1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/cred.h> 34 #include <linux/errno.h> 35 #include <linux/init_task.h> 36 #include <linux/kernel.h> 37 #include <linux/magic.h> 38 #include <linux/mutex.h> 39 #include <linux/mount.h> 40 #include <linux/pagemap.h> 41 #include <linux/proc_fs.h> 42 #include <linux/rcupdate.h> 43 #include <linux/sched.h> 44 #include <linux/sched/task.h> 45 #include <linux/slab.h> 46 #include <linux/spinlock.h> 47 #include <linux/percpu-rwsem.h> 48 #include <linux/string.h> 49 #include <linux/hashtable.h> 50 #include <linux/idr.h> 51 #include <linux/kthread.h> 52 #include <linux/atomic.h> 53 #include <linux/cpuset.h> 54 #include <linux/proc_ns.h> 55 #include <linux/nsproxy.h> 56 #include <linux/file.h> 57 #include <net/sock.h> 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/cgroup.h> 61 62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 63 MAX_CFTYPE_NAME + 2) 64 65 /* 66 * cgroup_mutex is the master lock. Any modification to cgroup or its 67 * hierarchy must be performed while holding it. 68 * 69 * css_set_lock protects task->cgroups pointer, the list of css_set 70 * objects, and the chain of tasks off each css_set. 71 * 72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 73 * cgroup.h can use them for lockdep annotations. 74 */ 75 DEFINE_MUTEX(cgroup_mutex); 76 DEFINE_SPINLOCK(css_set_lock); 77 78 #ifdef CONFIG_PROVE_RCU 79 EXPORT_SYMBOL_GPL(cgroup_mutex); 80 EXPORT_SYMBOL_GPL(css_set_lock); 81 #endif 82 83 /* 84 * Protects cgroup_idr and css_idr so that IDs can be released without 85 * grabbing cgroup_mutex. 86 */ 87 static DEFINE_SPINLOCK(cgroup_idr_lock); 88 89 /* 90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 91 * against file removal/re-creation across css hiding. 92 */ 93 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 94 95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 96 97 #define cgroup_assert_mutex_or_rcu_locked() \ 98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 99 !lockdep_is_held(&cgroup_mutex), \ 100 "cgroup_mutex or RCU read lock required"); 101 102 /* 103 * cgroup destruction makes heavy use of work items and there can be a lot 104 * of concurrent destructions. Use a separate workqueue so that cgroup 105 * destruction work items don't end up filling up max_active of system_wq 106 * which may lead to deadlock. 107 */ 108 static struct workqueue_struct *cgroup_destroy_wq; 109 110 /* generate an array of cgroup subsystem pointers */ 111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 112 struct cgroup_subsys *cgroup_subsys[] = { 113 #include <linux/cgroup_subsys.h> 114 }; 115 #undef SUBSYS 116 117 /* array of cgroup subsystem names */ 118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 119 static const char *cgroup_subsys_name[] = { 120 #include <linux/cgroup_subsys.h> 121 }; 122 #undef SUBSYS 123 124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 125 #define SUBSYS(_x) \ 126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 130 #include <linux/cgroup_subsys.h> 131 #undef SUBSYS 132 133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 134 static struct static_key_true *cgroup_subsys_enabled_key[] = { 135 #include <linux/cgroup_subsys.h> 136 }; 137 #undef SUBSYS 138 139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 141 #include <linux/cgroup_subsys.h> 142 }; 143 #undef SUBSYS 144 145 static DEFINE_PER_CPU(struct cgroup_cpu_stat, cgrp_dfl_root_cpu_stat); 146 147 /* 148 * The default hierarchy, reserved for the subsystems that are otherwise 149 * unattached - it never has more than a single cgroup, and all tasks are 150 * part of that cgroup. 151 */ 152 struct cgroup_root cgrp_dfl_root = { .cgrp.cpu_stat = &cgrp_dfl_root_cpu_stat }; 153 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 154 155 /* 156 * The default hierarchy always exists but is hidden until mounted for the 157 * first time. This is for backward compatibility. 158 */ 159 static bool cgrp_dfl_visible; 160 161 /* some controllers are not supported in the default hierarchy */ 162 static u16 cgrp_dfl_inhibit_ss_mask; 163 164 /* some controllers are implicitly enabled on the default hierarchy */ 165 static u16 cgrp_dfl_implicit_ss_mask; 166 167 /* some controllers can be threaded on the default hierarchy */ 168 static u16 cgrp_dfl_threaded_ss_mask; 169 170 /* The list of hierarchy roots */ 171 LIST_HEAD(cgroup_roots); 172 static int cgroup_root_count; 173 174 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 175 static DEFINE_IDR(cgroup_hierarchy_idr); 176 177 /* 178 * Assign a monotonically increasing serial number to csses. It guarantees 179 * cgroups with bigger numbers are newer than those with smaller numbers. 180 * Also, as csses are always appended to the parent's ->children list, it 181 * guarantees that sibling csses are always sorted in the ascending serial 182 * number order on the list. Protected by cgroup_mutex. 183 */ 184 static u64 css_serial_nr_next = 1; 185 186 /* 187 * These bitmasks identify subsystems with specific features to avoid 188 * having to do iterative checks repeatedly. 189 */ 190 static u16 have_fork_callback __read_mostly; 191 static u16 have_exit_callback __read_mostly; 192 static u16 have_free_callback __read_mostly; 193 static u16 have_canfork_callback __read_mostly; 194 195 /* cgroup namespace for init task */ 196 struct cgroup_namespace init_cgroup_ns = { 197 .count = REFCOUNT_INIT(2), 198 .user_ns = &init_user_ns, 199 .ns.ops = &cgroupns_operations, 200 .ns.inum = PROC_CGROUP_INIT_INO, 201 .root_cset = &init_css_set, 202 }; 203 204 static struct file_system_type cgroup2_fs_type; 205 static struct cftype cgroup_base_files[]; 206 207 static int cgroup_apply_control(struct cgroup *cgrp); 208 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 209 static void css_task_iter_advance(struct css_task_iter *it); 210 static int cgroup_destroy_locked(struct cgroup *cgrp); 211 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 212 struct cgroup_subsys *ss); 213 static void css_release(struct percpu_ref *ref); 214 static void kill_css(struct cgroup_subsys_state *css); 215 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 216 struct cgroup *cgrp, struct cftype cfts[], 217 bool is_add); 218 219 /** 220 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 221 * @ssid: subsys ID of interest 222 * 223 * cgroup_subsys_enabled() can only be used with literal subsys names which 224 * is fine for individual subsystems but unsuitable for cgroup core. This 225 * is slower static_key_enabled() based test indexed by @ssid. 226 */ 227 bool cgroup_ssid_enabled(int ssid) 228 { 229 if (CGROUP_SUBSYS_COUNT == 0) 230 return false; 231 232 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 233 } 234 235 /** 236 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 237 * @cgrp: the cgroup of interest 238 * 239 * The default hierarchy is the v2 interface of cgroup and this function 240 * can be used to test whether a cgroup is on the default hierarchy for 241 * cases where a subsystem should behave differnetly depending on the 242 * interface version. 243 * 244 * The set of behaviors which change on the default hierarchy are still 245 * being determined and the mount option is prefixed with __DEVEL__. 246 * 247 * List of changed behaviors: 248 * 249 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 250 * and "name" are disallowed. 251 * 252 * - When mounting an existing superblock, mount options should match. 253 * 254 * - Remount is disallowed. 255 * 256 * - rename(2) is disallowed. 257 * 258 * - "tasks" is removed. Everything should be at process granularity. Use 259 * "cgroup.procs" instead. 260 * 261 * - "cgroup.procs" is not sorted. pids will be unique unless they got 262 * recycled inbetween reads. 263 * 264 * - "release_agent" and "notify_on_release" are removed. Replacement 265 * notification mechanism will be implemented. 266 * 267 * - "cgroup.clone_children" is removed. 268 * 269 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 270 * and its descendants contain no task; otherwise, 1. The file also 271 * generates kernfs notification which can be monitored through poll and 272 * [di]notify when the value of the file changes. 273 * 274 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 275 * take masks of ancestors with non-empty cpus/mems, instead of being 276 * moved to an ancestor. 277 * 278 * - cpuset: a task can be moved into an empty cpuset, and again it takes 279 * masks of ancestors. 280 * 281 * - memcg: use_hierarchy is on by default and the cgroup file for the flag 282 * is not created. 283 * 284 * - blkcg: blk-throttle becomes properly hierarchical. 285 * 286 * - debug: disallowed on the default hierarchy. 287 */ 288 bool cgroup_on_dfl(const struct cgroup *cgrp) 289 { 290 return cgrp->root == &cgrp_dfl_root; 291 } 292 293 /* IDR wrappers which synchronize using cgroup_idr_lock */ 294 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 295 gfp_t gfp_mask) 296 { 297 int ret; 298 299 idr_preload(gfp_mask); 300 spin_lock_bh(&cgroup_idr_lock); 301 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 302 spin_unlock_bh(&cgroup_idr_lock); 303 idr_preload_end(); 304 return ret; 305 } 306 307 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 308 { 309 void *ret; 310 311 spin_lock_bh(&cgroup_idr_lock); 312 ret = idr_replace(idr, ptr, id); 313 spin_unlock_bh(&cgroup_idr_lock); 314 return ret; 315 } 316 317 static void cgroup_idr_remove(struct idr *idr, int id) 318 { 319 spin_lock_bh(&cgroup_idr_lock); 320 idr_remove(idr, id); 321 spin_unlock_bh(&cgroup_idr_lock); 322 } 323 324 static bool cgroup_has_tasks(struct cgroup *cgrp) 325 { 326 return cgrp->nr_populated_csets; 327 } 328 329 bool cgroup_is_threaded(struct cgroup *cgrp) 330 { 331 return cgrp->dom_cgrp != cgrp; 332 } 333 334 /* can @cgrp host both domain and threaded children? */ 335 static bool cgroup_is_mixable(struct cgroup *cgrp) 336 { 337 /* 338 * Root isn't under domain level resource control exempting it from 339 * the no-internal-process constraint, so it can serve as a thread 340 * root and a parent of resource domains at the same time. 341 */ 342 return !cgroup_parent(cgrp); 343 } 344 345 /* can @cgrp become a thread root? should always be true for a thread root */ 346 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 347 { 348 /* mixables don't care */ 349 if (cgroup_is_mixable(cgrp)) 350 return true; 351 352 /* domain roots can't be nested under threaded */ 353 if (cgroup_is_threaded(cgrp)) 354 return false; 355 356 /* can only have either domain or threaded children */ 357 if (cgrp->nr_populated_domain_children) 358 return false; 359 360 /* and no domain controllers can be enabled */ 361 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 362 return false; 363 364 return true; 365 } 366 367 /* is @cgrp root of a threaded subtree? */ 368 bool cgroup_is_thread_root(struct cgroup *cgrp) 369 { 370 /* thread root should be a domain */ 371 if (cgroup_is_threaded(cgrp)) 372 return false; 373 374 /* a domain w/ threaded children is a thread root */ 375 if (cgrp->nr_threaded_children) 376 return true; 377 378 /* 379 * A domain which has tasks and explicit threaded controllers 380 * enabled is a thread root. 381 */ 382 if (cgroup_has_tasks(cgrp) && 383 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 384 return true; 385 386 return false; 387 } 388 389 /* a domain which isn't connected to the root w/o brekage can't be used */ 390 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 391 { 392 /* the cgroup itself can be a thread root */ 393 if (cgroup_is_threaded(cgrp)) 394 return false; 395 396 /* but the ancestors can't be unless mixable */ 397 while ((cgrp = cgroup_parent(cgrp))) { 398 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 399 return false; 400 if (cgroup_is_threaded(cgrp)) 401 return false; 402 } 403 404 return true; 405 } 406 407 /* subsystems visibly enabled on a cgroup */ 408 static u16 cgroup_control(struct cgroup *cgrp) 409 { 410 struct cgroup *parent = cgroup_parent(cgrp); 411 u16 root_ss_mask = cgrp->root->subsys_mask; 412 413 if (parent) { 414 u16 ss_mask = parent->subtree_control; 415 416 /* threaded cgroups can only have threaded controllers */ 417 if (cgroup_is_threaded(cgrp)) 418 ss_mask &= cgrp_dfl_threaded_ss_mask; 419 return ss_mask; 420 } 421 422 if (cgroup_on_dfl(cgrp)) 423 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 424 cgrp_dfl_implicit_ss_mask); 425 return root_ss_mask; 426 } 427 428 /* subsystems enabled on a cgroup */ 429 static u16 cgroup_ss_mask(struct cgroup *cgrp) 430 { 431 struct cgroup *parent = cgroup_parent(cgrp); 432 433 if (parent) { 434 u16 ss_mask = parent->subtree_ss_mask; 435 436 /* threaded cgroups can only have threaded controllers */ 437 if (cgroup_is_threaded(cgrp)) 438 ss_mask &= cgrp_dfl_threaded_ss_mask; 439 return ss_mask; 440 } 441 442 return cgrp->root->subsys_mask; 443 } 444 445 /** 446 * cgroup_css - obtain a cgroup's css for the specified subsystem 447 * @cgrp: the cgroup of interest 448 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 449 * 450 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 451 * function must be called either under cgroup_mutex or rcu_read_lock() and 452 * the caller is responsible for pinning the returned css if it wants to 453 * keep accessing it outside the said locks. This function may return 454 * %NULL if @cgrp doesn't have @subsys_id enabled. 455 */ 456 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 457 struct cgroup_subsys *ss) 458 { 459 if (ss) 460 return rcu_dereference_check(cgrp->subsys[ss->id], 461 lockdep_is_held(&cgroup_mutex)); 462 else 463 return &cgrp->self; 464 } 465 466 /** 467 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 468 * @cgrp: the cgroup of interest 469 * @ss: the subsystem of interest 470 * 471 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist 472 * or is offline, %NULL is returned. 473 */ 474 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 475 struct cgroup_subsys *ss) 476 { 477 struct cgroup_subsys_state *css; 478 479 rcu_read_lock(); 480 css = cgroup_css(cgrp, ss); 481 if (!css || !css_tryget_online(css)) 482 css = NULL; 483 rcu_read_unlock(); 484 485 return css; 486 } 487 488 /** 489 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 490 * @cgrp: the cgroup of interest 491 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 492 * 493 * Similar to cgroup_css() but returns the effective css, which is defined 494 * as the matching css of the nearest ancestor including self which has @ss 495 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 496 * function is guaranteed to return non-NULL css. 497 */ 498 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 499 struct cgroup_subsys *ss) 500 { 501 lockdep_assert_held(&cgroup_mutex); 502 503 if (!ss) 504 return &cgrp->self; 505 506 /* 507 * This function is used while updating css associations and thus 508 * can't test the csses directly. Test ss_mask. 509 */ 510 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 511 cgrp = cgroup_parent(cgrp); 512 if (!cgrp) 513 return NULL; 514 } 515 516 return cgroup_css(cgrp, ss); 517 } 518 519 /** 520 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 521 * @cgrp: the cgroup of interest 522 * @ss: the subsystem of interest 523 * 524 * Find and get the effective css of @cgrp for @ss. The effective css is 525 * defined as the matching css of the nearest ancestor including self which 526 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 527 * the root css is returned, so this function always returns a valid css. 528 * The returned css must be put using css_put(). 529 */ 530 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 531 struct cgroup_subsys *ss) 532 { 533 struct cgroup_subsys_state *css; 534 535 rcu_read_lock(); 536 537 do { 538 css = cgroup_css(cgrp, ss); 539 540 if (css && css_tryget_online(css)) 541 goto out_unlock; 542 cgrp = cgroup_parent(cgrp); 543 } while (cgrp); 544 545 css = init_css_set.subsys[ss->id]; 546 css_get(css); 547 out_unlock: 548 rcu_read_unlock(); 549 return css; 550 } 551 552 static void cgroup_get_live(struct cgroup *cgrp) 553 { 554 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 555 css_get(&cgrp->self); 556 } 557 558 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 559 { 560 struct cgroup *cgrp = of->kn->parent->priv; 561 struct cftype *cft = of_cft(of); 562 563 /* 564 * This is open and unprotected implementation of cgroup_css(). 565 * seq_css() is only called from a kernfs file operation which has 566 * an active reference on the file. Because all the subsystem 567 * files are drained before a css is disassociated with a cgroup, 568 * the matching css from the cgroup's subsys table is guaranteed to 569 * be and stay valid until the enclosing operation is complete. 570 */ 571 if (cft->ss) 572 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 573 else 574 return &cgrp->self; 575 } 576 EXPORT_SYMBOL_GPL(of_css); 577 578 /** 579 * for_each_css - iterate all css's of a cgroup 580 * @css: the iteration cursor 581 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 582 * @cgrp: the target cgroup to iterate css's of 583 * 584 * Should be called under cgroup_[tree_]mutex. 585 */ 586 #define for_each_css(css, ssid, cgrp) \ 587 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 588 if (!((css) = rcu_dereference_check( \ 589 (cgrp)->subsys[(ssid)], \ 590 lockdep_is_held(&cgroup_mutex)))) { } \ 591 else 592 593 /** 594 * for_each_e_css - iterate all effective css's of a cgroup 595 * @css: the iteration cursor 596 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 597 * @cgrp: the target cgroup to iterate css's of 598 * 599 * Should be called under cgroup_[tree_]mutex. 600 */ 601 #define for_each_e_css(css, ssid, cgrp) \ 602 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 603 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ 604 ; \ 605 else 606 607 /** 608 * do_each_subsys_mask - filter for_each_subsys with a bitmask 609 * @ss: the iteration cursor 610 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 611 * @ss_mask: the bitmask 612 * 613 * The block will only run for cases where the ssid-th bit (1 << ssid) of 614 * @ss_mask is set. 615 */ 616 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 617 unsigned long __ss_mask = (ss_mask); \ 618 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ 619 (ssid) = 0; \ 620 break; \ 621 } \ 622 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 623 (ss) = cgroup_subsys[ssid]; \ 624 { 625 626 #define while_each_subsys_mask() \ 627 } \ 628 } \ 629 } while (false) 630 631 /* iterate over child cgrps, lock should be held throughout iteration */ 632 #define cgroup_for_each_live_child(child, cgrp) \ 633 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 634 if (({ lockdep_assert_held(&cgroup_mutex); \ 635 cgroup_is_dead(child); })) \ 636 ; \ 637 else 638 639 /* walk live descendants in preorder */ 640 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 641 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 642 if (({ lockdep_assert_held(&cgroup_mutex); \ 643 (dsct) = (d_css)->cgroup; \ 644 cgroup_is_dead(dsct); })) \ 645 ; \ 646 else 647 648 /* walk live descendants in postorder */ 649 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 650 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 651 if (({ lockdep_assert_held(&cgroup_mutex); \ 652 (dsct) = (d_css)->cgroup; \ 653 cgroup_is_dead(dsct); })) \ 654 ; \ 655 else 656 657 /* 658 * The default css_set - used by init and its children prior to any 659 * hierarchies being mounted. It contains a pointer to the root state 660 * for each subsystem. Also used to anchor the list of css_sets. Not 661 * reference-counted, to improve performance when child cgroups 662 * haven't been created. 663 */ 664 struct css_set init_css_set = { 665 .refcount = REFCOUNT_INIT(1), 666 .dom_cset = &init_css_set, 667 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 668 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 669 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 670 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 671 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 672 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), 673 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 674 675 /* 676 * The following field is re-initialized when this cset gets linked 677 * in cgroup_init(). However, let's initialize the field 678 * statically too so that the default cgroup can be accessed safely 679 * early during boot. 680 */ 681 .dfl_cgrp = &cgrp_dfl_root.cgrp, 682 }; 683 684 static int css_set_count = 1; /* 1 for init_css_set */ 685 686 static bool css_set_threaded(struct css_set *cset) 687 { 688 return cset->dom_cset != cset; 689 } 690 691 /** 692 * css_set_populated - does a css_set contain any tasks? 693 * @cset: target css_set 694 * 695 * css_set_populated() should be the same as !!cset->nr_tasks at steady 696 * state. However, css_set_populated() can be called while a task is being 697 * added to or removed from the linked list before the nr_tasks is 698 * properly updated. Hence, we can't just look at ->nr_tasks here. 699 */ 700 static bool css_set_populated(struct css_set *cset) 701 { 702 lockdep_assert_held(&css_set_lock); 703 704 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 705 } 706 707 /** 708 * cgroup_update_populated - update the populated count of a cgroup 709 * @cgrp: the target cgroup 710 * @populated: inc or dec populated count 711 * 712 * One of the css_sets associated with @cgrp is either getting its first 713 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 714 * count is propagated towards root so that a given cgroup's 715 * nr_populated_children is zero iff none of its descendants contain any 716 * tasks. 