1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/sched/deadline.h> 61 #include <linux/psi.h> 62 #include <net/sock.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/cgroup.h> 66 67 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 68 MAX_CFTYPE_NAME + 2) 69 /* let's not notify more than 100 times per second */ 70 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 71 72 /* 73 * To avoid confusing the compiler (and generating warnings) with code 74 * that attempts to access what would be a 0-element array (i.e. sized 75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 76 * constant expression can be added. 77 */ 78 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 79 80 /* 81 * cgroup_mutex is the master lock. Any modification to cgroup or its 82 * hierarchy must be performed while holding it. 83 * 84 * css_set_lock protects task->cgroups pointer, the list of css_set 85 * objects, and the chain of tasks off each css_set. 86 * 87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 88 * cgroup.h can use them for lockdep annotations. 89 */ 90 DEFINE_MUTEX(cgroup_mutex); 91 DEFINE_SPINLOCK(css_set_lock); 92 93 #ifdef CONFIG_PROVE_RCU 94 EXPORT_SYMBOL_GPL(cgroup_mutex); 95 EXPORT_SYMBOL_GPL(css_set_lock); 96 #endif 97 98 DEFINE_SPINLOCK(trace_cgroup_path_lock); 99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 100 static bool cgroup_debug __read_mostly; 101 102 /* 103 * Protects cgroup_idr and css_idr so that IDs can be released without 104 * grabbing cgroup_mutex. 105 */ 106 static DEFINE_SPINLOCK(cgroup_idr_lock); 107 108 /* 109 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 110 * against file removal/re-creation across css hiding. 111 */ 112 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 113 114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 115 116 #define cgroup_assert_mutex_or_rcu_locked() \ 117 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 118 !lockdep_is_held(&cgroup_mutex), \ 119 "cgroup_mutex or RCU read lock required"); 120 121 /* 122 * cgroup destruction makes heavy use of work items and there can be a lot 123 * of concurrent destructions. Use a separate workqueue so that cgroup 124 * destruction work items don't end up filling up max_active of system_wq 125 * which may lead to deadlock. 126 */ 127 static struct workqueue_struct *cgroup_destroy_wq; 128 129 /* generate an array of cgroup subsystem pointers */ 130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 131 struct cgroup_subsys *cgroup_subsys[] = { 132 #include <linux/cgroup_subsys.h> 133 }; 134 #undef SUBSYS 135 136 /* array of cgroup subsystem names */ 137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 138 static const char *cgroup_subsys_name[] = { 139 #include <linux/cgroup_subsys.h> 140 }; 141 #undef SUBSYS 142 143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 144 #define SUBSYS(_x) \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 146 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 148 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 149 #include <linux/cgroup_subsys.h> 150 #undef SUBSYS 151 152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 153 static struct static_key_true *cgroup_subsys_enabled_key[] = { 154 #include <linux/cgroup_subsys.h> 155 }; 156 #undef SUBSYS 157 158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 160 #include <linux/cgroup_subsys.h> 161 }; 162 #undef SUBSYS 163 164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 165 166 /* the default hierarchy */ 167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 168 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 169 170 /* 171 * The default hierarchy always exists but is hidden until mounted for the 172 * first time. This is for backward compatibility. 173 */ 174 static bool cgrp_dfl_visible; 175 176 /* some controllers are not supported in the default hierarchy */ 177 static u16 cgrp_dfl_inhibit_ss_mask; 178 179 /* some controllers are implicitly enabled on the default hierarchy */ 180 static u16 cgrp_dfl_implicit_ss_mask; 181 182 /* some controllers can be threaded on the default hierarchy */ 183 static u16 cgrp_dfl_threaded_ss_mask; 184 185 /* The list of hierarchy roots */ 186 LIST_HEAD(cgroup_roots); 187 static int cgroup_root_count; 188 189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 190 static DEFINE_IDR(cgroup_hierarchy_idr); 191 192 /* 193 * Assign a monotonically increasing serial number to csses. It guarantees 194 * cgroups with bigger numbers are newer than those with smaller numbers. 195 * Also, as csses are always appended to the parent's ->children list, it 196 * guarantees that sibling csses are always sorted in the ascending serial 197 * number order on the list. Protected by cgroup_mutex. 198 */ 199 static u64 css_serial_nr_next = 1; 200 201 /* 202 * These bitmasks identify subsystems with specific features to avoid 203 * having to do iterative checks repeatedly. 204 */ 205 static u16 have_fork_callback __read_mostly; 206 static u16 have_exit_callback __read_mostly; 207 static u16 have_release_callback __read_mostly; 208 static u16 have_canfork_callback __read_mostly; 209 210 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS); 211 212 /* cgroup namespace for init task */ 213 struct cgroup_namespace init_cgroup_ns = { 214 .ns.count = REFCOUNT_INIT(2), 215 .user_ns = &init_user_ns, 216 .ns.ops = &cgroupns_operations, 217 .ns.inum = PROC_CGROUP_INIT_INO, 218 .root_cset = &init_css_set, 219 }; 220 221 static struct file_system_type cgroup2_fs_type; 222 static struct cftype cgroup_base_files[]; 223 static struct cftype cgroup_psi_files[]; 224 225 /* cgroup optional features */ 226 enum cgroup_opt_features { 227 #ifdef CONFIG_PSI 228 OPT_FEATURE_PRESSURE, 229 #endif 230 OPT_FEATURE_COUNT 231 }; 232 233 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 234 #ifdef CONFIG_PSI 235 "pressure", 236 #endif 237 }; 238 239 static u16 cgroup_feature_disable_mask __read_mostly; 240 241 static int cgroup_apply_control(struct cgroup *cgrp); 242 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 243 static void css_task_iter_skip(struct css_task_iter *it, 244 struct task_struct *task); 245 static int cgroup_destroy_locked(struct cgroup *cgrp); 246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 247 struct cgroup_subsys *ss); 248 static void css_release(struct percpu_ref *ref); 249 static void kill_css(struct cgroup_subsys_state *css); 250 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 251 struct cgroup *cgrp, struct cftype cfts[], 252 bool is_add); 253 254 #ifdef CONFIG_DEBUG_CGROUP_REF 255 #define CGROUP_REF_FN_ATTRS noinline 256 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); 257 #include <linux/cgroup_refcnt.h> 258 #endif 259 260 /** 261 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 262 * @ssid: subsys ID of interest 263 * 264 * cgroup_subsys_enabled() can only be used with literal subsys names which 265 * is fine for individual subsystems but unsuitable for cgroup core. This 266 * is slower static_key_enabled() based test indexed by @ssid. 267 */ 268 bool cgroup_ssid_enabled(int ssid) 269 { 270 if (!CGROUP_HAS_SUBSYS_CONFIG) 271 return false; 272 273 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 274 } 275 276 /** 277 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 278 * @cgrp: the cgroup of interest 279 * 280 * The default hierarchy is the v2 interface of cgroup and this function 281 * can be used to test whether a cgroup is on the default hierarchy for 282 * cases where a subsystem should behave differently depending on the 283 * interface version. 284 * 285 * List of changed behaviors: 286 * 287 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 288 * and "name" are disallowed. 289 * 290 * - When mounting an existing superblock, mount options should match. 