgroup_file
4465  * @cfile: target cgroup_file
4466  *
4467  * @cfile must have been obtained by setting cftype->file_offset.
4468  */
4469 void cgroup_file_notify(struct cgroup_file *cfile)
4470 {
4471 	unsigned long flags;
4472 
4473 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4474 	if (cfile->kn) {
4475 		unsigned long last = cfile->notified_at;
4476 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4477 
4478 		if (time_in_range(jiffies, last, next)) {
4479 			timer_reduce(&cfile->notify_timer, next);
4480 		} else {
4481 			kernfs_notify(cfile->kn);
4482 			cfile->notified_at = jiffies;
4483 		}
4484 	}
4485 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4486 }
4487 
4488 /**
4489  * cgroup_file_show - show or hide a hidden cgroup file
4490  * @cfile: target cgroup_file obtained by setting cftype->file_offset
4491  * @show: whether to show or hide
4492  */
4493 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4494 {
4495 	struct kernfs_node *kn;
4496 
4497 	spin_lock_irq(&cgroup_file_kn_lock);
4498 	kn = cfile->kn;
4499 	kernfs_get(kn);
4500 	spin_unlock_irq(&cgroup_file_kn_lock);
4501 
4502 	if (kn)
4503 		kernfs_show(kn, show);
4504 
4505 	kernfs_put(kn);
4506 }
4507 
4508 /**
4509  * css_next_child - find the next child of a given css
4510  * @pos: the current position (%NULL to initiate traversal)
4511  * @parent: css whose children to walk
4512  *
4513  * This function returns the next child of @parent and should be called
4514  * under either cgroup_mutex or RCU read lock.  The only requirement is
4515  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4516  * be returned regardless of their states.
4517  *
4518  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4519  * css which finished ->css_online() is guaranteed to be visible in the
4520  * future iterations and will stay visible until the last reference is put.
4521  * A css which hasn't finished ->css_online() or already finished
4522  * ->css_offline() may show up during traversal.  It's each subsystem's
4523  * responsibility to synchronize against on/offlining.
4524  */
4525 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4526 					   struct cgroup_subsys_state *parent)
4527 {
4528 	struct cgroup_subsys_state *next;
4529 
4530 	cgroup_assert_mutex_or_rcu_locked();
4531 
4532 	/*
4533 	 * @pos could already have been unlinked from the sibling list.
4534 	 * Once a cgroup is removed, its ->sibling.next is no longer
4535 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4536 	 * @pos is taken off list, at which time its next pointer is valid,
4537 	 * and, as releases are serialized, the one pointed to by the next
4538 	 * pointer is guaranteed to not have started release yet.  This
4539 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4540 	 * critical section, the one pointed to by its next pointer is
4541 	 * guaranteed to not have finished its RCU grace period even if we
4542 	 * have dropped rcu_read_lock() in-between iterations.
4543 	 *
4544 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4545 	 * dereferenced; however, as each css is given a monotonically
4546 	 * increasing unique serial number and always appended to the
4547 	 * sibling list, the next one can be found by walking the parent's
4548 	 * children until the first css with higher serial number than
4549 	 * @pos's.  While this path can be slower, it happens iff iteration
4550 	 * races against release and the race window is very small.
4551 	 */
4552 	if (!pos) {
4553 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4554 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4555 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4556 	} else {
4557 		list_for_each_entry_rcu(next, &parent->children, sibling,
4558 					lockdep_is_held(&cgroup_mutex))
4559 			if (next->serial_nr > pos->serial_nr)
4560 				break;
4561 	}
4562 
4563 	/*
4564 	 * @next, if not pointing to the head, can be dereferenced and is
4565 	 * the next sibling.
4566 	 */
4567 	if (&next->sibling != &parent->children)
4568 		return next;
4569 	return NULL;
4570 }
4571 
4572 /**
4573  * css_next_descendant_pre - find the next descendant for pre-order walk
4574  * @pos: the current position (%NULL to initiate traversal)
4575  * @root: css whose descendants to walk
4576  *
4577  * To be used by css_for_each_descendant_pre().  Find the next descendant
4578  * to visit for pre-order traversal of @root's descendants.  @root is
4579  * included in the iteration and the first node to be visited.
4580  *
4581  * While this function requires cgroup_mutex or RCU read locking, it
4582  * doesn't require the whole traversal to be contained in a single critical
4583  * section.  This function will return the correct next descendant as long
4584  * as both @pos and @root are accessible and @pos is a descendant of @root.
4585  *
4586  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4587  * css which finished ->css_online() is guaranteed to be visible in the
4588  * future iterations and will stay visible until the last reference is put.
4589  * A css which hasn't finished ->css_online() or already finished
4590  * ->css_offline() may show up during traversal.  It's each subsystem's
4591  * responsibility to synchronize against on/offlining.
4592  */
4593 struct cgroup_subsys_state *
4594 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4595 			struct cgroup_subsys_state *root)
4596 {
4597 	struct cgroup_subsys_state *next;
4598 
4599 	cgroup_assert_mutex_or_rcu_locked();
4600 
4601 	/* if first iteration, visit @root */
4602 	if (!pos)
4603 		return root;
4604 
4605 	/* visit the first child if exists */
4606 	next = css_next_child(NULL, pos);
4607 	if (next)
4608 		return next;
4609 
4610 	/* no child, visit my or the closest ancestor's next sibling */
4611 	while (pos != root) {
4612 		next = css_next_child(pos, pos->parent);
4613 		if (next)
4614 			return next;
4615 		pos = pos->parent;
4616 	}
4617 
4618 	return NULL;
4619 }
4620 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4621 
4622 /**
4623  * css_rightmost_descendant - return the rightmost descendant of a css
4624  * @pos: css of interest
4625  *
4626  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4627  * is returned.  This can be used during pre-order traversal to skip
4628  * subtree of @pos.
4629  *
4630  * While this function requires cgroup_mutex or RCU read locking, it
4631  * doesn't require the whole traversal to be contained in a single critical
4632  * section.  This function will return the correct rightmost descendant as
4633  * long as @pos is accessible.
4634  */
4635 struct cgroup_subsys_state *
4636 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4637 {
4638 	struct cgroup_subsys_state *last, *tmp;
4639 
4640 	cgroup_assert_mutex_or_rcu_locked();
4641 
4642 	do {
4643 		last = pos;
4644 		/* ->prev isn't RCU safe, walk ->next till the end */
4645 		pos = NULL;
4646 		css_for_each_child(tmp, last)
4647 			pos = tmp;
4648 	} while (pos);
4649 
4650 	return last;
4651 }
4652 
4653 static struct cgroup_subsys_state *
4654 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4655 {
4656 	struct cgroup_subsys_state *last;
4657 
4658 	do {
4659 		last = pos;
4660 		pos = css_next_child(NULL, pos);
4661 	} while (pos);
4662 
4663 	return last;
4664 }
4665 
4666 /**
4667  * css_next_descendant_post - find the next descendant for post-order walk
4668  * @pos: the current position (%NULL to initiate traversal)
4669  * @root: css whose descendants to walk
4670  *
4671  * To be used by css_for_each_descendant_post().  Find the next descendant
4672  * to visit for post-order traversal of @root's descendants.  @root is
4673  * included in the iteration and the last node to be visited.
4674  *
4675  * While this function requires cgroup_mutex or RCU read locking, it
4676  * doesn't require the whole traversal to be contained in a single critical
4677  * section.  This function will return the correct next descendant as long
4678  * as both @pos and @cgroup are accessible and @pos is a descendant of
4679  * @cgroup.
4680  *
4681  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4682  * css which finished ->css_online() is guaranteed to be visible in the
4683  * future iterations and will stay visible until the last reference is put.
4684  * A css which hasn't finished ->css_online() or already finished
4685  * ->css_offline() may show up during traversal.  It's each subsystem's
4686  * responsibility to synchronize against on/offlining.
4687  */
4688 struct cgroup_subsys_state *
4689 css_next_descendant_post(struct cgroup_subsys_state *pos,
4690 			 struct cgroup_subsys_state *root)
4691 {
4692 	struct cgroup_subsys_state *next;
4693 
4694 	cgroup_assert_mutex_or_rcu_locked();
4695 
4696 	/* if first iteration, visit leftmost descendant which may be @root */
4697 	if (!pos)
4698 		return css_leftmost_descendant(root);
4699 
4700 	/* if we visited @root, we're done */
4701 	if (pos == root)
4702 		return NULL;
4703 
4704 	/* if there's an unvisited sibling, visit its leftmost descendant */
4705 	next = css_next_child(pos, pos->parent);
4706 	if (next)
4707 		return css_leftmost_descendant(next);
4708 
4709 	/* no sibling left, visit parent */
4710 	return pos->parent;
4711 }
4712 
4713 /**
4714  * css_has_online_children - does a css have online children
4715  * @css: the target css
4716  *
4717  * Returns %true if @css has any online children; otherwise, %false.  This
4718  * function can be called from any context but the caller is responsible
4719  * for synchronizing against on/offlining as necessary.
4720  */
4721 bool css_has_online_children(struct cgroup_subsys_state *css)
4722 {
4723 	struct cgroup_subsys_state *child;
4724 	bool ret = false;
4725 
4726 	rcu_read_lock();
4727 	css_for_each_child(child, css) {
4728 		if (child->flags & CSS_ONLINE) {
4729 			ret = true;
4730 			break;
4731 		}
4732 	}
4733 	rcu_read_unlock();
4734 	return ret;
4735 }
4736 
4737 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4738 {
4739 	struct list_head *l;
4740 	struct cgrp_cset_link *link;
4741 	struct css_set *cset;
4742 
4743 	lockdep_assert_held(&css_set_lock);
4744 
4745 	/* find the next threaded cset */
4746 	if (it->tcset_pos) {
4747 		l = it->tcset_pos->next;
4748 
4749 		if (l != it->tcset_head) {
4750 			it->tcset_pos = l;
4751 			return container_of(l, struct css_set,
4752 					    threaded_csets_node);
4753 		}
4754 
4755 		it->tcset_pos = NULL;
4756 	}
4757 
4758 	/* find the next cset */
4759 	l = it->cset_pos;
4760 	l = l->next;
4761 	if (l == it->cset_head) {
4762 		it->cset_pos = NULL;
4763 		return NULL;
4764 	}
4765 
4766 	if (it->ss) {
4767 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4768 	} else {
4769 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4770 		cset = link->cset;
4771 	}
4772 
4773 	it->cset_pos = l;
4774 
4775 	/* initialize threaded css_set walking */
4776 	if (it->flags & CSS_TASK_ITER_THREADED) {
4777 		if (it->cur_dcset)
4778 			put_css_set_locked(it->cur_dcset);
4779 		it->cur_dcset = cset;
4780 		get_css_set(cset);
4781 
4782 		it->tcset_head = &cset->threaded_csets;
4783 		it->tcset_pos = &cset->threaded_csets;
4784 	}
4785 
4786 	return cset;
4787 }
4788 
4789 /**
4790  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4791  * @it: the iterator to advance
4792  *
4793  * Advance @it to the next css_set to walk.
