1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <linux/sched/cputime.h> 58 #include <net/sock.h> 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/cgroup.h> 62 63 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 64 MAX_CFTYPE_NAME + 2) 65 /* let's not notify more than 100 times per second */ 66 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 67 68 /* 69 * cgroup_mutex is the master lock. Any modification to cgroup or its 70 * hierarchy must be performed while holding it. 71 * 72 * css_set_lock protects task->cgroups pointer, the list of css_set 73 * objects, and the chain of tasks off each css_set. 74 * 75 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 76 * cgroup.h can use them for lockdep annotations. 77 */ 78 DEFINE_MUTEX(cgroup_mutex); 79 DEFINE_SPINLOCK(css_set_lock); 80 81 #ifdef CONFIG_PROVE_RCU 82 EXPORT_SYMBOL_GPL(cgroup_mutex); 83 EXPORT_SYMBOL_GPL(css_set_lock); 84 #endif 85 86 DEFINE_SPINLOCK(trace_cgroup_path_lock); 87 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 88 89 /* 90 * Protects cgroup_idr and css_idr so that IDs can be released without 91 * grabbing cgroup_mutex. 92 */ 93 static DEFINE_SPINLOCK(cgroup_idr_lock); 94 95 /* 96 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 97 * against file removal/re-creation across css hiding. 98 */ 99 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 100 101 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 102 103 #define cgroup_assert_mutex_or_rcu_locked() \ 104 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 105 !lockdep_is_held(&cgroup_mutex), \ 106 "cgroup_mutex or RCU read lock required"); 107 108 /* 109 * cgroup destruction makes heavy use of work items and there can be a lot 110 * of concurrent destructions. Use a separate workqueue so that cgroup 111 * destruction work items don't end up filling up max_active of system_wq 112 * which may lead to deadlock. 113 */ 114 static struct workqueue_struct *cgroup_destroy_wq; 115 116 /* generate an array of cgroup subsystem pointers */ 117 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 118 struct cgroup_subsys *cgroup_subsys[] = { 119 #include <linux/cgroup_subsys.h> 120 }; 121 #undef SUBSYS 122 123 /* array of cgroup subsystem names */ 124 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 125 static const char *cgroup_subsys_name[] = { 126 #include <linux/cgroup_subsys.h> 127 }; 128 #undef SUBSYS 129 130 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 131 #define SUBSYS(_x) \ 132 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 133 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 134 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 135 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 136 #include <linux/cgroup_subsys.h> 137 #undef SUBSYS 138 139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 140 static struct static_key_true *cgroup_subsys_enabled_key[] = { 141 #include <linux/cgroup_subsys.h> 142 }; 143 #undef SUBSYS 144 145 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 146 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 147 #include <linux/cgroup_subsys.h> 148 }; 149 #undef SUBSYS 150 151 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 152 153 /* 154 * The default hierarchy, reserved for the subsystems that are otherwise 155 * unattached - it never has more than a single cgroup, and all tasks are 156 * part of that cgroup. 157 */ 158 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 159 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 160 161 /* 162 * The default hierarchy always exists but is hidden until mounted for the 163 * first time. This is for backward compatibility. 164 */ 165 static bool cgrp_dfl_visible; 166 167 /* some controllers are not supported in the default hierarchy */ 168 static u16 cgrp_dfl_inhibit_ss_mask; 169 170 /* some controllers are implicitly enabled on the default hierarchy */ 171 static u16 cgrp_dfl_implicit_ss_mask; 172 173 /* some controllers can be threaded on the default hierarchy */ 174 static u16 cgrp_dfl_threaded_ss_mask; 175 176 /* The list of hierarchy roots */ 177 LIST_HEAD(cgroup_roots); 178 static int cgroup_root_count; 179 180 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 181 static DEFINE_IDR(cgroup_hierarchy_idr); 182 183 /* 184 * Assign a monotonically increasing serial number to csses. It guarantees 185 * cgroups with bigger numbers are newer than those with smaller numbers. 186 * Also, as csses are always appended to the parent's ->children list, it 187 * guarantees that sibling csses are always sorted in the ascending serial 188 * number order on the list. Protected by cgroup_mutex. 189 */ 190 static u64 css_serial_nr_next = 1; 191 192 /* 193 * These bitmasks identify subsystems with specific features to avoid 194 * having to do iterative checks repeatedly. 195 */ 196 static u16 have_fork_callback __read_mostly; 197 static u16 have_exit_callback __read_mostly; 198 static u16 have_free_callback __read_mostly; 199 static u16 have_canfork_callback __read_mostly; 200 201 /* cgroup namespace for init task */ 202 struct cgroup_namespace init_cgroup_ns = { 203 .count = REFCOUNT_INIT(2), 204 .user_ns = &init_user_ns, 205 .ns.ops = &cgroupns_operations, 206 .ns.inum = PROC_CGROUP_INIT_INO, 207 .root_cset = &init_css_set, 208 }; 209 210 static struct file_system_type cgroup2_fs_type; 211 static struct cftype cgroup_base_files[]; 212 213 static int cgroup_apply_control(struct cgroup *cgrp); 214 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 215 static void css_task_iter_advance(struct css_task_iter *it); 216 static int cgroup_destroy_locked(struct cgroup *cgrp); 217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 218 struct cgroup_subsys *ss); 219 static void css_release(struct percpu_ref *ref); 220 static void kill_css(struct cgroup_subsys_state *css); 221 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 222 struct cgroup *cgrp, struct cftype cfts[], 223 bool is_add); 224 225 /** 226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 227 * @ssid: subsys ID of interest 228 * 229 * cgroup_subsys_enabled() can only be used with literal subsys names which 230 * is fine for individual subsystems but unsuitable for cgroup core. This 231 * is slower static_key_enabled() based test indexed by @ssid. 232 */ 233 bool cgroup_ssid_enabled(int ssid) 234 { 235 if (CGROUP_SUBSYS_COUNT == 0) 236 return false; 237 238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 239 } 240 241 /** 242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 243 * @cgrp: the cgroup of interest 244 * 245 * The default hierarchy is the v2 interface of cgroup and this function 246 * can be used to test whether a cgroup is on the default hierarchy for 247 * cases where a subsystem should behave differnetly depending on the 248 * interface version. 249 * 250 * The set of behaviors which change on the default hierarchy are still 251 * being determined and the mount option is prefixed with __DEVEL__. 252 * 253 * List of changed behaviors: 254 * 255 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 256 * and "name" are disallowed. 257 * 258 * - When mounting an existing superblock, mount options should match. 259 * 260 * - Remount is disallowed. 261 * 262 * - rename(2) is disallowed. 263 * 264 * - "tasks" is removed. Everything should be at process granularity. Use 265 * "cgroup.procs" instead. 266 * 267 * - "cgroup.procs" is not sorted. pids will be unique unless they got 268 * recycled inbetween reads. 269 * 270 * - "release_agent" and "notify_on_release" are removed. Replacement 271 * notification mechanism will be implemented. 272 * 273 * - "cgroup.clone_children" is removed. 274 * 275 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 276 * and its descendants contain no task; otherwise, 1. The file also 277 * generates kernfs notification which can be monitored through poll and 278 * [di]notify when the value of the file changes. 279 * 280 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 281 * take masks of ancestors with non-empty cpus/mems, instead of being 282 * moved to an ancestor. 283 * 284 * - cpuset: a task can be moved into an empty cpuset, and again it takes 285 * masks of ancestors. 286 * 287 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 288 * is not created. 289 * 290 * - blkcg: blk-throttle becomes properly hierarchical. 291 * 292 * - debug: disallowed on the default hierarchy. 293 */ 294 bool cgroup_on_dfl(const struct cgroup *cgrp) 295 { 296 return cgrp->root == &cgrp_dfl_root; 297 } 298 299 /* IDR wrappers which synchronize using cgroup_idr_lock */ 300 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 301 gfp_t gfp_mask) 302 { 303 int ret; 304 305 idr_preload(gfp_mask); 306 spin_lock_bh(&cgroup_idr_lock); 307 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 308 spin_unlock_bh(&cgroup_idr_lock); 309 idr_preload_end(); 310 return ret; 311 } 312 313 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 314 { 315 void *ret; 316 317 spin_lock_bh(&cgroup_idr_lock); 318 ret = idr_replace(idr, ptr, id); 319 spin_unlock_bh(&cgroup_idr_lock); 320 return ret; 321 } 322 323 static void cgroup_idr_remove(struct idr *idr, int id) 324 { 325 spin_lock_bh(&cgroup_idr_lock); 326 idr_remove(idr, id); 327 spin_unlock_bh(&cgroup_idr_lock); 328 } 329 330 static bool cgroup_has_tasks(struct cgroup *cgrp) 331 { 332 return cgrp->nr_populated_csets; 333 } 334 335 bool cgroup_is_threaded(struct cgroup *cgrp) 336 { 337 return cgrp->dom_cgrp != cgrp; 338 } 339 340 /* can @cgrp host both domain and threaded children? */ 341 static bool cgroup_is_mixable(struct cgroup *cgrp) 342 { 343 /* 344 * Root isn't under domain level resource control exempting it from 345 * the no-internal-process constraint, so it can serve as a thread 346 * root and a parent of resource domains at the same time. 347 */ 348 return !cgroup_parent(cgrp); 349 } 350 351 /* can @cgrp become a thread root? should always be true for a thread root */ 352 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 353 { 354 /* mixables don't care */ 355 if (cgroup_is_mixable(cgrp)) 356 return true; 357 358 /* domain roots can't be nested under threaded */ 359 if (cgroup_is_threaded(cgrp)) 360 return false; 361 362 /* can only have either domain or threaded children */ 363 if (cgrp->nr_populated_domain_children) 364 return false; 365 366 /* and no domain controllers can be enabled */ 367 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 368 return false; 369 370 return true; 371 } 372 373 /* is @cgrp root of a threaded subtree? */ 374 bool cgroup_is_thread_root(struct cgroup *cgrp) 375 { 376 /* thread root should be a domain */ 377 if (cgroup_is_threaded(cgrp)) 378 return false; 379 380 /* a domain w/ threaded children is a thread root */ 381 if (cgrp->nr_threaded_children) 382 return true; 383 384 /* 385 * A domain which has tasks and explicit threaded controllers 386 * enabled is a thread root. 387 */ 388 if (cgroup_has_tasks(cgrp) && 389 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 390 return true; 391 392 return false; 393 } 394 395 /* a domain which isn't connected to the root w/o brekage can't be used */ 396 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 397 { 398 /* the cgroup itself can be a thread root */ 399 if (cgroup_is_threaded(cgrp)) 400 return false; 401 402 /* but the ancestors can't be unless mixable */ 403 while ((cgrp = cgroup_parent(cgrp))) { 404 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 405 return false; 406 if (cgroup_is_threaded(cgrp)) 407 return false; 408 } 409 410 return true; 411 } 412 413 /* subsystems visibly enabled on a cgroup */ 414 static u16 cgroup_control(struct cgroup *cgrp) 415 { 416 struct cgroup *parent = cgroup_parent(cgrp); 417 u16 root_ss_mask = cgrp->root->subsys_mask; 418 419 if (parent) { 420 u16 ss_mask = parent->subtree_control; 421 422 /* threaded cgroups can only have threaded controllers */ 423 if (cgroup_is_threaded(cgrp)) 424 ss_mask &= cgrp_dfl_threaded_ss_mask; 425 return ss_mask; 426 } 427 428 if (cgroup_on_dfl(cgrp)) 429 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 430 cgrp_dfl_implicit_ss_mask); 431 return root_ss_mask; 432 } 433 434 /* subsystems enabled on a cgroup */ 435 static u16 cgroup_ss_mask(struct cgroup *cgrp) 436 { 437 struct cgroup *parent = cgroup_parent(cgrp); 438 439 if (parent) { 440 u16 ss_mask = parent->subtree_ss_mask; 441 442 /* threaded cgroups can only have threaded controllers */ 443 if (cgroup_is_threaded(cgrp)) 444 ss_mask &= cgrp_dfl_threaded_ss_mask; 445 return ss_mask; 446 } 447 448 return cgrp->root->subsys_mask; 449 } 450 451 /** 452 * cgroup_css - obtain a cgroup's css for the specified subsystem 453 * @cgrp: the cgroup of interest 454 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 455 * 456 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 457 * function must be called either under cgroup_mutex or rcu_read_lock() and 458 * the caller is responsible for pinning the returned css if it wants to 459 * keep accessing it outside the said locks. This function may return 460 * %NULL if @cgrp doesn't have @subsys_id enabled. 461 */ 462 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 463 struct cgroup_subsys *ss) 464 { 465 if (ss) 466 return rcu_dereference_check(cgrp->subsys[ss->id], 467 lockdep_is_held(&cgroup_mutex)); 468 else 469 return &cgrp->self; 470 } 471 472 /** 473 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 474 * @cgrp: the cgroup of interest 475 * @ss: the subsystem of interest 476 * 477 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist 478 * or is offline, %NULL is returned. 479 */ 480 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 481 struct cgroup_subsys *ss) 482 { 483 struct cgroup_subsys_state *css; 484 485 rcu_read_lock(); 486 css = cgroup_css(cgrp, ss); 487 if (!css || !css_tryget_online(css)) 488 css = NULL; 489 rcu_read_unlock(); 490 491 return css; 492 } 493 494 /** 495 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 496 * @cgrp: the cgroup of interest 497 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 498 * 499 * Similar to cgroup_css() but returns the effective css, which is defined 500 * as the matching css of the nearest ancestor including self which has @ss 501 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 502 * function is guaranteed to return non-NULL css. 503 */ 504 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 505 struct cgroup_subsys *ss) 506 { 507 lockdep_assert_held(&cgroup_mutex); 508 509 if (!ss) 510 return &cgrp->self; 511 512 /* 513 * This function is used while updating css associations and thus 514 * can't test the csses directly. Test ss_mask. 515 */ 516 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 517 cgrp = cgroup_parent(cgrp); 518 if (!cgrp) 519 return NULL; 520 } 521 522 return cgroup_css(cgrp, ss); 523 } 524 525 /** 526 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 527 * @cgrp: the cgroup of interest 528 * @ss: the subsystem of interest 529 * 530 * Find and get the effective css of @cgrp for @ss. The effective css is 531 * defined as the matching css of the nearest ancestor including self which 532 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 533 * the root css is returned, so this function always returns a valid css. 534 * 535 * The returned css is not guaranteed to be online, and therefore it is the 536 * callers responsiblity to tryget a reference for it. 537 */ 538 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 539 struct cgroup_subsys *ss) 540 { 541 struct cgroup_subsys_state *css; 542 543 do { 544 css = cgroup_css(cgrp, ss); 545 546 if (css) 547 return css; 548 cgrp = cgroup_parent(cgrp); 549 } while (cgrp); 550 551 return init_css_set.subsys[ss->id]; 552 } 553 554 /** 555 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 556 * @cgrp: the cgroup of interest 557 * @ss: the subsystem of interest 558 * 559 * Find and get the effective css of @cgrp for @ss. The effective css is 560 * defined as the matching css of the nearest ancestor including self which 561 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 562 * the root css is returned, so this function always returns a valid css. 563 * The returned css must be put using css_put(). 564 */ 565 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 566 struct cgroup_subsys *ss) 567 { 568 struct cgroup_subsys_state *css; 569 570 rcu_read_lock(); 571 572 do { 573 css = cgroup_css(cgrp, ss); 574 575 if (css && css_tryget_online(css)) 576 goto out_unlock; 577 cgrp = cgroup_parent(cgrp); 578 } while (cgrp); 579 580 css = init_css_set.subsys[ss->id]; 581 css_get(css); 582 out_unlock: 583 rcu_read_unlock(); 584 return css; 585 } 586 587 static void cgroup_get_live(struct cgroup *cgrp) 588 { 589 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 590 css_get(&cgrp->self); 591 } 592 593 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 594 { 595 struct cgroup *cgrp = of->kn->parent->priv; 596 struct cftype *cft = of_cft(of); 597 598 /* 599 * This is open and unprotected implementation of cgroup_css(). 600 * seq_css() is only called from a kernfs file operation which has 601 * an active reference on the file. Because all the subsystem 602 * files are drained before a css is disassociated with a cgroup, 603 * the matching css from the cgroup's subsys table is guaranteed to 604 * be and stay valid until the enclosing operation is complete. 605 */ 606 if (cft->ss) 607 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 608 else 609 return &cgrp->self; 610 } 611 EXPORT_SYMBOL_GPL(of_css); 612 613 /** 614 * for_each_css - iterate all css's of a cgroup 615 * @css: the iteration cursor 616 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 617 * @cgrp: the target cgroup to iterate css's of 618 * 619 * Should be called under cgroup_[tree_]mutex. 620 */ 621 #define for_each_css(css, ssid, cgrp) \ 622 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 623 if (!((css) = rcu_dereference_check( \ 624 (cgrp)->subsys[(ssid)], \ 625 lockdep_is_held(&cgroup_mutex)))) { } \ 626 else 627 628 /** 629 * for_each_e_css - iterate all effective css's of a cgroup 630 * @css: the iteration cursor 631 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 632 * @cgrp: the target cgroup to iterate css's of 633 * 634 * Should be called under cgroup_[tree_]mutex. 635 */ 636 #define for_each_e_css(css, ssid, cgrp) \ 637 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 638 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 639 cgroup_subsys[(ssid)]))) \ 640 ; \ 641 else 642 643 /** 644 * do_each_subsys_mask - filter for_each_subsys with a bitmask 645 * @ss: the iteration cursor 646 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 647 * @ss_mask: the bitmask 648 * 649 * The block will only run for cases where the ssid-th bit (1 << ssid) of 650 * @ss_mask is set. 651 */ 652 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 653 unsigned long __ss_mask = (ss_mask); \ 654 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 655 (ssid) = 0; \ 656 break; \ 657 } \ 658 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 659 (ss) = cgroup_subsys[ssid]; \ 660 { 661 662 #define while_each_subsys_mask() \ 663 } \ 664 } \ 665 } while (false) 666 667 /* iterate over child cgrps, lock should be held throughout iteration */ 668 #define cgroup_for_each_live_child(child, cgrp) \ 669 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 670 if (({ lockdep_assert_held(&cgroup_mutex); \ 671 cgroup_is_dead(child); })) \ 672 ; \ 673 else 674 675 /* walk live descendants in preorder */ 676 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 677 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 678 if (({ lockdep_assert_held(&cgroup_mutex); \ 679 (dsct) = (d_css)->cgroup; \ 680 cgroup_is_dead(dsct); })) \ 681 ; \ 682 else 683 684 /* walk live descendants in postorder */ 685 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 686 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 687 if (({ lockdep_assert_held(&cgroup_mutex); \ 688 (dsct) = (d_css)->cgroup; \ 689 cgroup_is_dead(dsct); })) \ 690 ; \ 691 else 692 693 /* 694 * The default css_set - used by init and its children prior to any 695 * hierarchies being mounted. It contains a pointer to the root state 696 * for each subsystem. Also used to anchor the list of css_sets. Not 697 * reference-counted, to improve performance when child cgroups 698 * haven't been created. 699 */ 700 struct css_set init_css_set = { 701 .refcount = REFCOUNT_INIT(1), 702 .dom_cset = &init_css_set, 703 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 704 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 705 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 706 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 707 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 708 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 709 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 710 711 /* 712 * The following field is re-initialized when this cset gets linked 713 * in cgroup_init(). However, let's initialize the field 714 * statically too so that the default cgroup can be accessed safely 715 * early during boot. 716 */ 717 .dfl_cgrp = &cgrp_dfl_root.cgrp, 718 }; 719 720 static int css_set_count = 1; /* 1 for init_css_set */ 721 722 static bool css_set_threaded(struct css_set *cset) 723 { 724 return cset->dom_cset != cset; 725 } 726 727 /** 728 * css_set_populated - does a css_set contain any tasks? 729 * @cset: target css_set 730 * 731 * css_set_populated() should be the same as !!cset->nr_tasks at steady 732 * state. However, css_set_populated() can be called while a task is being 733 * added to or removed from the linked list before the nr_tasks is 734 * properly updated. Hence, we can't just look at ->nr_tasks here. 735 */ 736 static bool css_set_populated(struct css_set *cset) 737 { 738 lockdep_assert_held(&css_set_lock); 739 740 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 741 } 742 743 /** 744 * cgroup_update_populated - update the populated count of a cgroup 745 * @cgrp: the target cgroup 746 * @populated: inc or dec populated count 747 * 748 * One of the css_sets associated with @cgrp is either getting its first 749 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 750 * count is propagated towards root so that a given cgroup's 751 * nr_populated_children is zero iff none of its descendants contain any 752 * tasks. 