291 * 292 * - rename(2) is disallowed. 293 * 294 * - "tasks" is removed. Everything should be at process granularity. Use 295 * "cgroup.procs" instead. 296 * 297 * - "cgroup.procs" is not sorted. pids will be unique unless they got 298 * recycled in-between reads. 299 * 300 * - "release_agent" and "notify_on_release" are removed. Replacement 301 * notification mechanism will be implemented. 302 * 303 * - "cgroup.clone_children" is removed. 304 * 305 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 306 * and its descendants contain no task; otherwise, 1. The file also 307 * generates kernfs notification which can be monitored through poll and 308 * [di]notify when the value of the file changes. 309 * 310 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 311 * take masks of ancestors with non-empty cpus/mems, instead of being 312 * moved to an ancestor. 313 * 314 * - cpuset: a task can be moved into an empty cpuset, and again it takes 315 * masks of ancestors. 316 * 317 * - blkcg: blk-throttle becomes properly hierarchical. 318 */ 319 bool cgroup_on_dfl(const struct cgroup *cgrp) 320 { 321 return cgrp->root == &cgrp_dfl_root; 322 } 323 324 /* IDR wrappers which synchronize using cgroup_idr_lock */ 325 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 326 gfp_t gfp_mask) 327 { 328 int ret; 329 330 idr_preload(gfp_mask); 331 spin_lock_bh(&cgroup_idr_lock); 332 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 333 spin_unlock_bh(&cgroup_idr_lock); 334 idr_preload_end(); 335 return ret; 336 } 337 338 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 339 { 340 void *ret; 341 342 spin_lock_bh(&cgroup_idr_lock); 343 ret = idr_replace(idr, ptr, id); 344 spin_unlock_bh(&cgroup_idr_lock); 345 return ret; 346 } 347 348 static void cgroup_idr_remove(struct idr *idr, int id) 349 { 350 spin_lock_bh(&cgroup_idr_lock); 351 idr_remove(idr, id); 352 spin_unlock_bh(&cgroup_idr_lock); 353 } 354 355 static bool cgroup_has_tasks(struct cgroup *cgrp) 356 { 357 return cgrp->nr_populated_csets; 358 } 359 360 static bool cgroup_is_threaded(struct cgroup *cgrp) 361 { 362 return cgrp->dom_cgrp != cgrp; 363 } 364 365 /* can @cgrp host both domain and threaded children? */ 366 static bool cgroup_is_mixable(struct cgroup *cgrp) 367 { 368 /* 369 * Root isn't under domain level resource control exempting it from 370 * the no-internal-process constraint, so it can serve as a thread 371 * root and a parent of resource domains at the same time. 372 */ 373 return !cgroup_parent(cgrp); 374 } 375 376 /* can @cgrp become a thread root? Should always be true for a thread root */ 377 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 378 { 379 /* mixables don't care */ 380 if (cgroup_is_mixable(cgrp)) 381 return true; 382 383 /* domain roots can't be nested under threaded */ 384 if (cgroup_is_threaded(cgrp)) 385 return false; 386 387 /* can only have either domain or threaded children */ 388 if (cgrp->nr_populated_domain_children) 389 return false; 390 391 /* and no domain controllers can be enabled */ 392 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 393 return false; 394 395 return true; 396 } 397 398 /* is @cgrp root of a threaded subtree? */ 399 static bool cgroup_is_thread_root(struct cgroup *cgrp) 400 { 401 /* thread root should be a domain */ 402 if (cgroup_is_threaded(cgrp)) 403 return false; 404 405 /* a domain w/ threaded children is a thread root */ 406 if (cgrp->nr_threaded_children) 407 return true; 408 409 /* 410 * A domain which has tasks and explicit threaded controllers 411 * enabled is a thread root. 412 */ 413 if (cgroup_has_tasks(cgrp) && 414 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 415 return true; 416 417 return false; 418 } 419 420 /* a domain which isn't connected to the root w/o brekage can't be used */ 421 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 422 { 423 /* the cgroup itself can be a thread root */ 424 if (cgroup_is_threaded(cgrp)) 425 return false; 426 427 /* but the ancestors can't be unless mixable */ 428 while ((cgrp = cgroup_parent(cgrp))) { 429 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 430 return false; 431 if (cgroup_is_threaded(cgrp)) 432 return false; 433 } 434 435 return true; 436 } 437 438 /* subsystems visibly enabled on a cgroup */ 439 static u16 cgroup_control(struct cgroup *cgrp) 440 { 441 struct cgroup *parent = cgroup_parent(cgrp); 442 u16 root_ss_mask = cgrp->root->subsys_mask; 443 444 if (parent) { 445 u16 ss_mask = parent->subtree_control; 446 447 /* threaded cgroups can only have threaded controllers */ 448 if (cgroup_is_threaded(cgrp)) 449 ss_mask &= cgrp_dfl_threaded_ss_mask; 450 return ss_mask; 451 } 452 453 if (cgroup_on_dfl(cgrp)) 454 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 455 cgrp_dfl_implicit_ss_mask); 456 return root_ss_mask; 457 } 458 459 /* subsystems enabled on a cgroup */ 460 static u16 cgroup_ss_mask(struct cgroup *cgrp) 461 { 462 struct cgroup *parent = cgroup_parent(cgrp); 463 464 if (parent) { 465 u16 ss_mask = parent->subtree_ss_mask; 466 467 /* threaded cgroups can only have threaded controllers */ 468 if (cgroup_is_threaded(cgrp)) 469 ss_mask &= cgrp_dfl_threaded_ss_mask; 470 return ss_mask; 471 } 472 473 return cgrp->root->subsys_mask; 474 } 475 476 /** 477 * cgroup_css - obtain a cgroup's css for the specified subsystem 478 * @cgrp: the cgroup of interest 479 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 480 * 481 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 482 * function must be called either under cgroup_mutex or rcu_read_lock() and 483 * the caller is responsible for pinning the returned css if it wants to 484 * keep accessing it outside the said locks. This function may return 485 * %NULL if @cgrp doesn't have @subsys_id enabled. 486 */ 487 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 488 struct cgroup_subsys *ss) 489 { 490 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 491 return rcu_dereference_check(cgrp->subsys[ss->id], 492 lockdep_is_held(&cgroup_mutex)); 493 else 494 return &cgrp->self; 495 } 496 497 /** 498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 499 * @cgrp: the cgroup of interest 500 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 501 * 502 * Similar to cgroup_css() but returns the effective css, which is defined 503 * as the matching css of the nearest ancestor including self which has @ss 504 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 505 * function is guaranteed to return non-NULL css. 506 */ 507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 508 struct cgroup_subsys *ss) 509 { 510 lockdep_assert_held(&cgroup_mutex); 511 512 if (!ss) 513 return &cgrp->self; 514 515 /* 516 * This function is used while updating css associations and thus 517 * can't test the csses directly. Test ss_mask. 518 */ 519 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 520 cgrp = cgroup_parent(cgrp); 521 if (!cgrp) 522 return NULL; 523 } 524 525 return cgroup_css(cgrp, ss); 526 } 527 528 /** 529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 530 * @cgrp: the cgroup of interest 531 * @ss: the subsystem of interest 532 * 533 * Find and get the effective css of @cgrp for @ss. The effective css is 534 * defined as the matching css of the nearest ancestor including self which 535 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 536 * the root css is returned, so this function always returns a valid css. 537 * 538 * The returned css is not guaranteed to be online, and therefore it is the 539 * callers responsibility to try get a reference for it. 540 */ 541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 542 struct cgroup_subsys *ss) 543 { 544 struct cgroup_subsys_state *css; 545 546 if (!CGROUP_HAS_SUBSYS_CONFIG) 547 return NULL; 548 549 do { 550 css = cgroup_css(cgrp, ss); 551 552 if (css) 553 return css; 554 cgrp = cgroup_parent(cgrp); 555 } while (cgrp); 556 557 return init_css_set.subsys[ss->id]; 558 } 559 560 /** 561 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 562 * @cgrp: the cgroup of interest 563 * @ss: the subsystem of interest 564 * 565 * Find and get the effective css of @cgrp for @ss. The effective css is 566 * defined as the matching css of the nearest ancestor including self which 567 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 568 * the root css is returned, so this function always returns a valid css. 569 * The returned css must be put using css_put(). 