717 * 718 * @cgrp's interface file "cgroup.populated" is zero if both 719 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 720 * 1 otherwise. When the sum changes from or to zero, userland is notified 721 * that the content of the interface file has changed. This can be used to 722 * detect when @cgrp and its descendants become populated or empty. 723 */ 724 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 725 { 726 struct cgroup *child = NULL; 727 int adj = populated ? 1 : -1; 728 729 lockdep_assert_held(&css_set_lock); 730 731 do { 732 bool was_populated = cgroup_is_populated(cgrp); 733 734 if (!child) { 735 cgrp->nr_populated_csets += adj; 736 } else { 737 if (cgroup_is_threaded(child)) 738 cgrp->nr_populated_threaded_children += adj; 739 else 740 cgrp->nr_populated_domain_children += adj; 741 } 742 743 if (was_populated == cgroup_is_populated(cgrp)) 744 break; 745 746 cgroup1_check_for_release(cgrp); 747 cgroup_file_notify(&cgrp->events_file); 748 749 child = cgrp; 750 cgrp = cgroup_parent(cgrp); 751 } while (cgrp); 752 } 753 754 /** 755 * css_set_update_populated - update populated state of a css_set 756 * @cset: target css_set 757 * @populated: whether @cset is populated or depopulated 758 * 759 * @cset is either getting the first task or losing the last. Update the 760 * populated counters of all associated cgroups accordingly. 761 */ 762 static void css_set_update_populated(struct css_set *cset, bool populated) 763 { 764 struct cgrp_cset_link *link; 765 766 lockdep_assert_held(&css_set_lock); 767 768 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 769 cgroup_update_populated(link->cgrp, populated); 770 } 771 772 /** 773 * css_set_move_task - move a task from one css_set to another 774 * @task: task being moved 775 * @from_cset: css_set @task currently belongs to (may be NULL) 776 * @to_cset: new css_set @task is being moved to (may be NULL) 777 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 778 * 779 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 780 * css_set, @from_cset can be NULL. If @task is being disassociated 781 * instead of moved, @to_cset can be NULL. 782 * 783 * This function automatically handles populated counter updates and 784 * css_task_iter adjustments but the caller is responsible for managing 785 * @from_cset and @to_cset's reference counts. 786 */ 787 static void css_set_move_task(struct task_struct *task, 788 struct css_set *from_cset, struct css_set *to_cset, 789 bool use_mg_tasks) 790 { 791 lockdep_assert_held(&css_set_lock); 792 793 if (to_cset && !css_set_populated(to_cset)) 794 css_set_update_populated(to_cset, true); 795 796 if (from_cset) { 797 struct css_task_iter *it, *pos; 798 799 WARN_ON_ONCE(list_empty(&task->cg_list)); 800 801 /* 802 * @task is leaving, advance task iterators which are 803 * pointing to it so that they can resume at the next 804 * position. Advancing an iterator might remove it from 805 * the list, use safe walk. See css_task_iter_advance*() 806 * for details. 807 */ 808 list_for_each_entry_safe(it, pos, &from_cset->task_iters, 809 iters_node) 810 if (it->task_pos == &task->cg_list) 811 css_task_iter_advance(it); 812 813 list_del_init(&task->cg_list); 814 if (!css_set_populated(from_cset)) 815 css_set_update_populated(from_cset, false); 816 } else { 817 WARN_ON_ONCE(!list_empty(&task->cg_list)); 818 } 819 820 if (to_cset) { 821 /* 822 * We are synchronized through cgroup_threadgroup_rwsem 823 * against PF_EXITING setting such that we can't race 824 * against cgroup_exit() changing the css_set to 825 * init_css_set and dropping the old one. 826 */ 827 WARN_ON_ONCE(task->flags & PF_EXITING); 828 829 rcu_assign_pointer(task->cgroups, to_cset); 830 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 831 &to_cset->tasks); 832 } 833 } 834 835 /* 836 * hash table for cgroup groups. This improves the performance to find 837 * an existing css_set. This hash doesn't (currently) take into 838 * account cgroups in empty hierarchies. 839 */ 840 #define CSS_SET_HASH_BITS 7 841 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 842 843 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 844 { 845 unsigned long key = 0UL; 846 struct cgroup_subsys *ss; 847 int i; 848 849 for_each_subsys(ss, i) 850 key += (unsigned long)css[i]; 851 key = (key >> 16) ^ key; 852 853 return key; 854 } 855 856 void put_css_set_locked(struct css_set *cset) 857 { 858 struct cgrp_cset_link *link, *tmp_link; 859 struct cgroup_subsys *ss; 860 int ssid; 861 862 lockdep_assert_held(&css_set_lock); 863 864 if (!refcount_dec_and_test(&cset->refcount)) 865 return; 866 867 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 868 869 /* This css_set is dead. unlink it and release cgroup and css refs */ 870 for_each_subsys(ss, ssid) { 871 list_del(&cset->e_cset_node[ssid]); 872 css_put(cset->subsys[ssid]); 873 } 874 hash_del(&cset->hlist); 875 css_set_count--; 876 877 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 878 list_del(&link->cset_link); 879 list_del(&link->cgrp_link); 880 if (cgroup_parent(link->cgrp)) 881 cgroup_put(link->cgrp); 882 kfree(link); 883 } 884 885 if (css_set_threaded(cset)) { 886 list_del(&cset->threaded_csets_node); 887 put_css_set_locked(cset->dom_cset); 888 } 889 890 kfree_rcu(cset, rcu_head); 891 } 892 893 /** 894 * compare_css_sets - helper function for find_existing_css_set(). 895 * @cset: candidate css_set being tested 896 * @old_cset: existing css_set for a task 897 * @new_cgrp: cgroup that's being entered by the task 898 * @template: desired set of css pointers in css_set (pre-calculated) 899 * 900 * Returns true if "cset" matches "old_cset" except for the hierarchy 901 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 902 */ 903 static bool compare_css_sets(struct css_set *cset, 904 struct css_set *old_cset, 905 struct cgroup *new_cgrp, 906 struct cgroup_subsys_state *template[]) 907 { 908 struct cgroup *new_dfl_cgrp; 909 struct list_head *l1, *l2; 910 911 /* 912 * On the default hierarchy, there can be csets which are 913 * associated with the same set of cgroups but different csses. 914 * Let's first ensure that csses match. 915 */ 916 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 917 return false; 918 919 920 /* @cset's domain should match the default cgroup's */ 921 if (cgroup_on_dfl(new_cgrp)) 922 new_dfl_cgrp = new_cgrp; 923 else 924 new_dfl_cgrp = old_cset->dfl_cgrp; 925 926 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 927 return false; 928 929 /* 930 * Compare cgroup pointers in order to distinguish between 931 * different cgroups in hierarchies. As different cgroups may 932 * share the same effective css, this comparison is always 933 * necessary. 934 */ 935 l1 = &cset->cgrp_links; 936 l2 = &old_cset->cgrp_links; 937 while (1) { 938 struct cgrp_cset_link *link1, *link2; 939 struct cgroup *cgrp1, *cgrp2; 940 941 l1 = l1->next; 942 l2 = l2->next; 943 /* See if we reached the end - both lists are equal length. */ 944 if (l1 == &cset->cgrp_links) { 945 BUG_ON(l2 != &old_cset->cgrp_links); 946 break; 947 } else { 948 BUG_ON(l2 == &old_cset->cgrp_links); 949 } 950 /* Locate the cgroups associated with these links. */ 951 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 952 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 953 cgrp1 = link1->cgrp; 954 cgrp2 = link2->cgrp; 955 /* Hierarchies should be linked in the same order. */ 956 BUG_ON(cgrp1->root != cgrp2->root); 957 958 /* 959 * If this hierarchy is the hierarchy of the cgroup 960 * that's changing, then we need to check that this 961 * css_set points to the new cgroup; if it's any other 962 * hierarchy, then this css_set should point to the 963 * same cgroup as the old css_set. 964 */ 965 if (cgrp1->root == new_cgrp->root) { 966 if (cgrp1 != new_cgrp) 967 return false; 968 } else { 969 if (cgrp1 != cgrp2) 970 return false; 971 } 972 } 973 return true; 974 } 975 976 /** 977 * find_existing_css_set - init css array and find the matching css_set 978 * @old_cset: the css_set that we're using before the cgroup transition 979 * @cgrp: the cgroup that we're moving into 980 * @template: out param for the new set of csses, should be clear on entry 981 */ 982 static struct css_set *find_existing_css_set(struct css_set *old_cset, 983 struct cgroup *cgrp, 984 struct cgroup_subsys_state *template[]) 985 { 986 struct cgroup_root *root = cgrp->root; 987 struct cgroup_subsys *ss; 988 struct css_set *cset; 989 unsigned long key; 990 int i; 991 992 /* 993 * Build the set of subsystem state objects that we want to see in the 994 * new css_set. while subsystems can change globally, the entries here 995 * won't change, so no need for locking. 996 */ 997 for_each_subsys(ss, i) { 998 if (root->subsys_mask & (1UL << i)) { 999 /* 1000 * @ss is in this hierarchy, so we want the 1001 * effective css from @cgrp. 1002 */ 1003 template[i] = cgroup_e_css(cgrp, ss); 1004 } else { 1005 /* 1006 * @ss is not in this hierarchy, so we don't want 1007 * to change the css. 1008 */ 1009 template[i] = old_cset->subsys[i]; 1010 } 1011 } 1012 1013 key = css_set_hash(template); 1014 hash_for_each_possible(css_set_table, cset, hlist, key) { 1015 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1016 continue; 1017 1018 /* This css_set matches what we need */ 1019 return cset; 1020 } 1021 1022 /* No existing cgroup group matched */ 1023 return NULL; 1024 } 1025 1026 static void free_cgrp_cset_links(struct list_head *links_to_free) 1027 { 1028 struct cgrp_cset_link *link, *tmp_link; 1029 1030 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1031 list_del(&link->cset_link); 1032 kfree(link); 1033 } 1034 } 1035 1036 /** 1037 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1038 * @count: the number of links to allocate 1039 * @tmp_links: list_head the allocated links are put on 1040 * 1041 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1042 * through ->cset_link. Returns 0 on success or -errno. 1043 */ 1044 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1045 { 1046 struct cgrp_cset_link *link; 1047 int i; 1048 1049 INIT_LIST_HEAD(tmp_links); 1050 1051 for (i = 0; i < count; i++) { 1052 link = kzalloc(sizeof(*link), GFP_KERNEL); 1053 if (!link) { 1054 free_cgrp_cset_links(tmp_links); 1055 return -ENOMEM; 1056 } 1057 list_add(&link->cset_link, tmp_links); 1058 } 1059 return 0; 1060 } 1061 1062 /** 1063 * link_css_set - a helper function to link a css_set to a cgroup 1064 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1065 * @cset: the css_set to be linked 1066 * @cgrp: the destination cgroup 1067 */ 1068 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1069 struct cgroup *cgrp) 1070 { 1071 struct cgrp_cset_link *link; 1072 1073 BUG_ON(list_empty(tmp_links)); 1074 1075 if (cgroup_on_dfl(cgrp)) 1076 cset->dfl_cgrp = cgrp; 1077 1078 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1079 link->cset = cset; 1080 link->cgrp = cgrp; 1081 1082 /* 1083 * Always add links to the tail of the lists so that the lists are 1084 * in choronological order. 1085 */ 1086 list_move_tail(&link->cset_link, &cgrp->cset_links); 1087 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1088 1089 if (cgroup_parent(cgrp)) 1090 cgroup_get_live(cgrp); 1091 } 1092 1093 /** 1094 * find_css_set - return a new css_set with one cgroup updated 1095 * @old_cset: the baseline css_set 1096 * @cgrp: the cgroup to be updated 1097 * 1098 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1099 * substituted into the appropriate hierarchy. 1100 */ 1101 static struct css_set *find_css_set(struct css_set *old_cset, 1102 struct cgroup *cgrp) 1103 { 1104 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1105 struct css_set *cset; 1106 struct list_head tmp_links; 1107 struct cgrp_cset_link *link; 1108 struct cgroup_subsys *ss; 1109 unsigned long key; 1110 int ssid; 1111 1112 lockdep_assert_held(&cgroup_mutex); 1113 1114 /* First see if we already have a cgroup group that matches 1115 * the desired set */ 1116 spin_lock_irq(&css_set_lock); 1117 cset = find_existing_css_set(old_cset, cgrp, template); 1118 if (cset) 1119 get_css_set(cset); 1120 spin_unlock_irq(&css_set_lock); 1121 1122 if (cset) 1123 return cset; 1124 1125 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1126 if (!cset) 1127 return NULL; 1128 1129 /* Allocate all the cgrp_cset_link objects that we'll need */ 1130 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1131 kfree(cset); 1132 return NULL; 1133 } 1134 1135 refcount_set(&cset->refcount, 1); 1136 cset->dom_cset = cset; 1137 INIT_LIST_HEAD(&cset->tasks); 1138 INIT_LIST_HEAD(&cset->mg_tasks); 1139 INIT_LIST_HEAD(&cset->task_iters); 1140 INIT_LIST_HEAD(&cset->threaded_csets); 1141 INIT_HLIST_NODE(&cset->hlist); 1142 INIT_LIST_HEAD(&cset->cgrp_links); 1143 INIT_LIST_HEAD(&cset->mg_preload_node); 1144 INIT_LIST_HEAD(&cset->mg_node); 1145 1146 /* Copy the set of subsystem state objects generated in 1147 * find_existing_css_set() */ 1148 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1149 1150 spin_lock_irq(&css_set_lock); 1151 /* Add reference counts and links from the new css_set. */ 1152 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1153 struct cgroup *c = link->cgrp; 1154 1155 if (c->root == cgrp->root) 1156 c = cgrp; 1157 link_css_set(&tmp_links, cset, c); 1158 } 1159 1160 BUG_ON(!list_empty(&tmp_links)); 1161 1162 css_set_count++; 1163 1164 /* Add @cset to the hash table */ 1165 key = css_set_hash(cset->subsys); 1166 hash_add(css_set_table, &cset->hlist, key); 1167 1168 for_each_subsys(ss, ssid) { 1169 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1170 1171 list_add_tail(&cset->e_cset_node[ssid], 1172 &css->cgroup->e_csets[ssid]); 1173 css_get(css); 1174 } 1175 1176 spin_unlock_irq(&css_set_lock); 1177 1178 /* 1179 * If @cset should be threaded, look up the matching dom_cset and 1180 * link them up. We first fully initialize @cset then look for the 1181 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1182 * to stay empty until we return. 1183 */ 1184 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1185 struct css_set *dcset; 1186 1187 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1188 if (!dcset) { 1189 put_css_set(cset); 1190 return NULL; 1191 } 1192 1193 spin_lock_irq(&css_set_lock); 1194 cset->dom_cset = dcset; 1195 list_add_tail(&cset->threaded_csets_node, 1196 &dcset->threaded_csets); 1197 spin_unlock_irq(&css_set_lock); 1198 } 1199 1200 return cset; 1201 } 1202 1203 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1204 { 1205 struct cgroup *root_cgrp = kf_root->kn->priv; 1206 1207 return root_cgrp->root; 1208 } 1209 1210 static int cgroup_init_root_id(struct cgroup_root *root) 1211 { 1212 int id; 1213 1214 lockdep_assert_held(&cgroup_mutex); 1215 1216 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1217 if (id < 0) 1218 return id; 1219 1220 root->hierarchy_id = id; 1221 return 0; 1222 } 1223 1224 static void cgroup_exit_root_id(struct cgroup_root *root) 1225 { 1226 lockdep_assert_held(&cgroup_mutex); 1227 1228 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1229 } 1230 1231 void cgroup_free_root(struct cgroup_root *root) 1232 { 1233 if (root) { 1234 idr_destroy(&root->cgroup_idr); 1235 kfree(root); 1236 } 1237 } 1238 1239 static void cgroup_destroy_root(struct cgroup_root *root) 1240 { 1241 struct cgroup *cgrp = &root->cgrp; 1242 struct cgrp_cset_link *link, *tmp_link; 1243 1244 trace_cgroup_destroy_root(root); 1245 1246 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1247 1248 BUG_ON(atomic_read(&root->nr_cgrps)); 1249 BUG_ON(!list_empty(&cgrp->self.children)); 1250 1251 /* Rebind all subsystems back to the default hierarchy */ 1252 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1253 1254 /* 1255 * Release all the links from cset_links to this hierarchy's 1256 * root cgroup 1257 */ 1258 spin_lock_irq(&css_set_lock); 1259 1260 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1261 list_del(&link->cset_link); 1262 list_del(&link->cgrp_link); 1263 kfree(link); 1264 } 1265 1266 spin_unlock_irq(&css_set_lock); 1267 1268 if (!list_empty(&root->root_list)) { 1269 list_del(&root->root_list); 1270 cgroup_root_count--; 1271 } 1272 1273 cgroup_exit_root_id(root); 1274 1275 mutex_unlock(&cgroup_mutex); 1276 1277 kernfs_destroy_root(root->kf_root); 1278 cgroup_free_root(root); 1279 } 1280 1281 /* 1282 * look up cgroup associated with current task's cgroup namespace on the 1283 * specified hierarchy 1284 */ 1285 static struct cgroup * 1286 current_cgns_cgroup_from_root(struct cgroup_root *root) 1287 { 1288 struct cgroup *res = NULL; 1289 struct css_set *cset; 1290 1291 lockdep_assert_held(&css_set_lock); 1292 1293 rcu_read_lock(); 1294 1295 cset = current->nsproxy->cgroup_ns->root_cset; 1296 if (cset == &init_css_set) { 1297 res = &root->cgrp; 1298 } else { 1299 struct cgrp_cset_link *link; 1300 1301 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1302 struct cgroup *c = link->cgrp; 1303 1304 if (c->root == root) { 1305 res = c; 1306 break; 1307 } 1308 } 1309 } 1310 rcu_read_unlock(); 1311 1312 BUG_ON(!res); 1313 return res; 1314 } 1315 1316 /* look up cgroup associated with given css_set on the specified hierarchy */ 1317 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1318 struct cgroup_root *root) 1319 { 1320 struct cgroup *res = NULL; 1321 1322 lockdep_assert_held(&cgroup_mutex); 1323 lockdep_assert_held(&css_set_lock); 1324 1325 if (cset == &init_css_set) { 1326 res = &root->cgrp; 1327 } else if (root == &cgrp_dfl_root) { 1328 res = cset->dfl_cgrp; 1329 } else { 1330 struct cgrp_cset_link *link; 1331 1332 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1333 struct cgroup *c = link->cgrp; 1334 1335 if (c->root == root) { 1336 res = c; 1337 break; 1338 } 1339 } 1340 } 1341 1342 BUG_ON(!res); 1343 return res; 1344 } 1345 1346 /* 1347 * Return the cgroup for "task" from the given hierarchy. Must be 1348 * called with cgroup_mutex and css_set_lock held. 1349 */ 1350 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1351 struct cgroup_root *root) 1352 { 1353 /* 1354 * No need to lock the task - since we hold cgroup_mutex the 1355 * task can't change groups, so the only thing that can happen 1356 * is that it exits and its css is set back to init_css_set. 1357 */ 1358 return cset_cgroup_from_root(task_css_set(task), root); 1359 } 1360 1361 /* 1362 * A task must hold cgroup_mutex to modify cgroups. 1363 * 1364 * Any task can increment and decrement the count field without lock. 1365 * So in general, code holding cgroup_mutex can't rely on the count 1366 * field not changing. However, if the count goes to zero, then only 1367 * cgroup_attach_task() can increment it again. Because a count of zero 1368 * means that no tasks are currently attached, therefore there is no 1369 * way a task attached to that cgroup can fork (the other way to 1370 * increment the count). So code holding cgroup_mutex can safely 1371 * assume that if the count is zero, it will stay zero. Similarly, if 1372 * a task holds cgroup_mutex on a cgroup with zero count, it 1373 * knows that the cgroup won't be removed, as cgroup_rmdir() 1374 * needs that mutex. 1375 * 1376 * A cgroup can only be deleted if both its 'count' of using tasks 1377 * is zero, and its list of 'children' cgroups is empty. Since all 1378 * tasks in the system use _some_ cgroup, and since there is always at 1379 * least one task in the system (init, pid == 1), therefore, root cgroup 1380 * always has either children cgroups and/or using tasks. So we don't 1381 * need a special hack to ensure that root cgroup cannot be deleted. 1382 * 1383 * P.S. One more locking exception. RCU is used to guard the 1384 * update of a tasks cgroup pointer by cgroup_attach_task() 1385 */ 1386 1387 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1388 1389 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1390 char *buf) 1391 { 1392 struct cgroup_subsys *ss = cft->ss; 1393 1394 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1395 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) 1396 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", 1397 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1398 cft->name); 1399 else 1400 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1401 return buf; 1402 } 1403 1404 /** 1405 * cgroup_file_mode - deduce file mode of a control file 1406 * @cft: the control file in question 1407 * 1408 * S_IRUGO for read, S_IWUSR for write. 1409 */ 1410 static umode_t cgroup_file_mode(const struct cftype *cft) 1411 { 1412 umode_t mode = 0; 1413 1414 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1415 mode |= S_IRUGO; 1416 1417 if (cft->write_u64 || cft->write_s64 || cft->write) { 1418 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1419 mode |= S_IWUGO; 1420 else 1421 mode |= S_IWUSR; 1422 } 1423 1424 return mode; 1425 } 1426 1427 /** 1428 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1429 * @subtree_control: the new subtree_control mask to consider 1430 * @this_ss_mask: available subsystems 1431 * 1432 * On the default hierarchy, a subsystem may request other subsystems to be 1433 * enabled together through its ->depends_on mask. In such cases, more 1434 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1435 * 1436 * This function calculates which subsystems need to be enabled if 1437 * @subtree_control is to be applied while restricted to @this_ss_mask. 1438 */ 1439 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1440 { 1441 u16 cur_ss_mask = subtree_control; 1442 struct cgroup_subsys *ss; 1443 int ssid; 1444 1445 lockdep_assert_held(&cgroup_mutex); 1446 1447 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1448 1449 while (true) { 1450 u16 new_ss_mask = cur_ss_mask; 1451 1452 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1453 new_ss_mask |= ss->depends_on; 1454 } while_each_subsys_mask(); 1455 1456 /* 1457 * Mask out subsystems which aren't available. This can 1458 * happen only if some depended-upon subsystems were bound 1459 * to non-default hierarchies. 