1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/fs_parser.h> 58 #include <linux/sched/cputime.h> 59 #include <linux/psi.h> 60 #include <net/sock.h> 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/cgroup.h> 64 65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 66 MAX_CFTYPE_NAME + 2) 67 /* let's not notify more than 100 times per second */ 68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 69 70 /* 71 * cgroup_mutex is the master lock. Any modification to cgroup or its 72 * hierarchy must be performed while holding it. 73 * 74 * css_set_lock protects task->cgroups pointer, the list of css_set 75 * objects, and the chain of tasks off each css_set. 76 * 77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 78 * cgroup.h can use them for lockdep annotations. 79 */ 80 DEFINE_MUTEX(cgroup_mutex); 81 DEFINE_SPINLOCK(css_set_lock); 82 83 #ifdef CONFIG_PROVE_RCU 84 EXPORT_SYMBOL_GPL(cgroup_mutex); 85 EXPORT_SYMBOL_GPL(css_set_lock); 86 #endif 87 88 DEFINE_SPINLOCK(trace_cgroup_path_lock); 89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 90 bool cgroup_debug __read_mostly; 91 92 /* 93 * Protects cgroup_idr and css_idr so that IDs can be released without 94 * grabbing cgroup_mutex. 95 */ 96 static DEFINE_SPINLOCK(cgroup_idr_lock); 97 98 /* 99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 100 * against file removal/re-creation across css hiding. 101 */ 102 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 103 104 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 105 106 #define cgroup_assert_mutex_or_rcu_locked() \ 107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 108 !lockdep_is_held(&cgroup_mutex), \ 109 "cgroup_mutex or RCU read lock required"); 110 111 /* 112 * cgroup destruction makes heavy use of work items and there can be a lot 113 * of concurrent destructions. Use a separate workqueue so that cgroup 114 * destruction work items don't end up filling up max_active of system_wq 115 * which may lead to deadlock. 116 */ 117 static struct workqueue_struct *cgroup_destroy_wq; 118 119 /* generate an array of cgroup subsystem pointers */ 120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 121 struct cgroup_subsys *cgroup_subsys[] = { 122 #include <linux/cgroup_subsys.h> 123 }; 124 #undef SUBSYS 125 126 /* array of cgroup subsystem names */ 127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 128 static const char *cgroup_subsys_name[] = { 129 #include <linux/cgroup_subsys.h> 130 }; 131 #undef SUBSYS 132 133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 134 #define SUBSYS(_x) \ 135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 139 #include <linux/cgroup_subsys.h> 140 #undef SUBSYS 141 142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 143 static struct static_key_true *cgroup_subsys_enabled_key[] = { 144 #include <linux/cgroup_subsys.h> 145 }; 146 #undef SUBSYS 147 148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 150 #include <linux/cgroup_subsys.h> 151 }; 152 #undef SUBSYS 153 154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 155 156 /* 157 * The default hierarchy, reserved for the subsystems that are otherwise 158 * unattached - it never has more than a single cgroup, and all tasks are 159 * part of that cgroup. 160 */ 161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 162 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 163 164 /* 165 * The default hierarchy always exists but is hidden until mounted for the 166 * first time. This is for backward compatibility. 167 */ 168 static bool cgrp_dfl_visible; 169 170 /* some controllers are not supported in the default hierarchy */ 171 static u16 cgrp_dfl_inhibit_ss_mask; 172 173 /* some controllers are implicitly enabled on the default hierarchy */ 174 static u16 cgrp_dfl_implicit_ss_mask; 175 176 /* some controllers can be threaded on the default hierarchy */ 177 static u16 cgrp_dfl_threaded_ss_mask; 178 179 /* The list of hierarchy roots */ 180 LIST_HEAD(cgroup_roots); 181 static int cgroup_root_count; 182 183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 184 static DEFINE_IDR(cgroup_hierarchy_idr); 185 186 /* 187 * Assign a monotonically increasing serial number to csses. It guarantees 188 * cgroups with bigger numbers are newer than those with smaller numbers. 189 * Also, as csses are always appended to the parent's ->children list, it 190 * guarantees that sibling csses are always sorted in the ascending serial 191 * number order on the list. Protected by cgroup_mutex. 192 */ 193 static u64 css_serial_nr_next = 1; 194 195 /* 196 * These bitmasks identify subsystems with specific features to avoid 197 * having to do iterative checks repeatedly. 198 */ 199 static u16 have_fork_callback __read_mostly; 200 static u16 have_exit_callback __read_mostly; 201 static u16 have_release_callback __read_mostly; 202 static u16 have_canfork_callback __read_mostly; 203 204 /* cgroup namespace for init task */ 205 struct cgroup_namespace init_cgroup_ns = { 206 .count = REFCOUNT_INIT(2), 207 .user_ns = &init_user_ns, 208 .ns.ops = &cgroupns_operations, 209 .ns.inum = PROC_CGROUP_INIT_INO, 210 .root_cset = &init_css_set, 211 }; 212 213 static struct file_system_type cgroup2_fs_type; 214 static struct cftype cgroup_base_files[]; 215 216 static int cgroup_apply_control(struct cgroup *cgrp); 217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 218 static void css_task_iter_skip(struct css_task_iter *it, 219 struct task_struct *task); 220 static int cgroup_destroy_locked(struct cgroup *cgrp); 221 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 222 struct cgroup_subsys *ss); 223 static void css_release(struct percpu_ref *ref); 224 static void kill_css(struct cgroup_subsys_state *css); 225 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 226 struct cgroup *cgrp, struct cftype cfts[], 227 bool is_add); 228 229 /** 230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 231 * @ssid: subsys ID of interest 232 * 233 * cgroup_subsys_enabled() can only be used with literal subsys names which 234 * is fine for individual subsystems but unsuitable for cgroup core. This 235 * is slower static_key_enabled() based test indexed by @ssid. 236 */ 237 bool cgroup_ssid_enabled(int ssid) 238 { 239 if (CGROUP_SUBSYS_COUNT == 0) 240 return false; 241 242 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 243 } 244 245 /** 246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 247 * @cgrp: the cgroup of interest 248 * 249 * The default hierarchy is the v2 interface of cgroup and this function 250 * can be used to test whether a cgroup is on the default hierarchy for 251 * cases where a subsystem should behave differnetly depending on the 252 * interface version. 253 * 254 * The set of behaviors which change on the default hierarchy are still 255 * being determined and the mount option is prefixed with __DEVEL__. 256 * 257 * List of changed behaviors: 258 * 259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 260 * and "name" are disallowed. 261 * 262 * - When mounting an existing superblock, mount options should match. 263 * 264 * - Remount is disallowed. 265 * 266 * - rename(2) is disallowed. 267 * 268 * - "tasks" is removed. Everything should be at process granularity. Use 269 * "cgroup.procs" instead. 270 * 271 * - "cgroup.procs" is not sorted. pids will be unique unless they got 272 * recycled inbetween reads. 273 * 274 * - "release_agent" and "notify_on_release" are removed. Replacement 275 * notification mechanism will be implemented. 276 * 277 * - "cgroup.clone_children" is removed. 278 * 279 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 280 * and its descendants contain no task; otherwise, 1. The file also 281 * generates kernfs notification which can be monitored through poll and 282 * [di]notify when the value of the file changes. 283 * 284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 285 * take masks of ancestors with non-empty cpus/mems, instead of being 286 * moved to an ancestor. 287 * 288 * - cpuset: a task can be moved into an empty cpuset, and again it takes 289 * masks of ancestors. 290 * 291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 292 * is not created. 293 * 294 * - blkcg: blk-throttle becomes properly hierarchical. 295 * 296 * - debug: disallowed on the default hierarchy. 297 */ 298 bool cgroup_on_dfl(const struct cgroup *cgrp) 299 { 300 return cgrp->root == &cgrp_dfl_root; 301 } 302 303 /* IDR wrappers which synchronize using cgroup_idr_lock */ 304 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 305 gfp_t gfp_mask) 306 { 307 int ret; 308 309 idr_preload(gfp_mask); 310 spin_lock_bh(&cgroup_idr_lock); 311 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 312 spin_unlock_bh(&cgroup_idr_lock); 313 idr_preload_end(); 314 return ret; 315 } 316 317 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 318 { 319 void *ret; 320 321 spin_lock_bh(&cgroup_idr_lock); 322 ret = idr_replace(idr, ptr, id); 323 spin_unlock_bh(&cgroup_idr_lock); 324 return ret; 325 } 326 327 static void cgroup_idr_remove(struct idr *idr, int id) 328 { 329 spin_lock_bh(&cgroup_idr_lock); 330 idr_remove(idr, id); 331 spin_unlock_bh(&cgroup_idr_lock); 332 } 333 334 static bool cgroup_has_tasks(struct cgroup *cgrp) 335 { 336 return cgrp->nr_populated_csets; 337 } 338 339 bool cgroup_is_threaded(struct cgroup *cgrp) 340 { 341 return cgrp->dom_cgrp != cgrp; 342 } 343 344 /* can @cgrp host both domain and threaded children? */ 345 static bool cgroup_is_mixable(struct cgroup *cgrp) 346 { 347 /* 348 * Root isn't under domain level resource control exempting it from 349 * the no-internal-process constraint, so it can serve as a thread 350 * root and a parent of resource domains at the same time. 351 */ 352 return !cgroup_parent(cgrp); 353 } 354 355 /* can @cgrp become a thread root? should always be true for a thread root */ 356 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 357 { 358 /* mixables don't care */ 359 if (cgroup_is_mixable(cgrp)) 360 return true; 361 362 /* domain roots can't be nested under threaded */ 363 if (cgroup_is_threaded(cgrp)) 364 return false; 365 366 /* can only have either domain or threaded children */ 367 if (cgrp->nr_populated_domain_children) 368 return false; 369 370 /* and no domain controllers can be enabled */ 371 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 372 return false; 373 374 return true; 375 } 376 377 /* is @cgrp root of a threaded subtree? */ 378 bool cgroup_is_thread_root(struct cgroup *cgrp) 379 { 380 /* thread root should be a domain */ 381 if (cgroup_is_threaded(cgrp)) 382 return false; 383 384 /* a domain w/ threaded children is a thread root */ 385 if (cgrp->nr_threaded_children) 386 return true; 387 388 /* 389 * A domain which has tasks and explicit threaded controllers 390 * enabled is a thread root. 391 */ 392 if (cgroup_has_tasks(cgrp) && 393 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 394 return true; 395 396 return false; 397 } 398 399 /* a domain which isn't connected to the root w/o brekage can't be used */ 400 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 401 { 402 /* the cgroup itself can be a thread root */ 403 if (cgroup_is_threaded(cgrp)) 404 return false; 405 406 /* but the ancestors can't be unless mixable */ 407 while ((cgrp = cgroup_parent(cgrp))) { 408 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 409 return false; 410 if (cgroup_is_threaded(cgrp)) 411 return false; 412 } 413 414 return true; 415 } 416 417 /* subsystems visibly enabled on a cgroup */ 418 static u16 cgroup_control(struct cgroup *cgrp) 419 { 420 struct cgroup *parent = cgroup_parent(cgrp); 421 u16 root_ss_mask = cgrp->root->subsys_mask; 422 423 if (parent) { 424 u16 ss_mask = parent->subtree_control; 425 426 /* threaded cgroups can only have threaded controllers */ 427 if (cgroup_is_threaded(cgrp)) 428 ss_mask &= cgrp_dfl_threaded_ss_mask; 429 return ss_mask; 430 } 431 432 if (cgroup_on_dfl(cgrp)) 433 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 434 cgrp_dfl_implicit_ss_mask); 435 return root_ss_mask; 436 } 437 438 /* subsystems enabled on a cgroup */ 439 static u16 cgroup_ss_mask(struct cgroup *cgrp) 440 { 441 struct cgroup *parent = cgroup_parent(cgrp); 442 443 if (parent) { 444 u16 ss_mask = parent->subtree_ss_mask; 445 446 /* threaded cgroups can only have threaded controllers */ 447 if (cgroup_is_threaded(cgrp)) 448 ss_mask &= cgrp_dfl_threaded_ss_mask; 449 return ss_mask; 450 } 451 452 return cgrp->root->subsys_mask; 453 } 454 455 /** 456 * cgroup_css - obtain a cgroup's css for the specified subsystem 457 * @cgrp: the cgroup of interest 458 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 459 * 460 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 461 * function must be called either under cgroup_mutex or rcu_read_lock() and 462 * the caller is responsible for pinning the returned css if it wants to 463 * keep accessing it outside the said locks. This function may return 464 * %NULL if @cgrp doesn't have @subsys_id enabled. 465 */ 466 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 467 struct cgroup_subsys *ss) 468 { 469 if (ss) 470 return rcu_dereference_check(cgrp->subsys[ss->id], 471 lockdep_is_held(&cgroup_mutex)); 472 else 473 return &cgrp->self; 474 } 475 476 /** 477 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 478 * @cgrp: the cgroup of interest 479 * @ss: the subsystem of interest 480 * 481 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist 482 * or is offline, %NULL is returned. 483 */ 484 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 485 struct cgroup_subsys *ss) 486 { 487 struct cgroup_subsys_state *css; 488 489 rcu_read_lock(); 490 css = cgroup_css(cgrp, ss); 491 if (!css || !css_tryget_online(css)) 492 css = NULL; 493 rcu_read_unlock(); 494 495 return css; 496 } 497 498 /** 499 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 500 * @cgrp: the cgroup of interest 501 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 502 * 503 * Similar to cgroup_css() but returns the effective css, which is defined 504 * as the matching css of the nearest ancestor including self which has @ss 505 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 506 * function is guaranteed to return non-NULL css. 507 */ 508 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 509 struct cgroup_subsys *ss) 510 { 511 lockdep_assert_held(&cgroup_mutex); 512 513 if (!ss) 514 return &cgrp->self; 515 516 /* 517 * This function is used while updating css associations and thus 518 * can't test the csses directly. Test ss_mask. 519 */ 520 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 521 cgrp = cgroup_parent(cgrp); 522 if (!cgrp) 523 return NULL; 524 } 525 526 return cgroup_css(cgrp, ss); 527 } 528 529 /** 530 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 531 * @cgrp: the cgroup of interest 532 * @ss: the subsystem of interest 533 * 534 * Find and get the effective css of @cgrp for @ss. The effective css is 535 * defined as the matching css of the nearest ancestor including self which 536 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 537 * the root css is returned, so this function always returns a valid css. 538 * 539 * The returned css is not guaranteed to be online, and therefore it is the 540 * callers responsiblity to tryget a reference for it. 541 */ 542 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 543 struct cgroup_subsys *ss) 544 { 545 struct cgroup_subsys_state *css; 546 547 do { 548 css = cgroup_css(cgrp, ss); 549 550 if (css) 551 return css; 552 cgrp = cgroup_parent(cgrp); 553 } while (cgrp); 554 555 return init_css_set.subsys[ss->id]; 556 } 557 558 /** 559 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 560 * @cgrp: the cgroup of interest 561 * @ss: the subsystem of interest 562 * 563 * Find and get the effective css of @cgrp for @ss. The effective css is 564 * defined as the matching css of the nearest ancestor including self which 565 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 566 * the root css is returned, so this function always returns a valid css. 567 * The returned css must be put using css_put(). 568 */ 569 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 570 struct cgroup_subsys *ss) 571 { 572 struct cgroup_subsys_state *css; 573 574 rcu_read_lock(); 575 576 do { 577 css = cgroup_css(cgrp, ss); 578 579 if (css && css_tryget_online(css)) 580 goto out_unlock; 581 cgrp = cgroup_parent(cgrp); 582 } while (cgrp); 583 584 css = init_css_set.subsys[ss->id]; 585 css_get(css); 586 out_unlock: 587 rcu_read_unlock(); 588 return css; 589 } 590 591 static void cgroup_get_live(struct cgroup *cgrp) 592 { 593 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 594 css_get(&cgrp->self); 595 } 596 597 /** 598 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 599 * is responsible for taking the css_set_lock. 600 * @cgrp: the cgroup in question 601 */ 602 int __cgroup_task_count(const struct cgroup *cgrp) 603 { 604 int count = 0; 605 struct cgrp_cset_link *link; 606 607 lockdep_assert_held(&css_set_lock); 608 609 list_for_each_entry(link, &cgrp->cset_links, cset_link) 610 count += link->cset->nr_tasks; 611 612 return count; 613 } 614 615 /** 616 * cgroup_task_count - count the number of tasks in a cgroup. 617 * @cgrp: the cgroup in question 618 */ 619 int cgroup_task_count(const struct cgroup *cgrp) 620 { 621 int count; 622 623 spin_lock_irq(&css_set_lock); 624 count = __cgroup_task_count(cgrp); 625 spin_unlock_irq(&css_set_lock); 626 627 return count; 628 } 629 630 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 631 { 632 struct cgroup *cgrp = of->kn->parent->priv; 633 struct cftype *cft = of_cft(of); 634 635 /* 636 * This is open and unprotected implementation of cgroup_css(). 637 * seq_css() is only called from a kernfs file operation which has 638 * an active reference on the file. Because all the subsystem 639 * files are drained before a css is disassociated with a cgroup, 640 * the matching css from the cgroup's subsys table is guaranteed to 641 * be and stay valid until the enclosing operation is complete. 642 */ 643 if (cft->ss) 644 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 645 else 646 return &cgrp->self; 647 } 648 EXPORT_SYMBOL_GPL(of_css); 649 650 /** 651 * for_each_css - iterate all css's of a cgroup 652 * @css: the iteration cursor 653 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 654 * @cgrp: the target cgroup to iterate css's of 655 * 656 * Should be called under cgroup_[tree_]mutex. 657 */ 658 #define for_each_css(css, ssid, cgrp) \ 659 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 660 if (!((css) = rcu_dereference_check( \ 661 (cgrp)->subsys[(ssid)], \ 662 lockdep_is_held(&cgroup_mutex)))) { } \ 663 else 664 665 /** 666 * for_each_e_css - iterate all effective css's of a cgroup 667 * @css: the iteration cursor 668 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 669 * @cgrp: the target cgroup to iterate css's of 670 * 671 * Should be called under cgroup_[tree_]mutex. 672 */ 673 #define for_each_e_css(css, ssid, cgrp) \ 674 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 675 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 676 cgroup_subsys[(ssid)]))) \ 677 ; \ 678 else 679 680 /** 681 * do_each_subsys_mask - filter for_each_subsys with a bitmask 682 * @ss: the iteration cursor 683 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 684 * @ss_mask: the bitmask 685 * 686 * The block will only run for cases where the ssid-th bit (1 << ssid) of 687 * @ss_mask is set. 688 */ 689 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 690 unsigned long __ss_mask = (ss_mask); \ 691 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 692 (ssid) = 0; \ 693 break; \ 694 } \ 695 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 696 (ss) = cgroup_subsys[ssid]; \ 697 { 698 699 #define while_each_subsys_mask() \ 700 } \ 701 } \ 702 } while (false) 703 704 /* iterate over child cgrps, lock should be held throughout iteration */ 705 #define cgroup_for_each_live_child(child, cgrp) \ 706 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 707 if (({ lockdep_assert_held(&cgroup_mutex); \ 708 cgroup_is_dead(child); })) \ 709 ; \ 710 else 711 712 /* walk live descendants in preorder */ 713 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 714 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 715 if (({ lockdep_assert_held(&cgroup_mutex); \ 716 (dsct) = (d_css)->cgroup; \ 717 cgroup_is_dead(dsct); })) \ 718 ; \ 719 else 720 721 /* walk live descendants in postorder */ 722 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 723 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 724 if (({ lockdep_assert_held(&cgroup_mutex); \ 725 (dsct) = (d_css)->cgroup; \ 726 cgroup_is_dead(dsct); })) \ 727 ; \ 728 else 729 730 /* 731 * The default css_set - used by init and its children prior to any 732 * hierarchies being mounted. It contains a pointer to the root state 733 * for each subsystem. Also used to anchor the list of css_sets. Not 734 * reference-counted, to improve performance when child cgroups 735 * haven't been created. 736 */ 737 struct css_set init_css_set = { 738 .refcount = REFCOUNT_INIT(1), 739 .dom_cset = &init_css_set, 740 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 741 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 742 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 743 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 744 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 745 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 746 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 747 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 748 749 /* 750 * The following field is re-initialized when this cset gets linked 751 * in cgroup_init(). However, let's initialize the field 752 * statically too so that the default cgroup can be accessed safely 753 * early during boot. 754 */ 755 .dfl_cgrp = &cgrp_dfl_root.cgrp, 756 }; 757 758 static int css_set_count = 1; /* 1 for init_css_set */ 759 760 static bool css_set_threaded(struct css_set *cset) 761 { 762 return cset->dom_cset != cset; 763 } 764 765 /** 766 * css_set_populated - does a css_set contain any tasks? 767 * @cset: target css_set 768 * 769 * css_set_populated() should be the same as !!cset->nr_tasks at steady 770 * state. However, css_set_populated() can be called while a task is being 771 * added to or removed from the linked list before the nr_tasks is 772 * properly updated. Hence, we can't just look at ->nr_tasks here. 773 */ 774 static bool css_set_populated(struct css_set *cset) 775 { 776 lockdep_assert_held(&css_set_lock); 777 778 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 779 } 780 781 /** 782 * cgroup_update_populated - update the populated count of a cgroup 783 * @cgrp: the target cgroup 784 * @populated: inc or dec populated count 785 * 786 * One of the css_sets associated with @cgrp is either getting its first 787 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 788 * count is propagated towards root so that a given cgroup's 789 * nr_populated_children is zero iff none of its descendants contain any 790 * tasks. 791 * 792 * @cgrp's interface file "cgroup.populated" is zero if both 793 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 794 * 1 otherwise. When the sum changes from or to zero, userland is notified 795 * that the content of the interface file has changed. This can be used to 796 * detect when @cgrp and its descendants become populated or empty. 