xref: /linux/kernel/cgroup/cgroup.c (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64 
65 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
66 					 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
69 
70 /*
71  * cgroup_mutex is the master lock.  Any modification to cgroup or its
72  * hierarchy must be performed while holding it.
73  *
74  * css_set_lock protects task->cgroups pointer, the list of css_set
75  * objects, and the chain of tasks off each css_set.
76  *
77  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78  * cgroup.h can use them for lockdep annotations.
79  */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82 
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87 
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91 
92 /*
93  * Protects cgroup_idr and css_idr so that IDs can be released without
94  * grabbing cgroup_mutex.
95  */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97 
98 /*
99  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
100  * against file removal/re-creation across css hiding.
101  */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103 
104 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
105 
106 #define cgroup_assert_mutex_or_rcu_locked()				\
107 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
108 			   !lockdep_is_held(&cgroup_mutex),		\
109 			   "cgroup_mutex or RCU read lock required");
110 
111 /*
112  * cgroup destruction makes heavy use of work items and there can be a lot
113  * of concurrent destructions.  Use a separate workqueue so that cgroup
114  * destruction work items don't end up filling up max_active of system_wq
115  * which may lead to deadlock.
116  */
117 static struct workqueue_struct *cgroup_destroy_wq;
118 
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125 
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132 
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x)								\
135 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
136 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
137 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
138 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141 
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147 
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153 
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155 
156 /*
157  * The default hierarchy, reserved for the subsystems that are otherwise
158  * unattached - it never has more than a single cgroup, and all tasks are
159  * part of that cgroup.
160  */
161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
162 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
163 
164 /*
165  * The default hierarchy always exists but is hidden until mounted for the
166  * first time.  This is for backward compatibility.
167  */
168 static bool cgrp_dfl_visible;
169 
170 /* some controllers are not supported in the default hierarchy */
171 static u16 cgrp_dfl_inhibit_ss_mask;
172 
173 /* some controllers are implicitly enabled on the default hierarchy */
174 static u16 cgrp_dfl_implicit_ss_mask;
175 
176 /* some controllers can be threaded on the default hierarchy */
177 static u16 cgrp_dfl_threaded_ss_mask;
178 
179 /* The list of hierarchy roots */
180 LIST_HEAD(cgroup_roots);
181 static int cgroup_root_count;
182 
183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
184 static DEFINE_IDR(cgroup_hierarchy_idr);
185 
186 /*
187  * Assign a monotonically increasing serial number to csses.  It guarantees
188  * cgroups with bigger numbers are newer than those with smaller numbers.
189  * Also, as csses are always appended to the parent's ->children list, it
190  * guarantees that sibling csses are always sorted in the ascending serial
191  * number order on the list.  Protected by cgroup_mutex.
192  */
193 static u64 css_serial_nr_next = 1;
194 
195 /*
196  * These bitmasks identify subsystems with specific features to avoid
197  * having to do iterative checks repeatedly.
198  */
199 static u16 have_fork_callback __read_mostly;
200 static u16 have_exit_callback __read_mostly;
201 static u16 have_release_callback __read_mostly;
202 static u16 have_canfork_callback __read_mostly;
203 
204 /* cgroup namespace for init task */
205 struct cgroup_namespace init_cgroup_ns = {
206 	.count		= REFCOUNT_INIT(2),
207 	.user_ns	= &init_user_ns,
208 	.ns.ops		= &cgroupns_operations,
209 	.ns.inum	= PROC_CGROUP_INIT_INO,
210 	.root_cset	= &init_css_set,
211 };
212 
213 static struct file_system_type cgroup2_fs_type;
214 static struct cftype cgroup_base_files[];
215 
216 static int cgroup_apply_control(struct cgroup *cgrp);
217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
218 static void css_task_iter_skip(struct css_task_iter *it,
219 			       struct task_struct *task);
220 static int cgroup_destroy_locked(struct cgroup *cgrp);
221 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
222 					      struct cgroup_subsys *ss);
223 static void css_release(struct percpu_ref *ref);
224 static void kill_css(struct cgroup_subsys_state *css);
225 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 			      struct cgroup *cgrp, struct cftype cfts[],
227 			      bool is_add);
228 
229 /**
230  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231  * @ssid: subsys ID of interest
232  *
233  * cgroup_subsys_enabled() can only be used with literal subsys names which
234  * is fine for individual subsystems but unsuitable for cgroup core.  This
235  * is slower static_key_enabled() based test indexed by @ssid.
236  */
237 bool cgroup_ssid_enabled(int ssid)
238 {
239 	if (CGROUP_SUBSYS_COUNT == 0)
240 		return false;
241 
242 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
243 }
244 
245 /**
246  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
247  * @cgrp: the cgroup of interest
248  *
249  * The default hierarchy is the v2 interface of cgroup and this function
250  * can be used to test whether a cgroup is on the default hierarchy for
251  * cases where a subsystem should behave differnetly depending on the
252  * interface version.
253  *
254  * The set of behaviors which change on the default hierarchy are still
255  * being determined and the mount option is prefixed with __DEVEL__.
256  *
257  * List of changed behaviors:
258  *
259  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
260  *   and "name" are disallowed.
261  *
262  * - When mounting an existing superblock, mount options should match.
263  *
264  * - Remount is disallowed.
265  *
266  * - rename(2) is disallowed.
267  *
268  * - "tasks" is removed.  Everything should be at process granularity.  Use
269  *   "cgroup.procs" instead.
270  *
271  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
272  *   recycled inbetween reads.
273  *
274  * - "release_agent" and "notify_on_release" are removed.  Replacement
275  *   notification mechanism will be implemented.
276  *
277  * - "cgroup.clone_children" is removed.
278  *
279  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
280  *   and its descendants contain no task; otherwise, 1.  The file also
281  *   generates kernfs notification which can be monitored through poll and
282  *   [di]notify when the value of the file changes.
283  *
284  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
285  *   take masks of ancestors with non-empty cpus/mems, instead of being
286  *   moved to an ancestor.
287  *
288  * - cpuset: a task can be moved into an empty cpuset, and again it takes
289  *   masks of ancestors.
290  *
291  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
292  *   is not created.
293  *
294  * - blkcg: blk-throttle becomes properly hierarchical.
295  *
296  * - debug: disallowed on the default hierarchy.
297  */
298 bool cgroup_on_dfl(const struct cgroup *cgrp)
299 {
300 	return cgrp->root == &cgrp_dfl_root;
301 }
302 
303 /* IDR wrappers which synchronize using cgroup_idr_lock */
304 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
305 			    gfp_t gfp_mask)
306 {
307 	int ret;
308 
309 	idr_preload(gfp_mask);
310 	spin_lock_bh(&cgroup_idr_lock);
311 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
312 	spin_unlock_bh(&cgroup_idr_lock);
313 	idr_preload_end();
314 	return ret;
315 }
316 
317 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
318 {
319 	void *ret;
320 
321 	spin_lock_bh(&cgroup_idr_lock);
322 	ret = idr_replace(idr, ptr, id);
323 	spin_unlock_bh(&cgroup_idr_lock);
324 	return ret;
325 }
326 
327 static void cgroup_idr_remove(struct idr *idr, int id)
328 {
329 	spin_lock_bh(&cgroup_idr_lock);
330 	idr_remove(idr, id);
331 	spin_unlock_bh(&cgroup_idr_lock);
332 }
333 
334 static bool cgroup_has_tasks(struct cgroup *cgrp)
335 {
336 	return cgrp->nr_populated_csets;
337 }
338 
339 bool cgroup_is_threaded(struct cgroup *cgrp)
340 {
341 	return cgrp->dom_cgrp != cgrp;
342 }
343 
344 /* can @cgrp host both domain and threaded children? */
345 static bool cgroup_is_mixable(struct cgroup *cgrp)
346 {
347 	/*
348 	 * Root isn't under domain level resource control exempting it from
349 	 * the no-internal-process constraint, so it can serve as a thread
350 	 * root and a parent of resource domains at the same time.
351 	 */
352 	return !cgroup_parent(cgrp);
353 }
354 
355 /* can @cgrp become a thread root? should always be true for a thread root */
356 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
357 {
358 	/* mixables don't care */
359 	if (cgroup_is_mixable(cgrp))
360 		return true;
361 
362 	/* domain roots can't be nested under threaded */
363 	if (cgroup_is_threaded(cgrp))
364 		return false;
365 
366 	/* can only have either domain or threaded children */
367 	if (cgrp->nr_populated_domain_children)
368 		return false;
369 
370 	/* and no domain controllers can be enabled */
371 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
372 		return false;
373 
374 	return true;
375 }
376 
377 /* is @cgrp root of a threaded subtree? */
378 bool cgroup_is_thread_root(struct cgroup *cgrp)
379 {
380 	/* thread root should be a domain */
381 	if (cgroup_is_threaded(cgrp))
382 		return false;
383 
384 	/* a domain w/ threaded children is a thread root */
385 	if (cgrp->nr_threaded_children)
386 		return true;
387 
388 	/*
389 	 * A domain which has tasks and explicit threaded controllers
390 	 * enabled is a thread root.
391 	 */
392 	if (cgroup_has_tasks(cgrp) &&
393 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
394 		return true;
395 
396 	return false;
397 }
398 
399 /* a domain which isn't connected to the root w/o brekage can't be used */
400 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
401 {
402 	/* the cgroup itself can be a thread root */
403 	if (cgroup_is_threaded(cgrp))
404 		return false;
405 
406 	/* but the ancestors can't be unless mixable */
407 	while ((cgrp = cgroup_parent(cgrp))) {
408 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
409 			return false;
410 		if (cgroup_is_threaded(cgrp))
411 			return false;
412 	}
413 
414 	return true;
415 }
416 
417 /* subsystems visibly enabled on a cgroup */
418 static u16 cgroup_control(struct cgroup *cgrp)
419 {
420 	struct cgroup *parent = cgroup_parent(cgrp);
421 	u16 root_ss_mask = cgrp->root->subsys_mask;
422 
423 	if (parent) {
424 		u16 ss_mask = parent->subtree_control;
425 
426 		/* threaded cgroups can only have threaded controllers */
427 		if (cgroup_is_threaded(cgrp))
428 			ss_mask &= cgrp_dfl_threaded_ss_mask;
429 		return ss_mask;
430 	}
431 
432 	if (cgroup_on_dfl(cgrp))
433 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
434 				  cgrp_dfl_implicit_ss_mask);
435 	return root_ss_mask;
436 }
437 
438 /* subsystems enabled on a cgroup */
439 static u16 cgroup_ss_mask(struct cgroup *cgrp)
440 {
441 	struct cgroup *parent = cgroup_parent(cgrp);
442 
443 	if (parent) {
444 		u16 ss_mask = parent->subtree_ss_mask;
445 
446 		/* threaded cgroups can only have threaded controllers */
447 		if (cgroup_is_threaded(cgrp))
448 			ss_mask &= cgrp_dfl_threaded_ss_mask;
449 		return ss_mask;
450 	}
451 
452 	return cgrp->root->subsys_mask;
453 }
454 
455 /**
456  * cgroup_css - obtain a cgroup's css for the specified subsystem
457  * @cgrp: the cgroup of interest
458  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
459  *
460  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
461  * function must be called either under cgroup_mutex or rcu_read_lock() and
462  * the caller is responsible for pinning the returned css if it wants to
463  * keep accessing it outside the said locks.  This function may return
464  * %NULL if @cgrp doesn't have @subsys_id enabled.
465  */
466 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
467 					      struct cgroup_subsys *ss)
468 {
469 	if (ss)
470 		return rcu_dereference_check(cgrp->subsys[ss->id],
471 					lockdep_is_held(&cgroup_mutex));
472 	else
473 		return &cgrp->self;
474 }
475 
476 /**
477  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
478  * @cgrp: the cgroup of interest
479  * @ss: the subsystem of interest
480  *
481  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
482  * or is offline, %NULL is returned.
483  */
484 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
485 						     struct cgroup_subsys *ss)
486 {
487 	struct cgroup_subsys_state *css;
488 
489 	rcu_read_lock();
490 	css = cgroup_css(cgrp, ss);
491 	if (!css || !css_tryget_online(css))
492 		css = NULL;
493 	rcu_read_unlock();
494 
495 	return css;
496 }
497 
498 /**
499  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
500  * @cgrp: the cgroup of interest
501  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
502  *
503  * Similar to cgroup_css() but returns the effective css, which is defined
504  * as the matching css of the nearest ancestor including self which has @ss
505  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
506  * function is guaranteed to return non-NULL css.
507  */
508 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
509 							struct cgroup_subsys *ss)
510 {
511 	lockdep_assert_held(&cgroup_mutex);
512 
513 	if (!ss)
514 		return &cgrp->self;
515 
516 	/*
517 	 * This function is used while updating css associations and thus
518 	 * can't test the csses directly.  Test ss_mask.
519 	 */
520 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
521 		cgrp = cgroup_parent(cgrp);
522 		if (!cgrp)
523 			return NULL;
524 	}
525 
526 	return cgroup_css(cgrp, ss);
527 }
528 
529 /**
530  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
531  * @cgrp: the cgroup of interest
532  * @ss: the subsystem of interest
533  *
534  * Find and get the effective css of @cgrp for @ss.  The effective css is
535  * defined as the matching css of the nearest ancestor including self which
536  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
537  * the root css is returned, so this function always returns a valid css.
538  *
539  * The returned css is not guaranteed to be online, and therefore it is the
540  * callers responsiblity to tryget a reference for it.
541  */
542 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
543 					 struct cgroup_subsys *ss)
544 {
545 	struct cgroup_subsys_state *css;
546 
547 	do {
548 		css = cgroup_css(cgrp, ss);
549 
550 		if (css)
551 			return css;
552 		cgrp = cgroup_parent(cgrp);
553 	} while (cgrp);
554 
555 	return init_css_set.subsys[ss->id];
556 }
557 
558 /**
559  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
560  * @cgrp: the cgroup of interest
561  * @ss: the subsystem of interest
562  *
563  * Find and get the effective css of @cgrp for @ss.  The effective css is
564  * defined as the matching css of the nearest ancestor including self which
565  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
566  * the root css is returned, so this function always returns a valid css.
567  * The returned css must be put using css_put().
568  */
569 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
570 					     struct cgroup_subsys *ss)
571 {
572 	struct cgroup_subsys_state *css;
573 
574 	rcu_read_lock();
575 
576 	do {
577 		css = cgroup_css(cgrp, ss);
578 
579 		if (css && css_tryget_online(css))
580 			goto out_unlock;
581 		cgrp = cgroup_parent(cgrp);
582 	} while (cgrp);
583 
584 	css = init_css_set.subsys[ss->id];
585 	css_get(css);
586 out_unlock:
587 	rcu_read_unlock();
588 	return css;
589 }
590 
591 static void cgroup_get_live(struct cgroup *cgrp)
592 {
593 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
594 	css_get(&cgrp->self);
595 }
596 
597 /**
598  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
599  * is responsible for taking the css_set_lock.
600  * @cgrp: the cgroup in question
601  */
602 int __cgroup_task_count(const struct cgroup *cgrp)
603 {
604 	int count = 0;
605 	struct cgrp_cset_link *link;
606 
607 	lockdep_assert_held(&css_set_lock);
608 
609 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
610 		count += link->cset->nr_tasks;
611 
612 	return count;
613 }
614 
615 /**
616  * cgroup_task_count - count the number of tasks in a cgroup.
617  * @cgrp: the cgroup in question
618  */
619 int cgroup_task_count(const struct cgroup *cgrp)
620 {
621 	int count;
622 
623 	spin_lock_irq(&css_set_lock);
624 	count = __cgroup_task_count(cgrp);
625 	spin_unlock_irq(&css_set_lock);
626 
627 	return count;
628 }
629 
630 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
631 {
632 	struct cgroup *cgrp = of->kn->parent->priv;
633 	struct cftype *cft = of_cft(of);
634 
635 	/*
636 	 * This is open and unprotected implementation of cgroup_css().
637 	 * seq_css() is only called from a kernfs file operation which has
638 	 * an active reference on the file.  Because all the subsystem
639 	 * files are drained before a css is disassociated with a cgroup,
640 	 * the matching css from the cgroup's subsys table is guaranteed to
641 	 * be and stay valid until the enclosing operation is complete.
642 	 */
643 	if (cft->ss)
644 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
645 	else
646 		return &cgrp->self;
647 }
648 EXPORT_SYMBOL_GPL(of_css);
649 
650 /**
651  * for_each_css - iterate all css's of a cgroup
652  * @css: the iteration cursor
653  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
654  * @cgrp: the target cgroup to iterate css's of
655  *
656  * Should be called under cgroup_[tree_]mutex.
657  */
658 #define for_each_css(css, ssid, cgrp)					\
659 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
660 		if (!((css) = rcu_dereference_check(			\
661 				(cgrp)->subsys[(ssid)],			\
662 				lockdep_is_held(&cgroup_mutex)))) { }	\
663 		else
664 
665 /**
666  * for_each_e_css - iterate all effective css's of a cgroup
667  * @css: the iteration cursor
668  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
669  * @cgrp: the target cgroup to iterate css's of
670  *
671  * Should be called under cgroup_[tree_]mutex.
672  */
673 #define for_each_e_css(css, ssid, cgrp)					    \
674 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
675 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
676 						   cgroup_subsys[(ssid)]))) \
677 			;						    \
678 		else
679 
680 /**
681  * do_each_subsys_mask - filter for_each_subsys with a bitmask
682  * @ss: the iteration cursor
683  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
684  * @ss_mask: the bitmask
685  *
686  * The block will only run for cases where the ssid-th bit (1 << ssid) of
687  * @ss_mask is set.
688  */
689 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
690 	unsigned long __ss_mask = (ss_mask);				\
691 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
692 		(ssid) = 0;						\
693 		break;							\
694 	}								\
695 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
696 		(ss) = cgroup_subsys[ssid];				\
697 		{
698 
699 #define while_each_subsys_mask()					\
700 		}							\
701 	}								\
702 } while (false)
703 
704 /* iterate over child cgrps, lock should be held throughout iteration */
705 #define cgroup_for_each_live_child(child, cgrp)				\
706 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
707 		if (({ lockdep_assert_held(&cgroup_mutex);		\
708 		       cgroup_is_dead(child); }))			\
709 			;						\
710 		else
711 
712 /* walk live descendants in preorder */
713 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
714 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
715 		if (({ lockdep_assert_held(&cgroup_mutex);		\
716 		       (dsct) = (d_css)->cgroup;			\
717 		       cgroup_is_dead(dsct); }))			\
718 			;						\
719 		else
720 
721 /* walk live descendants in postorder */
722 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
723 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
724 		if (({ lockdep_assert_held(&cgroup_mutex);		\
725 		       (dsct) = (d_css)->cgroup;			\
726 		       cgroup_is_dead(dsct); }))			\
727 			;						\
728 		else
729 
730 /*
731  * The default css_set - used by init and its children prior to any
732  * hierarchies being mounted. It contains a pointer to the root state
733  * for each subsystem. Also used to anchor the list of css_sets. Not
734  * reference-counted, to improve performance when child cgroups
735  * haven't been created.
736  */
737 struct css_set init_css_set = {
738 	.refcount		= REFCOUNT_INIT(1),
739 	.dom_cset		= &init_css_set,
740 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
741 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
742 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
743 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
744 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
745 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
746 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
747 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
748 
749 	/*
750 	 * The following field is re-initialized when this cset gets linked
751 	 * in cgroup_init().  However, let's initialize the field
752 	 * statically too so that the default cgroup can be accessed safely
753 	 * early during boot.
754 	 */
755 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
756 };
757 
758 static int css_set_count	= 1;	/* 1 for init_css_set */
759 
760 static bool css_set_threaded(struct css_set *cset)
761 {
762 	return cset->dom_cset != cset;
763 }
764 
765 /**
766  * css_set_populated - does a css_set contain any tasks?
767  * @cset: target css_set
768  *
769  * css_set_populated() should be the same as !!cset->nr_tasks at steady
770  * state. However, css_set_populated() can be called while a task is being
771  * added to or removed from the linked list before the nr_tasks is
772  * properly updated. Hence, we can't just look at ->nr_tasks here.
773  */
774 static bool css_set_populated(struct css_set *cset)
775 {
776 	lockdep_assert_held(&css_set_lock);
777 
778 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
779 }
780 
781 /**
782  * cgroup_update_populated - update the populated count of a cgroup
783  * @cgrp: the target cgroup
784  * @populated: inc or dec populated count
785  *
786  * One of the css_sets associated with @cgrp is either getting its first
787  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
788  * count is propagated towards root so that a given cgroup's
789  * nr_populated_children is zero iff none of its descendants contain any
790  * tasks.
791  *
792  * @cgrp's interface file "cgroup.populated" is zero if both
793  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
794  * 1 otherwise.  When the sum changes from or to zero, userland is notified
795  * that the content of the interface file has changed.  This can be used to
796  * detect when @cgrp and its descendants become populated or empty.
797  */
798 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
799 {
800 	struct cgroup *child = NULL;
801 	int adj = populated ? 1 : -1;
802 
803 	lockdep_assert_held(&css_set_lock);
804 
805 	do {
806 		bool was_populated = cgroup_is_populated(cgrp);
807 
808 		if (!child) {
809 			cgrp->nr_populated_csets += adj;
810 		} else {
811 			if (cgroup_is_threaded(child))
812 				cgrp->nr_populated_threaded_children += adj;
813 			else
814 				cgrp->nr_populated_domain_children += adj;
815 		}
816 
817 		if (was_populated == cgroup_is_populated(cgrp))
818 			break;
819 
820 		cgroup1_check_for_release(cgrp);
821 		TRACE_CGROUP_PATH(notify_populated, cgrp,
822 				  cgroup_is_populated(cgrp));
823 		cgroup_file_notify(&cgrp->events_file);
824 
825 		child = cgrp;
826 		cgrp = cgroup_parent(cgrp);
827 	} while (cgrp);
828 }
829 
830 /**
831  * css_set_update_populated - update populated state of a css_set
832  * @cset: target css_set
833  * @populated: whether @cset is populated or depopulated
834  *
835  * @cset is either getting the first task or losing the last.  Update the
836  * populated counters of all associated cgroups accordingly.
837  */
838 static void css_set_update_populated(struct css_set *cset, bool populated)
839 {
840 	struct cgrp_cset_link *link;
841 
842 	lockdep_assert_held(&css_set_lock);
843 
844 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
845 		cgroup_update_populated(link->cgrp, populated);
846 }
847 
848 /*
849  * @task is leaving, advance task iterators which are pointing to it so
850  * that they can resume at the next position.  Advancing an iterator might
851  * remove it from the list, use safe walk.  See css_task_iter_skip() for
852  * details.
853  */
854 static void css_set_skip_task_iters(struct css_set *cset,
855 				    struct task_struct *task)
856 {
857 	struct css_task_iter *it, *pos;
858 
859 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
860 		css_task_iter_skip(it, task);
861 }
862 
863 /**
864  * css_set_move_task - move a task from one css_set to another
865  * @task: task being moved
866  * @from_cset: css_set @task currently belongs to (may be NULL)
867  * @to_cset: new css_set @task is being moved to (may be NULL)
868  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
869  *
870  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
871  * css_set, @from_cset can be NULL.  If @task is being disassociated
872  * instead of moved, @to_cset can be NULL.
873  *
874  * This function automatically handles populated counter updates and
875  * css_task_iter adjustments but the caller is responsible for managing
876  * @from_cset and @to_cset's reference counts.
877  */
878 static void css_set_move_task(struct task_struct *task,
879 			      struct css_set *from_cset, struct css_set *to_cset,
880 			      bool use_mg_tasks)
881 {
882 	lockdep_assert_held(&css_set_lock);
883 
884 	if (to_cset && !css_set_populated(to_cset))
885 		css_set_update_populated(to_cset, true);
886 
887 	if (from_cset) {
888 		WARN_ON_ONCE(list_empty(&task->cg_list));
889 
890 		css_set_skip_task_iters(from_cset, task);
891 		list_del_init(&task->cg_list);
892 		if (!css_set_populated(from_cset))
893 			css_set_update_populated(from_cset, false);
894 	} else {
895 		WARN_ON_ONCE(!list_empty(&task->cg_list));
896 	}
897 
898 	if (to_cset) {
899 		/*
900 		 * We are synchronized through cgroup_threadgroup_rwsem
901 		 * against PF_EXITING setting such that we can't race
902 		 * against cgroup_exit() changing the css_set to
903 		 * init_css_set and dropping the old one.