1460 */ 1461 new_ss_mask &= this_ss_mask; 1462 1463 if (new_ss_mask == cur_ss_mask) 1464 break; 1465 cur_ss_mask = new_ss_mask; 1466 } 1467 1468 return cur_ss_mask; 1469 } 1470 1471 /** 1472 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1473 * @kn: the kernfs_node being serviced 1474 * 1475 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1476 * the method finishes if locking succeeded. Note that once this function 1477 * returns the cgroup returned by cgroup_kn_lock_live() may become 1478 * inaccessible any time. If the caller intends to continue to access the 1479 * cgroup, it should pin it before invoking this function. 1480 */ 1481 void cgroup_kn_unlock(struct kernfs_node *kn) 1482 { 1483 struct cgroup *cgrp; 1484 1485 if (kernfs_type(kn) == KERNFS_DIR) 1486 cgrp = kn->priv; 1487 else 1488 cgrp = kn->parent->priv; 1489 1490 mutex_unlock(&cgroup_mutex); 1491 1492 kernfs_unbreak_active_protection(kn); 1493 cgroup_put(cgrp); 1494 } 1495 1496 /** 1497 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1498 * @kn: the kernfs_node being serviced 1499 * @drain_offline: perform offline draining on the cgroup 1500 * 1501 * This helper is to be used by a cgroup kernfs method currently servicing 1502 * @kn. It breaks the active protection, performs cgroup locking and 1503 * verifies that the associated cgroup is alive. Returns the cgroup if 1504 * alive; otherwise, %NULL. A successful return should be undone by a 1505 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1506 * cgroup is drained of offlining csses before return. 1507 * 1508 * Any cgroup kernfs method implementation which requires locking the 1509 * associated cgroup should use this helper. It avoids nesting cgroup 1510 * locking under kernfs active protection and allows all kernfs operations 1511 * including self-removal. 1512 */ 1513 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1514 { 1515 struct cgroup *cgrp; 1516 1517 if (kernfs_type(kn) == KERNFS_DIR) 1518 cgrp = kn->priv; 1519 else 1520 cgrp = kn->parent->priv; 1521 1522 /* 1523 * We're gonna grab cgroup_mutex which nests outside kernfs 1524 * active_ref. cgroup liveliness check alone provides enough 1525 * protection against removal. Ensure @cgrp stays accessible and 1526 * break the active_ref protection. 1527 */ 1528 if (!cgroup_tryget(cgrp)) 1529 return NULL; 1530 kernfs_break_active_protection(kn); 1531 1532 if (drain_offline) 1533 cgroup_lock_and_drain_offline(cgrp); 1534 else 1535 mutex_lock(&cgroup_mutex); 1536 1537 if (!cgroup_is_dead(cgrp)) 1538 return cgrp; 1539 1540 cgroup_kn_unlock(kn); 1541 return NULL; 1542 } 1543 1544 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1545 { 1546 char name[CGROUP_FILE_NAME_MAX]; 1547 1548 lockdep_assert_held(&cgroup_mutex); 1549 1550 if (cft->file_offset) { 1551 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1552 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1553 1554 spin_lock_irq(&cgroup_file_kn_lock); 1555 cfile->kn = NULL; 1556 spin_unlock_irq(&cgroup_file_kn_lock); 1557 } 1558 1559 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1560 } 1561 1562 /** 1563 * css_clear_dir - remove subsys files in a cgroup directory 1564 * @css: taget css 1565 */ 1566 static void css_clear_dir(struct cgroup_subsys_state *css) 1567 { 1568 struct cgroup *cgrp = css->cgroup; 1569 struct cftype *cfts; 1570 1571 if (!(css->flags & CSS_VISIBLE)) 1572 return; 1573 1574 css->flags &= ~CSS_VISIBLE; 1575 1576 list_for_each_entry(cfts, &css->ss->cfts, node) 1577 cgroup_addrm_files(css, cgrp, cfts, false); 1578 } 1579 1580 /** 1581 * css_populate_dir - create subsys files in a cgroup directory 1582 * @css: target css 1583 * 1584 * On failure, no file is added. 1585 */ 1586 static int css_populate_dir(struct cgroup_subsys_state *css) 1587 { 1588 struct cgroup *cgrp = css->cgroup; 1589 struct cftype *cfts, *failed_cfts; 1590 int ret; 1591 1592 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1593 return 0; 1594 1595 if (!css->ss) { 1596 if (cgroup_on_dfl(cgrp)) 1597 cfts = cgroup_base_files; 1598 else 1599 cfts = cgroup1_base_files; 1600 1601 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); 1602 } 1603 1604 list_for_each_entry(cfts, &css->ss->cfts, node) { 1605 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1606 if (ret < 0) { 1607 failed_cfts = cfts; 1608 goto err; 1609 } 1610 } 1611 1612 css->flags |= CSS_VISIBLE; 1613 1614 return 0; 1615 err: 1616 list_for_each_entry(cfts, &css->ss->cfts, node) { 1617 if (cfts == failed_cfts) 1618 break; 1619 cgroup_addrm_files(css, cgrp, cfts, false); 1620 } 1621 return ret; 1622 } 1623 1624 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1625 { 1626 struct cgroup *dcgrp = &dst_root->cgrp; 1627 struct cgroup_subsys *ss; 1628 int ssid, i, ret; 1629 1630 lockdep_assert_held(&cgroup_mutex); 1631 1632 do_each_subsys_mask(ss, ssid, ss_mask) { 1633 /* 1634 * If @ss has non-root csses attached to it, can't move. 1635 * If @ss is an implicit controller, it is exempt from this 1636 * rule and can be stolen. 1637 */ 1638 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1639 !ss->implicit_on_dfl) 1640 return -EBUSY; 1641 1642 /* can't move between two non-dummy roots either */ 1643 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1644 return -EBUSY; 1645 } while_each_subsys_mask(); 1646 1647 do_each_subsys_mask(ss, ssid, ss_mask) { 1648 struct cgroup_root *src_root = ss->root; 1649 struct cgroup *scgrp = &src_root->cgrp; 1650 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1651 struct css_set *cset; 1652 1653 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1654 1655 /* disable from the source */ 1656 src_root->subsys_mask &= ~(1 << ssid); 1657 WARN_ON(cgroup_apply_control(scgrp)); 1658 cgroup_finalize_control(scgrp, 0); 1659 1660 /* rebind */ 1661 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1662 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1663 ss->root = dst_root; 1664 css->cgroup = dcgrp; 1665 1666 spin_lock_irq(&css_set_lock); 1667 hash_for_each(css_set_table, i, cset, hlist) 1668 list_move_tail(&cset->e_cset_node[ss->id], 1669 &dcgrp->e_csets[ss->id]); 1670 spin_unlock_irq(&css_set_lock); 1671 1672 /* default hierarchy doesn't enable controllers by default */ 1673 dst_root->subsys_mask |= 1 << ssid; 1674 if (dst_root == &cgrp_dfl_root) { 1675 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1676 } else { 1677 dcgrp->subtree_control |= 1 << ssid; 1678 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1679 } 1680 1681 ret = cgroup_apply_control(dcgrp); 1682 if (ret) 1683 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1684 ss->name, ret); 1685 1686 if (ss->bind) 1687 ss->bind(css); 1688 } while_each_subsys_mask(); 1689 1690 kernfs_activate(dcgrp->kn); 1691 return 0; 1692 } 1693 1694 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1695 struct kernfs_root *kf_root) 1696 { 1697 int len = 0; 1698 char *buf = NULL; 1699 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1700 struct cgroup *ns_cgroup; 1701 1702 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1703 if (!buf) 1704 return -ENOMEM; 1705 1706 spin_lock_irq(&css_set_lock); 1707 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1708 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1709 spin_unlock_irq(&css_set_lock); 1710 1711 if (len >= PATH_MAX) 1712 len = -ERANGE; 1713 else if (len > 0) { 1714 seq_escape(sf, buf, " \t\n\\"); 1715 len = 0; 1716 } 1717 kfree(buf); 1718 return len; 1719 } 1720 1721 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags) 1722 { 1723 char *token; 1724 1725 *root_flags = 0; 1726 1727 if (!data) 1728 return 0; 1729 1730 while ((token = strsep(&data, ",")) != NULL) { 1731 if (!strcmp(token, "nsdelegate")) { 1732 *root_flags |= CGRP_ROOT_NS_DELEGATE; 1733 continue; 1734 } 1735 1736 pr_err("cgroup2: unknown option \"%s\"\n", token); 1737 return -EINVAL; 1738 } 1739 1740 return 0; 1741 } 1742 1743 static void apply_cgroup_root_flags(unsigned int root_flags) 1744 { 1745 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1746 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1747 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1748 else 1749 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1750 } 1751 } 1752 1753 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1754 { 1755 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1756 seq_puts(seq, ",nsdelegate"); 1757 return 0; 1758 } 1759 1760 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) 1761 { 1762 unsigned int root_flags; 1763 int ret; 1764 1765 ret = parse_cgroup_root_flags(data, &root_flags); 1766 if (ret) 1767 return ret; 1768 1769 apply_cgroup_root_flags(root_flags); 1770 return 0; 1771 } 1772 1773 /* 1774 * To reduce the fork() overhead for systems that are not actually using 1775 * their cgroups capability, we don't maintain the lists running through 1776 * each css_set to its tasks until we see the list actually used - in other 1777 * words after the first mount. 1778 */ 1779 static bool use_task_css_set_links __read_mostly; 1780 1781 static void cgroup_enable_task_cg_lists(void) 1782 { 1783 struct task_struct *p, *g; 1784 1785 spin_lock_irq(&css_set_lock); 1786 1787 if (use_task_css_set_links) 1788 goto out_unlock; 1789 1790 use_task_css_set_links = true; 1791 1792 /* 1793 * We need tasklist_lock because RCU is not safe against 1794 * while_each_thread(). Besides, a forking task that has passed 1795 * cgroup_post_fork() without seeing use_task_css_set_links = 1 1796 * is not guaranteed to have its child immediately visible in the 1797 * tasklist if we walk through it with RCU. 1798 */ 1799 read_lock(&tasklist_lock); 1800 do_each_thread(g, p) { 1801 WARN_ON_ONCE(!list_empty(&p->cg_list) || 1802 task_css_set(p) != &init_css_set); 1803 1804 /* 1805 * We should check if the process is exiting, otherwise 1806 * it will race with cgroup_exit() in that the list 1807 * entry won't be deleted though the process has exited. 1808 * Do it while holding siglock so that we don't end up 1809 * racing against cgroup_exit(). 1810 * 1811 * Interrupts were already disabled while acquiring 1812 * the css_set_lock, so we do not need to disable it 1813 * again when acquiring the sighand->siglock here. 1814 */ 1815 spin_lock(&p->sighand->siglock); 1816 if (!(p->flags & PF_EXITING)) { 1817 struct css_set *cset = task_css_set(p); 1818 1819 if (!css_set_populated(cset)) 1820 css_set_update_populated(cset, true); 1821 list_add_tail(&p->cg_list, &cset->tasks); 1822 get_css_set(cset); 1823 cset->nr_tasks++; 1824 } 1825 spin_unlock(&p->sighand->siglock); 1826 } while_each_thread(g, p); 1827 read_unlock(&tasklist_lock); 1828 out_unlock: 1829 spin_unlock_irq(&css_set_lock); 1830 } 1831 1832 static void init_cgroup_housekeeping(struct cgroup *cgrp) 1833 { 1834 struct cgroup_subsys *ss; 1835 int ssid; 1836 1837 INIT_LIST_HEAD(&cgrp->self.sibling); 1838 INIT_LIST_HEAD(&cgrp->self.children); 1839 INIT_LIST_HEAD(&cgrp->cset_links); 1840 INIT_LIST_HEAD(&cgrp->pidlists); 1841 mutex_init(&cgrp->pidlist_mutex); 1842 cgrp->self.cgroup = cgrp; 1843 cgrp->self.flags |= CSS_ONLINE; 1844 cgrp->dom_cgrp = cgrp; 1845 cgrp->max_descendants = INT_MAX; 1846 cgrp->max_depth = INT_MAX; 1847 1848 for_each_subsys(ss, ssid) 1849 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 1850 1851 init_waitqueue_head(&cgrp->offline_waitq); 1852 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 1853 } 1854 1855 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) 1856 { 1857 struct cgroup *cgrp = &root->cgrp; 1858 1859 INIT_LIST_HEAD(&root->root_list); 1860 atomic_set(&root->nr_cgrps, 1); 1861 cgrp->root = root; 1862 init_cgroup_housekeeping(cgrp); 1863 idr_init(&root->cgroup_idr); 1864 1865 root->flags = opts->flags; 1866 if (opts->release_agent) 1867 strscpy(root->release_agent_path, opts->release_agent, PATH_MAX); 1868 if (opts->name) 1869 strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN); 1870 if (opts->cpuset_clone_children) 1871 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 1872 } 1873 1874 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags) 1875 { 1876 LIST_HEAD(tmp_links); 1877 struct cgroup *root_cgrp = &root->cgrp; 1878 struct kernfs_syscall_ops *kf_sops; 1879 struct css_set *cset; 1880 int i, ret; 1881 1882 lockdep_assert_held(&cgroup_mutex); 1883 1884 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); 1885 if (ret < 0) 1886 goto out; 1887 root_cgrp->id = ret; 1888 root_cgrp->ancestor_ids[0] = ret; 1889 1890 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 1891 ref_flags, GFP_KERNEL); 1892 if (ret) 1893 goto out; 1894 1895 /* 1896 * We're accessing css_set_count without locking css_set_lock here, 1897 * but that's OK - it can only be increased by someone holding 1898 * cgroup_lock, and that's us. Later rebinding may disable 1899 * controllers on the default hierarchy and thus create new csets, 1900 * which can't be more than the existing ones. Allocate 2x. 1901 */ 1902 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 1903 if (ret) 1904 goto cancel_ref; 1905 1906 ret = cgroup_init_root_id(root); 1907 if (ret) 1908 goto cancel_ref; 1909 1910 kf_sops = root == &cgrp_dfl_root ? 1911 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 1912 1913 root->kf_root = kernfs_create_root(kf_sops, 1914 KERNFS_ROOT_CREATE_DEACTIVATED | 1915 KERNFS_ROOT_SUPPORT_EXPORTOP, 1916 root_cgrp); 1917 if (IS_ERR(root->kf_root)) { 1918 ret = PTR_ERR(root->kf_root); 1919 goto exit_root_id; 1920 } 1921 root_cgrp->kn = root->kf_root->kn; 1922 1923 ret = css_populate_dir(&root_cgrp->self); 1924 if (ret) 1925 goto destroy_root; 1926 1927 ret = rebind_subsystems(root, ss_mask); 1928 if (ret) 1929 goto destroy_root; 1930 1931 ret = cgroup_bpf_inherit(root_cgrp); 1932 WARN_ON_ONCE(ret); 1933 1934 trace_cgroup_setup_root(root); 1935 1936 /* 1937 * There must be no failure case after here, since rebinding takes 1938 * care of subsystems' refcounts, which are explicitly dropped in 1939 * the failure exit path. 1940 */ 1941 list_add(&root->root_list, &cgroup_roots); 1942 cgroup_root_count++; 1943 1944 /* 1945 * Link the root cgroup in this hierarchy into all the css_set 1946 * objects. 1947 */ 1948 spin_lock_irq(&css_set_lock); 1949 hash_for_each(css_set_table, i, cset, hlist) { 1950 link_css_set(&tmp_links, cset, root_cgrp); 1951 if (css_set_populated(cset)) 1952 cgroup_update_populated(root_cgrp, true); 1953 } 1954 spin_unlock_irq(&css_set_lock); 1955 1956 BUG_ON(!list_empty(&root_cgrp->self.children)); 1957 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 1958 1959 kernfs_activate(root_cgrp->kn); 1960 ret = 0; 1961 goto out; 1962 1963 destroy_root: 1964 kernfs_destroy_root(root->kf_root); 1965 root->kf_root = NULL; 1966 exit_root_id: 1967 cgroup_exit_root_id(root); 1968 cancel_ref: 1969 percpu_ref_exit(&root_cgrp->self.refcnt); 1970 out: 1971 free_cgrp_cset_links(&tmp_links); 1972 return ret; 1973 } 1974 1975 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, 1976 struct cgroup_root *root, unsigned long magic, 1977 struct cgroup_namespace *ns) 1978 { 1979 struct dentry *dentry; 1980 bool new_sb; 1981 1982 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb); 1983 1984 /* 1985 * In non-init cgroup namespace, instead of root cgroup's dentry, 1986 * we return the dentry corresponding to the cgroupns->root_cgrp. 1987 */ 1988 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { 1989 struct dentry *nsdentry; 1990 struct cgroup *cgrp; 1991 1992 mutex_lock(&cgroup_mutex); 1993 spin_lock_irq(&css_set_lock); 1994 1995 cgrp = cset_cgroup_from_root(ns->root_cset, root); 1996 1997 spin_unlock_irq(&css_set_lock); 1998 mutex_unlock(&cgroup_mutex); 1999 2000 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb); 2001 dput(dentry); 2002 dentry = nsdentry; 2003 } 2004 2005 if (IS_ERR(dentry) || !new_sb) 2006 cgroup_put(&root->cgrp); 2007 2008 return dentry; 2009 } 2010 2011 static struct dentry *cgroup_mount(struct file_system_type *fs_type, 2012 int flags, const char *unused_dev_name, 2013 void *data) 2014 { 2015 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 2016 struct dentry *dentry; 2017 int ret; 2018 2019 get_cgroup_ns(ns); 2020 2021 /* Check if the caller has permission to mount. */ 2022 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { 2023 put_cgroup_ns(ns); 2024 return ERR_PTR(-EPERM); 2025 } 2026 2027 /* 2028 * The first time anyone tries to mount a cgroup, enable the list 2029 * linking each css_set to its tasks and fix up all existing tasks. 2030 */ 2031 if (!use_task_css_set_links) 2032 cgroup_enable_task_cg_lists(); 2033 2034 if (fs_type == &cgroup2_fs_type) { 2035 unsigned int root_flags; 2036 2037 ret = parse_cgroup_root_flags(data, &root_flags); 2038 if (ret) { 2039 put_cgroup_ns(ns); 2040 return ERR_PTR(ret); 2041 } 2042 2043 cgrp_dfl_visible = true; 2044 cgroup_get_live(&cgrp_dfl_root.cgrp); 2045 2046 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root, 2047 CGROUP2_SUPER_MAGIC, ns); 2048 if (!IS_ERR(dentry)) 2049 apply_cgroup_root_flags(root_flags); 2050 } else { 2051 dentry = cgroup1_mount(&cgroup_fs_type, flags, data, 2052 CGROUP_SUPER_MAGIC, ns); 2053 } 2054 2055 put_cgroup_ns(ns); 2056 return dentry; 2057 } 2058 2059 static void cgroup_kill_sb(struct super_block *sb) 2060 { 2061 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2062 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2063 2064 /* 2065 * If @root doesn't have any mounts or children, start killing it. 2066 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2067 * cgroup_mount() may wait for @root's release. 2068 * 2069 * And don't kill the default root. 2070 */ 2071 if (!list_empty(&root->cgrp.self.children) || 2072 root == &cgrp_dfl_root) 2073 cgroup_put(&root->cgrp); 2074 else 2075 percpu_ref_kill(&root->cgrp.self.refcnt); 2076 2077 kernfs_kill_sb(sb); 2078 } 2079 2080 struct file_system_type cgroup_fs_type = { 2081 .name = "cgroup", 2082 .mount = cgroup_mount, 2083 .kill_sb = cgroup_kill_sb, 2084 .fs_flags = FS_USERNS_MOUNT, 2085 }; 2086 2087 static struct file_system_type cgroup2_fs_type = { 2088 .name = "cgroup2", 2089 .mount = cgroup_mount, 2090 .kill_sb = cgroup_kill_sb, 2091 .fs_flags = FS_USERNS_MOUNT, 2092 }; 2093 2094 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2095 struct cgroup_namespace *ns) 2096 { 2097 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2098 2099 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2100 } 2101 2102 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2103 struct cgroup_namespace *ns) 2104 { 2105 int ret; 2106 2107 mutex_lock(&cgroup_mutex); 2108 spin_lock_irq(&css_set_lock); 2109 2110 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2111 2112 spin_unlock_irq(&css_set_lock); 2113 mutex_unlock(&cgroup_mutex); 2114 2115 return ret; 2116 } 2117 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2118 2119 /** 2120 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2121 * @task: target task 2122 * @buf: the buffer to write the path into 2123 * @buflen: the length of the buffer 2124 * 2125 * Determine @task's cgroup on the first (the one with the lowest non-zero 2126 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2127 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2128 * cgroup controller callbacks. 2129 * 2130 * Return value is the same as kernfs_path(). 2131 */ 2132 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2133 { 2134 struct cgroup_root *root; 2135 struct cgroup *cgrp; 2136 int hierarchy_id = 1; 2137 int ret; 2138 2139 mutex_lock(&cgroup_mutex); 2140 spin_lock_irq(&css_set_lock); 2141 2142 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2143 2144 if (root) { 2145 cgrp = task_cgroup_from_root(task, root); 2146 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2147 } else { 2148 /* if no hierarchy exists, everyone is in "/" */ 2149 ret = strlcpy(buf, "/", buflen); 2150 } 2151 2152 spin_unlock_irq(&css_set_lock); 2153 mutex_unlock(&cgroup_mutex); 2154 return ret; 2155 } 2156 EXPORT_SYMBOL_GPL(task_cgroup_path); 2157 2158 /** 2159 * cgroup_migrate_add_task - add a migration target task to a migration context 2160 * @task: target task 2161 * @mgctx: target migration context 2162 * 2163 * Add @task, which is a migration target, to @mgctx->tset. This function 2164 * becomes noop if @task doesn't need to be migrated. @task's css_set 2165 * should have been added as a migration source and @task->cg_list will be 2166 * moved from the css_set's tasks list to mg_tasks one. 2167 */ 2168 static void cgroup_migrate_add_task(struct task_struct *task, 2169 struct cgroup_mgctx *mgctx) 2170 { 2171 struct css_set *cset; 2172 2173 lockdep_assert_held(&css_set_lock); 2174 2175 /* @task either already exited or can't exit until the end */ 2176 if (task->flags & PF_EXITING) 2177 return; 2178 2179 /* leave @task alone if post_fork() hasn't linked it yet */ 2180 if (list_empty(&task->cg_list)) 2181 return; 2182 2183 cset = task_css_set(task); 2184 if (!cset->mg_src_cgrp) 2185 return; 2186 2187 mgctx->tset.nr_tasks++; 2188 2189 list_move_tail(&task->cg_list, &cset->mg_tasks); 2190 if (list_empty(&cset->mg_node)) 2191 list_add_tail(&cset->mg_node, 2192 &mgctx->tset.src_csets); 2193 if (list_empty(&cset->mg_dst_cset->mg_node)) 2194 list_add_tail(&cset->mg_dst_cset->mg_node, 2195 &mgctx->tset.dst_csets); 2196 } 2197 2198 /** 2199 * cgroup_taskset_first - reset taskset and return the first task 2200 * @tset: taskset of interest 2201 * @dst_cssp: output variable for the destination css 2202 * 2203 * @tset iteration is initialized and the first task is returned. 