797 */ 798 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 799 { 800 struct cgroup *child = NULL; 801 int adj = populated ? 1 : -1; 802 803 lockdep_assert_held(&css_set_lock); 804 805 do { 806 bool was_populated = cgroup_is_populated(cgrp); 807 808 if (!child) { 809 cgrp->nr_populated_csets += adj; 810 } else { 811 if (cgroup_is_threaded(child)) 812 cgrp->nr_populated_threaded_children += adj; 813 else 814 cgrp->nr_populated_domain_children += adj; 815 } 816 817 if (was_populated == cgroup_is_populated(cgrp)) 818 break; 819 820 cgroup1_check_for_release(cgrp); 821 TRACE_CGROUP_PATH(notify_populated, cgrp, 822 cgroup_is_populated(cgrp)); 823 cgroup_file_notify(&cgrp->events_file); 824 825 child = cgrp; 826 cgrp = cgroup_parent(cgrp); 827 } while (cgrp); 828 } 829 830 /** 831 * css_set_update_populated - update populated state of a css_set 832 * @cset: target css_set 833 * @populated: whether @cset is populated or depopulated 834 * 835 * @cset is either getting the first task or losing the last. Update the 836 * populated counters of all associated cgroups accordingly. 837 */ 838 static void css_set_update_populated(struct css_set *cset, bool populated) 839 { 840 struct cgrp_cset_link *link; 841 842 lockdep_assert_held(&css_set_lock); 843 844 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 845 cgroup_update_populated(link->cgrp, populated); 846 } 847 848 /* 849 * @task is leaving, advance task iterators which are pointing to it so 850 * that they can resume at the next position. Advancing an iterator might 851 * remove it from the list, use safe walk. See css_task_iter_skip() for 852 * details. 853 */ 854 static void css_set_skip_task_iters(struct css_set *cset, 855 struct task_struct *task) 856 { 857 struct css_task_iter *it, *pos; 858 859 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 860 css_task_iter_skip(it, task); 861 } 862 863 /** 864 * css_set_move_task - move a task from one css_set to another 865 * @task: task being moved 866 * @from_cset: css_set @task currently belongs to (may be NULL) 867 * @to_cset: new css_set @task is being moved to (may be NULL) 868 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 869 * 870 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 871 * css_set, @from_cset can be NULL. If @task is being disassociated 872 * instead of moved, @to_cset can be NULL. 873 * 874 * This function automatically handles populated counter updates and 875 * css_task_iter adjustments but the caller is responsible for managing 876 * @from_cset and @to_cset's reference counts. 877 */ 878 static void css_set_move_task(struct task_struct *task, 879 struct css_set *from_cset, struct css_set *to_cset, 880 bool use_mg_tasks) 881 { 882 lockdep_assert_held(&css_set_lock); 883 884 if (to_cset && !css_set_populated(to_cset)) 885 css_set_update_populated(to_cset, true); 886 887 if (from_cset) { 888 WARN_ON_ONCE(list_empty(&task->cg_list)); 889 890 css_set_skip_task_iters(from_cset, task); 891 list_del_init(&task->cg_list); 892 if (!css_set_populated(from_cset)) 893 css_set_update_populated(from_cset, false); 894 } else { 895 WARN_ON_ONCE(!list_empty(&task->cg_list)); 896 } 897 898 if (to_cset) { 899 /* 900 * We are synchronized through cgroup_threadgroup_rwsem 901 * against PF_EXITING setting such that we can't race 902 * against cgroup_exit() changing the css_set to 903 * init_css_set and dropping the old one. 904 */ 905 WARN_ON_ONCE(task->flags & PF_EXITING); 906 907 cgroup_move_task(task, to_cset); 908 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 909 &to_cset->tasks); 910 } 911 } 912 913 /* 914 * hash table for cgroup groups. This improves the performance to find 915 * an existing css_set. This hash doesn't (currently) take into 916 * account cgroups in empty hierarchies. 917 */ 918 #define CSS_SET_HASH_BITS 7 919 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 920 921 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 922 { 923 unsigned long key = 0UL; 924 struct cgroup_subsys *ss; 925 int i; 926 927 for_each_subsys(ss, i) 928 key += (unsigned long)css[i]; 929 key = (key >> 16) ^ key; 930 931 return key; 932 } 933 934 void put_css_set_locked(struct css_set *cset) 935 { 936 struct cgrp_cset_link *link, *tmp_link; 937 struct cgroup_subsys *ss; 938 int ssid; 939 940 lockdep_assert_held(&css_set_lock); 941 942 if (!refcount_dec_and_test(&cset->refcount)) 943 return; 944 945 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 946 947 /* This css_set is dead. unlink it and release cgroup and css refs */ 948 for_each_subsys(ss, ssid) { 949 list_del(&cset->e_cset_node[ssid]); 950 css_put(cset->subsys[ssid]); 951 } 952 hash_del(&cset->hlist); 953 css_set_count--; 954 955 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 956 list_del(&link->cset_link); 957 list_del(&link->cgrp_link); 958 if (cgroup_parent(link->cgrp)) 959 cgroup_put(link->cgrp); 960 kfree(link); 961 } 962 963 if (css_set_threaded(cset)) { 964 list_del(&cset->threaded_csets_node); 965 put_css_set_locked(cset->dom_cset); 966 } 967 968 kfree_rcu(cset, rcu_head); 969 } 970 971 /** 972 * compare_css_sets - helper function for find_existing_css_set(). 973 * @cset: candidate css_set being tested 974 * @old_cset: existing css_set for a task 975 * @new_cgrp: cgroup that's being entered by the task 976 * @template: desired set of css pointers in css_set (pre-calculated) 977 * 978 * Returns true if "cset" matches "old_cset" except for the hierarchy 979 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 980 */ 981 static bool compare_css_sets(struct css_set *cset, 982 struct css_set *old_cset, 983 struct cgroup *new_cgrp, 984 struct cgroup_subsys_state *template[]) 985 { 986 struct cgroup *new_dfl_cgrp; 987 struct list_head *l1, *l2; 988 989 /* 990 * On the default hierarchy, there can be csets which are 991 * associated with the same set of cgroups but different csses. 992 * Let's first ensure that csses match. 993 */ 994 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 995 return false; 996 997 998 /* @cset's domain should match the default cgroup's */ 999 if (cgroup_on_dfl(new_cgrp)) 1000 new_dfl_cgrp = new_cgrp; 1001 else 1002 new_dfl_cgrp = old_cset->dfl_cgrp; 1003 1004 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1005 return false; 1006 1007 /* 1008 * Compare cgroup pointers in order to distinguish between 1009 * different cgroups in hierarchies. As different cgroups may 1010 * share the same effective css, this comparison is always 1011 * necessary. 1012 */ 1013 l1 = &cset->cgrp_links; 1014 l2 = &old_cset->cgrp_links; 1015 while (1) { 1016 struct cgrp_cset_link *link1, *link2; 1017 struct cgroup *cgrp1, *cgrp2; 1018 1019 l1 = l1->next; 1020 l2 = l2->next; 1021 /* See if we reached the end - both lists are equal length. */ 1022 if (l1 == &cset->cgrp_links) { 1023 BUG_ON(l2 != &old_cset->cgrp_links); 1024 break; 1025 } else { 1026 BUG_ON(l2 == &old_cset->cgrp_links); 1027 } 1028 /* Locate the cgroups associated with these links. */ 1029 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1030 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1031 cgrp1 = link1->cgrp; 1032 cgrp2 = link2->cgrp; 1033 /* Hierarchies should be linked in the same order. */ 1034 BUG_ON(cgrp1->root != cgrp2->root); 1035 1036 /* 1037 * If this hierarchy is the hierarchy of the cgroup 1038 * that's changing, then we need to check that this 1039 * css_set points to the new cgroup; if it's any other 1040 * hierarchy, then this css_set should point to the 1041 * same cgroup as the old css_set. 1042 */ 1043 if (cgrp1->root == new_cgrp->root) { 1044 if (cgrp1 != new_cgrp) 1045 return false; 1046 } else { 1047 if (cgrp1 != cgrp2) 1048 return false; 1049 } 1050 } 1051 return true; 1052 } 1053 1054 /** 1055 * find_existing_css_set - init css array and find the matching css_set 1056 * @old_cset: the css_set that we're using before the cgroup transition 1057 * @cgrp: the cgroup that we're moving into 1058 * @template: out param for the new set of csses, should be clear on entry 1059 */ 1060 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1061 struct cgroup *cgrp, 1062 struct cgroup_subsys_state *template[]) 1063 { 1064 struct cgroup_root *root = cgrp->root; 1065 struct cgroup_subsys *ss; 1066 struct css_set *cset; 1067 unsigned long key; 1068 int i; 1069 1070 /* 1071 * Build the set of subsystem state objects that we want to see in the 1072 * new css_set. while subsystems can change globally, the entries here 1073 * won't change, so no need for locking. 1074 */ 1075 for_each_subsys(ss, i) { 1076 if (root->subsys_mask & (1UL << i)) { 1077 /* 1078 * @ss is in this hierarchy, so we want the 1079 * effective css from @cgrp. 1080 */ 1081 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1082 } else { 1083 /* 1084 * @ss is not in this hierarchy, so we don't want 1085 * to change the css. 1086 */ 1087 template[i] = old_cset->subsys[i]; 1088 } 1089 } 1090 1091 key = css_set_hash(template); 1092 hash_for_each_possible(css_set_table, cset, hlist, key) { 1093 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1094 continue; 1095 1096 /* This css_set matches what we need */ 1097 return cset; 1098 } 1099 1100 /* No existing cgroup group matched */ 1101 return NULL; 1102 } 1103 1104 static void free_cgrp_cset_links(struct list_head *links_to_free) 1105 { 1106 struct cgrp_cset_link *link, *tmp_link; 1107 1108 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1109 list_del(&link->cset_link); 1110 kfree(link); 1111 } 1112 } 1113 1114 /** 1115 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1116 * @count: the number of links to allocate 1117 * @tmp_links: list_head the allocated links are put on 1118 * 1119 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1120 * through ->cset_link. Returns 0 on success or -errno. 1121 */ 1122 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1123 { 1124 struct cgrp_cset_link *link; 1125 int i; 1126 1127 INIT_LIST_HEAD(tmp_links); 1128 1129 for (i = 0; i < count; i++) { 1130 link = kzalloc(sizeof(*link), GFP_KERNEL); 1131 if (!link) { 1132 free_cgrp_cset_links(tmp_links); 1133 return -ENOMEM; 1134 } 1135 list_add(&link->cset_link, tmp_links); 1136 } 1137 return 0; 1138 } 1139 1140 /** 1141 * link_css_set - a helper function to link a css_set to a cgroup 1142 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1143 * @cset: the css_set to be linked 1144 * @cgrp: the destination cgroup 1145 */ 1146 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1147 struct cgroup *cgrp) 1148 { 1149 struct cgrp_cset_link *link; 1150 1151 BUG_ON(list_empty(tmp_links)); 1152 1153 if (cgroup_on_dfl(cgrp)) 1154 cset->dfl_cgrp = cgrp; 1155 1156 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1157 link->cset = cset; 1158 link->cgrp = cgrp; 1159 1160 /* 1161 * Always add links to the tail of the lists so that the lists are 1162 * in choronological order. 1163 */ 1164 list_move_tail(&link->cset_link, &cgrp->cset_links); 1165 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1166 1167 if (cgroup_parent(cgrp)) 1168 cgroup_get_live(cgrp); 1169 } 1170 1171 /** 1172 * find_css_set - return a new css_set with one cgroup updated 1173 * @old_cset: the baseline css_set 1174 * @cgrp: the cgroup to be updated 1175 * 1176 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1177 * substituted into the appropriate hierarchy. 1178 */ 1179 static struct css_set *find_css_set(struct css_set *old_cset, 1180 struct cgroup *cgrp) 1181 { 1182 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1183 struct css_set *cset; 1184 struct list_head tmp_links; 1185 struct cgrp_cset_link *link; 1186 struct cgroup_subsys *ss; 1187 unsigned long key; 1188 int ssid; 1189 1190 lockdep_assert_held(&cgroup_mutex); 1191 1192 /* First see if we already have a cgroup group that matches 1193 * the desired set */ 1194 spin_lock_irq(&css_set_lock); 1195 cset = find_existing_css_set(old_cset, cgrp, template); 1196 if (cset) 1197 get_css_set(cset); 1198 spin_unlock_irq(&css_set_lock); 1199 1200 if (cset) 1201 return cset; 1202 1203 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1204 if (!cset) 1205 return NULL; 1206 1207 /* Allocate all the cgrp_cset_link objects that we'll need */ 1208 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1209 kfree(cset); 1210 return NULL; 1211 } 1212 1213 refcount_set(&cset->refcount, 1); 1214 cset->dom_cset = cset; 1215 INIT_LIST_HEAD(&cset->tasks); 1216 INIT_LIST_HEAD(&cset->mg_tasks); 1217 INIT_LIST_HEAD(&cset->dying_tasks); 1218 INIT_LIST_HEAD(&cset->task_iters); 1219 INIT_LIST_HEAD(&cset->threaded_csets); 1220 INIT_HLIST_NODE(&cset->hlist); 1221 INIT_LIST_HEAD(&cset->cgrp_links); 1222 INIT_LIST_HEAD(&cset->mg_preload_node); 1223 INIT_LIST_HEAD(&cset->mg_node); 1224 1225 /* Copy the set of subsystem state objects generated in 1226 * find_existing_css_set() */ 1227 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1228 1229 spin_lock_irq(&css_set_lock); 1230 /* Add reference counts and links from the new css_set. */ 1231 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1232 struct cgroup *c = link->cgrp; 1233 1234 if (c->root == cgrp->root) 1235 c = cgrp; 1236 link_css_set(&tmp_links, cset, c); 1237 } 1238 1239 BUG_ON(!list_empty(&tmp_links)); 1240 1241 css_set_count++; 1242 1243 /* Add @cset to the hash table */ 1244 key = css_set_hash(cset->subsys); 1245 hash_add(css_set_table, &cset->hlist, key); 1246 1247 for_each_subsys(ss, ssid) { 1248 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1249 1250 list_add_tail(&cset->e_cset_node[ssid], 1251 &css->cgroup->e_csets[ssid]); 1252 css_get(css); 1253 } 1254 1255 spin_unlock_irq(&css_set_lock); 1256 1257 /* 1258 * If @cset should be threaded, look up the matching dom_cset and 1259 * link them up. We first fully initialize @cset then look for the 1260 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1261 * to stay empty until we return. 1262 */ 1263 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1264 struct css_set *dcset; 1265 1266 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1267 if (!dcset) { 1268 put_css_set(cset); 1269 return NULL; 1270 } 1271 1272 spin_lock_irq(&css_set_lock); 1273 cset->dom_cset = dcset; 1274 list_add_tail(&cset->threaded_csets_node, 1275 &dcset->threaded_csets); 1276 spin_unlock_irq(&css_set_lock); 1277 } 1278 1279 return cset; 1280 } 1281 1282 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1283 { 1284 struct cgroup *root_cgrp = kf_root->kn->priv; 1285 1286 return root_cgrp->root; 1287 } 1288 1289 static int cgroup_init_root_id(struct cgroup_root *root) 1290 { 1291 int id; 1292 1293 lockdep_assert_held(&cgroup_mutex); 1294 1295 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1296 if (id < 0) 1297 return id; 1298 1299 root->hierarchy_id = id; 1300 return 0; 1301 } 1302 1303 static void cgroup_exit_root_id(struct cgroup_root *root) 1304 { 1305 lockdep_assert_held(&cgroup_mutex); 1306 1307 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1308 } 1309 1310 void cgroup_free_root(struct cgroup_root *root) 1311 { 1312 if (root) { 1313 idr_destroy(&root->cgroup_idr); 1314 kfree(root); 1315 } 1316 } 1317 1318 static void cgroup_destroy_root(struct cgroup_root *root) 1319 { 1320 struct cgroup *cgrp = &root->cgrp; 1321 struct cgrp_cset_link *link, *tmp_link; 1322 1323 trace_cgroup_destroy_root(root); 1324 1325 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1326 1327 BUG_ON(atomic_read(&root->nr_cgrps)); 1328 BUG_ON(!list_empty(&cgrp->self.children)); 1329 1330 /* Rebind all subsystems back to the default hierarchy */ 1331 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1332 1333 /* 1334 * Release all the links from cset_links to this hierarchy's 1335 * root cgroup 1336 */ 1337 spin_lock_irq(&css_set_lock); 1338 1339 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1340 list_del(&link->cset_link); 1341 list_del(&link->cgrp_link); 1342 kfree(link); 1343 } 1344 1345 spin_unlock_irq(&css_set_lock); 1346 1347 if (!list_empty(&root->root_list)) { 1348 list_del(&root->root_list); 1349 cgroup_root_count--; 1350 } 1351 1352 cgroup_exit_root_id(root); 1353 1354 mutex_unlock(&cgroup_mutex); 1355 1356 kernfs_destroy_root(root->kf_root); 1357 cgroup_free_root(root); 1358 } 1359 1360 /* 1361 * look up cgroup associated with current task's cgroup namespace on the 1362 * specified hierarchy 1363 */ 1364 static struct cgroup * 1365 current_cgns_cgroup_from_root(struct cgroup_root *root) 1366 { 1367 struct cgroup *res = NULL; 1368 struct css_set *cset; 1369 1370 lockdep_assert_held(&css_set_lock); 1371 1372 rcu_read_lock(); 1373 1374 cset = current->nsproxy->cgroup_ns->root_cset; 1375 if (cset == &init_css_set) { 1376 res = &root->cgrp; 1377 } else { 1378 struct cgrp_cset_link *link; 1379 1380 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1381 struct cgroup *c = link->cgrp; 1382 1383 if (c->root == root) { 1384 res = c; 1385 break; 1386 } 1387 } 1388 } 1389 rcu_read_unlock(); 1390 1391 BUG_ON(!res); 1392 return res; 1393 } 1394 1395 /* look up cgroup associated with given css_set on the specified hierarchy */ 1396 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1397 struct cgroup_root *root) 1398 { 1399 struct cgroup *res = NULL; 1400 1401 lockdep_assert_held(&cgroup_mutex); 1402 lockdep_assert_held(&css_set_lock); 1403 1404 if (cset == &init_css_set) { 1405 res = &root->cgrp; 1406 } else if (root == &cgrp_dfl_root) { 1407 res = cset->dfl_cgrp; 1408 } else { 1409 struct cgrp_cset_link *link; 1410 1411 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1412 struct cgroup *c = link->cgrp; 1413 1414 if (c->root == root) { 1415 res = c; 1416 break; 1417 } 1418 } 1419 } 1420 1421 BUG_ON(!res); 1422 return res; 1423 } 1424 1425 /* 1426 * Return the cgroup for "task" from the given hierarchy. Must be 1427 * called with cgroup_mutex and css_set_lock held. 1428 */ 1429 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1430 struct cgroup_root *root) 1431 { 1432 /* 1433 * No need to lock the task - since we hold cgroup_mutex the 1434 * task can't change groups, so the only thing that can happen 1435 * is that it exits and its css is set back to init_css_set. 1436 */ 1437 return cset_cgroup_from_root(task_css_set(task), root); 1438 } 1439 1440 /* 1441 * A task must hold cgroup_mutex to modify cgroups. 1442 * 1443 * Any task can increment and decrement the count field without lock. 1444 * So in general, code holding cgroup_mutex can't rely on the count 1445 * field not changing. However, if the count goes to zero, then only 1446 * cgroup_attach_task() can increment it again. Because a count of zero 1447 * means that no tasks are currently attached, therefore there is no 1448 * way a task attached to that cgroup can fork (the other way to 1449 * increment the count). So code holding cgroup_mutex can safely 1450 * assume that if the count is zero, it will stay zero. Similarly, if 1451 * a task holds cgroup_mutex on a cgroup with zero count, it 1452 * knows that the cgroup won't be removed, as cgroup_rmdir() 1453 * needs that mutex. 1454 * 1455 * A cgroup can only be deleted if both its 'count' of using tasks 1456 * is zero, and its list of 'children' cgroups is empty. Since all 1457 * tasks in the system use _some_ cgroup, and since there is always at 1458 * least one task in the system (init, pid == 1), therefore, root cgroup 1459 * always has either children cgroups and/or using tasks. So we don't 1460 * need a special hack to ensure that root cgroup cannot be deleted. 1461 * 1462 * P.S. One more locking exception. RCU is used to guard the 1463 * update of a tasks cgroup pointer by cgroup_attach_task() 1464 */ 1465 1466 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1467 1468 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1469 char *buf) 1470 { 1471 struct cgroup_subsys *ss = cft->ss; 1472 1473 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1474 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1475 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1476 1477 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1478 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1479 cft->name); 1480 } else { 1481 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1482 } 1483 return buf; 1484 } 1485 1486 /** 1487 * cgroup_file_mode - deduce file mode of a control file 1488 * @cft: the control file in question 1489 * 1490 * S_IRUGO for read, S_IWUSR for write. 1491 */ 1492 static umode_t cgroup_file_mode(const struct cftype *cft) 1493 { 1494 umode_t mode = 0; 1495 1496 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1497 mode |= S_IRUGO; 1498 1499 if (cft->write_u64 || cft->write_s64 || cft->write) { 1500 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1501 mode |= S_IWUGO; 1502 else 1503 mode |= S_IWUSR; 1504 } 1505 1506 return mode; 1507 } 1508 1509 /** 1510 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1511 * @subtree_control: the new subtree_control mask to consider 1512 * @this_ss_mask: available subsystems 1513 * 1514 * On the default hierarchy, a subsystem may request other subsystems to be 1515 * enabled together through its ->depends_on mask. In such cases, more 1516 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1517 * 1518 * This function calculates which subsystems need to be enabled if 1519 * @subtree_control is to be applied while restricted to @this_ss_mask. 1520 */ 1521 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1522 { 1523 u16 cur_ss_mask = subtree_control; 1524 struct cgroup_subsys *ss; 1525 int ssid; 1526 1527 lockdep_assert_held(&cgroup_mutex); 1528 1529 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1530 1531 while (true) { 1532 u16 new_ss_mask = cur_ss_mask; 1533 1534 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1535 new_ss_mask |= ss->depends_on; 1536 } while_each_subsys_mask(); 1537 1538 /* 1539 * Mask out subsystems which aren't available. This can 1540 * happen only if some depended-upon subsystems were bound 1541 * to non-default hierarchies. 1542 */ 1543 new_ss_mask &= this_ss_mask; 1544 1545 if (new_ss_mask == cur_ss_mask) 1546 break; 1547 cur_ss_mask = new_ss_mask; 1548 } 1549 1550 return cur_ss_mask; 1551 } 1552 1553 /** 1554 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1555 * @kn: the kernfs_node being serviced 1556 * 1557 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1558 * the method finishes if locking succeeded. Note that once this function 1559 * returns the cgroup returned by cgroup_kn_lock_live() may become 1560 * inaccessible any time. If the caller intends to continue to access the 1561 * cgroup, it should pin it before invoking this function. 1562 */ 1563 void cgroup_kn_unlock(struct kernfs_node *kn) 1564 { 1565 struct cgroup *cgrp; 1566 1567 if (kernfs_type(kn) == KERNFS_DIR) 1568 cgrp = kn->priv; 1569 else 1570 cgrp = kn->parent->priv; 1571 1572 mutex_unlock(&cgroup_mutex); 1573 1574 kernfs_unbreak_active_protection(kn); 1575 cgroup_put(cgrp); 1576 } 1577 1578 /** 1579 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1580 * @kn: the kernfs_node being serviced 1581 * @drain_offline: perform offline draining on the cgroup 1582 * 1583 * This helper is to be used by a cgroup kernfs method currently servicing 1584 * @kn. It breaks the active protection, performs cgroup locking and 1585 * verifies that the associated cgroup is alive. Returns the cgroup if 1586 * alive; otherwise, %NULL. A successful return should be undone by a 1587 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1588 * cgroup is drained of offlining csses before return. 