570 */ 571 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 572 struct cgroup_subsys *ss) 573 { 574 struct cgroup_subsys_state *css; 575 576 if (!CGROUP_HAS_SUBSYS_CONFIG) 577 return NULL; 578 579 rcu_read_lock(); 580 581 do { 582 css = cgroup_css(cgrp, ss); 583 584 if (css && css_tryget_online(css)) 585 goto out_unlock; 586 cgrp = cgroup_parent(cgrp); 587 } while (cgrp); 588 589 css = init_css_set.subsys[ss->id]; 590 css_get(css); 591 out_unlock: 592 rcu_read_unlock(); 593 return css; 594 } 595 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 596 597 static void cgroup_get_live(struct cgroup *cgrp) 598 { 599 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 600 cgroup_get(cgrp); 601 } 602 603 /** 604 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 605 * is responsible for taking the css_set_lock. 606 * @cgrp: the cgroup in question 607 */ 608 int __cgroup_task_count(const struct cgroup *cgrp) 609 { 610 int count = 0; 611 struct cgrp_cset_link *link; 612 613 lockdep_assert_held(&css_set_lock); 614 615 list_for_each_entry(link, &cgrp->cset_links, cset_link) 616 count += link->cset->nr_tasks; 617 618 return count; 619 } 620 621 /** 622 * cgroup_task_count - count the number of tasks in a cgroup. 623 * @cgrp: the cgroup in question 624 */ 625 int cgroup_task_count(const struct cgroup *cgrp) 626 { 627 int count; 628 629 spin_lock_irq(&css_set_lock); 630 count = __cgroup_task_count(cgrp); 631 spin_unlock_irq(&css_set_lock); 632 633 return count; 634 } 635 636 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 637 { 638 struct cgroup *cgrp = of->kn->parent->priv; 639 struct cftype *cft = of_cft(of); 640 641 /* 642 * This is open and unprotected implementation of cgroup_css(). 643 * seq_css() is only called from a kernfs file operation which has 644 * an active reference on the file. Because all the subsystem 645 * files are drained before a css is disassociated with a cgroup, 646 * the matching css from the cgroup's subsys table is guaranteed to 647 * be and stay valid until the enclosing operation is complete. 648 */ 649 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 650 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 651 else 652 return &cgrp->self; 653 } 654 EXPORT_SYMBOL_GPL(of_css); 655 656 /** 657 * for_each_css - iterate all css's of a cgroup 658 * @css: the iteration cursor 659 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 660 * @cgrp: the target cgroup to iterate css's of 661 * 662 * Should be called under cgroup_mutex. 663 */ 664 #define for_each_css(css, ssid, cgrp) \ 665 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 666 if (!((css) = rcu_dereference_check( \ 667 (cgrp)->subsys[(ssid)], \ 668 lockdep_is_held(&cgroup_mutex)))) { } \ 669 else 670 671 /** 672 * do_each_subsys_mask - filter for_each_subsys with a bitmask 673 * @ss: the iteration cursor 674 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 675 * @ss_mask: the bitmask 676 * 677 * The block will only run for cases where the ssid-th bit (1 << ssid) of 678 * @ss_mask is set. 679 */ 680 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 681 unsigned long __ss_mask = (ss_mask); \ 682 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 683 (ssid) = 0; \ 684 break; \ 685 } \ 686 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 687 (ss) = cgroup_subsys[ssid]; \ 688 { 689 690 #define while_each_subsys_mask() \ 691 } \ 692 } \ 693 } while (false) 694 695 /* iterate over child cgrps, lock should be held throughout iteration */ 696 #define cgroup_for_each_live_child(child, cgrp) \ 697 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 698 if (({ lockdep_assert_held(&cgroup_mutex); \ 699 cgroup_is_dead(child); })) \ 700 ; \ 701 else 702 703 /* walk live descendants in pre order */ 704 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 705 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 706 if (({ lockdep_assert_held(&cgroup_mutex); \ 707 (dsct) = (d_css)->cgroup; \ 708 cgroup_is_dead(dsct); })) \ 709 ; \ 710 else 711 712 /* walk live descendants in postorder */ 713 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 714 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 715 if (({ lockdep_assert_held(&cgroup_mutex); \ 716 (dsct) = (d_css)->cgroup; \ 717 cgroup_is_dead(dsct); })) \ 718 ; \ 719 else 720 721 /* 722 * The default css_set - used by init and its children prior to any 723 * hierarchies being mounted. It contains a pointer to the root state 724 * for each subsystem. Also used to anchor the list of css_sets. Not 725 * reference-counted, to improve performance when child cgroups 726 * haven't been created. 727 */ 728 struct css_set init_css_set = { 729 .refcount = REFCOUNT_INIT(1), 730 .dom_cset = &init_css_set, 731 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 732 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 733 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 734 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 735 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 736 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 737 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 738 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 739 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 740 741 /* 742 * The following field is re-initialized when this cset gets linked 743 * in cgroup_init(). However, let's initialize the field 744 * statically too so that the default cgroup can be accessed safely 745 * early during boot. 746 */ 747 .dfl_cgrp = &cgrp_dfl_root.cgrp, 748 }; 749 750 static int css_set_count = 1; /* 1 for init_css_set */ 751 752 static bool css_set_threaded(struct css_set *cset) 753 { 754 return cset->dom_cset != cset; 755 } 756 757 /** 758 * css_set_populated - does a css_set contain any tasks? 759 * @cset: target css_set 760 * 761 * css_set_populated() should be the same as !!cset->nr_tasks at steady 762 * state. However, css_set_populated() can be called while a task is being 763 * added to or removed from the linked list before the nr_tasks is 764 * properly updated. Hence, we can't just look at ->nr_tasks here. 765 */ 766 static bool css_set_populated(struct css_set *cset) 767 { 768 lockdep_assert_held(&css_set_lock); 769 770 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 771 } 772 773 /** 774 * cgroup_update_populated - update the populated count of a cgroup 775 * @cgrp: the target cgroup 776 * @populated: inc or dec populated count 777 * 778 * One of the css_sets associated with @cgrp is either getting its first 779 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 780 * count is propagated towards root so that a given cgroup's 781 * nr_populated_children is zero iff none of its descendants contain any 782 * tasks. 783 * 784 * @cgrp's interface file "cgroup.populated" is zero if both 785 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 786 * 1 otherwise. When the sum changes from or to zero, userland is notified 787 * that the content of the interface file has changed. This can be used to 788 * detect when @cgrp and its descendants become populated or empty. 789 */ 790 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 791 { 792 struct cgroup *child = NULL; 793 int adj = populated ? 