753 * 754 * @cgrp's interface file "cgroup.populated" is zero if both 755 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 756 * 1 otherwise. When the sum changes from or to zero, userland is notified 757 * that the content of the interface file has changed. This can be used to 758 * detect when @cgrp and its descendants become populated or empty. 759 */ 760 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 761 { 762 struct cgroup *child = NULL; 763 int adj = populated ? 1 : -1; 764 765 lockdep_assert_held(&css_set_lock); 766 767 do { 768 bool was_populated = cgroup_is_populated(cgrp); 769 770 if (!child) { 771 cgrp->nr_populated_csets += adj; 772 } else { 773 if (cgroup_is_threaded(child)) 774 cgrp->nr_populated_threaded_children += adj; 775 else 776 cgrp->nr_populated_domain_children += adj; 777 } 778 779 if (was_populated == cgroup_is_populated(cgrp)) 780 break; 781 782 cgroup1_check_for_release(cgrp); 783 cgroup_file_notify(&cgrp->events_file); 784 785 child = cgrp; 786 cgrp = cgroup_parent(cgrp); 787 } while (cgrp); 788 } 789 790 /** 791 * css_set_update_populated - update populated state of a css_set 792 * @cset: target css_set 793 * @populated: whether @cset is populated or depopulated 794 * 795 * @cset is either getting the first task or losing the last. Update the 796 * populated counters of all associated cgroups accordingly. 797 */ 798 static void css_set_update_populated(struct css_set *cset, bool populated) 799 { 800 struct cgrp_cset_link *link; 801 802 lockdep_assert_held(&css_set_lock); 803 804 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 805 cgroup_update_populated(link->cgrp, populated); 806 } 807 808 /** 809 * css_set_move_task - move a task from one css_set to another 810 * @task: task being moved 811 * @from_cset: css_set @task currently belongs to (may be NULL) 812 * @to_cset: new css_set @task is being moved to (may be NULL) 813 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 814 * 815 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 816 * css_set, @from_cset can be NULL. If @task is being disassociated 817 * instead of moved, @to_cset can be NULL. 818 * 819 * This function automatically handles populated counter updates and 820 * css_task_iter adjustments but the caller is responsible for managing 821 * @from_cset and @to_cset's reference counts. 822 */ 823 static void css_set_move_task(struct task_struct *task, 824 struct css_set *from_cset, struct css_set *to_cset, 825 bool use_mg_tasks) 826 { 827 lockdep_assert_held(&css_set_lock); 828 829 if (to_cset && !css_set_populated(to_cset)) 830 css_set_update_populated(to_cset, true); 831 832 if (from_cset) { 833 struct css_task_iter *it, *pos; 834 835 WARN_ON_ONCE(list_empty(&task->cg_list)); 836 837 /* 838 * @task is leaving, advance task iterators which are 839 * pointing to it so that they can resume at the next 840 * position. Advancing an iterator might remove it from 841 * the list, use safe walk. See css_task_iter_advance*() 842 * for details. 843 */ 844 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 845 iters_node) 846 if (it->task_pos == &task->cg_list) 847 css_task_iter_advance(it); 848 849 list_del_init(&task->cg_list); 850 if (!css_set_populated(from_cset)) 851 css_set_update_populated(from_cset, false); 852 } else { 853 WARN_ON_ONCE(!list_empty(&task->cg_list)); 854 } 855 856 if (to_cset) { 857 /* 858 * We are synchronized through cgroup_threadgroup_rwsem 859 * against PF_EXITING setting such that we can't race 860 * against cgroup_exit() changing the css_set to 861 * init_css_set and dropping the old one. 862 */ 863 WARN_ON_ONCE(task->flags & PF_EXITING); 864 865 rcu_assign_pointer(task->cgroups, to_cset); 866 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 867 &to_cset->tasks); 868 } 869 } 870 871 /* 872 * hash table for cgroup groups. This improves the performance to find 873 * an existing css_set. This hash doesn't (currently) take into 874 * account cgroups in empty hierarchies. 875 */ 876 #define CSS_SET_HASH_BITS 7 877 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 878 879 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 880 { 881 unsigned long key = 0UL; 882 struct cgroup_subsys *ss; 883 int i; 884 885 for_each_subsys(ss, i) 886 key += (unsigned long)css[i]; 887 key = (key >> 16) ^ key; 888 889 return key; 890 } 891 892 void put_css_set_locked(struct css_set *cset) 893 { 894 struct cgrp_cset_link *link, *tmp_link; 895 struct cgroup_subsys *ss; 896 int ssid; 897 898 lockdep_assert_held(&css_set_lock); 899 900 if (!refcount_dec_and_test(&cset->refcount)) 901 return; 902 903 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 904 905 /* This css_set is dead. unlink it and release cgroup and css refs */ 906 for_each_subsys(ss, ssid) { 907 list_del(&cset->e_cset_node[ssid]); 908 css_put(cset->subsys[ssid]); 909 } 910 hash_del(&cset->hlist); 911 css_set_count--; 912 913 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 914 list_del(&link->cset_link); 915 list_del(&link->cgrp_link); 916 if (cgroup_parent(link->cgrp)) 917 cgroup_put(link->cgrp); 918 kfree(link); 919 } 920 921 if (css_set_threaded(cset)) { 922 list_del(&cset->threaded_csets_node); 923 put_css_set_locked(cset->dom_cset); 924 } 925 926 kfree_rcu(cset, rcu_head); 927 } 928 929 /** 930 * compare_css_sets - helper function for find_existing_css_set(). 931 * @cset: candidate css_set being tested 932 * @old_cset: existing css_set for a task 933 * @new_cgrp: cgroup that's being entered by the task 934 * @template: desired set of css pointers in css_set (pre-calculated) 935 * 936 * Returns true if "cset" matches "old_cset" except for the hierarchy 937 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 938 */ 939 static bool compare_css_sets(struct css_set *cset, 940 struct css_set *old_cset, 941 struct cgroup *new_cgrp, 942 struct cgroup_subsys_state *template[]) 943 { 944 struct cgroup *new_dfl_cgrp; 945 struct list_head *l1, *l2; 946 947 /* 948 * On the default hierarchy, there can be csets which are 949 * associated with the same set of cgroups but different csses. 950 * Let's first ensure that csses match. 951 */ 952 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 953 return false; 954 955 956 /* @cset's domain should match the default cgroup's */ 957 if (cgroup_on_dfl(new_cgrp)) 958 new_dfl_cgrp = new_cgrp; 959 else 960 new_dfl_cgrp = old_cset->dfl_cgrp; 961 962 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 963 return false; 964 965 /* 966 * Compare cgroup pointers in order to distinguish between 967 * different cgroups in hierarchies. As different cgroups may 968 * share the same effective css, this comparison is always 969 * necessary. 970 */ 971 l1 = &cset->cgrp_links; 972 l2 = &old_cset->cgrp_links; 973 while (1) { 974 struct cgrp_cset_link *link1, *link2; 975 struct cgroup *cgrp1, *cgrp2; 976 977 l1 = l1->next; 978 l2 = l2->next; 979 /* See if we reached the end - both lists are equal length. */ 980 if (l1 == &cset->cgrp_links) { 981 BUG_ON(l2 != &old_cset->cgrp_links); 982 break; 983 } else { 984 BUG_ON(l2 == &old_cset->cgrp_links); 985 } 986 /* Locate the cgroups associated with these links. */ 987 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 988 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 989 cgrp1 = link1->cgrp; 990 cgrp2 = link2->cgrp; 991 /* Hierarchies should be linked in the same order. */ 992 BUG_ON(cgrp1->root != cgrp2->root); 993 994 /* 995 * If this hierarchy is the hierarchy of the cgroup 996 * that's changing, then we need to check that this 997 * css_set points to the new cgroup; if it's any other 998 * hierarchy, then this css_set should point to the 999 * same cgroup as the old css_set. 1000 */ 1001 if (cgrp1->root == new_cgrp->root) { 1002 if (cgrp1 != new_cgrp) 1003 return false; 1004 } else { 1005 if (cgrp1 != cgrp2) 1006 return false; 1007 } 1008 } 1009 return true; 1010 } 1011 1012 /** 1013 * find_existing_css_set - init css array and find the matching css_set 1014 * @old_cset: the css_set that we're using before the cgroup transition 1015 * @cgrp: the cgroup that we're moving into 1016 * @template: out param for the new set of csses, should be clear on entry 1017 */ 1018 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1019 struct cgroup *cgrp, 1020 struct cgroup_subsys_state *template[]) 1021 { 1022 struct cgroup_root *root = cgrp->root; 1023 struct cgroup_subsys *ss; 1024 struct css_set *cset; 1025 unsigned long key; 1026 int i; 1027 1028 /* 1029 * Build the set of subsystem state objects that we want to see in the 1030 * new css_set. while subsystems can change globally, the entries here 1031 * won't change, so no need for locking. 1032 */ 1033 for_each_subsys(ss, i) { 1034 if (root->subsys_mask & (1UL << i)) { 1035 /* 1036 * @ss is in this hierarchy, so we want the 1037 * effective css from @cgrp. 1038 */ 1039 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1040 } else { 1041 /* 1042 * @ss is not in this hierarchy, so we don't want 1043 * to change the css. 1044 */ 1045 template[i] = old_cset->subsys[i]; 1046 } 1047 } 1048 1049 key = css_set_hash(template); 1050 hash_for_each_possible(css_set_table, cset, hlist, key) { 1051 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1052 continue; 1053 1054 /* This css_set matches what we need */ 1055 return cset; 1056 } 1057 1058 /* No existing cgroup group matched */ 1059 return NULL; 1060 } 1061 1062 static void free_cgrp_cset_links(struct list_head *links_to_free) 1063 { 1064 struct cgrp_cset_link *link, *tmp_link; 1065 1066 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1067 list_del(&link->cset_link); 1068 kfree(link); 1069 } 1070 } 1071 1072 /** 1073 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1074 * @count: the number of links to allocate 1075 * @tmp_links: list_head the allocated links are put on 1076 * 1077 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1078 * through ->cset_link. Returns 0 on success or -errno. 1079 */ 1080 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1081 { 1082 struct cgrp_cset_link *link; 1083 int i; 1084 1085 INIT_LIST_HEAD(tmp_links); 1086 1087 for (i = 0; i < count; i++) { 1088 link = kzalloc(sizeof(*link), GFP_KERNEL); 1089 if (!link) { 1090 free_cgrp_cset_links(tmp_links); 1091 return -ENOMEM; 1092 } 1093 list_add(&link->cset_link, tmp_links); 1094 } 1095 return 0; 1096 } 1097 1098 /** 1099 * link_css_set - a helper function to link a css_set to a cgroup 1100 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1101 * @cset: the css_set to be linked 1102 * @cgrp: the destination cgroup 1103 */ 1104 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1105 struct cgroup *cgrp) 1106 { 1107 struct cgrp_cset_link *link; 1108 1109 BUG_ON(list_empty(tmp_links)); 1110 1111 if (cgroup_on_dfl(cgrp)) 1112 cset->dfl_cgrp = cgrp; 1113 1114 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1115 link->cset = cset; 1116 link->cgrp = cgrp; 1117 1118 /* 1119 * Always add links to the tail of the lists so that the lists are 1120 * in choronological order. 1121 */ 1122 list_move_tail(&link->cset_link, &cgrp->cset_links); 1123 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1124 1125 if (cgroup_parent(cgrp)) 1126 cgroup_get_live(cgrp); 1127 } 1128 1129 /** 1130 * find_css_set - return a new css_set with one cgroup updated 1131 * @old_cset: the baseline css_set 1132 * @cgrp: the cgroup to be updated 1133 * 1134 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1135 * substituted into the appropriate hierarchy. 1136 */ 1137 static struct css_set *find_css_set(struct css_set *old_cset, 1138 struct cgroup *cgrp) 1139 { 1140 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1141 struct css_set *cset; 1142 struct list_head tmp_links; 1143 struct cgrp_cset_link *link; 1144 struct cgroup_subsys *ss; 1145 unsigned long key; 1146 int ssid; 1147 1148 lockdep_assert_held(&cgroup_mutex); 1149 1150 /* First see if we already have a cgroup group that matches 1151 * the desired set */ 1152 spin_lock_irq(&css_set_lock); 1153 cset = find_existing_css_set(old_cset, cgrp, template); 1154 if (cset) 1155 get_css_set(cset); 1156 spin_unlock_irq(&css_set_lock); 1157 1158 if (cset) 1159 return cset; 1160 1161 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1162 if (!cset) 1163 return NULL; 1164 1165 /* Allocate all the cgrp_cset_link objects that we'll need */ 1166 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1167 kfree(cset); 1168 return NULL; 1169 } 1170 1171 refcount_set(&cset->refcount, 1); 1172 cset->dom_cset = cset; 1173 INIT_LIST_HEAD(&cset->tasks); 1174 INIT_LIST_HEAD(&cset->mg_tasks); 1175 INIT_LIST_HEAD(&cset->task_iters); 1176 INIT_LIST_HEAD(&cset->threaded_csets); 1177 INIT_HLIST_NODE(&cset->hlist); 1178 INIT_LIST_HEAD(&cset->cgrp_links); 1179 INIT_LIST_HEAD(&cset->mg_preload_node); 1180 INIT_LIST_HEAD(&cset->mg_node); 1181 1182 /* Copy the set of subsystem state objects generated in 1183 * find_existing_css_set() */ 1184 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1185 1186 spin_lock_irq(&css_set_lock); 1187 /* Add reference counts and links from the new css_set. */ 1188 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1189 struct cgroup *c = link->cgrp; 1190 1191 if (c->root == cgrp->root) 1192 c = cgrp; 1193 link_css_set(&tmp_links, cset, c); 1194 } 1195 1196 BUG_ON(!list_empty(&tmp_links)); 1197 1198 css_set_count++; 1199 1200 /* Add @cset to the hash table */ 1201 key = css_set_hash(cset->subsys); 1202 hash_add(css_set_table, &cset->hlist, key); 1203 1204 for_each_subsys(ss, ssid) { 1205 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1206 1207 list_add_tail(&cset->e_cset_node[ssid], 1208 &css->cgroup->e_csets[ssid]); 1209 css_get(css); 1210 } 1211 1212 spin_unlock_irq(&css_set_lock); 1213 1214 /* 1215 * If @cset should be threaded, look up the matching dom_cset and 1216 * link them up. We first fully initialize @cset then look for the 1217 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1218 * to stay empty until we return. 1219 */ 1220 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1221 struct css_set *dcset; 1222 1223 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1224 if (!dcset) { 1225 put_css_set(cset); 1226 return NULL; 1227 } 1228 1229 spin_lock_irq(&css_set_lock); 1230 cset->dom_cset = dcset; 1231 list_add_tail(&cset->threaded_csets_node, 1232 &dcset->threaded_csets); 1233 spin_unlock_irq(&css_set_lock); 1234 } 1235 1236 return cset; 1237 } 1238 1239 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1240 { 1241 struct cgroup *root_cgrp = kf_root->kn->priv; 1242 1243 return root_cgrp->root; 1244 } 1245 1246 static int cgroup_init_root_id(struct cgroup_root *root) 1247 { 1248 int id; 1249 1250 lockdep_assert_held(&cgroup_mutex); 1251 1252 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1253 if (id < 0) 1254 return id; 1255 1256 root->hierarchy_id = id; 1257 return 0; 1258 } 1259 1260 static void cgroup_exit_root_id(struct cgroup_root *root) 1261 { 1262 lockdep_assert_held(&cgroup_mutex); 1263 1264 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1265 } 1266 1267 void cgroup_free_root(struct cgroup_root *root) 1268 { 1269 if (root) { 1270 idr_destroy(&root->cgroup_idr); 1271 kfree(root); 1272 } 1273 } 1274 1275 static void cgroup_destroy_root(struct cgroup_root *root) 1276 { 1277 struct cgroup *cgrp = &root->cgrp; 1278 struct cgrp_cset_link *link, *tmp_link; 1279 1280 trace_cgroup_destroy_root(root); 1281 1282 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1283 1284 BUG_ON(atomic_read(&root->nr_cgrps)); 1285 BUG_ON(!list_empty(&cgrp->self.children)); 1286 1287 /* Rebind all subsystems back to the default hierarchy */ 1288 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1289 1290 /* 1291 * Release all the links from cset_links to this hierarchy's 1292 * root cgroup 1293 */ 1294 spin_lock_irq(&css_set_lock); 1295 1296 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1297 list_del(&link->cset_link); 1298 list_del(&link->cgrp_link); 1299 kfree(link); 1300 } 1301 1302 spin_unlock_irq(&css_set_lock); 1303 1304 if (!list_empty(&root->root_list)) { 1305 list_del(&root->root_list); 1306 cgroup_root_count--; 1307 } 1308 1309 cgroup_exit_root_id(root); 1310 1311 mutex_unlock(&cgroup_mutex); 1312 1313 kernfs_destroy_root(root->kf_root); 1314 cgroup_free_root(root); 1315 } 1316 1317 /* 1318 * look up cgroup associated with current task's cgroup namespace on the 1319 * specified hierarchy 1320 */ 1321 static struct cgroup * 1322 current_cgns_cgroup_from_root(struct cgroup_root *root) 1323 { 1324 struct cgroup *res = NULL; 1325 struct css_set *cset; 1326 1327 lockdep_assert_held(&css_set_lock); 1328 1329 rcu_read_lock(); 1330 1331 cset = current->nsproxy->cgroup_ns->root_cset; 1332 if (cset == &init_css_set) { 1333 res = &root->cgrp; 1334 } else { 1335 struct cgrp_cset_link *link; 1336 1337 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1338 struct cgroup *c = link->cgrp; 1339 1340 if (c->root == root) { 1341 res = c; 1342 break; 1343 } 1344 } 1345 } 1346 rcu_read_unlock(); 1347 1348 BUG_ON(!res); 1349 return res; 1350 } 1351 1352 /* look up cgroup associated with given css_set on the specified hierarchy */ 1353 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1354 struct cgroup_root *root) 1355 { 1356 struct cgroup *res = NULL; 1357 1358 lockdep_assert_held(&cgroup_mutex); 1359 lockdep_assert_held(&css_set_lock); 1360 1361 if (cset == &init_css_set) { 1362 res = &root->cgrp; 1363 } else if (root == &cgrp_dfl_root) { 1364 res = cset->dfl_cgrp; 1365 } else { 1366 struct cgrp_cset_link *link; 1367 1368 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1369 struct cgroup *c = link->cgrp; 1370 1371 if (c->root == root) { 1372 res = c; 1373 break; 1374 } 1375 } 1376 } 1377 1378 BUG_ON(!res); 1379 return res; 1380 } 1381 1382 /* 1383 * Return the cgroup for "task" from the given hierarchy. Must be 1384 * called with cgroup_mutex and css_set_lock held. 1385 */ 1386 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1387 struct cgroup_root *root) 1388 { 1389 /* 1390 * No need to lock the task - since we hold cgroup_mutex the 1391 * task can't change groups, so the only thing that can happen 1392 * is that it exits and its css is set back to init_css_set. 1393 */ 1394 return cset_cgroup_from_root(task_css_set(task), root); 1395 } 1396 1397 /* 1398 * A task must hold cgroup_mutex to modify cgroups. 1399 * 1400 * Any task can increment and decrement the count field without lock. 1401 * So in general, code holding cgroup_mutex can't rely on the count 1402 * field not changing. However, if the count goes to zero, then only 1403 * cgroup_attach_task() can increment it again. Because a count of zero 1404 * means that no tasks are currently attached, therefore there is no 1405 * way a task attached to that cgroup can fork (the other way to 1406 * increment the count). So code holding cgroup_mutex can safely 1407 * assume that if the count is zero, it will stay zero. Similarly, if 1408 * a task holds cgroup_mutex on a cgroup with zero count, it 1409 * knows that the cgroup won't be removed, as cgroup_rmdir() 1410 * needs that mutex. 1411 * 1412 * A cgroup can only be deleted if both its 'count' of using tasks 1413 * is zero, and its list of 'children' cgroups is empty. Since all 1414 * tasks in the system use _some_ cgroup, and since there is always at 1415 * least one task in the system (init, pid == 1), therefore, root cgroup 1416 * always has either children cgroups and/or using tasks. So we don't 1417 * need a special hack to ensure that root cgroup cannot be deleted. 1418 * 1419 * P.S. One more locking exception. RCU is used to guard the 1420 * update of a tasks cgroup pointer by cgroup_attach_task() 1421 */ 1422 1423 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1424 1425 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1426 char *buf) 1427 { 1428 struct cgroup_subsys *ss = cft->ss; 1429 1430 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1431 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) 1432 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", 1433 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1434 cft->name); 1435 else 1436 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1437 return buf; 1438 } 1439 1440 /** 1441 * cgroup_file_mode - deduce file mode of a control file 1442 * @cft: the control file in question 1443 * 1444 * S_IRUGO for read, S_IWUSR for write. 1445 */ 1446 static umode_t cgroup_file_mode(const struct cftype *cft) 1447 { 1448 umode_t mode = 0; 1449 1450 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1451 mode |= S_IRUGO; 1452 1453 if (cft->write_u64 || cft->write_s64 || cft->write) { 1454 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1455 mode |= S_IWUGO; 1456 else 1457 mode |= S_IWUSR; 1458 } 1459 1460 return mode; 1461 } 1462 1463 /** 1464 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1465 * @subtree_control: the new subtree_control mask to consider 1466 * @this_ss_mask: available subsystems 1467 * 1468 * On the default hierarchy, a subsystem may request other subsystems to be 1469 * enabled together through its ->depends_on mask. In such cases, more 1470 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1471 * 1472 * This function calculates which subsystems need to be enabled if 1473 * @subtree_control is to be applied while restricted to @this_ss_mask. 1474 */ 1475 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1476 { 1477 u16 cur_ss_mask = subtree_control; 1478 struct cgroup_subsys *ss; 1479 int ssid; 1480 1481 lockdep_assert_held(&cgroup_mutex); 1482 1483 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1484 1485 while (true) { 1486 u16 new_ss_mask = cur_ss_mask; 1487 1488 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1489 new_ss_mask |= ss->depends_on; 1490 } while_each_subsys_mask(); 1491 1492 /* 1493 * Mask out subsystems which aren't available. This can 1494 * happen only if some depended-upon subsystems were bound 1495 * to non-default hierarchies. 