1589 * 1590 * Any cgroup kernfs method implementation which requires locking the 1591 * associated cgroup should use this helper. It avoids nesting cgroup 1592 * locking under kernfs active protection and allows all kernfs operations 1593 * including self-removal. 1594 */ 1595 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1596 { 1597 struct cgroup *cgrp; 1598 1599 if (kernfs_type(kn) == KERNFS_DIR) 1600 cgrp = kn->priv; 1601 else 1602 cgrp = kn->parent->priv; 1603 1604 /* 1605 * We're gonna grab cgroup_mutex which nests outside kernfs 1606 * active_ref. cgroup liveliness check alone provides enough 1607 * protection against removal. Ensure @cgrp stays accessible and 1608 * break the active_ref protection. 1609 */ 1610 if (!cgroup_tryget(cgrp)) 1611 return NULL; 1612 kernfs_break_active_protection(kn); 1613 1614 if (drain_offline) 1615 cgroup_lock_and_drain_offline(cgrp); 1616 else 1617 mutex_lock(&cgroup_mutex); 1618 1619 if (!cgroup_is_dead(cgrp)) 1620 return cgrp; 1621 1622 cgroup_kn_unlock(kn); 1623 return NULL; 1624 } 1625 1626 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1627 { 1628 char name[CGROUP_FILE_NAME_MAX]; 1629 1630 lockdep_assert_held(&cgroup_mutex); 1631 1632 if (cft->file_offset) { 1633 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1634 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1635 1636 spin_lock_irq(&cgroup_file_kn_lock); 1637 cfile->kn = NULL; 1638 spin_unlock_irq(&cgroup_file_kn_lock); 1639 1640 del_timer_sync(&cfile->notify_timer); 1641 } 1642 1643 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1644 } 1645 1646 /** 1647 * css_clear_dir - remove subsys files in a cgroup directory 1648 * @css: taget css 1649 */ 1650 static void css_clear_dir(struct cgroup_subsys_state *css) 1651 { 1652 struct cgroup *cgrp = css->cgroup; 1653 struct cftype *cfts; 1654 1655 if (!(css->flags & CSS_VISIBLE)) 1656 return; 1657 1658 css->flags &= ~CSS_VISIBLE; 1659 1660 if (!css->ss) { 1661 if (cgroup_on_dfl(cgrp)) 1662 cfts = cgroup_base_files; 1663 else 1664 cfts = cgroup1_base_files; 1665 1666 cgroup_addrm_files(css, cgrp, cfts, false); 1667 } else { 1668 list_for_each_entry(cfts, &css->ss->cfts, node) 1669 cgroup_addrm_files(css, cgrp, cfts, false); 1670 } 1671 } 1672 1673 /** 1674 * css_populate_dir - create subsys files in a cgroup directory 1675 * @css: target css 1676 * 1677 * On failure, no file is added. 1678 */ 1679 static int css_populate_dir(struct cgroup_subsys_state *css) 1680 { 1681 struct cgroup *cgrp = css->cgroup; 1682 struct cftype *cfts, *failed_cfts; 1683 int ret; 1684 1685 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1686 return 0; 1687 1688 if (!css->ss) { 1689 if (cgroup_on_dfl(cgrp)) 1690 cfts = cgroup_base_files; 1691 else 1692 cfts = cgroup1_base_files; 1693 1694 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1695 if (ret < 0) 1696 return ret; 1697 } else { 1698 list_for_each_entry(cfts, &css->ss->cfts, node) { 1699 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1700 if (ret < 0) { 1701 failed_cfts = cfts; 1702 goto err; 1703 } 1704 } 1705 } 1706 1707 css->flags |= CSS_VISIBLE; 1708 1709 return 0; 1710 err: 1711 list_for_each_entry(cfts, &css->ss->cfts, node) { 1712 if (cfts == failed_cfts) 1713 break; 1714 cgroup_addrm_files(css, cgrp, cfts, false); 1715 } 1716 return ret; 1717 } 1718 1719 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1720 { 1721 struct cgroup *dcgrp = &dst_root->cgrp; 1722 struct cgroup_subsys *ss; 1723 int ssid, i, ret; 1724 1725 lockdep_assert_held(&cgroup_mutex); 1726 1727 do_each_subsys_mask(ss, ssid, ss_mask) { 1728 /* 1729 * If @ss has non-root csses attached to it, can't move. 1730 * If @ss is an implicit controller, it is exempt from this 1731 * rule and can be stolen. 1732 */ 1733 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1734 !ss->implicit_on_dfl) 1735 return -EBUSY; 1736 1737 /* can't move between two non-dummy roots either */ 1738 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1739 return -EBUSY; 1740 } while_each_subsys_mask(); 1741 1742 do_each_subsys_mask(ss, ssid, ss_mask) { 1743 struct cgroup_root *src_root = ss->root; 1744 struct cgroup *scgrp = &src_root->cgrp; 1745 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1746 struct css_set *cset; 1747 1748 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1749 1750 /* disable from the source */ 1751 src_root->subsys_mask &= ~(1 << ssid); 1752 WARN_ON(cgroup_apply_control(scgrp)); 1753 cgroup_finalize_control(scgrp, 0); 1754 1755 /* rebind */ 1756 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1757 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1758 ss->root = dst_root; 1759 css->cgroup = dcgrp; 1760 1761 spin_lock_irq(&css_set_lock); 1762 hash_for_each(css_set_table, i, cset, hlist) 1763 list_move_tail(&cset->e_cset_node[ss->id], 1764 &dcgrp->e_csets[ss->id]); 1765 spin_unlock_irq(&css_set_lock); 1766 1767 /* default hierarchy doesn't enable controllers by default */ 1768 dst_root->subsys_mask |= 1 << ssid; 1769 if (dst_root == &cgrp_dfl_root) { 1770 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1771 } else { 1772 dcgrp->subtree_control |= 1 << ssid; 1773 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1774 } 1775 1776 ret = cgroup_apply_control(dcgrp); 1777 if (ret) 1778 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1779 ss->name, ret); 1780 1781 if (ss->bind) 1782 ss->bind(css); 1783 } while_each_subsys_mask(); 1784 1785 kernfs_activate(dcgrp->kn); 1786 return 0; 1787 } 1788 1789 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1790 struct kernfs_root *kf_root) 1791 { 1792 int len = 0; 1793 char *buf = NULL; 1794 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1795 struct cgroup *ns_cgroup; 1796 1797 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1798 if (!buf) 1799 return -ENOMEM; 1800 1801 spin_lock_irq(&css_set_lock); 1802 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1803 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1804 spin_unlock_irq(&css_set_lock); 1805 1806 if (len >= PATH_MAX) 1807 len = -ERANGE; 1808 else if (len > 0) { 1809 seq_escape(sf, buf, " \t\n\\"); 1810 len = 0; 1811 } 1812 kfree(buf); 1813 return len; 1814 } 1815 1816 enum cgroup2_param { 1817 Opt_nsdelegate, 1818 Opt_memory_localevents, 1819 nr__cgroup2_params 1820 }; 1821 1822 static const struct fs_parameter_spec cgroup2_param_specs[] = { 1823 fsparam_flag("nsdelegate", Opt_nsdelegate), 1824 fsparam_flag("memory_localevents", Opt_memory_localevents), 1825 {} 1826 }; 1827 1828 static const struct fs_parameter_description cgroup2_fs_parameters = { 1829 .name = "cgroup2", 1830 .specs = cgroup2_param_specs, 1831 }; 1832 1833 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1834 { 1835 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1836 struct fs_parse_result result; 1837 int opt; 1838 1839 opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result); 1840 if (opt < 0) 1841 return opt; 1842 1843 switch (opt) { 1844 case Opt_nsdelegate: 1845 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1846 return 0; 1847 case Opt_memory_localevents: 1848 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1849 return 0; 1850 } 1851 return -EINVAL; 1852 } 1853 1854 static void apply_cgroup_root_flags(unsigned int root_flags) 1855 { 1856 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1857 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1858 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1859 else 1860 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1861 1862 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1863 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1864 else 1865 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1866 } 1867 } 1868 1869 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1870 { 1871 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1872 seq_puts(seq, ",nsdelegate"); 1873 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1874 seq_puts(seq, ",memory_localevents"); 1875 return 0; 1876 } 1877 1878 static int cgroup_reconfigure(struct fs_context *fc) 1879 { 1880 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1881 1882 apply_cgroup_root_flags(ctx->flags); 1883 return 0; 1884 } 1885 1886 /* 1887 * To reduce the fork() overhead for systems that are not actually using 1888 * their cgroups capability, we don't maintain the lists running through 1889 * each css_set to its tasks until we see the list actually used - in other 1890 * words after the first mount. 1891 */ 1892 static bool use_task_css_set_links __read_mostly; 1893 1894 static void cgroup_enable_task_cg_lists(void) 1895 { 1896 struct task_struct *p, *g; 1897 1898 /* 1899 * We need tasklist_lock because RCU is not safe against 1900 * while_each_thread(). Besides, a forking task that has passed 1901 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1902 * is not guaranteed to have its child immediately visible in the 1903 * tasklist if we walk through it with RCU. 1904 */ 1905 read_lock(&tasklist_lock); 1906 spin_lock_irq(&css_set_lock); 1907 1908 if (use_task_css_set_links) 1909 goto out_unlock; 1910 1911 use_task_css_set_links = true; 1912 1913 do_each_thread(g, p) { 1914 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1915 task_css_set(p) != &init_css_set); 1916 1917 /* 1918 * We should check if the process is exiting, otherwise 1919 * it will race with cgroup_exit() in that the list 1920 * entry won't be deleted though the process has exited. 1921 * Do it while holding siglock so that we don't end up 1922 * racing against cgroup_exit(). 1923 * 1924 * Interrupts were already disabled while acquiring 1925 * the css_set_lock, so we do not need to disable it 1926 * again when acquiring the sighand->siglock here. 1927 */ 1928 spin_lock(&p->sighand->siglock); 1929 if (!(p->flags & PF_EXITING)) { 1930 struct css_set *cset = task_css_set(p); 1931 1932 if (!css_set_populated(cset)) 1933 css_set_update_populated(cset, true); 1934 list_add_tail(&p->cg_list, &cset->tasks); 1935 get_css_set(cset); 1936 cset->nr_tasks++; 1937 } 1938 spin_unlock(&p->sighand->siglock); 1939 } while_each_thread(g, p); 1940 out_unlock: 1941 spin_unlock_irq(&css_set_lock); 1942 read_unlock(&tasklist_lock); 1943 } 1944 1945 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1946 { 1947 struct cgroup_subsys *ss; 1948 int ssid; 1949 1950 INIT_LIST_HEAD(&cgrp->self.sibling); 1951 INIT_LIST_HEAD(&cgrp->self.children); 1952 INIT_LIST_HEAD(&cgrp->cset_links); 1953 INIT_LIST_HEAD(&cgrp->pidlists); 1954 mutex_init(&cgrp->pidlist_mutex); 1955 cgrp->self.cgroup = cgrp; 1956 cgrp->self.flags |= CSS_ONLINE; 1957 cgrp->dom_cgrp = cgrp; 1958 cgrp->max_descendants = INT_MAX; 1959 cgrp->max_depth = INT_MAX; 1960 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1961 prev_cputime_init(&cgrp->prev_cputime); 1962 1963 for_each_subsys(ss, ssid) 1964 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1965 1966 init_waitqueue_head(&cgrp->offline_waitq); 1967 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1968 } 1969 1970 void init_cgroup_root(struct cgroup_fs_context *ctx) 1971 { 1972 struct cgroup_root *root = ctx->root; 1973 struct cgroup *cgrp = &root->cgrp; 1974 1975 INIT_LIST_HEAD(&root->root_list); 1976 atomic_set(&root->nr_cgrps, 1); 1977 cgrp->root = root; 1978 init_cgroup_housekeeping(cgrp); 1979 idr_init(&root->cgroup_idr); 1980 1981 root->flags = ctx->flags; 1982 if (ctx->release_agent) 1983 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 1984 if (ctx->name) 1985 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 1986 if (ctx->cpuset_clone_children) 1987 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1988 } 1989 1990 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 1991 { 1992 LIST_HEAD(tmp_links); 1993 struct cgroup *root_cgrp = &root->cgrp; 1994 struct kernfs_syscall_ops *kf_sops; 1995 struct css_set *cset; 1996 int i, ret; 1997 1998 lockdep_assert_held(&cgroup_mutex); 1999 2000 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 2001 if (ret < 0) 2002 goto out; 2003 root_cgrp->id = ret; 2004 root_cgrp->ancestor_ids[0] = ret; 2005 2006 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2007 0, GFP_KERNEL); 2008 if (ret) 2009 goto out; 2010 2011 /* 2012 * We're accessing css_set_count without locking css_set_lock here, 2013 * but that's OK - it can only be increased by someone holding 2014 * cgroup_lock, and that's us. Later rebinding may disable 2015 * controllers on the default hierarchy and thus create new csets, 2016 * which can't be more than the existing ones. Allocate 2x. 2017 */ 2018 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2019 if (ret) 2020 goto cancel_ref; 2021 2022 ret = cgroup_init_root_id(root); 2023 if (ret) 2024 goto cancel_ref; 2025 2026 kf_sops = root == &cgrp_dfl_root ? 2027 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2028 2029 root->kf_root = kernfs_create_root(kf_sops, 2030 KERNFS_ROOT_CREATE_DEACTIVATED | 2031 KERNFS_ROOT_SUPPORT_EXPORTOP, 2032 root_cgrp); 2033 if (IS_ERR(root->kf_root)) { 2034 ret = PTR_ERR(root->kf_root); 2035 goto exit_root_id; 2036 } 2037 root_cgrp->kn = root->kf_root->kn; 2038 2039 ret = css_populate_dir(&root_cgrp->self); 2040 if (ret) 2041 goto destroy_root; 2042 2043 ret = rebind_subsystems(root, ss_mask); 2044 if (ret) 2045 goto destroy_root; 2046 2047 ret = cgroup_bpf_inherit(root_cgrp); 2048 WARN_ON_ONCE(ret); 2049 2050 trace_cgroup_setup_root(root); 2051 2052 /* 2053 * There must be no failure case after here, since rebinding takes 2054 * care of subsystems' refcounts, which are explicitly dropped in 2055 * the failure exit path. 2056 */ 2057 list_add(&root->root_list, &cgroup_roots); 2058 cgroup_root_count++; 2059 2060 /* 2061 * Link the root cgroup in this hierarchy into all the css_set 2062 * objects. 2063 */ 2064 spin_lock_irq(&css_set_lock); 2065 hash_for_each(css_set_table, i, cset, hlist) { 2066 link_css_set(&tmp_links, cset, root_cgrp); 2067 if (css_set_populated(cset)) 2068 cgroup_update_populated(root_cgrp, true); 2069 } 2070 spin_unlock_irq(&css_set_lock); 2071 2072 BUG_ON(!list_empty(&root_cgrp->self.children)); 2073 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2074 2075 kernfs_activate(root_cgrp->kn); 2076 ret = 0; 2077 goto out; 2078 2079 destroy_root: 2080 kernfs_destroy_root(root->kf_root); 2081 root->kf_root = NULL; 2082 exit_root_id: 2083 cgroup_exit_root_id(root); 2084 cancel_ref: 2085 percpu_ref_exit(&root_cgrp->self.refcnt); 2086 out: 2087 free_cgrp_cset_links(&tmp_links); 2088 return ret; 2089 } 2090 2091 int cgroup_do_get_tree(struct fs_context *fc) 2092 { 2093 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2094 int ret; 2095 2096 ctx->kfc.root = ctx->root->kf_root; 2097 if (fc->fs_type == &cgroup2_fs_type) 2098 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2099 else 2100 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2101 ret = kernfs_get_tree(fc); 2102 2103 /* 2104 * In non-init cgroup namespace, instead of root cgroup's dentry, 2105 * we return the dentry corresponding to the cgroupns->root_cgrp. 2106 */ 2107 if (!ret && ctx->ns != &init_cgroup_ns) { 2108 struct dentry *nsdentry; 2109 struct super_block *sb = fc->root->d_sb; 2110 struct cgroup *cgrp; 2111 2112 mutex_lock(&cgroup_mutex); 2113 spin_lock_irq(&css_set_lock); 2114 2115 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2116 2117 spin_unlock_irq(&css_set_lock); 2118 mutex_unlock(&cgroup_mutex); 2119 2120 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2121 dput(fc->root); 2122 fc->root = nsdentry; 2123 if (IS_ERR(nsdentry)) { 2124 ret = PTR_ERR(nsdentry); 2125 deactivate_locked_super(sb); 2126 } 2127 } 2128 2129 if (!ctx->kfc.new_sb_created) 2130 cgroup_put(&ctx->root->cgrp); 2131 2132 return ret; 2133 } 2134 2135 /* 2136 * Destroy a cgroup filesystem context. 2137 */ 2138 static void cgroup_fs_context_free(struct fs_context *fc) 2139 { 2140 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2141 2142 kfree(ctx->name); 2143 kfree(ctx->release_agent); 2144 put_cgroup_ns(ctx->ns); 2145 kernfs_free_fs_context(fc); 2146 kfree(ctx); 2147 } 2148 2149 static int cgroup_get_tree(struct fs_context *fc) 2150 { 2151 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2152 int ret; 2153 2154 cgrp_dfl_visible = true; 2155 cgroup_get_live(&cgrp_dfl_root.cgrp); 2156 ctx->root = &cgrp_dfl_root; 2157 2158 ret = cgroup_do_get_tree(fc); 2159 if (!ret) 2160 apply_cgroup_root_flags(ctx->flags); 2161 return ret; 2162 } 2163 2164 static const struct fs_context_operations cgroup_fs_context_ops = { 2165 .free = cgroup_fs_context_free, 2166 .parse_param = cgroup2_parse_param, 2167 .get_tree = cgroup_get_tree, 2168 .reconfigure = cgroup_reconfigure, 2169 }; 2170 2171 static const struct fs_context_operations cgroup1_fs_context_ops = { 2172 .free = cgroup_fs_context_free, 2173 .parse_param = cgroup1_parse_param, 2174 .get_tree = cgroup1_get_tree, 2175 .reconfigure = cgroup1_reconfigure, 2176 }; 2177 2178 /* 2179 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2180 * we select the namespace we're going to use. 2181 */ 2182 static int cgroup_init_fs_context(struct fs_context *fc) 2183 { 2184 struct cgroup_fs_context *ctx; 2185 2186 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2187 if (!ctx) 2188 return -ENOMEM; 2189 2190 /* 2191 * The first time anyone tries to mount a cgroup, enable the list 2192 * linking each css_set to its tasks and fix up all existing tasks. 2193 */ 2194 if (!use_task_css_set_links) 2195 cgroup_enable_task_cg_lists(); 2196 2197 ctx->ns = current->nsproxy->cgroup_ns; 2198 get_cgroup_ns(ctx->ns); 2199 fc->fs_private = &ctx->kfc; 2200 if (fc->fs_type == &cgroup2_fs_type) 2201 fc->ops = &cgroup_fs_context_ops; 2202 else 2203 fc->ops = &cgroup1_fs_context_ops; 2204 if (fc->user_ns) 2205 put_user_ns(fc->user_ns); 2206 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2207 fc->global = true; 2208 return 0; 2209 } 2210 2211 static void cgroup_kill_sb(struct super_block *sb) 2212 { 2213 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2214 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2215 2216 /* 2217 * If @root doesn't have any children, start killing it. 2218 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2219 * cgroup_mount() may wait for @root's release. 2220 * 2221 * And don't kill the default root. 2222 */ 2223 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2224 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) 2225 percpu_ref_kill(&root->cgrp.self.refcnt); 2226 cgroup_put(&root->cgrp); 2227 kernfs_kill_sb(sb); 2228 } 2229 2230 struct file_system_type cgroup_fs_type = { 2231 .name = "cgroup", 2232 .init_fs_context = cgroup_init_fs_context, 2233 .parameters = &cgroup1_fs_parameters, 2234 .kill_sb = cgroup_kill_sb, 2235 .fs_flags = FS_USERNS_MOUNT, 2236 }; 2237 2238 static struct file_system_type cgroup2_fs_type = { 2239 .name = "cgroup2", 2240 .init_fs_context = cgroup_init_fs_context, 2241 .parameters = &cgroup2_fs_parameters, 2242 .kill_sb = cgroup_kill_sb, 2243 .fs_flags = FS_USERNS_MOUNT, 2244 }; 2245 2246 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2247 struct cgroup_namespace *ns) 2248 { 2249 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2250 2251 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2252 } 2253 2254 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2255 struct cgroup_namespace *ns) 2256 { 2257 int ret; 2258 2259 mutex_lock(&cgroup_mutex); 2260 spin_lock_irq(&css_set_lock); 2261 2262 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2263 2264 spin_unlock_irq(&css_set_lock); 2265 mutex_unlock(&cgroup_mutex); 2266 2267 return ret; 2268 } 2269 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2270 2271 /** 2272 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2273 * @task: target task 2274 * @buf: the buffer to write the path into 2275 * @buflen: the length of the buffer 2276 * 2277 * Determine @task's cgroup on the first (the one with the lowest non-zero 2278 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2279 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2280 * cgroup controller callbacks. 2281 * 2282 * Return value is the same as kernfs_path(). 2283 */ 2284 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2285 { 2286 struct cgroup_root *root; 2287 struct cgroup *cgrp; 2288 int hierarchy_id = 1; 2289 int ret; 2290 2291 mutex_lock(&cgroup_mutex); 2292 spin_lock_irq(&css_set_lock); 2293 2294 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2295 2296 if (root) { 2297 cgrp = task_cgroup_from_root(task, root); 2298 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2299 } else { 2300 /* if no hierarchy exists, everyone is in "/" */ 2301 ret = strlcpy(buf, "/", buflen); 2302 } 2303 2304 spin_unlock_irq(&css_set_lock); 2305 mutex_unlock(&cgroup_mutex); 2306 return ret; 2307 } 2308 EXPORT_SYMBOL_GPL(task_cgroup_path); 2309 2310 /** 2311 * cgroup_migrate_add_task - add a migration target task to a migration context 2312 * @task: target task 2313 * @mgctx: target migration context 2314 * 2315 * Add @task, which is a migration target, to @mgctx->tset. This function 2316 * becomes noop if @task doesn't need to be migrated. @task's css_set 2317 * should have been added as a migration source and @task->cg_list will be 2318 * moved from the css_set's tasks list to mg_tasks one. 2319 */ 2320 static void cgroup_migrate_add_task(struct task_struct *task, 2321 struct cgroup_mgctx *mgctx) 2322 { 2323 struct css_set *cset; 2324 2325 lockdep_assert_held(&css_set_lock); 2326 2327 /* @task either already exited or can't exit until the end */ 2328 if (task->flags & PF_EXITING) 2329 return; 2330 2331 /* leave @task alone if post_fork() hasn't linked it yet */ 2332 if (list_empty(&task->cg_list)) 2333 return; 2334 2335 cset = task_css_set(task); 2336 if (!cset->mg_src_cgrp) 2337 return; 2338 2339 mgctx->tset.nr_tasks++; 2340 2341 list_move_tail(&task->cg_list, &cset->mg_tasks); 2342 if (list_empty(&cset->mg_node)) 2343 list_add_tail(&cset->mg_node, 2344 &mgctx->tset.src_csets); 2345 if (list_empty(&cset->mg_dst_cset->mg_node)) 2346 list_add_tail(&cset->mg_dst_cset->mg_node, 2347 &mgctx->tset.dst_csets); 2348 } 2349 2350 /** 2351 * cgroup_taskset_first - reset taskset and return the first task 2352 * @tset: taskset of interest 2353 * @dst_cssp: output variable for the destination css 2354 * 2355 * @tset iteration is initialized and the first task is returned. 2356 */ 2357 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2358 struct cgroup_subsys_state **dst_cssp) 2359 { 2360 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2361 tset->cur_task = NULL; 2362 2363 return cgroup_taskset_next(tset, dst_cssp); 2364 } 2365 2366 /** 2367 * cgroup_taskset_next - iterate to the next task in taskset 2368 * @tset: taskset of interest 2369 * @dst_cssp: output variable for the destination css 2370 * 2371 * Return the next task in @tset. Iteration must have been initialized 2372 * with cgroup_taskset_first(). 