904 		 */
905 		WARN_ON_ONCE(task->flags & PF_EXITING);
906 
907 		cgroup_move_task(task, to_cset);
908 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
909 							     &to_cset->tasks);
910 	}
911 }
912 
913 /*
914  * hash table for cgroup groups. This improves the performance to find
915  * an existing css_set. This hash doesn't (currently) take into
916  * account cgroups in empty hierarchies.
917  */
918 #define CSS_SET_HASH_BITS	7
919 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
920 
921 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
922 {
923 	unsigned long key = 0UL;
924 	struct cgroup_subsys *ss;
925 	int i;
926 
927 	for_each_subsys(ss, i)
928 		key += (unsigned long)css[i];
929 	key = (key >> 16) ^ key;
930 
931 	return key;
932 }
933 
934 void put_css_set_locked(struct css_set *cset)
935 {
936 	struct cgrp_cset_link *link, *tmp_link;
937 	struct cgroup_subsys *ss;
938 	int ssid;
939 
940 	lockdep_assert_held(&css_set_lock);
941 
942 	if (!refcount_dec_and_test(&cset->refcount))
943 		return;
944 
945 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
946 
947 	/* This css_set is dead. unlink it and release cgroup and css refs */
948 	for_each_subsys(ss, ssid) {
949 		list_del(&cset->e_cset_node[ssid]);
950 		css_put(cset->subsys[ssid]);
951 	}
952 	hash_del(&cset->hlist);
953 	css_set_count--;
954 
955 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
956 		list_del(&link->cset_link);
957 		list_del(&link->cgrp_link);
958 		if (cgroup_parent(link->cgrp))
959 			cgroup_put(link->cgrp);
960 		kfree(link);
961 	}
962 
963 	if (css_set_threaded(cset)) {
964 		list_del(&cset->threaded_csets_node);
965 		put_css_set_locked(cset->dom_cset);
966 	}
967 
968 	kfree_rcu(cset, rcu_head);
969 }
970 
971 /**
972  * compare_css_sets - helper function for find_existing_css_set().
973  * @cset: candidate css_set being tested
974  * @old_cset: existing css_set for a task
975  * @new_cgrp: cgroup that's being entered by the task
976  * @template: desired set of css pointers in css_set (pre-calculated)
977  *
978  * Returns true if "cset" matches "old_cset" except for the hierarchy
979  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
980  */
981 static bool compare_css_sets(struct css_set *cset,
982 			     struct css_set *old_cset,
983 			     struct cgroup *new_cgrp,
984 			     struct cgroup_subsys_state *template[])
985 {
986 	struct cgroup *new_dfl_cgrp;
987 	struct list_head *l1, *l2;
988 
989 	/*
990 	 * On the default hierarchy, there can be csets which are
991 	 * associated with the same set of cgroups but different csses.
992 	 * Let's first ensure that csses match.
993 	 */
994 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
995 		return false;
996 
997 
998 	/* @cset's domain should match the default cgroup's */
999 	if (cgroup_on_dfl(new_cgrp))
1000 		new_dfl_cgrp = new_cgrp;
1001 	else
1002 		new_dfl_cgrp = old_cset->dfl_cgrp;
1003 
1004 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1005 		return false;
1006 
1007 	/*
1008 	 * Compare cgroup pointers in order to distinguish between
1009 	 * different cgroups in hierarchies.  As different cgroups may
1010 	 * share the same effective css, this comparison is always
1011 	 * necessary.
1012 	 */
1013 	l1 = &cset->cgrp_links;
1014 	l2 = &old_cset->cgrp_links;
1015 	while (1) {
1016 		struct cgrp_cset_link *link1, *link2;
1017 		struct cgroup *cgrp1, *cgrp2;
1018 
1019 		l1 = l1->next;
1020 		l2 = l2->next;
1021 		/* See if we reached the end - both lists are equal length. */
1022 		if (l1 == &cset->cgrp_links) {
1023 			BUG_ON(l2 != &old_cset->cgrp_links);
1024 			break;
1025 		} else {
1026 			BUG_ON(l2 == &old_cset->cgrp_links);
1027 		}
1028 		/* Locate the cgroups associated with these links. */
1029 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1030 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1031 		cgrp1 = link1->cgrp;
1032 		cgrp2 = link2->cgrp;
1033 		/* Hierarchies should be linked in the same order. */
1034 		BUG_ON(cgrp1->root != cgrp2->root);
1035 
1036 		/*
1037 		 * If this hierarchy is the hierarchy of the cgroup
1038 		 * that's changing, then we need to check that this
1039 		 * css_set points to the new cgroup; if it's any other
1040 		 * hierarchy, then this css_set should point to the
1041 		 * same cgroup as the old css_set.
1042 		 */
1043 		if (cgrp1->root == new_cgrp->root) {
1044 			if (cgrp1 != new_cgrp)
1045 				return false;
1046 		} else {
1047 			if (cgrp1 != cgrp2)
1048 				return false;
1049 		}
1050 	}
1051 	return true;
1052 }
1053 
1054 /**
1055  * find_existing_css_set - init css array and find the matching css_set
1056  * @old_cset: the css_set that we're using before the cgroup transition
1057  * @cgrp: the cgroup that we're moving into
1058  * @template: out param for the new set of csses, should be clear on entry
1059  */
1060 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1061 					struct cgroup *cgrp,
1062 					struct cgroup_subsys_state *template[])
1063 {
1064 	struct cgroup_root *root = cgrp->root;
1065 	struct cgroup_subsys *ss;
1066 	struct css_set *cset;
1067 	unsigned long key;
1068 	int i;
1069 
1070 	/*
1071 	 * Build the set of subsystem state objects that we want to see in the
1072 	 * new css_set. while subsystems can change globally, the entries here
1073 	 * won't change, so no need for locking.
1074 	 */
1075 	for_each_subsys(ss, i) {
1076 		if (root->subsys_mask & (1UL << i)) {
1077 			/*
1078 			 * @ss is in this hierarchy, so we want the
1079 			 * effective css from @cgrp.
1080 			 */
1081 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1082 		} else {
1083 			/*
1084 			 * @ss is not in this hierarchy, so we don't want
1085 			 * to change the css.
1086 			 */
1087 			template[i] = old_cset->subsys[i];
1088 		}
1089 	}
1090 
1091 	key = css_set_hash(template);
1092 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1093 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1094 			continue;
1095 
1096 		/* This css_set matches what we need */
1097 		return cset;
1098 	}
1099 
1100 	/* No existing cgroup group matched */
1101 	return NULL;
1102 }
1103 
1104 static void free_cgrp_cset_links(struct list_head *links_to_free)
1105 {
1106 	struct cgrp_cset_link *link, *tmp_link;
1107 
1108 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1109 		list_del(&link->cset_link);
1110 		kfree(link);
1111 	}
1112 }
1113 
1114 /**
1115  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1116  * @count: the number of links to allocate
1117  * @tmp_links: list_head the allocated links are put on
1118  *
1119  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1120  * through ->cset_link.  Returns 0 on success or -errno.
1121  */
1122 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1123 {
1124 	struct cgrp_cset_link *link;
1125 	int i;
1126 
1127 	INIT_LIST_HEAD(tmp_links);
1128 
1129 	for (i = 0; i < count; i++) {
1130 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1131 		if (!link) {
1132 			free_cgrp_cset_links(tmp_links);
1133 			return -ENOMEM;
1134 		}
1135 		list_add(&link->cset_link, tmp_links);
1136 	}
1137 	return 0;
1138 }
1139 
1140 /**
1141  * link_css_set - a helper function to link a css_set to a cgroup
1142  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1143  * @cset: the css_set to be linked
1144  * @cgrp: the destination cgroup
1145  */
1146 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1147 			 struct cgroup *cgrp)
1148 {
1149 	struct cgrp_cset_link *link;
1150 
1151 	BUG_ON(list_empty(tmp_links));
1152 
1153 	if (cgroup_on_dfl(cgrp))
1154 		cset->dfl_cgrp = cgrp;
1155 
1156 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1157 	link->cset = cset;
1158 	link->cgrp = cgrp;
1159 
1160 	/*
1161 	 * Always add links to the tail of the lists so that the lists are
1162 	 * in choronological order.
1163 	 */
1164 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1165 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1166 
1167 	if (cgroup_parent(cgrp))
1168 		cgroup_get_live(cgrp);
1169 }
1170 
1171 /**
1172  * find_css_set - return a new css_set with one cgroup updated
1173  * @old_cset: the baseline css_set
1174  * @cgrp: the cgroup to be updated
1175  *
1176  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1177  * substituted into the appropriate hierarchy.
1178  */
1179 static struct css_set *find_css_set(struct css_set *old_cset,
1180 				    struct cgroup *cgrp)
1181 {
1182 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1183 	struct css_set *cset;
1184 	struct list_head tmp_links;
1185 	struct cgrp_cset_link *link;
1186 	struct cgroup_subsys *ss;
1187 	unsigned long key;
1188 	int ssid;
1189 
1190 	lockdep_assert_held(&cgroup_mutex);
1191 
1192 	/* First see if we already have a cgroup group that matches
1193 	 * the desired set */
1194 	spin_lock_irq(&css_set_lock);
1195 	cset = find_existing_css_set(old_cset, cgrp, template);
1196 	if (cset)
1197 		get_css_set(cset);
1198 	spin_unlock_irq(&css_set_lock);
1199 
1200 	if (cset)
1201 		return cset;
1202 
1203 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1204 	if (!cset)
1205 		return NULL;
1206 
1207 	/* Allocate all the cgrp_cset_link objects that we'll need */
1208 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1209 		kfree(cset);
1210 		return NULL;
1211 	}
1212 
1213 	refcount_set(&cset->refcount, 1);
1214 	cset->dom_cset = cset;
1215 	INIT_LIST_HEAD(&cset->tasks);
1216 	INIT_LIST_HEAD(&cset->mg_tasks);
1217 	INIT_LIST_HEAD(&cset->dying_tasks);
1218 	INIT_LIST_HEAD(&cset->task_iters);
1219 	INIT_LIST_HEAD(&cset->threaded_csets);
1220 	INIT_HLIST_NODE(&cset->hlist);
1221 	INIT_LIST_HEAD(&cset->cgrp_links);
1222 	INIT_LIST_HEAD(&cset->mg_preload_node);
1223 	INIT_LIST_HEAD(&cset->mg_node);
1224 
1225 	/* Copy the set of subsystem state objects generated in
1226 	 * find_existing_css_set() */
1227 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1228 
1229 	spin_lock_irq(&css_set_lock);
1230 	/* Add reference counts and links from the new css_set. */
1231 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1232 		struct cgroup *c = link->cgrp;
1233 
1234 		if (c->root == cgrp->root)
1235 			c = cgrp;
1236 		link_css_set(&tmp_links, cset, c);
1237 	}
1238 
1239 	BUG_ON(!list_empty(&tmp_links));
1240 
1241 	css_set_count++;
1242 
1243 	/* Add @cset to the hash table */
1244 	key = css_set_hash(cset->subsys);
1245 	hash_add(css_set_table, &cset->hlist, key);
1246 
1247 	for_each_subsys(ss, ssid) {
1248 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1249 
1250 		list_add_tail(&cset->e_cset_node[ssid],
1251 			      &css->cgroup->e_csets[ssid]);
1252 		css_get(css);
1253 	}
1254 
1255 	spin_unlock_irq(&css_set_lock);
1256 
1257 	/*
1258 	 * If @cset should be threaded, look up the matching dom_cset and
1259 	 * link them up.  We first fully initialize @cset then look for the
1260 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1261 	 * to stay empty until we return.
1262 	 */
1263 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1264 		struct css_set *dcset;
1265 
1266 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1267 		if (!dcset) {
1268 			put_css_set(cset);
1269 			return NULL;
1270 		}
1271 
1272 		spin_lock_irq(&css_set_lock);
1273 		cset->dom_cset = dcset;
1274 		list_add_tail(&cset->threaded_csets_node,
1275 			      &dcset->threaded_csets);
1276 		spin_unlock_irq(&css_set_lock);
1277 	}
1278 
1279 	return cset;
1280 }
1281 
1282 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1283 {
1284 	struct cgroup *root_cgrp = kf_root->kn->priv;
1285 
1286 	return root_cgrp->root;
1287 }
1288 
1289 static int cgroup_init_root_id(struct cgroup_root *root)
1290 {
1291 	int id;
1292 
1293 	lockdep_assert_held(&cgroup_mutex);
1294 
1295 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1296 	if (id < 0)
1297 		return id;
1298 
1299 	root->hierarchy_id = id;
1300 	return 0;
1301 }
1302 
1303 static void cgroup_exit_root_id(struct cgroup_root *root)
1304 {
1305 	lockdep_assert_held(&cgroup_mutex);
1306 
1307 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1308 }
1309 
1310 void cgroup_free_root(struct cgroup_root *root)
1311 {
1312 	if (root) {
1313 		idr_destroy(&root->cgroup_idr);
1314 		kfree(root);
1315 	}
1316 }
1317 
1318 static void cgroup_destroy_root(struct cgroup_root *root)
1319 {
1320 	struct cgroup *cgrp = &root->cgrp;
1321 	struct cgrp_cset_link *link, *tmp_link;
1322 
1323 	trace_cgroup_destroy_root(root);
1324 
1325 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1326 
1327 	BUG_ON(atomic_read(&root->nr_cgrps));
1328 	BUG_ON(!list_empty(&cgrp->self.children));
1329 
1330 	/* Rebind all subsystems back to the default hierarchy */
1331 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1332 
1333 	/*
1334 	 * Release all the links from cset_links to this hierarchy's
1335 	 * root cgroup
1336 	 */
1337 	spin_lock_irq(&css_set_lock);
1338 
1339 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1340 		list_del(&link->cset_link);
1341 		list_del(&link->cgrp_link);
1342 		kfree(link);
1343 	}
1344 
1345 	spin_unlock_irq(&css_set_lock);
1346 
1347 	if (!list_empty(&root->root_list)) {
1348 		list_del(&root->root_list);
1349 		cgroup_root_count--;
1350 	}
1351 
1352 	cgroup_exit_root_id(root);
1353 
1354 	mutex_unlock(&cgroup_mutex);
1355 
1356 	kernfs_destroy_root(root->kf_root);
1357 	cgroup_free_root(root);
1358 }
1359 
1360 /*
1361  * look up cgroup associated with current task's cgroup namespace on the
1362  * specified hierarchy
1363  */
1364 static struct cgroup *
1365 current_cgns_cgroup_from_root(struct cgroup_root *root)
1366 {
1367 	struct cgroup *res = NULL;
1368 	struct css_set *cset;
1369 
1370 	lockdep_assert_held(&css_set_lock);
1371 
1372 	rcu_read_lock();
1373 
1374 	cset = current->nsproxy->cgroup_ns->root_cset;
1375 	if (cset == &init_css_set) {
1376 		res = &root->cgrp;
1377 	} else {
1378 		struct cgrp_cset_link *link;
1379 
1380 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1381 			struct cgroup *c = link->cgrp;
1382 
1383 			if (c->root == root) {
1384 				res = c;
1385 				break;
1386 			}
1387 		}
1388 	}
1389 	rcu_read_unlock();
1390 
1391 	BUG_ON(!res);
1392 	return res;
1393 }
1394 
1395 /* look up cgroup associated with given css_set on the specified hierarchy */
1396 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1397 					    struct cgroup_root *root)
1398 {
1399 	struct cgroup *res = NULL;
1400 
1401 	lockdep_assert_held(&cgroup_mutex);
1402 	lockdep_assert_held(&css_set_lock);
1403 
1404 	if (cset == &init_css_set) {
1405 		res = &root->cgrp;
1406 	} else if (root == &cgrp_dfl_root) {
1407 		res = cset->dfl_cgrp;
1408 	} else {
1409 		struct cgrp_cset_link *link;
1410 
1411 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1412 			struct cgroup *c = link->cgrp;
1413 
1414 			if (c->root == root) {
1415 				res = c;
1416 				break;
1417 			}
1418 		}
1419 	}
1420 
1421 	BUG_ON(!res);
1422 	return res;
1423 }
1424 
1425 /*
1426  * Return the cgroup for "task" from the given hierarchy. Must be
1427  * called with cgroup_mutex and css_set_lock held.
1428  */
1429 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1430 				     struct cgroup_root *root)
1431 {
1432 	/*
1433 	 * No need to lock the task - since we hold cgroup_mutex the
1434 	 * task can't change groups, so the only thing that can happen
1435 	 * is that it exits and its css is set back to init_css_set.
1436 	 */
1437 	return cset_cgroup_from_root(task_css_set(task), root);
1438 }
1439 
1440 /*
1441  * A task must hold cgroup_mutex to modify cgroups.
1442  *
1443  * Any task can increment and decrement the count field without lock.
1444  * So in general, code holding cgroup_mutex can't rely on the count
1445  * field not changing.  However, if the count goes to zero, then only
1446  * cgroup_attach_task() can increment it again.  Because a count of zero
1447  * means that no tasks are currently attached, therefore there is no
1448  * way a task attached to that cgroup can fork (the other way to
1449  * increment the count).  So code holding cgroup_mutex can safely
1450  * assume that if the count is zero, it will stay zero. Similarly, if
1451  * a task holds cgroup_mutex on a cgroup with zero count, it
1452  * knows that the cgroup won't be removed, as cgroup_rmdir()
1453  * needs that mutex.
1454  *
1455  * A cgroup can only be deleted if both its 'count' of using tasks
1456  * is zero, and its list of 'children' cgroups is empty.  Since all
1457  * tasks in the system use _some_ cgroup, and since there is always at
1458  * least one task in the system (init, pid == 1), therefore, root cgroup
1459  * always has either children cgroups and/or using tasks.  So we don't
1460  * need a special hack to ensure that root cgroup cannot be deleted.
1461  *
1462  * P.S.  One more locking exception.  RCU is used to guard the
1463  * update of a tasks cgroup pointer by cgroup_attach_task()
1464  */
1465 
1466 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1467 
1468 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1469 			      char *buf)
1470 {
1471 	struct cgroup_subsys *ss = cft->ss;
1472 
1473 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1474 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1475 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1476 
1477 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1478 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1479 			 cft->name);
1480 	} else {
1481 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1482 	}
1483 	return buf;
1484 }
1485 
1486 /**
1487  * cgroup_file_mode - deduce file mode of a control file
1488  * @cft: the control file in question
1489  *
1490  * S_IRUGO for read, S_IWUSR for write.
1491  */
1492 static umode_t cgroup_file_mode(const struct cftype *cft)
1493 {
1494 	umode_t mode = 0;
1495 
1496 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1497 		mode |= S_IRUGO;
1498 
1499 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1500 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1501 			mode |= S_IWUGO;
1502 		else
1503 			mode |= S_IWUSR;
1504 	}
1505 
1506 	return mode;
1507 }
1508 
1509 /**
1510  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1511  * @subtree_control: the new subtree_control mask to consider
1512  * @this_ss_mask: available subsystems
1513  *
1514  * On the default hierarchy, a subsystem may request other subsystems to be
1515  * enabled together through its ->depends_on mask.  In such cases, more
1516  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1517  *
1518  * This function calculates which subsystems need to be enabled if
1519  * @subtree_control is to be applied while restricted to @this_ss_mask.
1520  */
1521 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1522 {
1523 	u16 cur_ss_mask = subtree_control;
1524 	struct cgroup_subsys *ss;
1525 	int ssid;
1526 
1527 	lockdep_assert_held(&cgroup_mutex);
1528 
1529 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1530 
1531 	while (true) {
1532 		u16 new_ss_mask = cur_ss_mask;
1533 
1534 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1535 			new_ss_mask |= ss->depends_on;
1536 		} while_each_subsys_mask();
1537 
1538 		/*
1539 		 * Mask out subsystems which aren't available.  This can
1540 		 * happen only if some depended-upon subsystems were bound
1541 		 * to non-default hierarchies.
1542 		 */
1543 		new_ss_mask &= this_ss_mask;
1544 
1545 		if (new_ss_mask == cur_ss_mask)
1546 			break;
1547 		cur_ss_mask = new_ss_mask;
1548 	}
1549 
1550 	return cur_ss_mask;
1551 }
1552 
1553 /**
1554  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1555  * @kn: the kernfs_node being serviced
1556  *
1557  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1558  * the method finishes if locking succeeded.  Note that once this function
1559  * returns the cgroup returned by cgroup_kn_lock_live() may become
1560  * inaccessible any time.  If the caller intends to continue to access the
1561  * cgroup, it should pin it before invoking this function.
1562  */
1563 void cgroup_kn_unlock(struct kernfs_node *kn)
1564 {
1565 	struct cgroup *cgrp;
1566 
1567 	if (kernfs_type(kn) == KERNFS_DIR)
1568 		cgrp = kn->priv;
1569 	else
1570 		cgrp = kn->parent->priv;
1571 
1572 	mutex_unlock(&cgroup_mutex);
1573 
1574 	kernfs_unbreak_active_protection(kn);
1575 	cgroup_put(cgrp);
1576 }
1577 
1578 /**
1579  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1580  * @kn: the kernfs_node being serviced
1581  * @drain_offline: perform offline draining on the cgroup
1582  *
1583  * This helper is to be used by a cgroup kernfs method currently servicing
1584  * @kn.  It breaks the active protection, performs cgroup locking and
1585  * verifies that the associated cgroup is alive.  Returns the cgroup if
1586  * alive; otherwise, %NULL.  A successful return should be undone by a
1587  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1588  * cgroup is drained of offlining csses before return.
1589  *
1590  * Any cgroup kernfs method implementation which requires locking the
1591  * associated cgroup should use this helper.  It avoids nesting cgroup
1592  * locking under kernfs active protection and allows all kernfs operations
1593  * including self-removal.
1594  */
1595 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1596 {
1597 	struct cgroup *cgrp;
1598 
1599 	if (kernfs_type(kn) == KERNFS_DIR)
1600 		cgrp = kn->priv;
1601 	else
1602 		cgrp = kn->parent->priv;
1603 
1604 	/*
1605 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1606 	 * active_ref.  cgroup liveliness check alone provides enough
1607 	 * protection against removal.  Ensure @cgrp stays accessible and
1608 	 * break the active_ref protection.
1609 	 */
1610 	if (!cgroup_tryget(cgrp))
1611 		return NULL;
1612 	kernfs_break_active_protection(kn);
1613 
1614 	if (drain_offline)
1615 		cgroup_lock_and_drain_offline(cgrp);
1616 	else
1617 		mutex_lock(&cgroup_mutex);
1618 
1619 	if (!cgroup_is_dead(cgrp))
1620 		return cgrp;
1621 
1622 	cgroup_kn_unlock(kn);
1623 	return NULL;
1624 }
1625 
1626 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1627 {
1628 	char name[CGROUP_FILE_NAME_MAX];
1629 
1630 	lockdep_assert_held(&cgroup_mutex);
1631 
1632 	if (cft->file_offset) {
1633 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1634 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1635 
1636 		spin_lock_irq(&cgroup_file_kn_lock);
1637 		cfile->kn = NULL;
1638 		spin_unlock_irq(&cgroup_file_kn_lock);
1639 
1640 		del_timer_sync(&cfile->notify_timer);
1641 	}
1642 
1643 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1644 }
1645 
1646 /**
1647  * css_clear_dir - remove subsys files in a cgroup directory
1648  * @css: taget css
1649  */
1650 static void css_clear_dir(struct cgroup_subsys_state *css)
1651 {
1652 	struct cgroup *cgrp = css->cgroup;
1653 	struct cftype *cfts;
1654 
1655 	if (!(css->flags & CSS_VISIBLE))
1656 		return;
1657 
1658 	css->flags &= ~CSS_VISIBLE;
1659 
1660 	if (!css->ss) {
1661 		if (cgroup_on_dfl(cgrp))
1662 			cfts = cgroup_base_files;
1663 		else
1664 			cfts = cgroup1_base_files;
1665 
1666 		cgroup_addrm_files(css, cgrp, cfts, false);
1667 	} else {
1668 		list_for_each_entry(cfts, &css->ss->cfts, node)
1669 			cgroup_addrm_files(css, cgrp, cfts, false);
1670 	}
1671 }
1672 
1673 /**
1674  * css_populate_dir - create subsys files in a cgroup directory
1675  * @css: target css
1676  *
1677  * On failure, no file is added.