1496 */ 1497 new_ss_mask &= this_ss_mask; 1498 1499 if (new_ss_mask == cur_ss_mask) 1500 break; 1501 cur_ss_mask = new_ss_mask; 1502 } 1503 1504 return cur_ss_mask; 1505 } 1506 1507 /** 1508 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1509 * @kn: the kernfs_node being serviced 1510 * 1511 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1512 * the method finishes if locking succeeded. Note that once this function 1513 * returns the cgroup returned by cgroup_kn_lock_live() may become 1514 * inaccessible any time. If the caller intends to continue to access the 1515 * cgroup, it should pin it before invoking this function. 1516 */ 1517 void cgroup_kn_unlock(struct kernfs_node *kn) 1518 { 1519 struct cgroup *cgrp; 1520 1521 if (kernfs_type(kn) == KERNFS_DIR) 1522 cgrp = kn->priv; 1523 else 1524 cgrp = kn->parent->priv; 1525 1526 mutex_unlock(&cgroup_mutex); 1527 1528 kernfs_unbreak_active_protection(kn); 1529 cgroup_put(cgrp); 1530 } 1531 1532 /** 1533 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1534 * @kn: the kernfs_node being serviced 1535 * @drain_offline: perform offline draining on the cgroup 1536 * 1537 * This helper is to be used by a cgroup kernfs method currently servicing 1538 * @kn. It breaks the active protection, performs cgroup locking and 1539 * verifies that the associated cgroup is alive. Returns the cgroup if 1540 * alive; otherwise, %NULL. A successful return should be undone by a 1541 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1542 * cgroup is drained of offlining csses before return. 1543 * 1544 * Any cgroup kernfs method implementation which requires locking the 1545 * associated cgroup should use this helper. It avoids nesting cgroup 1546 * locking under kernfs active protection and allows all kernfs operations 1547 * including self-removal. 1548 */ 1549 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1550 { 1551 struct cgroup *cgrp; 1552 1553 if (kernfs_type(kn) == KERNFS_DIR) 1554 cgrp = kn->priv; 1555 else 1556 cgrp = kn->parent->priv; 1557 1558 /* 1559 * We're gonna grab cgroup_mutex which nests outside kernfs 1560 * active_ref. cgroup liveliness check alone provides enough 1561 * protection against removal. Ensure @cgrp stays accessible and 1562 * break the active_ref protection. 1563 */ 1564 if (!cgroup_tryget(cgrp)) 1565 return NULL; 1566 kernfs_break_active_protection(kn); 1567 1568 if (drain_offline) 1569 cgroup_lock_and_drain_offline(cgrp); 1570 else 1571 mutex_lock(&cgroup_mutex); 1572 1573 if (!cgroup_is_dead(cgrp)) 1574 return cgrp; 1575 1576 cgroup_kn_unlock(kn); 1577 return NULL; 1578 } 1579 1580 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1581 { 1582 char name[CGROUP_FILE_NAME_MAX]; 1583 1584 lockdep_assert_held(&cgroup_mutex); 1585 1586 if (cft->file_offset) { 1587 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1588 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1589 1590 spin_lock_irq(&cgroup_file_kn_lock); 1591 cfile->kn = NULL; 1592 spin_unlock_irq(&cgroup_file_kn_lock); 1593 1594 del_timer_sync(&cfile->notify_timer); 1595 } 1596 1597 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1598 } 1599 1600 /** 1601 * css_clear_dir - remove subsys files in a cgroup directory 1602 * @css: taget css 1603 */ 1604 static void css_clear_dir(struct cgroup_subsys_state *css) 1605 { 1606 struct cgroup *cgrp = css->cgroup; 1607 struct cftype *cfts; 1608 1609 if (!(css->flags & CSS_VISIBLE)) 1610 return; 1611 1612 css->flags &= ~CSS_VISIBLE; 1613 1614 if (!css->ss) { 1615 if (cgroup_on_dfl(cgrp)) 1616 cfts = cgroup_base_files; 1617 else 1618 cfts = cgroup1_base_files; 1619 1620 cgroup_addrm_files(css, cgrp, cfts, false); 1621 } else { 1622 list_for_each_entry(cfts, &css->ss->cfts, node) 1623 cgroup_addrm_files(css, cgrp, cfts, false); 1624 } 1625 } 1626 1627 /** 1628 * css_populate_dir - create subsys files in a cgroup directory 1629 * @css: target css 1630 * 1631 * On failure, no file is added. 1632 */ 1633 static int css_populate_dir(struct cgroup_subsys_state *css) 1634 { 1635 struct cgroup *cgrp = css->cgroup; 1636 struct cftype *cfts, *failed_cfts; 1637 int ret; 1638 1639 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1640 return 0; 1641 1642 if (!css->ss) { 1643 if (cgroup_on_dfl(cgrp)) 1644 cfts = cgroup_base_files; 1645 else 1646 cfts = cgroup1_base_files; 1647 1648 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1649 if (ret < 0) 1650 return ret; 1651 } else { 1652 list_for_each_entry(cfts, &css->ss->cfts, node) { 1653 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1654 if (ret < 0) { 1655 failed_cfts = cfts; 1656 goto err; 1657 } 1658 } 1659 } 1660 1661 css->flags |= CSS_VISIBLE; 1662 1663 return 0; 1664 err: 1665 list_for_each_entry(cfts, &css->ss->cfts, node) { 1666 if (cfts == failed_cfts) 1667 break; 1668 cgroup_addrm_files(css, cgrp, cfts, false); 1669 } 1670 return ret; 1671 } 1672 1673 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1674 { 1675 struct cgroup *dcgrp = &dst_root->cgrp; 1676 struct cgroup_subsys *ss; 1677 int ssid, i, ret; 1678 1679 lockdep_assert_held(&cgroup_mutex); 1680 1681 do_each_subsys_mask(ss, ssid, ss_mask) { 1682 /* 1683 * If @ss has non-root csses attached to it, can't move. 1684 * If @ss is an implicit controller, it is exempt from this 1685 * rule and can be stolen. 1686 */ 1687 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1688 !ss->implicit_on_dfl) 1689 return -EBUSY; 1690 1691 /* can't move between two non-dummy roots either */ 1692 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1693 return -EBUSY; 1694 } while_each_subsys_mask(); 1695 1696 do_each_subsys_mask(ss, ssid, ss_mask) { 1697 struct cgroup_root *src_root = ss->root; 1698 struct cgroup *scgrp = &src_root->cgrp; 1699 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1700 struct css_set *cset; 1701 1702 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1703 1704 /* disable from the source */ 1705 src_root->subsys_mask &= ~(1 << ssid); 1706 WARN_ON(cgroup_apply_control(scgrp)); 1707 cgroup_finalize_control(scgrp, 0); 1708 1709 /* rebind */ 1710 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1711 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1712 ss->root = dst_root; 1713 css->cgroup = dcgrp; 1714 1715 spin_lock_irq(&css_set_lock); 1716 hash_for_each(css_set_table, i, cset, hlist) 1717 list_move_tail(&cset->e_cset_node[ss->id], 1718 &dcgrp->e_csets[ss->id]); 1719 spin_unlock_irq(&css_set_lock); 1720 1721 /* default hierarchy doesn't enable controllers by default */ 1722 dst_root->subsys_mask |= 1 << ssid; 1723 if (dst_root == &cgrp_dfl_root) { 1724 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1725 } else { 1726 dcgrp->subtree_control |= 1 << ssid; 1727 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1728 } 1729 1730 ret = cgroup_apply_control(dcgrp); 1731 if (ret) 1732 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1733 ss->name, ret); 1734 1735 if (ss->bind) 1736 ss->bind(css); 1737 } while_each_subsys_mask(); 1738 1739 kernfs_activate(dcgrp->kn); 1740 return 0; 1741 } 1742 1743 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1744 struct kernfs_root *kf_root) 1745 { 1746 int len = 0; 1747 char *buf = NULL; 1748 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1749 struct cgroup *ns_cgroup; 1750 1751 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1752 if (!buf) 1753 return -ENOMEM; 1754 1755 spin_lock_irq(&css_set_lock); 1756 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1757 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1758 spin_unlock_irq(&css_set_lock); 1759 1760 if (len >= PATH_MAX) 1761 len = -ERANGE; 1762 else if (len > 0) { 1763 seq_escape(sf, buf, " \t\n\\"); 1764 len = 0; 1765 } 1766 kfree(buf); 1767 return len; 1768 } 1769 1770 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags) 1771 { 1772 char *token; 1773 1774 *root_flags = 0; 1775 1776 if (!data) 1777 return 0; 1778 1779 while ((token = strsep(&data, ",")) != NULL) { 1780 if (!strcmp(token, "nsdelegate")) { 1781 *root_flags |= CGRP_ROOT_NS_DELEGATE; 1782 continue; 1783 } 1784 1785 pr_err("cgroup2: unknown option \"%s\"\n", token); 1786 return -EINVAL; 1787 } 1788 1789 return 0; 1790 } 1791 1792 static void apply_cgroup_root_flags(unsigned int root_flags) 1793 { 1794 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1795 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1796 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1797 else 1798 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1799 } 1800 } 1801 1802 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1803 { 1804 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1805 seq_puts(seq, ",nsdelegate"); 1806 return 0; 1807 } 1808 1809 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) 1810 { 1811 unsigned int root_flags; 1812 int ret; 1813 1814 ret = parse_cgroup_root_flags(data, &root_flags); 1815 if (ret) 1816 return ret; 1817 1818 apply_cgroup_root_flags(root_flags); 1819 return 0; 1820 } 1821 1822 /* 1823 * To reduce the fork() overhead for systems that are not actually using 1824 * their cgroups capability, we don't maintain the lists running through 1825 * each css_set to its tasks until we see the list actually used - in other 1826 * words after the first mount. 1827 */ 1828 static bool use_task_css_set_links __read_mostly; 1829 1830 static void cgroup_enable_task_cg_lists(void) 1831 { 1832 struct task_struct *p, *g; 1833 1834 /* 1835 * We need tasklist_lock because RCU is not safe against 1836 * while_each_thread(). Besides, a forking task that has passed 1837 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1838 * is not guaranteed to have its child immediately visible in the 1839 * tasklist if we walk through it with RCU. 1840 */ 1841 read_lock(&tasklist_lock); 1842 spin_lock_irq(&css_set_lock); 1843 1844 if (use_task_css_set_links) 1845 goto out_unlock; 1846 1847 use_task_css_set_links = true; 1848 1849 do_each_thread(g, p) { 1850 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1851 task_css_set(p) != &init_css_set); 1852 1853 /* 1854 * We should check if the process is exiting, otherwise 1855 * it will race with cgroup_exit() in that the list 1856 * entry won't be deleted though the process has exited. 1857 * Do it while holding siglock so that we don't end up 1858 * racing against cgroup_exit(). 1859 * 1860 * Interrupts were already disabled while acquiring 1861 * the css_set_lock, so we do not need to disable it 1862 * again when acquiring the sighand->siglock here. 1863 */ 1864 spin_lock(&p->sighand->siglock); 1865 if (!(p->flags & PF_EXITING)) { 1866 struct css_set *cset = task_css_set(p); 1867 1868 if (!css_set_populated(cset)) 1869 css_set_update_populated(cset, true); 1870 list_add_tail(&p->cg_list, &cset->tasks); 1871 get_css_set(cset); 1872 cset->nr_tasks++; 1873 } 1874 spin_unlock(&p->sighand->siglock); 1875 } while_each_thread(g, p); 1876 out_unlock: 1877 spin_unlock_irq(&css_set_lock); 1878 read_unlock(&tasklist_lock); 1879 } 1880 1881 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1882 { 1883 struct cgroup_subsys *ss; 1884 int ssid; 1885 1886 INIT_LIST_HEAD(&cgrp->self.sibling); 1887 INIT_LIST_HEAD(&cgrp->self.children); 1888 INIT_LIST_HEAD(&cgrp->cset_links); 1889 INIT_LIST_HEAD(&cgrp->pidlists); 1890 mutex_init(&cgrp->pidlist_mutex); 1891 cgrp->self.cgroup = cgrp; 1892 cgrp->self.flags |= CSS_ONLINE; 1893 cgrp->dom_cgrp = cgrp; 1894 cgrp->max_descendants = INT_MAX; 1895 cgrp->max_depth = INT_MAX; 1896 INIT_LIST_HEAD(&cgrp->rstat_css_list); 1897 prev_cputime_init(&cgrp->prev_cputime); 1898 1899 for_each_subsys(ss, ssid) 1900 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1901 1902 init_waitqueue_head(&cgrp->offline_waitq); 1903 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1904 } 1905 1906 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) 1907 { 1908 struct cgroup *cgrp = &root->cgrp; 1909 1910 INIT_LIST_HEAD(&root->root_list); 1911 atomic_set(&root->nr_cgrps, 1); 1912 cgrp->root = root; 1913 init_cgroup_housekeeping(cgrp); 1914 idr_init(&root->cgroup_idr); 1915 1916 root->flags = opts->flags; 1917 if (opts->release_agent) 1918 strscpy(root->release_agent_path, opts->release_agent, PATH_MAX); 1919 if (opts->name) 1920 strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN); 1921 if (opts->cpuset_clone_children) 1922 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1923 } 1924 1925 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) 1926 { 1927 LIST_HEAD(tmp_links); 1928 struct cgroup *root_cgrp = &root->cgrp; 1929 struct kernfs_syscall_ops *kf_sops; 1930 struct css_set *cset; 1931 int i, ret; 1932 1933 lockdep_assert_held(&cgroup_mutex); 1934 1935 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1936 if (ret < 0) 1937 goto out; 1938 root_cgrp->id = ret; 1939 root_cgrp->ancestor_ids[0] = ret; 1940 1941 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1942 ref_flags, GFP_KERNEL); 1943 if (ret) 1944 goto out; 1945 1946 /* 1947 * We're accessing css_set_count without locking css_set_lock here, 1948 * but that's OK - it can only be increased by someone holding 1949 * cgroup_lock, and that's us. Later rebinding may disable 1950 * controllers on the default hierarchy and thus create new csets, 1951 * which can't be more than the existing ones. Allocate 2x. 1952 */ 1953 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1954 if (ret) 1955 goto cancel_ref; 1956 1957 ret = cgroup_init_root_id(root); 1958 if (ret) 1959 goto cancel_ref; 1960 1961 kf_sops = root == &cgrp_dfl_root ? 1962 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1963 1964 root->kf_root = kernfs_create_root(kf_sops, 1965 KERNFS_ROOT_CREATE_DEACTIVATED | 1966 KERNFS_ROOT_SUPPORT_EXPORTOP, 1967 root_cgrp); 1968 if (IS_ERR(root->kf_root)) { 1969 ret = PTR_ERR(root->kf_root); 1970 goto exit_root_id; 1971 } 1972 root_cgrp->kn = root->kf_root->kn; 1973 1974 ret = css_populate_dir(&root_cgrp->self); 1975 if (ret) 1976 goto destroy_root; 1977 1978 ret = rebind_subsystems(root, ss_mask); 1979 if (ret) 1980 goto destroy_root; 1981 1982 ret = cgroup_bpf_inherit(root_cgrp); 1983 WARN_ON_ONCE(ret); 1984 1985 trace_cgroup_setup_root(root); 1986 1987 /* 1988 * There must be no failure case after here, since rebinding takes 1989 * care of subsystems' refcounts, which are explicitly dropped in 1990 * the failure exit path. 1991 */ 1992 list_add(&root->root_list, &cgroup_roots); 1993 cgroup_root_count++; 1994 1995 /* 1996 * Link the root cgroup in this hierarchy into all the css_set 1997 * objects. 1998 */ 1999 spin_lock_irq(&css_set_lock); 2000 hash_for_each(css_set_table, i, cset, hlist) { 2001 link_css_set(&tmp_links, cset, root_cgrp); 2002 if (css_set_populated(cset)) 2003 cgroup_update_populated(root_cgrp, true); 2004 } 2005 spin_unlock_irq(&css_set_lock); 2006 2007 BUG_ON(!list_empty(&root_cgrp->self.children)); 2008 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2009 2010 kernfs_activate(root_cgrp->kn); 2011 ret = 0; 2012 goto out; 2013 2014 destroy_root: 2015 kernfs_destroy_root(root->kf_root); 2016 root->kf_root = NULL; 2017 exit_root_id: 2018 cgroup_exit_root_id(root); 2019 cancel_ref: 2020 percpu_ref_exit(&root_cgrp->self.refcnt); 2021 out: 2022 free_cgrp_cset_links(&tmp_links); 2023 return ret; 2024 } 2025 2026 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, 2027 struct cgroup_root *root, unsigned long magic, 2028 struct cgroup_namespace *ns) 2029 { 2030 struct dentry *dentry; 2031 bool new_sb; 2032 2033 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb); 2034 2035 /* 2036 * In non-init cgroup namespace, instead of root cgroup's dentry, 2037 * we return the dentry corresponding to the cgroupns->root_cgrp. 2038 */ 2039 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { 2040 struct dentry *nsdentry; 2041 struct cgroup *cgrp; 2042 2043 mutex_lock(&cgroup_mutex); 2044 spin_lock_irq(&css_set_lock); 2045 2046 cgrp = cset_cgroup_from_root(ns->root_cset, root); 2047 2048 spin_unlock_irq(&css_set_lock); 2049 mutex_unlock(&cgroup_mutex); 2050 2051 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb); 2052 dput(dentry); 2053 dentry = nsdentry; 2054 } 2055 2056 if (IS_ERR(dentry) || !new_sb) 2057 cgroup_put(&root->cgrp); 2058 2059 return dentry; 2060 } 2061 2062 static struct dentry *cgroup_mount(struct file_system_type *fs_type, 2063 int flags, const char *unused_dev_name, 2064 void *data) 2065 { 2066 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 2067 struct dentry *dentry; 2068 int ret; 2069 2070 get_cgroup_ns(ns); 2071 2072 /* Check if the caller has permission to mount. */ 2073 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { 2074 put_cgroup_ns(ns); 2075 return ERR_PTR(-EPERM); 2076 } 2077 2078 /* 2079 * The first time anyone tries to mount a cgroup, enable the list 2080 * linking each css_set to its tasks and fix up all existing tasks. 2081 */ 2082 if (!use_task_css_set_links) 2083 cgroup_enable_task_cg_lists(); 2084 2085 if (fs_type == &cgroup2_fs_type) { 2086 unsigned int root_flags; 2087 2088 ret = parse_cgroup_root_flags(data, &root_flags); 2089 if (ret) { 2090 put_cgroup_ns(ns); 2091 return ERR_PTR(ret); 2092 } 2093 2094 cgrp_dfl_visible = true; 2095 cgroup_get_live(&cgrp_dfl_root.cgrp); 2096 2097 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root, 2098 CGROUP2_SUPER_MAGIC, ns); 2099 if (!IS_ERR(dentry)) 2100 apply_cgroup_root_flags(root_flags); 2101 } else { 2102 dentry = cgroup1_mount(&cgroup_fs_type, flags, data, 2103 CGROUP_SUPER_MAGIC, ns); 2104 } 2105 2106 put_cgroup_ns(ns); 2107 return dentry; 2108 } 2109 2110 static void cgroup_kill_sb(struct super_block *sb) 2111 { 2112 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2113 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2114 2115 /* 2116 * If @root doesn't have any mounts or children, start killing it. 2117 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2118 * cgroup_mount() may wait for @root's release. 2119 * 2120 * And don't kill the default root. 2121 */ 2122 if (!list_empty(&root->cgrp.self.children) || 2123 root == &cgrp_dfl_root) 2124 cgroup_put(&root->cgrp); 2125 else 2126 percpu_ref_kill(&root->cgrp.self.refcnt); 2127 2128 kernfs_kill_sb(sb); 2129 } 2130 2131 struct file_system_type cgroup_fs_type = { 2132 .name = "cgroup", 2133 .mount = cgroup_mount, 2134 .kill_sb = cgroup_kill_sb, 2135 .fs_flags = FS_USERNS_MOUNT, 2136 }; 2137 2138 static struct file_system_type cgroup2_fs_type = { 2139 .name = "cgroup2", 2140 .mount = cgroup_mount, 2141 .kill_sb = cgroup_kill_sb, 2142 .fs_flags = FS_USERNS_MOUNT, 2143 }; 2144 2145 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2146 struct cgroup_namespace *ns) 2147 { 2148 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2149 2150 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2151 } 2152 2153 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2154 struct cgroup_namespace *ns) 2155 { 2156 int ret; 2157 2158 mutex_lock(&cgroup_mutex); 2159 spin_lock_irq(&css_set_lock); 2160 2161 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2162 2163 spin_unlock_irq(&css_set_lock); 2164 mutex_unlock(&cgroup_mutex); 2165 2166 return ret; 2167 } 2168 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2169 2170 /** 2171 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2172 * @task: target task 2173 * @buf: the buffer to write the path into 2174 * @buflen: the length of the buffer 2175 * 2176 * Determine @task's cgroup on the first (the one with the lowest non-zero 2177 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2178 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2179 * cgroup controller callbacks. 2180 * 2181 * Return value is the same as kernfs_path(). 2182 */ 2183 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2184 { 2185 struct cgroup_root *root; 2186 struct cgroup *cgrp; 2187 int hierarchy_id = 1; 2188 int ret; 2189 2190 mutex_lock(&cgroup_mutex); 2191 spin_lock_irq(&css_set_lock); 2192 2193 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2194 2195 if (root) { 2196 cgrp = task_cgroup_from_root(task, root); 2197 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2198 } else { 2199 /* if no hierarchy exists, everyone is in "/" */ 2200 ret = strlcpy(buf, "/", buflen); 2201 } 2202 2203 spin_unlock_irq(&css_set_lock); 2204 mutex_unlock(&cgroup_mutex); 2205 return ret; 2206 } 2207 EXPORT_SYMBOL_GPL(task_cgroup_path); 2208 2209 /** 2210 * cgroup_migrate_add_task - add a migration target task to a migration context 2211 * @task: target task 2212 * @mgctx: target migration context 2213 * 2214 * Add @task, which is a migration target, to @mgctx->tset. This function 2215 * becomes noop if @task doesn't need to be migrated. @task's css_set 2216 * should have been added as a migration source and @task->cg_list will be 2217 * moved from the css_set's tasks list to mg_tasks one. 2218 */ 2219 static void cgroup_migrate_add_task(struct task_struct *task, 2220 struct cgroup_mgctx *mgctx) 2221 { 2222 struct css_set *cset; 2223 2224 lockdep_assert_held(&css_set_lock); 2225 2226 /* @task either already exited or can't exit until the end */ 2227 if (task->flags & PF_EXITING) 2228 return; 2229 2230 /* leave @task alone if post_fork() hasn't linked it yet */ 2231 if (list_empty(&task->cg_list)) 2232 return; 2233 2234 cset = task_css_set(task); 2235 if (!cset->mg_src_cgrp) 2236 return; 2237 2238 mgctx->tset.nr_tasks++; 2239 2240 list_move_tail(&task->cg_list, &cset->mg_tasks); 2241 if (list_empty(&cset->mg_node)) 2242 list_add_tail(&cset->mg_node, 2243 &mgctx->tset.src_csets); 2244 if (list_empty(&cset->mg_dst_cset->mg_node)) 2245 list_add_tail(&cset->mg_dst_cset->mg_node, 2246 &mgctx->tset.dst_csets); 2247 } 2248 2249 /** 2250 * cgroup_taskset_first - reset taskset and return the first task 2251 * @tset: taskset of interest 2252 * @dst_cssp: output variable for the destination css 2253 * 2254 * @tset iteration is initialized and the first task is returned. 