2373 */ 2374 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2375 struct cgroup_subsys_state **dst_cssp) 2376 { 2377 struct css_set *cset = tset->cur_cset; 2378 struct task_struct *task = tset->cur_task; 2379 2380 while (&cset->mg_node != tset->csets) { 2381 if (!task) 2382 task = list_first_entry(&cset->mg_tasks, 2383 struct task_struct, cg_list); 2384 else 2385 task = list_next_entry(task, cg_list); 2386 2387 if (&task->cg_list != &cset->mg_tasks) { 2388 tset->cur_cset = cset; 2389 tset->cur_task = task; 2390 2391 /* 2392 * This function may be called both before and 2393 * after cgroup_taskset_migrate(). The two cases 2394 * can be distinguished by looking at whether @cset 2395 * has its ->mg_dst_cset set. 2396 */ 2397 if (cset->mg_dst_cset) 2398 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2399 else 2400 *dst_cssp = cset->subsys[tset->ssid]; 2401 2402 return task; 2403 } 2404 2405 cset = list_next_entry(cset, mg_node); 2406 task = NULL; 2407 } 2408 2409 return NULL; 2410 } 2411 2412 /** 2413 * cgroup_taskset_migrate - migrate a taskset 2414 * @mgctx: migration context 2415 * 2416 * Migrate tasks in @mgctx as setup by migration preparation functions. 2417 * This function fails iff one of the ->can_attach callbacks fails and 2418 * guarantees that either all or none of the tasks in @mgctx are migrated. 2419 * @mgctx is consumed regardless of success. 2420 */ 2421 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2422 { 2423 struct cgroup_taskset *tset = &mgctx->tset; 2424 struct cgroup_subsys *ss; 2425 struct task_struct *task, *tmp_task; 2426 struct css_set *cset, *tmp_cset; 2427 int ssid, failed_ssid, ret; 2428 2429 /* check that we can legitimately attach to the cgroup */ 2430 if (tset->nr_tasks) { 2431 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2432 if (ss->can_attach) { 2433 tset->ssid = ssid; 2434 ret = ss->can_attach(tset); 2435 if (ret) { 2436 failed_ssid = ssid; 2437 goto out_cancel_attach; 2438 } 2439 } 2440 } while_each_subsys_mask(); 2441 } 2442 2443 /* 2444 * Now that we're guaranteed success, proceed to move all tasks to 2445 * the new cgroup. There are no failure cases after here, so this 2446 * is the commit point. 2447 */ 2448 spin_lock_irq(&css_set_lock); 2449 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2450 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2451 struct css_set *from_cset = task_css_set(task); 2452 struct css_set *to_cset = cset->mg_dst_cset; 2453 2454 get_css_set(to_cset); 2455 to_cset->nr_tasks++; 2456 css_set_move_task(task, from_cset, to_cset, true); 2457 from_cset->nr_tasks--; 2458 /* 2459 * If the source or destination cgroup is frozen, 2460 * the task might require to change its state. 2461 */ 2462 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2463 to_cset->dfl_cgrp); 2464 put_css_set_locked(from_cset); 2465 2466 } 2467 } 2468 spin_unlock_irq(&css_set_lock); 2469 2470 /* 2471 * Migration is committed, all target tasks are now on dst_csets. 2472 * Nothing is sensitive to fork() after this point. Notify 2473 * controllers that migration is complete. 2474 */ 2475 tset->csets = &tset->dst_csets; 2476 2477 if (tset->nr_tasks) { 2478 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2479 if (ss->attach) { 2480 tset->ssid = ssid; 2481 ss->attach(tset); 2482 } 2483 } while_each_subsys_mask(); 2484 } 2485 2486 ret = 0; 2487 goto out_release_tset; 2488 2489 out_cancel_attach: 2490 if (tset->nr_tasks) { 2491 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2492 if (ssid == failed_ssid) 2493 break; 2494 if (ss->cancel_attach) { 2495 tset->ssid = ssid; 2496 ss->cancel_attach(tset); 2497 } 2498 } while_each_subsys_mask(); 2499 } 2500 out_release_tset: 2501 spin_lock_irq(&css_set_lock); 2502 list_splice_init(&tset->dst_csets, &tset->src_csets); 2503 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2504 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2505 list_del_init(&cset->mg_node); 2506 } 2507 spin_unlock_irq(&css_set_lock); 2508 2509 /* 2510 * Re-initialize the cgroup_taskset structure in case it is reused 2511 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2512 * iteration. 2513 */ 2514 tset->nr_tasks = 0; 2515 tset->csets = &tset->src_csets; 2516 return ret; 2517 } 2518 2519 /** 2520 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2521 * @dst_cgrp: destination cgroup to test 2522 * 2523 * On the default hierarchy, except for the mixable, (possible) thread root 2524 * and threaded cgroups, subtree_control must be zero for migration 2525 * destination cgroups with tasks so that child cgroups don't compete 2526 * against tasks. 2527 */ 2528 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2529 { 2530 /* v1 doesn't have any restriction */ 2531 if (!cgroup_on_dfl(dst_cgrp)) 2532 return 0; 2533 2534 /* verify @dst_cgrp can host resources */ 2535 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2536 return -EOPNOTSUPP; 2537 2538 /* mixables don't care */ 2539 if (cgroup_is_mixable(dst_cgrp)) 2540 return 0; 2541 2542 /* 2543 * If @dst_cgrp is already or can become a thread root or is 2544 * threaded, it doesn't matter. 2545 */ 2546 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2547 return 0; 2548 2549 /* apply no-internal-process constraint */ 2550 if (dst_cgrp->subtree_control) 2551 return -EBUSY; 2552 2553 return 0; 2554 } 2555 2556 /** 2557 * cgroup_migrate_finish - cleanup after attach 2558 * @mgctx: migration context 2559 * 2560 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2561 * those functions for details. 2562 */ 2563 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2564 { 2565 LIST_HEAD(preloaded); 2566 struct css_set *cset, *tmp_cset; 2567 2568 lockdep_assert_held(&cgroup_mutex); 2569 2570 spin_lock_irq(&css_set_lock); 2571 2572 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2573 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2574 2575 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2576 cset->mg_src_cgrp = NULL; 2577 cset->mg_dst_cgrp = NULL; 2578 cset->mg_dst_cset = NULL; 2579 list_del_init(&cset->mg_preload_node); 2580 put_css_set_locked(cset); 2581 } 2582 2583 spin_unlock_irq(&css_set_lock); 2584 } 2585 2586 /** 2587 * cgroup_migrate_add_src - add a migration source css_set 2588 * @src_cset: the source css_set to add 2589 * @dst_cgrp: the destination cgroup 2590 * @mgctx: migration context 2591 * 2592 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2593 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2594 * up by cgroup_migrate_finish(). 2595 * 2596 * This function may be called without holding cgroup_threadgroup_rwsem 2597 * even if the target is a process. Threads may be created and destroyed 2598 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2599 * into play and the preloaded css_sets are guaranteed to cover all 2600 * migrations. 2601 */ 2602 void cgroup_migrate_add_src(struct css_set *src_cset, 2603 struct cgroup *dst_cgrp, 2604 struct cgroup_mgctx *mgctx) 2605 { 2606 struct cgroup *src_cgrp; 2607 2608 lockdep_assert_held(&cgroup_mutex); 2609 lockdep_assert_held(&css_set_lock); 2610 2611 /* 2612 * If ->dead, @src_set is associated with one or more dead cgroups 2613 * and doesn't contain any migratable tasks. Ignore it early so 2614 * that the rest of migration path doesn't get confused by it. 2615 */ 2616 if (src_cset->dead) 2617 return; 2618 2619 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2620 2621 if (!list_empty(&src_cset->mg_preload_node)) 2622 return; 2623 2624 WARN_ON(src_cset->mg_src_cgrp); 2625 WARN_ON(src_cset->mg_dst_cgrp); 2626 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2627 WARN_ON(!list_empty(&src_cset->mg_node)); 2628 2629 src_cset->mg_src_cgrp = src_cgrp; 2630 src_cset->mg_dst_cgrp = dst_cgrp; 2631 get_css_set(src_cset); 2632 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2633 } 2634 2635 /** 2636 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2637 * @mgctx: migration context 2638 * 2639 * Tasks are about to be moved and all the source css_sets have been 2640 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2641 * pins all destination css_sets, links each to its source, and append them 2642 * to @mgctx->preloaded_dst_csets. 2643 * 2644 * This function must be called after cgroup_migrate_add_src() has been 2645 * called on each migration source css_set. After migration is performed 2646 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2647 * @mgctx. 2648 */ 2649 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2650 { 2651 struct css_set *src_cset, *tmp_cset; 2652 2653 lockdep_assert_held(&cgroup_mutex); 2654 2655 /* look up the dst cset for each src cset and link it to src */ 2656 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2657 mg_preload_node) { 2658 struct css_set *dst_cset; 2659 struct cgroup_subsys *ss; 2660 int ssid; 2661 2662 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2663 if (!dst_cset) 2664 return -ENOMEM; 2665 2666 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2667 2668 /* 2669 * If src cset equals dst, it's noop. Drop the src. 2670 * cgroup_migrate() will skip the cset too. Note that we 2671 * can't handle src == dst as some nodes are used by both. 2672 */ 2673 if (src_cset == dst_cset) { 2674 src_cset->mg_src_cgrp = NULL; 2675 src_cset->mg_dst_cgrp = NULL; 2676 list_del_init(&src_cset->mg_preload_node); 2677 put_css_set(src_cset); 2678 put_css_set(dst_cset); 2679 continue; 2680 } 2681 2682 src_cset->mg_dst_cset = dst_cset; 2683 2684 if (list_empty(&dst_cset->mg_preload_node)) 2685 list_add_tail(&dst_cset->mg_preload_node, 2686 &mgctx->preloaded_dst_csets); 2687 else 2688 put_css_set(dst_cset); 2689 2690 for_each_subsys(ss, ssid) 2691 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2692 mgctx->ss_mask |= 1 << ssid; 2693 } 2694 2695 return 0; 2696 } 2697 2698 /** 2699 * cgroup_migrate - migrate a process or task to a cgroup 2700 * @leader: the leader of the process or the task to migrate 2701 * @threadgroup: whether @leader points to the whole process or a single task 2702 * @mgctx: migration context 2703 * 2704 * Migrate a process or task denoted by @leader. If migrating a process, 2705 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2706 * responsible for invoking cgroup_migrate_add_src() and 2707 * cgroup_migrate_prepare_dst() on the targets before invoking this 2708 * function and following up with cgroup_migrate_finish(). 2709 * 2710 * As long as a controller's ->can_attach() doesn't fail, this function is 2711 * guaranteed to succeed. This means that, excluding ->can_attach() 2712 * failure, when migrating multiple targets, the success or failure can be 2713 * decided for all targets by invoking group_migrate_prepare_dst() before 2714 * actually starting migrating. 2715 */ 2716 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2717 struct cgroup_mgctx *mgctx) 2718 { 2719 struct task_struct *task; 2720 2721 /* 2722 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2723 * already PF_EXITING could be freed from underneath us unless we 2724 * take an rcu_read_lock. 2725 */ 2726 spin_lock_irq(&css_set_lock); 2727 rcu_read_lock(); 2728 task = leader; 2729 do { 2730 cgroup_migrate_add_task(task, mgctx); 2731 if (!threadgroup) 2732 break; 2733 } while_each_thread(leader, task); 2734 rcu_read_unlock(); 2735 spin_unlock_irq(&css_set_lock); 2736 2737 return cgroup_migrate_execute(mgctx); 2738 } 2739 2740 /** 2741 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2742 * @dst_cgrp: the cgroup to attach to 2743 * @leader: the task or the leader of the threadgroup to be attached 2744 * @threadgroup: attach the whole threadgroup? 2745 * 2746 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2747 */ 2748 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2749 bool threadgroup) 2750 { 2751 DEFINE_CGROUP_MGCTX(mgctx); 2752 struct task_struct *task; 2753 int ret; 2754 2755 ret = cgroup_migrate_vet_dst(dst_cgrp); 2756 if (ret) 2757 return ret; 2758 2759 /* look up all src csets */ 2760 spin_lock_irq(&css_set_lock); 2761 rcu_read_lock(); 2762 task = leader; 2763 do { 2764 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2765 if (!threadgroup) 2766 break; 2767 } while_each_thread(leader, task); 2768 rcu_read_unlock(); 2769 spin_unlock_irq(&css_set_lock); 2770 2771 /* prepare dst csets and commit */ 2772 ret = cgroup_migrate_prepare_dst(&mgctx); 2773 if (!ret) 2774 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2775 2776 cgroup_migrate_finish(&mgctx); 2777 2778 if (!ret) 2779 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2780 2781 return ret; 2782 } 2783 2784 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup) 2785 __acquires(&cgroup_threadgroup_rwsem) 2786 { 2787 struct task_struct *tsk; 2788 pid_t pid; 2789 2790 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2791 return ERR_PTR(-EINVAL); 2792 2793 percpu_down_write(&cgroup_threadgroup_rwsem); 2794 2795 rcu_read_lock(); 2796 if (pid) { 2797 tsk = find_task_by_vpid(pid); 2798 if (!tsk) { 2799 tsk = ERR_PTR(-ESRCH); 2800 goto out_unlock_threadgroup; 2801 } 2802 } else { 2803 tsk = current; 2804 } 2805 2806 if (threadgroup) 2807 tsk = tsk->group_leader; 2808 2809 /* 2810 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2811 * If userland migrates such a kthread to a non-root cgroup, it can 2812 * become trapped in a cpuset, or RT kthread may be born in a 2813 * cgroup with no rt_runtime allocated. Just say no. 2814 */ 2815 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2816 tsk = ERR_PTR(-EINVAL); 2817 goto out_unlock_threadgroup; 2818 } 2819 2820 get_task_struct(tsk); 2821 goto out_unlock_rcu; 2822 2823 out_unlock_threadgroup: 2824 percpu_up_write(&cgroup_threadgroup_rwsem); 2825 out_unlock_rcu: 2826 rcu_read_unlock(); 2827 return tsk; 2828 } 2829 2830 void cgroup_procs_write_finish(struct task_struct *task) 2831 __releases(&cgroup_threadgroup_rwsem) 2832 { 2833 struct cgroup_subsys *ss; 2834 int ssid; 2835 2836 /* release reference from cgroup_procs_write_start() */ 2837 put_task_struct(task); 2838 2839 percpu_up_write(&cgroup_threadgroup_rwsem); 2840 for_each_subsys(ss, ssid) 2841 if (ss->post_attach) 2842 ss->post_attach(); 2843 } 2844 2845 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2846 { 2847 struct cgroup_subsys *ss; 2848 bool printed = false; 2849 int ssid; 2850 2851 do_each_subsys_mask(ss, ssid, ss_mask) { 2852 if (printed) 2853 seq_putc(seq, ' '); 2854 seq_printf(seq, "%s", ss->name); 2855 printed = true; 2856 } while_each_subsys_mask(); 2857 if (printed) 2858 seq_putc(seq, '\n'); 2859 } 2860 2861 /* show controllers which are enabled from the parent */ 2862 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2863 { 2864 struct cgroup *cgrp = seq_css(seq)->cgroup; 2865 2866 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2867 return 0; 2868 } 2869 2870 /* show controllers which are enabled for a given cgroup's children */ 2871 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2872 { 2873 struct cgroup *cgrp = seq_css(seq)->cgroup; 2874 2875 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2876 return 0; 2877 } 2878 2879 /** 2880 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2881 * @cgrp: root of the subtree to update csses for 2882 * 2883 * @cgrp's control masks have changed and its subtree's css associations 2884 * need to be updated accordingly. This function looks up all css_sets 2885 * which are attached to the subtree, creates the matching updated css_sets 2886 * and migrates the tasks to the new ones. 2887 */ 2888 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2889 { 2890 DEFINE_CGROUP_MGCTX(mgctx); 2891 struct cgroup_subsys_state *d_css; 2892 struct cgroup *dsct; 2893 struct css_set *src_cset; 2894 int ret; 2895 2896 lockdep_assert_held(&cgroup_mutex); 2897 2898 percpu_down_write(&cgroup_threadgroup_rwsem); 2899 2900 /* look up all csses currently attached to @cgrp's subtree */ 2901 spin_lock_irq(&css_set_lock); 2902 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2903 struct cgrp_cset_link *link; 2904 2905 list_for_each_entry(link, &dsct->cset_links, cset_link) 2906 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2907 } 2908 spin_unlock_irq(&css_set_lock); 2909 2910 /* NULL dst indicates self on default hierarchy */ 2911 ret = cgroup_migrate_prepare_dst(&mgctx); 2912 if (ret) 2913 goto out_finish; 2914 2915 spin_lock_irq(&css_set_lock); 2916 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2917 struct task_struct *task, *ntask; 2918 2919 /* all tasks in src_csets need to be migrated */ 2920 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2921 cgroup_migrate_add_task(task, &mgctx); 2922 } 2923 spin_unlock_irq(&css_set_lock); 2924 2925 ret = cgroup_migrate_execute(&mgctx); 2926 out_finish: 2927 cgroup_migrate_finish(&mgctx); 2928 percpu_up_write(&cgroup_threadgroup_rwsem); 2929 return ret; 2930 } 2931 2932 /** 2933 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2934 * @cgrp: root of the target subtree 2935 * 2936 * Because css offlining is asynchronous, userland may try to re-enable a 2937 * controller while the previous css is still around. This function grabs 2938 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2939 */ 2940 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2941 __acquires(&cgroup_mutex) 2942 { 2943 struct cgroup *dsct; 2944 struct cgroup_subsys_state *d_css; 2945 struct cgroup_subsys *ss; 2946 int ssid; 2947 2948 restart: 2949 mutex_lock(&cgroup_mutex); 2950 2951 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2952 for_each_subsys(ss, ssid) { 2953 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2954 DEFINE_WAIT(wait); 2955 2956 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2957 continue; 2958 2959 cgroup_get_live(dsct); 2960 prepare_to_wait(&dsct->offline_waitq, &wait, 2961 TASK_UNINTERRUPTIBLE); 2962 2963 mutex_unlock(&cgroup_mutex); 2964 schedule(); 2965 finish_wait(&dsct->offline_waitq, &wait); 2966 2967 cgroup_put(dsct); 2968 goto restart; 2969 } 2970 } 2971 } 2972 2973 /** 2974 * cgroup_save_control - save control masks and dom_cgrp of a subtree 2975 * @cgrp: root of the target subtree 2976 * 2977 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 2978 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2979 * itself. 2980 */ 2981 static void cgroup_save_control(struct cgroup *cgrp) 2982 { 2983 struct cgroup *dsct; 2984 struct cgroup_subsys_state *d_css; 2985 2986 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2987 dsct->old_subtree_control = dsct->subtree_control; 2988 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2989 dsct->old_dom_cgrp = dsct->dom_cgrp; 2990 } 2991 } 2992 2993 /** 2994 * cgroup_propagate_control - refresh control masks of a subtree 2995 * @cgrp: root of the target subtree 2996 * 2997 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2998 * ->subtree_control and propagate controller availability through the 2999 * subtree so that descendants don't have unavailable controllers enabled. 3000 */ 3001 static void cgroup_propagate_control(struct cgroup *cgrp) 3002 { 3003 struct cgroup *dsct; 3004 struct cgroup_subsys_state *d_css; 3005 3006 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3007 dsct->subtree_control &= cgroup_control(dsct); 3008 dsct->subtree_ss_mask = 3009 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3010 cgroup_ss_mask(dsct)); 3011 } 3012 } 3013 3014 /** 3015 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3016 * @cgrp: root of the target subtree 3017 * 3018 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3019 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3020 * itself. 3021 */ 3022 static void cgroup_restore_control(struct cgroup *cgrp) 3023 { 3024 struct cgroup *dsct; 3025 struct cgroup_subsys_state *d_css; 3026 3027 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3028 dsct->subtree_control = dsct->old_subtree_control; 3029 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3030 dsct->dom_cgrp = dsct->old_dom_cgrp; 3031 } 3032 } 3033 3034 static bool css_visible(struct cgroup_subsys_state *css) 3035 { 3036 struct cgroup_subsys *ss = css->ss; 3037 struct cgroup *cgrp = css->cgroup; 3038 3039 if (cgroup_control(cgrp) & (1 << ss->id)) 3040 return true; 3041 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3042 return false; 3043 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3044 } 3045 3046 /** 3047 * cgroup_apply_control_enable - enable or show csses according to control 3048 * @cgrp: root of the target subtree 3049 * 3050 * Walk @cgrp's subtree and create new csses or make the existing ones 3051 * visible. A css is created invisible if it's being implicitly enabled 3052 * through dependency. An invisible css is made visible when the userland 3053 * explicitly enables it. 3054 * 3055 * Returns 0 on success, -errno on failure. On failure, csses which have 3056 * been processed already aren't cleaned up. The caller is responsible for 3057 * cleaning up with cgroup_apply_control_disable(). 3058 */ 3059 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3060 { 3061 struct cgroup *dsct; 3062 struct cgroup_subsys_state *d_css; 3063 struct cgroup_subsys *ss; 3064 int ssid, ret; 3065 3066 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3067 for_each_subsys(ss, ssid) { 3068 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3069 3070 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 3071 3072 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3073 continue; 3074 3075 if (!css) { 3076 css = css_create(dsct, ss); 3077 if (IS_ERR(css)) 3078 return PTR_ERR(css); 3079 } 3080 3081 if (css_visible(css)) { 3082 ret = css_populate_dir(css); 3083 if (ret) 3084 return ret; 3085 } 3086 } 3087 } 3088 3089 return 0; 3090 } 3091 3092 /** 3093 * cgroup_apply_control_disable - kill or hide csses according to control 3094 * @cgrp: root of the target subtree 3095 * 3096 * Walk @cgrp's subtree and kill and hide csses so that they match 3097 * cgroup_ss_mask() and cgroup_visible_mask(). 3098 * 3099 * A css is hidden when the userland requests it to be disabled while other 3100 * subsystems are still depending on it. The css must not actively control 3101 * resources and be in the vanilla state if it's made visible again later. 3102 * Controllers which may be depended upon should provide ->css_reset() for 3103 * this purpose. 3104 */ 3105 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3106 { 3107 struct cgroup *dsct; 3108 struct cgroup_subsys_state *d_css; 3109 struct cgroup_subsys *ss; 3110 int ssid; 3111 3112 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3113 for_each_subsys(ss, ssid) { 3114 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3115 3116 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 3117 3118 if (!css) 3119 continue; 3120 3121 if (css->parent && 3122 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3123 kill_css(css); 3124 } else if (!css_visible(css)) { 3125 css_clear_dir(css); 3126 if (ss->css_reset) 3127 ss->css_reset(css); 3128 } 3129 } 3130 } 3131 } 3132 3133 /** 3134 * cgroup_apply_control - apply control mask updates to the subtree 3135 * @cgrp: root of the target subtree 3136 * 3137 * subsystems can be enabled and disabled in a subtree using the following 3138 * steps. 3139 * 3140 * 1. Call cgroup_save_control() to stash the current state. 3141 * 2. Update ->subtree_control masks in the subtree as desired. 3142 * 3. Call cgroup_apply_control() to apply the changes. 3143 * 4. Optionally perform other related operations. 3144 * 5. Call cgroup_finalize_control() to finish up. 3145 * 3146 * This function implements step 3 and propagates the mask changes 3147 * throughout @cgrp's subtree, updates csses accordingly and perform 3148 * process migrations. 