1678  */
1679 static int css_populate_dir(struct cgroup_subsys_state *css)
1680 {
1681 	struct cgroup *cgrp = css->cgroup;
1682 	struct cftype *cfts, *failed_cfts;
1683 	int ret;
1684 
1685 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1686 		return 0;
1687 
1688 	if (!css->ss) {
1689 		if (cgroup_on_dfl(cgrp))
1690 			cfts = cgroup_base_files;
1691 		else
1692 			cfts = cgroup1_base_files;
1693 
1694 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1695 		if (ret < 0)
1696 			return ret;
1697 	} else {
1698 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1699 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1700 			if (ret < 0) {
1701 				failed_cfts = cfts;
1702 				goto err;
1703 			}
1704 		}
1705 	}
1706 
1707 	css->flags |= CSS_VISIBLE;
1708 
1709 	return 0;
1710 err:
1711 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1712 		if (cfts == failed_cfts)
1713 			break;
1714 		cgroup_addrm_files(css, cgrp, cfts, false);
1715 	}
1716 	return ret;
1717 }
1718 
1719 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1720 {
1721 	struct cgroup *dcgrp = &dst_root->cgrp;
1722 	struct cgroup_subsys *ss;
1723 	int ssid, i, ret;
1724 
1725 	lockdep_assert_held(&cgroup_mutex);
1726 
1727 	do_each_subsys_mask(ss, ssid, ss_mask) {
1728 		/*
1729 		 * If @ss has non-root csses attached to it, can't move.
1730 		 * If @ss is an implicit controller, it is exempt from this
1731 		 * rule and can be stolen.
1732 		 */
1733 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1734 		    !ss->implicit_on_dfl)
1735 			return -EBUSY;
1736 
1737 		/* can't move between two non-dummy roots either */
1738 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1739 			return -EBUSY;
1740 	} while_each_subsys_mask();
1741 
1742 	do_each_subsys_mask(ss, ssid, ss_mask) {
1743 		struct cgroup_root *src_root = ss->root;
1744 		struct cgroup *scgrp = &src_root->cgrp;
1745 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1746 		struct css_set *cset;
1747 
1748 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1749 
1750 		/* disable from the source */
1751 		src_root->subsys_mask &= ~(1 << ssid);
1752 		WARN_ON(cgroup_apply_control(scgrp));
1753 		cgroup_finalize_control(scgrp, 0);
1754 
1755 		/* rebind */
1756 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1757 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1758 		ss->root = dst_root;
1759 		css->cgroup = dcgrp;
1760 
1761 		spin_lock_irq(&css_set_lock);
1762 		hash_for_each(css_set_table, i, cset, hlist)
1763 			list_move_tail(&cset->e_cset_node[ss->id],
1764 				       &dcgrp->e_csets[ss->id]);
1765 		spin_unlock_irq(&css_set_lock);
1766 
1767 		/* default hierarchy doesn't enable controllers by default */
1768 		dst_root->subsys_mask |= 1 << ssid;
1769 		if (dst_root == &cgrp_dfl_root) {
1770 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1771 		} else {
1772 			dcgrp->subtree_control |= 1 << ssid;
1773 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1774 		}
1775 
1776 		ret = cgroup_apply_control(dcgrp);
1777 		if (ret)
1778 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1779 				ss->name, ret);
1780 
1781 		if (ss->bind)
1782 			ss->bind(css);
1783 	} while_each_subsys_mask();
1784 
1785 	kernfs_activate(dcgrp->kn);
1786 	return 0;
1787 }
1788 
1789 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1790 		     struct kernfs_root *kf_root)
1791 {
1792 	int len = 0;
1793 	char *buf = NULL;
1794 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1795 	struct cgroup *ns_cgroup;
1796 
1797 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1798 	if (!buf)
1799 		return -ENOMEM;
1800 
1801 	spin_lock_irq(&css_set_lock);
1802 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1803 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1804 	spin_unlock_irq(&css_set_lock);
1805 
1806 	if (len >= PATH_MAX)
1807 		len = -ERANGE;
1808 	else if (len > 0) {
1809 		seq_escape(sf, buf, " \t\n\\");
1810 		len = 0;
1811 	}
1812 	kfree(buf);
1813 	return len;
1814 }
1815 
1816 enum cgroup2_param {
1817 	Opt_nsdelegate,
1818 	Opt_memory_localevents,
1819 	nr__cgroup2_params
1820 };
1821 
1822 static const struct fs_parameter_spec cgroup2_param_specs[] = {
1823 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1824 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1825 	{}
1826 };
1827 
1828 static const struct fs_parameter_description cgroup2_fs_parameters = {
1829 	.name		= "cgroup2",
1830 	.specs		= cgroup2_param_specs,
1831 };
1832 
1833 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1834 {
1835 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1836 	struct fs_parse_result result;
1837 	int opt;
1838 
1839 	opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result);
1840 	if (opt < 0)
1841 		return opt;
1842 
1843 	switch (opt) {
1844 	case Opt_nsdelegate:
1845 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1846 		return 0;
1847 	case Opt_memory_localevents:
1848 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1849 		return 0;
1850 	}
1851 	return -EINVAL;
1852 }
1853 
1854 static void apply_cgroup_root_flags(unsigned int root_flags)
1855 {
1856 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1857 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1858 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1859 		else
1860 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1861 
1862 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1863 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1864 		else
1865 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1866 	}
1867 }
1868 
1869 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1870 {
1871 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1872 		seq_puts(seq, ",nsdelegate");
1873 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1874 		seq_puts(seq, ",memory_localevents");
1875 	return 0;
1876 }
1877 
1878 static int cgroup_reconfigure(struct fs_context *fc)
1879 {
1880 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1881 
1882 	apply_cgroup_root_flags(ctx->flags);
1883 	return 0;
1884 }
1885 
1886 /*
1887  * To reduce the fork() overhead for systems that are not actually using
1888  * their cgroups capability, we don't maintain the lists running through
1889  * each css_set to its tasks until we see the list actually used - in other
1890  * words after the first mount.
1891  */
1892 static bool use_task_css_set_links __read_mostly;
1893 
1894 static void cgroup_enable_task_cg_lists(void)
1895 {
1896 	struct task_struct *p, *g;
1897 
1898 	/*
1899 	 * We need tasklist_lock because RCU is not safe against
1900 	 * while_each_thread(). Besides, a forking task that has passed
1901 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1902 	 * is not guaranteed to have its child immediately visible in the
1903 	 * tasklist if we walk through it with RCU.
1904 	 */
1905 	read_lock(&tasklist_lock);
1906 	spin_lock_irq(&css_set_lock);
1907 
1908 	if (use_task_css_set_links)
1909 		goto out_unlock;
1910 
1911 	use_task_css_set_links = true;
1912 
1913 	do_each_thread(g, p) {
1914 		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1915 			     task_css_set(p) != &init_css_set);
1916 
1917 		/*
1918 		 * We should check if the process is exiting, otherwise
1919 		 * it will race with cgroup_exit() in that the list
1920 		 * entry won't be deleted though the process has exited.
1921 		 * Do it while holding siglock so that we don't end up
1922 		 * racing against cgroup_exit().
1923 		 *
1924 		 * Interrupts were already disabled while acquiring
1925 		 * the css_set_lock, so we do not need to disable it
1926 		 * again when acquiring the sighand->siglock here.
1927 		 */
1928 		spin_lock(&p->sighand->siglock);
1929 		if (!(p->flags & PF_EXITING)) {
1930 			struct css_set *cset = task_css_set(p);
1931 
1932 			if (!css_set_populated(cset))
1933 				css_set_update_populated(cset, true);
1934 			list_add_tail(&p->cg_list, &cset->tasks);
1935 			get_css_set(cset);
1936 			cset->nr_tasks++;
1937 		}
1938 		spin_unlock(&p->sighand->siglock);
1939 	} while_each_thread(g, p);
1940 out_unlock:
1941 	spin_unlock_irq(&css_set_lock);
1942 	read_unlock(&tasklist_lock);
1943 }
1944 
1945 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1946 {
1947 	struct cgroup_subsys *ss;
1948 	int ssid;
1949 
1950 	INIT_LIST_HEAD(&cgrp->self.sibling);
1951 	INIT_LIST_HEAD(&cgrp->self.children);
1952 	INIT_LIST_HEAD(&cgrp->cset_links);
1953 	INIT_LIST_HEAD(&cgrp->pidlists);
1954 	mutex_init(&cgrp->pidlist_mutex);
1955 	cgrp->self.cgroup = cgrp;
1956 	cgrp->self.flags |= CSS_ONLINE;
1957 	cgrp->dom_cgrp = cgrp;
1958 	cgrp->max_descendants = INT_MAX;
1959 	cgrp->max_depth = INT_MAX;
1960 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1961 	prev_cputime_init(&cgrp->prev_cputime);
1962 
1963 	for_each_subsys(ss, ssid)
1964 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1965 
1966 	init_waitqueue_head(&cgrp->offline_waitq);
1967 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1968 }
1969 
1970 void init_cgroup_root(struct cgroup_fs_context *ctx)
1971 {
1972 	struct cgroup_root *root = ctx->root;
1973 	struct cgroup *cgrp = &root->cgrp;
1974 
1975 	INIT_LIST_HEAD(&root->root_list);
1976 	atomic_set(&root->nr_cgrps, 1);
1977 	cgrp->root = root;
1978 	init_cgroup_housekeeping(cgrp);
1979 	idr_init(&root->cgroup_idr);
1980 
1981 	root->flags = ctx->flags;
1982 	if (ctx->release_agent)
1983 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1984 	if (ctx->name)
1985 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1986 	if (ctx->cpuset_clone_children)
1987 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1988 }
1989 
1990 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1991 {
1992 	LIST_HEAD(tmp_links);
1993 	struct cgroup *root_cgrp = &root->cgrp;
1994 	struct kernfs_syscall_ops *kf_sops;
1995 	struct css_set *cset;
1996 	int i, ret;
1997 
1998 	lockdep_assert_held(&cgroup_mutex);
1999 
2000 	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
2001 	if (ret < 0)
2002 		goto out;
2003 	root_cgrp->id = ret;
2004 	root_cgrp->ancestor_ids[0] = ret;
2005 
2006 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2007 			      0, GFP_KERNEL);
2008 	if (ret)
2009 		goto out;
2010 
2011 	/*
2012 	 * We're accessing css_set_count without locking css_set_lock here,
2013 	 * but that's OK - it can only be increased by someone holding
2014 	 * cgroup_lock, and that's us.  Later rebinding may disable
2015 	 * controllers on the default hierarchy and thus create new csets,
2016 	 * which can't be more than the existing ones.  Allocate 2x.
2017 	 */
2018 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2019 	if (ret)
2020 		goto cancel_ref;
2021 
2022 	ret = cgroup_init_root_id(root);
2023 	if (ret)
2024 		goto cancel_ref;
2025 
2026 	kf_sops = root == &cgrp_dfl_root ?
2027 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2028 
2029 	root->kf_root = kernfs_create_root(kf_sops,
2030 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2031 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
2032 					   root_cgrp);
2033 	if (IS_ERR(root->kf_root)) {
2034 		ret = PTR_ERR(root->kf_root);
2035 		goto exit_root_id;
2036 	}
2037 	root_cgrp->kn = root->kf_root->kn;
2038 
2039 	ret = css_populate_dir(&root_cgrp->self);
2040 	if (ret)
2041 		goto destroy_root;
2042 
2043 	ret = rebind_subsystems(root, ss_mask);
2044 	if (ret)
2045 		goto destroy_root;
2046 
2047 	ret = cgroup_bpf_inherit(root_cgrp);
2048 	WARN_ON_ONCE(ret);
2049 
2050 	trace_cgroup_setup_root(root);
2051 
2052 	/*
2053 	 * There must be no failure case after here, since rebinding takes
2054 	 * care of subsystems' refcounts, which are explicitly dropped in
2055 	 * the failure exit path.
2056 	 */
2057 	list_add(&root->root_list, &cgroup_roots);
2058 	cgroup_root_count++;
2059 
2060 	/*
2061 	 * Link the root cgroup in this hierarchy into all the css_set
2062 	 * objects.
2063 	 */
2064 	spin_lock_irq(&css_set_lock);
2065 	hash_for_each(css_set_table, i, cset, hlist) {
2066 		link_css_set(&tmp_links, cset, root_cgrp);
2067 		if (css_set_populated(cset))
2068 			cgroup_update_populated(root_cgrp, true);
2069 	}
2070 	spin_unlock_irq(&css_set_lock);
2071 
2072 	BUG_ON(!list_empty(&root_cgrp->self.children));
2073 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2074 
2075 	kernfs_activate(root_cgrp->kn);
2076 	ret = 0;
2077 	goto out;
2078 
2079 destroy_root:
2080 	kernfs_destroy_root(root->kf_root);
2081 	root->kf_root = NULL;
2082 exit_root_id:
2083 	cgroup_exit_root_id(root);
2084 cancel_ref:
2085 	percpu_ref_exit(&root_cgrp->self.refcnt);
2086 out:
2087 	free_cgrp_cset_links(&tmp_links);
2088 	return ret;
2089 }
2090 
2091 int cgroup_do_get_tree(struct fs_context *fc)
2092 {
2093 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2094 	int ret;
2095 
2096 	ctx->kfc.root = ctx->root->kf_root;
2097 	if (fc->fs_type == &cgroup2_fs_type)
2098 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2099 	else
2100 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2101 	ret = kernfs_get_tree(fc);
2102 
2103 	/*
2104 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2105 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2106 	 */
2107 	if (!ret && ctx->ns != &init_cgroup_ns) {
2108 		struct dentry *nsdentry;
2109 		struct super_block *sb = fc->root->d_sb;
2110 		struct cgroup *cgrp;
2111 
2112 		mutex_lock(&cgroup_mutex);
2113 		spin_lock_irq(&css_set_lock);
2114 
2115 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2116 
2117 		spin_unlock_irq(&css_set_lock);
2118 		mutex_unlock(&cgroup_mutex);
2119 
2120 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2121 		dput(fc->root);
2122 		fc->root = nsdentry;
2123 		if (IS_ERR(nsdentry)) {
2124 			ret = PTR_ERR(nsdentry);
2125 			deactivate_locked_super(sb);
2126 		}
2127 	}
2128 
2129 	if (!ctx->kfc.new_sb_created)
2130 		cgroup_put(&ctx->root->cgrp);
2131 
2132 	return ret;
2133 }
2134 
2135 /*
2136  * Destroy a cgroup filesystem context.
2137  */
2138 static void cgroup_fs_context_free(struct fs_context *fc)
2139 {
2140 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2141 
2142 	kfree(ctx->name);
2143 	kfree(ctx->release_agent);
2144 	put_cgroup_ns(ctx->ns);
2145 	kernfs_free_fs_context(fc);
2146 	kfree(ctx);
2147 }
2148 
2149 static int cgroup_get_tree(struct fs_context *fc)
2150 {
2151 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2152 	int ret;
2153 
2154 	cgrp_dfl_visible = true;
2155 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2156 	ctx->root = &cgrp_dfl_root;
2157 
2158 	ret = cgroup_do_get_tree(fc);
2159 	if (!ret)
2160 		apply_cgroup_root_flags(ctx->flags);
2161 	return ret;
2162 }
2163 
2164 static const struct fs_context_operations cgroup_fs_context_ops = {
2165 	.free		= cgroup_fs_context_free,
2166 	.parse_param	= cgroup2_parse_param,
2167 	.get_tree	= cgroup_get_tree,
2168 	.reconfigure	= cgroup_reconfigure,
2169 };
2170 
2171 static const struct fs_context_operations cgroup1_fs_context_ops = {
2172 	.free		= cgroup_fs_context_free,
2173 	.parse_param	= cgroup1_parse_param,
2174 	.get_tree	= cgroup1_get_tree,
2175 	.reconfigure	= cgroup1_reconfigure,
2176 };
2177 
2178 /*
2179  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2180  * we select the namespace we're going to use.
2181  */
2182 static int cgroup_init_fs_context(struct fs_context *fc)
2183 {
2184 	struct cgroup_fs_context *ctx;
2185 
2186 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2187 	if (!ctx)
2188 		return -ENOMEM;
2189 
2190 	/*
2191 	 * The first time anyone tries to mount a cgroup, enable the list
2192 	 * linking each css_set to its tasks and fix up all existing tasks.
2193 	 */
2194 	if (!use_task_css_set_links)
2195 		cgroup_enable_task_cg_lists();
2196 
2197 	ctx->ns = current->nsproxy->cgroup_ns;
2198 	get_cgroup_ns(ctx->ns);
2199 	fc->fs_private = &ctx->kfc;
2200 	if (fc->fs_type == &cgroup2_fs_type)
2201 		fc->ops = &cgroup_fs_context_ops;
2202 	else
2203 		fc->ops = &cgroup1_fs_context_ops;
2204 	if (fc->user_ns)
2205 		put_user_ns(fc->user_ns);
2206 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2207 	fc->global = true;
2208 	return 0;
2209 }
2210 
2211 static void cgroup_kill_sb(struct super_block *sb)
2212 {
2213 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2214 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2215 
2216 	/*
2217 	 * If @root doesn't have any children, start killing it.
2218 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2219 	 * cgroup_mount() may wait for @root's release.
2220 	 *
2221 	 * And don't kill the default root.
2222 	 */
2223 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2224 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2225 		percpu_ref_kill(&root->cgrp.self.refcnt);
2226 	cgroup_put(&root->cgrp);
2227 	kernfs_kill_sb(sb);
2228 }
2229 
2230 struct file_system_type cgroup_fs_type = {
2231 	.name			= "cgroup",
2232 	.init_fs_context	= cgroup_init_fs_context,
2233 	.parameters		= &cgroup1_fs_parameters,
2234 	.kill_sb		= cgroup_kill_sb,
2235 	.fs_flags		= FS_USERNS_MOUNT,
2236 };
2237 
2238 static struct file_system_type cgroup2_fs_type = {
2239 	.name			= "cgroup2",
2240 	.init_fs_context	= cgroup_init_fs_context,
2241 	.parameters		= &cgroup2_fs_parameters,
2242 	.kill_sb		= cgroup_kill_sb,
2243 	.fs_flags		= FS_USERNS_MOUNT,
2244 };
2245 
2246 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2247 			  struct cgroup_namespace *ns)
2248 {
2249 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2250 
2251 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2252 }
2253 
2254 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2255 		   struct cgroup_namespace *ns)
2256 {
2257 	int ret;
2258 
2259 	mutex_lock(&cgroup_mutex);
2260 	spin_lock_irq(&css_set_lock);
2261 
2262 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2263 
2264 	spin_unlock_irq(&css_set_lock);
2265 	mutex_unlock(&cgroup_mutex);
2266 
2267 	return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2270 
2271 /**
2272  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2273  * @task: target task
2274  * @buf: the buffer to write the path into
2275  * @buflen: the length of the buffer
2276  *
2277  * Determine @task's cgroup on the first (the one with the lowest non-zero
2278  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2279  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2280  * cgroup controller callbacks.
2281  *
2282  * Return value is the same as kernfs_path().
2283  */
2284 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2285 {
2286 	struct cgroup_root *root;
2287 	struct cgroup *cgrp;
2288 	int hierarchy_id = 1;
2289 	int ret;
2290 
2291 	mutex_lock(&cgroup_mutex);
2292 	spin_lock_irq(&css_set_lock);
2293 
2294 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2295 
2296 	if (root) {
2297 		cgrp = task_cgroup_from_root(task, root);
2298 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2299 	} else {
2300 		/* if no hierarchy exists, everyone is in "/" */
2301 		ret = strlcpy(buf, "/", buflen);
2302 	}
2303 
2304 	spin_unlock_irq(&css_set_lock);
2305 	mutex_unlock(&cgroup_mutex);
2306 	return ret;
2307 }
2308 EXPORT_SYMBOL_GPL(task_cgroup_path);
2309 
2310 /**
2311  * cgroup_migrate_add_task - add a migration target task to a migration context
2312  * @task: target task
2313  * @mgctx: target migration context
2314  *
2315  * Add @task, which is a migration target, to @mgctx->tset.  This function
2316  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2317  * should have been added as a migration source and @task->cg_list will be
2318  * moved from the css_set's tasks list to mg_tasks one.
2319  */
2320 static void cgroup_migrate_add_task(struct task_struct *task,
2321 				    struct cgroup_mgctx *mgctx)
2322 {
2323 	struct css_set *cset;
2324 
2325 	lockdep_assert_held(&css_set_lock);
2326 
2327 	/* @task either already exited or can't exit until the end */
2328 	if (task->flags & PF_EXITING)
2329 		return;
2330 
2331 	/* leave @task alone if post_fork() hasn't linked it yet */
2332 	if (list_empty(&task->cg_list))
2333 		return;
2334 
2335 	cset = task_css_set(task);
2336 	if (!cset->mg_src_cgrp)
2337 		return;
2338 
2339 	mgctx->tset.nr_tasks++;
2340 
2341 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2342 	if (list_empty(&cset->mg_node))
2343 		list_add_tail(&cset->mg_node,
2344 			      &mgctx->tset.src_csets);
2345 	if (list_empty(&cset->mg_dst_cset->mg_node))
2346 		list_add_tail(&cset->mg_dst_cset->mg_node,
2347 			      &mgctx->tset.dst_csets);
2348 }
2349 
2350 /**
2351  * cgroup_taskset_first - reset taskset and return the first task
2352  * @tset: taskset of interest
2353  * @dst_cssp: output variable for the destination css
2354  *
2355  * @tset iteration is initialized and the first task is returned.
2356  */
2357 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2358 					 struct cgroup_subsys_state **dst_cssp)
2359 {
2360 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2361 	tset->cur_task = NULL;
2362 
2363 	return cgroup_taskset_next(tset, dst_cssp);
2364 }
2365 
2366 /**
2367  * cgroup_taskset_next - iterate to the next task in taskset
2368  * @tset: taskset of interest
2369  * @dst_cssp: output variable for the destination css
2370  *
2371  * Return the next task in @tset.  Iteration must have been initialized
2372  * with cgroup_taskset_first().
2373  */
2374 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2375 					struct cgroup_subsys_state **dst_cssp)
2376 {
2377 	struct css_set *cset = tset->cur_cset;
2378 	struct task_struct *task = tset->cur_task;
2379 
2380 	while (&cset->mg_node != tset->csets) {
2381 		if (!task)
2382 			task = list_first_entry(&cset->mg_tasks,
2383 						struct task_struct, cg_list);
2384 		else
2385 			task = list_next_entry(task, cg_list);
2386 
2387 		if (&task->cg_list != &cset->mg_tasks) {
2388 			tset->cur_cset = cset;
2389 			tset->cur_task = task;
2390 
2391 			/*
2392 			 * This function may be called both before and
2393 			 * after cgroup_taskset_migrate().  The two cases
2394 			 * can be distinguished by looking at whether @cset
2395 			 * has its ->mg_dst_cset set.
2396 			 */
2397 			if (cset->mg_dst_cset)
2398 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2399 			else
2400 				*dst_cssp = cset->subsys[tset->ssid];
2401 
2402 			return task;
2403 		}
2404 
2405 		cset = list_next_entry(cset, mg_node);
2406 		task = NULL;
2407 	}
2408 
2409 	return NULL;
2410 }
2411 
2412 /**
2413  * cgroup_taskset_migrate - migrate a taskset
2414  * @mgctx: migration context
2415  *
2416  * Migrate tasks in @mgctx as setup by migration preparation functions.
2417  * This function fails iff one of the ->can_attach callbacks fails and
2418  * guarantees that either all or none of the tasks in @mgctx are migrated.
2419  * @mgctx is consumed regardless of success.
2420  */
2421 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2422 {
2423 	struct cgroup_taskset *tset = &mgctx->tset;
2424 	struct cgroup_subsys *ss;
2425 	struct task_struct *task, *tmp_task;
2426 	struct css_set *cset, *tmp_cset;
2427 	int ssid, failed_ssid, ret;
2428 
2429 	/* check that we can legitimately attach to the cgroup */
2430 	if (tset->nr_tasks) {
2431 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2432 			if (ss->can_attach) {
2433 				tset->ssid = ssid;
2434 				ret = ss->can_attach(tset);
2435 				if (ret) {
2436 					failed_ssid = ssid;
2437 					goto out_cancel_attach;
2438 				}
2439 			}
2440 		} while_each_subsys_mask();
2441 	}
2442 
2443 	/*
2444 	 * Now that we're guaranteed success, proceed to move all tasks to
2445 	 * the new cgroup.  There are no failure cases after here, so this
2446 	 * is the commit point.
2447 	 */
2448 	spin_lock_irq(&css_set_lock);
2449 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2450 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2451 			struct css_set *from_cset = task_css_set(task);
2452 			struct css_set *to_cset = cset->mg_dst_cset;
2453 
2454 			get_css_set(to_cset);
2455 			to_cset->nr_tasks++;
2456 			css_set_move_task(task, from_cset, to_cset, true);
2457 			from_cset->nr_tasks--;
2458 			/*
2459 			 * If the source or destination cgroup is frozen,
2460 			 * the task might require to change its state.