1 : -1; 794 795 lockdep_assert_held(&css_set_lock); 796 797 do { 798 bool was_populated = cgroup_is_populated(cgrp); 799 800 if (!child) { 801 cgrp->nr_populated_csets += adj; 802 } else { 803 if (cgroup_is_threaded(child)) 804 cgrp->nr_populated_threaded_children += adj; 805 else 806 cgrp->nr_populated_domain_children += adj; 807 } 808 809 if (was_populated == cgroup_is_populated(cgrp)) 810 break; 811 812 cgroup1_check_for_release(cgrp); 813 TRACE_CGROUP_PATH(notify_populated, cgrp, 814 cgroup_is_populated(cgrp)); 815 cgroup_file_notify(&cgrp->events_file); 816 817 child = cgrp; 818 cgrp = cgroup_parent(cgrp); 819 } while (cgrp); 820 } 821 822 /** 823 * css_set_update_populated - update populated state of a css_set 824 * @cset: target css_set 825 * @populated: whether @cset is populated or depopulated 826 * 827 * @cset is either getting the first task or losing the last. Update the 828 * populated counters of all associated cgroups accordingly. 829 */ 830 static void css_set_update_populated(struct css_set *cset, bool populated) 831 { 832 struct cgrp_cset_link *link; 833 834 lockdep_assert_held(&css_set_lock); 835 836 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 837 cgroup_update_populated(link->cgrp, populated); 838 } 839 840 /* 841 * @task is leaving, advance task iterators which are pointing to it so 842 * that they can resume at the next position. Advancing an iterator might 843 * remove it from the list, use safe walk. See css_task_iter_skip() for 844 * details. 845 */ 846 static void css_set_skip_task_iters(struct css_set *cset, 847 struct task_struct *task) 848 { 849 struct css_task_iter *it, *pos; 850 851 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 852 css_task_iter_skip(it, task); 853 } 854 855 /** 856 * css_set_move_task - move a task from one css_set to another 857 * @task: task being moved 858 * @from_cset: css_set @task currently belongs to (may be NULL) 859 * @to_cset: new css_set @task is being moved to (may be NULL) 860 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 861 * 862 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 863 * css_set, @from_cset can be NULL. If @task is being disassociated 864 * instead of moved, @to_cset can be NULL. 865 * 866 * This function automatically handles populated counter updates and 867 * css_task_iter adjustments but the caller is responsible for managing 868 * @from_cset and @to_cset's reference counts. 869 */ 870 static void css_set_move_task(struct task_struct *task, 871 struct css_set *from_cset, struct css_set *to_cset, 872 bool use_mg_tasks) 873 { 874 lockdep_assert_held(&css_set_lock); 875 876 if (to_cset && !css_set_populated(to_cset)) 877 css_set_update_populated(to_cset, true); 878 879 if (from_cset) { 880 WARN_ON_ONCE(list_empty(&task->cg_list)); 881 882 css_set_skip_task_iters(from_cset, task); 883 list_del_init(&task->cg_list); 884 if (!css_set_populated(from_cset)) 885 css_set_update_populated(from_cset, false); 886 } else { 887 WARN_ON_ONCE(!list_empty(&task->cg_list)); 888 } 889 890 if (to_cset) { 891 /* 892 * We are synchronized through cgroup_threadgroup_rwsem 893 * against PF_EXITING setting such that we can't race 894 * against cgroup_exit()/cgroup_free() dropping the css_set. 895 */ 896 WARN_ON_ONCE(task->flags & PF_EXITING); 897 898 cgroup_move_task(task, to_cset); 899 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 900 &to_cset->tasks); 901 } 902 } 903 904 /* 905 * hash table for cgroup groups. This improves the performance to find 906 * an existing css_set. This hash doesn't (currently) take into 907 * account cgroups in empty hierarchies. 908 */ 909 #define CSS_SET_HASH_BITS 7 910 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 911 912 static unsigned long css_set_hash(struct cgroup_subsys_state **css) 913 { 914 unsigned long key = 0UL; 915 struct cgroup_subsys *ss; 916 int i; 917 918 for_each_subsys(ss, i) 919 key += (unsigned long)css[i]; 920 key = (key >> 16) ^ key; 921 922 return key; 923 } 924 925 void put_css_set_locked(struct css_set *cset) 926 { 927 struct cgrp_cset_link *link, *tmp_link; 928 struct cgroup_subsys *ss; 929 int ssid; 930 931 lockdep_assert_held(&css_set_lock); 932 933 if (!refcount_dec_and_test(&cset->refcount)) 934 return; 935 936 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 937 938 /* This css_set is dead. Unlink it and release cgroup and css refs */ 939 for_each_subsys(ss, ssid) { 940 list_del(&cset->e_cset_node[ssid]); 941 css_put(cset->subsys[ssid]); 942 } 943 hash_del(&cset->hlist); 944 css_set_count--; 945 946 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 947 list_del(&link->cset_link); 948 list_del(&link->cgrp_link); 949 if (cgroup_parent(link->cgrp)) 950 cgroup_put(link->cgrp); 951 kfree(link); 952 } 953 954 if (css_set_threaded(cset)) { 955 list_del(&cset->threaded_csets_node); 956 put_css_set_locked(cset->dom_cset); 957 } 958 959 kfree_rcu(cset, rcu_head); 960 } 961 962 /** 963 * compare_css_sets - helper function for find_existing_css_set(). 964 * @cset: candidate css_set being tested 965 * @old_cset: existing css_set for a task 966 * @new_cgrp: cgroup that's being entered by the task 967 * @template: desired set of css pointers in css_set (pre-calculated) 968 * 969 * Returns true if "cset" matches "old_cset" except for the hierarchy 970 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 971 */ 972 static bool compare_css_sets(struct css_set *cset, 973 struct css_set *old_cset, 974 struct cgroup *new_cgrp, 975 struct cgroup_subsys_state *template[]) 976 { 977 struct cgroup *new_dfl_cgrp; 978 struct list_head *l1, *l2; 979 980 /* 981 * On the default hierarchy, there can be csets which are 982 * associated with the same set of cgroups but different csses. 983 * Let's first ensure that csses match. 984 */ 985 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 986 return false; 987 988 989 /* @cset's domain should match the default cgroup's */ 990 if (cgroup_on_dfl(new_cgrp)) 991 new_dfl_cgrp = new_cgrp; 992 else 993 new_dfl_cgrp = old_cset->dfl_cgrp; 994 995 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 996 return false; 997 998 /* 999 * Compare cgroup pointers in order to distinguish between 1000 * different cgroups in hierarchies. As different cgroups may 1001 * share the same effective css, this comparison is always 1002 * necessary. 1003 */ 1004 l1 = &cset->cgrp_links; 1005 l2 = &old_cset->cgrp_links; 1006 while (1) { 1007 struct cgrp_cset_link *link1, *link2; 1008 struct cgroup *cgrp1, *cgrp2; 1009 1010 l1 = l1->next; 1011 l2 = l2->next; 1012 /* See if we reached the end - both lists are equal length. */ 1013 if (l1 == &cset->cgrp_links) { 1014 BUG_ON(l2 != &old_cset->cgrp_links); 1015 break; 1016 } else { 1017 BUG_ON(l2 == &old_cset->cgrp_links); 1018 } 1019 /* Locate the cgroups associated with these links. */ 1020 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1021 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1022 cgrp1 = link1->cgrp; 1023 cgrp2 = link2->cgrp; 1024 /* Hierarchies should be linked in the same order. */ 1025 BUG_ON(cgrp1->root != cgrp2->root); 1026 1027 /* 1028 * If this hierarchy is the hierarchy of the cgroup 1029 * that's changing, then we need to check that this 1030 * css_set points to the new cgroup; if it's any other 1031 * hierarchy, then this css_set should point to the 1032 * same cgroup as the old css_set. 1033 */ 1034 if (cgrp1->root == new_cgrp->root) { 1035 if (cgrp1 != new_cgrp) 1036 return false; 1037 } else { 1038 if (cgrp1 != cgrp2) 1039 return false; 1040 } 1041 } 1042 return true; 1043 } 1044 1045 /** 1046 * find_existing_css_set - init css array and find the matching css_set 1047 * @old_cset: the css_set that we're using before the cgroup transition 1048 * @cgrp: the cgroup that we're moving into 1049 * @template: out param for the new set of csses, should be clear on entry 1050 */ 1051 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1052 struct cgroup *cgrp, 1053 struct cgroup_subsys_state **template) 1054 { 1055 struct cgroup_root *root = cgrp->root; 1056 struct cgroup_subsys *ss; 1057 struct css_set *cset; 1058 unsigned long key; 1059 int i; 1060 1061 /* 1062 * Build the set of subsystem state objects that we want to see in the 1063 * new css_set. While subsystems can change globally, the entries here 1064 * won't change, so no need for locking. 