3149 */ 3150 static int cgroup_apply_control(struct cgroup *cgrp) 3151 { 3152 int ret; 3153 3154 cgroup_propagate_control(cgrp); 3155 3156 ret = cgroup_apply_control_enable(cgrp); 3157 if (ret) 3158 return ret; 3159 3160 /* 3161 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3162 * making the following cgroup_update_dfl_csses() properly update 3163 * css associations of all tasks in the subtree. 3164 */ 3165 ret = cgroup_update_dfl_csses(cgrp); 3166 if (ret) 3167 return ret; 3168 3169 return 0; 3170 } 3171 3172 /** 3173 * cgroup_finalize_control - finalize control mask update 3174 * @cgrp: root of the target subtree 3175 * @ret: the result of the update 3176 * 3177 * Finalize control mask update. See cgroup_apply_control() for more info. 3178 */ 3179 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3180 { 3181 if (ret) { 3182 cgroup_restore_control(cgrp); 3183 cgroup_propagate_control(cgrp); 3184 } 3185 3186 cgroup_apply_control_disable(cgrp); 3187 } 3188 3189 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3190 { 3191 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3192 3193 /* if nothing is getting enabled, nothing to worry about */ 3194 if (!enable) 3195 return 0; 3196 3197 /* can @cgrp host any resources? */ 3198 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3199 return -EOPNOTSUPP; 3200 3201 /* mixables don't care */ 3202 if (cgroup_is_mixable(cgrp)) 3203 return 0; 3204 3205 if (domain_enable) { 3206 /* can't enable domain controllers inside a thread subtree */ 3207 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3208 return -EOPNOTSUPP; 3209 } else { 3210 /* 3211 * Threaded controllers can handle internal competitions 3212 * and are always allowed inside a (prospective) thread 3213 * subtree. 3214 */ 3215 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3216 return 0; 3217 } 3218 3219 /* 3220 * Controllers can't be enabled for a cgroup with tasks to avoid 3221 * child cgroups competing against tasks. 3222 */ 3223 if (cgroup_has_tasks(cgrp)) 3224 return -EBUSY; 3225 3226 return 0; 3227 } 3228 3229 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3230 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3231 char *buf, size_t nbytes, 3232 loff_t off) 3233 { 3234 u16 enable = 0, disable = 0; 3235 struct cgroup *cgrp, *child; 3236 struct cgroup_subsys *ss; 3237 char *tok; 3238 int ssid, ret; 3239 3240 /* 3241 * Parse input - space separated list of subsystem names prefixed 3242 * with either + or -. 3243 */ 3244 buf = strstrip(buf); 3245 while ((tok = strsep(&buf, " "))) { 3246 if (tok[0] == '\0') 3247 continue; 3248 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3249 if (!cgroup_ssid_enabled(ssid) || 3250 strcmp(tok + 1, ss->name)) 3251 continue; 3252 3253 if (*tok == '+') { 3254 enable |= 1 << ssid; 3255 disable &= ~(1 << ssid); 3256 } else if (*tok == '-') { 3257 disable |= 1 << ssid; 3258 enable &= ~(1 << ssid); 3259 } else { 3260 return -EINVAL; 3261 } 3262 break; 3263 } while_each_subsys_mask(); 3264 if (ssid == CGROUP_SUBSYS_COUNT) 3265 return -EINVAL; 3266 } 3267 3268 cgrp = cgroup_kn_lock_live(of->kn, true); 3269 if (!cgrp) 3270 return -ENODEV; 3271 3272 for_each_subsys(ss, ssid) { 3273 if (enable & (1 << ssid)) { 3274 if (cgrp->subtree_control & (1 << ssid)) { 3275 enable &= ~(1 << ssid); 3276 continue; 3277 } 3278 3279 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3280 ret = -ENOENT; 3281 goto out_unlock; 3282 } 3283 } else if (disable & (1 << ssid)) { 3284 if (!(cgrp->subtree_control & (1 << ssid))) { 3285 disable &= ~(1 << ssid); 3286 continue; 3287 } 3288 3289 /* a child has it enabled? */ 3290 cgroup_for_each_live_child(child, cgrp) { 3291 if (child->subtree_control & (1 << ssid)) { 3292 ret = -EBUSY; 3293 goto out_unlock; 3294 } 3295 } 3296 } 3297 } 3298 3299 if (!enable && !disable) { 3300 ret = 0; 3301 goto out_unlock; 3302 } 3303 3304 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3305 if (ret) 3306 goto out_unlock; 3307 3308 /* save and update control masks and prepare csses */ 3309 cgroup_save_control(cgrp); 3310 3311 cgrp->subtree_control |= enable; 3312 cgrp->subtree_control &= ~disable; 3313 3314 ret = cgroup_apply_control(cgrp); 3315 cgroup_finalize_control(cgrp, ret); 3316 if (ret) 3317 goto out_unlock; 3318 3319 kernfs_activate(cgrp->kn); 3320 out_unlock: 3321 cgroup_kn_unlock(of->kn); 3322 return ret ?: nbytes; 3323 } 3324 3325 /** 3326 * cgroup_enable_threaded - make @cgrp threaded 3327 * @cgrp: the target cgroup 3328 * 3329 * Called when "threaded" is written to the cgroup.type interface file and 3330 * tries to make @cgrp threaded and join the parent's resource domain. 3331 * This function is never called on the root cgroup as cgroup.type doesn't 3332 * exist on it. 3333 */ 3334 static int cgroup_enable_threaded(struct cgroup *cgrp) 3335 { 3336 struct cgroup *parent = cgroup_parent(cgrp); 3337 struct cgroup *dom_cgrp = parent->dom_cgrp; 3338 struct cgroup *dsct; 3339 struct cgroup_subsys_state *d_css; 3340 int ret; 3341 3342 lockdep_assert_held(&cgroup_mutex); 3343 3344 /* noop if already threaded */ 3345 if (cgroup_is_threaded(cgrp)) 3346 return 0; 3347 3348 /* 3349 * If @cgroup is populated or has domain controllers enabled, it 3350 * can't be switched. While the below cgroup_can_be_thread_root() 3351 * test can catch the same conditions, that's only when @parent is 3352 * not mixable, so let's check it explicitly. 3353 */ 3354 if (cgroup_is_populated(cgrp) || 3355 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3356 return -EOPNOTSUPP; 3357 3358 /* we're joining the parent's domain, ensure its validity */ 3359 if (!cgroup_is_valid_domain(dom_cgrp) || 3360 !cgroup_can_be_thread_root(dom_cgrp)) 3361 return -EOPNOTSUPP; 3362 3363 /* 3364 * The following shouldn't cause actual migrations and should 3365 * always succeed. 3366 */ 3367 cgroup_save_control(cgrp); 3368 3369 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3370 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3371 dsct->dom_cgrp = dom_cgrp; 3372 3373 ret = cgroup_apply_control(cgrp); 3374 if (!ret) 3375 parent->nr_threaded_children++; 3376 3377 cgroup_finalize_control(cgrp, ret); 3378 return ret; 3379 } 3380 3381 static int cgroup_type_show(struct seq_file *seq, void *v) 3382 { 3383 struct cgroup *cgrp = seq_css(seq)->cgroup; 3384 3385 if (cgroup_is_threaded(cgrp)) 3386 seq_puts(seq, "threaded\n"); 3387 else if (!cgroup_is_valid_domain(cgrp)) 3388 seq_puts(seq, "domain invalid\n"); 3389 else if (cgroup_is_thread_root(cgrp)) 3390 seq_puts(seq, "domain threaded\n"); 3391 else 3392 seq_puts(seq, "domain\n"); 3393 3394 return 0; 3395 } 3396 3397 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3398 size_t nbytes, loff_t off) 3399 { 3400 struct cgroup *cgrp; 3401 int ret; 3402 3403 /* only switching to threaded mode is supported */ 3404 if (strcmp(strstrip(buf), "threaded")) 3405 return -EINVAL; 3406 3407 cgrp = cgroup_kn_lock_live(of->kn, false); 3408 if (!cgrp) 3409 return -ENOENT; 3410 3411 /* threaded can only be enabled */ 3412 ret = cgroup_enable_threaded(cgrp); 3413 3414 cgroup_kn_unlock(of->kn); 3415 return ret ?: nbytes; 3416 } 3417 3418 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3419 { 3420 struct cgroup *cgrp = seq_css(seq)->cgroup; 3421 int descendants = READ_ONCE(cgrp->max_descendants); 3422 3423 if (descendants == INT_MAX) 3424 seq_puts(seq, "max\n"); 3425 else 3426 seq_printf(seq, "%d\n", descendants); 3427 3428 return 0; 3429 } 3430 3431 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3432 char *buf, size_t nbytes, loff_t off) 3433 { 3434 struct cgroup *cgrp; 3435 int descendants; 3436 ssize_t ret; 3437 3438 buf = strstrip(buf); 3439 if (!strcmp(buf, "max")) { 3440 descendants = INT_MAX; 3441 } else { 3442 ret = kstrtoint(buf, 0, &descendants); 3443 if (ret) 3444 return ret; 3445 } 3446 3447 if (descendants < 0) 3448 return -ERANGE; 3449 3450 cgrp = cgroup_kn_lock_live(of->kn, false); 3451 if (!cgrp) 3452 return -ENOENT; 3453 3454 cgrp->max_descendants = descendants; 3455 3456 cgroup_kn_unlock(of->kn); 3457 3458 return nbytes; 3459 } 3460 3461 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3462 { 3463 struct cgroup *cgrp = seq_css(seq)->cgroup; 3464 int depth = READ_ONCE(cgrp->max_depth); 3465 3466 if (depth == INT_MAX) 3467 seq_puts(seq, "max\n"); 3468 else 3469 seq_printf(seq, "%d\n", depth); 3470 3471 return 0; 3472 } 3473 3474 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3475 char *buf, size_t nbytes, loff_t off) 3476 { 3477 struct cgroup *cgrp; 3478 ssize_t ret; 3479 int depth; 3480 3481 buf = strstrip(buf); 3482 if (!strcmp(buf, "max")) { 3483 depth = INT_MAX; 3484 } else { 3485 ret = kstrtoint(buf, 0, &depth); 3486 if (ret) 3487 return ret; 3488 } 3489 3490 if (depth < 0) 3491 return -ERANGE; 3492 3493 cgrp = cgroup_kn_lock_live(of->kn, false); 3494 if (!cgrp) 3495 return -ENOENT; 3496 3497 cgrp->max_depth = depth; 3498 3499 cgroup_kn_unlock(of->kn); 3500 3501 return nbytes; 3502 } 3503 3504 static int cgroup_events_show(struct seq_file *seq, void *v) 3505 { 3506 struct cgroup *cgrp = seq_css(seq)->cgroup; 3507 3508 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3509 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3510 3511 return 0; 3512 } 3513 3514 static int cgroup_stat_show(struct seq_file *seq, void *v) 3515 { 3516 struct cgroup *cgroup = seq_css(seq)->cgroup; 3517 3518 seq_printf(seq, "nr_descendants %d\n", 3519 cgroup->nr_descendants); 3520 seq_printf(seq, "nr_dying_descendants %d\n", 3521 cgroup->nr_dying_descendants); 3522 3523 return 0; 3524 } 3525 3526 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3527 struct cgroup *cgrp, int ssid) 3528 { 3529 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3530 struct cgroup_subsys_state *css; 3531 int ret; 3532 3533 if (!ss->css_extra_stat_show) 3534 return 0; 3535 3536 css = cgroup_tryget_css(cgrp, ss); 3537 if (!css) 3538 return 0; 3539 3540 ret = ss->css_extra_stat_show(seq, css); 3541 css_put(css); 3542 return ret; 3543 } 3544 3545 static int cpu_stat_show(struct seq_file *seq, void *v) 3546 { 3547 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3548 int ret = 0; 3549 3550 cgroup_base_stat_cputime_show(seq); 3551 #ifdef CONFIG_CGROUP_SCHED 3552 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3553 #endif 3554 return ret; 3555 } 3556 3557 #ifdef CONFIG_PSI 3558 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3559 { 3560 struct cgroup *cgroup = seq_css(seq)->cgroup; 3561 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi; 3562 3563 return psi_show(seq, psi, PSI_IO); 3564 } 3565 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3566 { 3567 struct cgroup *cgroup = seq_css(seq)->cgroup; 3568 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi; 3569 3570 return psi_show(seq, psi, PSI_MEM); 3571 } 3572 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3573 { 3574 struct cgroup *cgroup = seq_css(seq)->cgroup; 3575 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi; 3576 3577 return psi_show(seq, psi, PSI_CPU); 3578 } 3579 3580 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf, 3581 size_t nbytes, enum psi_res res) 3582 { 3583 struct psi_trigger *new; 3584 struct cgroup *cgrp; 3585 3586 cgrp = cgroup_kn_lock_live(of->kn, false); 3587 if (!cgrp) 3588 return -ENODEV; 3589 3590 cgroup_get(cgrp); 3591 cgroup_kn_unlock(of->kn); 3592 3593 new = psi_trigger_create(&cgrp->psi, buf, nbytes, res); 3594 if (IS_ERR(new)) { 3595 cgroup_put(cgrp); 3596 return PTR_ERR(new); 3597 } 3598 3599 psi_trigger_replace(&of->priv, new); 3600 3601 cgroup_put(cgrp); 3602 3603 return nbytes; 3604 } 3605 3606 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3607 char *buf, size_t nbytes, 3608 loff_t off) 3609 { 3610 return cgroup_pressure_write(of, buf, nbytes, PSI_IO); 3611 } 3612 3613 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3614 char *buf, size_t nbytes, 3615 loff_t off) 3616 { 3617 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM); 3618 } 3619 3620 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3621 char *buf, size_t nbytes, 3622 loff_t off) 3623 { 3624 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU); 3625 } 3626 3627 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3628 poll_table *pt) 3629 { 3630 return psi_trigger_poll(&of->priv, of->file, pt); 3631 } 3632 3633 static void cgroup_pressure_release(struct kernfs_open_file *of) 3634 { 3635 psi_trigger_replace(&of->priv, NULL); 3636 } 3637 #endif /* CONFIG_PSI */ 3638 3639 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3640 { 3641 struct cgroup *cgrp = seq_css(seq)->cgroup; 3642 3643 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3644 3645 return 0; 3646 } 3647 3648 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3649 char *buf, size_t nbytes, loff_t off) 3650 { 3651 struct cgroup *cgrp; 3652 ssize_t ret; 3653 int freeze; 3654 3655 ret = kstrtoint(strstrip(buf), 0, &freeze); 3656 if (ret) 3657 return ret; 3658 3659 if (freeze < 0 || freeze > 1) 3660 return -ERANGE; 3661 3662 cgrp = cgroup_kn_lock_live(of->kn, false); 3663 if (!cgrp) 3664 return -ENOENT; 3665 3666 cgroup_freeze(cgrp, freeze); 3667 3668 cgroup_kn_unlock(of->kn); 3669 3670 return nbytes; 3671 } 3672 3673 static int cgroup_file_open(struct kernfs_open_file *of) 3674 { 3675 struct cftype *cft = of->kn->priv; 3676 3677 if (cft->open) 3678 return cft->open(of); 3679 return 0; 3680 } 3681 3682 static void cgroup_file_release(struct kernfs_open_file *of) 3683 { 3684 struct cftype *cft = of->kn->priv; 3685 3686 if (cft->release) 3687 cft->release(of); 3688 } 3689 3690 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3691 size_t nbytes, loff_t off) 3692 { 3693 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3694 struct cgroup *cgrp = of->kn->parent->priv; 3695 struct cftype *cft = of->kn->priv; 3696 struct cgroup_subsys_state *css; 3697 int ret; 3698 3699 /* 3700 * If namespaces are delegation boundaries, disallow writes to 3701 * files in an non-init namespace root from inside the namespace 3702 * except for the files explicitly marked delegatable - 3703 * cgroup.procs and cgroup.subtree_control. 3704 */ 3705 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3706 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3707 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3708 return -EPERM; 3709 3710 if (cft->write) 3711 return cft->write(of, buf, nbytes, off); 3712 3713 /* 3714 * kernfs guarantees that a file isn't deleted with operations in 3715 * flight, which means that the matching css is and stays alive and 3716 * doesn't need to be pinned. The RCU locking is not necessary 3717 * either. It's just for the convenience of using cgroup_css(). 3718 */ 3719 rcu_read_lock(); 3720 css = cgroup_css(cgrp, cft->ss); 3721 rcu_read_unlock(); 3722 3723 if (cft->write_u64) { 3724 unsigned long long v; 3725 ret = kstrtoull(buf, 0, &v); 3726 if (!ret) 3727 ret = cft->write_u64(css, cft, v); 3728 } else if (cft->write_s64) { 3729 long long v; 3730 ret = kstrtoll(buf, 0, &v); 3731 if (!ret) 3732 ret = cft->write_s64(css, cft, v); 3733 } else { 3734 ret = -EINVAL; 3735 } 3736 3737 return ret ?: nbytes; 3738 } 3739 3740 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 3741 { 3742 struct cftype *cft = of->kn->priv; 3743 3744 if (cft->poll) 3745 return cft->poll(of, pt); 3746 3747 return kernfs_generic_poll(of, pt); 3748 } 3749 3750 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3751 { 3752 return seq_cft(seq)->seq_start(seq, ppos); 3753 } 3754 3755 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3756 { 3757 return seq_cft(seq)->seq_next(seq, v, ppos); 3758 } 3759 3760 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3761 { 3762 if (seq_cft(seq)->seq_stop) 3763 seq_cft(seq)->seq_stop(seq, v); 3764 } 3765 3766 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3767 { 3768 struct cftype *cft = seq_cft(m); 3769 struct cgroup_subsys_state *css = seq_css(m); 3770 3771 if (cft->seq_show) 3772 return cft->seq_show(m, arg); 3773 3774 if (cft->read_u64) 3775 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3776 else if (cft->read_s64) 3777 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3778 else 3779 return -EINVAL; 3780 return 0; 3781 } 3782 3783 static struct kernfs_ops cgroup_kf_single_ops = { 3784 .atomic_write_len = PAGE_SIZE, 3785 .open = cgroup_file_open, 3786 .release = cgroup_file_release, 3787 .write = cgroup_file_write, 3788 .poll = cgroup_file_poll, 3789 .seq_show = cgroup_seqfile_show, 3790 }; 3791 3792 static struct kernfs_ops cgroup_kf_ops = { 3793 .atomic_write_len = PAGE_SIZE, 3794 .open = cgroup_file_open, 3795 .release = cgroup_file_release, 3796 .write = cgroup_file_write, 3797 .poll = cgroup_file_poll, 3798 .seq_start = cgroup_seqfile_start, 3799 .seq_next = cgroup_seqfile_next, 3800 .seq_stop = cgroup_seqfile_stop, 3801 .seq_show = cgroup_seqfile_show, 3802 }; 3803 3804 /* set uid and gid of cgroup dirs and files to that of the creator */ 3805 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3806 { 3807 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3808 .ia_uid = current_fsuid(), 3809 .ia_gid = current_fsgid(), }; 3810 3811 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3812 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3813 return 0; 3814 3815 return kernfs_setattr(kn, &iattr); 3816 } 3817 3818 static void cgroup_file_notify_timer(struct timer_list *timer) 3819 { 3820 cgroup_file_notify(container_of(timer, struct cgroup_file, 3821 notify_timer)); 3822 } 3823 3824 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3825 struct cftype *cft) 3826 { 3827 char name[CGROUP_FILE_NAME_MAX]; 3828 struct kernfs_node *kn; 3829 struct lock_class_key *key = NULL; 3830 int ret; 3831 3832 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3833 key = &cft->lockdep_key; 3834 #endif 3835 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3836 cgroup_file_mode(cft), 3837 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3838 0, cft->kf_ops, cft, 3839 NULL, key); 3840 if (IS_ERR(kn)) 3841 return PTR_ERR(kn); 3842 3843 ret = cgroup_kn_set_ugid(kn); 3844 if (ret) { 3845 kernfs_remove(kn); 3846 return ret; 3847 } 3848 3849 if (cft->file_offset) { 3850 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3851 3852 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3853 3854 spin_lock_irq(&cgroup_file_kn_lock); 3855 cfile->kn = kn; 3856 spin_unlock_irq(&cgroup_file_kn_lock); 3857 } 3858 3859 return 0; 3860 } 3861 3862 /** 3863 * cgroup_addrm_files - add or remove files to a cgroup directory 3864 * @css: the target css 3865 * @cgrp: the target cgroup (usually css->cgroup) 3866 * @cfts: array of cftypes to be added 3867 * @is_add: whether to add or remove 3868 * 3869 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3870 * For removals, this function never fails. 3871 */ 3872 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3873 struct cgroup *cgrp, struct cftype cfts[], 3874 bool is_add) 3875 { 3876 struct cftype *cft, *cft_end = NULL; 3877 int ret = 0; 3878 3879 lockdep_assert_held(&cgroup_mutex); 3880 3881 restart: 3882 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3883 /* does cft->flags tell us to skip this file on @cgrp? */ 3884 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3885 continue; 3886 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3887 continue; 3888 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3889 continue; 3890 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3891 continue; 3892 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 3893 continue; 3894 if (is_add) { 3895 ret = cgroup_add_file(css, cgrp, cft); 3896 if (ret) { 3897 pr_warn("%s: failed to add %s, err=%d\n", 3898 __func__, cft->name, ret); 3899 cft_end = cft; 3900 is_add = false; 3901 goto restart; 3902 } 3903 } else { 3904 cgroup_rm_file(cgrp, cft); 3905 } 3906 } 3907 return ret; 3908 } 3909 3910 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3911 { 3912 struct cgroup_subsys *ss = cfts[0].ss; 3913 struct cgroup *root = &ss->root->cgrp; 3914 struct cgroup_subsys_state *css; 3915 int ret = 0; 3916 3917 lockdep_assert_held(&cgroup_mutex); 3918 3919 /* add/rm files for all cgroups created before */ 3920 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3921 struct cgroup *cgrp = css->cgroup; 3922 3923 if (!(css->flags & CSS_VISIBLE)) 3924 continue; 3925 3926 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3927 if (ret) 3928 break; 3929 } 3930 3931 if (is_add && !ret) 3932 kernfs_activate(root->kn); 3933 return ret; 3934 } 3935 3936 static void cgroup_exit_cftypes(struct cftype *cfts) 3937 { 3938 struct cftype *cft; 3939 3940 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3941 /* free copy for custom atomic_write_len, see init_cftypes() */ 3942 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3943 kfree(cft->kf_ops); 3944 cft->kf_ops = NULL; 3945 cft->ss = NULL; 3946 3947 /* revert flags set by cgroup core while adding @cfts */ 3948 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3949 } 3950 } 3951 3952 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3953 { 3954 struct cftype *cft; 3955 3956 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3957 struct kernfs_ops *kf_ops; 3958 3959 WARN_ON(cft->ss || cft->kf_ops); 3960 3961 if (cft->seq_start) 3962 kf_ops = &cgroup_kf_ops; 3963 else 3964 kf_ops = &cgroup_kf_single_ops; 3965 3966 /* 3967 * Ugh... if @cft wants a custom max_write_len, we need to 3968 * make a copy of kf_ops to set its atomic_write_len. 3969 */ 3970 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3971 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3972 if (!kf_ops) { 3973 cgroup_exit_cftypes(cfts); 3974 return -ENOMEM; 3975 } 3976 kf_ops->atomic_write_len = cft->max_write_len; 3977 } 3978 3979 cft->kf_ops = kf_ops; 3980 cft->ss = ss; 3981 } 3982 3983 return 0; 3984 } 3985 3986 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3987 { 3988 lockdep_assert_held(&cgroup_mutex); 3989 3990 if (!cfts || !cfts[0].ss) 3991 return -ENOENT; 3992 3993 list_del(&cfts->node); 3994 cgroup_apply_cftypes(cfts, false); 3995 cgroup_exit_cftypes(cfts); 3996 return 0; 3997 } 3998 3999 /** 4000 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4001 * @cfts: zero-length name terminated array of cftypes 4002 * 4003 * Unregister @cfts. Files described by @cfts are removed from all 4004 * existing cgroups and all future cgroups won't have them either. This 4005 * function can be called anytime whether @cfts' subsys is attached or not. 4006 * 4007 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4008 * registered. 4009 */ 4010 int cgroup_rm_cftypes(struct cftype *cfts) 4011 { 4012 int ret; 4013 4014 mutex_lock(&cgroup_mutex); 4015 ret = cgroup_rm_cftypes_locked(cfts); 4016 mutex_unlock(&cgroup_mutex); 4017 return ret; 4018 } 4019 4020 /** 4021 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4022 * @ss: target cgroup subsystem 4023 * @cfts: zero-length name terminated array of cftypes 4024 * 4025 * Register @cfts to @ss. Files described by @cfts are created for all 4026 * existing cgroups to which @ss is attached and all future cgroups will 4027 * have them too. This function can be called anytime whether @ss is 4028 * attached or not. 4029 * 4030 * Returns 0 on successful registration, -errno on failure. Note that this 4031 * function currently returns 0 as long as @cfts registration is successful 4032 * even if some file creation attempts on existing cgroups fail. 4033 */ 4034 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4035 { 4036 int ret; 4037 4038 if (!cgroup_ssid_enabled(ss->id)) 4039 return 0; 4040 4041 if (!cfts || cfts[0].name[0] == '\0') 4042 return 0; 4043 4044 ret = cgroup_init_cftypes(ss, cfts); 4045 if (ret) 4046 return ret; 4047 4048 mutex_lock(&cgroup_mutex); 4049 4050 list_add_tail(&cfts->node, &ss->cfts); 4051 ret = cgroup_apply_cftypes(cfts, true); 4052 if (ret) 4053 cgroup_rm_cftypes_locked(cfts); 4054 4055 mutex_unlock(&cgroup_mutex); 4056 return ret; 4057 } 4058 4059 /** 4060 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4061 * @ss: target cgroup subsystem 4062 * @cfts: zero-length name terminated array of cftypes 4063 * 4064 * Similar to cgroup_add_cftypes() but the added files are only used for 4065 * the default hierarchy. 