2461 			 */
2462 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2463 						    to_cset->dfl_cgrp);
2464 			put_css_set_locked(from_cset);
2465 
2466 		}
2467 	}
2468 	spin_unlock_irq(&css_set_lock);
2469 
2470 	/*
2471 	 * Migration is committed, all target tasks are now on dst_csets.
2472 	 * Nothing is sensitive to fork() after this point.  Notify
2473 	 * controllers that migration is complete.
2474 	 */
2475 	tset->csets = &tset->dst_csets;
2476 
2477 	if (tset->nr_tasks) {
2478 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2479 			if (ss->attach) {
2480 				tset->ssid = ssid;
2481 				ss->attach(tset);
2482 			}
2483 		} while_each_subsys_mask();
2484 	}
2485 
2486 	ret = 0;
2487 	goto out_release_tset;
2488 
2489 out_cancel_attach:
2490 	if (tset->nr_tasks) {
2491 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2492 			if (ssid == failed_ssid)
2493 				break;
2494 			if (ss->cancel_attach) {
2495 				tset->ssid = ssid;
2496 				ss->cancel_attach(tset);
2497 			}
2498 		} while_each_subsys_mask();
2499 	}
2500 out_release_tset:
2501 	spin_lock_irq(&css_set_lock);
2502 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2503 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2504 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2505 		list_del_init(&cset->mg_node);
2506 	}
2507 	spin_unlock_irq(&css_set_lock);
2508 
2509 	/*
2510 	 * Re-initialize the cgroup_taskset structure in case it is reused
2511 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2512 	 * iteration.
2513 	 */
2514 	tset->nr_tasks = 0;
2515 	tset->csets    = &tset->src_csets;
2516 	return ret;
2517 }
2518 
2519 /**
2520  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2521  * @dst_cgrp: destination cgroup to test
2522  *
2523  * On the default hierarchy, except for the mixable, (possible) thread root
2524  * and threaded cgroups, subtree_control must be zero for migration
2525  * destination cgroups with tasks so that child cgroups don't compete
2526  * against tasks.
2527  */
2528 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2529 {
2530 	/* v1 doesn't have any restriction */
2531 	if (!cgroup_on_dfl(dst_cgrp))
2532 		return 0;
2533 
2534 	/* verify @dst_cgrp can host resources */
2535 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2536 		return -EOPNOTSUPP;
2537 
2538 	/* mixables don't care */
2539 	if (cgroup_is_mixable(dst_cgrp))
2540 		return 0;
2541 
2542 	/*
2543 	 * If @dst_cgrp is already or can become a thread root or is
2544 	 * threaded, it doesn't matter.
2545 	 */
2546 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2547 		return 0;
2548 
2549 	/* apply no-internal-process constraint */
2550 	if (dst_cgrp->subtree_control)
2551 		return -EBUSY;
2552 
2553 	return 0;
2554 }
2555 
2556 /**
2557  * cgroup_migrate_finish - cleanup after attach
2558  * @mgctx: migration context
2559  *
2560  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2561  * those functions for details.
2562  */
2563 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2564 {
2565 	LIST_HEAD(preloaded);
2566 	struct css_set *cset, *tmp_cset;
2567 
2568 	lockdep_assert_held(&cgroup_mutex);
2569 
2570 	spin_lock_irq(&css_set_lock);
2571 
2572 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2573 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2574 
2575 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2576 		cset->mg_src_cgrp = NULL;
2577 		cset->mg_dst_cgrp = NULL;
2578 		cset->mg_dst_cset = NULL;
2579 		list_del_init(&cset->mg_preload_node);
2580 		put_css_set_locked(cset);
2581 	}
2582 
2583 	spin_unlock_irq(&css_set_lock);
2584 }
2585 
2586 /**
2587  * cgroup_migrate_add_src - add a migration source css_set
2588  * @src_cset: the source css_set to add
2589  * @dst_cgrp: the destination cgroup
2590  * @mgctx: migration context
2591  *
2592  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2593  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2594  * up by cgroup_migrate_finish().
2595  *
2596  * This function may be called without holding cgroup_threadgroup_rwsem
2597  * even if the target is a process.  Threads may be created and destroyed
2598  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2599  * into play and the preloaded css_sets are guaranteed to cover all
2600  * migrations.
2601  */
2602 void cgroup_migrate_add_src(struct css_set *src_cset,
2603 			    struct cgroup *dst_cgrp,
2604 			    struct cgroup_mgctx *mgctx)
2605 {
2606 	struct cgroup *src_cgrp;
2607 
2608 	lockdep_assert_held(&cgroup_mutex);
2609 	lockdep_assert_held(&css_set_lock);
2610 
2611 	/*
2612 	 * If ->dead, @src_set is associated with one or more dead cgroups
2613 	 * and doesn't contain any migratable tasks.  Ignore it early so
2614 	 * that the rest of migration path doesn't get confused by it.
2615 	 */
2616 	if (src_cset->dead)
2617 		return;
2618 
2619 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2620 
2621 	if (!list_empty(&src_cset->mg_preload_node))
2622 		return;
2623 
2624 	WARN_ON(src_cset->mg_src_cgrp);
2625 	WARN_ON(src_cset->mg_dst_cgrp);
2626 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2627 	WARN_ON(!list_empty(&src_cset->mg_node));
2628 
2629 	src_cset->mg_src_cgrp = src_cgrp;
2630 	src_cset->mg_dst_cgrp = dst_cgrp;
2631 	get_css_set(src_cset);
2632 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2633 }
2634 
2635 /**
2636  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2637  * @mgctx: migration context
2638  *
2639  * Tasks are about to be moved and all the source css_sets have been
2640  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2641  * pins all destination css_sets, links each to its source, and append them
2642  * to @mgctx->preloaded_dst_csets.
2643  *
2644  * This function must be called after cgroup_migrate_add_src() has been
2645  * called on each migration source css_set.  After migration is performed
2646  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2647  * @mgctx.
2648  */
2649 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2650 {
2651 	struct css_set *src_cset, *tmp_cset;
2652 
2653 	lockdep_assert_held(&cgroup_mutex);
2654 
2655 	/* look up the dst cset for each src cset and link it to src */
2656 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2657 				 mg_preload_node) {
2658 		struct css_set *dst_cset;
2659 		struct cgroup_subsys *ss;
2660 		int ssid;
2661 
2662 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2663 		if (!dst_cset)
2664 			return -ENOMEM;
2665 
2666 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2667 
2668 		/*
2669 		 * If src cset equals dst, it's noop.  Drop the src.
2670 		 * cgroup_migrate() will skip the cset too.  Note that we
2671 		 * can't handle src == dst as some nodes are used by both.
2672 		 */
2673 		if (src_cset == dst_cset) {
2674 			src_cset->mg_src_cgrp = NULL;
2675 			src_cset->mg_dst_cgrp = NULL;
2676 			list_del_init(&src_cset->mg_preload_node);
2677 			put_css_set(src_cset);
2678 			put_css_set(dst_cset);
2679 			continue;
2680 		}
2681 
2682 		src_cset->mg_dst_cset = dst_cset;
2683 
2684 		if (list_empty(&dst_cset->mg_preload_node))
2685 			list_add_tail(&dst_cset->mg_preload_node,
2686 				      &mgctx->preloaded_dst_csets);
2687 		else
2688 			put_css_set(dst_cset);
2689 
2690 		for_each_subsys(ss, ssid)
2691 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2692 				mgctx->ss_mask |= 1 << ssid;
2693 	}
2694 
2695 	return 0;
2696 }
2697 
2698 /**
2699  * cgroup_migrate - migrate a process or task to a cgroup
2700  * @leader: the leader of the process or the task to migrate
2701  * @threadgroup: whether @leader points to the whole process or a single task
2702  * @mgctx: migration context
2703  *
2704  * Migrate a process or task denoted by @leader.  If migrating a process,
2705  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2706  * responsible for invoking cgroup_migrate_add_src() and
2707  * cgroup_migrate_prepare_dst() on the targets before invoking this
2708  * function and following up with cgroup_migrate_finish().
2709  *
2710  * As long as a controller's ->can_attach() doesn't fail, this function is
2711  * guaranteed to succeed.  This means that, excluding ->can_attach()
2712  * failure, when migrating multiple targets, the success or failure can be
2713  * decided for all targets by invoking group_migrate_prepare_dst() before
2714  * actually starting migrating.
2715  */
2716 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2717 		   struct cgroup_mgctx *mgctx)
2718 {
2719 	struct task_struct *task;
2720 
2721 	/*
2722 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2723 	 * already PF_EXITING could be freed from underneath us unless we
2724 	 * take an rcu_read_lock.
2725 	 */
2726 	spin_lock_irq(&css_set_lock);
2727 	rcu_read_lock();
2728 	task = leader;
2729 	do {
2730 		cgroup_migrate_add_task(task, mgctx);
2731 		if (!threadgroup)
2732 			break;
2733 	} while_each_thread(leader, task);
2734 	rcu_read_unlock();
2735 	spin_unlock_irq(&css_set_lock);
2736 
2737 	return cgroup_migrate_execute(mgctx);
2738 }
2739 
2740 /**
2741  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2742  * @dst_cgrp: the cgroup to attach to
2743  * @leader: the task or the leader of the threadgroup to be attached
2744  * @threadgroup: attach the whole threadgroup?
2745  *
2746  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2747  */
2748 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2749 		       bool threadgroup)
2750 {
2751 	DEFINE_CGROUP_MGCTX(mgctx);
2752 	struct task_struct *task;
2753 	int ret;
2754 
2755 	ret = cgroup_migrate_vet_dst(dst_cgrp);
2756 	if (ret)
2757 		return ret;
2758 
2759 	/* look up all src csets */
2760 	spin_lock_irq(&css_set_lock);
2761 	rcu_read_lock();
2762 	task = leader;
2763 	do {
2764 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2765 		if (!threadgroup)
2766 			break;
2767 	} while_each_thread(leader, task);
2768 	rcu_read_unlock();
2769 	spin_unlock_irq(&css_set_lock);
2770 
2771 	/* prepare dst csets and commit */
2772 	ret = cgroup_migrate_prepare_dst(&mgctx);
2773 	if (!ret)
2774 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2775 
2776 	cgroup_migrate_finish(&mgctx);
2777 
2778 	if (!ret)
2779 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2780 
2781 	return ret;
2782 }
2783 
2784 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2785 	__acquires(&cgroup_threadgroup_rwsem)
2786 {
2787 	struct task_struct *tsk;
2788 	pid_t pid;
2789 
2790 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2791 		return ERR_PTR(-EINVAL);
2792 
2793 	percpu_down_write(&cgroup_threadgroup_rwsem);
2794 
2795 	rcu_read_lock();
2796 	if (pid) {
2797 		tsk = find_task_by_vpid(pid);
2798 		if (!tsk) {
2799 			tsk = ERR_PTR(-ESRCH);
2800 			goto out_unlock_threadgroup;
2801 		}
2802 	} else {
2803 		tsk = current;
2804 	}
2805 
2806 	if (threadgroup)
2807 		tsk = tsk->group_leader;
2808 
2809 	/*
2810 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2811 	 * If userland migrates such a kthread to a non-root cgroup, it can
2812 	 * become trapped in a cpuset, or RT kthread may be born in a
2813 	 * cgroup with no rt_runtime allocated.  Just say no.
2814 	 */
2815 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2816 		tsk = ERR_PTR(-EINVAL);
2817 		goto out_unlock_threadgroup;
2818 	}
2819 
2820 	get_task_struct(tsk);
2821 	goto out_unlock_rcu;
2822 
2823 out_unlock_threadgroup:
2824 	percpu_up_write(&cgroup_threadgroup_rwsem);
2825 out_unlock_rcu:
2826 	rcu_read_unlock();
2827 	return tsk;
2828 }
2829 
2830 void cgroup_procs_write_finish(struct task_struct *task)
2831 	__releases(&cgroup_threadgroup_rwsem)
2832 {
2833 	struct cgroup_subsys *ss;
2834 	int ssid;
2835 
2836 	/* release reference from cgroup_procs_write_start() */
2837 	put_task_struct(task);
2838 
2839 	percpu_up_write(&cgroup_threadgroup_rwsem);
2840 	for_each_subsys(ss, ssid)
2841 		if (ss->post_attach)
2842 			ss->post_attach();
2843 }
2844 
2845 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2846 {
2847 	struct cgroup_subsys *ss;
2848 	bool printed = false;
2849 	int ssid;
2850 
2851 	do_each_subsys_mask(ss, ssid, ss_mask) {
2852 		if (printed)
2853 			seq_putc(seq, ' ');
2854 		seq_printf(seq, "%s", ss->name);
2855 		printed = true;
2856 	} while_each_subsys_mask();
2857 	if (printed)
2858 		seq_putc(seq, '\n');
2859 }
2860 
2861 /* show controllers which are enabled from the parent */
2862 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2863 {
2864 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2865 
2866 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2867 	return 0;
2868 }
2869 
2870 /* show controllers which are enabled for a given cgroup's children */
2871 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2872 {
2873 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2874 
2875 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2876 	return 0;
2877 }
2878 
2879 /**
2880  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2881  * @cgrp: root of the subtree to update csses for
2882  *
2883  * @cgrp's control masks have changed and its subtree's css associations
2884  * need to be updated accordingly.  This function looks up all css_sets
2885  * which are attached to the subtree, creates the matching updated css_sets
2886  * and migrates the tasks to the new ones.
2887  */
2888 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2889 {
2890 	DEFINE_CGROUP_MGCTX(mgctx);
2891 	struct cgroup_subsys_state *d_css;
2892 	struct cgroup *dsct;
2893 	struct css_set *src_cset;
2894 	int ret;
2895 
2896 	lockdep_assert_held(&cgroup_mutex);
2897 
2898 	percpu_down_write(&cgroup_threadgroup_rwsem);
2899 
2900 	/* look up all csses currently attached to @cgrp's subtree */
2901 	spin_lock_irq(&css_set_lock);
2902 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2903 		struct cgrp_cset_link *link;
2904 
2905 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2906 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2907 	}
2908 	spin_unlock_irq(&css_set_lock);
2909 
2910 	/* NULL dst indicates self on default hierarchy */
2911 	ret = cgroup_migrate_prepare_dst(&mgctx);
2912 	if (ret)
2913 		goto out_finish;
2914 
2915 	spin_lock_irq(&css_set_lock);
2916 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2917 		struct task_struct *task, *ntask;
2918 
2919 		/* all tasks in src_csets need to be migrated */
2920 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2921 			cgroup_migrate_add_task(task, &mgctx);
2922 	}
2923 	spin_unlock_irq(&css_set_lock);
2924 
2925 	ret = cgroup_migrate_execute(&mgctx);
2926 out_finish:
2927 	cgroup_migrate_finish(&mgctx);
2928 	percpu_up_write(&cgroup_threadgroup_rwsem);
2929 	return ret;
2930 }
2931 
2932 /**
2933  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2934  * @cgrp: root of the target subtree
2935  *
2936  * Because css offlining is asynchronous, userland may try to re-enable a
2937  * controller while the previous css is still around.  This function grabs
2938  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2939  */
2940 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2941 	__acquires(&cgroup_mutex)
2942 {
2943 	struct cgroup *dsct;
2944 	struct cgroup_subsys_state *d_css;
2945 	struct cgroup_subsys *ss;
2946 	int ssid;
2947 
2948 restart:
2949 	mutex_lock(&cgroup_mutex);
2950 
2951 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2952 		for_each_subsys(ss, ssid) {
2953 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2954 			DEFINE_WAIT(wait);
2955 
2956 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2957 				continue;
2958 
2959 			cgroup_get_live(dsct);
2960 			prepare_to_wait(&dsct->offline_waitq, &wait,
2961 					TASK_UNINTERRUPTIBLE);
2962 
2963 			mutex_unlock(&cgroup_mutex);
2964 			schedule();
2965 			finish_wait(&dsct->offline_waitq, &wait);
2966 
2967 			cgroup_put(dsct);
2968 			goto restart;
2969 		}
2970 	}
2971 }
2972 
2973 /**
2974  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2975  * @cgrp: root of the target subtree
2976  *
2977  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2978  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2979  * itself.
2980  */
2981 static void cgroup_save_control(struct cgroup *cgrp)
2982 {
2983 	struct cgroup *dsct;
2984 	struct cgroup_subsys_state *d_css;
2985 
2986 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2987 		dsct->old_subtree_control = dsct->subtree_control;
2988 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2989 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2990 	}
2991 }
2992 
2993 /**
2994  * cgroup_propagate_control - refresh control masks of a subtree
2995  * @cgrp: root of the target subtree
2996  *
2997  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2998  * ->subtree_control and propagate controller availability through the
2999  * subtree so that descendants don't have unavailable controllers enabled.
3000  */
3001 static void cgroup_propagate_control(struct cgroup *cgrp)
3002 {
3003 	struct cgroup *dsct;
3004 	struct cgroup_subsys_state *d_css;
3005 
3006 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3007 		dsct->subtree_control &= cgroup_control(dsct);
3008 		dsct->subtree_ss_mask =
3009 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3010 						    cgroup_ss_mask(dsct));
3011 	}
3012 }
3013 
3014 /**
3015  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3016  * @cgrp: root of the target subtree
3017  *
3018  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3019  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3020  * itself.
3021  */
3022 static void cgroup_restore_control(struct cgroup *cgrp)
3023 {
3024 	struct cgroup *dsct;
3025 	struct cgroup_subsys_state *d_css;
3026 
3027 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3028 		dsct->subtree_control = dsct->old_subtree_control;
3029 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3030 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3031 	}
3032 }
3033 
3034 static bool css_visible(struct cgroup_subsys_state *css)
3035 {
3036 	struct cgroup_subsys *ss = css->ss;
3037 	struct cgroup *cgrp = css->cgroup;
3038 
3039 	if (cgroup_control(cgrp) & (1 << ss->id))
3040 		return true;
3041 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3042 		return false;
3043 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3044 }
3045 
3046 /**
3047  * cgroup_apply_control_enable - enable or show csses according to control
3048  * @cgrp: root of the target subtree
3049  *
3050  * Walk @cgrp's subtree and create new csses or make the existing ones
3051  * visible.  A css is created invisible if it's being implicitly enabled
3052  * through dependency.  An invisible css is made visible when the userland
3053  * explicitly enables it.
3054  *
3055  * Returns 0 on success, -errno on failure.  On failure, csses which have
3056  * been processed already aren't cleaned up.  The caller is responsible for
3057  * cleaning up with cgroup_apply_control_disable().
3058  */
3059 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3060 {
3061 	struct cgroup *dsct;
3062 	struct cgroup_subsys_state *d_css;
3063 	struct cgroup_subsys *ss;
3064 	int ssid, ret;
3065 
3066 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3067 		for_each_subsys(ss, ssid) {
3068 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3069 
3070 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3071 
3072 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3073 				continue;
3074 
3075 			if (!css) {
3076 				css = css_create(dsct, ss);
3077 				if (IS_ERR(css))
3078 					return PTR_ERR(css);
3079 			}
3080 
3081 			if (css_visible(css)) {
3082 				ret = css_populate_dir(css);
3083 				if (ret)
3084 					return ret;
3085 			}
3086 		}
3087 	}
3088 
3089 	return 0;
3090 }
3091 
3092 /**
3093  * cgroup_apply_control_disable - kill or hide csses according to control
3094  * @cgrp: root of the target subtree
3095  *
3096  * Walk @cgrp's subtree and kill and hide csses so that they match
3097  * cgroup_ss_mask() and cgroup_visible_mask().
3098  *
3099  * A css is hidden when the userland requests it to be disabled while other
3100  * subsystems are still depending on it.  The css must not actively control
3101  * resources and be in the vanilla state if it's made visible again later.
3102  * Controllers which may be depended upon should provide ->css_reset() for
3103  * this purpose.
3104  */
3105 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3106 {
3107 	struct cgroup *dsct;
3108 	struct cgroup_subsys_state *d_css;
3109 	struct cgroup_subsys *ss;
3110 	int ssid;
3111 
3112 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3113 		for_each_subsys(ss, ssid) {
3114 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3115 
3116 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3117 
3118 			if (!css)
3119 				continue;
3120 
3121 			if (css->parent &&
3122 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3123 				kill_css(css);
3124 			} else if (!css_visible(css)) {
3125 				css_clear_dir(css);
3126 				if (ss->css_reset)
3127 					ss->css_reset(css);
3128 			}
3129 		}
3130 	}
3131 }
3132 
3133 /**
3134  * cgroup_apply_control - apply control mask updates to the subtree
3135  * @cgrp: root of the target subtree
3136  *
3137  * subsystems can be enabled and disabled in a subtree using the following
3138  * steps.
3139  *
3140  * 1. Call cgroup_save_control() to stash the current state.
3141  * 2. Update ->subtree_control masks in the subtree as desired.
3142  * 3. Call cgroup_apply_control() to apply the changes.
3143  * 4. Optionally perform other related operations.
3144  * 5. Call cgroup_finalize_control() to finish up.
3145  *
3146  * This function implements step 3 and propagates the mask changes
3147  * throughout @cgrp's subtree, updates csses accordingly and perform
3148  * process migrations.
3149  */
3150 static int cgroup_apply_control(struct cgroup *cgrp)
3151 {
3152 	int ret;
3153 
3154 	cgroup_propagate_control(cgrp);
3155 
3156 	ret = cgroup_apply_control_enable(cgrp);
3157 	if (ret)
3158 		return ret;
3159 
3160 	/*
3161 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3162 	 * making the following cgroup_update_dfl_csses() properly update
3163 	 * css associations of all tasks in the subtree.
3164 	 */
3165 	ret = cgroup_update_dfl_csses(cgrp);
3166 	if (ret)
3167 		return ret;
3168 
3169 	return 0;
3170 }
3171 
3172 /**
3173  * cgroup_finalize_control - finalize control mask update
3174  * @cgrp: root of the target subtree
3175  * @ret: the result of the update
3176  *
3177  * Finalize control mask update.  See cgroup_apply_control() for more info.
3178  */
3179 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3180 {
3181 	if (ret) {
3182 		cgroup_restore_control(cgrp);
3183 		cgroup_propagate_control(cgrp);
3184 	}
3185 
3186 	cgroup_apply_control_disable(cgrp);
3187 }
3188 
3189 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3190 {
3191 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3192 
3193 	/* if nothing is getting enabled, nothing to worry about */
3194 	if (!enable)
3195 		return 0;
3196 
3197 	/* can @cgrp host any resources? */
3198 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3199 		return -EOPNOTSUPP;
3200 
3201 	/* mixables don't care */
3202 	if (cgroup_is_mixable(cgrp))
3203 		return 0;
3204 
3205 	if (domain_enable) {
3206 		/* can't enable domain controllers inside a thread subtree */
3207 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3208 			return -EOPNOTSUPP;
3209 	} else {
3210 		/*
3211 		 * Threaded controllers can handle internal competitions
3212 		 * and are always allowed inside a (prospective) thread
3213 		 * subtree.
3214 		 */
3215 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3216 			return 0;
3217 	}
3218 
3219 	/*
3220 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3221 	 * child cgroups competing against tasks.
3222 	 */
3223 	if (cgroup_has_tasks(cgrp))
3224 		return -EBUSY;
3225 
3226 	return 0;
3227 }
3228 
3229 /* change the enabled child controllers for a cgroup in the default hierarchy */
3230 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3231 					    char *buf, size_t nbytes,
3232 					    loff_t off)
3233 {
3234 	u16 enable = 0, disable = 0;
3235 	struct cgroup *cgrp, *child;
3236 	struct cgroup_subsys *ss;
3237 	char *tok;
3238 	int ssid, ret;
3239 
3240 	/*
3241 	 * Parse input - space separated list of subsystem names prefixed
3242 	 * with either + or -.