2255 */ 2256 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2257 struct cgroup_subsys_state **dst_cssp) 2258 { 2259 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2260 tset->cur_task = NULL; 2261 2262 return cgroup_taskset_next(tset, dst_cssp); 2263 } 2264 2265 /** 2266 * cgroup_taskset_next - iterate to the next task in taskset 2267 * @tset: taskset of interest 2268 * @dst_cssp: output variable for the destination css 2269 * 2270 * Return the next task in @tset. Iteration must have been initialized 2271 * with cgroup_taskset_first(). 2272 */ 2273 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2274 struct cgroup_subsys_state **dst_cssp) 2275 { 2276 struct css_set *cset = tset->cur_cset; 2277 struct task_struct *task = tset->cur_task; 2278 2279 while (&cset->mg_node != tset->csets) { 2280 if (!task) 2281 task = list_first_entry(&cset->mg_tasks, 2282 struct task_struct, cg_list); 2283 else 2284 task = list_next_entry(task, cg_list); 2285 2286 if (&task->cg_list != &cset->mg_tasks) { 2287 tset->cur_cset = cset; 2288 tset->cur_task = task; 2289 2290 /* 2291 * This function may be called both before and 2292 * after cgroup_taskset_migrate(). The two cases 2293 * can be distinguished by looking at whether @cset 2294 * has its ->mg_dst_cset set. 2295 */ 2296 if (cset->mg_dst_cset) 2297 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2298 else 2299 *dst_cssp = cset->subsys[tset->ssid]; 2300 2301 return task; 2302 } 2303 2304 cset = list_next_entry(cset, mg_node); 2305 task = NULL; 2306 } 2307 2308 return NULL; 2309 } 2310 2311 /** 2312 * cgroup_taskset_migrate - migrate a taskset 2313 * @mgctx: migration context 2314 * 2315 * Migrate tasks in @mgctx as setup by migration preparation functions. 2316 * This function fails iff one of the ->can_attach callbacks fails and 2317 * guarantees that either all or none of the tasks in @mgctx are migrated. 2318 * @mgctx is consumed regardless of success. 2319 */ 2320 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2321 { 2322 struct cgroup_taskset *tset = &mgctx->tset; 2323 struct cgroup_subsys *ss; 2324 struct task_struct *task, *tmp_task; 2325 struct css_set *cset, *tmp_cset; 2326 int ssid, failed_ssid, ret; 2327 2328 /* check that we can legitimately attach to the cgroup */ 2329 if (tset->nr_tasks) { 2330 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2331 if (ss->can_attach) { 2332 tset->ssid = ssid; 2333 ret = ss->can_attach(tset); 2334 if (ret) { 2335 failed_ssid = ssid; 2336 goto out_cancel_attach; 2337 } 2338 } 2339 } while_each_subsys_mask(); 2340 } 2341 2342 /* 2343 * Now that we're guaranteed success, proceed to move all tasks to 2344 * the new cgroup. There are no failure cases after here, so this 2345 * is the commit point. 2346 */ 2347 spin_lock_irq(&css_set_lock); 2348 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2349 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2350 struct css_set *from_cset = task_css_set(task); 2351 struct css_set *to_cset = cset->mg_dst_cset; 2352 2353 get_css_set(to_cset); 2354 to_cset->nr_tasks++; 2355 css_set_move_task(task, from_cset, to_cset, true); 2356 put_css_set_locked(from_cset); 2357 from_cset->nr_tasks--; 2358 } 2359 } 2360 spin_unlock_irq(&css_set_lock); 2361 2362 /* 2363 * Migration is committed, all target tasks are now on dst_csets. 2364 * Nothing is sensitive to fork() after this point. Notify 2365 * controllers that migration is complete. 2366 */ 2367 tset->csets = &tset->dst_csets; 2368 2369 if (tset->nr_tasks) { 2370 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2371 if (ss->attach) { 2372 tset->ssid = ssid; 2373 ss->attach(tset); 2374 } 2375 } while_each_subsys_mask(); 2376 } 2377 2378 ret = 0; 2379 goto out_release_tset; 2380 2381 out_cancel_attach: 2382 if (tset->nr_tasks) { 2383 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2384 if (ssid == failed_ssid) 2385 break; 2386 if (ss->cancel_attach) { 2387 tset->ssid = ssid; 2388 ss->cancel_attach(tset); 2389 } 2390 } while_each_subsys_mask(); 2391 } 2392 out_release_tset: 2393 spin_lock_irq(&css_set_lock); 2394 list_splice_init(&tset->dst_csets, &tset->src_csets); 2395 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2396 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2397 list_del_init(&cset->mg_node); 2398 } 2399 spin_unlock_irq(&css_set_lock); 2400 2401 /* 2402 * Re-initialize the cgroup_taskset structure in case it is reused 2403 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2404 * iteration. 2405 */ 2406 tset->nr_tasks = 0; 2407 tset->csets = &tset->src_csets; 2408 return ret; 2409 } 2410 2411 /** 2412 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2413 * @dst_cgrp: destination cgroup to test 2414 * 2415 * On the default hierarchy, except for the mixable, (possible) thread root 2416 * and threaded cgroups, subtree_control must be zero for migration 2417 * destination cgroups with tasks so that child cgroups don't compete 2418 * against tasks. 2419 */ 2420 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2421 { 2422 /* v1 doesn't have any restriction */ 2423 if (!cgroup_on_dfl(dst_cgrp)) 2424 return 0; 2425 2426 /* verify @dst_cgrp can host resources */ 2427 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2428 return -EOPNOTSUPP; 2429 2430 /* mixables don't care */ 2431 if (cgroup_is_mixable(dst_cgrp)) 2432 return 0; 2433 2434 /* 2435 * If @dst_cgrp is already or can become a thread root or is 2436 * threaded, it doesn't matter. 2437 */ 2438 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2439 return 0; 2440 2441 /* apply no-internal-process constraint */ 2442 if (dst_cgrp->subtree_control) 2443 return -EBUSY; 2444 2445 return 0; 2446 } 2447 2448 /** 2449 * cgroup_migrate_finish - cleanup after attach 2450 * @mgctx: migration context 2451 * 2452 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2453 * those functions for details. 2454 */ 2455 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2456 { 2457 LIST_HEAD(preloaded); 2458 struct css_set *cset, *tmp_cset; 2459 2460 lockdep_assert_held(&cgroup_mutex); 2461 2462 spin_lock_irq(&css_set_lock); 2463 2464 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2465 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2466 2467 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2468 cset->mg_src_cgrp = NULL; 2469 cset->mg_dst_cgrp = NULL; 2470 cset->mg_dst_cset = NULL; 2471 list_del_init(&cset->mg_preload_node); 2472 put_css_set_locked(cset); 2473 } 2474 2475 spin_unlock_irq(&css_set_lock); 2476 } 2477 2478 /** 2479 * cgroup_migrate_add_src - add a migration source css_set 2480 * @src_cset: the source css_set to add 2481 * @dst_cgrp: the destination cgroup 2482 * @mgctx: migration context 2483 * 2484 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2485 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2486 * up by cgroup_migrate_finish(). 2487 * 2488 * This function may be called without holding cgroup_threadgroup_rwsem 2489 * even if the target is a process. Threads may be created and destroyed 2490 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2491 * into play and the preloaded css_sets are guaranteed to cover all 2492 * migrations. 2493 */ 2494 void cgroup_migrate_add_src(struct css_set *src_cset, 2495 struct cgroup *dst_cgrp, 2496 struct cgroup_mgctx *mgctx) 2497 { 2498 struct cgroup *src_cgrp; 2499 2500 lockdep_assert_held(&cgroup_mutex); 2501 lockdep_assert_held(&css_set_lock); 2502 2503 /* 2504 * If ->dead, @src_set is associated with one or more dead cgroups 2505 * and doesn't contain any migratable tasks. Ignore it early so 2506 * that the rest of migration path doesn't get confused by it. 2507 */ 2508 if (src_cset->dead) 2509 return; 2510 2511 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2512 2513 if (!list_empty(&src_cset->mg_preload_node)) 2514 return; 2515 2516 WARN_ON(src_cset->mg_src_cgrp); 2517 WARN_ON(src_cset->mg_dst_cgrp); 2518 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2519 WARN_ON(!list_empty(&src_cset->mg_node)); 2520 2521 src_cset->mg_src_cgrp = src_cgrp; 2522 src_cset->mg_dst_cgrp = dst_cgrp; 2523 get_css_set(src_cset); 2524 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2525 } 2526 2527 /** 2528 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2529 * @mgctx: migration context 2530 * 2531 * Tasks are about to be moved and all the source css_sets have been 2532 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2533 * pins all destination css_sets, links each to its source, and append them 2534 * to @mgctx->preloaded_dst_csets. 2535 * 2536 * This function must be called after cgroup_migrate_add_src() has been 2537 * called on each migration source css_set. After migration is performed 2538 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2539 * @mgctx. 2540 */ 2541 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2542 { 2543 struct css_set *src_cset, *tmp_cset; 2544 2545 lockdep_assert_held(&cgroup_mutex); 2546 2547 /* look up the dst cset for each src cset and link it to src */ 2548 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2549 mg_preload_node) { 2550 struct css_set *dst_cset; 2551 struct cgroup_subsys *ss; 2552 int ssid; 2553 2554 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2555 if (!dst_cset) 2556 goto err; 2557 2558 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2559 2560 /* 2561 * If src cset equals dst, it's noop. Drop the src. 2562 * cgroup_migrate() will skip the cset too. Note that we 2563 * can't handle src == dst as some nodes are used by both. 2564 */ 2565 if (src_cset == dst_cset) { 2566 src_cset->mg_src_cgrp = NULL; 2567 src_cset->mg_dst_cgrp = NULL; 2568 list_del_init(&src_cset->mg_preload_node); 2569 put_css_set(src_cset); 2570 put_css_set(dst_cset); 2571 continue; 2572 } 2573 2574 src_cset->mg_dst_cset = dst_cset; 2575 2576 if (list_empty(&dst_cset->mg_preload_node)) 2577 list_add_tail(&dst_cset->mg_preload_node, 2578 &mgctx->preloaded_dst_csets); 2579 else 2580 put_css_set(dst_cset); 2581 2582 for_each_subsys(ss, ssid) 2583 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2584 mgctx->ss_mask |= 1 << ssid; 2585 } 2586 2587 return 0; 2588 err: 2589 cgroup_migrate_finish(mgctx); 2590 return -ENOMEM; 2591 } 2592 2593 /** 2594 * cgroup_migrate - migrate a process or task to a cgroup 2595 * @leader: the leader of the process or the task to migrate 2596 * @threadgroup: whether @leader points to the whole process or a single task 2597 * @mgctx: migration context 2598 * 2599 * Migrate a process or task denoted by @leader. If migrating a process, 2600 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2601 * responsible for invoking cgroup_migrate_add_src() and 2602 * cgroup_migrate_prepare_dst() on the targets before invoking this 2603 * function and following up with cgroup_migrate_finish(). 2604 * 2605 * As long as a controller's ->can_attach() doesn't fail, this function is 2606 * guaranteed to succeed. This means that, excluding ->can_attach() 2607 * failure, when migrating multiple targets, the success or failure can be 2608 * decided for all targets by invoking group_migrate_prepare_dst() before 2609 * actually starting migrating. 2610 */ 2611 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2612 struct cgroup_mgctx *mgctx) 2613 { 2614 struct task_struct *task; 2615 2616 /* 2617 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2618 * already PF_EXITING could be freed from underneath us unless we 2619 * take an rcu_read_lock. 2620 */ 2621 spin_lock_irq(&css_set_lock); 2622 rcu_read_lock(); 2623 task = leader; 2624 do { 2625 cgroup_migrate_add_task(task, mgctx); 2626 if (!threadgroup) 2627 break; 2628 } while_each_thread(leader, task); 2629 rcu_read_unlock(); 2630 spin_unlock_irq(&css_set_lock); 2631 2632 return cgroup_migrate_execute(mgctx); 2633 } 2634 2635 /** 2636 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2637 * @dst_cgrp: the cgroup to attach to 2638 * @leader: the task or the leader of the threadgroup to be attached 2639 * @threadgroup: attach the whole threadgroup? 2640 * 2641 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2642 */ 2643 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2644 bool threadgroup) 2645 { 2646 DEFINE_CGROUP_MGCTX(mgctx); 2647 struct task_struct *task; 2648 int ret; 2649 2650 ret = cgroup_migrate_vet_dst(dst_cgrp); 2651 if (ret) 2652 return ret; 2653 2654 /* look up all src csets */ 2655 spin_lock_irq(&css_set_lock); 2656 rcu_read_lock(); 2657 task = leader; 2658 do { 2659 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2660 if (!threadgroup) 2661 break; 2662 } while_each_thread(leader, task); 2663 rcu_read_unlock(); 2664 spin_unlock_irq(&css_set_lock); 2665 2666 /* prepare dst csets and commit */ 2667 ret = cgroup_migrate_prepare_dst(&mgctx); 2668 if (!ret) 2669 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2670 2671 cgroup_migrate_finish(&mgctx); 2672 2673 if (!ret) 2674 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2675 2676 return ret; 2677 } 2678 2679 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup) 2680 __acquires(&cgroup_threadgroup_rwsem) 2681 { 2682 struct task_struct *tsk; 2683 pid_t pid; 2684 2685 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2686 return ERR_PTR(-EINVAL); 2687 2688 percpu_down_write(&cgroup_threadgroup_rwsem); 2689 2690 rcu_read_lock(); 2691 if (pid) { 2692 tsk = find_task_by_vpid(pid); 2693 if (!tsk) { 2694 tsk = ERR_PTR(-ESRCH); 2695 goto out_unlock_threadgroup; 2696 } 2697 } else { 2698 tsk = current; 2699 } 2700 2701 if (threadgroup) 2702 tsk = tsk->group_leader; 2703 2704 /* 2705 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2706 * If userland migrates such a kthread to a non-root cgroup, it can 2707 * become trapped in a cpuset, or RT kthread may be born in a 2708 * cgroup with no rt_runtime allocated. Just say no. 2709 */ 2710 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2711 tsk = ERR_PTR(-EINVAL); 2712 goto out_unlock_threadgroup; 2713 } 2714 2715 get_task_struct(tsk); 2716 goto out_unlock_rcu; 2717 2718 out_unlock_threadgroup: 2719 percpu_up_write(&cgroup_threadgroup_rwsem); 2720 out_unlock_rcu: 2721 rcu_read_unlock(); 2722 return tsk; 2723 } 2724 2725 void cgroup_procs_write_finish(struct task_struct *task) 2726 __releases(&cgroup_threadgroup_rwsem) 2727 { 2728 struct cgroup_subsys *ss; 2729 int ssid; 2730 2731 /* release reference from cgroup_procs_write_start() */ 2732 put_task_struct(task); 2733 2734 percpu_up_write(&cgroup_threadgroup_rwsem); 2735 for_each_subsys(ss, ssid) 2736 if (ss->post_attach) 2737 ss->post_attach(); 2738 } 2739 2740 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2741 { 2742 struct cgroup_subsys *ss; 2743 bool printed = false; 2744 int ssid; 2745 2746 do_each_subsys_mask(ss, ssid, ss_mask) { 2747 if (printed) 2748 seq_putc(seq, ' '); 2749 seq_printf(seq, "%s", ss->name); 2750 printed = true; 2751 } while_each_subsys_mask(); 2752 if (printed) 2753 seq_putc(seq, '\n'); 2754 } 2755 2756 /* show controllers which are enabled from the parent */ 2757 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2758 { 2759 struct cgroup *cgrp = seq_css(seq)->cgroup; 2760 2761 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2762 return 0; 2763 } 2764 2765 /* show controllers which are enabled for a given cgroup's children */ 2766 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2767 { 2768 struct cgroup *cgrp = seq_css(seq)->cgroup; 2769 2770 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2771 return 0; 2772 } 2773 2774 /** 2775 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2776 * @cgrp: root of the subtree to update csses for 2777 * 2778 * @cgrp's control masks have changed and its subtree's css associations 2779 * need to be updated accordingly. This function looks up all css_sets 2780 * which are attached to the subtree, creates the matching updated css_sets 2781 * and migrates the tasks to the new ones. 2782 */ 2783 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2784 { 2785 DEFINE_CGROUP_MGCTX(mgctx); 2786 struct cgroup_subsys_state *d_css; 2787 struct cgroup *dsct; 2788 struct css_set *src_cset; 2789 int ret; 2790 2791 lockdep_assert_held(&cgroup_mutex); 2792 2793 percpu_down_write(&cgroup_threadgroup_rwsem); 2794 2795 /* look up all csses currently attached to @cgrp's subtree */ 2796 spin_lock_irq(&css_set_lock); 2797 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2798 struct cgrp_cset_link *link; 2799 2800 list_for_each_entry(link, &dsct->cset_links, cset_link) 2801 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2802 } 2803 spin_unlock_irq(&css_set_lock); 2804 2805 /* NULL dst indicates self on default hierarchy */ 2806 ret = cgroup_migrate_prepare_dst(&mgctx); 2807 if (ret) 2808 goto out_finish; 2809 2810 spin_lock_irq(&css_set_lock); 2811 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2812 struct task_struct *task, *ntask; 2813 2814 /* all tasks in src_csets need to be migrated */ 2815 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2816 cgroup_migrate_add_task(task, &mgctx); 2817 } 2818 spin_unlock_irq(&css_set_lock); 2819 2820 ret = cgroup_migrate_execute(&mgctx); 2821 out_finish: 2822 cgroup_migrate_finish(&mgctx); 2823 percpu_up_write(&cgroup_threadgroup_rwsem); 2824 return ret; 2825 } 2826 2827 /** 2828 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2829 * @cgrp: root of the target subtree 2830 * 2831 * Because css offlining is asynchronous, userland may try to re-enable a 2832 * controller while the previous css is still around. This function grabs 2833 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2834 */ 2835 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2836 __acquires(&cgroup_mutex) 2837 { 2838 struct cgroup *dsct; 2839 struct cgroup_subsys_state *d_css; 2840 struct cgroup_subsys *ss; 2841 int ssid; 2842 2843 restart: 2844 mutex_lock(&cgroup_mutex); 2845 2846 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2847 for_each_subsys(ss, ssid) { 2848 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2849 DEFINE_WAIT(wait); 2850 2851 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2852 continue; 2853 2854 cgroup_get_live(dsct); 2855 prepare_to_wait(&dsct->offline_waitq, &wait, 2856 TASK_UNINTERRUPTIBLE); 2857 2858 mutex_unlock(&cgroup_mutex); 2859 schedule(); 2860 finish_wait(&dsct->offline_waitq, &wait); 2861 2862 cgroup_put(dsct); 2863 goto restart; 2864 } 2865 } 2866 } 2867 2868 /** 2869 * cgroup_save_control - save control masks and dom_cgrp of a subtree 2870 * @cgrp: root of the target subtree 2871 * 2872 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 2873 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2874 * itself. 2875 */ 2876 static void cgroup_save_control(struct cgroup *cgrp) 2877 { 2878 struct cgroup *dsct; 2879 struct cgroup_subsys_state *d_css; 2880 2881 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2882 dsct->old_subtree_control = dsct->subtree_control; 2883 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2884 dsct->old_dom_cgrp = dsct->dom_cgrp; 2885 } 2886 } 2887 2888 /** 2889 * cgroup_propagate_control - refresh control masks of a subtree 2890 * @cgrp: root of the target subtree 2891 * 2892 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2893 * ->subtree_control and propagate controller availability through the 2894 * subtree so that descendants don't have unavailable controllers enabled. 2895 */ 2896 static void cgroup_propagate_control(struct cgroup *cgrp) 2897 { 2898 struct cgroup *dsct; 2899 struct cgroup_subsys_state *d_css; 2900 2901 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2902 dsct->subtree_control &= cgroup_control(dsct); 2903 dsct->subtree_ss_mask = 2904 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2905 cgroup_ss_mask(dsct)); 2906 } 2907 } 2908 2909 /** 2910 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 2911 * @cgrp: root of the target subtree 2912 * 2913 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 2914 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 2915 * itself. 2916 */ 2917 static void cgroup_restore_control(struct cgroup *cgrp) 2918 { 2919 struct cgroup *dsct; 2920 struct cgroup_subsys_state *d_css; 2921 2922 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2923 dsct->subtree_control = dsct->old_subtree_control; 2924 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 2925 dsct->dom_cgrp = dsct->old_dom_cgrp; 2926 } 2927 } 2928 2929 static bool css_visible(struct cgroup_subsys_state *css) 2930 { 2931 struct cgroup_subsys *ss = css->ss; 2932 struct cgroup *cgrp = css->cgroup; 2933 2934 if (cgroup_control(cgrp) & (1 << ss->id)) 2935 return true; 2936 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 2937 return false; 2938 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 2939 } 2940 2941 /** 2942 * cgroup_apply_control_enable - enable or show csses according to control 2943 * @cgrp: root of the target subtree 2944 * 2945 * Walk @cgrp's subtree and create new csses or make the existing ones 2946 * visible. A css is created invisible if it's being implicitly enabled 2947 * through dependency. An invisible css is made visible when the userland 2948 * explicitly enables it. 2949 * 2950 * Returns 0 on success, -errno on failure. On failure, csses which have 2951 * been processed already aren't cleaned up. The caller is responsible for 2952 * cleaning up with cgroup_apply_control_disable(). 2953 */ 2954 static int cgroup_apply_control_enable(struct cgroup *cgrp) 2955 { 2956 struct cgroup *dsct; 2957 struct cgroup_subsys_state *d_css; 2958 struct cgroup_subsys *ss; 2959 int ssid, ret; 2960 2961 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2962 for_each_subsys(ss, ssid) { 2963 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2964 2965 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2966 2967 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 2968 continue; 2969 2970 if (!css) { 2971 css = css_create(dsct, ss); 2972 if (IS_ERR(css)) 2973 return PTR_ERR(css); 2974 } 2975 2976 if (css_visible(css)) { 2977 ret = css_populate_dir(css); 2978 if (ret) 2979 return ret; 2980 } 2981 } 2982 } 2983 2984 return 0; 2985 } 2986 2987 /** 2988 * cgroup_apply_control_disable - kill or hide csses according to control 2989 * @cgrp: root of the target subtree 2990 * 2991 * Walk @cgrp's subtree and kill and hide csses so that they match 2992 * cgroup_ss_mask() and cgroup_visible_mask(). 