4066 */ 4067 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4068 { 4069 struct cftype *cft; 4070 4071 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4072 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4073 return cgroup_add_cftypes(ss, cfts); 4074 } 4075 4076 /** 4077 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4078 * @ss: target cgroup subsystem 4079 * @cfts: zero-length name terminated array of cftypes 4080 * 4081 * Similar to cgroup_add_cftypes() but the added files are only used for 4082 * the legacy hierarchies. 4083 */ 4084 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4085 { 4086 struct cftype *cft; 4087 4088 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4089 cft->flags |= __CFTYPE_NOT_ON_DFL; 4090 return cgroup_add_cftypes(ss, cfts); 4091 } 4092 4093 /** 4094 * cgroup_file_notify - generate a file modified event for a cgroup_file 4095 * @cfile: target cgroup_file 4096 * 4097 * @cfile must have been obtained by setting cftype->file_offset. 4098 */ 4099 void cgroup_file_notify(struct cgroup_file *cfile) 4100 { 4101 unsigned long flags; 4102 4103 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4104 if (cfile->kn) { 4105 unsigned long last = cfile->notified_at; 4106 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4107 4108 if (time_in_range(jiffies, last, next)) { 4109 timer_reduce(&cfile->notify_timer, next); 4110 } else { 4111 kernfs_notify(cfile->kn); 4112 cfile->notified_at = jiffies; 4113 } 4114 } 4115 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4116 } 4117 4118 /** 4119 * css_next_child - find the next child of a given css 4120 * @pos: the current position (%NULL to initiate traversal) 4121 * @parent: css whose children to walk 4122 * 4123 * This function returns the next child of @parent and should be called 4124 * under either cgroup_mutex or RCU read lock. The only requirement is 4125 * that @parent and @pos are accessible. The next sibling is guaranteed to 4126 * be returned regardless of their states. 4127 * 4128 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4129 * css which finished ->css_online() is guaranteed to be visible in the 4130 * future iterations and will stay visible until the last reference is put. 4131 * A css which hasn't finished ->css_online() or already finished 4132 * ->css_offline() may show up during traversal. It's each subsystem's 4133 * responsibility to synchronize against on/offlining. 4134 */ 4135 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4136 struct cgroup_subsys_state *parent) 4137 { 4138 struct cgroup_subsys_state *next; 4139 4140 cgroup_assert_mutex_or_rcu_locked(); 4141 4142 /* 4143 * @pos could already have been unlinked from the sibling list. 4144 * Once a cgroup is removed, its ->sibling.next is no longer 4145 * updated when its next sibling changes. CSS_RELEASED is set when 4146 * @pos is taken off list, at which time its next pointer is valid, 4147 * and, as releases are serialized, the one pointed to by the next 4148 * pointer is guaranteed to not have started release yet. This 4149 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4150 * critical section, the one pointed to by its next pointer is 4151 * guaranteed to not have finished its RCU grace period even if we 4152 * have dropped rcu_read_lock() inbetween iterations. 4153 * 4154 * If @pos has CSS_RELEASED set, its next pointer can't be 4155 * dereferenced; however, as each css is given a monotonically 4156 * increasing unique serial number and always appended to the 4157 * sibling list, the next one can be found by walking the parent's 4158 * children until the first css with higher serial number than 4159 * @pos's. While this path can be slower, it happens iff iteration 4160 * races against release and the race window is very small. 4161 */ 4162 if (!pos) { 4163 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4164 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4165 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4166 } else { 4167 list_for_each_entry_rcu(next, &parent->children, sibling) 4168 if (next->serial_nr > pos->serial_nr) 4169 break; 4170 } 4171 4172 /* 4173 * @next, if not pointing to the head, can be dereferenced and is 4174 * the next sibling. 4175 */ 4176 if (&next->sibling != &parent->children) 4177 return next; 4178 return NULL; 4179 } 4180 4181 /** 4182 * css_next_descendant_pre - find the next descendant for pre-order walk 4183 * @pos: the current position (%NULL to initiate traversal) 4184 * @root: css whose descendants to walk 4185 * 4186 * To be used by css_for_each_descendant_pre(). Find the next descendant 4187 * to visit for pre-order traversal of @root's descendants. @root is 4188 * included in the iteration and the first node to be visited. 4189 * 4190 * While this function requires cgroup_mutex or RCU read locking, it 4191 * doesn't require the whole traversal to be contained in a single critical 4192 * section. This function will return the correct next descendant as long 4193 * as both @pos and @root are accessible and @pos is a descendant of @root. 4194 * 4195 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4196 * css which finished ->css_online() is guaranteed to be visible in the 4197 * future iterations and will stay visible until the last reference is put. 4198 * A css which hasn't finished ->css_online() or already finished 4199 * ->css_offline() may show up during traversal. It's each subsystem's 4200 * responsibility to synchronize against on/offlining. 4201 */ 4202 struct cgroup_subsys_state * 4203 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4204 struct cgroup_subsys_state *root) 4205 { 4206 struct cgroup_subsys_state *next; 4207 4208 cgroup_assert_mutex_or_rcu_locked(); 4209 4210 /* if first iteration, visit @root */ 4211 if (!pos) 4212 return root; 4213 4214 /* visit the first child if exists */ 4215 next = css_next_child(NULL, pos); 4216 if (next) 4217 return next; 4218 4219 /* no child, visit my or the closest ancestor's next sibling */ 4220 while (pos != root) { 4221 next = css_next_child(pos, pos->parent); 4222 if (next) 4223 return next; 4224 pos = pos->parent; 4225 } 4226 4227 return NULL; 4228 } 4229 4230 /** 4231 * css_rightmost_descendant - return the rightmost descendant of a css 4232 * @pos: css of interest 4233 * 4234 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4235 * is returned. This can be used during pre-order traversal to skip 4236 * subtree of @pos. 4237 * 4238 * While this function requires cgroup_mutex or RCU read locking, it 4239 * doesn't require the whole traversal to be contained in a single critical 4240 * section. This function will return the correct rightmost descendant as 4241 * long as @pos is accessible. 4242 */ 4243 struct cgroup_subsys_state * 4244 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4245 { 4246 struct cgroup_subsys_state *last, *tmp; 4247 4248 cgroup_assert_mutex_or_rcu_locked(); 4249 4250 do { 4251 last = pos; 4252 /* ->prev isn't RCU safe, walk ->next till the end */ 4253 pos = NULL; 4254 css_for_each_child(tmp, last) 4255 pos = tmp; 4256 } while (pos); 4257 4258 return last; 4259 } 4260 4261 static struct cgroup_subsys_state * 4262 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4263 { 4264 struct cgroup_subsys_state *last; 4265 4266 do { 4267 last = pos; 4268 pos = css_next_child(NULL, pos); 4269 } while (pos); 4270 4271 return last; 4272 } 4273 4274 /** 4275 * css_next_descendant_post - find the next descendant for post-order walk 4276 * @pos: the current position (%NULL to initiate traversal) 4277 * @root: css whose descendants to walk 4278 * 4279 * To be used by css_for_each_descendant_post(). Find the next descendant 4280 * to visit for post-order traversal of @root's descendants. @root is 4281 * included in the iteration and the last node to be visited. 4282 * 4283 * While this function requires cgroup_mutex or RCU read locking, it 4284 * doesn't require the whole traversal to be contained in a single critical 4285 * section. This function will return the correct next descendant as long 4286 * as both @pos and @cgroup are accessible and @pos is a descendant of 4287 * @cgroup. 4288 * 4289 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4290 * css which finished ->css_online() is guaranteed to be visible in the 4291 * future iterations and will stay visible until the last reference is put. 4292 * A css which hasn't finished ->css_online() or already finished 4293 * ->css_offline() may show up during traversal. It's each subsystem's 4294 * responsibility to synchronize against on/offlining. 4295 */ 4296 struct cgroup_subsys_state * 4297 css_next_descendant_post(struct cgroup_subsys_state *pos, 4298 struct cgroup_subsys_state *root) 4299 { 4300 struct cgroup_subsys_state *next; 4301 4302 cgroup_assert_mutex_or_rcu_locked(); 4303 4304 /* if first iteration, visit leftmost descendant which may be @root */ 4305 if (!pos) 4306 return css_leftmost_descendant(root); 4307 4308 /* if we visited @root, we're done */ 4309 if (pos == root) 4310 return NULL; 4311 4312 /* if there's an unvisited sibling, visit its leftmost descendant */ 4313 next = css_next_child(pos, pos->parent); 4314 if (next) 4315 return css_leftmost_descendant(next); 4316 4317 /* no sibling left, visit parent */ 4318 return pos->parent; 4319 } 4320 4321 /** 4322 * css_has_online_children - does a css have online children 4323 * @css: the target css 4324 * 4325 * Returns %true if @css has any online children; otherwise, %false. This 4326 * function can be called from any context but the caller is responsible 4327 * for synchronizing against on/offlining as necessary. 4328 */ 4329 bool css_has_online_children(struct cgroup_subsys_state *css) 4330 { 4331 struct cgroup_subsys_state *child; 4332 bool ret = false; 4333 4334 rcu_read_lock(); 4335 css_for_each_child(child, css) { 4336 if (child->flags & CSS_ONLINE) { 4337 ret = true; 4338 break; 4339 } 4340 } 4341 rcu_read_unlock(); 4342 return ret; 4343 } 4344 4345 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4346 { 4347 struct list_head *l; 4348 struct cgrp_cset_link *link; 4349 struct css_set *cset; 4350 4351 lockdep_assert_held(&css_set_lock); 4352 4353 /* find the next threaded cset */ 4354 if (it->tcset_pos) { 4355 l = it->tcset_pos->next; 4356 4357 if (l != it->tcset_head) { 4358 it->tcset_pos = l; 4359 return container_of(l, struct css_set, 4360 threaded_csets_node); 4361 } 4362 4363 it->tcset_pos = NULL; 4364 } 4365 4366 /* find the next cset */ 4367 l = it->cset_pos; 4368 l = l->next; 4369 if (l == it->cset_head) { 4370 it->cset_pos = NULL; 4371 return NULL; 4372 } 4373 4374 if (it->ss) { 4375 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4376 } else { 4377 link = list_entry(l, struct cgrp_cset_link, cset_link); 4378 cset = link->cset; 4379 } 4380 4381 it->cset_pos = l; 4382 4383 /* initialize threaded css_set walking */ 4384 if (it->flags & CSS_TASK_ITER_THREADED) { 4385 if (it->cur_dcset) 4386 put_css_set_locked(it->cur_dcset); 4387 it->cur_dcset = cset; 4388 get_css_set(cset); 4389 4390 it->tcset_head = &cset->threaded_csets; 4391 it->tcset_pos = &cset->threaded_csets; 4392 } 4393 4394 return cset; 4395 } 4396 4397 /** 4398 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4399 * @it: the iterator to advance 4400 * 4401 * Advance @it to the next css_set to walk. 4402 */ 4403 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4404 { 4405 struct css_set *cset; 4406 4407 lockdep_assert_held(&css_set_lock); 4408 4409 /* Advance to the next non-empty css_set */ 4410 do { 4411 cset = css_task_iter_next_css_set(it); 4412 if (!cset) { 4413 it->task_pos = NULL; 4414 return; 4415 } 4416 } while (!css_set_populated(cset) && list_empty(&cset->dying_tasks)); 4417 4418 if (!list_empty(&cset->tasks)) 4419 it->task_pos = cset->tasks.next; 4420 else if (!list_empty(&cset->mg_tasks)) 4421 it->task_pos = cset->mg_tasks.next; 4422 else 4423 it->task_pos = cset->dying_tasks.next; 4424 4425 it->tasks_head = &cset->tasks; 4426 it->mg_tasks_head = &cset->mg_tasks; 4427 it->dying_tasks_head = &cset->dying_tasks; 4428 4429 /* 4430 * We don't keep css_sets locked across iteration steps and thus 4431 * need to take steps to ensure that iteration can be resumed after 4432 * the lock is re-acquired. Iteration is performed at two levels - 4433 * css_sets and tasks in them. 4434 * 4435 * Once created, a css_set never leaves its cgroup lists, so a 4436 * pinned css_set is guaranteed to stay put and we can resume 4437 * iteration afterwards. 4438 * 4439 * Tasks may leave @cset across iteration steps. This is resolved 4440 * by registering each iterator with the css_set currently being 4441 * walked and making css_set_move_task() advance iterators whose 4442 * next task is leaving. 4443 */ 4444 if (it->cur_cset) { 4445 list_del(&it->iters_node); 4446 put_css_set_locked(it->cur_cset); 4447 } 4448 get_css_set(cset); 4449 it->cur_cset = cset; 4450 list_add(&it->iters_node, &cset->task_iters); 4451 } 4452 4453 static void css_task_iter_skip(struct css_task_iter *it, 4454 struct task_struct *task) 4455 { 4456 lockdep_assert_held(&css_set_lock); 4457 4458 if (it->task_pos == &task->cg_list) { 4459 it->task_pos = it->task_pos->next; 4460 it->flags |= CSS_TASK_ITER_SKIPPED; 4461 } 4462 } 4463 4464 static void css_task_iter_advance(struct css_task_iter *it) 4465 { 4466 struct task_struct *task; 4467 4468 lockdep_assert_held(&css_set_lock); 4469 repeat: 4470 if (it->task_pos) { 4471 /* 4472 * Advance iterator to find next entry. cset->tasks is 4473 * consumed first and then ->mg_tasks. After ->mg_tasks, 4474 * we move onto the next cset. 4475 */ 4476 if (it->flags & CSS_TASK_ITER_SKIPPED) 4477 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4478 else 4479 it->task_pos = it->task_pos->next; 4480 4481 if (it->task_pos == it->tasks_head) 4482 it->task_pos = it->mg_tasks_head->next; 4483 if (it->task_pos == it->mg_tasks_head) 4484 it->task_pos = it->dying_tasks_head->next; 4485 if (it->task_pos == it->dying_tasks_head) 4486 css_task_iter_advance_css_set(it); 4487 } else { 4488 /* called from start, proceed to the first cset */ 4489 css_task_iter_advance_css_set(it); 4490 } 4491 4492 if (!it->task_pos) 4493 return; 4494 4495 task = list_entry(it->task_pos, struct task_struct, cg_list); 4496 4497 if (it->flags & CSS_TASK_ITER_PROCS) { 4498 /* if PROCS, skip over tasks which aren't group leaders */ 4499 if (!thread_group_leader(task)) 4500 goto repeat; 4501 4502 /* and dying leaders w/o live member threads */ 4503 if (!atomic_read(&task->signal->live)) 4504 goto repeat; 4505 } else { 4506 /* skip all dying ones */ 4507 if (task->flags & PF_EXITING) 4508 goto repeat; 4509 } 4510 } 4511 4512 /** 4513 * css_task_iter_start - initiate task iteration 4514 * @css: the css to walk tasks of 4515 * @flags: CSS_TASK_ITER_* flags 4516 * @it: the task iterator to use 4517 * 4518 * Initiate iteration through the tasks of @css. The caller can call 4519 * css_task_iter_next() to walk through the tasks until the function 4520 * returns NULL. On completion of iteration, css_task_iter_end() must be 4521 * called. 4522 */ 4523 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4524 struct css_task_iter *it) 4525 { 4526 /* no one should try to iterate before mounting cgroups */ 4527 WARN_ON_ONCE(!use_task_css_set_links); 4528 4529 memset(it, 0, sizeof(*it)); 4530 4531 spin_lock_irq(&css_set_lock); 4532 4533 it->ss = css->ss; 4534 it->flags = flags; 4535 4536 if (it->ss) 4537 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4538 else 4539 it->cset_pos = &css->cgroup->cset_links; 4540 4541 it->cset_head = it->cset_pos; 4542 4543 css_task_iter_advance(it); 4544 4545 spin_unlock_irq(&css_set_lock); 4546 } 4547 4548 /** 4549 * css_task_iter_next - return the next task for the iterator 4550 * @it: the task iterator being iterated 4551 * 4552 * The "next" function for task iteration. @it should have been 4553 * initialized via css_task_iter_start(). Returns NULL when the iteration 4554 * reaches the end. 4555 */ 4556 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4557 { 4558 if (it->cur_task) { 4559 put_task_struct(it->cur_task); 4560 it->cur_task = NULL; 4561 } 4562 4563 spin_lock_irq(&css_set_lock); 4564 4565 /* @it may be half-advanced by skips, finish advancing */ 4566 if (it->flags & CSS_TASK_ITER_SKIPPED) 4567 css_task_iter_advance(it); 4568 4569 if (it->task_pos) { 4570 it->cur_task = list_entry(it->task_pos, struct task_struct, 4571 cg_list); 4572 get_task_struct(it->cur_task); 4573 css_task_iter_advance(it); 4574 } 4575 4576 spin_unlock_irq(&css_set_lock); 4577 4578 return it->cur_task; 4579 } 4580 4581 /** 4582 * css_task_iter_end - finish task iteration 4583 * @it: the task iterator to finish 4584 * 4585 * Finish task iteration started by css_task_iter_start(). 4586 */ 4587 void css_task_iter_end(struct css_task_iter *it) 4588 { 4589 if (it->cur_cset) { 4590 spin_lock_irq(&css_set_lock); 4591 list_del(&it->iters_node); 4592 put_css_set_locked(it->cur_cset); 4593 spin_unlock_irq(&css_set_lock); 4594 } 4595 4596 if (it->cur_dcset) 4597 put_css_set(it->cur_dcset); 4598 4599 if (it->cur_task) 4600 put_task_struct(it->cur_task); 4601 } 4602 4603 static void cgroup_procs_release(struct kernfs_open_file *of) 4604 { 4605 if (of->priv) { 4606 css_task_iter_end(of->priv); 4607 kfree(of->priv); 4608 } 4609 } 4610 4611 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4612 { 4613 struct kernfs_open_file *of = s->private; 4614 struct css_task_iter *it = of->priv; 4615 4616 return css_task_iter_next(it); 4617 } 4618 4619 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4620 unsigned int iter_flags) 4621 { 4622 struct kernfs_open_file *of = s->private; 4623 struct cgroup *cgrp = seq_css(s)->cgroup; 4624 struct css_task_iter *it = of->priv; 4625 4626 /* 4627 * When a seq_file is seeked, it's always traversed sequentially 4628 * from position 0, so we can simply keep iterating on !0 *pos. 4629 */ 4630 if (!it) { 4631 if (WARN_ON_ONCE((*pos)++)) 4632 return ERR_PTR(-EINVAL); 4633 4634 it = kzalloc(sizeof(*it), GFP_KERNEL); 4635 if (!it) 4636 return ERR_PTR(-ENOMEM); 4637 of->priv = it; 4638 css_task_iter_start(&cgrp->self, iter_flags, it); 4639 } else if (!(*pos)++) { 4640 css_task_iter_end(it); 4641 css_task_iter_start(&cgrp->self, iter_flags, it); 4642 } 4643 4644 return cgroup_procs_next(s, NULL, NULL); 4645 } 4646 4647 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4648 { 4649 struct cgroup *cgrp = seq_css(s)->cgroup; 4650 4651 /* 4652 * All processes of a threaded subtree belong to the domain cgroup 4653 * of the subtree. Only threads can be distributed across the 4654 * subtree. Reject reads on cgroup.procs in the subtree proper. 4655 * They're always empty anyway. 4656 */ 4657 if (cgroup_is_threaded(cgrp)) 4658 return ERR_PTR(-EOPNOTSUPP); 4659 4660 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4661 CSS_TASK_ITER_THREADED); 4662 } 4663 4664 static int cgroup_procs_show(struct seq_file *s, void *v) 4665 { 4666 seq_printf(s, "%d\n", task_pid_vnr(v)); 4667 return 0; 4668 } 4669 4670 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4671 struct cgroup *dst_cgrp, 4672 struct super_block *sb) 4673 { 4674 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4675 struct cgroup *com_cgrp = src_cgrp; 4676 struct inode *inode; 4677 int ret; 4678 4679 lockdep_assert_held(&cgroup_mutex); 4680 4681 /* find the common ancestor */ 4682 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4683 com_cgrp = cgroup_parent(com_cgrp); 4684 4685 /* %current should be authorized to migrate to the common ancestor */ 4686 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 4687 if (!inode) 4688 return -ENOMEM; 4689 4690 ret = inode_permission(inode, MAY_WRITE); 4691 iput(inode); 4692 if (ret) 4693 return ret; 4694 4695 /* 4696 * If namespaces are delegation boundaries, %current must be able 4697 * to see both source and destination cgroups from its namespace. 4698 */ 4699 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4700 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4701 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4702 return -ENOENT; 4703 4704 return 0; 4705 } 4706 4707 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4708 char *buf, size_t nbytes, loff_t off) 4709 { 4710 struct cgroup *src_cgrp, *dst_cgrp; 4711 struct task_struct *task; 4712 ssize_t ret; 4713 4714 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4715 if (!dst_cgrp) 4716 return -ENODEV; 4717 4718 task = cgroup_procs_write_start(buf, true); 4719 ret = PTR_ERR_OR_ZERO(task); 4720 if (ret) 4721 goto out_unlock; 4722 4723 /* find the source cgroup */ 4724 spin_lock_irq(&css_set_lock); 4725 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4726 spin_unlock_irq(&css_set_lock); 4727 4728 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4729 of->file->f_path.dentry->d_sb); 4730 if (ret) 4731 goto out_finish; 4732 4733 ret = cgroup_attach_task(dst_cgrp, task, true); 4734 4735 out_finish: 4736 cgroup_procs_write_finish(task); 4737 out_unlock: 4738 cgroup_kn_unlock(of->kn); 4739 4740 return ret ?: nbytes; 4741 } 4742 4743 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4744 { 4745 return __cgroup_procs_start(s, pos, 0); 4746 } 4747 4748 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4749 char *buf, size_t nbytes, loff_t off) 4750 { 4751 struct cgroup *src_cgrp, *dst_cgrp; 4752 struct task_struct *task; 4753 ssize_t ret; 4754 4755 buf = strstrip(buf); 4756 4757 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4758 if (!dst_cgrp) 4759 return -ENODEV; 4760 4761 task = cgroup_procs_write_start(buf, false); 4762 ret = PTR_ERR_OR_ZERO(task); 4763 if (ret) 4764 goto out_unlock; 4765 4766 /* find the source cgroup */ 4767 spin_lock_irq(&css_set_lock); 4768 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4769 spin_unlock_irq(&css_set_lock); 4770 4771 /* thread migrations follow the cgroup.procs delegation rule */ 4772 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4773 of->file->f_path.dentry->d_sb); 4774 if (ret) 4775 goto out_finish; 4776 4777 /* and must be contained in the same domain */ 4778 ret = -EOPNOTSUPP; 4779 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) 4780 goto out_finish; 4781 4782 ret = cgroup_attach_task(dst_cgrp, task, false); 4783 4784 out_finish: 4785 cgroup_procs_write_finish(task); 4786 out_unlock: 4787 cgroup_kn_unlock(of->kn); 4788 4789 return ret ?: nbytes; 4790 } 4791 4792 /* cgroup core interface files for the default hierarchy */ 4793 static struct cftype cgroup_base_files[] = { 4794 { 4795 .name = "cgroup.type", 4796 .flags = CFTYPE_NOT_ON_ROOT, 4797 .seq_show = cgroup_type_show, 4798 .write = cgroup_type_write, 4799 }, 4800 { 4801 .name = "cgroup.procs", 4802 .flags = CFTYPE_NS_DELEGATABLE, 4803 .file_offset = offsetof(struct cgroup, procs_file), 4804 .release = cgroup_procs_release, 4805 .seq_start = cgroup_procs_start, 4806 .seq_next = cgroup_procs_next, 4807 .seq_show = cgroup_procs_show, 4808 .write = cgroup_procs_write, 4809 }, 4810 { 4811 .name = "cgroup.threads", 4812 .flags = CFTYPE_NS_DELEGATABLE, 4813 .release = cgroup_procs_release, 4814 .seq_start = cgroup_threads_start, 4815 .seq_next = cgroup_procs_next, 4816 .seq_show = cgroup_procs_show, 4817 .write = cgroup_threads_write, 4818 }, 4819 { 4820 .name = "cgroup.controllers", 4821 .seq_show = cgroup_controllers_show, 4822 }, 4823 { 4824 .name = "cgroup.subtree_control", 4825 .flags = CFTYPE_NS_DELEGATABLE, 4826 .seq_show = cgroup_subtree_control_show, 4827 .write = cgroup_subtree_control_write, 4828 }, 4829 { 4830 .name = "cgroup.events", 4831 .flags = CFTYPE_NOT_ON_ROOT, 4832 .file_offset = offsetof(struct cgroup, events_file), 4833 .seq_show = cgroup_events_show, 4834 }, 4835 { 4836 .name = "cgroup.max.descendants", 4837 .seq_show = cgroup_max_descendants_show, 4838 .write = cgroup_max_descendants_write, 4839 }, 4840 { 4841 .name = "cgroup.max.depth", 4842 .seq_show = cgroup_max_depth_show, 4843 .write = cgroup_max_depth_write, 4844 }, 4845 { 4846 .name = "cgroup.stat", 4847 .seq_show = cgroup_stat_show, 4848 }, 4849 { 4850 .name = "cgroup.freeze", 4851 .flags = CFTYPE_NOT_ON_ROOT, 4852 .seq_show = cgroup_freeze_show, 4853 .write = cgroup_freeze_write, 4854 }, 4855 { 4856 .name = "cpu.stat", 4857 .flags = CFTYPE_NOT_ON_ROOT, 4858 .seq_show = cpu_stat_show, 4859 }, 4860 #ifdef CONFIG_PSI 4861 { 4862 .name = "io.pressure", 4863 .seq_show = cgroup_io_pressure_show, 4864 .write = cgroup_io_pressure_write, 4865 .poll = cgroup_pressure_poll, 4866 .release = cgroup_pressure_release, 4867 }, 4868 { 4869 .name = "memory.pressure", 4870 .seq_show = cgroup_memory_pressure_show, 4871 .write = cgroup_memory_pressure_write, 4872 .poll = cgroup_pressure_poll, 4873 .release = cgroup_pressure_release, 4874 }, 4875 { 4876 .name = "cpu.pressure", 4877 .seq_show = cgroup_cpu_pressure_show, 4878 .write = cgroup_cpu_pressure_write, 4879 .poll = cgroup_pressure_poll, 4880 .release = cgroup_pressure_release, 4881 }, 4882 #endif /* CONFIG_PSI */ 4883 { } /* terminate */ 4884 }; 4885 4886 /* 4887 * css destruction is four-stage process. 