1065 */ 1066 for_each_subsys(ss, i) { 1067 if (root->subsys_mask & (1UL << i)) { 1068 /* 1069 * @ss is in this hierarchy, so we want the 1070 * effective css from @cgrp. 1071 */ 1072 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1073 } else { 1074 /* 1075 * @ss is not in this hierarchy, so we don't want 1076 * to change the css. 1077 */ 1078 template[i] = old_cset->subsys[i]; 1079 } 1080 } 1081 1082 key = css_set_hash(template); 1083 hash_for_each_possible(css_set_table, cset, hlist, key) { 1084 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1085 continue; 1086 1087 /* This css_set matches what we need */ 1088 return cset; 1089 } 1090 1091 /* No existing cgroup group matched */ 1092 return NULL; 1093 } 1094 1095 static void free_cgrp_cset_links(struct list_head *links_to_free) 1096 { 1097 struct cgrp_cset_link *link, *tmp_link; 1098 1099 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1100 list_del(&link->cset_link); 1101 kfree(link); 1102 } 1103 } 1104 1105 /** 1106 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1107 * @count: the number of links to allocate 1108 * @tmp_links: list_head the allocated links are put on 1109 * 1110 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1111 * through ->cset_link. Returns 0 on success or -errno. 1112 */ 1113 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1114 { 1115 struct cgrp_cset_link *link; 1116 int i; 1117 1118 INIT_LIST_HEAD(tmp_links); 1119 1120 for (i = 0; i < count; i++) { 1121 link = kzalloc(sizeof(*link), GFP_KERNEL); 1122 if (!link) { 1123 free_cgrp_cset_links(tmp_links); 1124 return -ENOMEM; 1125 } 1126 list_add(&link->cset_link, tmp_links); 1127 } 1128 return 0; 1129 } 1130 1131 /** 1132 * link_css_set - a helper function to link a css_set to a cgroup 1133 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1134 * @cset: the css_set to be linked 1135 * @cgrp: the destination cgroup 1136 */ 1137 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1138 struct cgroup *cgrp) 1139 { 1140 struct cgrp_cset_link *link; 1141 1142 BUG_ON(list_empty(tmp_links)); 1143 1144 if (cgroup_on_dfl(cgrp)) 1145 cset->dfl_cgrp = cgrp; 1146 1147 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1148 link->cset = cset; 1149 link->cgrp = cgrp; 1150 1151 /* 1152 * Always add links to the tail of the lists so that the lists are 1153 * in chronological order. 1154 */ 1155 list_move_tail(&link->cset_link, &cgrp->cset_links); 1156 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1157 1158 if (cgroup_parent(cgrp)) 1159 cgroup_get_live(cgrp); 1160 } 1161 1162 /** 1163 * find_css_set - return a new css_set with one cgroup updated 1164 * @old_cset: the baseline css_set 1165 * @cgrp: the cgroup to be updated 1166 * 1167 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1168 * substituted into the appropriate hierarchy. 1169 */ 1170 static struct css_set *find_css_set(struct css_set *old_cset, 1171 struct cgroup *cgrp) 1172 { 1173 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1174 struct css_set *cset; 1175 struct list_head tmp_links; 1176 struct cgrp_cset_link *link; 1177 struct cgroup_subsys *ss; 1178 unsigned long key; 1179 int ssid; 1180 1181 lockdep_assert_held(&cgroup_mutex); 1182 1183 /* First see if we already have a cgroup group that matches 1184 * the desired set */ 1185 spin_lock_irq(&css_set_lock); 1186 cset = find_existing_css_set(old_cset, cgrp, template); 1187 if (cset) 1188 get_css_set(cset); 1189 spin_unlock_irq(&css_set_lock); 1190 1191 if (cset) 1192 return cset; 1193 1194 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1195 if (!cset) 1196 return NULL; 1197 1198 /* Allocate all the cgrp_cset_link objects that we'll need */ 1199 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1200 kfree(cset); 1201 return NULL; 1202 } 1203 1204 refcount_set(&cset->refcount, 1); 1205 cset->dom_cset = cset; 1206 INIT_LIST_HEAD(&cset->tasks); 1207 INIT_LIST_HEAD(&cset->mg_tasks); 1208 INIT_LIST_HEAD(&cset->dying_tasks); 1209 INIT_LIST_HEAD(&cset->task_iters); 1210 INIT_LIST_HEAD(&cset->threaded_csets); 1211 INIT_HLIST_NODE(&cset->hlist); 1212 INIT_LIST_HEAD(&cset->cgrp_links); 1213 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1214 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1215 INIT_LIST_HEAD(&cset->mg_node); 1216 1217 /* Copy the set of subsystem state objects generated in 1218 * find_existing_css_set() */ 1219 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1220 1221 spin_lock_irq(&css_set_lock); 1222 /* Add reference counts and links from the new css_set. */ 1223 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1224 struct cgroup *c = link->cgrp; 1225 1226 if (c->root == cgrp->root) 1227 c = cgrp; 1228 link_css_set(&tmp_links, cset, c); 1229 } 1230 1231 BUG_ON(!list_empty(&tmp_links)); 1232 1233 css_set_count++; 1234 1235 /* Add @cset to the hash table */ 1236 key = css_set_hash(cset->subsys); 1237 hash_add(css_set_table, &cset->hlist, key); 1238 1239 for_each_subsys(ss, ssid) { 1240 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1241 1242 list_add_tail(&cset->e_cset_node[ssid], 1243 &css->cgroup->e_csets[ssid]); 1244 css_get(css); 1245 } 1246 1247 spin_unlock_irq(&css_set_lock); 1248 1249 /* 1250 * If @cset should be threaded, look up the matching dom_cset and 1251 * link them up. We first fully initialize @cset then look for the 1252 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1253 * to stay empty until we return. 1254 */ 1255 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1256 struct css_set *dcset; 1257 1258 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1259 if (!dcset) { 1260 put_css_set(cset); 1261 return NULL; 1262 } 1263 1264 spin_lock_irq(&css_set_lock); 1265 cset->dom_cset = dcset; 1266 list_add_tail(&cset->threaded_csets_node, 1267 &dcset->threaded_csets); 1268 spin_unlock_irq(&css_set_lock); 1269 } 1270 1271 return cset; 1272 } 1273 1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1275 { 1276 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1277 1278 return root_cgrp->root; 1279 } 1280 1281 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1282 { 1283 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1284 1285 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1286 if (favor && !favoring) { 1287 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1288 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1289 } else if (!favor && favoring) { 1290 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1291 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1292 } 1293 } 1294 1295 static int cgroup_init_root_id(struct cgroup_root *root) 1296 { 1297 int id; 1298 1299 lockdep_assert_held(&cgroup_mutex); 1300 1301 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1302 if (id < 0) 1303 return id; 1304 1305 root->hierarchy_id = id; 1306 return 0; 1307 } 1308 1309 static void cgroup_exit_root_id(struct cgroup_root *root) 1310 { 1311 lockdep_assert_held(&cgroup_mutex); 1312 1313 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1314 } 1315 1316 void cgroup_free_root(struct cgroup_root *root) 1317 { 1318 kfree_rcu(root, rcu); 1319 } 1320 1321 static void cgroup_destroy_root(struct cgroup_root *root) 1322 { 1323 struct cgroup *cgrp = &root->cgrp; 1324 struct cgrp_cset_link *link, *tmp_link; 1325 1326 