2993 * 2994 * A css is hidden when the userland requests it to be disabled while other 2995 * subsystems are still depending on it. The css must not actively control 2996 * resources and be in the vanilla state if it's made visible again later. 2997 * Controllers which may be depended upon should provide ->css_reset() for 2998 * this purpose. 2999 */ 3000 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3001 { 3002 struct cgroup *dsct; 3003 struct cgroup_subsys_state *d_css; 3004 struct cgroup_subsys *ss; 3005 int ssid; 3006 3007 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3008 for_each_subsys(ss, ssid) { 3009 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3010 3011 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 3012 3013 if (!css) 3014 continue; 3015 3016 if (css->parent && 3017 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3018 kill_css(css); 3019 } else if (!css_visible(css)) { 3020 css_clear_dir(css); 3021 if (ss->css_reset) 3022 ss->css_reset(css); 3023 } 3024 } 3025 } 3026 } 3027 3028 /** 3029 * cgroup_apply_control - apply control mask updates to the subtree 3030 * @cgrp: root of the target subtree 3031 * 3032 * subsystems can be enabled and disabled in a subtree using the following 3033 * steps. 3034 * 3035 * 1. Call cgroup_save_control() to stash the current state. 3036 * 2. Update ->subtree_control masks in the subtree as desired. 3037 * 3. Call cgroup_apply_control() to apply the changes. 3038 * 4. Optionally perform other related operations. 3039 * 5. Call cgroup_finalize_control() to finish up. 3040 * 3041 * This function implements step 3 and propagates the mask changes 3042 * throughout @cgrp's subtree, updates csses accordingly and perform 3043 * process migrations. 3044 */ 3045 static int cgroup_apply_control(struct cgroup *cgrp) 3046 { 3047 int ret; 3048 3049 cgroup_propagate_control(cgrp); 3050 3051 ret = cgroup_apply_control_enable(cgrp); 3052 if (ret) 3053 return ret; 3054 3055 /* 3056 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3057 * making the following cgroup_update_dfl_csses() properly update 3058 * css associations of all tasks in the subtree. 3059 */ 3060 ret = cgroup_update_dfl_csses(cgrp); 3061 if (ret) 3062 return ret; 3063 3064 return 0; 3065 } 3066 3067 /** 3068 * cgroup_finalize_control - finalize control mask update 3069 * @cgrp: root of the target subtree 3070 * @ret: the result of the update 3071 * 3072 * Finalize control mask update. See cgroup_apply_control() for more info. 3073 */ 3074 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3075 { 3076 if (ret) { 3077 cgroup_restore_control(cgrp); 3078 cgroup_propagate_control(cgrp); 3079 } 3080 3081 cgroup_apply_control_disable(cgrp); 3082 } 3083 3084 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3085 { 3086 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3087 3088 /* if nothing is getting enabled, nothing to worry about */ 3089 if (!enable) 3090 return 0; 3091 3092 /* can @cgrp host any resources? */ 3093 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3094 return -EOPNOTSUPP; 3095 3096 /* mixables don't care */ 3097 if (cgroup_is_mixable(cgrp)) 3098 return 0; 3099 3100 if (domain_enable) { 3101 /* can't enable domain controllers inside a thread subtree */ 3102 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3103 return -EOPNOTSUPP; 3104 } else { 3105 /* 3106 * Threaded controllers can handle internal competitions 3107 * and are always allowed inside a (prospective) thread 3108 * subtree. 3109 */ 3110 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3111 return 0; 3112 } 3113 3114 /* 3115 * Controllers can't be enabled for a cgroup with tasks to avoid 3116 * child cgroups competing against tasks. 3117 */ 3118 if (cgroup_has_tasks(cgrp)) 3119 return -EBUSY; 3120 3121 return 0; 3122 } 3123 3124 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3125 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3126 char *buf, size_t nbytes, 3127 loff_t off) 3128 { 3129 u16 enable = 0, disable = 0; 3130 struct cgroup *cgrp, *child; 3131 struct cgroup_subsys *ss; 3132 char *tok; 3133 int ssid, ret; 3134 3135 /* 3136 * Parse input - space separated list of subsystem names prefixed 3137 * with either + or -. 3138 */ 3139 buf = strstrip(buf); 3140 while ((tok = strsep(&buf, " "))) { 3141 if (tok[0] == '\0') 3142 continue; 3143 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3144 if (!cgroup_ssid_enabled(ssid) || 3145 strcmp(tok + 1, ss->name)) 3146 continue; 3147 3148 if (*tok == '+') { 3149 enable |= 1 << ssid; 3150 disable &= ~(1 << ssid); 3151 } else if (*tok == '-') { 3152 disable |= 1 << ssid; 3153 enable &= ~(1 << ssid); 3154 } else { 3155 return -EINVAL; 3156 } 3157 break; 3158 } while_each_subsys_mask(); 3159 if (ssid == CGROUP_SUBSYS_COUNT) 3160 return -EINVAL; 3161 } 3162 3163 cgrp = cgroup_kn_lock_live(of->kn, true); 3164 if (!cgrp) 3165 return -ENODEV; 3166 3167 for_each_subsys(ss, ssid) { 3168 if (enable & (1 << ssid)) { 3169 if (cgrp->subtree_control & (1 << ssid)) { 3170 enable &= ~(1 << ssid); 3171 continue; 3172 } 3173 3174 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3175 ret = -ENOENT; 3176 goto out_unlock; 3177 } 3178 } else if (disable & (1 << ssid)) { 3179 if (!(cgrp->subtree_control & (1 << ssid))) { 3180 disable &= ~(1 << ssid); 3181 continue; 3182 } 3183 3184 /* a child has it enabled? */ 3185 cgroup_for_each_live_child(child, cgrp) { 3186 if (child->subtree_control & (1 << ssid)) { 3187 ret = -EBUSY; 3188 goto out_unlock; 3189 } 3190 } 3191 } 3192 } 3193 3194 if (!enable && !disable) { 3195 ret = 0; 3196 goto out_unlock; 3197 } 3198 3199 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3200 if (ret) 3201 goto out_unlock; 3202 3203 /* save and update control masks and prepare csses */ 3204 cgroup_save_control(cgrp); 3205 3206 cgrp->subtree_control |= enable; 3207 cgrp->subtree_control &= ~disable; 3208 3209 ret = cgroup_apply_control(cgrp); 3210 cgroup_finalize_control(cgrp, ret); 3211 if (ret) 3212 goto out_unlock; 3213 3214 kernfs_activate(cgrp->kn); 3215 out_unlock: 3216 cgroup_kn_unlock(of->kn); 3217 return ret ?: nbytes; 3218 } 3219 3220 /** 3221 * cgroup_enable_threaded - make @cgrp threaded 3222 * @cgrp: the target cgroup 3223 * 3224 * Called when "threaded" is written to the cgroup.type interface file and 3225 * tries to make @cgrp threaded and join the parent's resource domain. 3226 * This function is never called on the root cgroup as cgroup.type doesn't 3227 * exist on it. 3228 */ 3229 static int cgroup_enable_threaded(struct cgroup *cgrp) 3230 { 3231 struct cgroup *parent = cgroup_parent(cgrp); 3232 struct cgroup *dom_cgrp = parent->dom_cgrp; 3233 struct cgroup *dsct; 3234 struct cgroup_subsys_state *d_css; 3235 int ret; 3236 3237 lockdep_assert_held(&cgroup_mutex); 3238 3239 /* noop if already threaded */ 3240 if (cgroup_is_threaded(cgrp)) 3241 return 0; 3242 3243 /* 3244 * If @cgroup is populated or has domain controllers enabled, it 3245 * can't be switched. While the below cgroup_can_be_thread_root() 3246 * test can catch the same conditions, that's only when @parent is 3247 * not mixable, so let's check it explicitly. 3248 */ 3249 if (cgroup_is_populated(cgrp) || 3250 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3251 return -EOPNOTSUPP; 3252 3253 /* we're joining the parent's domain, ensure its validity */ 3254 if (!cgroup_is_valid_domain(dom_cgrp) || 3255 !cgroup_can_be_thread_root(dom_cgrp)) 3256 return -EOPNOTSUPP; 3257 3258 /* 3259 * The following shouldn't cause actual migrations and should 3260 * always succeed. 3261 */ 3262 cgroup_save_control(cgrp); 3263 3264 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3265 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3266 dsct->dom_cgrp = dom_cgrp; 3267 3268 ret = cgroup_apply_control(cgrp); 3269 if (!ret) 3270 parent->nr_threaded_children++; 3271 3272 cgroup_finalize_control(cgrp, ret); 3273 return ret; 3274 } 3275 3276 static int cgroup_type_show(struct seq_file *seq, void *v) 3277 { 3278 struct cgroup *cgrp = seq_css(seq)->cgroup; 3279 3280 if (cgroup_is_threaded(cgrp)) 3281 seq_puts(seq, "threaded\n"); 3282 else if (!cgroup_is_valid_domain(cgrp)) 3283 seq_puts(seq, "domain invalid\n"); 3284 else if (cgroup_is_thread_root(cgrp)) 3285 seq_puts(seq, "domain threaded\n"); 3286 else 3287 seq_puts(seq, "domain\n"); 3288 3289 return 0; 3290 } 3291 3292 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3293 size_t nbytes, loff_t off) 3294 { 3295 struct cgroup *cgrp; 3296 int ret; 3297 3298 /* only switching to threaded mode is supported */ 3299 if (strcmp(strstrip(buf), "threaded")) 3300 return -EINVAL; 3301 3302 cgrp = cgroup_kn_lock_live(of->kn, false); 3303 if (!cgrp) 3304 return -ENOENT; 3305 3306 /* threaded can only be enabled */ 3307 ret = cgroup_enable_threaded(cgrp); 3308 3309 cgroup_kn_unlock(of->kn); 3310 return ret ?: nbytes; 3311 } 3312 3313 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3314 { 3315 struct cgroup *cgrp = seq_css(seq)->cgroup; 3316 int descendants = READ_ONCE(cgrp->max_descendants); 3317 3318 if (descendants == INT_MAX) 3319 seq_puts(seq, "max\n"); 3320 else 3321 seq_printf(seq, "%d\n", descendants); 3322 3323 return 0; 3324 } 3325 3326 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3327 char *buf, size_t nbytes, loff_t off) 3328 { 3329 struct cgroup *cgrp; 3330 int descendants; 3331 ssize_t ret; 3332 3333 buf = strstrip(buf); 3334 if (!strcmp(buf, "max")) { 3335 descendants = INT_MAX; 3336 } else { 3337 ret = kstrtoint(buf, 0, &descendants); 3338 if (ret) 3339 return ret; 3340 } 3341 3342 if (descendants < 0) 3343 return -ERANGE; 3344 3345 cgrp = cgroup_kn_lock_live(of->kn, false); 3346 if (!cgrp) 3347 return -ENOENT; 3348 3349 cgrp->max_descendants = descendants; 3350 3351 cgroup_kn_unlock(of->kn); 3352 3353 return nbytes; 3354 } 3355 3356 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3357 { 3358 struct cgroup *cgrp = seq_css(seq)->cgroup; 3359 int depth = READ_ONCE(cgrp->max_depth); 3360 3361 if (depth == INT_MAX) 3362 seq_puts(seq, "max\n"); 3363 else 3364 seq_printf(seq, "%d\n", depth); 3365 3366 return 0; 3367 } 3368 3369 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3370 char *buf, size_t nbytes, loff_t off) 3371 { 3372 struct cgroup *cgrp; 3373 ssize_t ret; 3374 int depth; 3375 3376 buf = strstrip(buf); 3377 if (!strcmp(buf, "max")) { 3378 depth = INT_MAX; 3379 } else { 3380 ret = kstrtoint(buf, 0, &depth); 3381 if (ret) 3382 return ret; 3383 } 3384 3385 if (depth < 0) 3386 return -ERANGE; 3387 3388 cgrp = cgroup_kn_lock_live(of->kn, false); 3389 if (!cgrp) 3390 return -ENOENT; 3391 3392 cgrp->max_depth = depth; 3393 3394 cgroup_kn_unlock(of->kn); 3395 3396 return nbytes; 3397 } 3398 3399 static int cgroup_events_show(struct seq_file *seq, void *v) 3400 { 3401 seq_printf(seq, "populated %d\n", 3402 cgroup_is_populated(seq_css(seq)->cgroup)); 3403 return 0; 3404 } 3405 3406 static int cgroup_stat_show(struct seq_file *seq, void *v) 3407 { 3408 struct cgroup *cgroup = seq_css(seq)->cgroup; 3409 3410 seq_printf(seq, "nr_descendants %d\n", 3411 cgroup->nr_descendants); 3412 seq_printf(seq, "nr_dying_descendants %d\n", 3413 cgroup->nr_dying_descendants); 3414 3415 return 0; 3416 } 3417 3418 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3419 struct cgroup *cgrp, int ssid) 3420 { 3421 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3422 struct cgroup_subsys_state *css; 3423 int ret; 3424 3425 if (!ss->css_extra_stat_show) 3426 return 0; 3427 3428 css = cgroup_tryget_css(cgrp, ss); 3429 if (!css) 3430 return 0; 3431 3432 ret = ss->css_extra_stat_show(seq, css); 3433 css_put(css); 3434 return ret; 3435 } 3436 3437 static int cpu_stat_show(struct seq_file *seq, void *v) 3438 { 3439 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3440 int ret = 0; 3441 3442 cgroup_base_stat_cputime_show(seq); 3443 #ifdef CONFIG_CGROUP_SCHED 3444 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3445 #endif 3446 return ret; 3447 } 3448 3449 static int cgroup_file_open(struct kernfs_open_file *of) 3450 { 3451 struct cftype *cft = of->kn->priv; 3452 3453 if (cft->open) 3454 return cft->open(of); 3455 return 0; 3456 } 3457 3458 static void cgroup_file_release(struct kernfs_open_file *of) 3459 { 3460 struct cftype *cft = of->kn->priv; 3461 3462 if (cft->release) 3463 cft->release(of); 3464 } 3465 3466 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3467 size_t nbytes, loff_t off) 3468 { 3469 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3470 struct cgroup *cgrp = of->kn->parent->priv; 3471 struct cftype *cft = of->kn->priv; 3472 struct cgroup_subsys_state *css; 3473 int ret; 3474 3475 /* 3476 * If namespaces are delegation boundaries, disallow writes to 3477 * files in an non-init namespace root from inside the namespace 3478 * except for the files explicitly marked delegatable - 3479 * cgroup.procs and cgroup.subtree_control. 3480 */ 3481 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3482 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3483 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3484 return -EPERM; 3485 3486 if (cft->write) 3487 return cft->write(of, buf, nbytes, off); 3488 3489 /* 3490 * kernfs guarantees that a file isn't deleted with operations in 3491 * flight, which means that the matching css is and stays alive and 3492 * doesn't need to be pinned. The RCU locking is not necessary 3493 * either. It's just for the convenience of using cgroup_css(). 3494 */ 3495 rcu_read_lock(); 3496 css = cgroup_css(cgrp, cft->ss); 3497 rcu_read_unlock(); 3498 3499 if (cft->write_u64) { 3500 unsigned long long v; 3501 ret = kstrtoull(buf, 0, &v); 3502 if (!ret) 3503 ret = cft->write_u64(css, cft, v); 3504 } else if (cft->write_s64) { 3505 long long v; 3506 ret = kstrtoll(buf, 0, &v); 3507 if (!ret) 3508 ret = cft->write_s64(css, cft, v); 3509 } else { 3510 ret = -EINVAL; 3511 } 3512 3513 return ret ?: nbytes; 3514 } 3515 3516 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3517 { 3518 return seq_cft(seq)->seq_start(seq, ppos); 3519 } 3520 3521 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3522 { 3523 return seq_cft(seq)->seq_next(seq, v, ppos); 3524 } 3525 3526 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3527 { 3528 if (seq_cft(seq)->seq_stop) 3529 seq_cft(seq)->seq_stop(seq, v); 3530 } 3531 3532 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3533 { 3534 struct cftype *cft = seq_cft(m); 3535 struct cgroup_subsys_state *css = seq_css(m); 3536 3537 if (cft->seq_show) 3538 return cft->seq_show(m, arg); 3539 3540 if (cft->read_u64) 3541 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3542 else if (cft->read_s64) 3543 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3544 else 3545 return -EINVAL; 3546 return 0; 3547 } 3548 3549 static struct kernfs_ops cgroup_kf_single_ops = { 3550 .atomic_write_len = PAGE_SIZE, 3551 .open = cgroup_file_open, 3552 .release = cgroup_file_release, 3553 .write = cgroup_file_write, 3554 .seq_show = cgroup_seqfile_show, 3555 }; 3556 3557 static struct kernfs_ops cgroup_kf_ops = { 3558 .atomic_write_len = PAGE_SIZE, 3559 .open = cgroup_file_open, 3560 .release = cgroup_file_release, 3561 .write = cgroup_file_write, 3562 .seq_start = cgroup_seqfile_start, 3563 .seq_next = cgroup_seqfile_next, 3564 .seq_stop = cgroup_seqfile_stop, 3565 .seq_show = cgroup_seqfile_show, 3566 }; 3567 3568 /* set uid and gid of cgroup dirs and files to that of the creator */ 3569 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3570 { 3571 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3572 .ia_uid = current_fsuid(), 3573 .ia_gid = current_fsgid(), }; 3574 3575 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3576 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3577 return 0; 3578 3579 return kernfs_setattr(kn, &iattr); 3580 } 3581 3582 static void cgroup_file_notify_timer(struct timer_list *timer) 3583 { 3584 cgroup_file_notify(container_of(timer, struct cgroup_file, 3585 notify_timer)); 3586 } 3587 3588 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3589 struct cftype *cft) 3590 { 3591 char name[CGROUP_FILE_NAME_MAX]; 3592 struct kernfs_node *kn; 3593 struct lock_class_key *key = NULL; 3594 int ret; 3595 3596 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3597 key = &cft->lockdep_key; 3598 #endif 3599 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3600 cgroup_file_mode(cft), 3601 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 3602 0, cft->kf_ops, cft, 3603 NULL, key); 3604 if (IS_ERR(kn)) 3605 return PTR_ERR(kn); 3606 3607 ret = cgroup_kn_set_ugid(kn); 3608 if (ret) { 3609 kernfs_remove(kn); 3610 return ret; 3611 } 3612 3613 if (cft->file_offset) { 3614 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3615 3616 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 3617 3618 spin_lock_irq(&cgroup_file_kn_lock); 3619 cfile->kn = kn; 3620 spin_unlock_irq(&cgroup_file_kn_lock); 3621 } 3622 3623 return 0; 3624 } 3625 3626 /** 3627 * cgroup_addrm_files - add or remove files to a cgroup directory 3628 * @css: the target css 3629 * @cgrp: the target cgroup (usually css->cgroup) 3630 * @cfts: array of cftypes to be added 3631 * @is_add: whether to add or remove 3632 * 3633 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3634 * For removals, this function never fails. 3635 */ 3636 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3637 struct cgroup *cgrp, struct cftype cfts[], 3638 bool is_add) 3639 { 3640 struct cftype *cft, *cft_end = NULL; 3641 int ret = 0; 3642 3643 lockdep_assert_held(&cgroup_mutex); 3644 3645 restart: 3646 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3647 /* does cft->flags tell us to skip this file on @cgrp? */ 3648 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3649 continue; 3650 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3651 continue; 3652 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3653 continue; 3654 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3655 continue; 3656 3657 if (is_add) { 3658 ret = cgroup_add_file(css, cgrp, cft); 3659 if (ret) { 3660 pr_warn("%s: failed to add %s, err=%d\n", 3661 __func__, cft->name, ret); 3662 cft_end = cft; 3663 is_add = false; 3664 goto restart; 3665 } 3666 } else { 3667 cgroup_rm_file(cgrp, cft); 3668 } 3669 } 3670 return ret; 3671 } 3672 3673 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3674 { 3675 struct cgroup_subsys *ss = cfts[0].ss; 3676 struct cgroup *root = &ss->root->cgrp; 3677 struct cgroup_subsys_state *css; 3678 int ret = 0; 3679 3680 lockdep_assert_held(&cgroup_mutex); 3681 3682 /* add/rm files for all cgroups created before */ 3683 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3684 struct cgroup *cgrp = css->cgroup; 3685 3686 if (!(css->flags & CSS_VISIBLE)) 3687 continue; 3688 3689 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3690 if (ret) 3691 break; 3692 } 3693 3694 if (is_add && !ret) 3695 kernfs_activate(root->kn); 3696 return ret; 3697 } 3698 3699 static void cgroup_exit_cftypes(struct cftype *cfts) 3700 { 3701 struct cftype *cft; 3702 3703 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3704 /* free copy for custom atomic_write_len, see init_cftypes() */ 3705 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3706 kfree(cft->kf_ops); 3707 cft->kf_ops = NULL; 3708 cft->ss = NULL; 3709 3710 /* revert flags set by cgroup core while adding @cfts */ 3711 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3712 } 3713 } 3714 3715 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3716 { 3717 struct cftype *cft; 3718 3719 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3720 struct kernfs_ops *kf_ops; 3721 3722 WARN_ON(cft->ss || cft->kf_ops); 3723 3724 if (cft->seq_start) 3725 kf_ops = &cgroup_kf_ops; 3726 else 3727 kf_ops = &cgroup_kf_single_ops; 3728 3729 /* 3730 * Ugh... if @cft wants a custom max_write_len, we need to 3731 * make a copy of kf_ops to set its atomic_write_len. 3732 */ 3733 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3734 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3735 if (!kf_ops) { 3736 cgroup_exit_cftypes(cfts); 3737 return -ENOMEM; 3738 } 3739 kf_ops->atomic_write_len = cft->max_write_len; 3740 } 3741 3742 cft->kf_ops = kf_ops; 3743 cft->ss = ss; 3744 } 3745 3746 return 0; 3747 } 3748 3749 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3750 { 3751 lockdep_assert_held(&cgroup_mutex); 3752 3753 if (!cfts || !cfts[0].ss) 3754 return -ENOENT; 3755 3756 list_del(&cfts->node); 3757 cgroup_apply_cftypes(cfts, false); 3758 cgroup_exit_cftypes(cfts); 3759 return 0; 3760 } 3761 3762 /** 3763 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3764 * @cfts: zero-length name terminated array of cftypes 3765 * 3766 * Unregister @cfts. Files described by @cfts are removed from all 3767 * existing cgroups and all future cgroups won't have them either. This 3768 * function can be called anytime whether @cfts' subsys is attached or not. 3769 * 3770 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3771 * registered. 