4888 * 4889 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4890 * Implemented in kill_css(). 4891 * 4892 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4893 * and thus css_tryget_online() is guaranteed to fail, the css can be 4894 * offlined by invoking offline_css(). After offlining, the base ref is 4895 * put. Implemented in css_killed_work_fn(). 4896 * 4897 * 3. When the percpu_ref reaches zero, the only possible remaining 4898 * accessors are inside RCU read sections. css_release() schedules the 4899 * RCU callback. 4900 * 4901 * 4. After the grace period, the css can be freed. Implemented in 4902 * css_free_work_fn(). 4903 * 4904 * It is actually hairier because both step 2 and 4 require process context 4905 * and thus involve punting to css->destroy_work adding two additional 4906 * steps to the already complex sequence. 4907 */ 4908 static void css_free_rwork_fn(struct work_struct *work) 4909 { 4910 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 4911 struct cgroup_subsys_state, destroy_rwork); 4912 struct cgroup_subsys *ss = css->ss; 4913 struct cgroup *cgrp = css->cgroup; 4914 4915 percpu_ref_exit(&css->refcnt); 4916 4917 if (ss) { 4918 /* css free path */ 4919 struct cgroup_subsys_state *parent = css->parent; 4920 int id = css->id; 4921 4922 ss->css_free(css); 4923 cgroup_idr_remove(&ss->css_idr, id); 4924 cgroup_put(cgrp); 4925 4926 if (parent) 4927 css_put(parent); 4928 } else { 4929 /* cgroup free path */ 4930 atomic_dec(&cgrp->root->nr_cgrps); 4931 cgroup1_pidlist_destroy_all(cgrp); 4932 cancel_work_sync(&cgrp->release_agent_work); 4933 4934 if (cgroup_parent(cgrp)) { 4935 /* 4936 * We get a ref to the parent, and put the ref when 4937 * this cgroup is being freed, so it's guaranteed 4938 * that the parent won't be destroyed before its 4939 * children. 4940 */ 4941 cgroup_put(cgroup_parent(cgrp)); 4942 kernfs_put(cgrp->kn); 4943 psi_cgroup_free(cgrp); 4944 if (cgroup_on_dfl(cgrp)) 4945 cgroup_rstat_exit(cgrp); 4946 kfree(cgrp); 4947 } else { 4948 /* 4949 * This is root cgroup's refcnt reaching zero, 4950 * which indicates that the root should be 4951 * released. 4952 */ 4953 cgroup_destroy_root(cgrp->root); 4954 } 4955 } 4956 } 4957 4958 static void css_release_work_fn(struct work_struct *work) 4959 { 4960 struct cgroup_subsys_state *css = 4961 container_of(work, struct cgroup_subsys_state, destroy_work); 4962 struct cgroup_subsys *ss = css->ss; 4963 struct cgroup *cgrp = css->cgroup; 4964 4965 mutex_lock(&cgroup_mutex); 4966 4967 css->flags |= CSS_RELEASED; 4968 list_del_rcu(&css->sibling); 4969 4970 if (ss) { 4971 /* css release path */ 4972 if (!list_empty(&css->rstat_css_node)) { 4973 cgroup_rstat_flush(cgrp); 4974 list_del_rcu(&css->rstat_css_node); 4975 } 4976 4977 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4978 if (ss->css_released) 4979 ss->css_released(css); 4980 } else { 4981 struct cgroup *tcgrp; 4982 4983 /* cgroup release path */ 4984 TRACE_CGROUP_PATH(release, cgrp); 4985 4986 if (cgroup_on_dfl(cgrp)) 4987 cgroup_rstat_flush(cgrp); 4988 4989 spin_lock_irq(&css_set_lock); 4990 for (tcgrp = cgroup_parent(cgrp); tcgrp; 4991 tcgrp = cgroup_parent(tcgrp)) 4992 tcgrp->nr_dying_descendants--; 4993 spin_unlock_irq(&css_set_lock); 4994 4995 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4996 cgrp->id = -1; 4997 4998 /* 4999 * There are two control paths which try to determine 5000 * cgroup from dentry without going through kernfs - 5001 * cgroupstats_build() and css_tryget_online_from_dir(). 5002 * Those are supported by RCU protecting clearing of 5003 * cgrp->kn->priv backpointer. 5004 */ 5005 if (cgrp->kn) 5006 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5007 NULL); 5008 5009 cgroup_bpf_put(cgrp); 5010 } 5011 5012 mutex_unlock(&cgroup_mutex); 5013 5014 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5015 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5016 } 5017 5018 static void css_release(struct percpu_ref *ref) 5019 { 5020 struct cgroup_subsys_state *css = 5021 container_of(ref, struct cgroup_subsys_state, refcnt); 5022 5023 INIT_WORK(&css->destroy_work, css_release_work_fn); 5024 queue_work(cgroup_destroy_wq, &css->destroy_work); 5025 } 5026 5027 static void init_and_link_css(struct cgroup_subsys_state *css, 5028 struct cgroup_subsys *ss, struct cgroup *cgrp) 5029 { 5030 lockdep_assert_held(&cgroup_mutex); 5031 5032 cgroup_get_live(cgrp); 5033 5034 memset(css, 0, sizeof(*css)); 5035 css->cgroup = cgrp; 5036 css->ss = ss; 5037 css->id = -1; 5038 INIT_LIST_HEAD(&css->sibling); 5039 INIT_LIST_HEAD(&css->children); 5040 INIT_LIST_HEAD(&css->rstat_css_node); 5041 css->serial_nr = css_serial_nr_next++; 5042 atomic_set(&css->online_cnt, 0); 5043 5044 if (cgroup_parent(cgrp)) { 5045 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5046 css_get(css->parent); 5047 } 5048 5049 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush) 5050 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5051 5052 BUG_ON(cgroup_css(cgrp, ss)); 5053 } 5054 5055 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5056 static int online_css(struct cgroup_subsys_state *css) 5057 { 5058 struct cgroup_subsys *ss = css->ss; 5059 int ret = 0; 5060 5061 lockdep_assert_held(&cgroup_mutex); 5062 5063 if (ss->css_online) 5064 ret = ss->css_online(css); 5065 if (!ret) { 5066 css->flags |= CSS_ONLINE; 5067 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5068 5069 atomic_inc(&css->online_cnt); 5070 if (css->parent) 5071 atomic_inc(&css->parent->online_cnt); 5072 } 5073 return ret; 5074 } 5075 5076 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5077 static void offline_css(struct cgroup_subsys_state *css) 5078 { 5079 struct cgroup_subsys *ss = css->ss; 5080 5081 lockdep_assert_held(&cgroup_mutex); 5082 5083 if (!(css->flags & CSS_ONLINE)) 5084 return; 5085 5086 if (ss->css_offline) 5087 ss->css_offline(css); 5088 5089 css->flags &= ~CSS_ONLINE; 5090 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5091 5092 wake_up_all(&css->cgroup->offline_waitq); 5093 } 5094 5095 /** 5096 * css_create - create a cgroup_subsys_state 5097 * @cgrp: the cgroup new css will be associated with 5098 * @ss: the subsys of new css 5099 * 5100 * Create a new css associated with @cgrp - @ss pair. On success, the new 5101 * css is online and installed in @cgrp. This function doesn't create the 5102 * interface files. Returns 0 on success, -errno on failure. 5103 */ 5104 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5105 struct cgroup_subsys *ss) 5106 { 5107 struct cgroup *parent = cgroup_parent(cgrp); 5108 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5109 struct cgroup_subsys_state *css; 5110 int err; 5111 5112 lockdep_assert_held(&cgroup_mutex); 5113 5114 css = ss->css_alloc(parent_css); 5115 if (!css) 5116 css = ERR_PTR(-ENOMEM); 5117 if (IS_ERR(css)) 5118 return css; 5119 5120 init_and_link_css(css, ss, cgrp); 5121 5122 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5123 if (err) 5124 goto err_free_css; 5125 5126 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5127 if (err < 0) 5128 goto err_free_css; 5129 css->id = err; 5130 5131 /* @css is ready to be brought online now, make it visible */ 5132 list_add_tail_rcu(&css->sibling, &parent_css->children); 5133 cgroup_idr_replace(&ss->css_idr, css, css->id); 5134 5135 err = online_css(css); 5136 if (err) 5137 goto err_list_del; 5138 5139 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 5140 cgroup_parent(parent)) { 5141 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 5142 current->comm, current->pid, ss->name); 5143 if (!strcmp(ss->name, "memory")) 5144 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 5145 ss->warned_broken_hierarchy = true; 5146 } 5147 5148 return css; 5149 5150 err_list_del: 5151 list_del_rcu(&css->sibling); 5152 err_free_css: 5153 list_del_rcu(&css->rstat_css_node); 5154 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5155 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5156 return ERR_PTR(err); 5157 } 5158 5159 /* 5160 * The returned cgroup is fully initialized including its control mask, but 5161 * it isn't associated with its kernfs_node and doesn't have the control 5162 * mask applied. 5163 */ 5164 static struct cgroup *cgroup_create(struct cgroup *parent) 5165 { 5166 struct cgroup_root *root = parent->root; 5167 struct cgroup *cgrp, *tcgrp; 5168 int level = parent->level + 1; 5169 int ret; 5170 5171 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5172 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 5173 GFP_KERNEL); 5174 if (!cgrp) 5175 return ERR_PTR(-ENOMEM); 5176 5177 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5178 if (ret) 5179 goto out_free_cgrp; 5180 5181 if (cgroup_on_dfl(parent)) { 5182 ret = cgroup_rstat_init(cgrp); 5183 if (ret) 5184 goto out_cancel_ref; 5185 } 5186 5187 /* 5188 * Temporarily set the pointer to NULL, so idr_find() won't return 5189 * a half-baked cgroup. 5190 */ 5191 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 5192 if (cgrp->id < 0) { 5193 ret = -ENOMEM; 5194 goto out_stat_exit; 5195 } 5196 5197 init_cgroup_housekeeping(cgrp); 5198 5199 cgrp->self.parent = &parent->self; 5200 cgrp->root = root; 5201 cgrp->level = level; 5202 5203 ret = psi_cgroup_alloc(cgrp); 5204 if (ret) 5205 goto out_idr_free; 5206 5207 ret = cgroup_bpf_inherit(cgrp); 5208 if (ret) 5209 goto out_psi_free; 5210 5211 /* 5212 * New cgroup inherits effective freeze counter, and 5213 * if the parent has to be frozen, the child has too. 5214 */ 5215 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5216 if (cgrp->freezer.e_freeze) 5217 set_bit(CGRP_FROZEN, &cgrp->flags); 5218 5219 spin_lock_irq(&css_set_lock); 5220 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5221 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 5222 5223 if (tcgrp != cgrp) { 5224 tcgrp->nr_descendants++; 5225 5226 /* 5227 * If the new cgroup is frozen, all ancestor cgroups 5228 * get a new frozen descendant, but their state can't 5229 * change because of this. 5230 */ 5231 if (cgrp->freezer.e_freeze) 5232 tcgrp->freezer.nr_frozen_descendants++; 5233 } 5234 } 5235 spin_unlock_irq(&css_set_lock); 5236 5237 if (notify_on_release(parent)) 5238 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5239 5240 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5241 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5242 5243 cgrp->self.serial_nr = css_serial_nr_next++; 5244 5245 /* allocation complete, commit to creation */ 5246 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5247 atomic_inc(&root->nr_cgrps); 5248 cgroup_get_live(parent); 5249 5250 /* 5251 * @cgrp is now fully operational. If something fails after this 5252 * point, it'll be released via the normal destruction path. 5253 */ 5254 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 5255 5256 /* 5257 * On the default hierarchy, a child doesn't automatically inherit 5258 * subtree_control from the parent. Each is configured manually. 5259 */ 5260 if (!cgroup_on_dfl(cgrp)) 5261 cgrp->subtree_control = cgroup_control(cgrp); 5262 5263 cgroup_propagate_control(cgrp); 5264 5265 return cgrp; 5266 5267 out_psi_free: 5268 psi_cgroup_free(cgrp); 5269 out_idr_free: 5270 cgroup_idr_remove(&root->cgroup_idr, cgrp->id); 5271 out_stat_exit: 5272 if (cgroup_on_dfl(parent)) 5273 cgroup_rstat_exit(cgrp); 5274 out_cancel_ref: 5275 percpu_ref_exit(&cgrp->self.refcnt); 5276 out_free_cgrp: 5277 kfree(cgrp); 5278 return ERR_PTR(ret); 5279 } 5280 5281 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5282 { 5283 struct cgroup *cgroup; 5284 int ret = false; 5285 int level = 1; 5286 5287 lockdep_assert_held(&cgroup_mutex); 5288 5289 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5290 if (cgroup->nr_descendants >= cgroup->max_descendants) 5291 goto fail; 5292 5293 if (level > cgroup->max_depth) 5294 goto fail; 5295 5296 level++; 5297 } 5298 5299 ret = true; 5300 fail: 5301 return ret; 5302 } 5303 5304 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5305 { 5306 struct cgroup *parent, *cgrp; 5307 struct kernfs_node *kn; 5308 int ret; 5309 5310 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5311 if (strchr(name, '\n')) 5312 return -EINVAL; 5313 5314 parent = cgroup_kn_lock_live(parent_kn, false); 5315 if (!parent) 5316 return -ENODEV; 5317 5318 if (!cgroup_check_hierarchy_limits(parent)) { 5319 ret = -EAGAIN; 5320 goto out_unlock; 5321 } 5322 5323 cgrp = cgroup_create(parent); 5324 if (IS_ERR(cgrp)) { 5325 ret = PTR_ERR(cgrp); 5326 goto out_unlock; 5327 } 5328 5329 /* create the directory */ 5330 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5331 if (IS_ERR(kn)) { 5332 ret = PTR_ERR(kn); 5333 goto out_destroy; 5334 } 5335 cgrp->kn = kn; 5336 5337 /* 5338 * This extra ref will be put in cgroup_free_fn() and guarantees 5339 * that @cgrp->kn is always accessible. 5340 */ 5341 kernfs_get(kn); 5342 5343 ret = cgroup_kn_set_ugid(kn); 5344 if (ret) 5345 goto out_destroy; 5346 5347 ret = css_populate_dir(&cgrp->self); 5348 if (ret) 5349 goto out_destroy; 5350 5351 ret = cgroup_apply_control_enable(cgrp); 5352 if (ret) 5353 goto out_destroy; 5354 5355 TRACE_CGROUP_PATH(mkdir, cgrp); 5356 5357 /* let's create and online css's */ 5358 kernfs_activate(kn); 5359 5360 ret = 0; 5361 goto out_unlock; 5362 5363 out_destroy: 5364 cgroup_destroy_locked(cgrp); 5365 out_unlock: 5366 cgroup_kn_unlock(parent_kn); 5367 return ret; 5368 } 5369 5370 /* 5371 * This is called when the refcnt of a css is confirmed to be killed. 5372 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5373 * initate destruction and put the css ref from kill_css(). 5374 */ 5375 static void css_killed_work_fn(struct work_struct *work) 5376 { 5377 struct cgroup_subsys_state *css = 5378 container_of(work, struct cgroup_subsys_state, destroy_work); 5379 5380 mutex_lock(&cgroup_mutex); 5381 5382 do { 5383 offline_css(css); 5384 css_put(css); 5385 /* @css can't go away while we're holding cgroup_mutex */ 5386 css = css->parent; 5387 } while (css && atomic_dec_and_test(&css->online_cnt)); 5388 5389 mutex_unlock(&cgroup_mutex); 5390 } 5391 5392 /* css kill confirmation processing requires process context, bounce */ 5393 static void css_killed_ref_fn(struct percpu_ref *ref) 5394 { 5395 struct cgroup_subsys_state *css = 5396 container_of(ref, struct cgroup_subsys_state, refcnt); 5397 5398 if (atomic_dec_and_test(&css->online_cnt)) { 5399 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5400 queue_work(cgroup_destroy_wq, &css->destroy_work); 5401 } 5402 } 5403 5404 /** 5405 * kill_css - destroy a css 5406 * @css: css to destroy 5407 * 5408 * This function initiates destruction of @css by removing cgroup interface 5409 * files and putting its base reference. ->css_offline() will be invoked 5410 * asynchronously once css_tryget_online() is guaranteed to fail and when 5411 * the reference count reaches zero, @css will be released. 5412 */ 5413 static void kill_css(struct cgroup_subsys_state *css) 5414 { 5415 lockdep_assert_held(&cgroup_mutex); 5416 5417 if (css->flags & CSS_DYING) 5418 return; 5419 5420 css->flags |= CSS_DYING; 5421 5422 /* 5423 * This must happen before css is disassociated with its cgroup. 5424 * See seq_css() for details. 5425 */ 5426 css_clear_dir(css); 5427 5428 /* 5429 * Killing would put the base ref, but we need to keep it alive 5430 * until after ->css_offline(). 5431 */ 5432 css_get(css); 5433 5434 /* 5435 * cgroup core guarantees that, by the time ->css_offline() is 5436 * invoked, no new css reference will be given out via 5437 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5438 * proceed to offlining css's because percpu_ref_kill() doesn't 5439 * guarantee that the ref is seen as killed on all CPUs on return. 5440 * 5441 * Use percpu_ref_kill_and_confirm() to get notifications as each 5442 * css is confirmed to be seen as killed on all CPUs. 5443 */ 5444 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5445 } 5446 5447 /** 5448 * cgroup_destroy_locked - the first stage of cgroup destruction 5449 * @cgrp: cgroup to be destroyed 5450 * 5451 * css's make use of percpu refcnts whose killing latency shouldn't be 5452 * exposed to userland and are RCU protected. Also, cgroup core needs to 5453 * guarantee that css_tryget_online() won't succeed by the time 5454 * ->css_offline() is invoked. To satisfy all the requirements, 5455 * destruction is implemented in the following two steps. 5456 * 5457 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5458 * userland visible parts and start killing the percpu refcnts of 5459 * css's. Set up so that the next stage will be kicked off once all 5460 * the percpu refcnts are confirmed to be killed. 5461 * 5462 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5463 * rest of destruction. Once all cgroup references are gone, the 5464 * cgroup is RCU-freed. 5465 * 5466 * This function implements s1. After this step, @cgrp is gone as far as 5467 * the userland is concerned and a new cgroup with the same name may be 5468 * created. As cgroup doesn't care about the names internally, this 5469 * doesn't cause any problem. 5470 */ 5471 static int cgroup_destroy_locked(struct cgroup *cgrp) 5472 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5473 { 5474 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5475 struct cgroup_subsys_state *css; 5476 struct cgrp_cset_link *link; 5477 int ssid; 5478 5479 lockdep_assert_held(&cgroup_mutex); 5480 5481 /* 5482 * Only migration can raise populated from zero and we're already 5483 * holding cgroup_mutex. 5484 */ 5485 if (cgroup_is_populated(cgrp)) 5486 return -EBUSY; 5487 5488 /* 5489 * Make sure there's no live children. We can't test emptiness of 5490 * ->self.children as dead children linger on it while being 5491 * drained; otherwise, "rmdir parent/child parent" may fail. 5492 */ 5493 if (css_has_online_children(&cgrp->self)) 5494 return -EBUSY; 5495 5496 /* 5497 * Mark @cgrp and the associated csets dead. The former prevents 5498 * further task migration and child creation by disabling 5499 * cgroup_lock_live_group(). The latter makes the csets ignored by 5500 * the migration path. 5501 */ 5502 cgrp->self.flags &= ~CSS_ONLINE; 5503 5504 spin_lock_irq(&css_set_lock); 5505 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5506 link->cset->dead = true; 5507 spin_unlock_irq(&css_set_lock); 5508 5509 /* initiate massacre of all css's */ 5510 for_each_css(css, ssid, cgrp) 5511 kill_css(css); 5512 5513 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5514 css_clear_dir(&cgrp->self); 5515 kernfs_remove(cgrp->kn); 5516 5517 if (parent && cgroup_is_threaded(cgrp)) 5518 parent->nr_threaded_children--; 5519 5520 spin_lock_irq(&css_set_lock); 5521 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5522 tcgrp->nr_descendants--; 5523 tcgrp->nr_dying_descendants++; 5524 /* 5525 * If the dying cgroup is frozen, decrease frozen descendants 5526 * counters of ancestor cgroups. 5527 */ 5528 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5529 tcgrp->freezer.nr_frozen_descendants--; 5530 } 5531 spin_unlock_irq(&css_set_lock); 5532 5533 cgroup1_check_for_release(parent); 5534 5535 /* put the base reference */ 5536 percpu_ref_kill(&cgrp->self.refcnt); 5537 5538 return 0; 5539 }; 5540 5541 int cgroup_rmdir(struct kernfs_node *kn) 5542 { 5543 struct cgroup *cgrp; 5544 int ret = 0; 5545 5546 cgrp = cgroup_kn_lock_live(kn, false); 5547 if (!cgrp) 5548 return 0; 5549 5550 ret = cgroup_destroy_locked(cgrp); 5551 if (!ret) 5552 TRACE_CGROUP_PATH(rmdir, cgrp); 5553 5554 cgroup_kn_unlock(kn); 5555 return ret; 5556 } 5557 5558 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5559 .show_options = cgroup_show_options, 5560 .mkdir = cgroup_mkdir, 5561 .rmdir = cgroup_rmdir, 5562 .show_path = cgroup_show_path, 5563 }; 5564 5565 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5566 { 5567 struct cgroup_subsys_state *css; 5568 5569 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5570 5571 mutex_lock(&cgroup_mutex); 5572 5573 idr_init(&ss->css_idr); 5574 INIT_LIST_HEAD(&ss->cfts); 5575 5576 /* Create the root cgroup state for this subsystem */ 5577 ss->root = &cgrp_dfl_root; 5578 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5579 /* We don't handle early failures gracefully */ 5580 BUG_ON(IS_ERR(css)); 5581 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5582 5583 /* 5584 * Root csses are never destroyed and we can't initialize 5585 * percpu_ref during early init. Disable refcnting. 