trace_cgroup_destroy_root(root); 1327 1328 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1329 1330 BUG_ON(atomic_read(&root->nr_cgrps)); 1331 BUG_ON(!list_empty(&cgrp->self.children)); 1332 1333 /* Rebind all subsystems back to the default hierarchy */ 1334 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1335 1336 /* 1337 * Release all the links from cset_links to this hierarchy's 1338 * root cgroup 1339 */ 1340 spin_lock_irq(&css_set_lock); 1341 1342 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1343 list_del(&link->cset_link); 1344 list_del(&link->cgrp_link); 1345 kfree(link); 1346 } 1347 1348 spin_unlock_irq(&css_set_lock); 1349 1350 WARN_ON_ONCE(list_empty(&root->root_list)); 1351 list_del_rcu(&root->root_list); 1352 cgroup_root_count--; 1353 1354 if (!have_favordynmods) 1355 cgroup_favor_dynmods(root, false); 1356 1357 cgroup_exit_root_id(root); 1358 1359 cgroup_unlock(); 1360 1361 cgroup_rstat_exit(cgrp); 1362 kernfs_destroy_root(root->kf_root); 1363 cgroup_free_root(root); 1364 } 1365 1366 /* 1367 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1368 */ 1369 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1370 struct cgroup_root *root) 1371 { 1372 struct cgroup *res_cgroup = NULL; 1373 1374 if (cset == &init_css_set) { 1375 res_cgroup = &root->cgrp; 1376 } else if (root == &cgrp_dfl_root) { 1377 res_cgroup = cset->dfl_cgrp; 1378 } else { 1379 struct cgrp_cset_link *link; 1380 lockdep_assert_held(&css_set_lock); 1381 1382 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1383 struct cgroup *c = link->cgrp; 1384 1385 if (c->root == root) { 1386 res_cgroup = c; 1387 break; 1388 } 1389 } 1390 } 1391 1392 /* 1393 * If cgroup_mutex is not held, the cgrp_cset_link will be freed 1394 * before we remove the cgroup root from the root_list. Consequently, 1395 * when accessing a cgroup root, the cset_link may have already been 1396 * freed, resulting in a NULL res_cgroup. However, by holding the 1397 * cgroup_mutex, we ensure that res_cgroup can't be NULL. 1398 * If we don't hold cgroup_mutex in the caller, we must do the NULL 1399 * check. 1400 */ 1401 return res_cgroup; 1402 } 1403 1404 /* 1405 * look up cgroup associated with current task's cgroup namespace on the 1406 * specified hierarchy 1407 */ 1408 static struct cgroup * 1409 current_cgns_cgroup_from_root(struct cgroup_root *root) 1410 { 1411 struct cgroup *res = NULL; 1412 struct css_set *cset; 1413 1414 lockdep_assert_held(&css_set_lock); 1415 1416 rcu_read_lock(); 1417 1418 cset = current->nsproxy->cgroup_ns->root_cset; 1419 res = __cset_cgroup_from_root(cset, root); 1420 1421 rcu_read_unlock(); 1422 1423 /* 1424 * The namespace_sem is held by current, so the root cgroup can't 1425 * be umounted. Therefore, we can ensure that the res is non-NULL. 1426 */ 1427 WARN_ON_ONCE(!res); 1428 return res; 1429 } 1430 1431 /* 1432 * Look up cgroup associated with current task's cgroup namespace on the default 1433 * hierarchy. 1434 * 1435 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1436 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1437 * pointers. 1438 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1439 * - As a bonus returned cgrp is pinned with the current because it cannot 1440 * switch cgroup_ns asynchronously. 1441 */ 1442 static struct cgroup *current_cgns_cgroup_dfl(void) 1443 { 1444 struct css_set *cset; 1445 1446 if (current->nsproxy) { 1447 cset = current->nsproxy->cgroup_ns->root_cset; 1448 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1449 } else { 1450 /* 1451 * NOTE: This function may be called from bpf_cgroup_from_id() 1452 * on a task which has already passed exit_task_namespaces() and 1453 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all 1454 * cgroups visible for lookups. 1455 */ 1456 return &cgrp_dfl_root.cgrp; 1457 } 1458 } 1459 1460 /* look up cgroup associated with given css_set on the specified hierarchy */ 1461 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1462 struct cgroup_root *root) 1463 { 1464 lockdep_assert_held(&css_set_lock); 1465 1466 return __cset_cgroup_from_root(cset, root); 1467 } 1468 1469 /* 1470 * Return the cgroup for "task" from the given hierarchy. Must be 1471 * called with css_set_lock held to prevent task's groups from being modified. 1472 * Must be called with either cgroup_mutex or rcu read lock to prevent the 1473 * cgroup root from being destroyed. 1474 */ 1475 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1476 struct cgroup_root *root) 1477 { 1478 /* 1479 * No need to lock the task - since we hold css_set_lock the 1480 * task can't change groups. 1481 */ 1482 return cset_cgroup_from_root(task_css_set(task), root); 1483 } 1484 1485 /* 1486 * A task must hold cgroup_mutex to modify cgroups. 1487 * 1488 * Any task can increment and decrement the count field without lock. 1489 * So in general, code holding cgroup_mutex can't rely on the count 1490 * field not changing. However, if the count goes to zero, then only 1491 * cgroup_attach_task() can increment it again. Because a count of zero 1492 * means that no tasks are currently attached, therefore there is no 1493 * way a task attached to that cgroup can fork (the other way to 1494 * increment the count). So code holding cgroup_mutex can safely 1495 * assume that if the count is zero, it will stay zero. Similarly, if 1496 * a task holds cgroup_mutex on a cgroup with zero count, it 1497 * knows that the cgroup won't be removed, as cgroup_rmdir() 1498 * needs that mutex. 1499 * 1500 * A cgroup can only be deleted if both its 'count' of using tasks 1501 * is zero, and its list of 'children' cgroups is empty. Since all 1502 * tasks in the system use _some_ cgroup, and since there is always at 1503 * least one task in the system (init, pid == 1), therefore, root cgroup 1504 * always has either children cgroups and/or using tasks. So we don't 1505 * need a special hack to ensure that root cgroup cannot be deleted. 1506 * 1507 * P.S. One more locking exception. RCU is used to guard the 1508 * update of a tasks cgroup pointer by cgroup_attach_task() 1509 */ 1510 1511 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1512 1513 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1514 char *buf) 1515 { 1516 struct cgroup_subsys *ss = cft->ss; 1517 1518 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1519 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1520 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1521 1522 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1523 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1524 cft->name); 1525 } else { 1526 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1527 } 1528 return buf; 1529 } 1530 1531 /** 1532 * cgroup_file_mode - deduce file mode of a control file 1533 * @cft: the control file in question 1534 * 1535 * S_IRUGO for read, S_IWUSR for write. 1536 */ 1537 static umode_t cgroup_file_mode(const struct cftype *cft) 1538 { 1539 umode_t mode = 0; 1540 1541 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1542 mode |= S_IRUGO; 1543 1544 if (cft->write_u64 || cft->write_s64 || cft->write) { 1545 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1546 mode |= S_IWUGO; 1547 else 1548 mode |= S_IWUSR; 1549 } 1550 1551 return mode; 1552 } 1553 1554 /** 1555 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1556 * @subtree_control: the new subtree_control mask to consider 1557 * @this_ss_mask: available subsystems 1558 * 1559 * On the default hierarchy, a subsystem may request other subsystems to be 1560 * enabled together through its ->depends_on mask. In such cases, more 1561 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1562 * 1563 * This function calculates which subsystems need to be enabled if 1564 * @subtree_control is to be applied while restricted to @this_ss_mask. 1565 */ 1566 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1567 { 1568 u16 cur_ss_mask = subtree_control; 1569 struct cgroup_subsys *ss; 1570 int ssid; 1571 1572 lockdep_assert_held(&cgroup_mutex); 1573 1574 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1575 1576 while (true) { 1577 u16 new_ss_mask = cur_ss_mask; 1578 1579 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1580 new_ss_mask |= ss->depends_on; 1581 } while_each_subsys_mask(); 1582 1583 /* 1584 * Mask out subsystems which aren't available. This can 1585 * happen only if some depended-upon subsystems were bound 1586 * to non-default hierarchies. 