4794  */
4795 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4796 {
4797 	struct css_set *cset;
4798 
4799 	lockdep_assert_held(&css_set_lock);
4800 
4801 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4802 	while ((cset = css_task_iter_next_css_set(it))) {
4803 		if (!list_empty(&cset->tasks)) {
4804 			it->cur_tasks_head = &cset->tasks;
4805 			break;
4806 		} else if (!list_empty(&cset->mg_tasks)) {
4807 			it->cur_tasks_head = &cset->mg_tasks;
4808 			break;
4809 		} else if (!list_empty(&cset->dying_tasks)) {
4810 			it->cur_tasks_head = &cset->dying_tasks;
4811 			break;
4812 		}
4813 	}
4814 	if (!cset) {
4815 		it->task_pos = NULL;
4816 		return;
4817 	}
4818 	it->task_pos = it->cur_tasks_head->next;
4819 
4820 	/*
4821 	 * We don't keep css_sets locked across iteration steps and thus
4822 	 * need to take steps to ensure that iteration can be resumed after
4823 	 * the lock is re-acquired.  Iteration is performed at two levels -
4824 	 * css_sets and tasks in them.
4825 	 *
4826 	 * Once created, a css_set never leaves its cgroup lists, so a
4827 	 * pinned css_set is guaranteed to stay put and we can resume
4828 	 * iteration afterwards.
4829 	 *
4830 	 * Tasks may leave @cset across iteration steps.  This is resolved
4831 	 * by registering each iterator with the css_set currently being
4832 	 * walked and making css_set_move_task() advance iterators whose
4833 	 * next task is leaving.
4834 	 */
4835 	if (it->cur_cset) {
4836 		list_del(&it->iters_node);
4837 		put_css_set_locked(it->cur_cset);
4838 	}
4839 	get_css_set(cset);
4840 	it->cur_cset = cset;
4841 	list_add(&it->iters_node, &cset->task_iters);
4842 }
4843 
4844 static void css_task_iter_skip(struct css_task_iter *it,
4845 			       struct task_struct *task)
4846 {
4847 	lockdep_assert_held(&css_set_lock);
4848 
4849 	if (it->task_pos == &task->cg_list) {
4850 		it->task_pos = it->task_pos->next;
4851 		it->flags |= CSS_TASK_ITER_SKIPPED;
4852 	}
4853 }
4854 
4855 static void css_task_iter_advance(struct css_task_iter *it)
4856 {
4857 	struct task_struct *task;
4858 
4859 	lockdep_assert_held(&css_set_lock);
4860 repeat:
4861 	if (it->task_pos) {
4862 		/*
4863 		 * Advance iterator to find next entry. We go through cset
4864 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4865 		 * the next cset.
4866 		 */
4867 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4868 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4869 		else
4870 			it->task_pos = it->task_pos->next;
4871 
4872 		if (it->task_pos == &it->cur_cset->tasks) {
4873 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4874 			it->task_pos = it->cur_tasks_head->next;
4875 		}
4876 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4877 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4878 			it->task_pos = it->cur_tasks_head->next;
4879 		}
4880 		if (it->task_pos == &it->cur_cset->dying_tasks)
4881 			css_task_iter_advance_css_set(it);
4882 	} else {
4883 		/* called from start, proceed to the first cset */
4884 		css_task_iter_advance_css_set(it);
4885 	}
4886 
4887 	if (!it->task_pos)
4888 		return;
4889 
4890 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4891 
4892 	if (it->flags & CSS_TASK_ITER_PROCS) {
4893 		/* if PROCS, skip over tasks which aren't group leaders */
4894 		if (!thread_group_leader(task))
4895 			goto repeat;
4896 
4897 		/* and dying leaders w/o live member threads */
4898 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4899 		    !atomic_read(&task->signal->live))
4900 			goto repeat;
4901 	} else {
4902 		/* skip all dying ones */
4903 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4904 			goto repeat;
4905 	}
4906 }
4907 
4908 /**
4909  * css_task_iter_start - initiate task iteration
4910  * @css: the css to walk tasks of
4911  * @flags: CSS_TASK_ITER_* flags
4912  * @it: the task iterator to use
4913  *
4914  * Initiate iteration through the tasks of @css.  The caller can call
4915  * css_task_iter_next() to walk through the tasks until the function
4916  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4917  * called.
4918  */
4919 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4920 			 struct css_task_iter *it)
4921 {
4922 	unsigned long irqflags;
4923 
4924 	memset(it, 0, sizeof(*it));
4925 
4926 	spin_lock_irqsave(&css_set_lock, irqflags);
4927 
4928 	it->ss = css->ss;
4929 	it->flags = flags;
4930 
4931 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4932 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4933 	else
4934 		it->cset_pos = &css->cgroup->cset_links;
4935 
4936 	it->cset_head = it->cset_pos;
4937 
4938 	css_task_iter_advance(it);
4939 
4940 	spin_unlock_irqrestore(&css_set_lock, irqflags);
4941 }
4942 
4943 /**
4944  * css_task_iter_next - return the next task for the iterator
4945  * @it: the task iterator being iterated
4946  *
4947  * The "next" function for task iteration.  @it should have been
4948  * initialized via css_task_iter_start().  Returns NULL when the iteration
4949  * reaches the end.
4950  */
4951 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4952 {
4953 	unsigned long irqflags;
4954 
4955 	if (it->cur_task) {
4956 		put_task_struct(it->cur_task);
4957 		it->cur_task = NULL;
4958 	}
4959 
4960 	spin_lock_irqsave(&css_set_lock, irqflags);
4961 
4962 	/* @it may be half-advanced by skips, finish advancing */
4963 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4964 		css_task_iter_advance(it);
4965 
4966 	if (it->task_pos) {
4967 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4968 					  cg_list);
4969 		get_task_struct(it->cur_task);
4970 		css_task_iter_advance(it);
4971 	}
4972 
4973 	spin_unlock_irqrestore(&css_set_lock, irqflags);
4974 
4975 	return it->cur_task;
4976 }
4977 
4978 /**
4979  * css_task_iter_end - finish task iteration
4980  * @it: the task iterator to finish
4981  *
4982  * Finish task iteration started by css_task_iter_start().
4983  */
4984 void css_task_iter_end(struct css_task_iter *it)
4985 {
4986 	unsigned long irqflags;
4987 
4988 	if (it->cur_cset) {
4989 		spin_lock_irqsave(&css_set_lock, irqflags);
4990 		list_del(&it->iters_node);
4991 		put_css_set_locked(it->cur_cset);
4992 		spin_unlock_irqrestore(&css_set_lock, irqflags);
4993 	}
4994 
4995 	if (it->cur_dcset)
4996 		put_css_set(it->cur_dcset);
4997 
4998 	if (it->cur_task)
4999 		put_task_struct(it->cur_task);
5000 }
5001 
5002 static void cgroup_procs_release(struct kernfs_open_file *of)
5003 {
5004 	struct cgroup_file_ctx *ctx = of->priv;
5005 
5006 	if (ctx->procs.started)
5007 		css_task_iter_end(&ctx->procs.iter);
5008 }
5009 
5010 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5011 {
5012 	struct kernfs_open_file *of = s->private;
5013 	struct cgroup_file_ctx *ctx = of->priv;
5014 
5015 	if (pos)
5016 		(*pos)++;
5017 
5018 	return css_task_iter_next(&ctx->procs.iter);
5019 }
5020 
5021 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5022 				  unsigned int iter_flags)
5023 {
5024 	struct kernfs_open_file *of = s->private;
5025 	struct cgroup *cgrp = seq_css(s)->cgroup;
5026 	struct cgroup_file_ctx *ctx = of->priv;
5027 	struct css_task_iter *it = &ctx->procs.iter;
5028 
5029 	/*
5030 	 * When a seq_file is seeked, it's always traversed sequentially
5031 	 * from position 0, so we can simply keep iterating on !0 *pos.
5032 	 */
5033 	if (!ctx->procs.started) {
5034 		if (WARN_ON_ONCE((*pos)))
5035 			return ERR_PTR(-EINVAL);
5036 		css_task_iter_start(&cgrp->self, iter_flags, it);
5037 		ctx->procs.started = true;
5038 	} else if (!(*pos)) {
5039 		css_task_iter_end(it);
5040 		css_task_iter_start(&cgrp->self, iter_flags, it);
5041 	} else
5042 		return it->cur_task;
5043 
5044 	return cgroup_procs_next(s, NULL, NULL);
5045 }
5046 
5047 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5048 {
5049 	struct cgroup *cgrp = seq_css(s)->cgroup;
5050 
5051 	/*
5052 	 * All processes of a threaded subtree belong to the domain cgroup
5053 	 * of the subtree.  Only threads can be distributed across the
5054 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
5055 	 * They're always empty anyway.
5056 	 */
5057 	if (cgroup_is_threaded(cgrp))
5058 		return ERR_PTR(-EOPNOTSUPP);
5059 
5060 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5061 					    CSS_TASK_ITER_THREADED);
5062 }
5063 
5064 static int cgroup_procs_show(struct seq_file *s, void *v)
5065 {
5066 	seq_printf(s, "%d\n", task_pid_vnr(v));
5067 	return 0;
5068 }
5069 
5070 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5071 {
5072 	int ret;
5073 	struct inode *inode;
5074 
5075 	lockdep_assert_held(&cgroup_mutex);
5076 
5077 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5078 	if (!inode)
5079 		return -ENOMEM;
5080 
5081 	ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5082 	iput(inode);
5083 	return ret;
5084 }
5085 
5086 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5087 					 struct cgroup *dst_cgrp,
5088 					 struct super_block *sb,
5089 					 struct cgroup_namespace *ns)
5090 {
5091 	struct cgroup *com_cgrp = src_cgrp;
5092 	int ret;
5093 
5094 	lockdep_assert_held(&cgroup_mutex);
5095 
5096 	/* find the common ancestor */
5097 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5098 		com_cgrp = cgroup_parent(com_cgrp);
5099 
5100 	/* %current should be authorized to migrate to the common ancestor */
5101 	ret = cgroup_may_write(com_cgrp, sb);
5102 	if (ret)
5103 		return ret;
5104 
5105 	/*
5106 	 * If namespaces are delegation boundaries, %current must be able
5107 	 * to see both source and destination cgroups from its namespace.