5586 */ 5587 css->flags |= CSS_NO_REF; 5588 5589 if (early) { 5590 /* allocation can't be done safely during early init */ 5591 css->id = 1; 5592 } else { 5593 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5594 BUG_ON(css->id < 0); 5595 } 5596 5597 /* Update the init_css_set to contain a subsys 5598 * pointer to this state - since the subsystem is 5599 * newly registered, all tasks and hence the 5600 * init_css_set is in the subsystem's root cgroup. */ 5601 init_css_set.subsys[ss->id] = css; 5602 5603 have_fork_callback |= (bool)ss->fork << ss->id; 5604 have_exit_callback |= (bool)ss->exit << ss->id; 5605 have_release_callback |= (bool)ss->release << ss->id; 5606 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5607 5608 /* At system boot, before all subsystems have been 5609 * registered, no tasks have been forked, so we don't 5610 * need to invoke fork callbacks here. */ 5611 BUG_ON(!list_empty(&init_task.tasks)); 5612 5613 BUG_ON(online_css(css)); 5614 5615 mutex_unlock(&cgroup_mutex); 5616 } 5617 5618 /** 5619 * cgroup_init_early - cgroup initialization at system boot 5620 * 5621 * Initialize cgroups at system boot, and initialize any 5622 * subsystems that request early init. 5623 */ 5624 int __init cgroup_init_early(void) 5625 { 5626 static struct cgroup_fs_context __initdata ctx; 5627 struct cgroup_subsys *ss; 5628 int i; 5629 5630 ctx.root = &cgrp_dfl_root; 5631 init_cgroup_root(&ctx); 5632 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5633 5634 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5635 5636 for_each_subsys(ss, i) { 5637 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5638 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5639 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5640 ss->id, ss->name); 5641 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5642 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5643 5644 ss->id = i; 5645 ss->name = cgroup_subsys_name[i]; 5646 if (!ss->legacy_name) 5647 ss->legacy_name = cgroup_subsys_name[i]; 5648 5649 if (ss->early_init) 5650 cgroup_init_subsys(ss, true); 5651 } 5652 return 0; 5653 } 5654 5655 static u16 cgroup_disable_mask __initdata; 5656 5657 /** 5658 * cgroup_init - cgroup initialization 5659 * 5660 * Register cgroup filesystem and /proc file, and initialize 5661 * any subsystems that didn't request early init. 5662 */ 5663 int __init cgroup_init(void) 5664 { 5665 struct cgroup_subsys *ss; 5666 int ssid; 5667 5668 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5669 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 5670 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5671 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5672 5673 cgroup_rstat_boot(); 5674 5675 /* 5676 * The latency of the synchronize_rcu() is too high for cgroups, 5677 * avoid it at the cost of forcing all readers into the slow path. 5678 */ 5679 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5680 5681 get_user_ns(init_cgroup_ns.user_ns); 5682 5683 mutex_lock(&cgroup_mutex); 5684 5685 /* 5686 * Add init_css_set to the hash table so that dfl_root can link to 5687 * it during init. 5688 */ 5689 hash_add(css_set_table, &init_css_set.hlist, 5690 css_set_hash(init_css_set.subsys)); 5691 5692 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 5693 5694 mutex_unlock(&cgroup_mutex); 5695 5696 for_each_subsys(ss, ssid) { 5697 if (ss->early_init) { 5698 struct cgroup_subsys_state *css = 5699 init_css_set.subsys[ss->id]; 5700 5701 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5702 GFP_KERNEL); 5703 BUG_ON(css->id < 0); 5704 } else { 5705 cgroup_init_subsys(ss, false); 5706 } 5707 5708 list_add_tail(&init_css_set.e_cset_node[ssid], 5709 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5710 5711 /* 5712 * Setting dfl_root subsys_mask needs to consider the 5713 * disabled flag and cftype registration needs kmalloc, 5714 * both of which aren't available during early_init. 5715 */ 5716 if (cgroup_disable_mask & (1 << ssid)) { 5717 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5718 printk(KERN_INFO "Disabling %s control group subsystem\n", 5719 ss->name); 5720 continue; 5721 } 5722 5723 if (cgroup1_ssid_disabled(ssid)) 5724 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5725 ss->name); 5726 5727 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5728 5729 /* implicit controllers must be threaded too */ 5730 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5731 5732 if (ss->implicit_on_dfl) 5733 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5734 else if (!ss->dfl_cftypes) 5735 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5736 5737 if (ss->threaded) 5738 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5739 5740 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5741 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5742 } else { 5743 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5744 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5745 } 5746 5747 if (ss->bind) 5748 ss->bind(init_css_set.subsys[ssid]); 5749 5750 mutex_lock(&cgroup_mutex); 5751 css_populate_dir(init_css_set.subsys[ssid]); 5752 mutex_unlock(&cgroup_mutex); 5753 } 5754 5755 /* init_css_set.subsys[] has been updated, re-hash */ 5756 hash_del(&init_css_set.hlist); 5757 hash_add(css_set_table, &init_css_set.hlist, 5758 css_set_hash(init_css_set.subsys)); 5759 5760 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5761 WARN_ON(register_filesystem(&cgroup_fs_type)); 5762 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5763 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5764 5765 return 0; 5766 } 5767 5768 static int __init cgroup_wq_init(void) 5769 { 5770 /* 5771 * There isn't much point in executing destruction path in 5772 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5773 * Use 1 for @max_active. 5774 * 5775 * We would prefer to do this in cgroup_init() above, but that 5776 * is called before init_workqueues(): so leave this until after. 5777 */ 5778 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5779 BUG_ON(!cgroup_destroy_wq); 5780 return 0; 5781 } 5782 core_initcall(cgroup_wq_init); 5783 5784 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, 5785 char *buf, size_t buflen) 5786 { 5787 struct kernfs_node *kn; 5788 5789 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id); 5790 if (!kn) 5791 return; 5792 kernfs_path(kn, buf, buflen); 5793 kernfs_put(kn); 5794 } 5795 5796 /* 5797 * proc_cgroup_show() 5798 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5799 * - Used for /proc/<pid>/cgroup. 5800 */ 5801 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5802 struct pid *pid, struct task_struct *tsk) 5803 { 5804 char *buf; 5805 int retval; 5806 struct cgroup_root *root; 5807 5808 retval = -ENOMEM; 5809 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5810 if (!buf) 5811 goto out; 5812 5813 mutex_lock(&cgroup_mutex); 5814 spin_lock_irq(&css_set_lock); 5815 5816 for_each_root(root) { 5817 struct cgroup_subsys *ss; 5818 struct cgroup *cgrp; 5819 int ssid, count = 0; 5820 5821 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5822 continue; 5823 5824 seq_printf(m, "%d:", root->hierarchy_id); 5825 if (root != &cgrp_dfl_root) 5826 for_each_subsys(ss, ssid) 5827 if (root->subsys_mask & (1 << ssid)) 5828 seq_printf(m, "%s%s", count++ ? "," : "", 5829 ss->legacy_name); 5830 if (strlen(root->name)) 5831 seq_printf(m, "%sname=%s", count ? "," : "", 5832 root->name); 5833 seq_putc(m, ':'); 5834 5835 cgrp = task_cgroup_from_root(tsk, root); 5836 5837 /* 5838 * On traditional hierarchies, all zombie tasks show up as 5839 * belonging to the root cgroup. On the default hierarchy, 5840 * while a zombie doesn't show up in "cgroup.procs" and 5841 * thus can't be migrated, its /proc/PID/cgroup keeps 5842 * reporting the cgroup it belonged to before exiting. If 5843 * the cgroup is removed before the zombie is reaped, 5844 * " (deleted)" is appended to the cgroup path. 5845 */ 5846 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5847 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5848 current->nsproxy->cgroup_ns); 5849 if (retval >= PATH_MAX) 5850 retval = -ENAMETOOLONG; 5851 if (retval < 0) 5852 goto out_unlock; 5853 5854 seq_puts(m, buf); 5855 } else { 5856 seq_puts(m, "/"); 5857 } 5858 5859 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5860 seq_puts(m, " (deleted)\n"); 5861 else 5862 seq_putc(m, '\n'); 5863 } 5864 5865 retval = 0; 5866 out_unlock: 5867 spin_unlock_irq(&css_set_lock); 5868 mutex_unlock(&cgroup_mutex); 5869 kfree(buf); 5870 out: 5871 return retval; 5872 } 5873 5874 /** 5875 * cgroup_fork - initialize cgroup related fields during copy_process() 5876 * @child: pointer to task_struct of forking parent process. 5877 * 5878 * A task is associated with the init_css_set until cgroup_post_fork() 5879 * attaches it to the parent's css_set. Empty cg_list indicates that 5880 * @child isn't holding reference to its css_set. 5881 */ 5882 void cgroup_fork(struct task_struct *child) 5883 { 5884 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5885 INIT_LIST_HEAD(&child->cg_list); 5886 } 5887 5888 /** 5889 * cgroup_can_fork - called on a new task before the process is exposed 5890 * @child: the task in question. 5891 * 5892 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 5893 * returns an error, the fork aborts with that error code. This allows for 5894 * a cgroup subsystem to conditionally allow or deny new forks. 5895 */ 5896 int cgroup_can_fork(struct task_struct *child) 5897 { 5898 struct cgroup_subsys *ss; 5899 int i, j, ret; 5900 5901 do_each_subsys_mask(ss, i, have_canfork_callback) { 5902 ret = ss->can_fork(child); 5903 if (ret) 5904 goto out_revert; 5905 } while_each_subsys_mask(); 5906 5907 return 0; 5908 5909 out_revert: 5910 for_each_subsys(ss, j) { 5911 if (j >= i) 5912 break; 5913 if (ss->cancel_fork) 5914 ss->cancel_fork(child); 5915 } 5916 5917 return ret; 5918 } 5919 5920 /** 5921 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 5922 * @child: the task in question 5923 * 5924 * This calls the cancel_fork() callbacks if a fork failed *after* 5925 * cgroup_can_fork() succeded. 5926 */ 5927 void cgroup_cancel_fork(struct task_struct *child) 5928 { 5929 struct cgroup_subsys *ss; 5930 int i; 5931 5932 for_each_subsys(ss, i) 5933 if (ss->cancel_fork) 5934 ss->cancel_fork(child); 5935 } 5936 5937 /** 5938 * cgroup_post_fork - called on a new task after adding it to the task list 5939 * @child: the task in question 5940 * 5941 * Adds the task to the list running through its css_set if necessary and 5942 * call the subsystem fork() callbacks. Has to be after the task is 5943 * visible on the task list in case we race with the first call to 5944 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5945 * list. 5946 */ 5947 void cgroup_post_fork(struct task_struct *child) 5948 { 5949 struct cgroup_subsys *ss; 5950 int i; 5951 5952 /* 5953 * This may race against cgroup_enable_task_cg_lists(). As that 5954 * function sets use_task_css_set_links before grabbing 5955 * tasklist_lock and we just went through tasklist_lock to add 5956 * @child, it's guaranteed that either we see the set 5957 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 5958 * @child during its iteration. 5959 * 5960 * If we won the race, @child is associated with %current's 5961 * css_set. Grabbing css_set_lock guarantees both that the 5962 * association is stable, and, on completion of the parent's 5963 * migration, @child is visible in the source of migration or 5964 * already in the destination cgroup. This guarantee is necessary 5965 * when implementing operations which need to migrate all tasks of 5966 * a cgroup to another. 5967 * 5968 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 5969 * will remain in init_css_set. This is safe because all tasks are 5970 * in the init_css_set before cg_links is enabled and there's no 5971 * operation which transfers all tasks out of init_css_set. 5972 */ 5973 if (use_task_css_set_links) { 5974 struct css_set *cset; 5975 5976 spin_lock_irq(&css_set_lock); 5977 cset = task_css_set(current); 5978 if (list_empty(&child->cg_list)) { 5979 get_css_set(cset); 5980 cset->nr_tasks++; 5981 css_set_move_task(child, NULL, cset, false); 5982 } 5983 5984 /* 5985 * If the cgroup has to be frozen, the new task has too. 5986 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get 5987 * the task into the frozen state. 5988 */ 5989 if (unlikely(cgroup_task_freeze(child))) { 5990 spin_lock(&child->sighand->siglock); 5991 WARN_ON_ONCE(child->frozen); 5992 child->jobctl |= JOBCTL_TRAP_FREEZE; 5993 spin_unlock(&child->sighand->siglock); 5994 5995 /* 5996 * Calling cgroup_update_frozen() isn't required here, 5997 * because it will be called anyway a bit later 5998 * from do_freezer_trap(). So we avoid cgroup's 5999 * transient switch from the frozen state and back. 6000 */ 6001 } 6002 6003 spin_unlock_irq(&css_set_lock); 6004 } 6005 6006 /* 6007 * Call ss->fork(). This must happen after @child is linked on 6008 * css_set; otherwise, @child might change state between ->fork() 6009 * and addition to css_set. 6010 */ 6011 do_each_subsys_mask(ss, i, have_fork_callback) { 6012 ss->fork(child); 6013 } while_each_subsys_mask(); 6014 } 6015 6016 /** 6017 * cgroup_exit - detach cgroup from exiting task 6018 * @tsk: pointer to task_struct of exiting process 6019 * 6020 * Description: Detach cgroup from @tsk and release it. 6021 * 6022 * Note that cgroups marked notify_on_release force every task in 6023 * them to take the global cgroup_mutex mutex when exiting. 6024 * This could impact scaling on very large systems. Be reluctant to 6025 * use notify_on_release cgroups where very high task exit scaling 6026 * is required on large systems. 6027 * 6028 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 6029 * call cgroup_exit() while the task is still competent to handle 6030 * notify_on_release(), then leave the task attached to the root cgroup in 6031 * each hierarchy for the remainder of its exit. No need to bother with 6032 * init_css_set refcnting. init_css_set never goes away and we can't race 6033 * with migration path - PF_EXITING is visible to migration path. 6034 */ 6035 void cgroup_exit(struct task_struct *tsk) 6036 { 6037 struct cgroup_subsys *ss; 6038 struct css_set *cset; 6039 int i; 6040 6041 /* 6042 * Unlink from @tsk from its css_set. As migration path can't race 6043 * with us, we can check css_set and cg_list without synchronization. 6044 */ 6045 cset = task_css_set(tsk); 6046 6047 if (!list_empty(&tsk->cg_list)) { 6048 spin_lock_irq(&css_set_lock); 6049 css_set_move_task(tsk, cset, NULL, false); 6050 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6051 cset->nr_tasks--; 6052 6053 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6054 if (unlikely(cgroup_task_freeze(tsk))) 6055 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6056 6057 spin_unlock_irq(&css_set_lock); 6058 } else { 6059 get_css_set(cset); 6060 } 6061 6062 /* see cgroup_post_fork() for details */ 6063 do_each_subsys_mask(ss, i, have_exit_callback) { 6064 ss->exit(tsk); 6065 } while_each_subsys_mask(); 6066 } 6067 6068 void cgroup_release(struct task_struct *task) 6069 { 6070 struct cgroup_subsys *ss; 6071 int ssid; 6072 6073 do_each_subsys_mask(ss, ssid, have_release_callback) { 6074 ss->release(task); 6075 } while_each_subsys_mask(); 6076 6077 if (use_task_css_set_links) { 6078 spin_lock_irq(&css_set_lock); 6079 css_set_skip_task_iters(task_css_set(task), task); 6080 list_del_init(&task->cg_list); 6081 spin_unlock_irq(&css_set_lock); 6082 } 6083 } 6084 6085 void cgroup_free(struct task_struct *task) 6086 { 6087 struct css_set *cset = task_css_set(task); 6088 put_css_set(cset); 6089 } 6090 6091 static int __init cgroup_disable(char *str) 6092 { 6093 struct cgroup_subsys *ss; 6094 char *token; 6095 int i; 6096 6097 while ((token = strsep(&str, ",")) != NULL) { 6098 if (!*token) 6099 continue; 6100 6101 for_each_subsys(ss, i) { 6102 if (strcmp(token, ss->name) && 6103 strcmp(token, ss->legacy_name)) 6104 continue; 6105 cgroup_disable_mask |= 1 << i; 6106 } 6107 } 6108 return 1; 6109 } 6110 __setup("cgroup_disable=", cgroup_disable); 6111 6112 void __init __weak enable_debug_cgroup(void) { } 6113 6114 static int __init enable_cgroup_debug(char *str) 6115 { 6116 cgroup_debug = true; 6117 enable_debug_cgroup(); 6118 return 1; 6119 } 6120 __setup("cgroup_debug", enable_cgroup_debug); 6121 6122 /** 6123 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6124 * @dentry: directory dentry of interest 6125 * @ss: subsystem of interest 6126 * 6127 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6128 * to get the corresponding css and return it. If such css doesn't exist 6129 * or can't be pinned, an ERR_PTR value is returned. 6130 */ 6131 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6132 struct cgroup_subsys *ss) 6133 { 6134 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6135 struct file_system_type *s_type = dentry->d_sb->s_type; 6136 struct cgroup_subsys_state *css = NULL; 6137 struct cgroup *cgrp; 6138 6139 /* is @dentry a cgroup dir? */ 6140 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6141 !kn || kernfs_type(kn) != KERNFS_DIR) 6142 return ERR_PTR(-EBADF); 6143 6144 rcu_read_lock(); 6145 6146 /* 6147 * This path doesn't originate from kernfs and @kn could already 6148 * have been or be removed at any point. @kn->priv is RCU 6149 * protected for this access. See css_release_work_fn() for details. 6150 */ 6151 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6152 if (cgrp) 6153 css = cgroup_css(cgrp, ss); 6154 6155 if (!css || !css_tryget_online(css)) 6156 css = ERR_PTR(-ENOENT); 6157 6158 rcu_read_unlock(); 6159 return css; 6160 } 6161 6162 /** 6163 * css_from_id - lookup css by id 6164 * @id: the cgroup id 6165 * @ss: cgroup subsys to be looked into 6166 * 6167 * Returns the css if there's valid one with @id, otherwise returns NULL. 6168 * Should be called under rcu_read_lock(). 6169 */ 6170 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6171 { 6172 WARN_ON_ONCE(!rcu_read_lock_held()); 6173 return idr_find(&ss->css_idr, id); 6174 } 6175 6176 /** 6177 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6178 * @path: path on the default hierarchy 6179 * 6180 * Find the cgroup at @path on the default hierarchy, increment its 6181 * reference count and return it. Returns pointer to the found cgroup on 6182 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 6183 * if @path points to a non-directory. 6184 */ 6185 struct cgroup *cgroup_get_from_path(const char *path) 6186 { 6187 struct kernfs_node *kn; 6188 struct cgroup *cgrp; 6189 6190 mutex_lock(&cgroup_mutex); 6191 6192 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 6193 if (kn) { 6194 if (kernfs_type(kn) == KERNFS_DIR) { 6195 cgrp = kn->priv; 6196 cgroup_get_live(cgrp); 6197 } else { 6198 cgrp = ERR_PTR(-ENOTDIR); 6199 } 6200 kernfs_put(kn); 6201 } else { 6202 cgrp = ERR_PTR(-ENOENT); 6203 } 6204 6205 mutex_unlock(&cgroup_mutex); 6206 return cgrp; 6207 } 6208 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6209 6210 /** 6211 * cgroup_get_from_fd - get a cgroup pointer from a fd 6212 * @fd: fd obtained by open(cgroup2_dir) 6213 * 6214 * Find the cgroup from a fd which should be obtained 6215 * by opening a cgroup directory. Returns a pointer to the 6216 * cgroup on success. ERR_PTR is returned if the cgroup 6217 * cannot be found. 6218 */ 6219 struct cgroup *cgroup_get_from_fd(int fd) 6220 { 6221 struct cgroup_subsys_state *css; 6222 struct cgroup *cgrp; 6223 struct file *f; 6224 6225 f = fget_raw(fd); 6226 if (!f) 6227 return ERR_PTR(-EBADF); 6228 6229 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6230 fput(f); 6231 if (IS_ERR(css)) 6232 return ERR_CAST(css); 6233 6234 cgrp = css->cgroup; 6235 if (!cgroup_on_dfl(cgrp)) { 6236 cgroup_put(cgrp); 6237 return ERR_PTR(-EBADF); 6238 } 6239 6240 return cgrp; 6241 } 6242 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6243 6244 /* 6245 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6246 * definition in cgroup-defs.h. 6247 */ 6248 #ifdef CONFIG_SOCK_CGROUP_DATA 6249 6250 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 6251 6252 DEFINE_SPINLOCK(cgroup_sk_update_lock); 6253 static bool cgroup_sk_alloc_disabled __read_mostly; 6254 6255 void cgroup_sk_alloc_disable(void) 6256 { 6257 if (cgroup_sk_alloc_disabled) 6258 return; 6259 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 6260 cgroup_sk_alloc_disabled = true; 6261 } 6262 6263 #else 6264 6265 #define cgroup_sk_alloc_disabled false 6266 6267 #endif 6268 6269 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6270 { 6271 if (cgroup_sk_alloc_disabled) 6272 return; 6273 6274 /* Socket clone path */ 6275 if (skcd->val) { 6276 /* 6277 * We might be cloning a socket which is left in an empty 6278 * cgroup and the cgroup might have already been rmdir'd. 6279 * Don't use cgroup_get_live(). 6280 */ 6281 cgroup_get(sock_cgroup_ptr(skcd)); 6282 return; 6283 } 6284 6285 rcu_read_lock(); 6286 6287 while (true) { 6288 struct css_set *cset; 6289 6290 cset = task_css_set(current); 6291 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6292 skcd->val = (unsigned long)cset->dfl_cgrp; 6293 break; 6294 } 6295 cpu_relax(); 6296 } 6297 6298 rcu_read_unlock(); 6299 } 6300 6301 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6302 { 6303 cgroup_put(sock_cgroup_ptr(skcd)); 6304 } 6305 6306 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6307 6308 #ifdef CONFIG_CGROUP_BPF 6309 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 6310 enum bpf_attach_type type, u32 flags) 6311 { 6312 int ret; 6313 6314 mutex_lock(&cgroup_mutex); 6315 ret = __cgroup_bpf_attach(cgrp, prog, type, flags); 6316 mutex_unlock(&cgroup_mutex); 6317 return ret; 6318 } 6319 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 6320 enum bpf_attach_type type, u32 flags) 6321 { 6322 int ret; 6323 6324 mutex_lock(&cgroup_mutex); 6325 ret = __cgroup_bpf_detach(cgrp, prog, type); 6326 mutex_unlock(&cgroup_mutex); 6327 return ret; 6328 } 6329 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 6330 union bpf_attr __user *uattr) 6331 { 6332 int ret; 6333 6334 mutex_lock(&cgroup_mutex); 6335 ret = __cgroup_bpf_query(cgrp, attr, uattr); 6336 mutex_unlock(&cgroup_mutex); 6337 return ret; 6338 } 6339 #endif /* CONFIG_CGROUP_BPF */ 6340 6341 #ifdef CONFIG_SYSFS 6342 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6343 ssize_t size, const char *prefix) 6344 { 6345 struct cftype *cft; 6346 ssize_t ret = 0; 6347 6348 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6349 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6350 continue; 6351 6352 if (prefix) 6353 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 6354 6355 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 6356 6357 if (WARN_ON(ret >= size)) 6358 break; 6359 } 6360 6361 return ret; 6362 } 6363 6364 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 6365 char *buf) 6366 { 6367 struct cgroup_subsys *ss; 6368 int ssid; 6369 ssize_t ret = 0; 6370 6371 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 6372 NULL); 6373 6374 for_each_subsys(ss, ssid) 6375 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 6376 PAGE_SIZE - ret, 6377 cgroup_subsys_name[ssid]); 6378 6379 return ret; 6380 } 6381 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 6382 6383 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 6384 char *buf) 6385 { 6386 return snprintf(buf, PAGE_SIZE, "nsdelegate\nmemory_localevents\n"); 6387 } 6388 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6389 6390 static struct attribute *cgroup_sysfs_attrs[] = { 6391 &cgroup_delegate_attr.attr, 6392 &cgroup_features_attr.attr, 6393 NULL, 6394 }; 6395 6396 static const struct attribute_group cgroup_sysfs_attr_group = { 6397 .attrs = cgroup_sysfs_attrs, 6398 .name = "cgroup", 6399 }; 6400 6401 static int __init cgroup_sysfs_init(void) 6402 { 6403 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6404 } 6405 subsys_initcall(cgroup_sysfs_init); 6406 #endif /* CONFIG_SYSFS */ 6407