3243 	 */
3244 	buf = strstrip(buf);
3245 	while ((tok = strsep(&buf, " "))) {
3246 		if (tok[0] == '\0')
3247 			continue;
3248 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3249 			if (!cgroup_ssid_enabled(ssid) ||
3250 			    strcmp(tok + 1, ss->name))
3251 				continue;
3252 
3253 			if (*tok == '+') {
3254 				enable |= 1 << ssid;
3255 				disable &= ~(1 << ssid);
3256 			} else if (*tok == '-') {
3257 				disable |= 1 << ssid;
3258 				enable &= ~(1 << ssid);
3259 			} else {
3260 				return -EINVAL;
3261 			}
3262 			break;
3263 		} while_each_subsys_mask();
3264 		if (ssid == CGROUP_SUBSYS_COUNT)
3265 			return -EINVAL;
3266 	}
3267 
3268 	cgrp = cgroup_kn_lock_live(of->kn, true);
3269 	if (!cgrp)
3270 		return -ENODEV;
3271 
3272 	for_each_subsys(ss, ssid) {
3273 		if (enable & (1 << ssid)) {
3274 			if (cgrp->subtree_control & (1 << ssid)) {
3275 				enable &= ~(1 << ssid);
3276 				continue;
3277 			}
3278 
3279 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3280 				ret = -ENOENT;
3281 				goto out_unlock;
3282 			}
3283 		} else if (disable & (1 << ssid)) {
3284 			if (!(cgrp->subtree_control & (1 << ssid))) {
3285 				disable &= ~(1 << ssid);
3286 				continue;
3287 			}
3288 
3289 			/* a child has it enabled? */
3290 			cgroup_for_each_live_child(child, cgrp) {
3291 				if (child->subtree_control & (1 << ssid)) {
3292 					ret = -EBUSY;
3293 					goto out_unlock;
3294 				}
3295 			}
3296 		}
3297 	}
3298 
3299 	if (!enable && !disable) {
3300 		ret = 0;
3301 		goto out_unlock;
3302 	}
3303 
3304 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3305 	if (ret)
3306 		goto out_unlock;
3307 
3308 	/* save and update control masks and prepare csses */
3309 	cgroup_save_control(cgrp);
3310 
3311 	cgrp->subtree_control |= enable;
3312 	cgrp->subtree_control &= ~disable;
3313 
3314 	ret = cgroup_apply_control(cgrp);
3315 	cgroup_finalize_control(cgrp, ret);
3316 	if (ret)
3317 		goto out_unlock;
3318 
3319 	kernfs_activate(cgrp->kn);
3320 out_unlock:
3321 	cgroup_kn_unlock(of->kn);
3322 	return ret ?: nbytes;
3323 }
3324 
3325 /**
3326  * cgroup_enable_threaded - make @cgrp threaded
3327  * @cgrp: the target cgroup
3328  *
3329  * Called when "threaded" is written to the cgroup.type interface file and
3330  * tries to make @cgrp threaded and join the parent's resource domain.
3331  * This function is never called on the root cgroup as cgroup.type doesn't
3332  * exist on it.
3333  */
3334 static int cgroup_enable_threaded(struct cgroup *cgrp)
3335 {
3336 	struct cgroup *parent = cgroup_parent(cgrp);
3337 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3338 	struct cgroup *dsct;
3339 	struct cgroup_subsys_state *d_css;
3340 	int ret;
3341 
3342 	lockdep_assert_held(&cgroup_mutex);
3343 
3344 	/* noop if already threaded */
3345 	if (cgroup_is_threaded(cgrp))
3346 		return 0;
3347 
3348 	/*
3349 	 * If @cgroup is populated or has domain controllers enabled, it
3350 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3351 	 * test can catch the same conditions, that's only when @parent is
3352 	 * not mixable, so let's check it explicitly.
3353 	 */
3354 	if (cgroup_is_populated(cgrp) ||
3355 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3356 		return -EOPNOTSUPP;
3357 
3358 	/* we're joining the parent's domain, ensure its validity */
3359 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3360 	    !cgroup_can_be_thread_root(dom_cgrp))
3361 		return -EOPNOTSUPP;
3362 
3363 	/*
3364 	 * The following shouldn't cause actual migrations and should
3365 	 * always succeed.
3366 	 */
3367 	cgroup_save_control(cgrp);
3368 
3369 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3370 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3371 			dsct->dom_cgrp = dom_cgrp;
3372 
3373 	ret = cgroup_apply_control(cgrp);
3374 	if (!ret)
3375 		parent->nr_threaded_children++;
3376 
3377 	cgroup_finalize_control(cgrp, ret);
3378 	return ret;
3379 }
3380 
3381 static int cgroup_type_show(struct seq_file *seq, void *v)
3382 {
3383 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3384 
3385 	if (cgroup_is_threaded(cgrp))
3386 		seq_puts(seq, "threaded\n");
3387 	else if (!cgroup_is_valid_domain(cgrp))
3388 		seq_puts(seq, "domain invalid\n");
3389 	else if (cgroup_is_thread_root(cgrp))
3390 		seq_puts(seq, "domain threaded\n");
3391 	else
3392 		seq_puts(seq, "domain\n");
3393 
3394 	return 0;
3395 }
3396 
3397 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3398 				 size_t nbytes, loff_t off)
3399 {
3400 	struct cgroup *cgrp;
3401 	int ret;
3402 
3403 	/* only switching to threaded mode is supported */
3404 	if (strcmp(strstrip(buf), "threaded"))
3405 		return -EINVAL;
3406 
3407 	cgrp = cgroup_kn_lock_live(of->kn, false);
3408 	if (!cgrp)
3409 		return -ENOENT;
3410 
3411 	/* threaded can only be enabled */
3412 	ret = cgroup_enable_threaded(cgrp);
3413 
3414 	cgroup_kn_unlock(of->kn);
3415 	return ret ?: nbytes;
3416 }
3417 
3418 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3419 {
3420 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3421 	int descendants = READ_ONCE(cgrp->max_descendants);
3422 
3423 	if (descendants == INT_MAX)
3424 		seq_puts(seq, "max\n");
3425 	else
3426 		seq_printf(seq, "%d\n", descendants);
3427 
3428 	return 0;
3429 }
3430 
3431 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3432 					   char *buf, size_t nbytes, loff_t off)
3433 {
3434 	struct cgroup *cgrp;
3435 	int descendants;
3436 	ssize_t ret;
3437 
3438 	buf = strstrip(buf);
3439 	if (!strcmp(buf, "max")) {
3440 		descendants = INT_MAX;
3441 	} else {
3442 		ret = kstrtoint(buf, 0, &descendants);
3443 		if (ret)
3444 			return ret;
3445 	}
3446 
3447 	if (descendants < 0)
3448 		return -ERANGE;
3449 
3450 	cgrp = cgroup_kn_lock_live(of->kn, false);
3451 	if (!cgrp)
3452 		return -ENOENT;
3453 
3454 	cgrp->max_descendants = descendants;
3455 
3456 	cgroup_kn_unlock(of->kn);
3457 
3458 	return nbytes;
3459 }
3460 
3461 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3462 {
3463 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3464 	int depth = READ_ONCE(cgrp->max_depth);
3465 
3466 	if (depth == INT_MAX)
3467 		seq_puts(seq, "max\n");
3468 	else
3469 		seq_printf(seq, "%d\n", depth);
3470 
3471 	return 0;
3472 }
3473 
3474 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3475 				      char *buf, size_t nbytes, loff_t off)
3476 {
3477 	struct cgroup *cgrp;
3478 	ssize_t ret;
3479 	int depth;
3480 
3481 	buf = strstrip(buf);
3482 	if (!strcmp(buf, "max")) {
3483 		depth = INT_MAX;
3484 	} else {
3485 		ret = kstrtoint(buf, 0, &depth);
3486 		if (ret)
3487 			return ret;
3488 	}
3489 
3490 	if (depth < 0)
3491 		return -ERANGE;
3492 
3493 	cgrp = cgroup_kn_lock_live(of->kn, false);
3494 	if (!cgrp)
3495 		return -ENOENT;
3496 
3497 	cgrp->max_depth = depth;
3498 
3499 	cgroup_kn_unlock(of->kn);
3500 
3501 	return nbytes;
3502 }
3503 
3504 static int cgroup_events_show(struct seq_file *seq, void *v)
3505 {
3506 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3507 
3508 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3509 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3510 
3511 	return 0;
3512 }
3513 
3514 static int cgroup_stat_show(struct seq_file *seq, void *v)
3515 {
3516 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3517 
3518 	seq_printf(seq, "nr_descendants %d\n",
3519 		   cgroup->nr_descendants);
3520 	seq_printf(seq, "nr_dying_descendants %d\n",
3521 		   cgroup->nr_dying_descendants);
3522 
3523 	return 0;
3524 }
3525 
3526 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3527 						 struct cgroup *cgrp, int ssid)
3528 {
3529 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3530 	struct cgroup_subsys_state *css;
3531 	int ret;
3532 
3533 	if (!ss->css_extra_stat_show)
3534 		return 0;
3535 
3536 	css = cgroup_tryget_css(cgrp, ss);
3537 	if (!css)
3538 		return 0;
3539 
3540 	ret = ss->css_extra_stat_show(seq, css);
3541 	css_put(css);
3542 	return ret;
3543 }
3544 
3545 static int cpu_stat_show(struct seq_file *seq, void *v)
3546 {
3547 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3548 	int ret = 0;
3549 
3550 	cgroup_base_stat_cputime_show(seq);
3551 #ifdef CONFIG_CGROUP_SCHED
3552 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3553 #endif
3554 	return ret;
3555 }
3556 
3557 #ifdef CONFIG_PSI
3558 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3559 {
3560 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3561 	struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3562 
3563 	return psi_show(seq, psi, PSI_IO);
3564 }
3565 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3566 {
3567 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3568 	struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3569 
3570 	return psi_show(seq, psi, PSI_MEM);
3571 }
3572 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3573 {
3574 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3575 	struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3576 
3577 	return psi_show(seq, psi, PSI_CPU);
3578 }
3579 
3580 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3581 					  size_t nbytes, enum psi_res res)
3582 {
3583 	struct psi_trigger *new;
3584 	struct cgroup *cgrp;
3585 
3586 	cgrp = cgroup_kn_lock_live(of->kn, false);
3587 	if (!cgrp)
3588 		return -ENODEV;
3589 
3590 	cgroup_get(cgrp);
3591 	cgroup_kn_unlock(of->kn);
3592 
3593 	new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3594 	if (IS_ERR(new)) {
3595 		cgroup_put(cgrp);
3596 		return PTR_ERR(new);
3597 	}
3598 
3599 	psi_trigger_replace(&of->priv, new);
3600 
3601 	cgroup_put(cgrp);
3602 
3603 	return nbytes;
3604 }
3605 
3606 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3607 					  char *buf, size_t nbytes,
3608 					  loff_t off)
3609 {
3610 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3611 }
3612 
3613 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3614 					  char *buf, size_t nbytes,
3615 					  loff_t off)
3616 {
3617 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3618 }
3619 
3620 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3621 					  char *buf, size_t nbytes,
3622 					  loff_t off)
3623 {
3624 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3625 }
3626 
3627 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3628 					  poll_table *pt)
3629 {
3630 	return psi_trigger_poll(&of->priv, of->file, pt);
3631 }
3632 
3633 static void cgroup_pressure_release(struct kernfs_open_file *of)
3634 {
3635 	psi_trigger_replace(&of->priv, NULL);
3636 }
3637 #endif /* CONFIG_PSI */
3638 
3639 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3640 {
3641 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3642 
3643 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3644 
3645 	return 0;
3646 }
3647 
3648 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3649 				   char *buf, size_t nbytes, loff_t off)
3650 {
3651 	struct cgroup *cgrp;
3652 	ssize_t ret;
3653 	int freeze;
3654 
3655 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3656 	if (ret)
3657 		return ret;
3658 
3659 	if (freeze < 0 || freeze > 1)
3660 		return -ERANGE;
3661 
3662 	cgrp = cgroup_kn_lock_live(of->kn, false);
3663 	if (!cgrp)
3664 		return -ENOENT;
3665 
3666 	cgroup_freeze(cgrp, freeze);
3667 
3668 	cgroup_kn_unlock(of->kn);
3669 
3670 	return nbytes;
3671 }
3672 
3673 static int cgroup_file_open(struct kernfs_open_file *of)
3674 {
3675 	struct cftype *cft = of->kn->priv;
3676 
3677 	if (cft->open)
3678 		return cft->open(of);
3679 	return 0;
3680 }
3681 
3682 static void cgroup_file_release(struct kernfs_open_file *of)
3683 {
3684 	struct cftype *cft = of->kn->priv;
3685 
3686 	if (cft->release)
3687 		cft->release(of);
3688 }
3689 
3690 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3691 				 size_t nbytes, loff_t off)
3692 {
3693 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3694 	struct cgroup *cgrp = of->kn->parent->priv;
3695 	struct cftype *cft = of->kn->priv;
3696 	struct cgroup_subsys_state *css;
3697 	int ret;
3698 
3699 	/*
3700 	 * If namespaces are delegation boundaries, disallow writes to
3701 	 * files in an non-init namespace root from inside the namespace
3702 	 * except for the files explicitly marked delegatable -
3703 	 * cgroup.procs and cgroup.subtree_control.
3704 	 */
3705 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3706 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3707 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3708 		return -EPERM;
3709 
3710 	if (cft->write)
3711 		return cft->write(of, buf, nbytes, off);
3712 
3713 	/*
3714 	 * kernfs guarantees that a file isn't deleted with operations in
3715 	 * flight, which means that the matching css is and stays alive and
3716 	 * doesn't need to be pinned.  The RCU locking is not necessary
3717 	 * either.  It's just for the convenience of using cgroup_css().
3718 	 */
3719 	rcu_read_lock();
3720 	css = cgroup_css(cgrp, cft->ss);
3721 	rcu_read_unlock();
3722 
3723 	if (cft->write_u64) {
3724 		unsigned long long v;
3725 		ret = kstrtoull(buf, 0, &v);
3726 		if (!ret)
3727 			ret = cft->write_u64(css, cft, v);
3728 	} else if (cft->write_s64) {
3729 		long long v;
3730 		ret = kstrtoll(buf, 0, &v);
3731 		if (!ret)
3732 			ret = cft->write_s64(css, cft, v);
3733 	} else {
3734 		ret = -EINVAL;
3735 	}
3736 
3737 	return ret ?: nbytes;
3738 }
3739 
3740 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3741 {
3742 	struct cftype *cft = of->kn->priv;
3743 
3744 	if (cft->poll)
3745 		return cft->poll(of, pt);
3746 
3747 	return kernfs_generic_poll(of, pt);
3748 }
3749 
3750 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3751 {
3752 	return seq_cft(seq)->seq_start(seq, ppos);
3753 }
3754 
3755 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3756 {
3757 	return seq_cft(seq)->seq_next(seq, v, ppos);
3758 }
3759 
3760 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3761 {
3762 	if (seq_cft(seq)->seq_stop)
3763 		seq_cft(seq)->seq_stop(seq, v);
3764 }
3765 
3766 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3767 {
3768 	struct cftype *cft = seq_cft(m);
3769 	struct cgroup_subsys_state *css = seq_css(m);
3770 
3771 	if (cft->seq_show)
3772 		return cft->seq_show(m, arg);
3773 
3774 	if (cft->read_u64)
3775 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3776 	else if (cft->read_s64)
3777 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3778 	else
3779 		return -EINVAL;
3780 	return 0;
3781 }
3782 
3783 static struct kernfs_ops cgroup_kf_single_ops = {
3784 	.atomic_write_len	= PAGE_SIZE,
3785 	.open			= cgroup_file_open,
3786 	.release		= cgroup_file_release,
3787 	.write			= cgroup_file_write,
3788 	.poll			= cgroup_file_poll,
3789 	.seq_show		= cgroup_seqfile_show,
3790 };
3791 
3792 static struct kernfs_ops cgroup_kf_ops = {
3793 	.atomic_write_len	= PAGE_SIZE,
3794 	.open			= cgroup_file_open,
3795 	.release		= cgroup_file_release,
3796 	.write			= cgroup_file_write,
3797 	.poll			= cgroup_file_poll,
3798 	.seq_start		= cgroup_seqfile_start,
3799 	.seq_next		= cgroup_seqfile_next,
3800 	.seq_stop		= cgroup_seqfile_stop,
3801 	.seq_show		= cgroup_seqfile_show,
3802 };
3803 
3804 /* set uid and gid of cgroup dirs and files to that of the creator */
3805 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3806 {
3807 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3808 			       .ia_uid = current_fsuid(),
3809 			       .ia_gid = current_fsgid(), };
3810 
3811 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3812 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3813 		return 0;
3814 
3815 	return kernfs_setattr(kn, &iattr);
3816 }
3817 
3818 static void cgroup_file_notify_timer(struct timer_list *timer)
3819 {
3820 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3821 					notify_timer));
3822 }
3823 
3824 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3825 			   struct cftype *cft)
3826 {
3827 	char name[CGROUP_FILE_NAME_MAX];
3828 	struct kernfs_node *kn;
3829 	struct lock_class_key *key = NULL;
3830 	int ret;
3831 
3832 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3833 	key = &cft->lockdep_key;
3834 #endif
3835 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3836 				  cgroup_file_mode(cft),
3837 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3838 				  0, cft->kf_ops, cft,
3839 				  NULL, key);
3840 	if (IS_ERR(kn))
3841 		return PTR_ERR(kn);
3842 
3843 	ret = cgroup_kn_set_ugid(kn);
3844 	if (ret) {
3845 		kernfs_remove(kn);
3846 		return ret;
3847 	}
3848 
3849 	if (cft->file_offset) {
3850 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3851 
3852 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3853 
3854 		spin_lock_irq(&cgroup_file_kn_lock);
3855 		cfile->kn = kn;
3856 		spin_unlock_irq(&cgroup_file_kn_lock);
3857 	}
3858 
3859 	return 0;
3860 }
3861 
3862 /**
3863  * cgroup_addrm_files - add or remove files to a cgroup directory
3864  * @css: the target css
3865  * @cgrp: the target cgroup (usually css->cgroup)
3866  * @cfts: array of cftypes to be added
3867  * @is_add: whether to add or remove
3868  *
3869  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3870  * For removals, this function never fails.
3871  */
3872 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3873 			      struct cgroup *cgrp, struct cftype cfts[],
3874 			      bool is_add)
3875 {
3876 	struct cftype *cft, *cft_end = NULL;
3877 	int ret = 0;
3878 
3879 	lockdep_assert_held(&cgroup_mutex);
3880 
3881 restart:
3882 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3883 		/* does cft->flags tell us to skip this file on @cgrp? */
3884 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3885 			continue;
3886 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3887 			continue;
3888 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3889 			continue;
3890 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3891 			continue;
3892 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3893 			continue;
3894 		if (is_add) {
3895 			ret = cgroup_add_file(css, cgrp, cft);
3896 			if (ret) {
3897 				pr_warn("%s: failed to add %s, err=%d\n",
3898 					__func__, cft->name, ret);
3899 				cft_end = cft;
3900 				is_add = false;
3901 				goto restart;
3902 			}
3903 		} else {
3904 			cgroup_rm_file(cgrp, cft);
3905 		}
3906 	}
3907 	return ret;
3908 }
3909 
3910 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3911 {
3912 	struct cgroup_subsys *ss = cfts[0].ss;
3913 	struct cgroup *root = &ss->root->cgrp;
3914 	struct cgroup_subsys_state *css;
3915 	int ret = 0;
3916 
3917 	lockdep_assert_held(&cgroup_mutex);
3918 
3919 	/* add/rm files for all cgroups created before */
3920 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3921 		struct cgroup *cgrp = css->cgroup;
3922 
3923 		if (!(css->flags & CSS_VISIBLE))
3924 			continue;
3925 
3926 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3927 		if (ret)
3928 			break;
3929 	}
3930 
3931 	if (is_add && !ret)
3932 		kernfs_activate(root->kn);
3933 	return ret;
3934 }
3935 
3936 static void cgroup_exit_cftypes(struct cftype *cfts)
3937 {
3938 	struct cftype *cft;
3939 
3940 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3941 		/* free copy for custom atomic_write_len, see init_cftypes() */
3942 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3943 			kfree(cft->kf_ops);
3944 		cft->kf_ops = NULL;
3945 		cft->ss = NULL;
3946 
3947 		/* revert flags set by cgroup core while adding @cfts */
3948 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3949 	}
3950 }
3951 
3952 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3953 {
3954 	struct cftype *cft;
3955 
3956 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3957 		struct kernfs_ops *kf_ops;
3958 
3959 		WARN_ON(cft->ss || cft->kf_ops);
3960 
3961 		if (cft->seq_start)
3962 			kf_ops = &cgroup_kf_ops;
3963 		else
3964 			kf_ops = &cgroup_kf_single_ops;
3965 
3966 		/*
3967 		 * Ugh... if @cft wants a custom max_write_len, we need to
3968 		 * make a copy of kf_ops to set its atomic_write_len.
3969 		 */
3970 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3971 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3972 			if (!kf_ops) {
3973 				cgroup_exit_cftypes(cfts);
3974 				return -ENOMEM;
3975 			}
3976 			kf_ops->atomic_write_len = cft->max_write_len;
3977 		}
3978 
3979 		cft->kf_ops = kf_ops;
3980 		cft->ss = ss;
3981 	}
3982 
3983 	return 0;
3984 }
3985 
3986 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3987 {
3988 	lockdep_assert_held(&cgroup_mutex);
3989 
3990 	if (!cfts || !cfts[0].ss)
3991 		return -ENOENT;
3992 
3993 	list_del(&cfts->node);
3994 	cgroup_apply_cftypes(cfts, false);
3995 	cgroup_exit_cftypes(cfts);
3996 	return 0;
3997 }
3998 
3999 /**
4000  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4001  * @cfts: zero-length name terminated array of cftypes
4002  *
4003  * Unregister @cfts.  Files described by @cfts are removed from all
4004  * existing cgroups and all future cgroups won't have them either.  This
4005  * function can be called anytime whether @cfts' subsys is attached or not.
4006  *
4007  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4008  * registered.
4009  */
4010 int cgroup_rm_cftypes(struct cftype *cfts)
4011 {
4012 	int ret;
4013 
4014 	mutex_lock(&cgroup_mutex);
4015 	ret = cgroup_rm_cftypes_locked(cfts);
4016 	mutex_unlock(&cgroup_mutex);
4017 	return ret;
4018 }
4019 
4020 /**
4021  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4022  * @ss: target cgroup subsystem
4023  * @cfts: zero-length name terminated array of cftypes
4024  *
4025  * Register @cfts to @ss.  Files described by @cfts are created for all
4026  * existing cgroups to which @ss is attached and all future cgroups will
4027  * have them too.  This function can be called anytime whether @ss is
4028  * attached or not.
4029  *
4030  * Returns 0 on successful registration, -errno on failure.  Note that this
4031  * function currently returns 0 as long as @cfts registration is successful
4032  * even if some file creation attempts on existing cgroups fail.
4033  */
4034 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4035 {
4036 	int ret;
4037 
4038 	if (!cgroup_ssid_enabled(ss->id))
4039 		return 0;
4040 
4041 	if (!cfts || cfts[0].name[0] == '\0')
4042 		return 0;
4043 
4044 	ret = cgroup_init_cftypes(ss, cfts);
4045 	if (ret)
4046 		return ret;
4047 
4048 	mutex_lock(&cgroup_mutex);
4049 
4050 	list_add_tail(&cfts->node, &ss->cfts);
4051 	ret = cgroup_apply_cftypes(cfts, true);
4052 	if (ret)
4053 		cgroup_rm_cftypes_locked(cfts);
4054 
4055 	mutex_unlock(&cgroup_mutex);
4056 	return ret;
4057 }
4058 
4059 /**
4060  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4061  * @ss: target cgroup subsystem
4062  * @cfts: zero-length name terminated array of cftypes
4063  *
4064  * Similar to cgroup_add_cftypes() but the added files are only used for
4065  * the default hierarchy.
4066  */
4067 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4068 {
4069 	struct cftype *cft;
4070 
4071 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4072 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4073 	return cgroup_add_cftypes(ss, cfts);
4074 }
4075 
4076 /**
4077  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4078  * @ss: target cgroup subsystem
4079  * @cfts: zero-length name terminated array of cftypes
4080  *
4081  * Similar to cgroup_add_cftypes() but the added files are only used for
4082  * the legacy hierarchies.
4083  */
4084 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4085 {
4086 	struct cftype *cft;
4087 
4088 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4089 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4090 	return cgroup_add_cftypes(ss, cfts);
4091 }
4092 
4093 /**
4094  * cgroup_file_notify - generate a file modified event for a cgroup_file
4095  * @cfile: target cgroup_file
4096  *
4097  * @cfile must have been obtained by setting cftype->file_offset.