5108 	 */
5109 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5110 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5111 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5112 		return -ENOENT;
5113 
5114 	return 0;
5115 }
5116 
5117 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5118 				     struct cgroup *dst_cgrp,
5119 				     struct super_block *sb, bool threadgroup,
5120 				     struct cgroup_namespace *ns)
5121 {
5122 	int ret = 0;
5123 
5124 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5125 	if (ret)
5126 		return ret;
5127 
5128 	ret = cgroup_migrate_vet_dst(dst_cgrp);
5129 	if (ret)
5130 		return ret;
5131 
5132 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5133 		ret = -EOPNOTSUPP;
5134 
5135 	return ret;
5136 }
5137 
5138 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5139 				    bool threadgroup)
5140 {
5141 	struct cgroup_file_ctx *ctx = of->priv;
5142 	struct cgroup *src_cgrp, *dst_cgrp;
5143 	struct task_struct *task;
5144 	const struct cred *saved_cred;
5145 	ssize_t ret;
5146 	bool threadgroup_locked;
5147 
5148 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5149 	if (!dst_cgrp)
5150 		return -ENODEV;
5151 
5152 	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5153 	ret = PTR_ERR_OR_ZERO(task);
5154 	if (ret)
5155 		goto out_unlock;
5156 
5157 	/* find the source cgroup */
5158 	spin_lock_irq(&css_set_lock);
5159 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5160 	spin_unlock_irq(&css_set_lock);
5161 
5162 	/*
5163 	 * Process and thread migrations follow same delegation rule. Check
5164 	 * permissions using the credentials from file open to protect against
5165 	 * inherited fd attacks.
5166 	 */
5167 	saved_cred = override_creds(of->file->f_cred);
5168 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5169 					of->file->f_path.dentry->d_sb,
5170 					threadgroup, ctx->ns);
5171 	revert_creds(saved_cred);
5172 	if (ret)
5173 		goto out_finish;
5174 
5175 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5176 
5177 out_finish:
5178 	cgroup_procs_write_finish(task, threadgroup_locked);
5179 out_unlock:
5180 	cgroup_kn_unlock(of->kn);
5181 
5182 	return ret;
5183 }
5184 
5185 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5186 				  char *buf, size_t nbytes, loff_t off)
5187 {
5188 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5189 }
5190 
5191 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5192 {
5193 	return __cgroup_procs_start(s, pos, 0);
5194 }
5195 
5196 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5197 				    char *buf, size_t nbytes, loff_t off)
5198 {
5199 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5200 }
5201 
5202 /* cgroup core interface files for the default hierarchy */
5203 static struct cftype cgroup_base_files[] = {
5204 	{
5205 		.name = "cgroup.type",
5206 		.flags = CFTYPE_NOT_ON_ROOT,
5207 		.seq_show = cgroup_type_show,
5208 		.write = cgroup_type_write,
5209 	},
5210 	{
5211 		.name = "cgroup.procs",
5212 		.flags = CFTYPE_NS_DELEGATABLE,
5213 		.file_offset = offsetof(struct cgroup, procs_file),
5214 		.release = cgroup_procs_release,
5215 		.seq_start = cgroup_procs_start,
5216 		.seq_next = cgroup_procs_next,
5217 		.seq_show = cgroup_procs_show,
5218 		.write = cgroup_procs_write,
5219 	},
5220 	{
5221 		.name = "cgroup.threads",
5222 		.flags = CFTYPE_NS_DELEGATABLE,
5223 		.release = cgroup_procs_release,
5224 		.seq_start = cgroup_threads_start,
5225 		.seq_next = cgroup_procs_next,
5226 		.seq_show = cgroup_procs_show,
5227 		.write = cgroup_threads_write,
5228 	},
5229 	{
5230 		.name = "cgroup.controllers",
5231 		.seq_show = cgroup_controllers_show,
5232 	},
5233 	{
5234 		.name = "cgroup.subtree_control",
5235 		.flags = CFTYPE_NS_DELEGATABLE,
5236 		.seq_show = cgroup_subtree_control_show,
5237 		.write = cgroup_subtree_control_write,
5238 	},
5239 	{
5240 		.name = "cgroup.events",
5241 		.flags = CFTYPE_NOT_ON_ROOT,
5242 		.file_offset = offsetof(struct cgroup, events_file),
5243 		.seq_show = cgroup_events_show,
5244 	},
5245 	{
5246 		.name = "cgroup.max.descendants",
5247 		.seq_show = cgroup_max_descendants_show,
5248 		.write = cgroup_max_descendants_write,
5249 	},
5250 	{
5251 		.name = "cgroup.max.depth",
5252 		.seq_show = cgroup_max_depth_show,
5253 		.write = cgroup_max_depth_write,
5254 	},
5255 	{
5256 		.name = "cgroup.stat",
5257 		.seq_show = cgroup_stat_show,
5258 	},
5259 	{
5260 		.name = "cgroup.freeze",
5261 		.flags = CFTYPE_NOT_ON_ROOT,
5262 		.seq_show = cgroup_freeze_show,
5263 		.write = cgroup_freeze_write,
5264 	},
5265 	{
5266 		.name = "cgroup.kill",
5267 		.flags = CFTYPE_NOT_ON_ROOT,
5268 		.write = cgroup_kill_write,
5269 	},
5270 	{
5271 		.name = "cpu.stat",
5272 		.seq_show = cpu_stat_show,
5273 	},
5274 	{
5275 		.name = "cpu.stat.local",
5276 		.seq_show = cpu_local_stat_show,
5277 	},
5278 	{ }	/* terminate */
5279 };
5280 
5281 static struct cftype cgroup_psi_files[] = {
5282 #ifdef CONFIG_PSI
5283 	{
5284 		.name = "io.pressure",
5285 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5286 		.seq_show = cgroup_io_pressure_show,
5287 		.write = cgroup_io_pressure_write,
5288 		.poll = cgroup_pressure_poll,
5289 		.release = cgroup_pressure_release,
5290 	},
5291 	{
5292 		.name = "memory.pressure",
5293 		.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5294 		.seq_show = cgroup_memory_pressure_show,
5295 		.write = cgroup_memory_pressure_write,
5296 		.poll = cgroup_pressure_poll,
5297 		.release = cgroup_pressure_release,
5298 	},
5299 	{
5300 		.name = "cpu.pressure",
5301 		.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5302 		.seq_show = cgroup_cpu_pressure_show,
5303 		.write = cgroup_cpu_pressure_write,
5304 		.poll = cgroup_pressure_poll,
5305 		.release = cgroup_pressure_release,
5306 	},
5307 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5308 	{
5309 		.name = "irq.pressure",
5310 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5311 		.seq_show = cgroup_irq_pressure_show,
5312 		.write = cgroup_irq_pressure_write,
5313 		.poll = cgroup_pressure_poll,
5314 		.release = cgroup_pressure_release,
5315 	},
5316 #endif
5317 	{
5318 		.name = "cgroup.pressure",
5319 		.seq_show = cgroup_pressure_show,
5320 		.write = cgroup_pressure_write,
5321 	},
5322 #endif /* CONFIG_PSI */
5323 	{ }	/* terminate */
5324 };
5325 
5326 /*
5327  * css destruction is four-stage process.
5328  *
5329  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5330  *    Implemented in kill_css().
5331  *
5332  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5333  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5334  *    offlined by invoking offline_css().  After offlining, the base ref is
5335  *    put.  Implemented in css_killed_work_fn().
5336  *
5337  * 3. When the percpu_ref reaches zero, the only possible remaining
5338  *    accessors are inside RCU read sections.  css_release() schedules the
5339  *    RCU callback.
5340  *
5341  * 4. After the grace period, the css can be freed.  Implemented in
5342  *    css_free_rwork_fn().
5343  *
5344  * It is actually hairier because both step 2 and 4 require process context
5345  * and thus involve punting to css->destroy_work adding two additional
5346  * steps to the already complex sequence.
5347  */
5348 static void css_free_rwork_fn(struct work_struct *work)
5349 {
5350 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5351 				struct cgroup_subsys_state, destroy_rwork);
5352 	struct cgroup_subsys *ss = css->ss;
5353 	struct cgroup *cgrp = css->cgroup;
5354 
5355 	percpu_ref_exit(&css->refcnt);
5356 
5357 	if (ss) {
5358 		/* css free path */
5359 		struct cgroup_subsys_state *parent = css->parent;
5360 		int id = css->id;
5361 
5362 		ss->css_free(css);
5363 		cgroup_idr_remove(&ss->css_idr, id);
5364 		cgroup_put(cgrp);
5365 
5366 		if (parent)
5367 			css_put(parent);
5368 	} else {
5369 		/* cgroup free path */
5370 		atomic_dec(&cgrp->root->nr_cgrps);
5371 		cgroup1_pidlist_destroy_all(cgrp);
5372 		cancel_work_sync(&cgrp->release_agent_work);
5373 		bpf_cgrp_storage_free(cgrp);
5374 
5375 		if (cgroup_parent(cgrp)) {
5376 			/*
5377 			 * We get a ref to the parent, and put the ref when
5378 			 * this cgroup is being freed, so it's guaranteed
5379 			 * that the parent won't be destroyed before its
5380 			 * children.
5381 			 */
5382 			cgroup_put(cgroup_parent(cgrp));
5383 			kernfs_put(cgrp->kn);
5384 			psi_cgroup_free(cgrp);
5385 			cgroup_rstat_exit(cgrp);
5386 			kfree(cgrp);
5387 		} else {
5388 			/*
5389 			 * This is root cgroup's refcnt reaching zero,
5390 			 * which indicates that the root should be
5391 			 * released.