2204 */ 2205 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2206 struct cgroup_subsys_state **dst_cssp) 2207 { 2208 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2209 tset->cur_task = NULL; 2210 2211 return cgroup_taskset_next(tset, dst_cssp); 2212 } 2213 2214 /** 2215 * cgroup_taskset_next - iterate to the next task in taskset 2216 * @tset: taskset of interest 2217 * @dst_cssp: output variable for the destination css 2218 * 2219 * Return the next task in @tset. Iteration must have been initialized 2220 * with cgroup_taskset_first(). 2221 */ 2222 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2223 struct cgroup_subsys_state **dst_cssp) 2224 { 2225 struct css_set *cset = tset->cur_cset; 2226 struct task_struct *task = tset->cur_task; 2227 2228 while (&cset->mg_node != tset->csets) { 2229 if (!task) 2230 task = list_first_entry(&cset->mg_tasks, 2231 struct task_struct, cg_list); 2232 else 2233 task = list_next_entry(task, cg_list); 2234 2235 if (&task->cg_list != &cset->mg_tasks) { 2236 tset->cur_cset = cset; 2237 tset->cur_task = task; 2238 2239 /* 2240 * This function may be called both before and 2241 * after cgroup_taskset_migrate(). The two cases 2242 * can be distinguished by looking at whether @cset 2243 * has its ->mg_dst_cset set. 2244 */ 2245 if (cset->mg_dst_cset) 2246 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2247 else 2248 *dst_cssp = cset->subsys[tset->ssid]; 2249 2250 return task; 2251 } 2252 2253 cset = list_next_entry(cset, mg_node); 2254 task = NULL; 2255 } 2256 2257 return NULL; 2258 } 2259 2260 /** 2261 * cgroup_taskset_migrate - migrate a taskset 2262 * @mgctx: migration context 2263 * 2264 * Migrate tasks in @mgctx as setup by migration preparation functions. 2265 * This function fails iff one of the ->can_attach callbacks fails and 2266 * guarantees that either all or none of the tasks in @mgctx are migrated. 2267 * @mgctx is consumed regardless of success. 2268 */ 2269 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2270 { 2271 struct cgroup_taskset *tset = &mgctx->tset; 2272 struct cgroup_subsys *ss; 2273 struct task_struct *task, *tmp_task; 2274 struct css_set *cset, *tmp_cset; 2275 int ssid, failed_ssid, ret; 2276 2277 /* check that we can legitimately attach to the cgroup */ 2278 if (tset->nr_tasks) { 2279 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2280 if (ss->can_attach) { 2281 tset->ssid = ssid; 2282 ret = ss->can_attach(tset); 2283 if (ret) { 2284 failed_ssid = ssid; 2285 goto out_cancel_attach; 2286 } 2287 } 2288 } while_each_subsys_mask(); 2289 } 2290 2291 /* 2292 * Now that we're guaranteed success, proceed to move all tasks to 2293 * the new cgroup. There are no failure cases after here, so this 2294 * is the commit point. 2295 */ 2296 spin_lock_irq(&css_set_lock); 2297 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2298 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2299 struct css_set *from_cset = task_css_set(task); 2300 struct css_set *to_cset = cset->mg_dst_cset; 2301 2302 get_css_set(to_cset); 2303 to_cset->nr_tasks++; 2304 css_set_move_task(task, from_cset, to_cset, true); 2305 put_css_set_locked(from_cset); 2306 from_cset->nr_tasks--; 2307 } 2308 } 2309 spin_unlock_irq(&css_set_lock); 2310 2311 /* 2312 * Migration is committed, all target tasks are now on dst_csets. 2313 * Nothing is sensitive to fork() after this point. Notify 2314 * controllers that migration is complete. 2315 */ 2316 tset->csets = &tset->dst_csets; 2317 2318 if (tset->nr_tasks) { 2319 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2320 if (ss->attach) { 2321 tset->ssid = ssid; 2322 ss->attach(tset); 2323 } 2324 } while_each_subsys_mask(); 2325 } 2326 2327 ret = 0; 2328 goto out_release_tset; 2329 2330 out_cancel_attach: 2331 if (tset->nr_tasks) { 2332 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2333 if (ssid == failed_ssid) 2334 break; 2335 if (ss->cancel_attach) { 2336 tset->ssid = ssid; 2337 ss->cancel_attach(tset); 2338 } 2339 } while_each_subsys_mask(); 2340 } 2341 out_release_tset: 2342 spin_lock_irq(&css_set_lock); 2343 list_splice_init(&tset->dst_csets, &tset->src_csets); 2344 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2345 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2346 list_del_init(&cset->mg_node); 2347 } 2348 spin_unlock_irq(&css_set_lock); 2349 2350 /* 2351 * Re-initialize the cgroup_taskset structure in case it is reused 2352 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2353 * iteration. 2354 */ 2355 tset->nr_tasks = 0; 2356 tset->csets = &tset->src_csets; 2357 return ret; 2358 } 2359 2360 /** 2361 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2362 * @dst_cgrp: destination cgroup to test 2363 * 2364 * On the default hierarchy, except for the mixable, (possible) thread root 2365 * and threaded cgroups, subtree_control must be zero for migration 2366 * destination cgroups with tasks so that child cgroups don't compete 2367 * against tasks. 2368 */ 2369 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2370 { 2371 /* v1 doesn't have any restriction */ 2372 if (!cgroup_on_dfl(dst_cgrp)) 2373 return 0; 2374 2375 /* verify @dst_cgrp can host resources */ 2376 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2377 return -EOPNOTSUPP; 2378 2379 /* mixables don't care */ 2380 if (cgroup_is_mixable(dst_cgrp)) 2381 return 0; 2382 2383 /* 2384 * If @dst_cgrp is already or can become a thread root or is 2385 * threaded, it doesn't matter. 2386 */ 2387 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2388 return 0; 2389 2390 /* apply no-internal-process constraint */ 2391 if (dst_cgrp->subtree_control) 2392 return -EBUSY; 2393 2394 return 0; 2395 } 2396 2397 /** 2398 * cgroup_migrate_finish - cleanup after attach 2399 * @mgctx: migration context 2400 * 2401 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2402 * those functions for details. 2403 */ 2404 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2405 { 2406 LIST_HEAD(preloaded); 2407 struct css_set *cset, *tmp_cset; 2408 2409 lockdep_assert_held(&cgroup_mutex); 2410 2411 spin_lock_irq(&css_set_lock); 2412 2413 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); 2414 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); 2415 2416 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { 2417 cset->mg_src_cgrp = NULL; 2418 cset->mg_dst_cgrp = NULL; 2419 cset->mg_dst_cset = NULL; 2420 list_del_init(&cset->mg_preload_node); 2421 put_css_set_locked(cset); 2422 } 2423 2424 spin_unlock_irq(&css_set_lock); 2425 } 2426 2427 /** 2428 * cgroup_migrate_add_src - add a migration source css_set 2429 * @src_cset: the source css_set to add 2430 * @dst_cgrp: the destination cgroup 2431 * @mgctx: migration context 2432 * 2433 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2434 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2435 * up by cgroup_migrate_finish(). 2436 * 2437 * This function may be called without holding cgroup_threadgroup_rwsem 2438 * even if the target is a process. Threads may be created and destroyed 2439 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2440 * into play and the preloaded css_sets are guaranteed to cover all 2441 * migrations. 2442 */ 2443 void cgroup_migrate_add_src(struct css_set *src_cset, 2444 struct cgroup *dst_cgrp, 2445 struct cgroup_mgctx *mgctx) 2446 { 2447 struct cgroup *src_cgrp; 2448 2449 lockdep_assert_held(&cgroup_mutex); 2450 lockdep_assert_held(&css_set_lock); 2451 2452 /* 2453 * If ->dead, @src_set is associated with one or more dead cgroups 2454 * and doesn't contain any migratable tasks. Ignore it early so 2455 * that the rest of migration path doesn't get confused by it. 2456 */ 2457 if (src_cset->dead) 2458 return; 2459 2460 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2461 2462 if (!list_empty(&src_cset->mg_preload_node)) 2463 return; 2464 2465 WARN_ON(src_cset->mg_src_cgrp); 2466 WARN_ON(src_cset->mg_dst_cgrp); 2467 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2468 WARN_ON(!list_empty(&src_cset->mg_node)); 2469 2470 src_cset->mg_src_cgrp = src_cgrp; 2471 src_cset->mg_dst_cgrp = dst_cgrp; 2472 get_css_set(src_cset); 2473 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); 2474 } 2475 2476 /** 2477 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2478 * @mgctx: migration context 2479 * 2480 * Tasks are about to be moved and all the source css_sets have been 2481 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2482 * pins all destination css_sets, links each to its source, and append them 2483 * to @mgctx->preloaded_dst_csets. 2484 * 2485 * This function must be called after cgroup_migrate_add_src() has been 2486 * called on each migration source css_set. After migration is performed 2487 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2488 * @mgctx. 2489 */ 2490 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2491 { 2492 struct css_set *src_cset, *tmp_cset; 2493 2494 lockdep_assert_held(&cgroup_mutex); 2495 2496 /* look up the dst cset for each src cset and link it to src */ 2497 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2498 mg_preload_node) { 2499 struct css_set *dst_cset; 2500 struct cgroup_subsys *ss; 2501 int ssid; 2502 2503 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2504 if (!dst_cset) 2505 goto err; 2506 2507 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2508 2509 /* 2510 * If src cset equals dst, it's noop. Drop the src. 2511 * cgroup_migrate() will skip the cset too. Note that we 2512 * can't handle src == dst as some nodes are used by both. 2513 */ 2514 if (src_cset == dst_cset) { 2515 src_cset->mg_src_cgrp = NULL; 2516 src_cset->mg_dst_cgrp = NULL; 2517 list_del_init(&src_cset->mg_preload_node); 2518 put_css_set(src_cset); 2519 put_css_set(dst_cset); 2520 continue; 2521 } 2522 2523 src_cset->mg_dst_cset = dst_cset; 2524 2525 if (list_empty(&dst_cset->mg_preload_node)) 2526 list_add_tail(&dst_cset->mg_preload_node, 2527 &mgctx->preloaded_dst_csets); 2528 else 2529 put_css_set(dst_cset); 2530 2531 for_each_subsys(ss, ssid) 2532 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2533 mgctx->ss_mask |= 1 << ssid; 2534 } 2535 2536 return 0; 2537 err: 2538 cgroup_migrate_finish(mgctx); 2539 return -ENOMEM; 2540 } 2541 2542 /** 2543 * cgroup_migrate - migrate a process or task to a cgroup 2544 * @leader: the leader of the process or the task to migrate 2545 * @threadgroup: whether @leader points to the whole process or a single task 2546 * @mgctx: migration context 2547 * 2548 * Migrate a process or task denoted by @leader. If migrating a process, 2549 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2550 * responsible for invoking cgroup_migrate_add_src() and 2551 * cgroup_migrate_prepare_dst() on the targets before invoking this 2552 * function and following up with cgroup_migrate_finish(). 2553 * 2554 * As long as a controller's ->can_attach() doesn't fail, this function is 2555 * guaranteed to succeed. This means that, excluding ->can_attach() 2556 * failure, when migrating multiple targets, the success or failure can be 2557 * decided for all targets by invoking group_migrate_prepare_dst() before 2558 * actually starting migrating. 2559 */ 2560 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2561 struct cgroup_mgctx *mgctx) 2562 { 2563 struct task_struct *task; 2564 2565 /* 2566 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2567 * already PF_EXITING could be freed from underneath us unless we 2568 * take an rcu_read_lock. 2569 */ 2570 spin_lock_irq(&css_set_lock); 2571 rcu_read_lock(); 2572 task = leader; 2573 do { 2574 cgroup_migrate_add_task(task, mgctx); 2575 if (!threadgroup) 2576 break; 2577 } while_each_thread(leader, task); 2578 rcu_read_unlock(); 2579 spin_unlock_irq(&css_set_lock); 2580 2581 return cgroup_migrate_execute(mgctx); 2582 } 2583 2584 /** 2585 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2586 * @dst_cgrp: the cgroup to attach to 2587 * @leader: the task or the leader of the threadgroup to be attached 2588 * @threadgroup: attach the whole threadgroup? 2589 * 2590 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2591 */ 2592 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2593 bool threadgroup) 2594 { 2595 DEFINE_CGROUP_MGCTX(mgctx); 2596 struct task_struct *task; 2597 int ret; 2598 2599 ret = cgroup_migrate_vet_dst(dst_cgrp); 2600 if (ret) 2601 return ret; 2602 2603 /* look up all src csets */ 2604 spin_lock_irq(&css_set_lock); 2605 rcu_read_lock(); 2606 task = leader; 2607 do { 2608 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2609 if (!threadgroup) 2610 break; 2611 } while_each_thread(leader, task); 2612 rcu_read_unlock(); 2613 spin_unlock_irq(&css_set_lock); 2614 2615 /* prepare dst csets and commit */ 2616 ret = cgroup_migrate_prepare_dst(&mgctx); 2617 if (!ret) 2618 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2619 2620 cgroup_migrate_finish(&mgctx); 2621 2622 if (!ret) 2623 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup); 2624 2625 return ret; 2626 } 2627 2628 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup) 2629 __acquires(&cgroup_threadgroup_rwsem) 2630 { 2631 struct task_struct *tsk; 2632 pid_t pid; 2633 2634 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2635 return ERR_PTR(-EINVAL); 2636 2637 percpu_down_write(&cgroup_threadgroup_rwsem); 2638 2639 rcu_read_lock(); 2640 if (pid) { 2641 tsk = find_task_by_vpid(pid); 2642 if (!tsk) { 2643 tsk = ERR_PTR(-ESRCH); 2644 goto out_unlock_threadgroup; 2645 } 2646 } else { 2647 tsk = current; 2648 } 2649 2650 if (threadgroup) 2651 tsk = tsk->group_leader; 2652 2653 /* 2654 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2655 * If userland migrates such a kthread to a non-root cgroup, it can 2656 * become trapped in a cpuset, or RT kthread may be born in a 2657 * cgroup with no rt_runtime allocated. Just say no. 2658 */ 2659 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2660 tsk = ERR_PTR(-EINVAL); 2661 goto out_unlock_threadgroup; 2662 } 2663 2664 get_task_struct(tsk); 2665 goto out_unlock_rcu; 2666 2667 out_unlock_threadgroup: 2668 percpu_up_write(&cgroup_threadgroup_rwsem); 2669 out_unlock_rcu: 2670 rcu_read_unlock(); 2671 return tsk; 2672 } 2673 2674 void cgroup_procs_write_finish(struct task_struct *task) 2675 __releases(&cgroup_threadgroup_rwsem) 2676 { 2677 struct cgroup_subsys *ss; 2678 int ssid; 2679 2680 /* release reference from cgroup_procs_write_start() */ 2681 put_task_struct(task); 2682 2683 percpu_up_write(&cgroup_threadgroup_rwsem); 2684 for_each_subsys(ss, ssid) 2685 if (ss->post_attach) 2686 ss->post_attach(); 2687 } 2688 2689 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2690 { 2691 struct cgroup_subsys *ss; 2692 bool printed = false; 2693 int ssid; 2694 2695 do_each_subsys_mask(ss, ssid, ss_mask) { 2696 if (printed) 2697 seq_putc(seq, ' '); 2698 seq_printf(seq, "%s", ss->name); 2699 printed = true; 2700 } while_each_subsys_mask(); 2701 if (printed) 2702 seq_putc(seq, '\n'); 2703 } 2704 2705 /* show controllers which are enabled from the parent */ 2706 static int cgroup_controllers_show(struct seq_file *seq, void *v) 2707 { 2708 struct cgroup *cgrp = seq_css(seq)->cgroup; 2709 2710 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 2711 return 0; 2712 } 2713 2714 /* show controllers which are enabled for a given cgroup's children */ 2715 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 2716 { 2717 struct cgroup *cgrp = seq_css(seq)->cgroup; 2718 2719 cgroup_print_ss_mask(seq, cgrp->subtree_control); 2720 return 0; 2721 } 2722 2723 /** 2724 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 2725 * @cgrp: root of the subtree to update csses for 2726 * 2727 * @cgrp's control masks have changed and its subtree's css associations 2728 * need to be updated accordingly. This function looks up all css_sets 2729 * which are attached to the subtree, creates the matching updated css_sets 2730 * and migrates the tasks to the new ones. 2731 */ 2732 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 2733 { 2734 DEFINE_CGROUP_MGCTX(mgctx); 2735 struct cgroup_subsys_state *d_css; 2736 struct cgroup *dsct; 2737 struct css_set *src_cset; 2738 int ret; 2739 2740 lockdep_assert_held(&cgroup_mutex); 2741 2742 percpu_down_write(&cgroup_threadgroup_rwsem); 2743 2744 /* look up all csses currently attached to @cgrp's subtree */ 2745 spin_lock_irq(&css_set_lock); 2746 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2747 struct cgrp_cset_link *link; 2748 2749 list_for_each_entry(link, &dsct->cset_links, cset_link) 2750 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 2751 } 2752 spin_unlock_irq(&css_set_lock); 2753 2754 /* NULL dst indicates self on default hierarchy */ 2755 ret = cgroup_migrate_prepare_dst(&mgctx); 2756 if (ret) 2757 goto out_finish; 2758 2759 spin_lock_irq(&css_set_lock); 2760 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { 2761 struct task_struct *task, *ntask; 2762 2763 /* all tasks in src_csets need to be migrated */ 2764 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 2765 cgroup_migrate_add_task(task, &mgctx); 2766 } 2767 spin_unlock_irq(&css_set_lock); 2768 2769 ret = cgroup_migrate_execute(&mgctx); 2770 out_finish: 2771 cgroup_migrate_finish(&mgctx); 2772 percpu_up_write(&cgroup_threadgroup_rwsem); 2773 return ret; 2774 } 2775 2776 /** 2777 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 2778 * @cgrp: root of the target subtree 2779 * 2780 * Because css offlining is asynchronous, userland may try to re-enable a 2781 * controller while the previous css is still around. This function grabs 2782 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 2783 */ 2784 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 2785 __acquires(&cgroup_mutex) 2786 { 2787 struct cgroup *dsct; 2788 struct cgroup_subsys_state *d_css; 2789 struct cgroup_subsys *ss; 2790 int ssid; 2791 2792 restart: 2793 mutex_lock(&cgroup_mutex); 2794 2795 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2796 for_each_subsys(ss, ssid) { 2797 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2798 DEFINE_WAIT(wait); 2799 2800 if (!css || !percpu_ref_is_dying(&css->refcnt)) 2801 continue; 2802 2803 cgroup_get_live(dsct); 2804 prepare_to_wait(&dsct->offline_waitq, &wait, 2805 TASK_UNINTERRUPTIBLE); 2806 2807 mutex_unlock(&cgroup_mutex); 2808 schedule(); 2809 finish_wait(&dsct->offline_waitq, &wait); 2810 2811 cgroup_put(dsct); 2812 goto restart; 2813 } 2814 } 2815 } 2816 2817 /** 2818 * cgroup_save_control - save control masks of a subtree 2819 * @cgrp: root of the target subtree 2820 * 2821 * Save ->subtree_control and ->subtree_ss_mask to the respective old_ 2822 * prefixed fields for @cgrp's subtree including @cgrp itself. 2823 */ 2824 static void cgroup_save_control(struct cgroup *cgrp) 2825 { 2826 struct cgroup *dsct; 2827 struct cgroup_subsys_state *d_css; 2828 2829 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2830 dsct->old_subtree_control = dsct->subtree_control; 2831 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 2832 } 2833 } 2834 2835 /** 2836 * cgroup_propagate_control - refresh control masks of a subtree 2837 * @cgrp: root of the target subtree 2838 * 2839 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 2840 * ->subtree_control and propagate controller availability through the 2841 * subtree so that descendants don't have unavailable controllers enabled. 2842 */ 2843 static void cgroup_propagate_control(struct cgroup *cgrp) 2844 { 2845 struct cgroup *dsct; 2846 struct cgroup_subsys_state *d_css; 2847 2848 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2849 dsct->subtree_control &= cgroup_control(dsct); 2850 dsct->subtree_ss_mask = 2851 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 2852 cgroup_ss_mask(dsct)); 2853 } 2854 } 2855 2856 /** 2857 * cgroup_restore_control - restore control masks of a subtree 2858 * @cgrp: root of the target subtree 2859 * 2860 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_ 2861 * prefixed fields for @cgrp's subtree including @cgrp itself. 2862 */ 2863 static void cgroup_restore_control(struct cgroup *cgrp) 2864 { 2865 struct cgroup *dsct; 2866 struct cgroup_subsys_state *d_css; 2867 2868 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2869 dsct->subtree_control = dsct->old_subtree_control; 2870 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 2871 } 2872 } 2873 2874 static bool css_visible(struct cgroup_subsys_state *css) 2875 { 2876 struct cgroup_subsys *ss = css->ss; 2877 struct cgroup *cgrp = css->cgroup; 2878 2879 if (cgroup_control(cgrp) & (1 << ss->id)) 2880 return true; 2881 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 2882 return false; 2883 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 2884 } 2885 2886 /** 2887 * cgroup_apply_control_enable - enable or show csses according to control 2888 * @cgrp: root of the target subtree 2889 * 2890 * Walk @cgrp's subtree and create new csses or make the existing ones 2891 * visible. A css is created invisible if it's being implicitly enabled 2892 * through dependency. An invisible css is made visible when the userland 2893 * explicitly enables it. 2894 * 2895 * Returns 0 on success, -errno on failure. On failure, csses which have 2896 * been processed already aren't cleaned up. The caller is responsible for 2897 * cleaning up with cgroup_apply_control_disable(). 2898 */ 2899 static int cgroup_apply_control_enable(struct cgroup *cgrp) 2900 { 2901 struct cgroup *dsct; 2902 struct cgroup_subsys_state *d_css; 2903 struct cgroup_subsys *ss; 2904 int ssid, ret; 2905 2906 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 2907 for_each_subsys(ss, ssid) { 2908 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2909 2910 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2911 2912 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 2913 continue; 2914 2915 if (!css) { 2916 css = css_create(dsct, ss); 2917 if (IS_ERR(css)) 2918 return PTR_ERR(css); 2919 } 2920 2921 if (css_visible(css)) { 2922 ret = css_populate_dir(css); 2923 if (ret) 2924 return ret; 2925 } 2926 } 2927 } 2928 2929 return 0; 2930 } 2931 2932 /** 2933 * cgroup_apply_control_disable - kill or hide csses according to control 2934 * @cgrp: root of the target subtree 2935 * 2936 * Walk @cgrp's subtree and kill and hide csses so that they match 2937 * cgroup_ss_mask() and cgroup_visible_mask(). 