4098  */
4099 void cgroup_file_notify(struct cgroup_file *cfile)
4100 {
4101 	unsigned long flags;
4102 
4103 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4104 	if (cfile->kn) {
4105 		unsigned long last = cfile->notified_at;
4106 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4107 
4108 		if (time_in_range(jiffies, last, next)) {
4109 			timer_reduce(&cfile->notify_timer, next);
4110 		} else {
4111 			kernfs_notify(cfile->kn);
4112 			cfile->notified_at = jiffies;
4113 		}
4114 	}
4115 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4116 }
4117 
4118 /**
4119  * css_next_child - find the next child of a given css
4120  * @pos: the current position (%NULL to initiate traversal)
4121  * @parent: css whose children to walk
4122  *
4123  * This function returns the next child of @parent and should be called
4124  * under either cgroup_mutex or RCU read lock.  The only requirement is
4125  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4126  * be returned regardless of their states.
4127  *
4128  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4129  * css which finished ->css_online() is guaranteed to be visible in the
4130  * future iterations and will stay visible until the last reference is put.
4131  * A css which hasn't finished ->css_online() or already finished
4132  * ->css_offline() may show up during traversal.  It's each subsystem's
4133  * responsibility to synchronize against on/offlining.
4134  */
4135 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4136 					   struct cgroup_subsys_state *parent)
4137 {
4138 	struct cgroup_subsys_state *next;
4139 
4140 	cgroup_assert_mutex_or_rcu_locked();
4141 
4142 	/*
4143 	 * @pos could already have been unlinked from the sibling list.
4144 	 * Once a cgroup is removed, its ->sibling.next is no longer
4145 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4146 	 * @pos is taken off list, at which time its next pointer is valid,
4147 	 * and, as releases are serialized, the one pointed to by the next
4148 	 * pointer is guaranteed to not have started release yet.  This
4149 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4150 	 * critical section, the one pointed to by its next pointer is
4151 	 * guaranteed to not have finished its RCU grace period even if we
4152 	 * have dropped rcu_read_lock() inbetween iterations.
4153 	 *
4154 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4155 	 * dereferenced; however, as each css is given a monotonically
4156 	 * increasing unique serial number and always appended to the
4157 	 * sibling list, the next one can be found by walking the parent's
4158 	 * children until the first css with higher serial number than
4159 	 * @pos's.  While this path can be slower, it happens iff iteration
4160 	 * races against release and the race window is very small.
4161 	 */
4162 	if (!pos) {
4163 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4164 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4165 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4166 	} else {
4167 		list_for_each_entry_rcu(next, &parent->children, sibling)
4168 			if (next->serial_nr > pos->serial_nr)
4169 				break;
4170 	}
4171 
4172 	/*
4173 	 * @next, if not pointing to the head, can be dereferenced and is
4174 	 * the next sibling.
4175 	 */
4176 	if (&next->sibling != &parent->children)
4177 		return next;
4178 	return NULL;
4179 }
4180 
4181 /**
4182  * css_next_descendant_pre - find the next descendant for pre-order walk
4183  * @pos: the current position (%NULL to initiate traversal)
4184  * @root: css whose descendants to walk
4185  *
4186  * To be used by css_for_each_descendant_pre().  Find the next descendant
4187  * to visit for pre-order traversal of @root's descendants.  @root is
4188  * included in the iteration and the first node to be visited.
4189  *
4190  * While this function requires cgroup_mutex or RCU read locking, it
4191  * doesn't require the whole traversal to be contained in a single critical
4192  * section.  This function will return the correct next descendant as long
4193  * as both @pos and @root are accessible and @pos is a descendant of @root.
4194  *
4195  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4196  * css which finished ->css_online() is guaranteed to be visible in the
4197  * future iterations and will stay visible until the last reference is put.
4198  * A css which hasn't finished ->css_online() or already finished
4199  * ->css_offline() may show up during traversal.  It's each subsystem's
4200  * responsibility to synchronize against on/offlining.
4201  */
4202 struct cgroup_subsys_state *
4203 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4204 			struct cgroup_subsys_state *root)
4205 {
4206 	struct cgroup_subsys_state *next;
4207 
4208 	cgroup_assert_mutex_or_rcu_locked();
4209 
4210 	/* if first iteration, visit @root */
4211 	if (!pos)
4212 		return root;
4213 
4214 	/* visit the first child if exists */
4215 	next = css_next_child(NULL, pos);
4216 	if (next)
4217 		return next;
4218 
4219 	/* no child, visit my or the closest ancestor's next sibling */
4220 	while (pos != root) {
4221 		next = css_next_child(pos, pos->parent);
4222 		if (next)
4223 			return next;
4224 		pos = pos->parent;
4225 	}
4226 
4227 	return NULL;
4228 }
4229 
4230 /**
4231  * css_rightmost_descendant - return the rightmost descendant of a css
4232  * @pos: css of interest
4233  *
4234  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4235  * is returned.  This can be used during pre-order traversal to skip
4236  * subtree of @pos.
4237  *
4238  * While this function requires cgroup_mutex or RCU read locking, it
4239  * doesn't require the whole traversal to be contained in a single critical
4240  * section.  This function will return the correct rightmost descendant as
4241  * long as @pos is accessible.
4242  */
4243 struct cgroup_subsys_state *
4244 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4245 {
4246 	struct cgroup_subsys_state *last, *tmp;
4247 
4248 	cgroup_assert_mutex_or_rcu_locked();
4249 
4250 	do {
4251 		last = pos;
4252 		/* ->prev isn't RCU safe, walk ->next till the end */
4253 		pos = NULL;
4254 		css_for_each_child(tmp, last)
4255 			pos = tmp;
4256 	} while (pos);
4257 
4258 	return last;
4259 }
4260 
4261 static struct cgroup_subsys_state *
4262 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4263 {
4264 	struct cgroup_subsys_state *last;
4265 
4266 	do {
4267 		last = pos;
4268 		pos = css_next_child(NULL, pos);
4269 	} while (pos);
4270 
4271 	return last;
4272 }
4273 
4274 /**
4275  * css_next_descendant_post - find the next descendant for post-order walk
4276  * @pos: the current position (%NULL to initiate traversal)
4277  * @root: css whose descendants to walk
4278  *
4279  * To be used by css_for_each_descendant_post().  Find the next descendant
4280  * to visit for post-order traversal of @root's descendants.  @root is
4281  * included in the iteration and the last node to be visited.
4282  *
4283  * While this function requires cgroup_mutex or RCU read locking, it
4284  * doesn't require the whole traversal to be contained in a single critical
4285  * section.  This function will return the correct next descendant as long
4286  * as both @pos and @cgroup are accessible and @pos is a descendant of
4287  * @cgroup.
4288  *
4289  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4290  * css which finished ->css_online() is guaranteed to be visible in the
4291  * future iterations and will stay visible until the last reference is put.
4292  * A css which hasn't finished ->css_online() or already finished
4293  * ->css_offline() may show up during traversal.  It's each subsystem's
4294  * responsibility to synchronize against on/offlining.
4295  */
4296 struct cgroup_subsys_state *
4297 css_next_descendant_post(struct cgroup_subsys_state *pos,
4298 			 struct cgroup_subsys_state *root)
4299 {
4300 	struct cgroup_subsys_state *next;
4301 
4302 	cgroup_assert_mutex_or_rcu_locked();
4303 
4304 	/* if first iteration, visit leftmost descendant which may be @root */
4305 	if (!pos)
4306 		return css_leftmost_descendant(root);
4307 
4308 	/* if we visited @root, we're done */
4309 	if (pos == root)
4310 		return NULL;
4311 
4312 	/* if there's an unvisited sibling, visit its leftmost descendant */
4313 	next = css_next_child(pos, pos->parent);
4314 	if (next)
4315 		return css_leftmost_descendant(next);
4316 
4317 	/* no sibling left, visit parent */
4318 	return pos->parent;
4319 }
4320 
4321 /**
4322  * css_has_online_children - does a css have online children
4323  * @css: the target css
4324  *
4325  * Returns %true if @css has any online children; otherwise, %false.  This
4326  * function can be called from any context but the caller is responsible
4327  * for synchronizing against on/offlining as necessary.
4328  */
4329 bool css_has_online_children(struct cgroup_subsys_state *css)
4330 {
4331 	struct cgroup_subsys_state *child;
4332 	bool ret = false;
4333 
4334 	rcu_read_lock();
4335 	css_for_each_child(child, css) {
4336 		if (child->flags & CSS_ONLINE) {
4337 			ret = true;
4338 			break;
4339 		}
4340 	}
4341 	rcu_read_unlock();
4342 	return ret;
4343 }
4344 
4345 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4346 {
4347 	struct list_head *l;
4348 	struct cgrp_cset_link *link;
4349 	struct css_set *cset;
4350 
4351 	lockdep_assert_held(&css_set_lock);
4352 
4353 	/* find the next threaded cset */
4354 	if (it->tcset_pos) {
4355 		l = it->tcset_pos->next;
4356 
4357 		if (l != it->tcset_head) {
4358 			it->tcset_pos = l;
4359 			return container_of(l, struct css_set,
4360 					    threaded_csets_node);
4361 		}
4362 
4363 		it->tcset_pos = NULL;
4364 	}
4365 
4366 	/* find the next cset */
4367 	l = it->cset_pos;
4368 	l = l->next;
4369 	if (l == it->cset_head) {
4370 		it->cset_pos = NULL;
4371 		return NULL;
4372 	}
4373 
4374 	if (it->ss) {
4375 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4376 	} else {
4377 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4378 		cset = link->cset;
4379 	}
4380 
4381 	it->cset_pos = l;
4382 
4383 	/* initialize threaded css_set walking */
4384 	if (it->flags & CSS_TASK_ITER_THREADED) {
4385 		if (it->cur_dcset)
4386 			put_css_set_locked(it->cur_dcset);
4387 		it->cur_dcset = cset;
4388 		get_css_set(cset);
4389 
4390 		it->tcset_head = &cset->threaded_csets;
4391 		it->tcset_pos = &cset->threaded_csets;
4392 	}
4393 
4394 	return cset;
4395 }
4396 
4397 /**
4398  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4399  * @it: the iterator to advance
4400  *
4401  * Advance @it to the next css_set to walk.
4402  */
4403 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4404 {
4405 	struct css_set *cset;
4406 
4407 	lockdep_assert_held(&css_set_lock);
4408 
4409 	/* Advance to the next non-empty css_set */
4410 	do {
4411 		cset = css_task_iter_next_css_set(it);
4412 		if (!cset) {
4413 			it->task_pos = NULL;
4414 			return;
4415 		}
4416 	} while (!css_set_populated(cset) && list_empty(&cset->dying_tasks));
4417 
4418 	if (!list_empty(&cset->tasks))
4419 		it->task_pos = cset->tasks.next;
4420 	else if (!list_empty(&cset->mg_tasks))
4421 		it->task_pos = cset->mg_tasks.next;
4422 	else
4423 		it->task_pos = cset->dying_tasks.next;
4424 
4425 	it->tasks_head = &cset->tasks;
4426 	it->mg_tasks_head = &cset->mg_tasks;
4427 	it->dying_tasks_head = &cset->dying_tasks;
4428 
4429 	/*
4430 	 * We don't keep css_sets locked across iteration steps and thus
4431 	 * need to take steps to ensure that iteration can be resumed after
4432 	 * the lock is re-acquired.  Iteration is performed at two levels -
4433 	 * css_sets and tasks in them.
4434 	 *
4435 	 * Once created, a css_set never leaves its cgroup lists, so a
4436 	 * pinned css_set is guaranteed to stay put and we can resume
4437 	 * iteration afterwards.
4438 	 *
4439 	 * Tasks may leave @cset across iteration steps.  This is resolved
4440 	 * by registering each iterator with the css_set currently being
4441 	 * walked and making css_set_move_task() advance iterators whose
4442 	 * next task is leaving.
4443 	 */
4444 	if (it->cur_cset) {
4445 		list_del(&it->iters_node);
4446 		put_css_set_locked(it->cur_cset);
4447 	}
4448 	get_css_set(cset);
4449 	it->cur_cset = cset;
4450 	list_add(&it->iters_node, &cset->task_iters);
4451 }
4452 
4453 static void css_task_iter_skip(struct css_task_iter *it,
4454 			       struct task_struct *task)
4455 {
4456 	lockdep_assert_held(&css_set_lock);
4457 
4458 	if (it->task_pos == &task->cg_list) {
4459 		it->task_pos = it->task_pos->next;
4460 		it->flags |= CSS_TASK_ITER_SKIPPED;
4461 	}
4462 }
4463 
4464 static void css_task_iter_advance(struct css_task_iter *it)
4465 {
4466 	struct task_struct *task;
4467 
4468 	lockdep_assert_held(&css_set_lock);
4469 repeat:
4470 	if (it->task_pos) {
4471 		/*
4472 		 * Advance iterator to find next entry.  cset->tasks is
4473 		 * consumed first and then ->mg_tasks.  After ->mg_tasks,
4474 		 * we move onto the next cset.
4475 		 */
4476 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4477 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4478 		else
4479 			it->task_pos = it->task_pos->next;
4480 
4481 		if (it->task_pos == it->tasks_head)
4482 			it->task_pos = it->mg_tasks_head->next;
4483 		if (it->task_pos == it->mg_tasks_head)
4484 			it->task_pos = it->dying_tasks_head->next;
4485 		if (it->task_pos == it->dying_tasks_head)
4486 			css_task_iter_advance_css_set(it);
4487 	} else {
4488 		/* called from start, proceed to the first cset */
4489 		css_task_iter_advance_css_set(it);
4490 	}
4491 
4492 	if (!it->task_pos)
4493 		return;
4494 
4495 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4496 
4497 	if (it->flags & CSS_TASK_ITER_PROCS) {
4498 		/* if PROCS, skip over tasks which aren't group leaders */
4499 		if (!thread_group_leader(task))
4500 			goto repeat;
4501 
4502 		/* and dying leaders w/o live member threads */
4503 		if (!atomic_read(&task->signal->live))
4504 			goto repeat;
4505 	} else {
4506 		/* skip all dying ones */
4507 		if (task->flags & PF_EXITING)
4508 			goto repeat;
4509 	}
4510 }
4511 
4512 /**
4513  * css_task_iter_start - initiate task iteration
4514  * @css: the css to walk tasks of
4515  * @flags: CSS_TASK_ITER_* flags
4516  * @it: the task iterator to use
4517  *
4518  * Initiate iteration through the tasks of @css.  The caller can call
4519  * css_task_iter_next() to walk through the tasks until the function
4520  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4521  * called.
4522  */
4523 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4524 			 struct css_task_iter *it)
4525 {
4526 	/* no one should try to iterate before mounting cgroups */
4527 	WARN_ON_ONCE(!use_task_css_set_links);
4528 
4529 	memset(it, 0, sizeof(*it));
4530 
4531 	spin_lock_irq(&css_set_lock);
4532 
4533 	it->ss = css->ss;
4534 	it->flags = flags;
4535 
4536 	if (it->ss)
4537 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4538 	else
4539 		it->cset_pos = &css->cgroup->cset_links;
4540 
4541 	it->cset_head = it->cset_pos;
4542 
4543 	css_task_iter_advance(it);
4544 
4545 	spin_unlock_irq(&css_set_lock);
4546 }
4547 
4548 /**
4549  * css_task_iter_next - return the next task for the iterator
4550  * @it: the task iterator being iterated
4551  *
4552  * The "next" function for task iteration.  @it should have been
4553  * initialized via css_task_iter_start().  Returns NULL when the iteration
4554  * reaches the end.
4555  */
4556 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4557 {
4558 	if (it->cur_task) {
4559 		put_task_struct(it->cur_task);
4560 		it->cur_task = NULL;
4561 	}
4562 
4563 	spin_lock_irq(&css_set_lock);
4564 
4565 	/* @it may be half-advanced by skips, finish advancing */
4566 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4567 		css_task_iter_advance(it);
4568 
4569 	if (it->task_pos) {
4570 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4571 					  cg_list);
4572 		get_task_struct(it->cur_task);
4573 		css_task_iter_advance(it);
4574 	}
4575 
4576 	spin_unlock_irq(&css_set_lock);
4577 
4578 	return it->cur_task;
4579 }
4580 
4581 /**
4582  * css_task_iter_end - finish task iteration
4583  * @it: the task iterator to finish
4584  *
4585  * Finish task iteration started by css_task_iter_start().
4586  */
4587 void css_task_iter_end(struct css_task_iter *it)
4588 {
4589 	if (it->cur_cset) {
4590 		spin_lock_irq(&css_set_lock);
4591 		list_del(&it->iters_node);
4592 		put_css_set_locked(it->cur_cset);
4593 		spin_unlock_irq(&css_set_lock);
4594 	}
4595 
4596 	if (it->cur_dcset)
4597 		put_css_set(it->cur_dcset);
4598 
4599 	if (it->cur_task)
4600 		put_task_struct(it->cur_task);
4601 }
4602 
4603 static void cgroup_procs_release(struct kernfs_open_file *of)
4604 {
4605 	if (of->priv) {
4606 		css_task_iter_end(of->priv);
4607 		kfree(of->priv);
4608 	}
4609 }
4610 
4611 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4612 {
4613 	struct kernfs_open_file *of = s->private;
4614 	struct css_task_iter *it = of->priv;
4615 
4616 	return css_task_iter_next(it);
4617 }
4618 
4619 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4620 				  unsigned int iter_flags)
4621 {
4622 	struct kernfs_open_file *of = s->private;
4623 	struct cgroup *cgrp = seq_css(s)->cgroup;
4624 	struct css_task_iter *it = of->priv;
4625 
4626 	/*
4627 	 * When a seq_file is seeked, it's always traversed sequentially
4628 	 * from position 0, so we can simply keep iterating on !0 *pos.
4629 	 */
4630 	if (!it) {
4631 		if (WARN_ON_ONCE((*pos)++))
4632 			return ERR_PTR(-EINVAL);
4633 
4634 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4635 		if (!it)
4636 			return ERR_PTR(-ENOMEM);
4637 		of->priv = it;
4638 		css_task_iter_start(&cgrp->self, iter_flags, it);
4639 	} else if (!(*pos)++) {
4640 		css_task_iter_end(it);
4641 		css_task_iter_start(&cgrp->self, iter_flags, it);
4642 	}
4643 
4644 	return cgroup_procs_next(s, NULL, NULL);
4645 }
4646 
4647 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4648 {
4649 	struct cgroup *cgrp = seq_css(s)->cgroup;
4650 
4651 	/*
4652 	 * All processes of a threaded subtree belong to the domain cgroup
4653 	 * of the subtree.  Only threads can be distributed across the
4654 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4655 	 * They're always empty anyway.
4656 	 */
4657 	if (cgroup_is_threaded(cgrp))
4658 		return ERR_PTR(-EOPNOTSUPP);
4659 
4660 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4661 					    CSS_TASK_ITER_THREADED);
4662 }
4663 
4664 static int cgroup_procs_show(struct seq_file *s, void *v)
4665 {
4666 	seq_printf(s, "%d\n", task_pid_vnr(v));
4667 	return 0;
4668 }
4669 
4670 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4671 					 struct cgroup *dst_cgrp,
4672 					 struct super_block *sb)
4673 {
4674 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4675 	struct cgroup *com_cgrp = src_cgrp;
4676 	struct inode *inode;
4677 	int ret;
4678 
4679 	lockdep_assert_held(&cgroup_mutex);
4680 
4681 	/* find the common ancestor */
4682 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4683 		com_cgrp = cgroup_parent(com_cgrp);
4684 
4685 	/* %current should be authorized to migrate to the common ancestor */
4686 	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4687 	if (!inode)
4688 		return -ENOMEM;
4689 
4690 	ret = inode_permission(inode, MAY_WRITE);
4691 	iput(inode);
4692 	if (ret)
4693 		return ret;
4694 
4695 	/*
4696 	 * If namespaces are delegation boundaries, %current must be able
4697 	 * to see both source and destination cgroups from its namespace.
4698 	 */
4699 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4700 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4701 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4702 		return -ENOENT;
4703 
4704 	return 0;
4705 }
4706 
4707 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4708 				  char *buf, size_t nbytes, loff_t off)
4709 {
4710 	struct cgroup *src_cgrp, *dst_cgrp;
4711 	struct task_struct *task;
4712 	ssize_t ret;
4713 
4714 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4715 	if (!dst_cgrp)
4716 		return -ENODEV;
4717 
4718 	task = cgroup_procs_write_start(buf, true);
4719 	ret = PTR_ERR_OR_ZERO(task);
4720 	if (ret)
4721 		goto out_unlock;
4722 
4723 	/* find the source cgroup */
4724 	spin_lock_irq(&css_set_lock);
4725 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4726 	spin_unlock_irq(&css_set_lock);
4727 
4728 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4729 					    of->file->f_path.dentry->d_sb);
4730 	if (ret)
4731 		goto out_finish;
4732 
4733 	ret = cgroup_attach_task(dst_cgrp, task, true);
4734 
4735 out_finish:
4736 	cgroup_procs_write_finish(task);
4737 out_unlock:
4738 	cgroup_kn_unlock(of->kn);
4739 
4740 	return ret ?: nbytes;
4741 }
4742 
4743 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4744 {
4745 	return __cgroup_procs_start(s, pos, 0);
4746 }
4747 
4748 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4749 				    char *buf, size_t nbytes, loff_t off)
4750 {
4751 	struct cgroup *src_cgrp, *dst_cgrp;
4752 	struct task_struct *task;
4753 	ssize_t ret;
4754 
4755 	buf = strstrip(buf);
4756 
4757 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4758 	if (!dst_cgrp)
4759 		return -ENODEV;
4760 
4761 	task = cgroup_procs_write_start(buf, false);
4762 	ret = PTR_ERR_OR_ZERO(task);
4763 	if (ret)
4764 		goto out_unlock;
4765 
4766 	/* find the source cgroup */
4767 	spin_lock_irq(&css_set_lock);
4768 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4769 	spin_unlock_irq(&css_set_lock);
4770 
4771 	/* thread migrations follow the cgroup.procs delegation rule */
4772 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4773 					    of->file->f_path.dentry->d_sb);
4774 	if (ret)
4775 		goto out_finish;
4776 
4777 	/* and must be contained in the same domain */
4778 	ret = -EOPNOTSUPP;
4779 	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4780 		goto out_finish;
4781 
4782 	ret = cgroup_attach_task(dst_cgrp, task, false);
4783 
4784 out_finish:
4785 	cgroup_procs_write_finish(task);
4786 out_unlock:
4787 	cgroup_kn_unlock(of->kn);
4788 
4789 	return ret ?: nbytes;
4790 }
4791 
4792 /* cgroup core interface files for the default hierarchy */
4793 static struct cftype cgroup_base_files[] = {
4794 	{
4795 		.name = "cgroup.type",
4796 		.flags = CFTYPE_NOT_ON_ROOT,
4797 		.seq_show = cgroup_type_show,
4798 		.write = cgroup_type_write,
4799 	},
4800 	{
4801 		.name = "cgroup.procs",
4802 		.flags = CFTYPE_NS_DELEGATABLE,
4803 		.file_offset = offsetof(struct cgroup, procs_file),
4804 		.release = cgroup_procs_release,
4805 		.seq_start = cgroup_procs_start,
4806 		.seq_next = cgroup_procs_next,
4807 		.seq_show = cgroup_procs_show,
4808 		.write = cgroup_procs_write,
4809 	},
4810 	{
4811 		.name = "cgroup.threads",
4812 		.flags = CFTYPE_NS_DELEGATABLE,
4813 		.release = cgroup_procs_release,
4814 		.seq_start = cgroup_threads_start,
4815 		.seq_next = cgroup_procs_next,
4816 		.seq_show = cgroup_procs_show,
4817 		.write = cgroup_threads_write,
4818 	},
4819 	{
4820 		.name = "cgroup.controllers",
4821 		.seq_show = cgroup_controllers_show,
4822 	},
4823 	{
4824 		.name = "cgroup.subtree_control",
4825 		.flags = CFTYPE_NS_DELEGATABLE,
4826 		.seq_show = cgroup_subtree_control_show,
4827 		.write = cgroup_subtree_control_write,
4828 	},
4829 	{
4830 		.name = "cgroup.events",
4831 		.flags = CFTYPE_NOT_ON_ROOT,
4832 		.file_offset = offsetof(struct cgroup, events_file),
4833 		.seq_show = cgroup_events_show,
4834 	},
4835 	{
4836 		.name = "cgroup.max.descendants",
4837 		.seq_show = cgroup_max_descendants_show,
4838 		.write = cgroup_max_descendants_write,
4839 	},
4840 	{
4841 		.name = "cgroup.max.depth",
4842 		.seq_show = cgroup_max_depth_show,
4843 		.write = cgroup_max_depth_write,
4844 	},
4845 	{
4846 		.name = "cgroup.stat",
4847 		.seq_show = cgroup_stat_show,
4848 	},
4849 	{
4850 		.name = "cgroup.freeze",
4851 		.flags = CFTYPE_NOT_ON_ROOT,
4852 		.seq_show = cgroup_freeze_show,
4853 		.write = cgroup_freeze_write,
4854 	},
4855 	{
4856 		.name = "cpu.stat",
4857 		.flags = CFTYPE_NOT_ON_ROOT,
4858 		.seq_show = cpu_stat_show,
4859 	},
4860 #ifdef CONFIG_PSI
4861 	{
4862 		.name = "io.pressure",
4863 		.seq_show = cgroup_io_pressure_show,
4864 		.write = cgroup_io_pressure_write,
4865 		.poll = cgroup_pressure_poll,
4866 		.release = cgroup_pressure_release,
4867 	},
4868 	{
4869 		.name = "memory.pressure",
4870 		.seq_show = cgroup_memory_pressure_show,
4871 		.write = cgroup_memory_pressure_write,
4872 		.poll = cgroup_pressure_poll,
4873 		.release = cgroup_pressure_release,
4874 	},
4875 	{
4876 		.name = "cpu.pressure",
4877 		.seq_show = cgroup_cpu_pressure_show,
4878 		.write = cgroup_cpu_pressure_write,
4879 		.poll = cgroup_pressure_poll,
4880 		.release = cgroup_pressure_release,
4881 	},
4882 #endif /* CONFIG_PSI */
4883 	{ }	/* terminate */
4884 };
4885 
4886 /*
4887  * css destruction is four-stage process.