5392 			 */
5393 			cgroup_destroy_root(cgrp->root);
5394 		}
5395 	}
5396 }
5397 
5398 static void css_release_work_fn(struct work_struct *work)
5399 {
5400 	struct cgroup_subsys_state *css =
5401 		container_of(work, struct cgroup_subsys_state, destroy_work);
5402 	struct cgroup_subsys *ss = css->ss;
5403 	struct cgroup *cgrp = css->cgroup;
5404 
5405 	cgroup_lock();
5406 
5407 	css->flags |= CSS_RELEASED;
5408 	list_del_rcu(&css->sibling);
5409 
5410 	if (ss) {
5411 		/* css release path */
5412 		if (!list_empty(&css->rstat_css_node)) {
5413 			cgroup_rstat_flush(cgrp);
5414 			list_del_rcu(&css->rstat_css_node);
5415 		}
5416 
5417 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5418 		if (ss->css_released)
5419 			ss->css_released(css);
5420 	} else {
5421 		struct cgroup *tcgrp;
5422 
5423 		/* cgroup release path */
5424 		TRACE_CGROUP_PATH(release, cgrp);
5425 
5426 		cgroup_rstat_flush(cgrp);
5427 
5428 		spin_lock_irq(&css_set_lock);
5429 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5430 		     tcgrp = cgroup_parent(tcgrp))
5431 			tcgrp->nr_dying_descendants--;
5432 		spin_unlock_irq(&css_set_lock);
5433 
5434 		/*
5435 		 * There are two control paths which try to determine
5436 		 * cgroup from dentry without going through kernfs -
5437 		 * cgroupstats_build() and css_tryget_online_from_dir().
5438 		 * Those are supported by RCU protecting clearing of
5439 		 * cgrp->kn->priv backpointer.
5440 		 */
5441 		if (cgrp->kn)
5442 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5443 					 NULL);
5444 	}
5445 
5446 	cgroup_unlock();
5447 
5448 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5449 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5450 }
5451 
5452 static void css_release(struct percpu_ref *ref)
5453 {
5454 	struct cgroup_subsys_state *css =
5455 		container_of(ref, struct cgroup_subsys_state, refcnt);
5456 
5457 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5458 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5459 }
5460 
5461 static void init_and_link_css(struct cgroup_subsys_state *css,
5462 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5463 {
5464 	lockdep_assert_held(&cgroup_mutex);
5465 
5466 	cgroup_get_live(cgrp);
5467 
5468 	memset(css, 0, sizeof(*css));
5469 	css->cgroup = cgrp;
5470 	css->ss = ss;
5471 	css->id = -1;
5472 	INIT_LIST_HEAD(&css->sibling);
5473 	INIT_LIST_HEAD(&css->children);
5474 	INIT_LIST_HEAD(&css->rstat_css_node);
5475 	css->serial_nr = css_serial_nr_next++;
5476 	atomic_set(&css->online_cnt, 0);
5477 
5478 	if (cgroup_parent(cgrp)) {
5479 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5480 		css_get(css->parent);
5481 	}
5482 
5483 	if (ss->css_rstat_flush)
5484 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5485 
5486 	BUG_ON(cgroup_css(cgrp, ss));
5487 }
5488 
5489 /* invoke ->css_online() on a new CSS and mark it online if successful */
5490 static int online_css(struct cgroup_subsys_state *css)
5491 {
5492 	struct cgroup_subsys *ss = css->ss;
5493 	int ret = 0;
5494 
5495 	lockdep_assert_held(&cgroup_mutex);
5496 
5497 	if (ss->css_online)
5498 		ret = ss->css_online(css);
5499 	if (!ret) {
5500 		css->flags |= CSS_ONLINE;
5501 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5502 
5503 		atomic_inc(&css->online_cnt);
5504 		if (css->parent)
5505 			atomic_inc(&css->parent->online_cnt);
5506 	}
5507 	return ret;
5508 }
5509 
5510 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5511 static void offline_css(struct cgroup_subsys_state *css)
5512 {
5513 	struct cgroup_subsys *ss = css->ss;
5514 
5515 	lockdep_assert_held(&cgroup_mutex);
5516 
5517 	if (!(css->flags & CSS_ONLINE))
5518 		return;
5519 
5520 	if (ss->css_offline)
5521 		ss->css_offline(css);
5522 
5523 	css->flags &= ~CSS_ONLINE;
5524 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5525 
5526 	wake_up_all(&css->cgroup->offline_waitq);
5527 }
5528 
5529 /**
5530  * css_create - create a cgroup_subsys_state
5531  * @cgrp: the cgroup new css will be associated with
5532  * @ss: the subsys of new css
5533  *
5534  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5535  * css is online and installed in @cgrp.  This function doesn't create the
5536  * interface files.  Returns 0 on success, -errno on failure.
5537  */
5538 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5539 					      struct cgroup_subsys *ss)
5540 {
5541 	struct cgroup *parent = cgroup_parent(cgrp);
5542 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5543 	struct cgroup_subsys_state *css;
5544 	int err;
5545 
5546 	lockdep_assert_held(&cgroup_mutex);
5547 
5548 	css = ss->css_alloc(parent_css);
5549 	if (!css)
5550 		css = ERR_PTR(-ENOMEM);
5551 	if (IS_ERR(css))
5552 		return css;
5553 
5554 	init_and_link_css(css, ss, cgrp);
5555 
5556 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5557 	if (err)
5558 		goto err_free_css;
5559 
5560 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5561 	if (err < 0)
5562 		goto err_free_css;
5563 	css->id = err;
5564 
5565 	/* @css is ready to be brought online now, make it visible */
5566 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5567 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5568 
5569 	err = online_css(css);
5570 	if (err)
5571 		goto err_list_del;
5572 
5573 	return css;
5574 
5575 err_list_del:
5576 	list_del_rcu(&css->sibling);
5577 err_free_css:
5578 	list_del_rcu(&css->rstat_css_node);
5579 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5580 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5581 	return ERR_PTR(err);
5582 }
5583 
5584 /*
5585  * The returned cgroup is fully initialized including its control mask, but
5586  * it doesn't have the control mask applied.
5587  */
5588 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5589 				    umode_t mode)
5590 {
5591 	struct cgroup_root *root = parent->root;
5592 	struct cgroup *cgrp, *tcgrp;
5593 	struct kernfs_node *kn;
5594 	int level = parent->level + 1;
5595 	int ret;
5596 
5597 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5598 	cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5599 	if (!cgrp)
5600 		return ERR_PTR(-ENOMEM);
5601 
5602 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5603 	if (ret)
5604 		goto out_free_cgrp;
5605 
5606 	ret = cgroup_rstat_init(cgrp);
5607 	if (ret)
5608 		goto out_cancel_ref;
5609 
5610 	/* create the directory */
5611 	kn = kernfs_create_dir_ns(parent->kn, name, mode,
5612 				  current_fsuid(), current_fsgid(),
5613 				  cgrp, NULL);
5614 	if (IS_ERR(kn)) {
5615 		ret = PTR_ERR(kn);
5616 		goto out_stat_exit;
5617 	}
5618 	cgrp->kn = kn;
5619 
5620 	init_cgroup_housekeeping(cgrp);
5621 
5622 	cgrp->self.parent = &parent->self;
5623 	cgrp->root = root;
5624 	cgrp->level = level;
5625 
5626 	ret = psi_cgroup_alloc(cgrp);
5627 	if (ret)
5628 		goto out_kernfs_remove;
5629 
5630 	ret = cgroup_bpf_inherit(cgrp);
5631 	if (ret)
5632 		goto out_psi_free;
5633 
5634 	/*
5635 	 * New cgroup inherits effective freeze counter, and
5636 	 * if the parent has to be frozen, the child has too.
5637 	 */
5638 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5639 	if (cgrp->freezer.e_freeze) {
5640 		/*
5641 		 * Set the CGRP_FREEZE flag, so when a process will be
5642 		 * attached to the child cgroup, it will become frozen.
5643 		 * At this point the new cgroup is unpopulated, so we can
5644 		 * consider it frozen immediately.
5645 		 */
5646 		set_bit(CGRP_FREEZE, &cgrp->flags);
5647 		set_bit(CGRP_FROZEN, &cgrp->flags);
5648 	}
5649 
5650 	spin_lock_irq(&css_set_lock);
5651 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5652 		cgrp->ancestors[tcgrp->level] = tcgrp;
5653 
5654 		if (tcgrp != cgrp) {
5655 			tcgrp->nr_descendants++;
5656 
5657 			/*
5658 			 * If the new cgroup is frozen, all ancestor cgroups
5659 			 * get a new frozen descendant, but their state can't
5660 			 * change because of this.
5661 			 */
5662 			if (cgrp->freezer.e_freeze)
5663 				tcgrp->freezer.nr_frozen_descendants++;
5664 		}
5665 	}
5666 	spin_unlock_irq(&css_set_lock);
5667 
5668 	if (notify_on_release(parent))
5669 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5670 
5671 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5672 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5673 
5674 	cgrp->self.serial_nr = css_serial_nr_next++;
5675 
5676 	/* allocation complete, commit to creation */
5677 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5678 	atomic_inc(&root->nr_cgrps);
5679 	cgroup_get_live(parent);
5680 
5681 	/*
5682 	 * On the default hierarchy, a child doesn't automatically inherit
5683 	 * subtree_control from the parent.  Each is configured manually.
5684 	 */
5685 	if (!cgroup_on_dfl(cgrp))
5686 		cgrp->subtree_control = cgroup_control(cgrp);
5687 
5688 	cgroup_propagate_control(cgrp);
5689 
5690 	return cgrp;
5691 
5692 out_psi_free:
5693 	psi_cgroup_free(cgrp);
5694 out_kernfs_remove:
5695 	kernfs_remove(cgrp->kn);
5696 out_stat_exit:
5697 	cgroup_rstat_exit(cgrp);
5698 out_cancel_ref:
5699 	percpu_ref_exit(&cgrp->self.refcnt);
5700 out_free_cgrp:
5701 	kfree(cgrp);
5702 	return ERR_PTR(ret);
5703 }
5704 
5705 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5706 {
5707 	struct cgroup *cgroup;
5708 	int ret = false;
5709 	int level = 1;
5710 
5711 	lockdep_assert_held(&cgroup_mutex);
5712 
5713 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5714 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5715 			goto fail;
5716 
5717 		if (level > cgroup->max_depth)
5718 			goto fail;
5719 
5720 		level++;
5721 	}
5722 
5723 	ret = true;
5724 fail:
5725 	return ret;
5726 }
5727 
5728 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5729 {
5730 	struct cgroup *parent, *cgrp;
5731 	int ret;
5732 
5733 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5734 	if (strchr(name, '\n'))
5735 		return -EINVAL;
5736 
5737 	parent = cgroup_kn_lock_live(parent_kn, false);
5738 	if (!parent)
5739 		return -ENODEV;
5740 
5741 	if (!cgroup_check_hierarchy_limits(parent)) {
5742 		ret = -EAGAIN;
5743 		goto out_unlock;
5744 	}
5745 
5746 	cgrp = cgroup_create(parent, name, mode);
5747 	if (IS_ERR(cgrp)) {
5748 		ret = PTR_ERR(cgrp);
5749 		goto out_unlock;
5750 	}
5751 
5752 	/*
5753 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5754 	 * that @cgrp->kn is always accessible.