1587 */ 1588 new_ss_mask &= this_ss_mask; 1589 1590 if (new_ss_mask == cur_ss_mask) 1591 break; 1592 cur_ss_mask = new_ss_mask; 1593 } 1594 1595 return cur_ss_mask; 1596 } 1597 1598 /** 1599 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1600 * @kn: the kernfs_node being serviced 1601 * 1602 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1603 * the method finishes if locking succeeded. Note that once this function 1604 * returns the cgroup returned by cgroup_kn_lock_live() may become 1605 * inaccessible any time. If the caller intends to continue to access the 1606 * cgroup, it should pin it before invoking this function. 1607 */ 1608 void cgroup_kn_unlock(struct kernfs_node *kn) 1609 { 1610 struct cgroup *cgrp; 1611 1612 if (kernfs_type(kn) == KERNFS_DIR) 1613 cgrp = kn->priv; 1614 else 1615 cgrp = kn->parent->priv; 1616 1617 cgroup_unlock(); 1618 1619 kernfs_unbreak_active_protection(kn); 1620 cgroup_put(cgrp); 1621 } 1622 1623 /** 1624 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1625 * @kn: the kernfs_node being serviced 1626 * @drain_offline: perform offline draining on the cgroup 1627 * 1628 * This helper is to be used by a cgroup kernfs method currently servicing 1629 * @kn. It breaks the active protection, performs cgroup locking and 1630 * verifies that the associated cgroup is alive. Returns the cgroup if 1631 * alive; otherwise, %NULL. A successful return should be undone by a 1632 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1633 * cgroup is drained of offlining csses before return. 1634 * 1635 * Any cgroup kernfs method implementation which requires locking the 1636 * associated cgroup should use this helper. It avoids nesting cgroup 1637 * locking under kernfs active protection and allows all kernfs operations 1638 * including self-removal. 1639 */ 1640 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1641 { 1642 struct cgroup *cgrp; 1643 1644 if (kernfs_type(kn) == KERNFS_DIR) 1645 cgrp = kn->priv; 1646 else 1647 cgrp = kn->parent->priv; 1648 1649 /* 1650 * We're gonna grab cgroup_mutex which nests outside kernfs 1651 * active_ref. cgroup liveliness check alone provides enough 1652 * protection against removal. Ensure @cgrp stays accessible and 1653 * break the active_ref protection. 1654 */ 1655 if (!cgroup_tryget(cgrp)) 1656 return NULL; 1657 kernfs_break_active_protection(kn); 1658 1659 if (drain_offline) 1660 cgroup_lock_and_drain_offline(cgrp); 1661 else 1662 cgroup_lock(); 1663 1664 if (!cgroup_is_dead(cgrp)) 1665 return cgrp; 1666 1667 cgroup_kn_unlock(kn); 1668 return NULL; 1669 } 1670 1671 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1672 { 1673 char name[CGROUP_FILE_NAME_MAX]; 1674 1675 lockdep_assert_held(&cgroup_mutex); 1676 1677 if (cft->file_offset) { 1678 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1679 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1680 1681 spin_lock_irq(&cgroup_file_kn_lock); 1682 cfile->kn = NULL; 1683 spin_unlock_irq(&cgroup_file_kn_lock); 1684 1685 del_timer_sync(&cfile->notify_timer); 1686 } 1687 1688 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1689 } 1690 1691 /** 1692 * css_clear_dir - remove subsys files in a cgroup directory 1693 * @css: target css 1694 */ 1695 static void css_clear_dir(struct cgroup_subsys_state *css) 1696 { 1697 struct cgroup *cgrp = css->cgroup; 1698 struct cftype *cfts; 1699 1700 if (!(css->flags & CSS_VISIBLE)) 1701 return; 1702 1703 css->flags &= ~CSS_VISIBLE; 1704 1705 if (!css->ss) { 1706 if (cgroup_on_dfl(cgrp)) { 1707 cgroup_addrm_files(css, cgrp, 1708 cgroup_base_files, false); 1709 if (cgroup_psi_enabled()) 1710 cgroup_addrm_files(css, cgrp, 1711 cgroup_psi_files, false); 1712 } else { 1713 cgroup_addrm_files(css, cgrp, 1714 cgroup1_base_files, false); 1715 } 1716 } else { 1717 list_for_each_entry(cfts, &css->ss->cfts, node) 1718 cgroup_addrm_files(css, cgrp, cfts, false); 1719 } 1720 } 1721 1722 /** 1723 * css_populate_dir - create subsys files in a cgroup directory 1724 * @css: target css 1725 * 1726 * On failure, no file is added. 1727 */ 1728 static int css_populate_dir(struct cgroup_subsys_state *css) 1729 { 1730 struct cgroup *cgrp = css->cgroup; 1731 struct cftype *cfts, *failed_cfts; 1732 int ret; 1733 1734 if (css->flags & CSS_VISIBLE) 1735 return 0; 1736 1737 if (!css->ss) { 1738 if (cgroup_on_dfl(cgrp)) { 1739 ret = cgroup_addrm_files(css, cgrp, 1740 cgroup_base_files, true); 1741 if (ret < 0) 1742 return ret; 1743 1744 if (cgroup_psi_enabled()) { 1745 ret = cgroup_addrm_files(css, cgrp, 1746 cgroup_psi_files, true); 1747 if (ret < 0) { 1748 cgroup_addrm_files(css, cgrp, 1749 cgroup_base_files, false); 1750 return ret; 1751 } 1752 } 1753 } else { 1754 ret = cgroup_addrm_files(css, cgrp, 1755 cgroup1_base_files, true); 1756 if (ret < 0) 1757 return ret; 1758 } 1759 } else { 1760 list_for_each_entry(cfts, &css->ss->cfts, node) { 1761 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1762 if (ret < 0) { 1763 failed_cfts = cfts; 1764 goto err; 1765 } 1766 } 1767 } 1768 1769 css->flags |= CSS_VISIBLE; 1770 1771 return 0; 1772 err: 1773 list_for_each_entry(cfts, &css->ss->cfts, node) { 1774 if (cfts == failed_cfts) 1775 break; 1776 cgroup_addrm_files(css, cgrp, cfts, false); 1777 } 1778 return ret; 1779 } 1780 1781 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1782 { 1783 struct cgroup *dcgrp = &dst_root->cgrp; 1784 struct cgroup_subsys *ss; 1785 int ssid, ret; 1786 u16 dfl_disable_ss_mask = 0; 1787 1788 lockdep_assert_held(&cgroup_mutex); 1789 1790 do_each_subsys_mask(ss, ssid, ss_mask) { 1791 /* 1792 * If @ss has non-root csses attached to it, can't move. 1793 * If @ss is an implicit controller, it is exempt from this 1794 * rule and can be stolen. 1795 */ 1796 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1797 !ss->implicit_on_dfl) 1798 return -EBUSY; 1799 1800 /* can't move between two non-dummy roots either */ 1801 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1802 return -EBUSY; 1803 1804 /* 1805 * Collect ssid's that need to be disabled from default 1806 * hierarchy. 1807 */ 1808 if (ss->root == &cgrp_dfl_root) 1809 dfl_disable_ss_mask |= 1 << ssid; 1810 1811 } while_each_subsys_mask(); 1812 1813 if (dfl_disable_ss_mask) { 1814 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1815 1816 /* 1817 * Controllers from default hierarchy that need to be rebound 1818 * are all disabled together in one go. 1819 */ 1820 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1821 WARN_ON(cgroup_apply_control(scgrp)); 1822 cgroup_finalize_control(scgrp, 0); 1823 } 1824 1825 do_each_subsys_mask(ss, ssid, ss_mask) { 1826 struct cgroup_root *src_root = ss->root; 1827 struct cgroup *scgrp = &src_root->cgrp; 1828 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1829 struct css_set *cset, *cset_pos; 1830 struct css_task_iter *it; 1831 1832 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1833 1834 if (src_root != &cgrp_dfl_root) { 1835 /* disable from the source */ 1836 src_root->subsys_mask &= ~(1 << ssid); 1837 WARN_ON(cgroup_apply_control(scgrp)); 1838 cgroup_finalize_control(scgrp, 0); 1839 } 1840 1841 /* rebind */ 1842 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1843 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1844 ss->root = dst_root; 1845 1846 spin_lock_irq(&css_set_lock); 1847 css->cgroup = dcgrp; 1848 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id])); 1849 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id], 1850 e_cset_node[ss->id]) { 1851 list_move_tail(&cset->e_cset_node[ss->id], 1852 &dcgrp->e_csets[ss->id]); 1853 /* 1854 * all css_sets of scgrp together in same order to dcgrp, 1855 * patch in-flight iterators to preserve correct iteration. 