4888  *
4889  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4890  *    Implemented in kill_css().
4891  *
4892  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4893  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4894  *    offlined by invoking offline_css().  After offlining, the base ref is
4895  *    put.  Implemented in css_killed_work_fn().
4896  *
4897  * 3. When the percpu_ref reaches zero, the only possible remaining
4898  *    accessors are inside RCU read sections.  css_release() schedules the
4899  *    RCU callback.
4900  *
4901  * 4. After the grace period, the css can be freed.  Implemented in
4902  *    css_free_work_fn().
4903  *
4904  * It is actually hairier because both step 2 and 4 require process context
4905  * and thus involve punting to css->destroy_work adding two additional
4906  * steps to the already complex sequence.
4907  */
4908 static void css_free_rwork_fn(struct work_struct *work)
4909 {
4910 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4911 				struct cgroup_subsys_state, destroy_rwork);
4912 	struct cgroup_subsys *ss = css->ss;
4913 	struct cgroup *cgrp = css->cgroup;
4914 
4915 	percpu_ref_exit(&css->refcnt);
4916 
4917 	if (ss) {
4918 		/* css free path */
4919 		struct cgroup_subsys_state *parent = css->parent;
4920 		int id = css->id;
4921 
4922 		ss->css_free(css);
4923 		cgroup_idr_remove(&ss->css_idr, id);
4924 		cgroup_put(cgrp);
4925 
4926 		if (parent)
4927 			css_put(parent);
4928 	} else {
4929 		/* cgroup free path */
4930 		atomic_dec(&cgrp->root->nr_cgrps);
4931 		cgroup1_pidlist_destroy_all(cgrp);
4932 		cancel_work_sync(&cgrp->release_agent_work);
4933 
4934 		if (cgroup_parent(cgrp)) {
4935 			/*
4936 			 * We get a ref to the parent, and put the ref when
4937 			 * this cgroup is being freed, so it's guaranteed
4938 			 * that the parent won't be destroyed before its
4939 			 * children.
4940 			 */
4941 			cgroup_put(cgroup_parent(cgrp));
4942 			kernfs_put(cgrp->kn);
4943 			psi_cgroup_free(cgrp);
4944 			if (cgroup_on_dfl(cgrp))
4945 				cgroup_rstat_exit(cgrp);
4946 			kfree(cgrp);
4947 		} else {
4948 			/*
4949 			 * This is root cgroup's refcnt reaching zero,
4950 			 * which indicates that the root should be
4951 			 * released.
4952 			 */
4953 			cgroup_destroy_root(cgrp->root);
4954 		}
4955 	}
4956 }
4957 
4958 static void css_release_work_fn(struct work_struct *work)
4959 {
4960 	struct cgroup_subsys_state *css =
4961 		container_of(work, struct cgroup_subsys_state, destroy_work);
4962 	struct cgroup_subsys *ss = css->ss;
4963 	struct cgroup *cgrp = css->cgroup;
4964 
4965 	mutex_lock(&cgroup_mutex);
4966 
4967 	css->flags |= CSS_RELEASED;
4968 	list_del_rcu(&css->sibling);
4969 
4970 	if (ss) {
4971 		/* css release path */
4972 		if (!list_empty(&css->rstat_css_node)) {
4973 			cgroup_rstat_flush(cgrp);
4974 			list_del_rcu(&css->rstat_css_node);
4975 		}
4976 
4977 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4978 		if (ss->css_released)
4979 			ss->css_released(css);
4980 	} else {
4981 		struct cgroup *tcgrp;
4982 
4983 		/* cgroup release path */
4984 		TRACE_CGROUP_PATH(release, cgrp);
4985 
4986 		if (cgroup_on_dfl(cgrp))
4987 			cgroup_rstat_flush(cgrp);
4988 
4989 		spin_lock_irq(&css_set_lock);
4990 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4991 		     tcgrp = cgroup_parent(tcgrp))
4992 			tcgrp->nr_dying_descendants--;
4993 		spin_unlock_irq(&css_set_lock);
4994 
4995 		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4996 		cgrp->id = -1;
4997 
4998 		/*
4999 		 * There are two control paths which try to determine
5000 		 * cgroup from dentry without going through kernfs -
5001 		 * cgroupstats_build() and css_tryget_online_from_dir().
5002 		 * Those are supported by RCU protecting clearing of
5003 		 * cgrp->kn->priv backpointer.
5004 		 */
5005 		if (cgrp->kn)
5006 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5007 					 NULL);
5008 
5009 		cgroup_bpf_put(cgrp);
5010 	}
5011 
5012 	mutex_unlock(&cgroup_mutex);
5013 
5014 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5015 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5016 }
5017 
5018 static void css_release(struct percpu_ref *ref)
5019 {
5020 	struct cgroup_subsys_state *css =
5021 		container_of(ref, struct cgroup_subsys_state, refcnt);
5022 
5023 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5024 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5025 }
5026 
5027 static void init_and_link_css(struct cgroup_subsys_state *css,
5028 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5029 {
5030 	lockdep_assert_held(&cgroup_mutex);
5031 
5032 	cgroup_get_live(cgrp);
5033 
5034 	memset(css, 0, sizeof(*css));
5035 	css->cgroup = cgrp;
5036 	css->ss = ss;
5037 	css->id = -1;
5038 	INIT_LIST_HEAD(&css->sibling);
5039 	INIT_LIST_HEAD(&css->children);
5040 	INIT_LIST_HEAD(&css->rstat_css_node);
5041 	css->serial_nr = css_serial_nr_next++;
5042 	atomic_set(&css->online_cnt, 0);
5043 
5044 	if (cgroup_parent(cgrp)) {
5045 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5046 		css_get(css->parent);
5047 	}
5048 
5049 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5050 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5051 
5052 	BUG_ON(cgroup_css(cgrp, ss));
5053 }
5054 
5055 /* invoke ->css_online() on a new CSS and mark it online if successful */
5056 static int online_css(struct cgroup_subsys_state *css)
5057 {
5058 	struct cgroup_subsys *ss = css->ss;
5059 	int ret = 0;
5060 
5061 	lockdep_assert_held(&cgroup_mutex);
5062 
5063 	if (ss->css_online)
5064 		ret = ss->css_online(css);
5065 	if (!ret) {
5066 		css->flags |= CSS_ONLINE;
5067 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5068 
5069 		atomic_inc(&css->online_cnt);
5070 		if (css->parent)
5071 			atomic_inc(&css->parent->online_cnt);
5072 	}
5073 	return ret;
5074 }
5075 
5076 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5077 static void offline_css(struct cgroup_subsys_state *css)
5078 {
5079 	struct cgroup_subsys *ss = css->ss;
5080 
5081 	lockdep_assert_held(&cgroup_mutex);
5082 
5083 	if (!(css->flags & CSS_ONLINE))
5084 		return;
5085 
5086 	if (ss->css_offline)
5087 		ss->css_offline(css);
5088 
5089 	css->flags &= ~CSS_ONLINE;
5090 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5091 
5092 	wake_up_all(&css->cgroup->offline_waitq);
5093 }
5094 
5095 /**
5096  * css_create - create a cgroup_subsys_state
5097  * @cgrp: the cgroup new css will be associated with
5098  * @ss: the subsys of new css
5099  *
5100  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5101  * css is online and installed in @cgrp.  This function doesn't create the
5102  * interface files.  Returns 0 on success, -errno on failure.
5103  */
5104 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5105 					      struct cgroup_subsys *ss)
5106 {
5107 	struct cgroup *parent = cgroup_parent(cgrp);
5108 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5109 	struct cgroup_subsys_state *css;
5110 	int err;
5111 
5112 	lockdep_assert_held(&cgroup_mutex);
5113 
5114 	css = ss->css_alloc(parent_css);
5115 	if (!css)
5116 		css = ERR_PTR(-ENOMEM);
5117 	if (IS_ERR(css))
5118 		return css;
5119 
5120 	init_and_link_css(css, ss, cgrp);
5121 
5122 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5123 	if (err)
5124 		goto err_free_css;
5125 
5126 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5127 	if (err < 0)
5128 		goto err_free_css;
5129 	css->id = err;
5130 
5131 	/* @css is ready to be brought online now, make it visible */
5132 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5133 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5134 
5135 	err = online_css(css);
5136 	if (err)
5137 		goto err_list_del;
5138 
5139 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5140 	    cgroup_parent(parent)) {
5141 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5142 			current->comm, current->pid, ss->name);
5143 		if (!strcmp(ss->name, "memory"))
5144 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5145 		ss->warned_broken_hierarchy = true;
5146 	}
5147 
5148 	return css;
5149 
5150 err_list_del:
5151 	list_del_rcu(&css->sibling);
5152 err_free_css:
5153 	list_del_rcu(&css->rstat_css_node);
5154 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5155 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5156 	return ERR_PTR(err);
5157 }
5158 
5159 /*
5160  * The returned cgroup is fully initialized including its control mask, but
5161  * it isn't associated with its kernfs_node and doesn't have the control
5162  * mask applied.
5163  */
5164 static struct cgroup *cgroup_create(struct cgroup *parent)
5165 {
5166 	struct cgroup_root *root = parent->root;
5167 	struct cgroup *cgrp, *tcgrp;
5168 	int level = parent->level + 1;
5169 	int ret;
5170 
5171 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5172 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5173 		       GFP_KERNEL);
5174 	if (!cgrp)
5175 		return ERR_PTR(-ENOMEM);
5176 
5177 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5178 	if (ret)
5179 		goto out_free_cgrp;
5180 
5181 	if (cgroup_on_dfl(parent)) {
5182 		ret = cgroup_rstat_init(cgrp);
5183 		if (ret)
5184 			goto out_cancel_ref;
5185 	}
5186 
5187 	/*
5188 	 * Temporarily set the pointer to NULL, so idr_find() won't return
5189 	 * a half-baked cgroup.
5190 	 */
5191 	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5192 	if (cgrp->id < 0) {
5193 		ret = -ENOMEM;
5194 		goto out_stat_exit;
5195 	}
5196 
5197 	init_cgroup_housekeeping(cgrp);
5198 
5199 	cgrp->self.parent = &parent->self;
5200 	cgrp->root = root;
5201 	cgrp->level = level;
5202 
5203 	ret = psi_cgroup_alloc(cgrp);
5204 	if (ret)
5205 		goto out_idr_free;
5206 
5207 	ret = cgroup_bpf_inherit(cgrp);
5208 	if (ret)
5209 		goto out_psi_free;
5210 
5211 	/*
5212 	 * New cgroup inherits effective freeze counter, and
5213 	 * if the parent has to be frozen, the child has too.
5214 	 */
5215 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5216 	if (cgrp->freezer.e_freeze)
5217 		set_bit(CGRP_FROZEN, &cgrp->flags);
5218 
5219 	spin_lock_irq(&css_set_lock);
5220 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5221 		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5222 
5223 		if (tcgrp != cgrp) {
5224 			tcgrp->nr_descendants++;
5225 
5226 			/*
5227 			 * If the new cgroup is frozen, all ancestor cgroups
5228 			 * get a new frozen descendant, but their state can't
5229 			 * change because of this.
5230 			 */
5231 			if (cgrp->freezer.e_freeze)
5232 				tcgrp->freezer.nr_frozen_descendants++;
5233 		}
5234 	}
5235 	spin_unlock_irq(&css_set_lock);
5236 
5237 	if (notify_on_release(parent))
5238 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5239 
5240 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5241 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5242 
5243 	cgrp->self.serial_nr = css_serial_nr_next++;
5244 
5245 	/* allocation complete, commit to creation */
5246 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5247 	atomic_inc(&root->nr_cgrps);
5248 	cgroup_get_live(parent);
5249 
5250 	/*
5251 	 * @cgrp is now fully operational.  If something fails after this
5252 	 * point, it'll be released via the normal destruction path.
5253 	 */
5254 	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5255 
5256 	/*
5257 	 * On the default hierarchy, a child doesn't automatically inherit
5258 	 * subtree_control from the parent.  Each is configured manually.
5259 	 */
5260 	if (!cgroup_on_dfl(cgrp))
5261 		cgrp->subtree_control = cgroup_control(cgrp);
5262 
5263 	cgroup_propagate_control(cgrp);
5264 
5265 	return cgrp;
5266 
5267 out_psi_free:
5268 	psi_cgroup_free(cgrp);
5269 out_idr_free:
5270 	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5271 out_stat_exit:
5272 	if (cgroup_on_dfl(parent))
5273 		cgroup_rstat_exit(cgrp);
5274 out_cancel_ref:
5275 	percpu_ref_exit(&cgrp->self.refcnt);
5276 out_free_cgrp:
5277 	kfree(cgrp);
5278 	return ERR_PTR(ret);
5279 }
5280 
5281 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5282 {
5283 	struct cgroup *cgroup;
5284 	int ret = false;
5285 	int level = 1;
5286 
5287 	lockdep_assert_held(&cgroup_mutex);
5288 
5289 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5290 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5291 			goto fail;
5292 
5293 		if (level > cgroup->max_depth)
5294 			goto fail;
5295 
5296 		level++;
5297 	}
5298 
5299 	ret = true;
5300 fail:
5301 	return ret;
5302 }
5303 
5304 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5305 {
5306 	struct cgroup *parent, *cgrp;
5307 	struct kernfs_node *kn;
5308 	int ret;
5309 
5310 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5311 	if (strchr(name, '\n'))
5312 		return -EINVAL;
5313 
5314 	parent = cgroup_kn_lock_live(parent_kn, false);
5315 	if (!parent)
5316 		return -ENODEV;
5317 
5318 	if (!cgroup_check_hierarchy_limits(parent)) {
5319 		ret = -EAGAIN;
5320 		goto out_unlock;
5321 	}
5322 
5323 	cgrp = cgroup_create(parent);
5324 	if (IS_ERR(cgrp)) {
5325 		ret = PTR_ERR(cgrp);
5326 		goto out_unlock;
5327 	}
5328 
5329 	/* create the directory */
5330 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5331 	if (IS_ERR(kn)) {
5332 		ret = PTR_ERR(kn);
5333 		goto out_destroy;
5334 	}
5335 	cgrp->kn = kn;
5336 
5337 	/*
5338 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5339 	 * that @cgrp->kn is always accessible.
5340 	 */
5341 	kernfs_get(kn);
5342 
5343 	ret = cgroup_kn_set_ugid(kn);
5344 	if (ret)
5345 		goto out_destroy;
5346 
5347 	ret = css_populate_dir(&cgrp->self);
5348 	if (ret)
5349 		goto out_destroy;
5350 
5351 	ret = cgroup_apply_control_enable(cgrp);
5352 	if (ret)
5353 		goto out_destroy;
5354 
5355 	TRACE_CGROUP_PATH(mkdir, cgrp);
5356 
5357 	/* let's create and online css's */
5358 	kernfs_activate(kn);
5359 
5360 	ret = 0;
5361 	goto out_unlock;
5362 
5363 out_destroy:
5364 	cgroup_destroy_locked(cgrp);
5365 out_unlock:
5366 	cgroup_kn_unlock(parent_kn);
5367 	return ret;
5368 }
5369 
5370 /*
5371  * This is called when the refcnt of a css is confirmed to be killed.
5372  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5373  * initate destruction and put the css ref from kill_css().
5374  */
5375 static void css_killed_work_fn(struct work_struct *work)
5376 {
5377 	struct cgroup_subsys_state *css =
5378 		container_of(work, struct cgroup_subsys_state, destroy_work);
5379 
5380 	mutex_lock(&cgroup_mutex);
5381 
5382 	do {
5383 		offline_css(css);
5384 		css_put(css);
5385 		/* @css can't go away while we're holding cgroup_mutex */
5386 		css = css->parent;
5387 	} while (css && atomic_dec_and_test(&css->online_cnt));
5388 
5389 	mutex_unlock(&cgroup_mutex);
5390 }
5391 
5392 /* css kill confirmation processing requires process context, bounce */
5393 static void css_killed_ref_fn(struct percpu_ref *ref)
5394 {
5395 	struct cgroup_subsys_state *css =
5396 		container_of(ref, struct cgroup_subsys_state, refcnt);
5397 
5398 	if (atomic_dec_and_test(&css->online_cnt)) {
5399 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5400 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5401 	}
5402 }
5403 
5404 /**
5405  * kill_css - destroy a css
5406  * @css: css to destroy
5407  *
5408  * This function initiates destruction of @css by removing cgroup interface
5409  * files and putting its base reference.  ->css_offline() will be invoked
5410  * asynchronously once css_tryget_online() is guaranteed to fail and when
5411  * the reference count reaches zero, @css will be released.
5412  */
5413 static void kill_css(struct cgroup_subsys_state *css)
5414 {
5415 	lockdep_assert_held(&cgroup_mutex);
5416 
5417 	if (css->flags & CSS_DYING)
5418 		return;
5419 
5420 	css->flags |= CSS_DYING;
5421 
5422 	/*
5423 	 * This must happen before css is disassociated with its cgroup.
5424 	 * See seq_css() for details.
5425 	 */
5426 	css_clear_dir(css);
5427 
5428 	/*
5429 	 * Killing would put the base ref, but we need to keep it alive
5430 	 * until after ->css_offline().
5431 	 */
5432 	css_get(css);
5433 
5434 	/*
5435 	 * cgroup core guarantees that, by the time ->css_offline() is
5436 	 * invoked, no new css reference will be given out via
5437 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5438 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5439 	 * guarantee that the ref is seen as killed on all CPUs on return.
5440 	 *
5441 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5442 	 * css is confirmed to be seen as killed on all CPUs.
5443 	 */
5444 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5445 }
5446 
5447 /**
5448  * cgroup_destroy_locked - the first stage of cgroup destruction
5449  * @cgrp: cgroup to be destroyed
5450  *
5451  * css's make use of percpu refcnts whose killing latency shouldn't be
5452  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5453  * guarantee that css_tryget_online() won't succeed by the time
5454  * ->css_offline() is invoked.  To satisfy all the requirements,
5455  * destruction is implemented in the following two steps.
5456  *
5457  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5458  *     userland visible parts and start killing the percpu refcnts of
5459  *     css's.  Set up so that the next stage will be kicked off once all
5460  *     the percpu refcnts are confirmed to be killed.
5461  *
5462  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5463  *     rest of destruction.  Once all cgroup references are gone, the
5464  *     cgroup is RCU-freed.
5465  *
5466  * This function implements s1.  After this step, @cgrp is gone as far as
5467  * the userland is concerned and a new cgroup with the same name may be
5468  * created.  As cgroup doesn't care about the names internally, this
5469  * doesn't cause any problem.
5470  */
5471 static int cgroup_destroy_locked(struct cgroup *cgrp)
5472 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5473 {
5474 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5475 	struct cgroup_subsys_state *css;
5476 	struct cgrp_cset_link *link;
5477 	int ssid;
5478 
5479 	lockdep_assert_held(&cgroup_mutex);
5480 
5481 	/*
5482 	 * Only migration can raise populated from zero and we're already
5483 	 * holding cgroup_mutex.
5484 	 */
5485 	if (cgroup_is_populated(cgrp))
5486 		return -EBUSY;
5487 
5488 	/*
5489 	 * Make sure there's no live children.  We can't test emptiness of
5490 	 * ->self.children as dead children linger on it while being
5491 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5492 	 */
5493 	if (css_has_online_children(&cgrp->self))
5494 		return -EBUSY;
5495 
5496 	/*
5497 	 * Mark @cgrp and the associated csets dead.  The former prevents
5498 	 * further task migration and child creation by disabling
5499 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5500 	 * the migration path.
5501 	 */
5502 	cgrp->self.flags &= ~CSS_ONLINE;
5503 
5504 	spin_lock_irq(&css_set_lock);
5505 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5506 		link->cset->dead = true;
5507 	spin_unlock_irq(&css_set_lock);
5508 
5509 	/* initiate massacre of all css's */
5510 	for_each_css(css, ssid, cgrp)
5511 		kill_css(css);
5512 
5513 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5514 	css_clear_dir(&cgrp->self);
5515 	kernfs_remove(cgrp->kn);
5516 
5517 	if (parent && cgroup_is_threaded(cgrp))
5518 		parent->nr_threaded_children--;
5519 
5520 	spin_lock_irq(&css_set_lock);
5521 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5522 		tcgrp->nr_descendants--;
5523 		tcgrp->nr_dying_descendants++;
5524 		/*
5525 		 * If the dying cgroup is frozen, decrease frozen descendants
5526 		 * counters of ancestor cgroups.
5527 		 */
5528 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5529 			tcgrp->freezer.nr_frozen_descendants--;
5530 	}
5531 	spin_unlock_irq(&css_set_lock);
5532 
5533 	cgroup1_check_for_release(parent);
5534 
5535 	/* put the base reference */
5536 	percpu_ref_kill(&cgrp->self.refcnt);
5537 
5538 	return 0;
5539 };
5540 
5541 int cgroup_rmdir(struct kernfs_node *kn)
5542 {
5543 	struct cgroup *cgrp;
5544 	int ret = 0;
5545 
5546 	cgrp = cgroup_kn_lock_live(kn, false);
5547 	if (!cgrp)
5548 		return 0;
5549 
5550 	ret = cgroup_destroy_locked(cgrp);
5551 	if (!ret)
5552 		TRACE_CGROUP_PATH(rmdir, cgrp);
5553 
5554 	cgroup_kn_unlock(kn);
5555 	return ret;
5556 }
5557 
5558 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5559 	.show_options		= cgroup_show_options,
5560 	.mkdir			= cgroup_mkdir,
5561 	.rmdir			= cgroup_rmdir,
5562 	.show_path		= cgroup_show_path,
5563 };
5564 
5565 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5566 {
5567 	struct cgroup_subsys_state *css;
5568 
5569 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5570 
5571 	mutex_lock(&cgroup_mutex);
5572 
5573 	idr_init(&ss->css_idr);
5574 	INIT_LIST_HEAD(&ss->cfts);
5575 
5576 	/* Create the root cgroup state for this subsystem */
5577 	ss->root = &cgrp_dfl_root;
5578 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5579 	/* We don't handle early failures gracefully */
5580 	BUG_ON(IS_ERR(css));
5581 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5582 
5583 	/*
5584 	 * Root csses are never destroyed and we can't initialize
5585 	 * percpu_ref during early init.  Disable refcnting.
5586 	 */
5587 	css->flags |= CSS_NO_REF;
5588 
5589 	if (early) {
5590 		/* allocation can't be done safely during early init */
5591 		css->id = 1;
5592 	} else {
5593 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5594 		BUG_ON(css->id < 0);
5595 	}
5596 
5597 	/* Update the init_css_set to contain a subsys
5598 	 * pointer to this state - since the subsystem is
5599 	 * newly registered, all tasks and hence the
5600 	 * init_css_set is in the subsystem's root cgroup. */
5601 	init_css_set.subsys[ss->id] = css;
5602 
5603 	have_fork_callback |= (bool)ss->fork << ss->id;
5604 	have_exit_callback |= (bool)ss->exit << ss->id;
5605 	have_release_callback |= (bool)ss->release << ss->id;
5606 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5607 
5608 	/* At system boot, before all subsystems have been
5609 	 * registered, no tasks have been forked, so we don't
5610 	 * need to invoke fork callbacks here. */
5611 	BUG_ON(!list_empty(&init_task.tasks));
5612 
5613 	BUG_ON(online_css(css));
5614 
5615 	mutex_unlock(&cgroup_mutex);
5616 }
5617 
5618 /**
5619  * cgroup_init_early - cgroup initialization at system boot
5620  *
5621  * Initialize cgroups at system boot, and initialize any
5622  * subsystems that request early init.