5755 	 */
5756 	kernfs_get(cgrp->kn);
5757 
5758 	ret = css_populate_dir(&cgrp->self);
5759 	if (ret)
5760 		goto out_destroy;
5761 
5762 	ret = cgroup_apply_control_enable(cgrp);
5763 	if (ret)
5764 		goto out_destroy;
5765 
5766 	TRACE_CGROUP_PATH(mkdir, cgrp);
5767 
5768 	/* let's create and online css's */
5769 	kernfs_activate(cgrp->kn);
5770 
5771 	ret = 0;
5772 	goto out_unlock;
5773 
5774 out_destroy:
5775 	cgroup_destroy_locked(cgrp);
5776 out_unlock:
5777 	cgroup_kn_unlock(parent_kn);
5778 	return ret;
5779 }
5780 
5781 /*
5782  * This is called when the refcnt of a css is confirmed to be killed.
5783  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5784  * initiate destruction and put the css ref from kill_css().
5785  */
5786 static void css_killed_work_fn(struct work_struct *work)
5787 {
5788 	struct cgroup_subsys_state *css =
5789 		container_of(work, struct cgroup_subsys_state, destroy_work);
5790 
5791 	cgroup_lock();
5792 
5793 	do {
5794 		offline_css(css);
5795 		css_put(css);
5796 		/* @css can't go away while we're holding cgroup_mutex */
5797 		css = css->parent;
5798 	} while (css && atomic_dec_and_test(&css->online_cnt));
5799 
5800 	cgroup_unlock();
5801 }
5802 
5803 /* css kill confirmation processing requires process context, bounce */
5804 static void css_killed_ref_fn(struct percpu_ref *ref)
5805 {
5806 	struct cgroup_subsys_state *css =
5807 		container_of(ref, struct cgroup_subsys_state, refcnt);
5808 
5809 	if (atomic_dec_and_test(&css->online_cnt)) {
5810 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5811 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5812 	}
5813 }
5814 
5815 /**
5816  * kill_css - destroy a css
5817  * @css: css to destroy
5818  *
5819  * This function initiates destruction of @css by removing cgroup interface
5820  * files and putting its base reference.  ->css_offline() will be invoked
5821  * asynchronously once css_tryget_online() is guaranteed to fail and when
5822  * the reference count reaches zero, @css will be released.
5823  */
5824 static void kill_css(struct cgroup_subsys_state *css)
5825 {
5826 	lockdep_assert_held(&cgroup_mutex);
5827 
5828 	if (css->flags & CSS_DYING)
5829 		return;
5830 
5831 	css->flags |= CSS_DYING;
5832 
5833 	/*
5834 	 * This must happen before css is disassociated with its cgroup.
5835 	 * See seq_css() for details.
5836 	 */
5837 	css_clear_dir(css);
5838 
5839 	/*
5840 	 * Killing would put the base ref, but we need to keep it alive
5841 	 * until after ->css_offline().
5842 	 */
5843 	css_get(css);
5844 
5845 	/*
5846 	 * cgroup core guarantees that, by the time ->css_offline() is
5847 	 * invoked, no new css reference will be given out via
5848 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5849 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5850 	 * guarantee that the ref is seen as killed on all CPUs on return.
5851 	 *
5852 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5853 	 * css is confirmed to be seen as killed on all CPUs.
5854 	 */
5855 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5856 }
5857 
5858 /**
5859  * cgroup_destroy_locked - the first stage of cgroup destruction
5860  * @cgrp: cgroup to be destroyed
5861  *
5862  * css's make use of percpu refcnts whose killing latency shouldn't be
5863  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5864  * guarantee that css_tryget_online() won't succeed by the time
5865  * ->css_offline() is invoked.  To satisfy all the requirements,
5866  * destruction is implemented in the following two steps.
5867  *
5868  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5869  *     userland visible parts and start killing the percpu refcnts of
5870  *     css's.  Set up so that the next stage will be kicked off once all
5871  *     the percpu refcnts are confirmed to be killed.
5872  *
5873  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5874  *     rest of destruction.  Once all cgroup references are gone, the
5875  *     cgroup is RCU-freed.
5876  *
5877  * This function implements s1.  After this step, @cgrp is gone as far as
5878  * the userland is concerned and a new cgroup with the same name may be
5879  * created.  As cgroup doesn't care about the names internally, this
5880  * doesn't cause any problem.
5881  */
5882 static int cgroup_destroy_locked(struct cgroup *cgrp)
5883 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5884 {
5885 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5886 	struct cgroup_subsys_state *css;
5887 	struct cgrp_cset_link *link;
5888 	int ssid;
5889 
5890 	lockdep_assert_held(&cgroup_mutex);
5891 
5892 	/*
5893 	 * Only migration can raise populated from zero and we're already
5894 	 * holding cgroup_mutex.
5895 	 */
5896 	if (cgroup_is_populated(cgrp))
5897 		return -EBUSY;
5898 
5899 	/*
5900 	 * Make sure there's no live children.  We can't test emptiness of
5901 	 * ->self.children as dead children linger on it while being
5902 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5903 	 */
5904 	if (css_has_online_children(&cgrp->self))
5905 		return -EBUSY;
5906 
5907 	/*
5908 	 * Mark @cgrp and the associated csets dead.  The former prevents
5909 	 * further task migration and child creation by disabling
5910 	 * cgroup_kn_lock_live().  The latter makes the csets ignored by
5911 	 * the migration path.
5912 	 */
5913 	cgrp->self.flags &= ~CSS_ONLINE;
5914 
5915 	spin_lock_irq(&css_set_lock);
5916 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5917 		link->cset->dead = true;
5918 	spin_unlock_irq(&css_set_lock);
5919 
5920 	/* initiate massacre of all css's */
5921 	for_each_css(css, ssid, cgrp)
5922 		kill_css(css);
5923 
5924 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5925 	css_clear_dir(&cgrp->self);
5926 	kernfs_remove(cgrp->kn);
5927 
5928 	if (cgroup_is_threaded(cgrp))
5929 		parent->nr_threaded_children--;
5930 
5931 	spin_lock_irq(&css_set_lock);
5932 	for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5933 		tcgrp->nr_descendants--;
5934 		tcgrp->nr_dying_descendants++;
5935 		/*
5936 		 * If the dying cgroup is frozen, decrease frozen descendants
5937 		 * counters of ancestor cgroups.
5938 		 */
5939 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5940 			tcgrp->freezer.nr_frozen_descendants--;
5941 	}
5942 	spin_unlock_irq(&css_set_lock);
5943 
5944 	cgroup1_check_for_release(parent);
5945 
5946 	cgroup_bpf_offline(cgrp);
5947 
5948 	/* put the base reference */
5949 	percpu_ref_kill(&cgrp->self.refcnt);
5950 
5951 	return 0;
5952 };
5953 
5954 int cgroup_rmdir(struct kernfs_node *kn)
5955 {
5956 	struct cgroup *cgrp;
5957 	int ret = 0;
5958 
5959 	cgrp = cgroup_kn_lock_live(kn, false);
5960 	if (!cgrp)
5961 		return 0;
5962 
5963 	ret = cgroup_destroy_locked(cgrp);
5964 	if (!ret)
5965 		TRACE_CGROUP_PATH(rmdir, cgrp);
5966 
5967 	cgroup_kn_unlock(kn);
5968 	return ret;
5969 }
5970 
5971 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5972 	.show_options		= cgroup_show_options,
5973 	.mkdir			= cgroup_mkdir,
5974 	.rmdir			= cgroup_rmdir,
5975 	.show_path		= cgroup_show_path,
5976 };
5977 
5978 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5979 {
5980 	struct cgroup_subsys_state *css;
5981 
5982 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5983 
5984 	cgroup_lock();
5985 
5986 	idr_init(&ss->css_idr);
5987 	INIT_LIST_HEAD(&ss->cfts);
5988 
5989 	/* Create the root cgroup state for this subsystem */
5990 	ss->root = &cgrp_dfl_root;
5991 	css = ss->css_alloc(NULL);
5992 	/* We don't handle early failures gracefully */
5993 	BUG_ON(IS_ERR(css));
5994 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5995 
5996 	/*
5997 	 * Root csses are never destroyed and we can't initialize
5998 	 * percpu_ref during early init.  Disable refcnting.
5999 	 */
6000 	css->flags |= CSS_NO_REF;
6001 
6002 	if (early) {
6003 		/* allocation can't be done safely during early init */
6004 		css->id = 1;
6005 	} else {
6006 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6007 		BUG_ON(css->id < 0);
6008 	}
6009 
6010 	/* Update the init_css_set to contain a subsys
6011 	 * pointer to this state - since the subsystem is
6012 	 * newly registered, all tasks and hence the
6013 	 * init_css_set is in the subsystem's root cgroup. */
6014 	init_css_set.subsys[ss->id] = css;
6015 
6016 	have_fork_callback |= (bool)ss->fork << ss->id;
6017 	have_exit_callback |= (bool)ss->exit << ss->id;
6018 	have_release_callback |= (bool)ss->release << ss->id;
6019 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
6020 
6021 	/* At system boot, before all subsystems have been
6022 	 * registered, no tasks have been forked, so we don't
6023 	 * need to invoke fork callbacks here. */
6024 	BUG_ON(!list_empty(&init_task.tasks));
6025 
6026 	BUG_ON(online_css(css));
6027 
6028 	cgroup_unlock();
6029 }
6030 
6031 /**
6032  * cgroup_init_early - cgroup initialization at system boot
6033  *
6034  * Initialize cgroups at system boot, and initialize any
6035  * subsystems that request early init.
6036  */
6037 int __init cgroup_init_early(void)
6038 {
6039 	static struct cgroup_fs_context __initdata ctx;
6040 	struct cgroup_subsys *ss;
6041 	int i;
6042 
6043 	ctx.root = &cgrp_dfl_root;
6044 	init_cgroup_root(&ctx);
6045 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6046 
6047 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6048 
6049 	for_each_subsys(ss, i) {
6050 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6051 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6052 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6053 		     ss->id, ss->name);
6054 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6055 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6056 
6057 		ss->id = i;
6058 		ss->name = cgroup_subsys_name[i];
6059 		if (!ss->legacy_name)
6060 			ss->legacy_name = cgroup_subsys_name[i];
6061 
6062 		if (ss->early_init)
6063 			cgroup_init_subsys(ss, true);
6064 	}
6065 	return 0;
6066 }
6067 
6068 /**
6069  * cgroup_init - cgroup initialization
6070  *
6071  * Register cgroup filesystem and /proc file, and initialize
6072  * any subsystems that didn't request early init.