2938 * 2939 * A css is hidden when the userland requests it to be disabled while other 2940 * subsystems are still depending on it. The css must not actively control 2941 * resources and be in the vanilla state if it's made visible again later. 2942 * Controllers which may be depended upon should provide ->css_reset() for 2943 * this purpose. 2944 */ 2945 static void cgroup_apply_control_disable(struct cgroup *cgrp) 2946 { 2947 struct cgroup *dsct; 2948 struct cgroup_subsys_state *d_css; 2949 struct cgroup_subsys *ss; 2950 int ssid; 2951 2952 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 2953 for_each_subsys(ss, ssid) { 2954 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 2955 2956 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); 2957 2958 if (!css) 2959 continue; 2960 2961 if (css->parent && 2962 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 2963 kill_css(css); 2964 } else if (!css_visible(css)) { 2965 css_clear_dir(css); 2966 if (ss->css_reset) 2967 ss->css_reset(css); 2968 } 2969 } 2970 } 2971 } 2972 2973 /** 2974 * cgroup_apply_control - apply control mask updates to the subtree 2975 * @cgrp: root of the target subtree 2976 * 2977 * subsystems can be enabled and disabled in a subtree using the following 2978 * steps. 2979 * 2980 * 1. Call cgroup_save_control() to stash the current state. 2981 * 2. Update ->subtree_control masks in the subtree as desired. 2982 * 3. Call cgroup_apply_control() to apply the changes. 2983 * 4. Optionally perform other related operations. 2984 * 5. Call cgroup_finalize_control() to finish up. 2985 * 2986 * This function implements step 3 and propagates the mask changes 2987 * throughout @cgrp's subtree, updates csses accordingly and perform 2988 * process migrations. 2989 */ 2990 static int cgroup_apply_control(struct cgroup *cgrp) 2991 { 2992 int ret; 2993 2994 cgroup_propagate_control(cgrp); 2995 2996 ret = cgroup_apply_control_enable(cgrp); 2997 if (ret) 2998 return ret; 2999 3000 /* 3001 * At this point, cgroup_e_css() results reflect the new csses 3002 * making the following cgroup_update_dfl_csses() properly update 3003 * css associations of all tasks in the subtree. 3004 */ 3005 ret = cgroup_update_dfl_csses(cgrp); 3006 if (ret) 3007 return ret; 3008 3009 return 0; 3010 } 3011 3012 /** 3013 * cgroup_finalize_control - finalize control mask update 3014 * @cgrp: root of the target subtree 3015 * @ret: the result of the update 3016 * 3017 * Finalize control mask update. See cgroup_apply_control() for more info. 3018 */ 3019 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3020 { 3021 if (ret) { 3022 cgroup_restore_control(cgrp); 3023 cgroup_propagate_control(cgrp); 3024 } 3025 3026 cgroup_apply_control_disable(cgrp); 3027 } 3028 3029 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3030 { 3031 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3032 3033 /* if nothing is getting enabled, nothing to worry about */ 3034 if (!enable) 3035 return 0; 3036 3037 /* can @cgrp host any resources? */ 3038 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3039 return -EOPNOTSUPP; 3040 3041 /* mixables don't care */ 3042 if (cgroup_is_mixable(cgrp)) 3043 return 0; 3044 3045 if (domain_enable) { 3046 /* can't enable domain controllers inside a thread subtree */ 3047 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3048 return -EOPNOTSUPP; 3049 } else { 3050 /* 3051 * Threaded controllers can handle internal competitions 3052 * and are always allowed inside a (prospective) thread 3053 * subtree. 3054 */ 3055 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3056 return 0; 3057 } 3058 3059 /* 3060 * Controllers can't be enabled for a cgroup with tasks to avoid 3061 * child cgroups competing against tasks. 3062 */ 3063 if (cgroup_has_tasks(cgrp)) 3064 return -EBUSY; 3065 3066 return 0; 3067 } 3068 3069 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3070 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3071 char *buf, size_t nbytes, 3072 loff_t off) 3073 { 3074 u16 enable = 0, disable = 0; 3075 struct cgroup *cgrp, *child; 3076 struct cgroup_subsys *ss; 3077 char *tok; 3078 int ssid, ret; 3079 3080 /* 3081 * Parse input - space separated list of subsystem names prefixed 3082 * with either + or -. 3083 */ 3084 buf = strstrip(buf); 3085 while ((tok = strsep(&buf, " "))) { 3086 if (tok[0] == '\0') 3087 continue; 3088 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3089 if (!cgroup_ssid_enabled(ssid) || 3090 strcmp(tok + 1, ss->name)) 3091 continue; 3092 3093 if (*tok == '+') { 3094 enable |= 1 << ssid; 3095 disable &= ~(1 << ssid); 3096 } else if (*tok == '-') { 3097 disable |= 1 << ssid; 3098 enable &= ~(1 << ssid); 3099 } else { 3100 return -EINVAL; 3101 } 3102 break; 3103 } while_each_subsys_mask(); 3104 if (ssid == CGROUP_SUBSYS_COUNT) 3105 return -EINVAL; 3106 } 3107 3108 cgrp = cgroup_kn_lock_live(of->kn, true); 3109 if (!cgrp) 3110 return -ENODEV; 3111 3112 for_each_subsys(ss, ssid) { 3113 if (enable & (1 << ssid)) { 3114 if (cgrp->subtree_control & (1 << ssid)) { 3115 enable &= ~(1 << ssid); 3116 continue; 3117 } 3118 3119 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3120 ret = -ENOENT; 3121 goto out_unlock; 3122 } 3123 } else if (disable & (1 << ssid)) { 3124 if (!(cgrp->subtree_control & (1 << ssid))) { 3125 disable &= ~(1 << ssid); 3126 continue; 3127 } 3128 3129 /* a child has it enabled? */ 3130 cgroup_for_each_live_child(child, cgrp) { 3131 if (child->subtree_control & (1 << ssid)) { 3132 ret = -EBUSY; 3133 goto out_unlock; 3134 } 3135 } 3136 } 3137 } 3138 3139 if (!enable && !disable) { 3140 ret = 0; 3141 goto out_unlock; 3142 } 3143 3144 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3145 if (ret) 3146 goto out_unlock; 3147 3148 /* save and update control masks and prepare csses */ 3149 cgroup_save_control(cgrp); 3150 3151 cgrp->subtree_control |= enable; 3152 cgrp->subtree_control &= ~disable; 3153 3154 ret = cgroup_apply_control(cgrp); 3155 cgroup_finalize_control(cgrp, ret); 3156 if (ret) 3157 goto out_unlock; 3158 3159 kernfs_activate(cgrp->kn); 3160 out_unlock: 3161 cgroup_kn_unlock(of->kn); 3162 return ret ?: nbytes; 3163 } 3164 3165 /** 3166 * cgroup_enable_threaded - make @cgrp threaded 3167 * @cgrp: the target cgroup 3168 * 3169 * Called when "threaded" is written to the cgroup.type interface file and 3170 * tries to make @cgrp threaded and join the parent's resource domain. 3171 * This function is never called on the root cgroup as cgroup.type doesn't 3172 * exist on it. 3173 */ 3174 static int cgroup_enable_threaded(struct cgroup *cgrp) 3175 { 3176 struct cgroup *parent = cgroup_parent(cgrp); 3177 struct cgroup *dom_cgrp = parent->dom_cgrp; 3178 int ret; 3179 3180 lockdep_assert_held(&cgroup_mutex); 3181 3182 /* noop if already threaded */ 3183 if (cgroup_is_threaded(cgrp)) 3184 return 0; 3185 3186 /* 3187 * If @cgroup is populated or has domain controllers enabled, it 3188 * can't be switched. While the below cgroup_can_be_thread_root() 3189 * test can catch the same conditions, that's only when @parent is 3190 * not mixable, so let's check it explicitly. 3191 */ 3192 if (cgroup_is_populated(cgrp) || 3193 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3194 return -EOPNOTSUPP; 3195 3196 /* we're joining the parent's domain, ensure its validity */ 3197 if (!cgroup_is_valid_domain(dom_cgrp) || 3198 !cgroup_can_be_thread_root(dom_cgrp)) 3199 return -EOPNOTSUPP; 3200 3201 /* 3202 * The following shouldn't cause actual migrations and should 3203 * always succeed. 3204 */ 3205 cgroup_save_control(cgrp); 3206 3207 cgrp->dom_cgrp = dom_cgrp; 3208 ret = cgroup_apply_control(cgrp); 3209 if (!ret) 3210 parent->nr_threaded_children++; 3211 else 3212 cgrp->dom_cgrp = cgrp; 3213 3214 cgroup_finalize_control(cgrp, ret); 3215 return ret; 3216 } 3217 3218 static int cgroup_type_show(struct seq_file *seq, void *v) 3219 { 3220 struct cgroup *cgrp = seq_css(seq)->cgroup; 3221 3222 if (cgroup_is_threaded(cgrp)) 3223 seq_puts(seq, "threaded\n"); 3224 else if (!cgroup_is_valid_domain(cgrp)) 3225 seq_puts(seq, "domain invalid\n"); 3226 else if (cgroup_is_thread_root(cgrp)) 3227 seq_puts(seq, "domain threaded\n"); 3228 else 3229 seq_puts(seq, "domain\n"); 3230 3231 return 0; 3232 } 3233 3234 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3235 size_t nbytes, loff_t off) 3236 { 3237 struct cgroup *cgrp; 3238 int ret; 3239 3240 /* only switching to threaded mode is supported */ 3241 if (strcmp(strstrip(buf), "threaded")) 3242 return -EINVAL; 3243 3244 cgrp = cgroup_kn_lock_live(of->kn, false); 3245 if (!cgrp) 3246 return -ENOENT; 3247 3248 /* threaded can only be enabled */ 3249 ret = cgroup_enable_threaded(cgrp); 3250 3251 cgroup_kn_unlock(of->kn); 3252 return ret ?: nbytes; 3253 } 3254 3255 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3256 { 3257 struct cgroup *cgrp = seq_css(seq)->cgroup; 3258 int descendants = READ_ONCE(cgrp->max_descendants); 3259 3260 if (descendants == INT_MAX) 3261 seq_puts(seq, "max\n"); 3262 else 3263 seq_printf(seq, "%d\n", descendants); 3264 3265 return 0; 3266 } 3267 3268 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3269 char *buf, size_t nbytes, loff_t off) 3270 { 3271 struct cgroup *cgrp; 3272 int descendants; 3273 ssize_t ret; 3274 3275 buf = strstrip(buf); 3276 if (!strcmp(buf, "max")) { 3277 descendants = INT_MAX; 3278 } else { 3279 ret = kstrtoint(buf, 0, &descendants); 3280 if (ret) 3281 return ret; 3282 } 3283 3284 if (descendants < 0) 3285 return -ERANGE; 3286 3287 cgrp = cgroup_kn_lock_live(of->kn, false); 3288 if (!cgrp) 3289 return -ENOENT; 3290 3291 cgrp->max_descendants = descendants; 3292 3293 cgroup_kn_unlock(of->kn); 3294 3295 return nbytes; 3296 } 3297 3298 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3299 { 3300 struct cgroup *cgrp = seq_css(seq)->cgroup; 3301 int depth = READ_ONCE(cgrp->max_depth); 3302 3303 if (depth == INT_MAX) 3304 seq_puts(seq, "max\n"); 3305 else 3306 seq_printf(seq, "%d\n", depth); 3307 3308 return 0; 3309 } 3310 3311 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3312 char *buf, size_t nbytes, loff_t off) 3313 { 3314 struct cgroup *cgrp; 3315 ssize_t ret; 3316 int depth; 3317 3318 buf = strstrip(buf); 3319 if (!strcmp(buf, "max")) { 3320 depth = INT_MAX; 3321 } else { 3322 ret = kstrtoint(buf, 0, &depth); 3323 if (ret) 3324 return ret; 3325 } 3326 3327 if (depth < 0) 3328 return -ERANGE; 3329 3330 cgrp = cgroup_kn_lock_live(of->kn, false); 3331 if (!cgrp) 3332 return -ENOENT; 3333 3334 cgrp->max_depth = depth; 3335 3336 cgroup_kn_unlock(of->kn); 3337 3338 return nbytes; 3339 } 3340 3341 static int cgroup_events_show(struct seq_file *seq, void *v) 3342 { 3343 seq_printf(seq, "populated %d\n", 3344 cgroup_is_populated(seq_css(seq)->cgroup)); 3345 return 0; 3346 } 3347 3348 static int cgroup_stat_show(struct seq_file *seq, void *v) 3349 { 3350 struct cgroup *cgroup = seq_css(seq)->cgroup; 3351 3352 seq_printf(seq, "nr_descendants %d\n", 3353 cgroup->nr_descendants); 3354 seq_printf(seq, "nr_dying_descendants %d\n", 3355 cgroup->nr_dying_descendants); 3356 3357 return 0; 3358 } 3359 3360 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3361 struct cgroup *cgrp, int ssid) 3362 { 3363 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3364 struct cgroup_subsys_state *css; 3365 int ret; 3366 3367 if (!ss->css_extra_stat_show) 3368 return 0; 3369 3370 css = cgroup_tryget_css(cgrp, ss); 3371 if (!css) 3372 return 0; 3373 3374 ret = ss->css_extra_stat_show(seq, css); 3375 css_put(css); 3376 return ret; 3377 } 3378 3379 static int cpu_stat_show(struct seq_file *seq, void *v) 3380 { 3381 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3382 int ret = 0; 3383 3384 cgroup_stat_show_cputime(seq); 3385 #ifdef CONFIG_CGROUP_SCHED 3386 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3387 #endif 3388 return ret; 3389 } 3390 3391 static int cgroup_file_open(struct kernfs_open_file *of) 3392 { 3393 struct cftype *cft = of->kn->priv; 3394 3395 if (cft->open) 3396 return cft->open(of); 3397 return 0; 3398 } 3399 3400 static void cgroup_file_release(struct kernfs_open_file *of) 3401 { 3402 struct cftype *cft = of->kn->priv; 3403 3404 if (cft->release) 3405 cft->release(of); 3406 } 3407 3408 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 3409 size_t nbytes, loff_t off) 3410 { 3411 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 3412 struct cgroup *cgrp = of->kn->parent->priv; 3413 struct cftype *cft = of->kn->priv; 3414 struct cgroup_subsys_state *css; 3415 int ret; 3416 3417 /* 3418 * If namespaces are delegation boundaries, disallow writes to 3419 * files in an non-init namespace root from inside the namespace 3420 * except for the files explicitly marked delegatable - 3421 * cgroup.procs and cgroup.subtree_control. 3422 */ 3423 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 3424 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 3425 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp) 3426 return -EPERM; 3427 3428 if (cft->write) 3429 return cft->write(of, buf, nbytes, off); 3430 3431 /* 3432 * kernfs guarantees that a file isn't deleted with operations in 3433 * flight, which means that the matching css is and stays alive and 3434 * doesn't need to be pinned. The RCU locking is not necessary 3435 * either. It's just for the convenience of using cgroup_css(). 3436 */ 3437 rcu_read_lock(); 3438 css = cgroup_css(cgrp, cft->ss); 3439 rcu_read_unlock(); 3440 3441 if (cft->write_u64) { 3442 unsigned long long v; 3443 ret = kstrtoull(buf, 0, &v); 3444 if (!ret) 3445 ret = cft->write_u64(css, cft, v); 3446 } else if (cft->write_s64) { 3447 long long v; 3448 ret = kstrtoll(buf, 0, &v); 3449 if (!ret) 3450 ret = cft->write_s64(css, cft, v); 3451 } else { 3452 ret = -EINVAL; 3453 } 3454 3455 return ret ?: nbytes; 3456 } 3457 3458 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 3459 { 3460 return seq_cft(seq)->seq_start(seq, ppos); 3461 } 3462 3463 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 3464 { 3465 return seq_cft(seq)->seq_next(seq, v, ppos); 3466 } 3467 3468 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 3469 { 3470 if (seq_cft(seq)->seq_stop) 3471 seq_cft(seq)->seq_stop(seq, v); 3472 } 3473 3474 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 3475 { 3476 struct cftype *cft = seq_cft(m); 3477 struct cgroup_subsys_state *css = seq_css(m); 3478 3479 if (cft->seq_show) 3480 return cft->seq_show(m, arg); 3481 3482 if (cft->read_u64) 3483 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 3484 else if (cft->read_s64) 3485 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 3486 else 3487 return -EINVAL; 3488 return 0; 3489 } 3490 3491 static struct kernfs_ops cgroup_kf_single_ops = { 3492 .atomic_write_len = PAGE_SIZE, 3493 .open = cgroup_file_open, 3494 .release = cgroup_file_release, 3495 .write = cgroup_file_write, 3496 .seq_show = cgroup_seqfile_show, 3497 }; 3498 3499 static struct kernfs_ops cgroup_kf_ops = { 3500 .atomic_write_len = PAGE_SIZE, 3501 .open = cgroup_file_open, 3502 .release = cgroup_file_release, 3503 .write = cgroup_file_write, 3504 .seq_start = cgroup_seqfile_start, 3505 .seq_next = cgroup_seqfile_next, 3506 .seq_stop = cgroup_seqfile_stop, 3507 .seq_show = cgroup_seqfile_show, 3508 }; 3509 3510 /* set uid and gid of cgroup dirs and files to that of the creator */ 3511 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 3512 { 3513 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 3514 .ia_uid = current_fsuid(), 3515 .ia_gid = current_fsgid(), }; 3516 3517 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 3518 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 3519 return 0; 3520 3521 return kernfs_setattr(kn, &iattr); 3522 } 3523 3524 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 3525 struct cftype *cft) 3526 { 3527 char name[CGROUP_FILE_NAME_MAX]; 3528 struct kernfs_node *kn; 3529 struct lock_class_key *key = NULL; 3530 int ret; 3531 3532 #ifdef CONFIG_DEBUG_LOCK_ALLOC 3533 key = &cft->lockdep_key; 3534 #endif 3535 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 3536 cgroup_file_mode(cft), 0, cft->kf_ops, cft, 3537 NULL, key); 3538 if (IS_ERR(kn)) 3539 return PTR_ERR(kn); 3540 3541 ret = cgroup_kn_set_ugid(kn); 3542 if (ret) { 3543 kernfs_remove(kn); 3544 return ret; 3545 } 3546 3547 if (cft->file_offset) { 3548 struct cgroup_file *cfile = (void *)css + cft->file_offset; 3549 3550 spin_lock_irq(&cgroup_file_kn_lock); 3551 cfile->kn = kn; 3552 spin_unlock_irq(&cgroup_file_kn_lock); 3553 } 3554 3555 return 0; 3556 } 3557 3558 /** 3559 * cgroup_addrm_files - add or remove files to a cgroup directory 3560 * @css: the target css 3561 * @cgrp: the target cgroup (usually css->cgroup) 3562 * @cfts: array of cftypes to be added 3563 * @is_add: whether to add or remove 3564 * 3565 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 3566 * For removals, this function never fails. 3567 */ 3568 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 3569 struct cgroup *cgrp, struct cftype cfts[], 3570 bool is_add) 3571 { 3572 struct cftype *cft, *cft_end = NULL; 3573 int ret = 0; 3574 3575 lockdep_assert_held(&cgroup_mutex); 3576 3577 restart: 3578 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 3579 /* does cft->flags tell us to skip this file on @cgrp? */ 3580 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 3581 continue; 3582 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 3583 continue; 3584 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 3585 continue; 3586 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 3587 continue; 3588 3589 if (is_add) { 3590 ret = cgroup_add_file(css, cgrp, cft); 3591 if (ret) { 3592 pr_warn("%s: failed to add %s, err=%d\n", 3593 __func__, cft->name, ret); 3594 cft_end = cft; 3595 is_add = false; 3596 goto restart; 3597 } 3598 } else { 3599 cgroup_rm_file(cgrp, cft); 3600 } 3601 } 3602 return ret; 3603 } 3604 3605 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 3606 { 3607 struct cgroup_subsys *ss = cfts[0].ss; 3608 struct cgroup *root = &ss->root->cgrp; 3609 struct cgroup_subsys_state *css; 3610 int ret = 0; 3611 3612 lockdep_assert_held(&cgroup_mutex); 3613 3614 /* add/rm files for all cgroups created before */ 3615 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 3616 struct cgroup *cgrp = css->cgroup; 3617 3618 if (!(css->flags & CSS_VISIBLE)) 3619 continue; 3620 3621 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 3622 if (ret) 3623 break; 3624 } 3625 3626 if (is_add && !ret) 3627 kernfs_activate(root->kn); 3628 return ret; 3629 } 3630 3631 static void cgroup_exit_cftypes(struct cftype *cfts) 3632 { 3633 struct cftype *cft; 3634 3635 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3636 /* free copy for custom atomic_write_len, see init_cftypes() */ 3637 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 3638 kfree(cft->kf_ops); 3639 cft->kf_ops = NULL; 3640 cft->ss = NULL; 3641 3642 /* revert flags set by cgroup core while adding @cfts */ 3643 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); 3644 } 3645 } 3646 3647 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3648 { 3649 struct cftype *cft; 3650 3651 for (cft = cfts; cft->name[0] != '\0'; cft++) { 3652 struct kernfs_ops *kf_ops; 3653 3654 WARN_ON(cft->ss || cft->kf_ops); 3655 3656 if (cft->seq_start) 3657 kf_ops = &cgroup_kf_ops; 3658 else 3659 kf_ops = &cgroup_kf_single_ops; 3660 3661 /* 3662 * Ugh... if @cft wants a custom max_write_len, we need to 3663 * make a copy of kf_ops to set its atomic_write_len. 3664 */ 3665 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 3666 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 3667 if (!kf_ops) { 3668 cgroup_exit_cftypes(cfts); 3669 return -ENOMEM; 3670 } 3671 kf_ops->atomic_write_len = cft->max_write_len; 3672 } 3673 3674 cft->kf_ops = kf_ops; 3675 cft->ss = ss; 3676 } 3677 3678 return 0; 3679 } 3680 3681 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 3682 { 3683 lockdep_assert_held(&cgroup_mutex); 3684 3685 if (!cfts || !cfts[0].ss) 3686 return -ENOENT; 3687 3688 list_del(&cfts->node); 3689 cgroup_apply_cftypes(cfts, false); 3690 cgroup_exit_cftypes(cfts); 3691 return 0; 3692 } 3693 3694 /** 3695 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 3696 * @cfts: zero-length name terminated array of cftypes 3697 * 3698 * Unregister @cfts. Files described by @cfts are removed from all 3699 * existing cgroups and all future cgroups won't have them either. This 3700 * function can be called anytime whether @cfts' subsys is attached or not. 3701 * 3702 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 3703 * registered. 3704 */ 3705 int cgroup_rm_cftypes(struct cftype *cfts) 3706 { 3707 int ret; 3708 3709 mutex_lock(&cgroup_mutex); 3710 ret = cgroup_rm_cftypes_locked(cfts); 3711 mutex_unlock(&cgroup_mutex); 3712 return ret; 3713 } 3714 3715 /** 3716 * cgroup_add_cftypes - add an array of cftypes to a subsystem 3717 * @ss: target cgroup subsystem 3718 * @cfts: zero-length name terminated array of cftypes 3719 * 3720 * Register @cfts to @ss. Files described by @cfts are created for all 3721 * existing cgroups to which @ss is attached and all future cgroups will 3722 * have them too. This function can be called anytime whether @ss is 3723 * attached or not. 3724 * 3725 * Returns 0 on successful registration, -errno on failure. Note that this 3726 * function currently returns 0 as long as @cfts registration is successful 3727 * even if some file creation attempts on existing cgroups fail. 3728 */ 3729 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3730 { 3731 int ret; 3732 3733 if (!cgroup_ssid_enabled(ss->id)) 3734 return 0; 3735 3736 if (!cfts || cfts[0].name[0] == '\0') 3737 return 0; 3738 3739 ret = cgroup_init_cftypes(ss, cfts); 3740 if (ret) 3741 return ret; 3742 3743 mutex_lock(&cgroup_mutex); 3744 3745 list_add_tail(&cfts->node, &ss->cfts); 3746 ret = cgroup_apply_cftypes(cfts, true); 3747 if (ret) 3748 cgroup_rm_cftypes_locked(cfts); 3749 3750 mutex_unlock(&cgroup_mutex); 3751 return ret; 3752 } 3753 3754 /** 3755 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 3756 * @ss: target cgroup subsystem 3757 * @cfts: zero-length name terminated array of cftypes 3758 * 3759 * Similar to cgroup_add_cftypes() but the added files are only used for 3760 * the default hierarchy. 