5623  */
5624 int __init cgroup_init_early(void)
5625 {
5626 	static struct cgroup_fs_context __initdata ctx;
5627 	struct cgroup_subsys *ss;
5628 	int i;
5629 
5630 	ctx.root = &cgrp_dfl_root;
5631 	init_cgroup_root(&ctx);
5632 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5633 
5634 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5635 
5636 	for_each_subsys(ss, i) {
5637 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5638 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5639 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5640 		     ss->id, ss->name);
5641 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5642 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5643 
5644 		ss->id = i;
5645 		ss->name = cgroup_subsys_name[i];
5646 		if (!ss->legacy_name)
5647 			ss->legacy_name = cgroup_subsys_name[i];
5648 
5649 		if (ss->early_init)
5650 			cgroup_init_subsys(ss, true);
5651 	}
5652 	return 0;
5653 }
5654 
5655 static u16 cgroup_disable_mask __initdata;
5656 
5657 /**
5658  * cgroup_init - cgroup initialization
5659  *
5660  * Register cgroup filesystem and /proc file, and initialize
5661  * any subsystems that didn't request early init.
5662  */
5663 int __init cgroup_init(void)
5664 {
5665 	struct cgroup_subsys *ss;
5666 	int ssid;
5667 
5668 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5669 	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5670 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5671 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5672 
5673 	cgroup_rstat_boot();
5674 
5675 	/*
5676 	 * The latency of the synchronize_rcu() is too high for cgroups,
5677 	 * avoid it at the cost of forcing all readers into the slow path.
5678 	 */
5679 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5680 
5681 	get_user_ns(init_cgroup_ns.user_ns);
5682 
5683 	mutex_lock(&cgroup_mutex);
5684 
5685 	/*
5686 	 * Add init_css_set to the hash table so that dfl_root can link to
5687 	 * it during init.
5688 	 */
5689 	hash_add(css_set_table, &init_css_set.hlist,
5690 		 css_set_hash(init_css_set.subsys));
5691 
5692 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5693 
5694 	mutex_unlock(&cgroup_mutex);
5695 
5696 	for_each_subsys(ss, ssid) {
5697 		if (ss->early_init) {
5698 			struct cgroup_subsys_state *css =
5699 				init_css_set.subsys[ss->id];
5700 
5701 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5702 						   GFP_KERNEL);
5703 			BUG_ON(css->id < 0);
5704 		} else {
5705 			cgroup_init_subsys(ss, false);
5706 		}
5707 
5708 		list_add_tail(&init_css_set.e_cset_node[ssid],
5709 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5710 
5711 		/*
5712 		 * Setting dfl_root subsys_mask needs to consider the
5713 		 * disabled flag and cftype registration needs kmalloc,
5714 		 * both of which aren't available during early_init.
5715 		 */
5716 		if (cgroup_disable_mask & (1 << ssid)) {
5717 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5718 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5719 			       ss->name);
5720 			continue;
5721 		}
5722 
5723 		if (cgroup1_ssid_disabled(ssid))
5724 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5725 			       ss->name);
5726 
5727 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5728 
5729 		/* implicit controllers must be threaded too */
5730 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5731 
5732 		if (ss->implicit_on_dfl)
5733 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5734 		else if (!ss->dfl_cftypes)
5735 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5736 
5737 		if (ss->threaded)
5738 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5739 
5740 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5741 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5742 		} else {
5743 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5744 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5745 		}
5746 
5747 		if (ss->bind)
5748 			ss->bind(init_css_set.subsys[ssid]);
5749 
5750 		mutex_lock(&cgroup_mutex);
5751 		css_populate_dir(init_css_set.subsys[ssid]);
5752 		mutex_unlock(&cgroup_mutex);
5753 	}
5754 
5755 	/* init_css_set.subsys[] has been updated, re-hash */
5756 	hash_del(&init_css_set.hlist);
5757 	hash_add(css_set_table, &init_css_set.hlist,
5758 		 css_set_hash(init_css_set.subsys));
5759 
5760 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5761 	WARN_ON(register_filesystem(&cgroup_fs_type));
5762 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5763 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5764 
5765 	return 0;
5766 }
5767 
5768 static int __init cgroup_wq_init(void)
5769 {
5770 	/*
5771 	 * There isn't much point in executing destruction path in
5772 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5773 	 * Use 1 for @max_active.
5774 	 *
5775 	 * We would prefer to do this in cgroup_init() above, but that
5776 	 * is called before init_workqueues(): so leave this until after.
5777 	 */
5778 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5779 	BUG_ON(!cgroup_destroy_wq);
5780 	return 0;
5781 }
5782 core_initcall(cgroup_wq_init);
5783 
5784 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5785 					char *buf, size_t buflen)
5786 {
5787 	struct kernfs_node *kn;
5788 
5789 	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5790 	if (!kn)
5791 		return;
5792 	kernfs_path(kn, buf, buflen);
5793 	kernfs_put(kn);
5794 }
5795 
5796 /*
5797  * proc_cgroup_show()
5798  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5799  *  - Used for /proc/<pid>/cgroup.
5800  */
5801 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5802 		     struct pid *pid, struct task_struct *tsk)
5803 {
5804 	char *buf;
5805 	int retval;
5806 	struct cgroup_root *root;
5807 
5808 	retval = -ENOMEM;
5809 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5810 	if (!buf)
5811 		goto out;
5812 
5813 	mutex_lock(&cgroup_mutex);
5814 	spin_lock_irq(&css_set_lock);
5815 
5816 	for_each_root(root) {
5817 		struct cgroup_subsys *ss;
5818 		struct cgroup *cgrp;
5819 		int ssid, count = 0;
5820 
5821 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5822 			continue;
5823 
5824 		seq_printf(m, "%d:", root->hierarchy_id);
5825 		if (root != &cgrp_dfl_root)
5826 			for_each_subsys(ss, ssid)
5827 				if (root->subsys_mask & (1 << ssid))
5828 					seq_printf(m, "%s%s", count++ ? "," : "",
5829 						   ss->legacy_name);
5830 		if (strlen(root->name))
5831 			seq_printf(m, "%sname=%s", count ? "," : "",
5832 				   root->name);
5833 		seq_putc(m, ':');
5834 
5835 		cgrp = task_cgroup_from_root(tsk, root);
5836 
5837 		/*
5838 		 * On traditional hierarchies, all zombie tasks show up as
5839 		 * belonging to the root cgroup.  On the default hierarchy,
5840 		 * while a zombie doesn't show up in "cgroup.procs" and
5841 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5842 		 * reporting the cgroup it belonged to before exiting.  If
5843 		 * the cgroup is removed before the zombie is reaped,
5844 		 * " (deleted)" is appended to the cgroup path.
5845 		 */
5846 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5847 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5848 						current->nsproxy->cgroup_ns);
5849 			if (retval >= PATH_MAX)
5850 				retval = -ENAMETOOLONG;
5851 			if (retval < 0)
5852 				goto out_unlock;
5853 
5854 			seq_puts(m, buf);
5855 		} else {
5856 			seq_puts(m, "/");
5857 		}
5858 
5859 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5860 			seq_puts(m, " (deleted)\n");
5861 		else
5862 			seq_putc(m, '\n');
5863 	}
5864 
5865 	retval = 0;
5866 out_unlock:
5867 	spin_unlock_irq(&css_set_lock);
5868 	mutex_unlock(&cgroup_mutex);
5869 	kfree(buf);
5870 out:
5871 	return retval;
5872 }
5873 
5874 /**
5875  * cgroup_fork - initialize cgroup related fields during copy_process()
5876  * @child: pointer to task_struct of forking parent process.
5877  *
5878  * A task is associated with the init_css_set until cgroup_post_fork()
5879  * attaches it to the parent's css_set.  Empty cg_list indicates that
5880  * @child isn't holding reference to its css_set.
5881  */
5882 void cgroup_fork(struct task_struct *child)
5883 {
5884 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5885 	INIT_LIST_HEAD(&child->cg_list);
5886 }
5887 
5888 /**
5889  * cgroup_can_fork - called on a new task before the process is exposed
5890  * @child: the task in question.
5891  *
5892  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5893  * returns an error, the fork aborts with that error code. This allows for
5894  * a cgroup subsystem to conditionally allow or deny new forks.
5895  */
5896 int cgroup_can_fork(struct task_struct *child)
5897 {
5898 	struct cgroup_subsys *ss;
5899 	int i, j, ret;
5900 
5901 	do_each_subsys_mask(ss, i, have_canfork_callback) {
5902 		ret = ss->can_fork(child);
5903 		if (ret)
5904 			goto out_revert;
5905 	} while_each_subsys_mask();
5906 
5907 	return 0;
5908 
5909 out_revert:
5910 	for_each_subsys(ss, j) {
5911 		if (j >= i)
5912 			break;
5913 		if (ss->cancel_fork)
5914 			ss->cancel_fork(child);
5915 	}
5916 
5917 	return ret;
5918 }
5919 
5920 /**
5921  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5922  * @child: the task in question
5923  *
5924  * This calls the cancel_fork() callbacks if a fork failed *after*
5925  * cgroup_can_fork() succeded.
5926  */
5927 void cgroup_cancel_fork(struct task_struct *child)
5928 {
5929 	struct cgroup_subsys *ss;
5930 	int i;
5931 
5932 	for_each_subsys(ss, i)
5933 		if (ss->cancel_fork)
5934 			ss->cancel_fork(child);
5935 }
5936 
5937 /**
5938  * cgroup_post_fork - called on a new task after adding it to the task list
5939  * @child: the task in question
5940  *
5941  * Adds the task to the list running through its css_set if necessary and
5942  * call the subsystem fork() callbacks.  Has to be after the task is
5943  * visible on the task list in case we race with the first call to
5944  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5945  * list.
5946  */
5947 void cgroup_post_fork(struct task_struct *child)
5948 {
5949 	struct cgroup_subsys *ss;
5950 	int i;
5951 
5952 	/*
5953 	 * This may race against cgroup_enable_task_cg_lists().  As that
5954 	 * function sets use_task_css_set_links before grabbing
5955 	 * tasklist_lock and we just went through tasklist_lock to add
5956 	 * @child, it's guaranteed that either we see the set
5957 	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5958 	 * @child during its iteration.
5959 	 *
5960 	 * If we won the race, @child is associated with %current's
5961 	 * css_set.  Grabbing css_set_lock guarantees both that the
5962 	 * association is stable, and, on completion of the parent's
5963 	 * migration, @child is visible in the source of migration or
5964 	 * already in the destination cgroup.  This guarantee is necessary
5965 	 * when implementing operations which need to migrate all tasks of
5966 	 * a cgroup to another.
5967 	 *
5968 	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5969 	 * will remain in init_css_set.  This is safe because all tasks are
5970 	 * in the init_css_set before cg_links is enabled and there's no
5971 	 * operation which transfers all tasks out of init_css_set.
5972 	 */
5973 	if (use_task_css_set_links) {
5974 		struct css_set *cset;
5975 
5976 		spin_lock_irq(&css_set_lock);
5977 		cset = task_css_set(current);
5978 		if (list_empty(&child->cg_list)) {
5979 			get_css_set(cset);
5980 			cset->nr_tasks++;
5981 			css_set_move_task(child, NULL, cset, false);
5982 		}
5983 
5984 		/*
5985 		 * If the cgroup has to be frozen, the new task has too.
5986 		 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get
5987 		 * the task into the frozen state.
5988 		 */
5989 		if (unlikely(cgroup_task_freeze(child))) {
5990 			spin_lock(&child->sighand->siglock);
5991 			WARN_ON_ONCE(child->frozen);
5992 			child->jobctl |= JOBCTL_TRAP_FREEZE;
5993 			spin_unlock(&child->sighand->siglock);
5994 
5995 			/*
5996 			 * Calling cgroup_update_frozen() isn't required here,
5997 			 * because it will be called anyway a bit later
5998 			 * from do_freezer_trap(). So we avoid cgroup's
5999 			 * transient switch from the frozen state and back.
6000 			 */
6001 		}
6002 
6003 		spin_unlock_irq(&css_set_lock);
6004 	}
6005 
6006 	/*
6007 	 * Call ss->fork().  This must happen after @child is linked on
6008 	 * css_set; otherwise, @child might change state between ->fork()
6009 	 * and addition to css_set.
6010 	 */
6011 	do_each_subsys_mask(ss, i, have_fork_callback) {
6012 		ss->fork(child);
6013 	} while_each_subsys_mask();
6014 }
6015 
6016 /**
6017  * cgroup_exit - detach cgroup from exiting task
6018  * @tsk: pointer to task_struct of exiting process
6019  *
6020  * Description: Detach cgroup from @tsk and release it.
6021  *
6022  * Note that cgroups marked notify_on_release force every task in
6023  * them to take the global cgroup_mutex mutex when exiting.
6024  * This could impact scaling on very large systems.  Be reluctant to
6025  * use notify_on_release cgroups where very high task exit scaling
6026  * is required on large systems.
6027  *
6028  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
6029  * call cgroup_exit() while the task is still competent to handle
6030  * notify_on_release(), then leave the task attached to the root cgroup in
6031  * each hierarchy for the remainder of its exit.  No need to bother with
6032  * init_css_set refcnting.  init_css_set never goes away and we can't race
6033  * with migration path - PF_EXITING is visible to migration path.
6034  */
6035 void cgroup_exit(struct task_struct *tsk)
6036 {
6037 	struct cgroup_subsys *ss;
6038 	struct css_set *cset;
6039 	int i;
6040 
6041 	/*
6042 	 * Unlink from @tsk from its css_set.  As migration path can't race
6043 	 * with us, we can check css_set and cg_list without synchronization.
6044 	 */
6045 	cset = task_css_set(tsk);
6046 
6047 	if (!list_empty(&tsk->cg_list)) {
6048 		spin_lock_irq(&css_set_lock);
6049 		css_set_move_task(tsk, cset, NULL, false);
6050 		list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6051 		cset->nr_tasks--;
6052 
6053 		WARN_ON_ONCE(cgroup_task_frozen(tsk));
6054 		if (unlikely(cgroup_task_freeze(tsk)))
6055 			cgroup_update_frozen(task_dfl_cgroup(tsk));
6056 
6057 		spin_unlock_irq(&css_set_lock);
6058 	} else {
6059 		get_css_set(cset);
6060 	}
6061 
6062 	/* see cgroup_post_fork() for details */
6063 	do_each_subsys_mask(ss, i, have_exit_callback) {
6064 		ss->exit(tsk);
6065 	} while_each_subsys_mask();
6066 }
6067 
6068 void cgroup_release(struct task_struct *task)
6069 {
6070 	struct cgroup_subsys *ss;
6071 	int ssid;
6072 
6073 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6074 		ss->release(task);
6075 	} while_each_subsys_mask();
6076 
6077 	if (use_task_css_set_links) {
6078 		spin_lock_irq(&css_set_lock);
6079 		css_set_skip_task_iters(task_css_set(task), task);
6080 		list_del_init(&task->cg_list);
6081 		spin_unlock_irq(&css_set_lock);
6082 	}
6083 }
6084 
6085 void cgroup_free(struct task_struct *task)
6086 {
6087 	struct css_set *cset = task_css_set(task);
6088 	put_css_set(cset);
6089 }
6090 
6091 static int __init cgroup_disable(char *str)
6092 {
6093 	struct cgroup_subsys *ss;
6094 	char *token;
6095 	int i;
6096 
6097 	while ((token = strsep(&str, ",")) != NULL) {
6098 		if (!*token)
6099 			continue;
6100 
6101 		for_each_subsys(ss, i) {
6102 			if (strcmp(token, ss->name) &&
6103 			    strcmp(token, ss->legacy_name))
6104 				continue;
6105 			cgroup_disable_mask |= 1 << i;
6106 		}
6107 	}
6108 	return 1;
6109 }
6110 __setup("cgroup_disable=", cgroup_disable);
6111 
6112 void __init __weak enable_debug_cgroup(void) { }
6113 
6114 static int __init enable_cgroup_debug(char *str)
6115 {
6116 	cgroup_debug = true;
6117 	enable_debug_cgroup();
6118 	return 1;
6119 }
6120 __setup("cgroup_debug", enable_cgroup_debug);
6121 
6122 /**
6123  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6124  * @dentry: directory dentry of interest
6125  * @ss: subsystem of interest
6126  *
6127  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6128  * to get the corresponding css and return it.  If such css doesn't exist
6129  * or can't be pinned, an ERR_PTR value is returned.
6130  */
6131 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6132 						       struct cgroup_subsys *ss)
6133 {
6134 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6135 	struct file_system_type *s_type = dentry->d_sb->s_type;
6136 	struct cgroup_subsys_state *css = NULL;
6137 	struct cgroup *cgrp;
6138 
6139 	/* is @dentry a cgroup dir? */
6140 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6141 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6142 		return ERR_PTR(-EBADF);
6143 
6144 	rcu_read_lock();
6145 
6146 	/*
6147 	 * This path doesn't originate from kernfs and @kn could already
6148 	 * have been or be removed at any point.  @kn->priv is RCU
6149 	 * protected for this access.  See css_release_work_fn() for details.
6150 	 */
6151 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6152 	if (cgrp)
6153 		css = cgroup_css(cgrp, ss);
6154 
6155 	if (!css || !css_tryget_online(css))
6156 		css = ERR_PTR(-ENOENT);
6157 
6158 	rcu_read_unlock();
6159 	return css;
6160 }
6161 
6162 /**
6163  * css_from_id - lookup css by id
6164  * @id: the cgroup id
6165  * @ss: cgroup subsys to be looked into
6166  *
6167  * Returns the css if there's valid one with @id, otherwise returns NULL.
6168  * Should be called under rcu_read_lock().
6169  */
6170 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6171 {
6172 	WARN_ON_ONCE(!rcu_read_lock_held());
6173 	return idr_find(&ss->css_idr, id);
6174 }
6175 
6176 /**
6177  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6178  * @path: path on the default hierarchy
6179  *
6180  * Find the cgroup at @path on the default hierarchy, increment its
6181  * reference count and return it.  Returns pointer to the found cgroup on
6182  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6183  * if @path points to a non-directory.
6184  */
6185 struct cgroup *cgroup_get_from_path(const char *path)
6186 {
6187 	struct kernfs_node *kn;
6188 	struct cgroup *cgrp;
6189 
6190 	mutex_lock(&cgroup_mutex);
6191 
6192 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6193 	if (kn) {
6194 		if (kernfs_type(kn) == KERNFS_DIR) {
6195 			cgrp = kn->priv;
6196 			cgroup_get_live(cgrp);
6197 		} else {
6198 			cgrp = ERR_PTR(-ENOTDIR);
6199 		}
6200 		kernfs_put(kn);
6201 	} else {
6202 		cgrp = ERR_PTR(-ENOENT);
6203 	}
6204 
6205 	mutex_unlock(&cgroup_mutex);
6206 	return cgrp;
6207 }
6208 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6209 
6210 /**
6211  * cgroup_get_from_fd - get a cgroup pointer from a fd
6212  * @fd: fd obtained by open(cgroup2_dir)
6213  *
6214  * Find the cgroup from a fd which should be obtained
6215  * by opening a cgroup directory.  Returns a pointer to the
6216  * cgroup on success. ERR_PTR is returned if the cgroup
6217  * cannot be found.
6218  */
6219 struct cgroup *cgroup_get_from_fd(int fd)
6220 {
6221 	struct cgroup_subsys_state *css;
6222 	struct cgroup *cgrp;
6223 	struct file *f;
6224 
6225 	f = fget_raw(fd);
6226 	if (!f)
6227 		return ERR_PTR(-EBADF);
6228 
6229 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6230 	fput(f);
6231 	if (IS_ERR(css))
6232 		return ERR_CAST(css);
6233 
6234 	cgrp = css->cgroup;
6235 	if (!cgroup_on_dfl(cgrp)) {
6236 		cgroup_put(cgrp);
6237 		return ERR_PTR(-EBADF);
6238 	}
6239 
6240 	return cgrp;
6241 }
6242 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6243 
6244 /*
6245  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6246  * definition in cgroup-defs.h.
6247  */
6248 #ifdef CONFIG_SOCK_CGROUP_DATA
6249 
6250 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6251 
6252 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6253 static bool cgroup_sk_alloc_disabled __read_mostly;
6254 
6255 void cgroup_sk_alloc_disable(void)
6256 {
6257 	if (cgroup_sk_alloc_disabled)
6258 		return;
6259 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6260 	cgroup_sk_alloc_disabled = true;
6261 }
6262 
6263 #else
6264 
6265 #define cgroup_sk_alloc_disabled	false
6266 
6267 #endif
6268 
6269 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6270 {
6271 	if (cgroup_sk_alloc_disabled)
6272 		return;
6273 
6274 	/* Socket clone path */
6275 	if (skcd->val) {
6276 		/*
6277 		 * We might be cloning a socket which is left in an empty
6278 		 * cgroup and the cgroup might have already been rmdir'd.
6279 		 * Don't use cgroup_get_live().
6280 		 */
6281 		cgroup_get(sock_cgroup_ptr(skcd));
6282 		return;
6283 	}
6284 
6285 	rcu_read_lock();
6286 
6287 	while (true) {
6288 		struct css_set *cset;
6289 
6290 		cset = task_css_set(current);
6291 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6292 			skcd->val = (unsigned long)cset->dfl_cgrp;
6293 			break;
6294 		}
6295 		cpu_relax();
6296 	}
6297 
6298 	rcu_read_unlock();
6299 }
6300 
6301 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6302 {
6303 	cgroup_put(sock_cgroup_ptr(skcd));
6304 }
6305 
6306 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6307 
6308 #ifdef CONFIG_CGROUP_BPF
6309 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
6310 		      enum bpf_attach_type type, u32 flags)
6311 {
6312 	int ret;
6313 
6314 	mutex_lock(&cgroup_mutex);
6315 	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
6316 	mutex_unlock(&cgroup_mutex);
6317 	return ret;
6318 }
6319 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6320 		      enum bpf_attach_type type, u32 flags)
6321 {
6322 	int ret;
6323 
6324 	mutex_lock(&cgroup_mutex);
6325 	ret = __cgroup_bpf_detach(cgrp, prog, type);
6326 	mutex_unlock(&cgroup_mutex);
6327 	return ret;
6328 }
6329 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6330 		     union bpf_attr __user *uattr)
6331 {
6332 	int ret;
6333 
6334 	mutex_lock(&cgroup_mutex);
6335 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6336 	mutex_unlock(&cgroup_mutex);
6337 	return ret;
6338 }
6339 #endif /* CONFIG_CGROUP_BPF */
6340 
6341 #ifdef CONFIG_SYSFS
6342 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6343 				      ssize_t size, const char *prefix)
6344 {
6345 	struct cftype *cft;
6346 	ssize_t ret = 0;
6347 
6348 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6349 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6350 			continue;
6351 
6352 		if (prefix)
6353 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6354 
6355 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6356 
6357 		if (WARN_ON(ret >= size))
6358 			break;
6359 	}
6360 
6361 	return ret;
6362 }
6363 
6364 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6365 			      char *buf)
6366 {
6367 	struct cgroup_subsys *ss;
6368 	int ssid;
6369 	ssize_t ret = 0;
6370 
6371 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6372 				     NULL);
6373 
6374 	for_each_subsys(ss, ssid)
6375 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6376 					      PAGE_SIZE - ret,
6377 					      cgroup_subsys_name[ssid]);
6378 
6379 	return ret;
6380 }
6381 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6382 
6383 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6384 			     char *buf)
6385 {
6386 	return snprintf(buf, PAGE_SIZE, "nsdelegate\nmemory_localevents\n");
6387 }
6388 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6389 
6390 static struct attribute *cgroup_sysfs_attrs[] = {
6391 	&cgroup_delegate_attr.attr,
6392 	&cgroup_features_attr.attr,
6393 	NULL,
6394 };
6395 
6396 static const struct attribute_group cgroup_sysfs_attr_group = {
6397 	.attrs = cgroup_sysfs_attrs,
6398 	.name = "cgroup",
6399 };
6400 
6401 static int __init cgroup_sysfs_init(void)
6402 {
6403 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6404 }
6405 subsys_initcall(cgroup_sysfs_init);
6406 #endif /* CONFIG_SYSFS */
6407