6073  */
6074 int __init cgroup_init(void)
6075 {
6076 	struct cgroup_subsys *ss;
6077 	int ssid;
6078 
6079 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6080 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6081 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6082 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6083 
6084 	cgroup_rstat_boot();
6085 
6086 	get_user_ns(init_cgroup_ns.user_ns);
6087 
6088 	cgroup_lock();
6089 
6090 	/*
6091 	 * Add init_css_set to the hash table so that dfl_root can link to
6092 	 * it during init.
6093 	 */
6094 	hash_add(css_set_table, &init_css_set.hlist,
6095 		 css_set_hash(init_css_set.subsys));
6096 
6097 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6098 
6099 	cgroup_unlock();
6100 
6101 	for_each_subsys(ss, ssid) {
6102 		if (ss->early_init) {
6103 			struct cgroup_subsys_state *css =
6104 				init_css_set.subsys[ss->id];
6105 
6106 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6107 						   GFP_KERNEL);
6108 			BUG_ON(css->id < 0);
6109 		} else {
6110 			cgroup_init_subsys(ss, false);
6111 		}
6112 
6113 		list_add_tail(&init_css_set.e_cset_node[ssid],
6114 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
6115 
6116 		/*
6117 		 * Setting dfl_root subsys_mask needs to consider the
6118 		 * disabled flag and cftype registration needs kmalloc,
6119 		 * both of which aren't available during early_init.
6120 		 */
6121 		if (!cgroup_ssid_enabled(ssid))
6122 			continue;
6123 
6124 		if (cgroup1_ssid_disabled(ssid))
6125 			pr_info("Disabling %s control group subsystem in v1 mounts\n",
6126 				ss->legacy_name);
6127 
6128 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6129 
6130 		/* implicit controllers must be threaded too */
6131 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6132 
6133 		if (ss->implicit_on_dfl)
6134 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6135 		else if (!ss->dfl_cftypes)
6136 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6137 
6138 		if (ss->threaded)
6139 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6140 
6141 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
6142 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6143 		} else {
6144 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6145 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6146 		}
6147 
6148 		if (ss->bind)
6149 			ss->bind(init_css_set.subsys[ssid]);
6150 
6151 		cgroup_lock();
6152 		css_populate_dir(init_css_set.subsys[ssid]);
6153 		cgroup_unlock();
6154 	}
6155 
6156 	/* init_css_set.subsys[] has been updated, re-hash */
6157 	hash_del(&init_css_set.hlist);
6158 	hash_add(css_set_table, &init_css_set.hlist,
6159 		 css_set_hash(init_css_set.subsys));
6160 
6161 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6162 	WARN_ON(register_filesystem(&cgroup_fs_type));
6163 	WARN_ON(register_filesystem(&cgroup2_fs_type));
6164 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6165 #ifdef CONFIG_CPUSETS
6166 	WARN_ON(register_filesystem(&cpuset_fs_type));
6167 #endif
6168 
6169 	return 0;
6170 }
6171 
6172 static int __init cgroup_wq_init(void)
6173 {
6174 	/*
6175 	 * There isn't much point in executing destruction path in
6176 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6177 	 * Use 1 for @max_active.
6178 	 *
6179 	 * We would prefer to do this in cgroup_init() above, but that
6180 	 * is called before init_workqueues(): so leave this until after.
6181 	 */
6182 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6183 	BUG_ON(!cgroup_destroy_wq);
6184 	return 0;
6185 }
6186 core_initcall(cgroup_wq_init);
6187 
6188 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6189 {
6190 	struct kernfs_node *kn;
6191 
6192 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6193 	if (!kn)
6194 		return;
6195 	kernfs_path(kn, buf, buflen);
6196 	kernfs_put(kn);
6197 }
6198 
6199 /*
6200  * cgroup_get_from_id : get the cgroup associated with cgroup id
6201  * @id: cgroup id
6202  * On success return the cgrp or ERR_PTR on failure
6203  * Only cgroups within current task's cgroup NS are valid.
6204  */
6205 struct cgroup *cgroup_get_from_id(u64 id)
6206 {
6207 	struct kernfs_node *kn;
6208 	struct cgroup *cgrp, *root_cgrp;
6209 
6210 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6211 	if (!kn)
6212 		return ERR_PTR(-ENOENT);
6213 
6214 	if (kernfs_type(kn) != KERNFS_DIR) {
6215 		kernfs_put(kn);
6216 		return ERR_PTR(-ENOENT);
6217 	}
6218 
6219 	rcu_read_lock();
6220 
6221 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6222 	if (cgrp && !cgroup_tryget(cgrp))
6223 		cgrp = NULL;
6224 
6225 	rcu_read_unlock();
6226 	kernfs_put(kn);
6227 
6228 	if (!cgrp)
6229 		return ERR_PTR(-ENOENT);
6230 
6231 	root_cgrp = current_cgns_cgroup_dfl();
6232 	if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6233 		cgroup_put(cgrp);
6234 		return ERR_PTR(-ENOENT);
6235 	}
6236 
6237 	return cgrp;
6238 }
6239 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6240 
6241 /*
6242  * proc_cgroup_show()
6243  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6244  *  - Used for /proc/<pid>/cgroup.
6245  */
6246 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6247 		     struct pid *pid, struct task_struct *tsk)
6248 {
6249 	char *buf;
6250 	int retval;
6251 	struct cgroup_root *root;
6252 
6253 	retval = -ENOMEM;
6254 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6255 	if (!buf)
6256 		goto out;
6257 
6258 	rcu_read_lock();
6259 	spin_lock_irq(&css_set_lock);
6260 
6261 	for_each_root(root) {
6262 		struct cgroup_subsys *ss;
6263 		struct cgroup *cgrp;
6264 		int ssid, count = 0;
6265 
6266 		if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6267 			continue;
6268 
6269 		cgrp = task_cgroup_from_root(tsk, root);
6270 		/* The root has already been unmounted. */
6271 		if (!cgrp)
6272 			continue;
6273 
6274 		seq_printf(m, "%d:", root->hierarchy_id);
6275 		if (root != &cgrp_dfl_root)
6276 			for_each_subsys(ss, ssid)
6277 				if (root->subsys_mask & (1 << ssid))
6278 					seq_printf(m, "%s%s", count++ ? "," : "",
6279 						   ss->legacy_name);
6280 		if (strlen(root->name))
6281 			seq_printf(m, "%sname=%s", count ? "," : "",
6282 				   root->name);
6283 		seq_putc(m, ':');
6284 		/*
6285 		 * On traditional hierarchies, all zombie tasks show up as
6286 		 * belonging to the root cgroup.  On the default hierarchy,
6287 		 * while a zombie doesn't show up in "cgroup.procs" and
6288 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6289 		 * reporting the cgroup it belonged to before exiting.  If
6290 		 * the cgroup is removed before the zombie is reaped,
6291 		 * " (deleted)" is appended to the cgroup path.
6292 		 */
6293 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6294 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6295 						current->nsproxy->cgroup_ns);
6296 			if (retval == -E2BIG)
6297 				retval = -ENAMETOOLONG;
6298 			if (retval < 0)
6299 				goto out_unlock;
6300 
6301 			seq_puts(m, buf);
6302 		} else {
6303 			seq_puts(m, "/");
6304 		}
6305 
6306 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6307 			seq_puts(m, " (deleted)\n");
6308 		else
6309 			seq_putc(m, '\n');
6310 	}
6311 
6312 	retval = 0;
6313 out_unlock:
6314 	spin_unlock_irq(&css_set_lock);
6315 	rcu_read_unlock();
6316 	kfree(buf);
6317 out:
6318 	return retval;
6319 }
6320 
6321 /**
6322  * cgroup_fork - initialize cgroup related fields during copy_process()
6323  * @child: pointer to task_struct of forking parent process.
6324  *
6325  * A task is associated with the init_css_set until cgroup_post_fork()
6326  * attaches it to the target css_set.
6327  */
6328 void cgroup_fork(struct task_struct *child)
6329 {
6330 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6331 	INIT_LIST_HEAD(&child->cg_list);
6332 }
6333 
6334 /**
6335  * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6336  * @f: file corresponding to cgroup_dir
6337  *
6338  * Find the cgroup from a file pointer associated with a cgroup directory.
6339  * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6340  * cgroup cannot be found.
6341  */
6342 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6343 {
6344 	struct cgroup_subsys_state *css;
6345 
6346 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6347 	if (IS_ERR(css))
6348 		return ERR_CAST(css);
6349 
6350 	return css->cgroup;
6351 }
6352 
6353 /**
6354  * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6355  * cgroup2.
6356  * @f: file corresponding to cgroup2_dir
6357  */
6358 static struct cgroup *cgroup_get_from_file(struct file *f)
6359 {
6360 	struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6361 
6362 	if (IS_ERR(cgrp))
6363 		return ERR_CAST(cgrp);
6364 
6365 	if (!cgroup_on_dfl(cgrp)) {
6366 		cgroup_put(cgrp);
6367 		return ERR_PTR(-EBADF);
6368 	}
6369 
6370 	return cgrp;
6371 }
6372 
6373 /**
6374  * cgroup_css_set_fork - find or create a css_set for a child process
6375  * @kargs: the arguments passed to create the child process
6376  *
6377  * This functions finds or creates a new css_set which the child
6378  * process will be attached to in cgroup_post_fork(). By default,
6379  * the child process will be given the same css_set as its parent.
6380  *
6381  * If CLONE_INTO_CGROUP is specified this function will try to find an
6382  * existing css_set which includes the requested cgroup and if not create
6383  * a new css_set that the child will be attached to later. If this function
6384  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6385  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6386  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6387  * to the target cgroup.