3761 */ 3762 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3763 { 3764 struct cftype *cft; 3765 3766 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3767 cft->flags |= __CFTYPE_ONLY_ON_DFL; 3768 return cgroup_add_cftypes(ss, cfts); 3769 } 3770 3771 /** 3772 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 3773 * @ss: target cgroup subsystem 3774 * @cfts: zero-length name terminated array of cftypes 3775 * 3776 * Similar to cgroup_add_cftypes() but the added files are only used for 3777 * the legacy hierarchies. 3778 */ 3779 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 3780 { 3781 struct cftype *cft; 3782 3783 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 3784 cft->flags |= __CFTYPE_NOT_ON_DFL; 3785 return cgroup_add_cftypes(ss, cfts); 3786 } 3787 3788 /** 3789 * cgroup_file_notify - generate a file modified event for a cgroup_file 3790 * @cfile: target cgroup_file 3791 * 3792 * @cfile must have been obtained by setting cftype->file_offset. 3793 */ 3794 void cgroup_file_notify(struct cgroup_file *cfile) 3795 { 3796 unsigned long flags; 3797 3798 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 3799 if (cfile->kn) 3800 kernfs_notify(cfile->kn); 3801 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 3802 } 3803 3804 /** 3805 * css_next_child - find the next child of a given css 3806 * @pos: the current position (%NULL to initiate traversal) 3807 * @parent: css whose children to walk 3808 * 3809 * This function returns the next child of @parent and should be called 3810 * under either cgroup_mutex or RCU read lock. The only requirement is 3811 * that @parent and @pos are accessible. The next sibling is guaranteed to 3812 * be returned regardless of their states. 3813 * 3814 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3815 * css which finished ->css_online() is guaranteed to be visible in the 3816 * future iterations and will stay visible until the last reference is put. 3817 * A css which hasn't finished ->css_online() or already finished 3818 * ->css_offline() may show up during traversal. It's each subsystem's 3819 * responsibility to synchronize against on/offlining. 3820 */ 3821 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 3822 struct cgroup_subsys_state *parent) 3823 { 3824 struct cgroup_subsys_state *next; 3825 3826 cgroup_assert_mutex_or_rcu_locked(); 3827 3828 /* 3829 * @pos could already have been unlinked from the sibling list. 3830 * Once a cgroup is removed, its ->sibling.next is no longer 3831 * updated when its next sibling changes. CSS_RELEASED is set when 3832 * @pos is taken off list, at which time its next pointer is valid, 3833 * and, as releases are serialized, the one pointed to by the next 3834 * pointer is guaranteed to not have started release yet. This 3835 * implies that if we observe !CSS_RELEASED on @pos in this RCU 3836 * critical section, the one pointed to by its next pointer is 3837 * guaranteed to not have finished its RCU grace period even if we 3838 * have dropped rcu_read_lock() inbetween iterations. 3839 * 3840 * If @pos has CSS_RELEASED set, its next pointer can't be 3841 * dereferenced; however, as each css is given a monotonically 3842 * increasing unique serial number and always appended to the 3843 * sibling list, the next one can be found by walking the parent's 3844 * children until the first css with higher serial number than 3845 * @pos's. While this path can be slower, it happens iff iteration 3846 * races against release and the race window is very small. 3847 */ 3848 if (!pos) { 3849 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 3850 } else if (likely(!(pos->flags & CSS_RELEASED))) { 3851 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 3852 } else { 3853 list_for_each_entry_rcu(next, &parent->children, sibling) 3854 if (next->serial_nr > pos->serial_nr) 3855 break; 3856 } 3857 3858 /* 3859 * @next, if not pointing to the head, can be dereferenced and is 3860 * the next sibling. 3861 */ 3862 if (&next->sibling != &parent->children) 3863 return next; 3864 return NULL; 3865 } 3866 3867 /** 3868 * css_next_descendant_pre - find the next descendant for pre-order walk 3869 * @pos: the current position (%NULL to initiate traversal) 3870 * @root: css whose descendants to walk 3871 * 3872 * To be used by css_for_each_descendant_pre(). Find the next descendant 3873 * to visit for pre-order traversal of @root's descendants. @root is 3874 * included in the iteration and the first node to be visited. 3875 * 3876 * While this function requires cgroup_mutex or RCU read locking, it 3877 * doesn't require the whole traversal to be contained in a single critical 3878 * section. This function will return the correct next descendant as long 3879 * as both @pos and @root are accessible and @pos is a descendant of @root. 3880 * 3881 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3882 * css which finished ->css_online() is guaranteed to be visible in the 3883 * future iterations and will stay visible until the last reference is put. 3884 * A css which hasn't finished ->css_online() or already finished 3885 * ->css_offline() may show up during traversal. It's each subsystem's 3886 * responsibility to synchronize against on/offlining. 3887 */ 3888 struct cgroup_subsys_state * 3889 css_next_descendant_pre(struct cgroup_subsys_state *pos, 3890 struct cgroup_subsys_state *root) 3891 { 3892 struct cgroup_subsys_state *next; 3893 3894 cgroup_assert_mutex_or_rcu_locked(); 3895 3896 /* if first iteration, visit @root */ 3897 if (!pos) 3898 return root; 3899 3900 /* visit the first child if exists */ 3901 next = css_next_child(NULL, pos); 3902 if (next) 3903 return next; 3904 3905 /* no child, visit my or the closest ancestor's next sibling */ 3906 while (pos != root) { 3907 next = css_next_child(pos, pos->parent); 3908 if (next) 3909 return next; 3910 pos = pos->parent; 3911 } 3912 3913 return NULL; 3914 } 3915 3916 /** 3917 * css_rightmost_descendant - return the rightmost descendant of a css 3918 * @pos: css of interest 3919 * 3920 * Return the rightmost descendant of @pos. If there's no descendant, @pos 3921 * is returned. This can be used during pre-order traversal to skip 3922 * subtree of @pos. 3923 * 3924 * While this function requires cgroup_mutex or RCU read locking, it 3925 * doesn't require the whole traversal to be contained in a single critical 3926 * section. This function will return the correct rightmost descendant as 3927 * long as @pos is accessible. 3928 */ 3929 struct cgroup_subsys_state * 3930 css_rightmost_descendant(struct cgroup_subsys_state *pos) 3931 { 3932 struct cgroup_subsys_state *last, *tmp; 3933 3934 cgroup_assert_mutex_or_rcu_locked(); 3935 3936 do { 3937 last = pos; 3938 /* ->prev isn't RCU safe, walk ->next till the end */ 3939 pos = NULL; 3940 css_for_each_child(tmp, last) 3941 pos = tmp; 3942 } while (pos); 3943 3944 return last; 3945 } 3946 3947 static struct cgroup_subsys_state * 3948 css_leftmost_descendant(struct cgroup_subsys_state *pos) 3949 { 3950 struct cgroup_subsys_state *last; 3951 3952 do { 3953 last = pos; 3954 pos = css_next_child(NULL, pos); 3955 } while (pos); 3956 3957 return last; 3958 } 3959 3960 /** 3961 * css_next_descendant_post - find the next descendant for post-order walk 3962 * @pos: the current position (%NULL to initiate traversal) 3963 * @root: css whose descendants to walk 3964 * 3965 * To be used by css_for_each_descendant_post(). Find the next descendant 3966 * to visit for post-order traversal of @root's descendants. @root is 3967 * included in the iteration and the last node to be visited. 3968 * 3969 * While this function requires cgroup_mutex or RCU read locking, it 3970 * doesn't require the whole traversal to be contained in a single critical 3971 * section. This function will return the correct next descendant as long 3972 * as both @pos and @cgroup are accessible and @pos is a descendant of 3973 * @cgroup. 3974 * 3975 * If a subsystem synchronizes ->css_online() and the start of iteration, a 3976 * css which finished ->css_online() is guaranteed to be visible in the 3977 * future iterations and will stay visible until the last reference is put. 3978 * A css which hasn't finished ->css_online() or already finished 3979 * ->css_offline() may show up during traversal. It's each subsystem's 3980 * responsibility to synchronize against on/offlining. 3981 */ 3982 struct cgroup_subsys_state * 3983 css_next_descendant_post(struct cgroup_subsys_state *pos, 3984 struct cgroup_subsys_state *root) 3985 { 3986 struct cgroup_subsys_state *next; 3987 3988 cgroup_assert_mutex_or_rcu_locked(); 3989 3990 /* if first iteration, visit leftmost descendant which may be @root */ 3991 if (!pos) 3992 return css_leftmost_descendant(root); 3993 3994 /* if we visited @root, we're done */ 3995 if (pos == root) 3996 return NULL; 3997 3998 /* if there's an unvisited sibling, visit its leftmost descendant */ 3999 next = css_next_child(pos, pos->parent); 4000 if (next) 4001 return css_leftmost_descendant(next); 4002 4003 /* no sibling left, visit parent */ 4004 return pos->parent; 4005 } 4006 4007 /** 4008 * css_has_online_children - does a css have online children 4009 * @css: the target css 4010 * 4011 * Returns %true if @css has any online children; otherwise, %false. This 4012 * function can be called from any context but the caller is responsible 4013 * for synchronizing against on/offlining as necessary. 4014 */ 4015 bool css_has_online_children(struct cgroup_subsys_state *css) 4016 { 4017 struct cgroup_subsys_state *child; 4018 bool ret = false; 4019 4020 rcu_read_lock(); 4021 css_for_each_child(child, css) { 4022 if (child->flags & CSS_ONLINE) { 4023 ret = true; 4024 break; 4025 } 4026 } 4027 rcu_read_unlock(); 4028 return ret; 4029 } 4030 4031 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4032 { 4033 struct list_head *l; 4034 struct cgrp_cset_link *link; 4035 struct css_set *cset; 4036 4037 lockdep_assert_held(&css_set_lock); 4038 4039 /* find the next threaded cset */ 4040 if (it->tcset_pos) { 4041 l = it->tcset_pos->next; 4042 4043 if (l != it->tcset_head) { 4044 it->tcset_pos = l; 4045 return container_of(l, struct css_set, 4046 threaded_csets_node); 4047 } 4048 4049 it->tcset_pos = NULL; 4050 } 4051 4052 /* find the next cset */ 4053 l = it->cset_pos; 4054 l = l->next; 4055 if (l == it->cset_head) { 4056 it->cset_pos = NULL; 4057 return NULL; 4058 } 4059 4060 if (it->ss) { 4061 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4062 } else { 4063 link = list_entry(l, struct cgrp_cset_link, cset_link); 4064 cset = link->cset; 4065 } 4066 4067 it->cset_pos = l; 4068 4069 /* initialize threaded css_set walking */ 4070 if (it->flags & CSS_TASK_ITER_THREADED) { 4071 if (it->cur_dcset) 4072 put_css_set_locked(it->cur_dcset); 4073 it->cur_dcset = cset; 4074 get_css_set(cset); 4075 4076 it->tcset_head = &cset->threaded_csets; 4077 it->tcset_pos = &cset->threaded_csets; 4078 } 4079 4080 return cset; 4081 } 4082 4083 /** 4084 * css_task_iter_advance_css_set - advance a task itererator to the next css_set 4085 * @it: the iterator to advance 4086 * 4087 * Advance @it to the next css_set to walk. 4088 */ 4089 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4090 { 4091 struct css_set *cset; 4092 4093 lockdep_assert_held(&css_set_lock); 4094 4095 /* Advance to the next non-empty css_set */ 4096 do { 4097 cset = css_task_iter_next_css_set(it); 4098 if (!cset) { 4099 it->task_pos = NULL; 4100 return; 4101 } 4102 } while (!css_set_populated(cset)); 4103 4104 if (!list_empty(&cset->tasks)) 4105 it->task_pos = cset->tasks.next; 4106 else 4107 it->task_pos = cset->mg_tasks.next; 4108 4109 it->tasks_head = &cset->tasks; 4110 it->mg_tasks_head = &cset->mg_tasks; 4111 4112 /* 4113 * We don't keep css_sets locked across iteration steps and thus 4114 * need to take steps to ensure that iteration can be resumed after 4115 * the lock is re-acquired. Iteration is performed at two levels - 4116 * css_sets and tasks in them. 4117 * 4118 * Once created, a css_set never leaves its cgroup lists, so a 4119 * pinned css_set is guaranteed to stay put and we can resume 4120 * iteration afterwards. 4121 * 4122 * Tasks may leave @cset across iteration steps. This is resolved 4123 * by registering each iterator with the css_set currently being 4124 * walked and making css_set_move_task() advance iterators whose 4125 * next task is leaving. 4126 */ 4127 if (it->cur_cset) { 4128 list_del(&it->iters_node); 4129 put_css_set_locked(it->cur_cset); 4130 } 4131 get_css_set(cset); 4132 it->cur_cset = cset; 4133 list_add(&it->iters_node, &cset->task_iters); 4134 } 4135 4136 static void css_task_iter_advance(struct css_task_iter *it) 4137 { 4138 struct list_head *next; 4139 4140 lockdep_assert_held(&css_set_lock); 4141 repeat: 4142 /* 4143 * Advance iterator to find next entry. cset->tasks is consumed 4144 * first and then ->mg_tasks. After ->mg_tasks, we move onto the 4145 * next cset. 4146 */ 4147 next = it->task_pos->next; 4148 4149 if (next == it->tasks_head) 4150 next = it->mg_tasks_head->next; 4151 4152 if (next == it->mg_tasks_head) 4153 css_task_iter_advance_css_set(it); 4154 else 4155 it->task_pos = next; 4156 4157 /* if PROCS, skip over tasks which aren't group leaders */ 4158 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos && 4159 !thread_group_leader(list_entry(it->task_pos, struct task_struct, 4160 cg_list))) 4161 goto repeat; 4162 } 4163 4164 /** 4165 * css_task_iter_start - initiate task iteration 4166 * @css: the css to walk tasks of 4167 * @flags: CSS_TASK_ITER_* flags 4168 * @it: the task iterator to use 4169 * 4170 * Initiate iteration through the tasks of @css. The caller can call 4171 * css_task_iter_next() to walk through the tasks until the function 4172 * returns NULL. On completion of iteration, css_task_iter_end() must be 4173 * called. 4174 */ 4175 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4176 struct css_task_iter *it) 4177 { 4178 /* no one should try to iterate before mounting cgroups */ 4179 WARN_ON_ONCE(!use_task_css_set_links); 4180 4181 memset(it, 0, sizeof(*it)); 4182 4183 spin_lock_irq(&css_set_lock); 4184 4185 it->ss = css->ss; 4186 it->flags = flags; 4187 4188 if (it->ss) 4189 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4190 else 4191 it->cset_pos = &css->cgroup->cset_links; 4192 4193 it->cset_head = it->cset_pos; 4194 4195 css_task_iter_advance_css_set(it); 4196 4197 spin_unlock_irq(&css_set_lock); 4198 } 4199 4200 /** 4201 * css_task_iter_next - return the next task for the iterator 4202 * @it: the task iterator being iterated 4203 * 4204 * The "next" function for task iteration. @it should have been 4205 * initialized via css_task_iter_start(). Returns NULL when the iteration 4206 * reaches the end. 4207 */ 4208 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4209 { 4210 if (it->cur_task) { 4211 put_task_struct(it->cur_task); 4212 it->cur_task = NULL; 4213 } 4214 4215 spin_lock_irq(&css_set_lock); 4216 4217 if (it->task_pos) { 4218 it->cur_task = list_entry(it->task_pos, struct task_struct, 4219 cg_list); 4220 get_task_struct(it->cur_task); 4221 css_task_iter_advance(it); 4222 } 4223 4224 spin_unlock_irq(&css_set_lock); 4225 4226 return it->cur_task; 4227 } 4228 4229 /** 4230 * css_task_iter_end - finish task iteration 4231 * @it: the task iterator to finish 4232 * 4233 * Finish task iteration started by css_task_iter_start(). 4234 */ 4235 void css_task_iter_end(struct css_task_iter *it) 4236 { 4237 if (it->cur_cset) { 4238 spin_lock_irq(&css_set_lock); 4239 list_del(&it->iters_node); 4240 put_css_set_locked(it->cur_cset); 4241 spin_unlock_irq(&css_set_lock); 4242 } 4243 4244 if (it->cur_dcset) 4245 put_css_set(it->cur_dcset); 4246 4247 if (it->cur_task) 4248 put_task_struct(it->cur_task); 4249 } 4250 4251 static void cgroup_procs_release(struct kernfs_open_file *of) 4252 { 4253 if (of->priv) { 4254 css_task_iter_end(of->priv); 4255 kfree(of->priv); 4256 } 4257 } 4258 4259 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4260 { 4261 struct kernfs_open_file *of = s->private; 4262 struct css_task_iter *it = of->priv; 4263 4264 return css_task_iter_next(it); 4265 } 4266 4267 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 4268 unsigned int iter_flags) 4269 { 4270 struct kernfs_open_file *of = s->private; 4271 struct cgroup *cgrp = seq_css(s)->cgroup; 4272 struct css_task_iter *it = of->priv; 4273 4274 /* 4275 * When a seq_file is seeked, it's always traversed sequentially 4276 * from position 0, so we can simply keep iterating on !0 *pos. 4277 */ 4278 if (!it) { 4279 if (WARN_ON_ONCE((*pos)++)) 4280 return ERR_PTR(-EINVAL); 4281 4282 it = kzalloc(sizeof(*it), GFP_KERNEL); 4283 if (!it) 4284 return ERR_PTR(-ENOMEM); 4285 of->priv = it; 4286 css_task_iter_start(&cgrp->self, iter_flags, it); 4287 } else if (!(*pos)++) { 4288 css_task_iter_end(it); 4289 css_task_iter_start(&cgrp->self, iter_flags, it); 4290 } 4291 4292 return cgroup_procs_next(s, NULL, NULL); 4293 } 4294 4295 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 4296 { 4297 struct cgroup *cgrp = seq_css(s)->cgroup; 4298 4299 /* 4300 * All processes of a threaded subtree belong to the domain cgroup 4301 * of the subtree. Only threads can be distributed across the 4302 * subtree. Reject reads on cgroup.procs in the subtree proper. 4303 * They're always empty anyway. 4304 */ 4305 if (cgroup_is_threaded(cgrp)) 4306 return ERR_PTR(-EOPNOTSUPP); 4307 4308 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 4309 CSS_TASK_ITER_THREADED); 4310 } 4311 4312 static int cgroup_procs_show(struct seq_file *s, void *v) 4313 { 4314 seq_printf(s, "%d\n", task_pid_vnr(v)); 4315 return 0; 4316 } 4317 4318 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 4319 struct cgroup *dst_cgrp, 4320 struct super_block *sb) 4321 { 4322 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; 4323 struct cgroup *com_cgrp = src_cgrp; 4324 struct inode *inode; 4325 int ret; 4326 4327 lockdep_assert_held(&cgroup_mutex); 4328 4329 /* find the common ancestor */ 4330 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 4331 com_cgrp = cgroup_parent(com_cgrp); 4332 4333 /* %current should be authorized to migrate to the common ancestor */ 4334 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn); 4335 if (!inode) 4336 return -ENOMEM; 4337 4338 ret = inode_permission(inode, MAY_WRITE); 4339 iput(inode); 4340 if (ret) 4341 return ret; 4342 4343 /* 4344 * If namespaces are delegation boundaries, %current must be able 4345 * to see both source and destination cgroups from its namespace. 4346 */ 4347 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 4348 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 4349 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 4350 return -ENOENT; 4351 4352 return 0; 4353 } 4354 4355 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 4356 char *buf, size_t nbytes, loff_t off) 4357 { 4358 struct cgroup *src_cgrp, *dst_cgrp; 4359 struct task_struct *task; 4360 ssize_t ret; 4361 4362 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4363 if (!dst_cgrp) 4364 return -ENODEV; 4365 4366 task = cgroup_procs_write_start(buf, true); 4367 ret = PTR_ERR_OR_ZERO(task); 4368 if (ret) 4369 goto out_unlock; 4370 4371 /* find the source cgroup */ 4372 spin_lock_irq(&css_set_lock); 4373 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4374 spin_unlock_irq(&css_set_lock); 4375 4376 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4377 of->file->f_path.dentry->d_sb); 4378 if (ret) 4379 goto out_finish; 4380 4381 ret = cgroup_attach_task(dst_cgrp, task, true); 4382 4383 out_finish: 4384 cgroup_procs_write_finish(task); 4385 out_unlock: 4386 cgroup_kn_unlock(of->kn); 4387 4388 return ret ?: nbytes; 4389 } 4390 4391 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 4392 { 4393 return __cgroup_procs_start(s, pos, 0); 4394 } 4395 4396 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 4397 char *buf, size_t nbytes, loff_t off) 4398 { 4399 struct cgroup *src_cgrp, *dst_cgrp; 4400 struct task_struct *task; 4401 ssize_t ret; 4402 4403 buf = strstrip(buf); 4404 4405 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 4406 if (!dst_cgrp) 4407 return -ENODEV; 4408 4409 task = cgroup_procs_write_start(buf, false); 4410 ret = PTR_ERR_OR_ZERO(task); 4411 if (ret) 4412 goto out_unlock; 4413 4414 /* find the source cgroup */ 4415 spin_lock_irq(&css_set_lock); 4416 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 4417 spin_unlock_irq(&css_set_lock); 4418 4419 /* thread migrations follow the cgroup.procs delegation rule */ 4420 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, 4421 of->file->f_path.dentry->d_sb); 4422 if (ret) 4423 goto out_finish; 4424 4425 /* and must be contained in the same domain */ 4426 ret = -EOPNOTSUPP; 4427 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp) 4428 goto out_finish; 4429 4430 ret = cgroup_attach_task(dst_cgrp, task, false); 4431 4432 out_finish: 4433 cgroup_procs_write_finish(task); 4434 out_unlock: 4435 cgroup_kn_unlock(of->kn); 4436 4437 return ret ?: nbytes; 4438 } 4439 4440 /* cgroup core interface files for the default hierarchy */ 4441 static struct cftype cgroup_base_files[] = { 4442 { 4443 .name = "cgroup.type", 4444 .flags = CFTYPE_NOT_ON_ROOT, 4445 .seq_show = cgroup_type_show, 4446 .write = cgroup_type_write, 4447 }, 4448 { 4449 .name = "cgroup.procs", 4450 .flags = CFTYPE_NS_DELEGATABLE, 4451 .file_offset = offsetof(struct cgroup, procs_file), 4452 .release = cgroup_procs_release, 4453 .seq_start = cgroup_procs_start, 4454 .seq_next = cgroup_procs_next, 4455 .seq_show = cgroup_procs_show, 4456 .write = cgroup_procs_write, 4457 }, 4458 { 4459 .name = "cgroup.threads", 4460 .flags = CFTYPE_NS_DELEGATABLE, 4461 .release = cgroup_procs_release, 4462 .seq_start = cgroup_threads_start, 4463 .seq_next = cgroup_procs_next, 4464 .seq_show = cgroup_procs_show, 4465 .write = cgroup_threads_write, 4466 }, 4467 { 4468 .name = "cgroup.controllers", 4469 .seq_show = cgroup_controllers_show, 4470 }, 4471 { 4472 .name = "cgroup.subtree_control", 4473 .flags = CFTYPE_NS_DELEGATABLE, 4474 .seq_show = cgroup_subtree_control_show, 4475 .write = cgroup_subtree_control_write, 4476 }, 4477 { 4478 .name = "cgroup.events", 4479 .flags = CFTYPE_NOT_ON_ROOT, 4480 .file_offset = offsetof(struct cgroup, events_file), 4481 .seq_show = cgroup_events_show, 4482 }, 4483 { 4484 .name = "cgroup.max.descendants", 4485 .seq_show = cgroup_max_descendants_show, 4486 .write = cgroup_max_descendants_write, 4487 }, 4488 { 4489 .name = "cgroup.max.depth", 4490 .seq_show = cgroup_max_depth_show, 4491 .write = cgroup_max_depth_write, 4492 }, 4493 { 4494 .name = "cgroup.stat", 4495 .seq_show = cgroup_stat_show, 4496 }, 4497 { 4498 .name = "cpu.stat", 4499 .flags = CFTYPE_NOT_ON_ROOT, 4500 .seq_show = cpu_stat_show, 4501 }, 4502 { } /* terminate */ 4503 }; 4504 4505 /* 4506 * css destruction is four-stage process. 