3772 */ 3773 int cgroup_rm_cftypes(struct cftype *cfts) 3774 { 3775 int ret; 3776 3777 mutex_lock(&cgroup_mutex); 3778 ret = cgroup_rm_cftypes_locked(cfts); 3779 mutex_unlock(&cgroup_mutex); 3780 return ret; 3781 } 3782 3783 /** 3784 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3785 * @ss: target cgroup subsystem 3786 * @cfts: zero-length name terminated array of cftypes 3787 * 3788 * Register @cfts to @ss. Files described by @cfts are created for all 3789 * existing cgroups to which @ss is attached and all future cgroups will 3790 * have them too. This function can be called anytime whether @ss is 3791 * attached or not. 3792 * 3793 * Returns 0 on successful registration, -errno on failure. Note that this 3794 * function currently returns 0 as long as @cfts registration is successful 3795 * even if some file creation attempts on existing cgroups fail. 3796 */ 3797 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3798 { 3799 int ret; 3800 3801 if (!cgroup_ssid_enabled(ss->id)) 3802 return 0; 3803 3804 if (!cfts || cfts[0].name[0] == '\0') 3805 return 0; 3806 3807 ret = cgroup_init_cftypes(ss, cfts); 3808 if (ret) 3809 return ret; 3810 3811 mutex_lock(&cgroup_mutex); 3812 3813 list_add_tail(&cfts->node, &ss->cfts); 3814 ret = cgroup_apply_cftypes(cfts, true); 3815 if (ret) 3816 cgroup_rm_cftypes_locked(cfts); 3817 3818 mutex_unlock(&cgroup_mutex); 3819 return ret; 3820 } 3821 3822 /** 3823 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3824 * @ss: target cgroup subsystem 3825 * @cfts: zero-length name terminated array of cftypes 3826 * 3827 * Similar to cgroup_add_cftypes() but the added files are only used for 3828 * the default hierarchy. 3829 */ 3830 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3831 { 3832 struct cftype *cft; 3833 3834 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3835 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3836 return cgroup_add_cftypes(ss, cfts); 3837 } 3838 3839 /** 3840 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3841 * @ss: target cgroup subsystem 3842 * @cfts: zero-length name terminated array of cftypes 3843 * 3844 * Similar to cgroup_add_cftypes() but the added files are only used for 3845 * the legacy hierarchies. 3846 */ 3847 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3848 { 3849 struct cftype *cft; 3850 3851 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3852 cft->flags |= __CFTYPE_NOT_ON_DFL; 3853 return cgroup_add_cftypes(ss, cfts); 3854 } 3855 3856 /** 3857 * cgroup_file_notify - generate a file modified event for a cgroup_file 3858 * @cfile: target cgroup_file 3859 * 3860 * @cfile must have been obtained by setting cftype->file_offset. 3861 */ 3862 void cgroup_file_notify(struct cgroup_file *cfile) 3863 { 3864 unsigned long flags; 3865 3866 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 3867 if (cfile->kn) { 3868 unsigned long last = cfile->notified_at; 3869 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 3870 3871 if (time_in_range(jiffies, last, next)) { 3872 timer_reduce(&cfile->notify_timer, next); 3873 } else { 3874 kernfs_notify(cfile->kn); 3875 cfile->notified_at = jiffies; 3876 } 3877 } 3878 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 3879 } 3880 3881 /** 3882 * css_next_child - find the next child of a given css 3883 * @pos: the current position (%NULL to initiate traversal) 3884 * @parent: css whose children to walk 3885 * 3886 * This function returns the next child of @parent and should be called 3887 * under either cgroup_mutex or RCU read lock. The only requirement is 3888 * that @parent and @pos are accessible. The next sibling is guaranteed to 3889 * be returned regardless of their states. 3890 * 3891 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3892 * css which finished ->css_online() is guaranteed to be visible in the 3893 * future iterations and will stay visible until the last reference is put. 3894 * A css which hasn't finished ->css_online() or already finished 3895 * ->css_offline() may show up during traversal. It's each subsystem's 3896 * responsibility to synchronize against on/offlining. 3897 */ 3898 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 3899 struct cgroup_subsys_state *parent) 3900 { 3901 struct cgroup_subsys_state *next; 3902 3903 cgroup_assert_mutex_or_rcu_locked(); 3904 3905 /* 3906 * @pos could already have been unlinked from the sibling list. 3907 * Once a cgroup is removed, its ->sibling.next is no longer 3908 * updated when its next sibling changes. CSS_RELEASED is set when 3909 * @pos is taken off list, at which time its next pointer is valid, 3910 * and, as releases are serialized, the one pointed to by the next 3911 * pointer is guaranteed to not have started release yet. This 3912 * implies that if we observe !CSS_RELEASED on @pos in this RCU 3913 * critical section, the one pointed to by its next pointer is 3914 * guaranteed to not have finished its RCU grace period even if we 3915 * have dropped rcu_read_lock() inbetween iterations. 3916 * 3917 * If @pos has CSS_RELEASED set, its next pointer can't be 3918 * dereferenced; however, as each css is given a monotonically 3919 * increasing unique serial number and always appended to the 3920 * sibling list, the next one can be found by walking the parent's 3921 * children until the first css with higher serial number than 3922 * @pos's. While this path can be slower, it happens iff iteration 3923 * races against release and the race window is very small. 3924 */ 3925 if (!pos) { 3926 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 3927 } else if (likely(!(pos->flags & CSS_RELEASED))) { 3928 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 3929 } else { 3930 list_for_each_entry_rcu(next, &parent->children, sibling) 3931 if (next->serial_nr > pos->serial_nr) 3932 break; 3933 } 3934 3935 /* 3936 * @next, if not pointing to the head, can be dereferenced and is 3937 * the next sibling. 3938 */ 3939 if (&next->sibling != &parent->children) 3940 return next; 3941 return NULL; 3942 } 3943 3944 /** 3945 * css_next_descendant_pre - find the next descendant for pre-order walk 3946 * @pos: the current position (%NULL to initiate traversal) 3947 * @root: css whose descendants to walk 3948 * 3949 * To be used by css_for_each_descendant_pre(). Find the next descendant 3950 * to visit for pre-order traversal of @root's descendants. @root is 3951 * included in the iteration and the first node to be visited. 3952 * 3953 * While this function requires cgroup_mutex or RCU read locking, it 3954 * doesn't require the whole traversal to be contained in a single critical 3955 * section. This function will return the correct next descendant as long 3956 * as both @pos and @root are accessible and @pos is a descendant of @root. 3957 * 3958 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3959 * css which finished ->css_online() is guaranteed to be visible in the 3960 * future iterations and will stay visible until the last reference is put. 3961 * A css which hasn't finished ->css_online() or already finished 3962 * ->css_offline() may show up during traversal. It's each subsystem's 3963 * responsibility to synchronize against on/offlining. 3964 */ 3965 struct cgroup_subsys_state * 3966 css_next_descendant_pre(struct cgroup_subsys_state *pos, 3967 struct cgroup_subsys_state *root) 3968 { 3969 struct cgroup_subsys_state *next; 3970 3971 cgroup_assert_mutex_or_rcu_locked(); 3972 3973 /* if first iteration, visit @root */ 3974 if (!pos) 3975 return root; 3976 3977 /* visit the first child if exists */ 3978 next = css_next_child(NULL, pos); 3979 if (next) 3980 return next; 3981 3982 /* no child, visit my or the closest ancestor's next sibling */ 3983 while (pos != root) { 3984 next = css_next_child(pos, pos->parent); 3985 if (next) 3986 return next; 3987 pos = pos->parent; 3988 } 3989 3990 return NULL; 3991 } 3992 3993 /** 3994 * css_rightmost_descendant - return the rightmost descendant of a css 3995 * @pos: css of interest 3996 * 3997 * Return the rightmost descendant of @pos. If there's no descendant, @pos 3998 * is returned. This can be used during pre-order traversal to skip 3999 * subtree of @pos. 4000 * 4001 * While this function requires cgroup_mutex or RCU read locking, it 4002 * doesn't require the whole traversal to be contained in a single critical 4003 * section. This function will return the correct rightmost descendant as 4004 * long as @pos is accessible. 4005 */ 4006 struct cgroup_subsys_state * 4007 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4008 { 4009 struct cgroup_subsys_state *last, *tmp; 4010 4011 cgroup_assert_mutex_or_rcu_locked(); 4012 4013 do { 4014 last = pos; 4015 /* ->prev isn't RCU safe, walk ->next till the end */ 4016 pos = NULL; 4017 css_for_each_child(tmp, last) 4018 pos = tmp; 4019 } while (pos); 4020 4021 return last; 4022 } 4023 4024 static struct cgroup_subsys_state * 4025 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4026 { 4027 struct cgroup_subsys_state *last; 4028 4029 do { 4030 last = pos; 4031 pos = css_next_child(NULL, pos); 4032 } while (pos); 4033 4034 return last; 4035 } 4036 4037 /** 4038 * css_next_descendant_post - find the next descendant for post-order walk 4039 * @pos: the current position (%NULL to initiate traversal) 4040 * @root: css whose descendants to walk 4041 * 4042 * To be used by css_for_each_descendant_post(). Find the next descendant 4043 * to visit for post-order traversal of @root's descendants. @root is 4044 * included in the iteration and the last node to be visited. 4045 * 4046 * While this function requires cgroup_mutex or RCU read locking, it 4047 * doesn't require the whole traversal to be contained in a single critical 4048 * section. This function will return the correct next descendant as long 4049 * as both @pos and @cgroup are accessible and @pos is a descendant of 4050 * @cgroup. 4051 * 4052 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4053 * css which finished ->css_online() is guaranteed to be visible in the 4054 * future iterations and will stay visible until the last reference is put. 4055 * A css which hasn't finished ->css_online() or already finished 4056 * ->css_offline() may show up during traversal. It's each subsystem's 4057 * responsibility to synchronize against on/offlining. 4058 */ 4059 struct cgroup_subsys_state * 4060 css_next_descendant_post(struct cgroup_subsys_state *pos, 4061 struct cgroup_subsys_state *root) 4062 { 4063 struct cgroup_subsys_state *next; 4064 4065 cgroup_assert_mutex_or_rcu_locked(); 4066 4067 /* if first iteration, visit leftmost descendant which may be @root */ 4068 if (!pos) 4069 return css_leftmost_descendant(root); 4070 4071 /* if we visited @root, we're done */ 4072 if (pos == root) 4073 return NULL; 4074 4075 /* if there's an unvisited sibling, visit its leftmost descendant */ 4076 next = css_next_child(pos, pos->parent); 4077 if (next) 4078 return css_leftmost_descendant(next); 4079 4080 /* no sibling left, visit parent */ 4081 return pos->parent; 4082 } 4083 4084 /** 4085 * css_has_online_children - does a css have online children 4086 * @css: the target css 4087 * 4088 * Returns %true if @css has any online children; otherwise, %false. This 4089 * function can be called from any context but the caller is responsible 4090 * for synchronizing against on/offlining as necessary. 4091 */ 4092 bool css_has_online_children(struct cgroup_subsys_state *css) 4093 { 4094 struct cgroup_subsys_state *child; 4095 bool ret = false; 4096 4097 rcu_read_lock(); 4098 css_for_each_child(child, css) { 4099 if (child->flags & CSS_ONLINE) { 4100 ret = true; 4101 break; 4102 } 4103 } 4104 rcu_read_unlock(); 4105 return ret; 4106 } 4107 4108 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4109 { 4110 struct list_head *l; 4111 struct cgrp_cset_link *link; 4112 struct css_set *cset; 4113 4114 lockdep_assert_held(&css_set_lock); 4115 4116 /* find the next threaded cset */ 4117 if (it->tcset_pos) { 4118 l = it->tcset_pos->next; 4119 4120 if (l != it->tcset_head) { 4121 it->tcset_pos = l; 4122 return container_of(l, struct css_set, 4123 threaded_csets_node); 4124 } 4125 4126 it->tcset_pos = NULL; 4127 } 4128 4129 /* find the next cset */ 4130 l = it->cset_pos; 4131 l = l->next; 4132 if (l == it->cset_head) { 4133 it->cset_pos = NULL; 4134 return NULL; 4135 } 4136 4137 if (it->ss) { 4138 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4139 } else { 4140 link = list_entry(l, struct cgrp_cset_link, cset_link); 4141 cset = link->cset; 4142 } 4143 4144 it->cset_pos = l; 4145 4146 /* initialize threaded css_set walking */ 4147 if (it->flags & CSS_TASK_ITER_THREADED) { 4148 if (it->cur_dcset) 4149 put_css_set_locked(it->cur_dcset); 4150 it->cur_dcset = cset; 4151 get_css_set(cset); 4152 4153 it->tcset_head = &cset->threaded_csets; 4154 it->tcset_pos = &cset->threaded_csets; 4155 } 4156 4157 return cset; 4158 } 4159 4160 /** 4161 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4162 * @it: the iterator to advance 4163 * 4164 * Advance @it to the next css_set to walk. 4165 */ 4166 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4167 { 4168 struct css_set *cset; 4169 4170 lockdep_assert_held(&css_set_lock); 4171 4172 /* Advance to the next non-empty css_set */ 4173 do { 4174 cset = css_task_iter_next_css_set(it); 4175 if (!cset) { 4176 it->task_pos = NULL; 4177 return; 4178 } 4179 } while (!css_set_populated(cset)); 4180 4181 if (!list_empty(&cset->tasks)) 4182 it->task_pos = cset->tasks.next; 4183 else 4184 it->task_pos = cset->mg_tasks.next; 4185 4186 it->tasks_head = &cset->tasks; 4187 it->mg_tasks_head = &cset->mg_tasks; 4188 4189 /* 4190 * We don't keep css_sets locked across iteration steps and thus 4191 * need to take steps to ensure that iteration can be resumed after 4192 * the lock is re-acquired. Iteration is performed at two levels - 4193 * css_sets and tasks in them. 4194 * 4195 * Once created, a css_set never leaves its cgroup lists, so a 4196 * pinned css_set is guaranteed to stay put and we can resume 4197 * iteration afterwards. 4198 * 4199 * Tasks may leave @cset across iteration steps. This is resolved 4200 * by registering each iterator with the css_set currently being 4201 * walked and making css_set_move_task() advance iterators whose 4202 * next task is leaving. 4203 */ 4204 if (it->cur_cset) { 4205 list_del(&it->iters_node); 4206 put_css_set_locked(it->cur_cset); 4207 } 4208 get_css_set(cset); 4209 it->cur_cset = cset; 4210 list_add(&it->iters_node, &cset->task_iters); 4211 } 4212 4213 static void css_task_iter_advance(struct css_task_iter *it) 4214 { 4215 struct list_head *next; 4216 4217 lockdep_assert_held(&css_set_lock); 4218 repeat: 4219 /* 4220 * Advance iterator to find next entry. cset->tasks is consumed 4221 * first and then ->mg_tasks. After ->mg_tasks, we move onto the 4222 * next cset. 4223 */ 4224 next = it->task_pos->next; 4225 4226 if (next == it->tasks_head) 4227 next = it->mg_tasks_head->next; 4228 4229 if (next == it->mg_tasks_head) 4230 css_task_iter_advance_css_set(it); 4231 else 4232 it->task_pos = next; 4233 4234 /* if PROCS, skip over tasks which aren't group leaders */ 4235 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos && 4236 !thread_group_leader(list_entry(it->task_pos, struct task_struct, 4237 cg_list))) 4238 goto repeat; 4239 } 4240 4241 /** 4242 * css_task_iter_start - initiate task iteration 4243 * @css: the css to walk tasks of 4244 * @flags: CSS_TASK_ITER_* flags 4245 * @it: the task iterator to use 4246 * 4247 * Initiate iteration through the tasks of @css. The caller can call 4248 * css_task_iter_next() to walk through the tasks until the function 4249 * returns NULL. On completion of iteration, css_task_iter_end() must be 4250 * called. 4251 */ 4252 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4253 struct css_task_iter *it) 4254 { 4255 /* no one should try to iterate before mounting cgroups */ 4256 WARN_ON_ONCE(!use_task_css_set_links); 4257 4258 memset(it, 0, sizeof(*it)); 4259 4260 spin_lock_irq(&css_set_lock); 4261 4262 it->ss = css->ss; 4263 it->flags = flags; 4264 4265 if (it->ss) 4266 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4267 else 4268 it->cset_pos = &css->cgroup->cset_links; 4269 4270 it->cset_head = it->cset_pos; 4271 4272 css_task_iter_advance_css_set(it); 4273 4274 spin_unlock_irq(&css_set_lock); 4275 } 4276 4277 /** 4278 * css_task_iter_next - return the next task for the iterator 4279 * @it: the task iterator being iterated 4280 * 4281 * The "next" function for task iteration. @it should have been 4282 * initialized via css_task_iter_start(). Returns NULL when the iteration 4283 * reaches the end. 4284 */ 4285 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4286 { 4287 if (it->cur_task) { 4288 put_task_struct(it->cur_task); 4289 it->cur_task = NULL; 4290 } 4291 4292 spin_lock_irq(&css_set_lock); 4293 4294 if (it->task_pos) { 4295 it->cur_task = list_entry(it->task_pos, struct task_struct, 4296 cg_list); 4297 get_task_struct(it->cur_task); 4298 css_task_iter_advance(it); 4299 } 4300 4301 spin_unlock_irq(&css_set_lock); 4302 4303 return it->cur_task; 4304 } 4305 4306 /** 4307 * css_task_iter_end - finish task iteration 4308 * @it: the task iterator to finish 4309 * 4310 * Finish task iteration started by css_task_iter_start(). 4311 */ 4312 void css_task_iter_end(struct css_task_iter *it) 4313 { 4314 if (it->cur_cset) { 4315 spin_lock_irq(&css_set_lock); 4316 list_del(&it->iters_node); 4317 put_css_set_locked(it->cur_cset); 4318 spin_unlock_irq(&css_set_lock); 4319 } 4320 4321 if (it->cur_dcset) 4322 put_css_set(it->cur_dcset); 4323 4324 if (it->cur_task) 4325 put_task_struct(it->cur_task); 4326 } 4327 4328 static void cgroup_procs_release(struct kernfs_open_file *of) 4329 { 4330 if (of->priv) { 4331 css_task_iter_end(of->priv); 4332 kfree(of->priv); 4333 } 4334 } 4335 4336 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4337 { 4338 struct kernfs_open_file *of = s->private; 4339 struct css_task_iter *it = of->priv; 4340 4341 return css_task_iter_next(it); 4342 } 4343 4344 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4345 unsigned int iter_flags) 4346 { 4347 struct kernfs_open_file *of = s->private; 4348 struct cgroup *cgrp = seq_css(s)->cgroup; 4349 struct css_task_iter *it = of->priv; 4350 4351 /* 4352 * When a seq_file is seeked, it's always traversed sequentially 4353 * from position 0, so we can simply keep iterating on !0 *pos. 4354 */ 4355 if (!it) { 4356 if (WARN_ON_ONCE((*pos)++)) 4357 return ERR_PTR(-EINVAL); 4358 4359 it = kzalloc(sizeof(*it), GFP_KERNEL); 4360 if (!it) 4361 return ERR_PTR(-ENOMEM); 4362 of->priv = it; 4363 css_task_iter_start(&cgrp->self, iter_flags, it); 4364 } else if (!(*pos)++) { 4365 css_task_iter_end(it); 4366 css_task_iter_start(&cgrp->self, iter_flags, it); 4367 } 4368 4369 return cgroup_procs_next(s, NULL, NULL); 4370 } 4371 4372 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4373 { 4374 struct cgroup *cgrp = seq_css(s)->cgroup; 4375 4376 /* 4377 * All processes of a threaded subtree belong to the domain cgroup 4378 * of the subtree. Only threads can be distributed across the 4379 * subtree. Reject reads on cgroup.procs in the subtree proper. 4380 * They're always empty anyway. 4381 */ 4382 if (cgroup_is_threaded(cgrp)) 4383 return ERR_PTR(-EOPNOTSUPP); 4384 4385 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4386 CSS_TASK_ITER_THREADED); 4387 } 4388 4389 static int cgroup_procs_show(struct seq_file *s, void *v) 4390 { 4391 seq_printf(s, "%d\n", task_pid_vnr(v)); 4392 return 0; 4393 } 4394 4395 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4396 struct cgroup *dst_cgrp, 4397 struct super_block *sb) 4398 { 4399 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4400 struct cgroup *com_cgrp = src_cgrp; 4401 struct inode *inode; 4402 int ret; 4403 4404 lockdep_assert_held(&cgroup_mutex); 4405 4406 /* find the common ancestor */ 4407 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4408 com_cgrp = cgroup_parent(com_cgrp); 4409 4410 /* %current should be authorized to migrate to the common ancestor */ 4411 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 4412 if (!inode) 4413 return -ENOMEM; 4414 4415 ret = inode_permission(inode, MAY_WRITE); 4416 iput(inode); 4417 if (ret) 4418 return ret; 4419 4420 /* 4421 * If namespaces are delegation boundaries, %current must be able 4422 * to see both source and destination cgroups from its namespace. 4423 */ 4424 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4425 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4426 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4427 return -ENOENT; 4428 4429 return 0; 4430 } 4431 4432 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4433 char *buf, size_t nbytes, loff_t off) 4434 { 4435 struct cgroup *src_cgrp, *dst_cgrp; 4436 struct task_struct *task; 4437 ssize_t ret; 4438 4439 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4440 if (!dst_cgrp) 4441 return -ENODEV; 4442 4443 task = cgroup_procs_write_start(buf, true); 4444 ret = PTR_ERR_OR_ZERO(task); 4445 if (ret) 4446 goto out_unlock; 4447 4448 /* find the source cgroup */ 4449 spin_lock_irq(&css_set_lock); 4450 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4451 spin_unlock_irq(&css_set_lock); 4452 4453 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4454 of->file->f_path.dentry->d_sb); 4455 if (ret) 4456 goto out_finish; 4457 4458 ret = cgroup_attach_task(dst_cgrp, task, true); 4459 4460 out_finish: 4461 cgroup_procs_write_finish(task); 4462 out_unlock: 4463 cgroup_kn_unlock(of->kn); 4464 4465 return ret ?: nbytes; 4466 } 4467 4468 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4469 { 4470 return __cgroup_procs_start(s, pos, 0); 4471 } 4472 4473 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4474 char *buf, size_t nbytes, loff_t off) 4475 { 4476 struct cgroup *src_cgrp, *dst_cgrp; 4477 struct task_struct *task; 4478 ssize_t ret; 4479 4480 buf = strstrip(buf); 4481 4482 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4483 if (!dst_cgrp) 4484 return -ENODEV; 4485 4486 task = cgroup_procs_write_start(buf, false); 4487 ret = PTR_ERR_OR_ZERO(task); 4488 if (ret) 4489 goto out_unlock; 4490 4491 /* find the source cgroup */ 4492 spin_lock_irq(&css_set_lock); 4493 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4494 spin_unlock_irq(&css_set_lock); 4495 4496 /* thread migrations follow the cgroup.procs delegation rule */ 4497 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4498 of->file->f_path.dentry->d_sb); 4499 if (ret) 4500 goto out_finish; 4501 4502 /* and must be contained in the same domain */ 4503 ret = -EOPNOTSUPP; 4504 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) 4505 goto out_finish; 4506 4507 ret = cgroup_attach_task(dst_cgrp, task, false); 4508 4509 out_finish: 4510 cgroup_procs_write_finish(task); 4511 out_unlock: 4512 cgroup_kn_unlock(of->kn); 4513 4514 return ret ?: nbytes; 4515 } 4516 4517 /* cgroup core interface files for the default hierarchy */ 4518 static struct cftype cgroup_base_files[] = { 4519 { 4520 .name = "cgroup.type", 4521 .flags = CFTYPE_NOT_ON_ROOT, 4522 .seq_show = cgroup_type_show, 4523 .write = cgroup_type_write, 4524 }, 4525 { 4526 .name = "cgroup.procs", 4527 .flags = CFTYPE_NS_DELEGATABLE, 4528 .file_offset = offsetof(struct cgroup, procs_file), 4529 .release = cgroup_procs_release, 4530 .seq_start = cgroup_procs_start, 4531 .seq_next = cgroup_procs_next, 4532 .seq_show = cgroup_procs_show, 4533 .write = cgroup_procs_write, 4534 }, 4535 { 4536 .name = "cgroup.threads", 4537 .flags = CFTYPE_NS_DELEGATABLE, 4538 .release = cgroup_procs_release, 4539 .seq_start = cgroup_threads_start, 4540 .seq_next = cgroup_procs_next, 4541 .seq_show = cgroup_procs_show, 4542 .write = cgroup_threads_write, 4543 }, 4544 { 4545 .name = "cgroup.controllers", 4546 .seq_show = cgroup_controllers_show, 4547 }, 4548 { 4549 .name = "cgroup.subtree_control", 4550 .flags = CFTYPE_NS_DELEGATABLE, 4551 .seq_show = cgroup_subtree_control_show, 4552 .write = cgroup_subtree_control_write, 4553 }, 4554 { 4555 .name = "cgroup.events", 4556 .flags = CFTYPE_NOT_ON_ROOT, 4557 .file_offset = offsetof(struct cgroup, events_file), 4558 .seq_show = cgroup_events_show, 4559 }, 4560 { 4561 .name = "cgroup.max.descendants", 4562 .seq_show = cgroup_max_descendants_show, 4563 .write = cgroup_max_descendants_write, 4564 }, 4565 { 4566 .name = "cgroup.max.depth", 4567 .seq_show = cgroup_max_depth_show, 4568 .write = cgroup_max_depth_write, 4569 }, 4570 { 4571 .name = "cgroup.stat", 4572 .seq_show = cgroup_stat_show, 4573 }, 4574 { 4575 .name = "cpu.stat", 4576 .flags = CFTYPE_NOT_ON_ROOT, 4577 .seq_show = cpu_stat_show, 4578 }, 4579 { } /* terminate */ 4580 }; 4581 4582 /* 4583 * css destruction is four-stage process. 