6388  */
6389 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6390 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6391 {
6392 	int ret;
6393 	struct cgroup *dst_cgrp = NULL;
6394 	struct css_set *cset;
6395 	struct super_block *sb;
6396 	struct file *f;
6397 
6398 	if (kargs->flags & CLONE_INTO_CGROUP)
6399 		cgroup_lock();
6400 
6401 	cgroup_threadgroup_change_begin(current);
6402 
6403 	spin_lock_irq(&css_set_lock);
6404 	cset = task_css_set(current);
6405 	get_css_set(cset);
6406 	spin_unlock_irq(&css_set_lock);
6407 
6408 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6409 		kargs->cset = cset;
6410 		return 0;
6411 	}
6412 
6413 	f = fget_raw(kargs->cgroup);
6414 	if (!f) {
6415 		ret = -EBADF;
6416 		goto err;
6417 	}
6418 	sb = f->f_path.dentry->d_sb;
6419 
6420 	dst_cgrp = cgroup_get_from_file(f);
6421 	if (IS_ERR(dst_cgrp)) {
6422 		ret = PTR_ERR(dst_cgrp);
6423 		dst_cgrp = NULL;
6424 		goto err;
6425 	}
6426 
6427 	if (cgroup_is_dead(dst_cgrp)) {
6428 		ret = -ENODEV;
6429 		goto err;
6430 	}
6431 
6432 	/*
6433 	 * Verify that we the target cgroup is writable for us. This is
6434 	 * usually done by the vfs layer but since we're not going through
6435 	 * the vfs layer here we need to do it "manually".
6436 	 */
6437 	ret = cgroup_may_write(dst_cgrp, sb);
6438 	if (ret)
6439 		goto err;
6440 
6441 	/*
6442 	 * Spawning a task directly into a cgroup works by passing a file
6443 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6444 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6445 	 * This was done on purpose so spawning into a cgroup could be
6446 	 * conceptualized as an atomic
6447 	 *
6448 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6449 	 *   write(fd, <child-pid>, ...);
6450 	 *
6451 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6452 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6453 	 * to always use the caller's credentials.
6454 	 */
6455 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6456 					!(kargs->flags & CLONE_THREAD),
6457 					current->nsproxy->cgroup_ns);
6458 	if (ret)
6459 		goto err;
6460 
6461 	kargs->cset = find_css_set(cset, dst_cgrp);
6462 	if (!kargs->cset) {
6463 		ret = -ENOMEM;
6464 		goto err;
6465 	}
6466 
6467 	put_css_set(cset);
6468 	fput(f);
6469 	kargs->cgrp = dst_cgrp;
6470 	return ret;
6471 
6472 err:
6473 	cgroup_threadgroup_change_end(current);
6474 	cgroup_unlock();
6475 	if (f)
6476 		fput(f);
6477 	if (dst_cgrp)
6478 		cgroup_put(dst_cgrp);
6479 	put_css_set(cset);
6480 	if (kargs->cset)
6481 		put_css_set(kargs->cset);
6482 	return ret;
6483 }
6484 
6485 /**
6486  * cgroup_css_set_put_fork - drop references we took during fork
6487  * @kargs: the arguments passed to create the child process
6488  *
6489  * Drop references to the prepared css_set and target cgroup if
6490  * CLONE_INTO_CGROUP was requested.
6491  */
6492 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6493 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6494 {
6495 	struct cgroup *cgrp = kargs->cgrp;
6496 	struct css_set *cset = kargs->cset;
6497 
6498 	cgroup_threadgroup_change_end(current);
6499 
6500 	if (cset) {
6501 		put_css_set(cset);
6502 		kargs->cset = NULL;
6503 	}
6504 
6505 	if (kargs->flags & CLONE_INTO_CGROUP) {
6506 		cgroup_unlock();
6507 		if (cgrp) {
6508 			cgroup_put(cgrp);
6509 			kargs->cgrp = NULL;
6510 		}
6511 	}
6512 }
6513 
6514 /**
6515  * cgroup_can_fork - called on a new task before the process is exposed
6516  * @child: the child process
6517  * @kargs: the arguments passed to create the child process
6518  *
6519  * This prepares a new css_set for the child process which the child will
6520  * be attached to in cgroup_post_fork().
6521  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6522  * callback returns an error, the fork aborts with that error code. This
6523  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6524  */
6525 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6526 {
6527 	struct cgroup_subsys *ss;
6528 	int i, j, ret;
6529 
6530 	ret = cgroup_css_set_fork(kargs);
6531 	if (ret)
6532 		return ret;
6533 
6534 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6535 		ret = ss->can_fork(child, kargs->cset);
6536 		if (ret)
6537 			goto out_revert;
6538 	} while_each_subsys_mask();
6539 
6540 	return 0;
6541 
6542 out_revert:
6543 	for_each_subsys(ss, j) {
6544 		if (j >= i)
6545 			break;
6546 		if (ss->cancel_fork)
6547 			ss->cancel_fork(child, kargs->cset);
6548 	}
6549 
6550 	cgroup_css_set_put_fork(kargs);
6551 
6552 	return ret;
6553 }
6554 
6555 /**
6556  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6557  * @child: the child process
6558  * @kargs: the arguments passed to create the child process
6559  *
6560  * This calls the cancel_fork() callbacks if a fork failed *after*
6561  * cgroup_can_fork() succeeded and cleans up references we took to
6562  * prepare a new css_set for the child process in cgroup_can_fork().
6563  */
6564 void cgroup_cancel_fork(struct task_struct *child,
6565 			struct kernel_clone_args *kargs)
6566 {
6567 	struct cgroup_subsys *ss;
6568 	int i;
6569 
6570 	for_each_subsys(ss, i)
6571 		if (ss->cancel_fork)
6572 			ss->cancel_fork(child, kargs->cset);
6573 
6574 	cgroup_css_set_put_fork(kargs);
6575 }
6576 
6577 /**
6578  * cgroup_post_fork - finalize cgroup setup for the child process
6579  * @child: the child process
6580  * @kargs: the arguments passed to create the child process
6581  *
6582  * Attach the child process to its css_set calling the subsystem fork()
6583  * callbacks.
6584  */
6585 void cgroup_post_fork(struct task_struct *child,
6586 		      struct kernel_clone_args *kargs)
6587 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6588 {
6589 	unsigned long cgrp_flags = 0;
6590 	bool kill = false;
6591 	struct cgroup_subsys *ss;
6592 	struct css_set *cset;
6593 	int i;
6594 
6595 	cset = kargs->cset;
6596 	kargs->cset = NULL;
6597 
6598 	spin_lock_irq(&css_set_lock);
6599 
6600 	/* init tasks are special, only link regular threads */
6601 	if (likely(child->pid)) {
6602 		if (kargs->cgrp)
6603 			cgrp_flags = kargs->cgrp->flags;
6604 		else
6605 			cgrp_flags = cset->dfl_cgrp->flags;
6606 
6607 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6608 		cset->nr_tasks++;
6609 		css_set_move_task(child, NULL, cset, false);
6610 	} else {
6611 		put_css_set(cset);
6612 		cset = NULL;
6613 	}
6614 
6615 	if (!(child->flags & PF_KTHREAD)) {
6616 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6617 			/*
6618 			 * If the cgroup has to be frozen, the new task has
6619 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6620 			 * get the task into the frozen state.
6621 			 */
6622 			spin_lock(&child->sighand->siglock);
6623 			WARN_ON_ONCE(child->frozen);
6624 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6625 			spin_unlock(&child->sighand->siglock);
6626 
6627 			/*
6628 			 * Calling cgroup_update_frozen() isn't required here,
6629 			 * because it will be called anyway a bit later from
6630 			 * do_freezer_trap(). So we avoid cgroup's transient
6631 			 * switch from the frozen state and back.
6632 			 */
6633 		}
6634 
6635 		/*
6636 		 * If the cgroup is to be killed notice it now and take the
6637 		 * child down right after we finished preparing it for
6638 		 * userspace.
6639 		 */
6640 		kill = test_bit(CGRP_KILL, &cgrp_flags);
6641 	}
6642 
6643 	spin_unlock_irq(&css_set_lock);
6644 
6645 	/*
6646 	 * Call ss->fork().  This must happen after @child is linked on
6647 	 * css_set; otherwise, @child might change state between ->fork()
6648 	 * and addition to css_set.
6649 	 */
6650 	do_each_subsys_mask(ss, i, have_fork_callback) {
6651 		ss->fork(child);
6652 	} while_each_subsys_mask();
6653 
6654 	/* Make the new cset the root_cset of the new cgroup namespace. */
6655 	if (kargs->flags & CLONE_NEWCGROUP) {
6656 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6657 
6658 		get_css_set(cset);
6659 		child->nsproxy->cgroup_ns->root_cset = cset;
6660 		put_css_set(rcset);
6661 	}
6662 
6663 	/* Cgroup has to be killed so take down child immediately. */
6664 	if (unlikely(kill))
6665 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6666 
6667 	cgroup_css_set_put_fork(kargs);
6668 }
6669 
6670 /**
6671  * cgroup_exit - detach cgroup from exiting task
6672  * @tsk: pointer to task_struct of exiting process
6673  *
6674  * Description: Detach cgroup from @tsk.