4507 * 4508 * 1. Destruction starts. Killing of the percpu_ref is initiated. 4509 * Implemented in kill_css(). 4510 * 4511 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 4512 * and thus css_tryget_online() is guaranteed to fail, the css can be 4513 * offlined by invoking offline_css(). After offlining, the base ref is 4514 * put. Implemented in css_killed_work_fn(). 4515 * 4516 * 3. When the percpu_ref reaches zero, the only possible remaining 4517 * accessors are inside RCU read sections. css_release() schedules the 4518 * RCU callback. 4519 * 4520 * 4. After the grace period, the css can be freed. Implemented in 4521 * css_free_work_fn(). 4522 * 4523 * It is actually hairier because both step 2 and 4 require process context 4524 * and thus involve punting to css->destroy_work adding two additional 4525 * steps to the already complex sequence. 4526 */ 4527 static void css_free_rwork_fn(struct work_struct *work) 4528 { 4529 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 4530 struct cgroup_subsys_state, destroy_rwork); 4531 struct cgroup_subsys *ss = css->ss; 4532 struct cgroup *cgrp = css->cgroup; 4533 4534 percpu_ref_exit(&css->refcnt); 4535 4536 if (ss) { 4537 /* css free path */ 4538 struct cgroup_subsys_state *parent = css->parent; 4539 int id = css->id; 4540 4541 ss->css_free(css); 4542 cgroup_idr_remove(&ss->css_idr, id); 4543 cgroup_put(cgrp); 4544 4545 if (parent) 4546 css_put(parent); 4547 } else { 4548 /* cgroup free path */ 4549 atomic_dec(&cgrp->root->nr_cgrps); 4550 cgroup1_pidlist_destroy_all(cgrp); 4551 cancel_work_sync(&cgrp->release_agent_work); 4552 4553 if (cgroup_parent(cgrp)) { 4554 /* 4555 * We get a ref to the parent, and put the ref when 4556 * this cgroup is being freed, so it's guaranteed 4557 * that the parent won't be destroyed before its 4558 * children. 4559 */ 4560 cgroup_put(cgroup_parent(cgrp)); 4561 kernfs_put(cgrp->kn); 4562 if (cgroup_on_dfl(cgrp)) 4563 cgroup_stat_exit(cgrp); 4564 kfree(cgrp); 4565 } else { 4566 /* 4567 * This is root cgroup's refcnt reaching zero, 4568 * which indicates that the root should be 4569 * released. 4570 */ 4571 cgroup_destroy_root(cgrp->root); 4572 } 4573 } 4574 } 4575 4576 static void css_release_work_fn(struct work_struct *work) 4577 { 4578 struct cgroup_subsys_state *css = 4579 container_of(work, struct cgroup_subsys_state, destroy_work); 4580 struct cgroup_subsys *ss = css->ss; 4581 struct cgroup *cgrp = css->cgroup; 4582 4583 mutex_lock(&cgroup_mutex); 4584 4585 css->flags |= CSS_RELEASED; 4586 list_del_rcu(&css->sibling); 4587 4588 if (ss) { 4589 /* css release path */ 4590 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 4591 if (ss->css_released) 4592 ss->css_released(css); 4593 } else { 4594 struct cgroup *tcgrp; 4595 4596 /* cgroup release path */ 4597 trace_cgroup_release(cgrp); 4598 4599 if (cgroup_on_dfl(cgrp)) 4600 cgroup_stat_flush(cgrp); 4601 4602 for (tcgrp = cgroup_parent(cgrp); tcgrp; 4603 tcgrp = cgroup_parent(tcgrp)) 4604 tcgrp->nr_dying_descendants--; 4605 4606 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); 4607 cgrp->id = -1; 4608 4609 /* 4610 * There are two control paths which try to determine 4611 * cgroup from dentry without going through kernfs - 4612 * cgroupstats_build() and css_tryget_online_from_dir(). 4613 * Those are supported by RCU protecting clearing of 4614 * cgrp->kn->priv backpointer. 4615 */ 4616 if (cgrp->kn) 4617 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 4618 NULL); 4619 4620 cgroup_bpf_put(cgrp); 4621 } 4622 4623 mutex_unlock(&cgroup_mutex); 4624 4625 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 4626 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 4627 } 4628 4629 static void css_release(struct percpu_ref *ref) 4630 { 4631 struct cgroup_subsys_state *css = 4632 container_of(ref, struct cgroup_subsys_state, refcnt); 4633 4634 INIT_WORK(&css->destroy_work, css_release_work_fn); 4635 queue_work(cgroup_destroy_wq, &css->destroy_work); 4636 } 4637 4638 static void init_and_link_css(struct cgroup_subsys_state *css, 4639 struct cgroup_subsys *ss, struct cgroup *cgrp) 4640 { 4641 lockdep_assert_held(&cgroup_mutex); 4642 4643 cgroup_get_live(cgrp); 4644 4645 memset(css, 0, sizeof(*css)); 4646 css->cgroup = cgrp; 4647 css->ss = ss; 4648 css->id = -1; 4649 INIT_LIST_HEAD(&css->sibling); 4650 INIT_LIST_HEAD(&css->children); 4651 css->serial_nr = css_serial_nr_next++; 4652 atomic_set(&css->online_cnt, 0); 4653 4654 if (cgroup_parent(cgrp)) { 4655 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 4656 css_get(css->parent); 4657 } 4658 4659 BUG_ON(cgroup_css(cgrp, ss)); 4660 } 4661 4662 /* invoke ->css_online() on a new CSS and mark it online if successful */ 4663 static int online_css(struct cgroup_subsys_state *css) 4664 { 4665 struct cgroup_subsys *ss = css->ss; 4666 int ret = 0; 4667 4668 lockdep_assert_held(&cgroup_mutex); 4669 4670 if (ss->css_online) 4671 ret = ss->css_online(css); 4672 if (!ret) { 4673 css->flags |= CSS_ONLINE; 4674 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 4675 4676 atomic_inc(&css->online_cnt); 4677 if (css->parent) 4678 atomic_inc(&css->parent->online_cnt); 4679 } 4680 return ret; 4681 } 4682 4683 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 4684 static void offline_css(struct cgroup_subsys_state *css) 4685 { 4686 struct cgroup_subsys *ss = css->ss; 4687 4688 lockdep_assert_held(&cgroup_mutex); 4689 4690 if (!(css->flags & CSS_ONLINE)) 4691 return; 4692 4693 if (ss->css_offline) 4694 ss->css_offline(css); 4695 4696 css->flags &= ~CSS_ONLINE; 4697 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 4698 4699 wake_up_all(&css->cgroup->offline_waitq); 4700 } 4701 4702 /** 4703 * css_create - create a cgroup_subsys_state 4704 * @cgrp: the cgroup new css will be associated with 4705 * @ss: the subsys of new css 4706 * 4707 * Create a new css associated with @cgrp - @ss pair. On success, the new 4708 * css is online and installed in @cgrp. This function doesn't create the 4709 * interface files. Returns 0 on success, -errno on failure. 4710 */ 4711 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 4712 struct cgroup_subsys *ss) 4713 { 4714 struct cgroup *parent = cgroup_parent(cgrp); 4715 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 4716 struct cgroup_subsys_state *css; 4717 int err; 4718 4719 lockdep_assert_held(&cgroup_mutex); 4720 4721 css = ss->css_alloc(parent_css); 4722 if (!css) 4723 css = ERR_PTR(-ENOMEM); 4724 if (IS_ERR(css)) 4725 return css; 4726 4727 init_and_link_css(css, ss, cgrp); 4728 4729 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 4730 if (err) 4731 goto err_free_css; 4732 4733 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 4734 if (err < 0) 4735 goto err_free_css; 4736 css->id = err; 4737 4738 /* @css is ready to be brought online now, make it visible */ 4739 list_add_tail_rcu(&css->sibling, &parent_css->children); 4740 cgroup_idr_replace(&ss->css_idr, css, css->id); 4741 4742 err = online_css(css); 4743 if (err) 4744 goto err_list_del; 4745 4746 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && 4747 cgroup_parent(parent)) { 4748 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", 4749 current->comm, current->pid, ss->name); 4750 if (!strcmp(ss->name, "memory")) 4751 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); 4752 ss->warned_broken_hierarchy = true; 4753 } 4754 4755 return css; 4756 4757 err_list_del: 4758 list_del_rcu(&css->sibling); 4759 err_free_css: 4760 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 4761 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 4762 return ERR_PTR(err); 4763 } 4764 4765 /* 4766 * The returned cgroup is fully initialized including its control mask, but 4767 * it isn't associated with its kernfs_node and doesn't have the control 4768 * mask applied. 4769 */ 4770 static struct cgroup *cgroup_create(struct cgroup *parent) 4771 { 4772 struct cgroup_root *root = parent->root; 4773 struct cgroup *cgrp, *tcgrp; 4774 int level = parent->level + 1; 4775 int ret; 4776 4777 /* allocate the cgroup and its ID, 0 is reserved for the root */ 4778 cgrp = kzalloc(sizeof(*cgrp) + 4779 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL); 4780 if (!cgrp) 4781 return ERR_PTR(-ENOMEM); 4782 4783 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 4784 if (ret) 4785 goto out_free_cgrp; 4786 4787 if (cgroup_on_dfl(parent)) { 4788 ret = cgroup_stat_init(cgrp); 4789 if (ret) 4790 goto out_cancel_ref; 4791 } 4792 4793 /* 4794 * Temporarily set the pointer to NULL, so idr_find() won't return 4795 * a half-baked cgroup. 4796 */ 4797 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); 4798 if (cgrp->id < 0) { 4799 ret = -ENOMEM; 4800 goto out_stat_exit; 4801 } 4802 4803 init_cgroup_housekeeping(cgrp); 4804 4805 cgrp->self.parent = &parent->self; 4806 cgrp->root = root; 4807 cgrp->level = level; 4808 ret = cgroup_bpf_inherit(cgrp); 4809 if (ret) 4810 goto out_idr_free; 4811 4812 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 4813 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; 4814 4815 if (tcgrp != cgrp) 4816 tcgrp->nr_descendants++; 4817 } 4818 4819 if (notify_on_release(parent)) 4820 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 4821 4822 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 4823 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 4824 4825 cgrp->self.serial_nr = css_serial_nr_next++; 4826 4827 /* allocation complete, commit to creation */ 4828 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 4829 atomic_inc(&root->nr_cgrps); 4830 cgroup_get_live(parent); 4831 4832 /* 4833 * @cgrp is now fully operational. If something fails after this 4834 * point, it'll be released via the normal destruction path. 4835 */ 4836 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); 4837 4838 /* 4839 * On the default hierarchy, a child doesn't automatically inherit 4840 * subtree_control from the parent. Each is configured manually. 4841 */ 4842 if (!cgroup_on_dfl(cgrp)) 4843 cgrp->subtree_control = cgroup_control(cgrp); 4844 4845 cgroup_propagate_control(cgrp); 4846 4847 return cgrp; 4848 4849 out_idr_free: 4850 cgroup_idr_remove(&root->cgroup_idr, cgrp->id); 4851 out_stat_exit: 4852 if (cgroup_on_dfl(parent)) 4853 cgroup_stat_exit(cgrp); 4854 out_cancel_ref: 4855 percpu_ref_exit(&cgrp->self.refcnt); 4856 out_free_cgrp: 4857 kfree(cgrp); 4858 return ERR_PTR(ret); 4859 } 4860 4861 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 4862 { 4863 struct cgroup *cgroup; 4864 int ret = false; 4865 int level = 1; 4866 4867 lockdep_assert_held(&cgroup_mutex); 4868 4869 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 4870 if (cgroup->nr_descendants >= cgroup->max_descendants) 4871 goto fail; 4872 4873 if (level > cgroup->max_depth) 4874 goto fail; 4875 4876 level++; 4877 } 4878 4879 ret = true; 4880 fail: 4881 return ret; 4882 } 4883 4884 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 4885 { 4886 struct cgroup *parent, *cgrp; 4887 struct kernfs_node *kn; 4888 int ret; 4889 4890 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 4891 if (strchr(name, '\n')) 4892 return -EINVAL; 4893 4894 parent = cgroup_kn_lock_live(parent_kn, false); 4895 if (!parent) 4896 return -ENODEV; 4897 4898 if (!cgroup_check_hierarchy_limits(parent)) { 4899 ret = -EAGAIN; 4900 goto out_unlock; 4901 } 4902 4903 cgrp = cgroup_create(parent); 4904 if (IS_ERR(cgrp)) { 4905 ret = PTR_ERR(cgrp); 4906 goto out_unlock; 4907 } 4908 4909 /* create the directory */ 4910 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 4911 if (IS_ERR(kn)) { 4912 ret = PTR_ERR(kn); 4913 goto out_destroy; 4914 } 4915 cgrp->kn = kn; 4916 4917 /* 4918 * This extra ref will be put in cgroup_free_fn() and guarantees 4919 * that @cgrp->kn is always accessible. 4920 */ 4921 kernfs_get(kn); 4922 4923 ret = cgroup_kn_set_ugid(kn); 4924 if (ret) 4925 goto out_destroy; 4926 4927 ret = css_populate_dir(&cgrp->self); 4928 if (ret) 4929 goto out_destroy; 4930 4931 ret = cgroup_apply_control_enable(cgrp); 4932 if (ret) 4933 goto out_destroy; 4934 4935 trace_cgroup_mkdir(cgrp); 4936 4937 /* let's create and online css's */ 4938 kernfs_activate(kn); 4939 4940 ret = 0; 4941 goto out_unlock; 4942 4943 out_destroy: 4944 cgroup_destroy_locked(cgrp); 4945 out_unlock: 4946 cgroup_kn_unlock(parent_kn); 4947 return ret; 4948 } 4949 4950 /* 4951 * This is called when the refcnt of a css is confirmed to be killed. 4952 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 4953 * initate destruction and put the css ref from kill_css(). 4954 */ 4955 static void css_killed_work_fn(struct work_struct *work) 4956 { 4957 struct cgroup_subsys_state *css = 4958 container_of(work, struct cgroup_subsys_state, destroy_work); 4959 4960 mutex_lock(&cgroup_mutex); 4961 4962 do { 4963 offline_css(css); 4964 css_put(css); 4965 /* @css can't go away while we're holding cgroup_mutex */ 4966 css = css->parent; 4967 } while (css && atomic_dec_and_test(&css->online_cnt)); 4968 4969 mutex_unlock(&cgroup_mutex); 4970 } 4971 4972 /* css kill confirmation processing requires process context, bounce */ 4973 static void css_killed_ref_fn(struct percpu_ref *ref) 4974 { 4975 struct cgroup_subsys_state *css = 4976 container_of(ref, struct cgroup_subsys_state, refcnt); 4977 4978 if (atomic_dec_and_test(&css->online_cnt)) { 4979 INIT_WORK(&css->destroy_work, css_killed_work_fn); 4980 queue_work(cgroup_destroy_wq, &css->destroy_work); 4981 } 4982 } 4983 4984 /** 4985 * kill_css - destroy a css 4986 * @css: css to destroy 4987 * 4988 * This function initiates destruction of @css by removing cgroup interface 4989 * files and putting its base reference. ->css_offline() will be invoked 4990 * asynchronously once css_tryget_online() is guaranteed to fail and when 4991 * the reference count reaches zero, @css will be released. 4992 */ 4993 static void kill_css(struct cgroup_subsys_state *css) 4994 { 4995 lockdep_assert_held(&cgroup_mutex); 4996 4997 if (css->flags & CSS_DYING) 4998 return; 4999 5000 css->flags |= CSS_DYING; 5001 5002 /* 5003 * This must happen before css is disassociated with its cgroup. 5004 * See seq_css() for details. 5005 */ 5006 css_clear_dir(css); 5007 5008 /* 5009 * Killing would put the base ref, but we need to keep it alive 5010 * until after ->css_offline(). 5011 */ 5012 css_get(css); 5013 5014 /* 5015 * cgroup core guarantees that, by the time ->css_offline() is 5016 * invoked, no new css reference will be given out via 5017 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5018 * proceed to offlining css's because percpu_ref_kill() doesn't 5019 * guarantee that the ref is seen as killed on all CPUs on return. 5020 * 5021 * Use percpu_ref_kill_and_confirm() to get notifications as each 5022 * css is confirmed to be seen as killed on all CPUs. 5023 */ 5024 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5025 } 5026 5027 /** 5028 * cgroup_destroy_locked - the first stage of cgroup destruction 5029 * @cgrp: cgroup to be destroyed 5030 * 5031 * css's make use of percpu refcnts whose killing latency shouldn't be 5032 * exposed to userland and are RCU protected. Also, cgroup core needs to 5033 * guarantee that css_tryget_online() won't succeed by the time 5034 * ->css_offline() is invoked. To satisfy all the requirements, 5035 * destruction is implemented in the following two steps. 5036 * 5037 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5038 * userland visible parts and start killing the percpu refcnts of 5039 * css's. Set up so that the next stage will be kicked off once all 5040 * the percpu refcnts are confirmed to be killed. 5041 * 5042 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5043 * rest of destruction. Once all cgroup references are gone, the 5044 * cgroup is RCU-freed. 5045 * 5046 * This function implements s1. After this step, @cgrp is gone as far as 5047 * the userland is concerned and a new cgroup with the same name may be 5048 * created. As cgroup doesn't care about the names internally, this 5049 * doesn't cause any problem. 5050 */ 5051 static int cgroup_destroy_locked(struct cgroup *cgrp) 5052 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5053 { 5054 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5055 struct cgroup_subsys_state *css; 5056 struct cgrp_cset_link *link; 5057 int ssid; 5058 5059 lockdep_assert_held(&cgroup_mutex); 5060 5061 /* 5062 * Only migration can raise populated from zero and we're already 5063 * holding cgroup_mutex. 5064 */ 5065 if (cgroup_is_populated(cgrp)) 5066 return -EBUSY; 5067 5068 /* 5069 * Make sure there's no live children. We can't test emptiness of 5070 * ->self.children as dead children linger on it while being 5071 * drained; otherwise, "rmdir parent/child parent" may fail. 5072 */ 5073 if (css_has_online_children(&cgrp->self)) 5074 return -EBUSY; 5075 5076 /* 5077 * Mark @cgrp and the associated csets dead. The former prevents 5078 * further task migration and child creation by disabling 5079 * cgroup_lock_live_group(). The latter makes the csets ignored by 5080 * the migration path. 5081 */ 5082 cgrp->self.flags &= ~CSS_ONLINE; 5083 5084 spin_lock_irq(&css_set_lock); 5085 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5086 link->cset->dead = true; 5087 spin_unlock_irq(&css_set_lock); 5088 5089 /* initiate massacre of all css's */ 5090 for_each_css(css, ssid, cgrp) 5091 kill_css(css); 5092 5093 /* 5094 * Remove @cgrp directory along with the base files. @cgrp has an 5095 * extra ref on its kn. 5096 */ 5097 kernfs_remove(cgrp->kn); 5098 5099 if (parent && cgroup_is_threaded(cgrp)) 5100 parent->nr_threaded_children--; 5101 5102 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5103 tcgrp->nr_descendants--; 5104 tcgrp->nr_dying_descendants++; 5105 } 5106 5107 cgroup1_check_for_release(parent); 5108 5109 /* put the base reference */ 5110 percpu_ref_kill(&cgrp->self.refcnt); 5111 5112 return 0; 5113 }; 5114 5115 int cgroup_rmdir(struct kernfs_node *kn) 5116 { 5117 struct cgroup *cgrp; 5118 int ret = 0; 5119 5120 cgrp = cgroup_kn_lock_live(kn, false); 5121 if (!cgrp) 5122 return 0; 5123 5124 ret = cgroup_destroy_locked(cgrp); 5125 5126 if (!ret) 5127 trace_cgroup_rmdir(cgrp); 5128 5129 cgroup_kn_unlock(kn); 5130 return ret; 5131 } 5132 5133 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5134 .show_options = cgroup_show_options, 5135 .remount_fs = cgroup_remount, 5136 .mkdir = cgroup_mkdir, 5137 .rmdir = cgroup_rmdir, 5138 .show_path = cgroup_show_path, 5139 }; 5140 5141 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5142 { 5143 struct cgroup_subsys_state *css; 5144 5145 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5146 5147 mutex_lock(&cgroup_mutex); 5148 5149 idr_init(&ss->css_idr); 5150 INIT_LIST_HEAD(&ss->cfts); 5151 5152 /* Create the root cgroup state for this subsystem */ 5153 ss->root = &cgrp_dfl_root; 5154 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); 5155 /* We don't handle early failures gracefully */ 5156 BUG_ON(IS_ERR(css)); 5157 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5158 5159 /* 5160 * Root csses are never destroyed and we can't initialize 5161 * percpu_ref during early init. Disable refcnting. 