4584 * 4585 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4586 * Implemented in kill_css(). 4587 * 4588 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4589 * and thus css_tryget_online() is guaranteed to fail, the css can be 4590 * offlined by invoking offline_css(). After offlining, the base ref is 4591 * put. Implemented in css_killed_work_fn(). 4592 * 4593 * 3. When the percpu_ref reaches zero, the only possible remaining 4594 * accessors are inside RCU read sections. css_release() schedules the 4595 * RCU callback. 4596 * 4597 * 4. After the grace period, the css can be freed. Implemented in 4598 * css_free_work_fn(). 4599 * 4600 * It is actually hairier because both step 2 and 4 require process context 4601 * and thus involve punting to css->destroy_work adding two additional 4602 * steps to the already complex sequence. 4603 */ 4604 static void css_free_rwork_fn(struct work_struct *work) 4605 { 4606 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 4607 struct cgroup_subsys_state, destroy_rwork); 4608 struct cgroup_subsys *ss = css->ss; 4609 struct cgroup *cgrp = css->cgroup; 4610 4611 percpu_ref_exit(&css->refcnt); 4612 4613 if (ss) { 4614 /* css free path */ 4615 struct cgroup_subsys_state *parent = css->parent; 4616 int id = css->id; 4617 4618 ss->css_free(css); 4619 cgroup_idr_remove(&ss->css_idr, id); 4620 cgroup_put(cgrp); 4621 4622 if (parent) 4623 css_put(parent); 4624 } else { 4625 /* cgroup free path */ 4626 atomic_dec(&cgrp->root->nr_cgrps); 4627 cgroup1_pidlist_destroy_all(cgrp); 4628 cancel_work_sync(&cgrp->release_agent_work); 4629 4630 if (cgroup_parent(cgrp)) { 4631 /* 4632 * We get a ref to the parent, and put the ref when 4633 * this cgroup is being freed, so it's guaranteed 4634 * that the parent won't be destroyed before its 4635 * children. 4636 */ 4637 cgroup_put(cgroup_parent(cgrp)); 4638 kernfs_put(cgrp->kn); 4639 if (cgroup_on_dfl(cgrp)) 4640 cgroup_rstat_exit(cgrp); 4641 kfree(cgrp); 4642 } else { 4643 /* 4644 * This is root cgroup's refcnt reaching zero, 4645 * which indicates that the root should be 4646 * released. 4647 */ 4648 cgroup_destroy_root(cgrp->root); 4649 } 4650 } 4651 } 4652 4653 static void css_release_work_fn(struct work_struct *work) 4654 { 4655 struct cgroup_subsys_state *css = 4656 container_of(work, struct cgroup_subsys_state, destroy_work); 4657 struct cgroup_subsys *ss = css->ss; 4658 struct cgroup *cgrp = css->cgroup; 4659 4660 mutex_lock(&cgroup_mutex); 4661 4662 css->flags |= CSS_RELEASED; 4663 list_del_rcu(&css->sibling); 4664 4665 if (ss) { 4666 /* css release path */ 4667 if (!list_empty(&css->rstat_css_node)) { 4668 cgroup_rstat_flush(cgrp); 4669 list_del_rcu(&css->rstat_css_node); 4670 } 4671 4672 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4673 if (ss->css_released) 4674 ss->css_released(css); 4675 } else { 4676 struct cgroup *tcgrp; 4677 4678 /* cgroup release path */ 4679 TRACE_CGROUP_PATH(release, cgrp); 4680 4681 if (cgroup_on_dfl(cgrp)) 4682 cgroup_rstat_flush(cgrp); 4683 4684 for (tcgrp = cgroup_parent(cgrp); tcgrp; 4685 tcgrp = cgroup_parent(tcgrp)) 4686 tcgrp->nr_dying_descendants--; 4687 4688 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4689 cgrp->id = -1; 4690 4691 /* 4692 * There are two control paths which try to determine 4693 * cgroup from dentry without going through kernfs - 4694 * cgroupstats_build() and css_tryget_online_from_dir(). 4695 * Those are supported by RCU protecting clearing of 4696 * cgrp->kn->priv backpointer. 4697 */ 4698 if (cgrp->kn) 4699 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 4700 NULL); 4701 4702 cgroup_bpf_put(cgrp); 4703 } 4704 4705 mutex_unlock(&cgroup_mutex); 4706 4707 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 4708 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 4709 } 4710 4711 static void css_release(struct percpu_ref *ref) 4712 { 4713 struct cgroup_subsys_state *css = 4714 container_of(ref, struct cgroup_subsys_state, refcnt); 4715 4716 INIT_WORK(&css->destroy_work, css_release_work_fn); 4717 queue_work(cgroup_destroy_wq, &css->destroy_work); 4718 } 4719 4720 static void init_and_link_css(struct cgroup_subsys_state *css, 4721 struct cgroup_subsys *ss, struct cgroup *cgrp) 4722 { 4723 lockdep_assert_held(&cgroup_mutex); 4724 4725 cgroup_get_live(cgrp); 4726 4727 memset(css, 0, sizeof(*css)); 4728 css->cgroup = cgrp; 4729 css->ss = ss; 4730 css->id = -1; 4731 INIT_LIST_HEAD(&css->sibling); 4732 INIT_LIST_HEAD(&css->children); 4733 INIT_LIST_HEAD(&css->rstat_css_node); 4734 css->serial_nr = css_serial_nr_next++; 4735 atomic_set(&css->online_cnt, 0); 4736 4737 if (cgroup_parent(cgrp)) { 4738 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 4739 css_get(css->parent); 4740 } 4741 4742 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush) 4743 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 4744 4745 BUG_ON(cgroup_css(cgrp, ss)); 4746 } 4747 4748 /* invoke ->css_online() on a new CSS and mark it online if successful */ 4749 static int online_css(struct cgroup_subsys_state *css) 4750 { 4751 struct cgroup_subsys *ss = css->ss; 4752 int ret = 0; 4753 4754 lockdep_assert_held(&cgroup_mutex); 4755 4756 if (ss->css_online) 4757 ret = ss->css_online(css); 4758 if (!ret) { 4759 css->flags |= CSS_ONLINE; 4760 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 4761 4762 atomic_inc(&css->online_cnt); 4763 if (css->parent) 4764 atomic_inc(&css->parent->online_cnt); 4765 } 4766 return ret; 4767 } 4768 4769 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 4770 static void offline_css(struct cgroup_subsys_state *css) 4771 { 4772 struct cgroup_subsys *ss = css->ss; 4773 4774 lockdep_assert_held(&cgroup_mutex); 4775 4776 if (!(css->flags & CSS_ONLINE)) 4777 return; 4778 4779 if (ss->css_offline) 4780 ss->css_offline(css); 4781 4782 css->flags &= ~CSS_ONLINE; 4783 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4784 4785 wake_up_all(&css->cgroup->offline_waitq); 4786 } 4787 4788 /** 4789 * css_create - create a cgroup_subsys_state 4790 * @cgrp: the cgroup new css will be associated with 4791 * @ss: the subsys of new css 4792 * 4793 * Create a new css associated with @cgrp - @ss pair. On success, the new 4794 * css is online and installed in @cgrp. This function doesn't create the 4795 * interface files. Returns 0 on success, -errno on failure. 4796 */ 4797 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 4798 struct cgroup_subsys *ss) 4799 { 4800 struct cgroup *parent = cgroup_parent(cgrp); 4801 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4802 struct cgroup_subsys_state *css; 4803 int err; 4804 4805 lockdep_assert_held(&cgroup_mutex); 4806 4807 css = ss->css_alloc(parent_css); 4808 if (!css) 4809 css = ERR_PTR(-ENOMEM); 4810 if (IS_ERR(css)) 4811 return css; 4812 4813 init_and_link_css(css, ss, cgrp); 4814 4815 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4816 if (err) 4817 goto err_free_css; 4818 4819 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 4820 if (err < 0) 4821 goto err_free_css; 4822 css->id = err; 4823 4824 /* @css is ready to be brought online now, make it visible */ 4825 list_add_tail_rcu(&css->sibling, &parent_css->children); 4826 cgroup_idr_replace(&ss->css_idr, css, css->id); 4827 4828 err = online_css(css); 4829 if (err) 4830 goto err_list_del; 4831 4832 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 4833 cgroup_parent(parent)) { 4834 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 4835 current->comm, current->pid, ss->name); 4836 if (!strcmp(ss->name, "memory")) 4837 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 4838 ss->warned_broken_hierarchy = true; 4839 } 4840 4841 return css; 4842 4843 err_list_del: 4844 list_del_rcu(&css->sibling); 4845 err_free_css: 4846 list_del_rcu(&css->rstat_css_node); 4847 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 4848 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 4849 return ERR_PTR(err); 4850 } 4851 4852 /* 4853 * The returned cgroup is fully initialized including its control mask, but 4854 * it isn't associated with its kernfs_node and doesn't have the control 4855 * mask applied. 4856 */ 4857 static struct cgroup *cgroup_create(struct cgroup *parent) 4858 { 4859 struct cgroup_root *root = parent->root; 4860 struct cgroup *cgrp, *tcgrp; 4861 int level = parent->level + 1; 4862 int ret; 4863 4864 /* allocate the cgroup and its ID, 0 is reserved for the root */ 4865 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)), 4866 GFP_KERNEL); 4867 if (!cgrp) 4868 return ERR_PTR(-ENOMEM); 4869 4870 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 4871 if (ret) 4872 goto out_free_cgrp; 4873 4874 if (cgroup_on_dfl(parent)) { 4875 ret = cgroup_rstat_init(cgrp); 4876 if (ret) 4877 goto out_cancel_ref; 4878 } 4879 4880 /* 4881 * Temporarily set the pointer to NULL, so idr_find() won't return 4882 * a half-baked cgroup. 4883 */ 4884 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 4885 if (cgrp->id < 0) { 4886 ret = -ENOMEM; 4887 goto out_stat_exit; 4888 } 4889 4890 init_cgroup_housekeeping(cgrp); 4891 4892 cgrp->self.parent = &parent->self; 4893 cgrp->root = root; 4894 cgrp->level = level; 4895 ret = cgroup_bpf_inherit(cgrp); 4896 if (ret) 4897 goto out_idr_free; 4898 4899 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 4900 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 4901 4902 if (tcgrp != cgrp) 4903 tcgrp->nr_descendants++; 4904 } 4905 4906 if (notify_on_release(parent)) 4907 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 4908 4909 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 4910 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 4911 4912 cgrp->self.serial_nr = css_serial_nr_next++; 4913 4914 /* allocation complete, commit to creation */ 4915 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 4916 atomic_inc(&root->nr_cgrps); 4917 cgroup_get_live(parent); 4918 4919 /* 4920 * @cgrp is now fully operational. If something fails after this 4921 * point, it'll be released via the normal destruction path. 4922 */ 4923 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 4924 4925 /* 4926 * On the default hierarchy, a child doesn't automatically inherit 4927 * subtree_control from the parent. Each is configured manually. 4928 */ 4929 if (!cgroup_on_dfl(cgrp)) 4930 cgrp->subtree_control = cgroup_control(cgrp); 4931 4932 cgroup_propagate_control(cgrp); 4933 4934 return cgrp; 4935 4936 out_idr_free: 4937 cgroup_idr_remove(&root->cgroup_idr, cgrp->id); 4938 out_stat_exit: 4939 if (cgroup_on_dfl(parent)) 4940 cgroup_rstat_exit(cgrp); 4941 out_cancel_ref: 4942 percpu_ref_exit(&cgrp->self.refcnt); 4943 out_free_cgrp: 4944 kfree(cgrp); 4945 return ERR_PTR(ret); 4946 } 4947 4948 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 4949 { 4950 struct cgroup *cgroup; 4951 int ret = false; 4952 int level = 1; 4953 4954 lockdep_assert_held(&cgroup_mutex); 4955 4956 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 4957 if (cgroup->nr_descendants >= cgroup->max_descendants) 4958 goto fail; 4959 4960 if (level > cgroup->max_depth) 4961 goto fail; 4962 4963 level++; 4964 } 4965 4966 ret = true; 4967 fail: 4968 return ret; 4969 } 4970 4971 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 4972 { 4973 struct cgroup *parent, *cgrp; 4974 struct kernfs_node *kn; 4975 int ret; 4976 4977 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 4978 if (strchr(name, '\n')) 4979 return -EINVAL; 4980 4981 parent = cgroup_kn_lock_live(parent_kn, false); 4982 if (!parent) 4983 return -ENODEV; 4984 4985 if (!cgroup_check_hierarchy_limits(parent)) { 4986 ret = -EAGAIN; 4987 goto out_unlock; 4988 } 4989 4990 cgrp = cgroup_create(parent); 4991 if (IS_ERR(cgrp)) { 4992 ret = PTR_ERR(cgrp); 4993 goto out_unlock; 4994 } 4995 4996 /* create the directory */ 4997 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 4998 if (IS_ERR(kn)) { 4999 ret = PTR_ERR(kn); 5000 goto out_destroy; 5001 } 5002 cgrp->kn = kn; 5003 5004 /* 5005 * This extra ref will be put in cgroup_free_fn() and guarantees 5006 * that @cgrp->kn is always accessible. 5007 */ 5008 kernfs_get(kn); 5009 5010 ret = cgroup_kn_set_ugid(kn); 5011 if (ret) 5012 goto out_destroy; 5013 5014 ret = css_populate_dir(&cgrp->self); 5015 if (ret) 5016 goto out_destroy; 5017 5018 ret = cgroup_apply_control_enable(cgrp); 5019 if (ret) 5020 goto out_destroy; 5021 5022 TRACE_CGROUP_PATH(mkdir, cgrp); 5023 5024 /* let's create and online css's */ 5025 kernfs_activate(kn); 5026 5027 ret = 0; 5028 goto out_unlock; 5029 5030 out_destroy: 5031 cgroup_destroy_locked(cgrp); 5032 out_unlock: 5033 cgroup_kn_unlock(parent_kn); 5034 return ret; 5035 } 5036 5037 /* 5038 * This is called when the refcnt of a css is confirmed to be killed. 5039 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5040 * initate destruction and put the css ref from kill_css(). 5041 */ 5042 static void css_killed_work_fn(struct work_struct *work) 5043 { 5044 struct cgroup_subsys_state *css = 5045 container_of(work, struct cgroup_subsys_state, destroy_work); 5046 5047 mutex_lock(&cgroup_mutex); 5048 5049 do { 5050 offline_css(css); 5051 css_put(css); 5052 /* @css can't go away while we're holding cgroup_mutex */ 5053 css = css->parent; 5054 } while (css && atomic_dec_and_test(&css->online_cnt)); 5055 5056 mutex_unlock(&cgroup_mutex); 5057 } 5058 5059 /* css kill confirmation processing requires process context, bounce */ 5060 static void css_killed_ref_fn(struct percpu_ref *ref) 5061 { 5062 struct cgroup_subsys_state *css = 5063 container_of(ref, struct cgroup_subsys_state, refcnt); 5064 5065 if (atomic_dec_and_test(&css->online_cnt)) { 5066 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5067 queue_work(cgroup_destroy_wq, &css->destroy_work); 5068 } 5069 } 5070 5071 /** 5072 * kill_css - destroy a css 5073 * @css: css to destroy 5074 * 5075 * This function initiates destruction of @css by removing cgroup interface 5076 * files and putting its base reference. ->css_offline() will be invoked 5077 * asynchronously once css_tryget_online() is guaranteed to fail and when 5078 * the reference count reaches zero, @css will be released. 5079 */ 5080 static void kill_css(struct cgroup_subsys_state *css) 5081 { 5082 lockdep_assert_held(&cgroup_mutex); 5083 5084 if (css->flags & CSS_DYING) 5085 return; 5086 5087 css->flags |= CSS_DYING; 5088 5089 /* 5090 * This must happen before css is disassociated with its cgroup. 5091 * See seq_css() for details. 5092 */ 5093 css_clear_dir(css); 5094 5095 /* 5096 * Killing would put the base ref, but we need to keep it alive 5097 * until after ->css_offline(). 5098 */ 5099 css_get(css); 5100 5101 /* 5102 * cgroup core guarantees that, by the time ->css_offline() is 5103 * invoked, no new css reference will be given out via 5104 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5105 * proceed to offlining css's because percpu_ref_kill() doesn't 5106 * guarantee that the ref is seen as killed on all CPUs on return. 5107 * 5108 * Use percpu_ref_kill_and_confirm() to get notifications as each 5109 * css is confirmed to be seen as killed on all CPUs. 5110 */ 5111 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5112 } 5113 5114 /** 5115 * cgroup_destroy_locked - the first stage of cgroup destruction 5116 * @cgrp: cgroup to be destroyed 5117 * 5118 * css's make use of percpu refcnts whose killing latency shouldn't be 5119 * exposed to userland and are RCU protected. Also, cgroup core needs to 5120 * guarantee that css_tryget_online() won't succeed by the time 5121 * ->css_offline() is invoked. To satisfy all the requirements, 5122 * destruction is implemented in the following two steps. 5123 * 5124 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5125 * userland visible parts and start killing the percpu refcnts of 5126 * css's. Set up so that the next stage will be kicked off once all 5127 * the percpu refcnts are confirmed to be killed. 5128 * 5129 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5130 * rest of destruction. Once all cgroup references are gone, the 5131 * cgroup is RCU-freed. 5132 * 5133 * This function implements s1. After this step, @cgrp is gone as far as 5134 * the userland is concerned and a new cgroup with the same name may be 5135 * created. As cgroup doesn't care about the names internally, this 5136 * doesn't cause any problem. 5137 */ 5138 static int cgroup_destroy_locked(struct cgroup *cgrp) 5139 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5140 { 5141 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5142 struct cgroup_subsys_state *css; 5143 struct cgrp_cset_link *link; 5144 int ssid; 5145 5146 lockdep_assert_held(&cgroup_mutex); 5147 5148 /* 5149 * Only migration can raise populated from zero and we're already 5150 * holding cgroup_mutex. 5151 */ 5152 if (cgroup_is_populated(cgrp)) 5153 return -EBUSY; 5154 5155 /* 5156 * Make sure there's no live children. We can't test emptiness of 5157 * ->self.children as dead children linger on it while being 5158 * drained; otherwise, "rmdir parent/child parent" may fail. 5159 */ 5160 if (css_has_online_children(&cgrp->self)) 5161 return -EBUSY; 5162 5163 /* 5164 * Mark @cgrp and the associated csets dead. The former prevents 5165 * further task migration and child creation by disabling 5166 * cgroup_lock_live_group(). The latter makes the csets ignored by 5167 * the migration path. 5168 */ 5169 cgrp->self.flags &= ~CSS_ONLINE; 5170 5171 spin_lock_irq(&css_set_lock); 5172 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5173 link->cset->dead = true; 5174 spin_unlock_irq(&css_set_lock); 5175 5176 /* initiate massacre of all css's */ 5177 for_each_css(css, ssid, cgrp) 5178 kill_css(css); 5179 5180 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5181 css_clear_dir(&cgrp->self); 5182 kernfs_remove(cgrp->kn); 5183 5184 if (parent && cgroup_is_threaded(cgrp)) 5185 parent->nr_threaded_children--; 5186 5187 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5188 tcgrp->nr_descendants--; 5189 tcgrp->nr_dying_descendants++; 5190 } 5191 5192 cgroup1_check_for_release(parent); 5193 5194 /* put the base reference */ 5195 percpu_ref_kill(&cgrp->self.refcnt); 5196 5197 return 0; 5198 }; 5199 5200 int cgroup_rmdir(struct kernfs_node *kn) 5201 { 5202 struct cgroup *cgrp; 5203 int ret = 0; 5204 5205 cgrp = cgroup_kn_lock_live(kn, false); 5206 if (!cgrp) 5207 return 0; 5208 5209 ret = cgroup_destroy_locked(cgrp); 5210 if (!ret) 5211 TRACE_CGROUP_PATH(rmdir, cgrp); 5212 5213 cgroup_kn_unlock(kn); 5214 return ret; 5215 } 5216 5217 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5218 .show_options = cgroup_show_options, 5219 .remount_fs = cgroup_remount, 5220 .mkdir = cgroup_mkdir, 5221 .rmdir = cgroup_rmdir, 5222 .show_path = cgroup_show_path, 5223 }; 5224 5225 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5226 { 5227 struct cgroup_subsys_state *css; 5228 5229 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5230 5231 mutex_lock(&cgroup_mutex); 5232 5233 idr_init(&ss->css_idr); 5234 INIT_LIST_HEAD(&ss->cfts); 5235 5236 /* Create the root cgroup state for this subsystem */ 5237 ss->root = &cgrp_dfl_root; 5238 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5239 /* We don't handle early failures gracefully */ 5240 BUG_ON(IS_ERR(css)); 5241 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5242 5243 /* 5244 * Root csses are never destroyed and we can't initialize 5245 * percpu_ref during early init. Disable refcnting. 