6675  *
6676  */
6677 void cgroup_exit(struct task_struct *tsk)
6678 {
6679 	struct cgroup_subsys *ss;
6680 	struct css_set *cset;
6681 	int i;
6682 
6683 	spin_lock_irq(&css_set_lock);
6684 
6685 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6686 	cset = task_css_set(tsk);
6687 	css_set_move_task(tsk, cset, NULL, false);
6688 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6689 	cset->nr_tasks--;
6690 
6691 	if (dl_task(tsk))
6692 		dec_dl_tasks_cs(tsk);
6693 
6694 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6695 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6696 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6697 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6698 
6699 	spin_unlock_irq(&css_set_lock);
6700 
6701 	/* see cgroup_post_fork() for details */
6702 	do_each_subsys_mask(ss, i, have_exit_callback) {
6703 		ss->exit(tsk);
6704 	} while_each_subsys_mask();
6705 }
6706 
6707 void cgroup_release(struct task_struct *task)
6708 {
6709 	struct cgroup_subsys *ss;
6710 	int ssid;
6711 
6712 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6713 		ss->release(task);
6714 	} while_each_subsys_mask();
6715 
6716 	spin_lock_irq(&css_set_lock);
6717 	css_set_skip_task_iters(task_css_set(task), task);
6718 	list_del_init(&task->cg_list);
6719 	spin_unlock_irq(&css_set_lock);
6720 }
6721 
6722 void cgroup_free(struct task_struct *task)
6723 {
6724 	struct css_set *cset = task_css_set(task);
6725 	put_css_set(cset);
6726 }
6727 
6728 static int __init cgroup_disable(char *str)
6729 {
6730 	struct cgroup_subsys *ss;
6731 	char *token;
6732 	int i;
6733 
6734 	while ((token = strsep(&str, ",")) != NULL) {
6735 		if (!*token)
6736 			continue;
6737 
6738 		for_each_subsys(ss, i) {
6739 			if (strcmp(token, ss->name) &&
6740 			    strcmp(token, ss->legacy_name))
6741 				continue;
6742 
6743 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6744 			pr_info("Disabling %s control group subsystem\n",
6745 				ss->name);
6746 		}
6747 
6748 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6749 			if (strcmp(token, cgroup_opt_feature_names[i]))
6750 				continue;
6751 			cgroup_feature_disable_mask |= 1 << i;
6752 			pr_info("Disabling %s control group feature\n",
6753 				cgroup_opt_feature_names[i]);
6754 			break;
6755 		}
6756 	}
6757 	return 1;
6758 }
6759 __setup("cgroup_disable=", cgroup_disable);
6760 
6761 void __init __weak enable_debug_cgroup(void) { }
6762 
6763 static int __init enable_cgroup_debug(char *str)
6764 {
6765 	cgroup_debug = true;
6766 	enable_debug_cgroup();
6767 	return 1;
6768 }
6769 __setup("cgroup_debug", enable_cgroup_debug);
6770 
6771 static int __init cgroup_favordynmods_setup(char *str)
6772 {
6773 	return (kstrtobool(str, &have_favordynmods) == 0);
6774 }
6775 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
6776 
6777 /**
6778  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6779  * @dentry: directory dentry of interest
6780  * @ss: subsystem of interest
6781  *
6782  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6783  * to get the corresponding css and return it.  If such css doesn't exist
6784  * or can't be pinned, an ERR_PTR value is returned.
6785  */
6786 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6787 						       struct cgroup_subsys *ss)
6788 {
6789 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6790 	struct file_system_type *s_type = dentry->d_sb->s_type;
6791 	struct cgroup_subsys_state *css = NULL;
6792 	struct cgroup *cgrp;
6793 
6794 	/* is @dentry a cgroup dir? */
6795 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6796 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6797 		return ERR_PTR(-EBADF);
6798 
6799 	rcu_read_lock();
6800 
6801 	/*
6802 	 * This path doesn't originate from kernfs and @kn could already
6803 	 * have been or be removed at any point.  @kn->priv is RCU
6804 	 * protected for this access.  See css_release_work_fn() for details.
6805 	 */
6806 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6807 	if (cgrp)
6808 		css = cgroup_css(cgrp, ss);
6809 
6810 	if (!css || !css_tryget_online(css))
6811 		css = ERR_PTR(-ENOENT);
6812 
6813 	rcu_read_unlock();
6814 	return css;
6815 }
6816 
6817 /**
6818  * css_from_id - lookup css by id
6819  * @id: the cgroup id
6820  * @ss: cgroup subsys to be looked into
6821  *
6822  * Returns the css if there's valid one with @id, otherwise returns NULL.
6823  * Should be called under rcu_read_lock().
6824  */
6825 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6826 {
6827 	WARN_ON_ONCE(!rcu_read_lock_held());
6828 	return idr_find(&ss->css_idr, id);
6829 }
6830 
6831 /**
6832  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6833  * @path: path on the default hierarchy
6834  *
6835  * Find the cgroup at @path on the default hierarchy, increment its
6836  * reference count and return it.  Returns pointer to the found cgroup on
6837  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6838  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6839  */
6840 struct cgroup *cgroup_get_from_path(const char *path)
6841 {
6842 	struct kernfs_node *kn;
6843 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6844 	struct cgroup *root_cgrp;
6845 
6846 	root_cgrp = current_cgns_cgroup_dfl();
6847 	kn = kernfs_walk_and_get(root_cgrp->kn, path);
6848 	if (!kn)
6849 		goto out;
6850 
6851 	if (kernfs_type(kn) != KERNFS_DIR) {
6852 		cgrp = ERR_PTR(-ENOTDIR);
6853 		goto out_kernfs;
6854 	}
6855 
6856 	rcu_read_lock();
6857 
6858 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6859 	if (!cgrp || !cgroup_tryget(cgrp))
6860 		cgrp = ERR_PTR(-ENOENT);
6861 
6862 	rcu_read_unlock();
6863 
6864 out_kernfs:
6865 	kernfs_put(kn);
6866 out:
6867 	return cgrp;
6868 }
6869 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6870 
6871 /**
6872  * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
6873  * @fd: fd obtained by open(cgroup_dir)
6874  *
6875  * Find the cgroup from a fd which should be obtained
6876  * by opening a cgroup directory.  Returns a pointer to the
6877  * cgroup on success. ERR_PTR is returned if the cgroup
6878  * cannot be found.
6879  */
6880 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
6881 {
6882 	struct cgroup *cgrp;
6883 	struct fd f = fdget_raw(fd);
6884 	if (!f.file)
6885 		return ERR_PTR(-EBADF);
6886 
6887 	cgrp = cgroup_v1v2_get_from_file(f.file);
6888 	fdput(f);
6889 	return cgrp;
6890 }
6891 
6892 /**
6893  * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
6894  * cgroup2.
6895  * @fd: fd obtained by open(cgroup2_dir)
6896  */
6897 struct cgroup *cgroup_get_from_fd(int fd)
6898 {
6899 	struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
6900 
6901 	if (IS_ERR(cgrp))
6902 		return ERR_CAST(cgrp);
6903 
6904 	if (!cgroup_on_dfl(cgrp)) {
6905 		cgroup_put(cgrp);
6906 		return ERR_PTR(-EBADF);
6907 	}
6908 	return cgrp;
6909 }
6910 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6911 
6912 static u64 power_of_ten(int power)
6913 {
6914 	u64 v = 1;
6915 	while (power--)
6916 		v *= 10;
6917 	return v;
6918 }
6919 
6920 /**
6921  * cgroup_parse_float - parse a floating number
6922  * @input: input string
6923  * @dec_shift: number of decimal digits to shift
6924  * @v: output
6925  *
6926  * Parse a decimal floating point number in @input and store the result in
6927  * @v with decimal point right shifted @dec_shift times.  For example, if
6928  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6929  * Returns 0 on success, -errno otherwise.
6930  *
6931  * There's nothing cgroup specific about this function except that it's
6932  * currently the only user.
6933  */
6934 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6935 {
6936 	s64 whole, frac = 0;
6937 	int fstart = 0, fend = 0, flen;
6938 
6939 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6940 		return -EINVAL;
6941 	if (frac < 0)
6942 		return -EINVAL;
6943 
6944 	flen = fend > fstart ? fend - fstart : 0;
6945 	if (flen < dec_shift)
6946 		frac *= power_of_ten(dec_shift - flen);
6947 	else
6948 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6949 
6950 	*v = whole * power_of_ten(dec_shift) + frac;
6951 	return 0;
6952 }
6953 
6954 /*
6955  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6956  * definition in cgroup-defs.h.
6957  */
6958 #ifdef CONFIG_SOCK_CGROUP_DATA
6959 
6960 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6961 {
6962 	struct cgroup *cgroup;
6963 
6964 	rcu_read_lock();
6965 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6966 	if (in_interrupt()) {
6967 		cgroup = &cgrp_dfl_root.cgrp;
6968 		cgroup_get(cgroup);
6969 		goto out;
6970 	}
6971 
6972 	while (true) {
6973 		struct css_set *cset;
6974 
6975 		cset = task_css_set(current);
6976 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6977 			cgroup = cset->dfl_cgrp;
6978 			break;
6979 		}
6980 		cpu_relax();
6981 	}
6982 out:
6983 	skcd->cgroup = cgroup;
6984 	cgroup_bpf_get(cgroup);
6985 	rcu_read_unlock();
6986 }
6987 
6988 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6989 {
6990 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6991 
6992 	/*
6993 	 * We might be cloning a socket which is left in an empty
6994 	 * cgroup and the cgroup might have already been rmdir'd.
6995 	 * Don't use cgroup_get_live().
6996 	 */
6997 	cgroup_get(cgrp);
6998 	cgroup_bpf_get(cgrp);
6999 }
7000 
7001 void cgroup_sk_free(struct sock_cgroup_data *skcd)
7002 {
7003 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7004 
7005 	cgroup_bpf_put(cgrp);
7006 	cgroup_put(cgrp);
7007 }
7008 
7009 #endif	/* CONFIG_SOCK_CGROUP_DATA */
7010 
7011 #ifdef CONFIG_SYSFS
7012 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7013 				      ssize_t size, const char *prefix)
7014 {
7015 	struct cftype *cft;
7016 	ssize_t ret = 0;
7017 
7018 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7019 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7020 			continue;
7021 
7022 		if (prefix)
7023 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7024 
7025 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7026 
7027 		if (WARN_ON(ret >= size))
7028 			break;
7029 	}
7030 
7031 	return ret;
7032 }
7033 
7034 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7035 			      char *buf)
7036 {
7037 	struct cgroup_subsys *ss;
7038 	int ssid;
7039 	ssize_t ret = 0;
7040 
7041 	ret = show_delegatable_files(cgroup_base_files, buf + ret,
7042 				     PAGE_SIZE - ret, NULL);
7043 	if (cgroup_psi_enabled())
7044 		ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7045 					      PAGE_SIZE - ret, NULL);
7046 
7047 	for_each_subsys(ss, ssid)
7048 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7049 					      PAGE_SIZE - ret,
7050 					      cgroup_subsys_name[ssid]);
7051 
7052 	return ret;
7053 }
7054 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7055 
7056 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7057 			     char *buf)
7058 {
7059 	return snprintf(buf, PAGE_SIZE,
7060 			"nsdelegate\n"
7061 			"favordynmods\n"
7062 			"memory_localevents\n"
7063 			"memory_recursiveprot\n"
7064 			"memory_hugetlb_accounting\n");
7065 }
7066 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7067 
7068 static struct attribute *cgroup_sysfs_attrs[] = {
7069 	&cgroup_delegate_attr.attr,
7070 	&cgroup_features_attr.attr,
7071 	NULL,
7072 };
7073 
7074 static const struct attribute_group cgroup_sysfs_attr_group = {
7075 	.attrs = cgroup_sysfs_attrs,
7076 	.name = "cgroup",
7077 };
7078 
7079 static int __init cgroup_sysfs_init(void)
7080 {
7081 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7082 }
7083 subsys_initcall(cgroup_sysfs_init);
7084 
7085 #endif /* CONFIG_SYSFS */
7086