5162 */ 5163 css->flags |= CSS_NO_REF; 5164 5165 if (early) { 5166 /* allocation can't be done safely during early init */ 5167 css->id = 1; 5168 } else { 5169 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5170 BUG_ON(css->id < 0); 5171 } 5172 5173 /* Update the init_css_set to contain a subsys 5174 * pointer to this state - since the subsystem is 5175 * newly registered, all tasks and hence the 5176 * init_css_set is in the subsystem's root cgroup. */ 5177 init_css_set.subsys[ss->id] = css; 5178 5179 have_fork_callback |= (bool)ss->fork << ss->id; 5180 have_exit_callback |= (bool)ss->exit << ss->id; 5181 have_free_callback |= (bool)ss->free << ss->id; 5182 have_canfork_callback |= (bool)ss->can_fork << ss->id; 5183 5184 /* At system boot, before all subsystems have been 5185 * registered, no tasks have been forked, so we don't 5186 * need to invoke fork callbacks here. */ 5187 BUG_ON(!list_empty(&init_task.tasks)); 5188 5189 BUG_ON(online_css(css)); 5190 5191 mutex_unlock(&cgroup_mutex); 5192 } 5193 5194 /** 5195 * cgroup_init_early - cgroup initialization at system boot 5196 * 5197 * Initialize cgroups at system boot, and initialize any 5198 * subsystems that request early init. 5199 */ 5200 int __init cgroup_init_early(void) 5201 { 5202 static struct cgroup_sb_opts __initdata opts; 5203 struct cgroup_subsys *ss; 5204 int i; 5205 5206 init_cgroup_root(&cgrp_dfl_root, &opts); 5207 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 5208 5209 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 5210 5211 for_each_subsys(ss, i) { 5212 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 5213 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 5214 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 5215 ss->id, ss->name); 5216 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 5217 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 5218 5219 ss->id = i; 5220 ss->name = cgroup_subsys_name[i]; 5221 if (!ss->legacy_name) 5222 ss->legacy_name = cgroup_subsys_name[i]; 5223 5224 if (ss->early_init) 5225 cgroup_init_subsys(ss, true); 5226 } 5227 return 0; 5228 } 5229 5230 static u16 cgroup_disable_mask __initdata; 5231 5232 /** 5233 * cgroup_init - cgroup initialization 5234 * 5235 * Register cgroup filesystem and /proc file, and initialize 5236 * any subsystems that didn't request early init. 5237 */ 5238 int __init cgroup_init(void) 5239 { 5240 struct cgroup_subsys *ss; 5241 int ssid; 5242 5243 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 5244 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); 5245 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 5246 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 5247 5248 cgroup_stat_boot(); 5249 5250 /* 5251 * The latency of the synchronize_sched() is too high for cgroups, 5252 * avoid it at the cost of forcing all readers into the slow path. 5253 */ 5254 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); 5255 5256 get_user_ns(init_cgroup_ns.user_ns); 5257 5258 mutex_lock(&cgroup_mutex); 5259 5260 /* 5261 * Add init_css_set to the hash table so that dfl_root can link to 5262 * it during init. 5263 */ 5264 hash_add(css_set_table, &init_css_set.hlist, 5265 css_set_hash(init_css_set.subsys)); 5266 5267 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0)); 5268 5269 mutex_unlock(&cgroup_mutex); 5270 5271 for_each_subsys(ss, ssid) { 5272 if (ss->early_init) { 5273 struct cgroup_subsys_state *css = 5274 init_css_set.subsys[ss->id]; 5275 5276 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 5277 GFP_KERNEL); 5278 BUG_ON(css->id < 0); 5279 } else { 5280 cgroup_init_subsys(ss, false); 5281 } 5282 5283 list_add_tail(&init_css_set.e_cset_node[ssid], 5284 &cgrp_dfl_root.cgrp.e_csets[ssid]); 5285 5286 /* 5287 * Setting dfl_root subsys_mask needs to consider the 5288 * disabled flag and cftype registration needs kmalloc, 5289 * both of which aren't available during early_init. 5290 */ 5291 if (cgroup_disable_mask & (1 << ssid)) { 5292 static_branch_disable(cgroup_subsys_enabled_key[ssid]); 5293 printk(KERN_INFO "Disabling %s control group subsystem\n", 5294 ss->name); 5295 continue; 5296 } 5297 5298 if (cgroup1_ssid_disabled(ssid)) 5299 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 5300 ss->name); 5301 5302 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 5303 5304 /* implicit controllers must be threaded too */ 5305 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 5306 5307 if (ss->implicit_on_dfl) 5308 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 5309 else if (!ss->dfl_cftypes) 5310 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 5311 5312 if (ss->threaded) 5313 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 5314 5315 if (ss->dfl_cftypes == ss->legacy_cftypes) { 5316 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 5317 } else { 5318 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 5319 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 5320 } 5321 5322 if (ss->bind) 5323 ss->bind(init_css_set.subsys[ssid]); 5324 5325 mutex_lock(&cgroup_mutex); 5326 css_populate_dir(init_css_set.subsys[ssid]); 5327 mutex_unlock(&cgroup_mutex); 5328 } 5329 5330 /* init_css_set.subsys[] has been updated, re-hash */ 5331 hash_del(&init_css_set.hlist); 5332 hash_add(css_set_table, &init_css_set.hlist, 5333 css_set_hash(init_css_set.subsys)); 5334 5335 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 5336 WARN_ON(register_filesystem(&cgroup_fs_type)); 5337 WARN_ON(register_filesystem(&cgroup2_fs_type)); 5338 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations)); 5339 5340 return 0; 5341 } 5342 5343 static int __init cgroup_wq_init(void) 5344 { 5345 /* 5346 * There isn't much point in executing destruction path in 5347 * parallel. Good chunk is serialized with cgroup_mutex anyway. 5348 * Use 1 for @max_active. 5349 * 5350 * We would prefer to do this in cgroup_init() above, but that 5351 * is called before init_workqueues(): so leave this until after. 5352 */ 5353 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 5354 BUG_ON(!cgroup_destroy_wq); 5355 return 0; 5356 } 5357 core_initcall(cgroup_wq_init); 5358 5359 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id, 5360 char *buf, size_t buflen) 5361 { 5362 struct kernfs_node *kn; 5363 5364 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id); 5365 if (!kn) 5366 return; 5367 kernfs_path(kn, buf, buflen); 5368 kernfs_put(kn); 5369 } 5370 5371 /* 5372 * proc_cgroup_show() 5373 * - Print task's cgroup paths into seq_file, one line for each hierarchy 5374 * - Used for /proc/<pid>/cgroup. 5375 */ 5376 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 5377 struct pid *pid, struct task_struct *tsk) 5378 { 5379 char *buf; 5380 int retval; 5381 struct cgroup_root *root; 5382 5383 retval = -ENOMEM; 5384 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5385 if (!buf) 5386 goto out; 5387 5388 mutex_lock(&cgroup_mutex); 5389 spin_lock_irq(&css_set_lock); 5390 5391 for_each_root(root) { 5392 struct cgroup_subsys *ss; 5393 struct cgroup *cgrp; 5394 int ssid, count = 0; 5395 5396 if (root == &cgrp_dfl_root && !cgrp_dfl_visible) 5397 continue; 5398 5399 seq_printf(m, "%d:", root->hierarchy_id); 5400 if (root != &cgrp_dfl_root) 5401 for_each_subsys(ss, ssid) 5402 if (root->subsys_mask & (1 << ssid)) 5403 seq_printf(m, "%s%s", count++ ? "," : "", 5404 ss->legacy_name); 5405 if (strlen(root->name)) 5406 seq_printf(m, "%sname=%s", count ? "," : "", 5407 root->name); 5408 seq_putc(m, ':'); 5409 5410 cgrp = task_cgroup_from_root(tsk, root); 5411 5412 /* 5413 * On traditional hierarchies, all zombie tasks show up as 5414 * belonging to the root cgroup. On the default hierarchy, 5415 * while a zombie doesn't show up in "cgroup.procs" and 5416 * thus can't be migrated, its /proc/PID/cgroup keeps 5417 * reporting the cgroup it belonged to before exiting. If 5418 * the cgroup is removed before the zombie is reaped, 5419 * " (deleted)" is appended to the cgroup path. 5420 */ 5421 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 5422 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 5423 current->nsproxy->cgroup_ns); 5424 if (retval >= PATH_MAX) 5425 retval = -ENAMETOOLONG; 5426 if (retval < 0) 5427 goto out_unlock; 5428 5429 seq_puts(m, buf); 5430 } else { 5431 seq_puts(m, "/"); 5432 } 5433 5434 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 5435 seq_puts(m, " (deleted)\n"); 5436 else 5437 seq_putc(m, '\n'); 5438 } 5439 5440 retval = 0; 5441 out_unlock: 5442 spin_unlock_irq(&css_set_lock); 5443 mutex_unlock(&cgroup_mutex); 5444 kfree(buf); 5445 out: 5446 return retval; 5447 } 5448 5449 /** 5450 * cgroup_fork - initialize cgroup related fields during copy_process() 5451 * @child: pointer to task_struct of forking parent process. 5452 * 5453 * A task is associated with the init_css_set until cgroup_post_fork() 5454 * attaches it to the parent's css_set. Empty cg_list indicates that 5455 * @child isn't holding reference to its css_set. 5456 */ 5457 void cgroup_fork(struct task_struct *child) 5458 { 5459 RCU_INIT_POINTER(child->cgroups, &init_css_set); 5460 INIT_LIST_HEAD(&child->cg_list); 5461 } 5462 5463 /** 5464 * cgroup_can_fork - called on a new task before the process is exposed 5465 * @child: the task in question. 5466 * 5467 * This calls the subsystem can_fork() callbacks. If the can_fork() callback 5468 * returns an error, the fork aborts with that error code. This allows for 5469 * a cgroup subsystem to conditionally allow or deny new forks. 5470 */ 5471 int cgroup_can_fork(struct task_struct *child) 5472 { 5473 struct cgroup_subsys *ss; 5474 int i, j, ret; 5475 5476 do_each_subsys_mask(ss, i, have_canfork_callback) { 5477 ret = ss->can_fork(child); 5478 if (ret) 5479 goto out_revert; 5480 } while_each_subsys_mask(); 5481 5482 return 0; 5483 5484 out_revert: 5485 for_each_subsys(ss, j) { 5486 if (j >= i) 5487 break; 5488 if (ss->cancel_fork) 5489 ss->cancel_fork(child); 5490 } 5491 5492 return ret; 5493 } 5494 5495 /** 5496 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 5497 * @child: the task in question 5498 * 5499 * This calls the cancel_fork() callbacks if a fork failed *after* 5500 * cgroup_can_fork() succeded. 5501 */ 5502 void cgroup_cancel_fork(struct task_struct *child) 5503 { 5504 struct cgroup_subsys *ss; 5505 int i; 5506 5507 for_each_subsys(ss, i) 5508 if (ss->cancel_fork) 5509 ss->cancel_fork(child); 5510 } 5511 5512 /** 5513 * cgroup_post_fork - called on a new task after adding it to the task list 5514 * @child: the task in question 5515 * 5516 * Adds the task to the list running through its css_set if necessary and 5517 * call the subsystem fork() callbacks. Has to be after the task is 5518 * visible on the task list in case we race with the first call to 5519 * cgroup_task_iter_start() - to guarantee that the new task ends up on its 5520 * list. 5521 */ 5522 void cgroup_post_fork(struct task_struct *child) 5523 { 5524 struct cgroup_subsys *ss; 5525 int i; 5526 5527 /* 5528 * This may race against cgroup_enable_task_cg_lists(). As that 5529 * function sets use_task_css_set_links before grabbing 5530 * tasklist_lock and we just went through tasklist_lock to add 5531 * @child, it's guaranteed that either we see the set 5532 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees 5533 * @child during its iteration. 5534 * 5535 * If we won the race, @child is associated with %current's 5536 * css_set. Grabbing css_set_lock guarantees both that the 5537 * association is stable, and, on completion of the parent's 5538 * migration, @child is visible in the source of migration or 5539 * already in the destination cgroup. This guarantee is necessary 5540 * when implementing operations which need to migrate all tasks of 5541 * a cgroup to another. 5542 * 5543 * Note that if we lose to cgroup_enable_task_cg_lists(), @child 5544 * will remain in init_css_set. This is safe because all tasks are 5545 * in the init_css_set before cg_links is enabled and there's no 5546 * operation which transfers all tasks out of init_css_set. 5547 */ 5548 if (use_task_css_set_links) { 5549 struct css_set *cset; 5550 5551 spin_lock_irq(&css_set_lock); 5552 cset = task_css_set(current); 5553 if (list_empty(&child->cg_list)) { 5554 get_css_set(cset); 5555 cset->nr_tasks++; 5556 css_set_move_task(child, NULL, cset, false); 5557 } 5558 spin_unlock_irq(&css_set_lock); 5559 } 5560 5561 /* 5562 * Call ss->fork(). This must happen after @child is linked on 5563 * css_set; otherwise, @child might change state between ->fork() 5564 * and addition to css_set. 5565 */ 5566 do_each_subsys_mask(ss, i, have_fork_callback) { 5567 ss->fork(child); 5568 } while_each_subsys_mask(); 5569 } 5570 5571 /** 5572 * cgroup_exit - detach cgroup from exiting task 5573 * @tsk: pointer to task_struct of exiting process 5574 * 5575 * Description: Detach cgroup from @tsk and release it. 5576 * 5577 * Note that cgroups marked notify_on_release force every task in 5578 * them to take the global cgroup_mutex mutex when exiting. 5579 * This could impact scaling on very large systems. Be reluctant to 5580 * use notify_on_release cgroups where very high task exit scaling 5581 * is required on large systems. 5582 * 5583 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We 5584 * call cgroup_exit() while the task is still competent to handle 5585 * notify_on_release(), then leave the task attached to the root cgroup in 5586 * each hierarchy for the remainder of its exit. No need to bother with 5587 * init_css_set refcnting. init_css_set never goes away and we can't race 5588 * with migration path - PF_EXITING is visible to migration path. 5589 */ 5590 void cgroup_exit(struct task_struct *tsk) 5591 { 5592 struct cgroup_subsys *ss; 5593 struct css_set *cset; 5594 int i; 5595 5596 /* 5597 * Unlink from @tsk from its css_set. As migration path can't race 5598 * with us, we can check css_set and cg_list without synchronization. 5599 */ 5600 cset = task_css_set(tsk); 5601 5602 if (!list_empty(&tsk->cg_list)) { 5603 spin_lock_irq(&css_set_lock); 5604 css_set_move_task(tsk, cset, NULL, false); 5605 cset->nr_tasks--; 5606 spin_unlock_irq(&css_set_lock); 5607 } else { 5608 get_css_set(cset); 5609 } 5610 5611 /* see cgroup_post_fork() for details */ 5612 do_each_subsys_mask(ss, i, have_exit_callback) { 5613 ss->exit(tsk); 5614 } while_each_subsys_mask(); 5615 } 5616 5617 void cgroup_free(struct task_struct *task) 5618 { 5619 struct css_set *cset = task_css_set(task); 5620 struct cgroup_subsys *ss; 5621 int ssid; 5622 5623 do_each_subsys_mask(ss, ssid, have_free_callback) { 5624 ss->free(task); 5625 } while_each_subsys_mask(); 5626 5627 put_css_set(cset); 5628 } 5629 5630 static int __init cgroup_disable(char *str) 5631 { 5632 struct cgroup_subsys *ss; 5633 char *token; 5634 int i; 5635 5636 while ((token = strsep(&str, ",")) != NULL) { 5637 if (!*token) 5638 continue; 5639 5640 for_each_subsys(ss, i) { 5641 if (strcmp(token, ss->name) && 5642 strcmp(token, ss->legacy_name)) 5643 continue; 5644 cgroup_disable_mask |= 1 << i; 5645 } 5646 } 5647 return 1; 5648 } 5649 __setup("cgroup_disable=", cgroup_disable); 5650 5651 /** 5652 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 5653 * @dentry: directory dentry of interest 5654 * @ss: subsystem of interest 5655 * 5656 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 5657 * to get the corresponding css and return it. If such css doesn't exist 5658 * or can't be pinned, an ERR_PTR value is returned. 5659 */ 5660 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 5661 struct cgroup_subsys *ss) 5662 { 5663 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 5664 struct file_system_type *s_type = dentry->d_sb->s_type; 5665 struct cgroup_subsys_state *css = NULL; 5666 struct cgroup *cgrp; 5667 5668 /* is @dentry a cgroup dir? */ 5669 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 5670 !kn || kernfs_type(kn) != KERNFS_DIR) 5671 return ERR_PTR(-EBADF); 5672 5673 rcu_read_lock(); 5674 5675 /* 5676 * This path doesn't originate from kernfs and @kn could already 5677 * have been or be removed at any point. @kn->priv is RCU 5678 * protected for this access. See css_release_work_fn() for details. 5679 */ 5680 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 5681 if (cgrp) 5682 css = cgroup_css(cgrp, ss); 5683 5684 if (!css || !css_tryget_online(css)) 5685 css = ERR_PTR(-ENOENT); 5686 5687 rcu_read_unlock(); 5688 return css; 5689 } 5690 5691 /** 5692 * css_from_id - lookup css by id 5693 * @id: the cgroup id 5694 * @ss: cgroup subsys to be looked into 5695 * 5696 * Returns the css if there's valid one with @id, otherwise returns NULL. 5697 * Should be called under rcu_read_lock(). 5698 */ 5699 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 5700 { 5701 WARN_ON_ONCE(!rcu_read_lock_held()); 5702 return idr_find(&ss->css_idr, id); 5703 } 5704 5705 /** 5706 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 5707 * @path: path on the default hierarchy 5708 * 5709 * Find the cgroup at @path on the default hierarchy, increment its 5710 * reference count and return it. Returns pointer to the found cgroup on 5711 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) 5712 * if @path points to a non-directory. 5713 */ 5714 struct cgroup *cgroup_get_from_path(const char *path) 5715 { 5716 struct kernfs_node *kn; 5717 struct cgroup *cgrp; 5718 5719 mutex_lock(&cgroup_mutex); 5720 5721 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); 5722 if (kn) { 5723 if (kernfs_type(kn) == KERNFS_DIR) { 5724 cgrp = kn->priv; 5725 cgroup_get_live(cgrp); 5726 } else { 5727 cgrp = ERR_PTR(-ENOTDIR); 5728 } 5729 kernfs_put(kn); 5730 } else { 5731 cgrp = ERR_PTR(-ENOENT); 5732 } 5733 5734 mutex_unlock(&cgroup_mutex); 5735 return cgrp; 5736 } 5737 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 5738 5739 /** 5740 * cgroup_get_from_fd - get a cgroup pointer from a fd 5741 * @fd: fd obtained by open(cgroup2_dir) 5742 * 5743 * Find the cgroup from a fd which should be obtained 5744 * by opening a cgroup directory. Returns a pointer to the 5745 * cgroup on success. ERR_PTR is returned if the cgroup 5746 * cannot be found. 5747 */ 5748 struct cgroup *cgroup_get_from_fd(int fd) 5749 { 5750 struct cgroup_subsys_state *css; 5751 struct cgroup *cgrp; 5752 struct file *f; 5753 5754 f = fget_raw(fd); 5755 if (!f) 5756 return ERR_PTR(-EBADF); 5757 5758 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 5759 fput(f); 5760 if (IS_ERR(css)) 5761 return ERR_CAST(css); 5762 5763 cgrp = css->cgroup; 5764 if (!cgroup_on_dfl(cgrp)) { 5765 cgroup_put(cgrp); 5766 return ERR_PTR(-EBADF); 5767 } 5768 5769 return cgrp; 5770 } 5771 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 5772 5773 /* 5774 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 5775 * definition in cgroup-defs.h. 5776 */ 5777 #ifdef CONFIG_SOCK_CGROUP_DATA 5778 5779 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) 5780 5781 DEFINE_SPINLOCK(cgroup_sk_update_lock); 5782 static bool cgroup_sk_alloc_disabled __read_mostly; 5783 5784 void cgroup_sk_alloc_disable(void) 5785 { 5786 if (cgroup_sk_alloc_disabled) 5787 return; 5788 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); 5789 cgroup_sk_alloc_disabled = true; 5790 } 5791 5792 #else 5793 5794 #define cgroup_sk_alloc_disabled false 5795 5796 #endif 5797 5798 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 5799 { 5800 if (cgroup_sk_alloc_disabled) 5801 return; 5802 5803 /* Socket clone path */ 5804 if (skcd->val) { 5805 /* 5806 * We might be cloning a socket which is left in an empty 5807 * cgroup and the cgroup might have already been rmdir'd. 5808 * Don't use cgroup_get_live(). 5809 */ 5810 cgroup_get(sock_cgroup_ptr(skcd)); 5811 return; 5812 } 5813 5814 rcu_read_lock(); 5815 5816 while (true) { 5817 struct css_set *cset; 5818 5819 cset = task_css_set(current); 5820 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 5821 skcd->val = (unsigned long)cset->dfl_cgrp; 5822 break; 5823 } 5824 cpu_relax(); 5825 } 5826 5827 rcu_read_unlock(); 5828 } 5829 5830 void cgroup_sk_free(struct sock_cgroup_data *skcd) 5831 { 5832 cgroup_put(sock_cgroup_ptr(skcd)); 5833 } 5834 5835 #endif /* CONFIG_SOCK_CGROUP_DATA */ 5836 5837 #ifdef CONFIG_CGROUP_BPF 5838 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 5839 enum bpf_attach_type type, u32 flags) 5840 { 5841 int ret; 5842 5843 mutex_lock(&cgroup_mutex); 5844 ret = __cgroup_bpf_attach(cgrp, prog, type, flags); 5845 mutex_unlock(&cgroup_mutex); 5846 return ret; 5847 } 5848 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 5849 enum bpf_attach_type type, u32 flags) 5850 { 5851 int ret; 5852 5853 mutex_lock(&cgroup_mutex); 5854 ret = __cgroup_bpf_detach(cgrp, prog, type, flags); 5855 mutex_unlock(&cgroup_mutex); 5856 return ret; 5857 } 5858 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 5859 union bpf_attr __user *uattr) 5860 { 5861 int ret; 5862 5863 mutex_lock(&cgroup_mutex); 5864 ret = __cgroup_bpf_query(cgrp, attr, uattr); 5865 mutex_unlock(&cgroup_mutex); 5866 return ret; 5867 } 5868 #endif /* CONFIG_CGROUP_BPF */ 5869 5870 #ifdef CONFIG_SYSFS 5871 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 5872 ssize_t size, const char *prefix) 5873 { 5874 struct cftype *cft; 5875 ssize_t ret = 0; 5876 5877 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 5878 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 5879 continue; 5880 5881 if (prefix) 5882 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 5883 5884 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 5885 5886 if (unlikely(ret >= size)) { 5887 WARN_ON(1); 5888 break; 5889 } 5890 } 5891 5892 return ret; 5893 } 5894 5895 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 5896 char *buf) 5897 { 5898 struct cgroup_subsys *ss; 5899 int ssid; 5900 ssize_t ret = 0; 5901 5902 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret, 5903 NULL); 5904 5905 for_each_subsys(ss, ssid) 5906 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 5907 PAGE_SIZE - ret, 5908 cgroup_subsys_name[ssid]); 5909 5910 return ret; 5911 } 5912 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 5913 5914 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 5915 char *buf) 5916 { 5917 return snprintf(buf, PAGE_SIZE, "nsdelegate\n"); 5918 } 5919 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 5920 5921 static struct attribute *cgroup_sysfs_attrs[] = { 5922 &cgroup_delegate_attr.attr, 5923 &cgroup_features_attr.attr, 5924 NULL, 5925 }; 5926 5927 static const struct attribute_group cgroup_sysfs_attr_group = { 5928 .attrs = cgroup_sysfs_attrs, 5929 .name = "cgroup", 5930 }; 5931 5932 static int __init cgroup_sysfs_init(void) 5933 { 5934 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 5935 } 5936 subsys_initcall(cgroup_sysfs_init); 5937 #endif /* CONFIG_SYSFS */ 5938