5246 */ 5247 css->flags |= CSS_NO_REF; 5248 5249 if (early) { 5250 /* allocation can't be done safely during early init */ 5251 css->id = 1; 5252 } else { 5253 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5254 BUG_ON(css->id < 0); 5255 } 5256 5257 /* Update the init_css_set to contain a subsys 5258 * pointer to this state - since the subsystem is 5259 * newly registered, all tasks and hence the 5260 * init_css_set is in the subsystem's root cgroup. */ 5261 init_css_set.subsys[ss->id] = css; 5262 5263 have_fork_callback |= (bool)ss->fork << ss->id; 5264 have_exit_callback |= (bool)ss->exit << ss->id; 5265 have_free_callback |= (bool)ss->free << ss->id; 5266 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5267 5268 /* At system boot, before all subsystems have been 5269 * registered, no tasks have been forked, so we don't 5270 * need to invoke fork callbacks here. */ 5271 BUG_ON(!list_empty(&init_task.tasks)); 5272 5273 BUG_ON(online_css(css)); 5274 5275 mutex_unlock(&cgroup_mutex); 5276 } 5277 5278 /** 5279 * cgroup_init_early - cgroup initialization at system boot 5280 * 5281 * Initialize cgroups at system boot, and initialize any 5282 * subsystems that request early init. 5283 */ 5284 int __init cgroup_init_early(void) 5285 { 5286 static struct cgroup_sb_opts __initdata opts; 5287 struct cgroup_subsys *ss; 5288 int i; 5289 5290 init_cgroup_root(&cgrp_dfl_root, &opts); 5291 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5292 5293 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5294 5295 for_each_subsys(ss, i) { 5296 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5297 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5298 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5299 ss->id, ss->name); 5300 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5301 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5302 5303 ss->id = i; 5304 ss->name = cgroup_subsys_name[i]; 5305 if (!ss->legacy_name) 5306 ss->legacy_name = cgroup_subsys_name[i]; 5307 5308 if (ss->early_init) 5309 cgroup_init_subsys(ss, true); 5310 } 5311 return 0; 5312 } 5313 5314 static u16 cgroup_disable_mask __initdata; 5315 5316 /** 5317 * cgroup_init - cgroup initialization 5318 * 5319 * Register cgroup filesystem and /proc file, and initialize 5320 * any subsystems that didn't request early init. 5321 */ 5322 int __init cgroup_init(void) 5323 { 5324 struct cgroup_subsys *ss; 5325 int ssid; 5326 5327 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5328 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 5329 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5330 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5331 5332 cgroup_rstat_boot(); 5333 5334 /* 5335 * The latency of the synchronize_sched() is too high for cgroups, 5336 * avoid it at the cost of forcing all readers into the slow path. 5337 */ 5338 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5339 5340 get_user_ns(init_cgroup_ns.user_ns); 5341 5342 mutex_lock(&cgroup_mutex); 5343 5344 /* 5345 * Add init_css_set to the hash table so that dfl_root can link to 5346 * it during init. 5347 */ 5348 hash_add(css_set_table, &init_css_set.hlist, 5349 css_set_hash(init_css_set.subsys)); 5350 5351 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0)); 5352 5353 mutex_unlock(&cgroup_mutex); 5354 5355 for_each_subsys(ss, ssid) { 5356 if (ss->early_init) { 5357 struct cgroup_subsys_state *css = 5358 init_css_set.subsys[ss->id]; 5359 5360 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5361 GFP_KERNEL); 5362 BUG_ON(css->id < 0); 5363 } else { 5364 cgroup_init_subsys(ss, false); 5365 } 5366 5367 list_add_tail(&init_css_set.e_cset_node[ssid], 5368 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5369 5370 /* 5371 * Setting dfl_root subsys_mask needs to consider the 5372 * disabled flag and cftype registration needs kmalloc, 5373 * both of which aren't available during early_init. 5374 */ 5375 if (cgroup_disable_mask & (1 << ssid)) { 5376 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5377 printk(KERN_INFO "Disabling %s control group subsystem\n", 5378 ss->name); 5379 continue; 5380 } 5381 5382 if (cgroup1_ssid_disabled(ssid)) 5383 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5384 ss->name); 5385 5386 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5387 5388 /* implicit controllers must be threaded too */ 5389 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5390 5391 if (ss->implicit_on_dfl) 5392 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5393 else if (!ss->dfl_cftypes) 5394 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5395 5396 if (ss->threaded) 5397 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5398 5399 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5400 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5401 } else { 5402 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5403 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5404 } 5405 5406 if (ss->bind) 5407 ss->bind(init_css_set.subsys[ssid]); 5408 5409 mutex_lock(&cgroup_mutex); 5410 css_populate_dir(init_css_set.subsys[ssid]); 5411 mutex_unlock(&cgroup_mutex); 5412 } 5413 5414 /* init_css_set.subsys[] has been updated, re-hash */ 5415 hash_del(&init_css_set.hlist); 5416 hash_add(css_set_table, &init_css_set.hlist, 5417 css_set_hash(init_css_set.subsys)); 5418 5419 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5420 WARN_ON(register_filesystem(&cgroup_fs_type)); 5421 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5422 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 5423 5424 return 0; 5425 } 5426 5427 static int __init cgroup_wq_init(void) 5428 { 5429 /* 5430 * There isn't much point in executing destruction path in 5431 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5432 * Use 1 for @max_active. 5433 * 5434 * We would prefer to do this in cgroup_init() above, but that 5435 * is called before init_workqueues(): so leave this until after. 5436 */ 5437 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5438 BUG_ON(!cgroup_destroy_wq); 5439 return 0; 5440 } 5441 core_initcall(cgroup_wq_init); 5442 5443 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, 5444 char *buf, size_t buflen) 5445 { 5446 struct kernfs_node *kn; 5447 5448 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id); 5449 if (!kn) 5450 return; 5451 kernfs_path(kn, buf, buflen); 5452 kernfs_put(kn); 5453 } 5454 5455 /* 5456 * proc_cgroup_show() 5457 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5458 * - Used for /proc/<pid>/cgroup. 5459 */ 5460 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5461 struct pid *pid, struct task_struct *tsk) 5462 { 5463 char *buf; 5464 int retval; 5465 struct cgroup_root *root; 5466 5467 retval = -ENOMEM; 5468 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5469 if (!buf) 5470 goto out; 5471 5472 mutex_lock(&cgroup_mutex); 5473 spin_lock_irq(&css_set_lock); 5474 5475 for_each_root(root) { 5476 struct cgroup_subsys *ss; 5477 struct cgroup *cgrp; 5478 int ssid, count = 0; 5479 5480 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5481 continue; 5482 5483 seq_printf(m, "%d:", root->hierarchy_id); 5484 if (root != &cgrp_dfl_root) 5485 for_each_subsys(ss, ssid) 5486 if (root->subsys_mask & (1 << ssid)) 5487 seq_printf(m, "%s%s", count++ ? "," : "", 5488 ss->legacy_name); 5489 if (strlen(root->name)) 5490 seq_printf(m, "%sname=%s", count ? "," : "", 5491 root->name); 5492 seq_putc(m, ':'); 5493 5494 cgrp = task_cgroup_from_root(tsk, root); 5495 5496 /* 5497 * On traditional hierarchies, all zombie tasks show up as 5498 * belonging to the root cgroup. On the default hierarchy, 5499 * while a zombie doesn't show up in "cgroup.procs" and 5500 * thus can't be migrated, its /proc/PID/cgroup keeps 5501 * reporting the cgroup it belonged to before exiting. If 5502 * the cgroup is removed before the zombie is reaped, 5503 * " (deleted)" is appended to the cgroup path. 5504 */ 5505 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5506 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5507 current->nsproxy->cgroup_ns); 5508 if (retval >= PATH_MAX) 5509 retval = -ENAMETOOLONG; 5510 if (retval < 0) 5511 goto out_unlock; 5512 5513 seq_puts(m, buf); 5514 } else { 5515 seq_puts(m, "/"); 5516 } 5517 5518 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5519 seq_puts(m, " (deleted)\n"); 5520 else 5521 seq_putc(m, '\n'); 5522 } 5523 5524 retval = 0; 5525 out_unlock: 5526 spin_unlock_irq(&css_set_lock); 5527 mutex_unlock(&cgroup_mutex); 5528 kfree(buf); 5529 out: 5530 return retval; 5531 } 5532 5533 /** 5534 * cgroup_fork - initialize cgroup related fields during copy_process() 5535 * @child: pointer to task_struct of forking parent process. 5536 * 5537 * A task is associated with the init_css_set until cgroup_post_fork() 5538 * attaches it to the parent's css_set. Empty cg_list indicates that 5539 * @child isn't holding reference to its css_set. 5540 */ 5541 void cgroup_fork(struct task_struct *child) 5542 { 5543 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5544 INIT_LIST_HEAD(&child->cg_list); 5545 } 5546 5547 /** 5548 * cgroup_can_fork - called on a new task before the process is exposed 5549 * @child: the task in question. 5550 * 5551 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 5552 * returns an error, the fork aborts with that error code. This allows for 5553 * a cgroup subsystem to conditionally allow or deny new forks. 5554 */ 5555 int cgroup_can_fork(struct task_struct *child) 5556 { 5557 struct cgroup_subsys *ss; 5558 int i, j, ret; 5559 5560 do_each_subsys_mask(ss, i, have_canfork_callback) { 5561 ret = ss->can_fork(child); 5562 if (ret) 5563 goto out_revert; 5564 } while_each_subsys_mask(); 5565 5566 return 0; 5567 5568 out_revert: 5569 for_each_subsys(ss, j) { 5570 if (j >= i) 5571 break; 5572 if (ss->cancel_fork) 5573 ss->cancel_fork(child); 5574 } 5575 5576 return ret; 5577 } 5578 5579 /** 5580 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 5581 * @child: the task in question 5582 * 5583 * This calls the cancel_fork() callbacks if a fork failed *after* 5584 * cgroup_can_fork() succeded. 5585 */ 5586 void cgroup_cancel_fork(struct task_struct *child) 5587 { 5588 struct cgroup_subsys *ss; 5589 int i; 5590 5591 for_each_subsys(ss, i) 5592 if (ss->cancel_fork) 5593 ss->cancel_fork(child); 5594 } 5595 5596 /** 5597 * cgroup_post_fork - called on a new task after adding it to the task list 5598 * @child: the task in question 5599 * 5600 * Adds the task to the list running through its css_set if necessary and 5601 * call the subsystem fork() callbacks. Has to be after the task is 5602 * visible on the task list in case we race with the first call to 5603 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5604 * list. 5605 */ 5606 void cgroup_post_fork(struct task_struct *child) 5607 { 5608 struct cgroup_subsys *ss; 5609 int i; 5610 5611 /* 5612 * This may race against cgroup_enable_task_cg_lists(). As that 5613 * function sets use_task_css_set_links before grabbing 5614 * tasklist_lock and we just went through tasklist_lock to add 5615 * @child, it's guaranteed that either we see the set 5616 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 5617 * @child during its iteration. 5618 * 5619 * If we won the race, @child is associated with %current's 5620 * css_set. Grabbing css_set_lock guarantees both that the 5621 * association is stable, and, on completion of the parent's 5622 * migration, @child is visible in the source of migration or 5623 * already in the destination cgroup. This guarantee is necessary 5624 * when implementing operations which need to migrate all tasks of 5625 * a cgroup to another. 5626 * 5627 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 5628 * will remain in init_css_set. This is safe because all tasks are 5629 * in the init_css_set before cg_links is enabled and there's no 5630 * operation which transfers all tasks out of init_css_set. 5631 */ 5632 if (use_task_css_set_links) { 5633 struct css_set *cset; 5634 5635 spin_lock_irq(&css_set_lock); 5636 cset = task_css_set(current); 5637 if (list_empty(&child->cg_list)) { 5638 get_css_set(cset); 5639 cset->nr_tasks++; 5640 css_set_move_task(child, NULL, cset, false); 5641 } 5642 spin_unlock_irq(&css_set_lock); 5643 } 5644 5645 /* 5646 * Call ss->fork(). This must happen after @child is linked on 5647 * css_set; otherwise, @child might change state between ->fork() 5648 * and addition to css_set. 5649 */ 5650 do_each_subsys_mask(ss, i, have_fork_callback) { 5651 ss->fork(child); 5652 } while_each_subsys_mask(); 5653 } 5654 5655 /** 5656 * cgroup_exit - detach cgroup from exiting task 5657 * @tsk: pointer to task_struct of exiting process 5658 * 5659 * Description: Detach cgroup from @tsk and release it. 5660 * 5661 * Note that cgroups marked notify_on_release force every task in 5662 * them to take the global cgroup_mutex mutex when exiting. 5663 * This could impact scaling on very large systems. Be reluctant to 5664 * use notify_on_release cgroups where very high task exit scaling 5665 * is required on large systems. 5666 * 5667 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 5668 * call cgroup_exit() while the task is still competent to handle 5669 * notify_on_release(), then leave the task attached to the root cgroup in 5670 * each hierarchy for the remainder of its exit. No need to bother with 5671 * init_css_set refcnting. init_css_set never goes away and we can't race 5672 * with migration path - PF_EXITING is visible to migration path. 5673 */ 5674 void cgroup_exit(struct task_struct *tsk) 5675 { 5676 struct cgroup_subsys *ss; 5677 struct css_set *cset; 5678 int i; 5679 5680 /* 5681 * Unlink from @tsk from its css_set. As migration path can't race 5682 * with us, we can check css_set and cg_list without synchronization. 5683 */ 5684 cset = task_css_set(tsk); 5685 5686 if (!list_empty(&tsk->cg_list)) { 5687 spin_lock_irq(&css_set_lock); 5688 css_set_move_task(tsk, cset, NULL, false); 5689 cset->nr_tasks--; 5690 spin_unlock_irq(&css_set_lock); 5691 } else { 5692 get_css_set(cset); 5693 } 5694 5695 /* see cgroup_post_fork() for details */ 5696 do_each_subsys_mask(ss, i, have_exit_callback) { 5697 ss->exit(tsk); 5698 } while_each_subsys_mask(); 5699 } 5700 5701 void cgroup_free(struct task_struct *task) 5702 { 5703 struct css_set *cset = task_css_set(task); 5704 struct cgroup_subsys *ss; 5705 int ssid; 5706 5707 do_each_subsys_mask(ss, ssid, have_free_callback) { 5708 ss->free(task); 5709 } while_each_subsys_mask(); 5710 5711 put_css_set(cset); 5712 } 5713 5714 static int __init cgroup_disable(char *str) 5715 { 5716 struct cgroup_subsys *ss; 5717 char *token; 5718 int i; 5719 5720 while ((token = strsep(&str, ",")) != NULL) { 5721 if (!*token) 5722 continue; 5723 5724 for_each_subsys(ss, i) { 5725 if (strcmp(token, ss->name) && 5726 strcmp(token, ss->legacy_name)) 5727 continue; 5728 cgroup_disable_mask |= 1 << i; 5729 } 5730 } 5731 return 1; 5732 } 5733 __setup("cgroup_disable=", cgroup_disable); 5734 5735 /** 5736 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 5737 * @dentry: directory dentry of interest 5738 * @ss: subsystem of interest 5739 * 5740 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 5741 * to get the corresponding css and return it. If such css doesn't exist 5742 * or can't be pinned, an ERR_PTR value is returned. 5743 */ 5744 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 5745 struct cgroup_subsys *ss) 5746 { 5747 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 5748 struct file_system_type *s_type = dentry->d_sb->s_type; 5749 struct cgroup_subsys_state *css = NULL; 5750 struct cgroup *cgrp; 5751 5752 /* is @dentry a cgroup dir? */ 5753 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 5754 !kn || kernfs_type(kn) != KERNFS_DIR) 5755 return ERR_PTR(-EBADF); 5756 5757 rcu_read_lock(); 5758 5759 /* 5760 * This path doesn't originate from kernfs and @kn could already 5761 * have been or be removed at any point. @kn->priv is RCU 5762 * protected for this access. See css_release_work_fn() for details. 5763 */ 5764 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 5765 if (cgrp) 5766 css = cgroup_css(cgrp, ss); 5767 5768 if (!css || !css_tryget_online(css)) 5769 css = ERR_PTR(-ENOENT); 5770 5771 rcu_read_unlock(); 5772 return css; 5773 } 5774 5775 /** 5776 * css_from_id - lookup css by id 5777 * @id: the cgroup id 5778 * @ss: cgroup subsys to be looked into 5779 * 5780 * Returns the css if there's valid one with @id, otherwise returns NULL. 5781 * Should be called under rcu_read_lock(). 5782 */ 5783 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 5784 { 5785 WARN_ON_ONCE(!rcu_read_lock_held()); 5786 return idr_find(&ss->css_idr, id); 5787 } 5788 5789 /** 5790 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 5791 * @path: path on the default hierarchy 5792 * 5793 * Find the cgroup at @path on the default hierarchy, increment its 5794 * reference count and return it. Returns pointer to the found cgroup on 5795 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 5796 * if @path points to a non-directory. 5797 */ 5798 struct cgroup *cgroup_get_from_path(const char *path) 5799 { 5800 struct kernfs_node *kn; 5801 struct cgroup *cgrp; 5802 5803 mutex_lock(&cgroup_mutex); 5804 5805 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 5806 if (kn) { 5807 if (kernfs_type(kn) == KERNFS_DIR) { 5808 cgrp = kn->priv; 5809 cgroup_get_live(cgrp); 5810 } else { 5811 cgrp = ERR_PTR(-ENOTDIR); 5812 } 5813 kernfs_put(kn); 5814 } else { 5815 cgrp = ERR_PTR(-ENOENT); 5816 } 5817 5818 mutex_unlock(&cgroup_mutex); 5819 return cgrp; 5820 } 5821 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 5822 5823 /** 5824 * cgroup_get_from_fd - get a cgroup pointer from a fd 5825 * @fd: fd obtained by open(cgroup2_dir) 5826 * 5827 * Find the cgroup from a fd which should be obtained 5828 * by opening a cgroup directory. Returns a pointer to the 5829 * cgroup on success. ERR_PTR is returned if the cgroup 5830 * cannot be found. 5831 */ 5832 struct cgroup *cgroup_get_from_fd(int fd) 5833 { 5834 struct cgroup_subsys_state *css; 5835 struct cgroup *cgrp; 5836 struct file *f; 5837 5838 f = fget_raw(fd); 5839 if (!f) 5840 return ERR_PTR(-EBADF); 5841 5842 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5843 fput(f); 5844 if (IS_ERR(css)) 5845 return ERR_CAST(css); 5846 5847 cgrp = css->cgroup; 5848 if (!cgroup_on_dfl(cgrp)) { 5849 cgroup_put(cgrp); 5850 return ERR_PTR(-EBADF); 5851 } 5852 5853 return cgrp; 5854 } 5855 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 5856 5857 /* 5858 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 5859 * definition in cgroup-defs.h. 5860 */ 5861 #ifdef CONFIG_SOCK_CGROUP_DATA 5862 5863 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 5864 5865 DEFINE_SPINLOCK(cgroup_sk_update_lock); 5866 static bool cgroup_sk_alloc_disabled __read_mostly; 5867 5868 void cgroup_sk_alloc_disable(void) 5869 { 5870 if (cgroup_sk_alloc_disabled) 5871 return; 5872 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 5873 cgroup_sk_alloc_disabled = true; 5874 } 5875 5876 #else 5877 5878 #define cgroup_sk_alloc_disabled false 5879 5880 #endif 5881 5882 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 5883 { 5884 if (cgroup_sk_alloc_disabled) 5885 return; 5886 5887 /* Socket clone path */ 5888 if (skcd->val) { 5889 /* 5890 * We might be cloning a socket which is left in an empty 5891 * cgroup and the cgroup might have already been rmdir'd. 5892 * Don't use cgroup_get_live(). 5893 */ 5894 cgroup_get(sock_cgroup_ptr(skcd)); 5895 return; 5896 } 5897 5898 rcu_read_lock(); 5899 5900 while (true) { 5901 struct css_set *cset; 5902 5903 cset = task_css_set(current); 5904 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 5905 skcd->val = (unsigned long)cset->dfl_cgrp; 5906 break; 5907 } 5908 cpu_relax(); 5909 } 5910 5911 rcu_read_unlock(); 5912 } 5913 5914 void cgroup_sk_free(struct sock_cgroup_data *skcd) 5915 { 5916 cgroup_put(sock_cgroup_ptr(skcd)); 5917 } 5918 5919 #endif /* CONFIG_SOCK_CGROUP_DATA */ 5920 5921 #ifdef CONFIG_CGROUP_BPF 5922 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 5923 enum bpf_attach_type type, u32 flags) 5924 { 5925 int ret; 5926 5927 mutex_lock(&cgroup_mutex); 5928 ret = __cgroup_bpf_attach(cgrp, prog, type, flags); 5929 mutex_unlock(&cgroup_mutex); 5930 return ret; 5931 } 5932 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 5933 enum bpf_attach_type type, u32 flags) 5934 { 5935 int ret; 5936 5937 mutex_lock(&cgroup_mutex); 5938 ret = __cgroup_bpf_detach(cgrp, prog, type, flags); 5939 mutex_unlock(&cgroup_mutex); 5940 return ret; 5941 } 5942 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 5943 union bpf_attr __user *uattr) 5944 { 5945 int ret; 5946 5947 mutex_lock(&cgroup_mutex); 5948 ret = __cgroup_bpf_query(cgrp, attr, uattr); 5949 mutex_unlock(&cgroup_mutex); 5950 return ret; 5951 } 5952 #endif /* CONFIG_CGROUP_BPF */ 5953 5954 #ifdef CONFIG_SYSFS 5955 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 5956 ssize_t size, const char *prefix) 5957 { 5958 struct cftype *cft; 5959 ssize_t ret = 0; 5960 5961 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 5962 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 5963 continue; 5964 5965 if (prefix) 5966 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 5967 5968 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 5969 5970 if (unlikely(ret >= size)) { 5971 WARN_ON(1); 5972 break; 5973 } 5974 } 5975 5976 return ret; 5977 } 5978 5979 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 5980 char *buf) 5981 { 5982 struct cgroup_subsys *ss; 5983 int ssid; 5984 ssize_t ret = 0; 5985 5986 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 5987 NULL); 5988 5989 for_each_subsys(ss, ssid) 5990 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 5991 PAGE_SIZE - ret, 5992 cgroup_subsys_name[ssid]); 5993 5994 return ret; 5995 } 5996 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 5997 5998 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 5999 char *buf) 6000 { 6001 return snprintf(buf, PAGE_SIZE, "nsdelegate\n"); 6002 } 6003 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 6004 6005 static struct attribute *cgroup_sysfs_attrs[] = { 6006 &cgroup_delegate_attr.attr, 6007 &cgroup_features_attr.attr, 6008 NULL, 6009 }; 6010 6011 static const struct attribute_group cgroup_sysfs_attr_group = { 6012 .attrs = cgroup_sysfs_attrs, 6013 .name = "cgroup", 6014 }; 6015 6016 static int __init cgroup_sysfs_init(void) 6017 { 6018 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 6019 } 6020 subsys_initcall(cgroup_sysfs_init); 6021 #endif /* CONFIG_SYSFS */ 6022