1856 * since the iterator is always advanced right away and 1857 * finished when it->cset_pos meets it->cset_head, so only 1858 * update it->cset_head is enough here. 1859 */ 1860 list_for_each_entry(it, &cset->task_iters, iters_node) 1861 if (it->cset_head == &scgrp->e_csets[ss->id]) 1862 it->cset_head = &dcgrp->e_csets[ss->id]; 1863 } 1864 spin_unlock_irq(&css_set_lock); 1865 1866 if (ss->css_rstat_flush) { 1867 list_del_rcu(&css->rstat_css_node); 1868 synchronize_rcu(); 1869 list_add_rcu(&css->rstat_css_node, 1870 &dcgrp->rstat_css_list); 1871 } 1872 1873 /* default hierarchy doesn't enable controllers by default */ 1874 dst_root->subsys_mask |= 1 << ssid; 1875 if (dst_root == &cgrp_dfl_root) { 1876 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1877 } else { 1878 dcgrp->subtree_control |= 1 << ssid; 1879 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1880 } 1881 1882 ret = cgroup_apply_control(dcgrp); 1883 if (ret) 1884 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1885 ss->name, ret); 1886 1887 if (ss->bind) 1888 ss->bind(css); 1889 } while_each_subsys_mask(); 1890 1891 kernfs_activate(dcgrp->kn); 1892 return 0; 1893 } 1894 1895 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1896 struct kernfs_root *kf_root) 1897 { 1898 int len = 0; 1899 char *buf = NULL; 1900 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1901 struct cgroup *ns_cgroup; 1902 1903 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1904 if (!buf) 1905 return -ENOMEM; 1906 1907 spin_lock_irq(&css_set_lock); 1908 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1909 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1910 spin_unlock_irq(&css_set_lock); 1911 1912 if (len == -E2BIG) 1913 len = -ERANGE; 1914 else if (len > 0) { 1915 seq_escape(sf, buf, " \t\n\\"); 1916 len = 0; 1917 } 1918 kfree(buf); 1919 return len; 1920 } 1921 1922 enum cgroup2_param { 1923 Opt_nsdelegate, 1924 Opt_favordynmods, 1925 Opt_memory_localevents, 1926 Opt_memory_recursiveprot, 1927 Opt_memory_hugetlb_accounting, 1928 Opt_pids_localevents, 1929 nr__cgroup2_params 1930 }; 1931 1932 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1933 fsparam_flag("nsdelegate", Opt_nsdelegate), 1934 fsparam_flag("favordynmods", Opt_favordynmods), 1935 fsparam_flag("memory_localevents", Opt_memory_localevents), 1936 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1937 fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting), 1938 fsparam_flag("pids_localevents", Opt_pids_localevents), 1939 {} 1940 }; 1941 1942 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1943 { 1944 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1945 struct fs_parse_result result; 1946 int opt; 1947 1948 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1949 if (opt < 0) 1950 return opt; 1951 1952 switch (opt) { 1953 case Opt_nsdelegate: 1954 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1955 return 0; 1956 case Opt_favordynmods: 1957 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1958 return 0; 1959 case Opt_memory_localevents: 1960 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1961 return 0; 1962 case Opt_memory_recursiveprot: 1963 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1964 return 0; 1965 case Opt_memory_hugetlb_accounting: 1966 ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 1967 return 0; 1968 case Opt_pids_localevents: 1969 ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; 1970 return 0; 1971 } 1972 return -EINVAL; 1973 } 1974 1975 struct cgroup_of_peak *of_peak(struct kernfs_open_file *of) 1976 { 1977 struct cgroup_file_ctx *ctx = of->priv; 1978 1979 return &ctx->peak; 1980 } 1981 1982 static void apply_cgroup_root_flags(unsigned int root_flags) 1983 { 1984 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1985 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1986 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1987 else 1988 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1989 1990 cgroup_favor_dynmods(&cgrp_dfl_root, 1991 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 1992 1993 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1994 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1995 else 1996 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1997 1998 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1999 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 2000 else 2001 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 2002 2003 if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 2004 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 2005 else 2006 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING; 2007 2008 if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) 2009 cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS; 2010 else 2011 cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS; 2012 } 2013 } 2014 2015 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 2016 { 2017 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 2018 seq_puts(seq, ",nsdelegate"); 2019 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 2020 seq_puts(seq, ",favordynmods"); 2021 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 2022 seq_puts(seq, ",memory_localevents"); 2023 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 2024 seq_puts(seq, ",memory_recursiveprot"); 2025 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING) 2026 seq_puts(seq, ",memory_hugetlb_accounting"); 2027 if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS) 2028 seq_puts(seq, ",pids_localevents"); 2029 return 0; 2030 } 2031 2032 static int cgroup_reconfigure(struct fs_context *fc) 2033 { 2034 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2035 2036 apply_cgroup_root_flags(ctx->flags); 2037 return 0; 2038 } 2039 2040 static void init_cgroup_housekeeping(struct cgroup *cgrp) 2041 { 2042 struct cgroup_subsys *ss; 2043 int ssid; 2044 2045 INIT_LIST_HEAD(&cgrp->self.sibling); 2046 INIT_LIST_HEAD(&cgrp->self.children); 2047 INIT_LIST_HEAD(&cgrp->cset_links); 2048 INIT_LIST_HEAD(&cgrp->pidlists); 2049 mutex_init(&cgrp->pidlist_mutex); 2050 cgrp->self.cgroup = cgrp; 2051 cgrp->self.flags |= CSS_ONLINE; 2052 cgrp->dom_cgrp = cgrp; 2053 cgrp->max_descendants = INT_MAX; 2054 cgrp->max_depth = INT_MAX; 2055 INIT_LIST_HEAD(&cgrp->rstat_css_list); 2056 prev_cputime_init(&cgrp->prev_cputime); 2057 2058 for_each_subsys(ss, ssid) 2059 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2060 2061 init_waitqueue_head(&cgrp->offline_waitq); 2062 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2063 } 2064 2065 void init_cgroup_root(struct cgroup_fs_context *ctx) 2066 { 2067 struct cgroup_root *root = ctx->root; 2068 struct cgroup *cgrp = &root->cgrp; 2069 2070 INIT_LIST_HEAD_RCU(&root->root_list); 2071 atomic_set(&root->nr_cgrps, 1); 2072 cgrp->root = root; 2073 init_cgroup_housekeeping(cgrp); 2074 2075 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2076 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2077 if (ctx->release_agent) 2078 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2079 if (ctx->name) 2080 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2081 if (ctx->cpuset_clone_children) 2082 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2083 } 2084 2085 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2086 { 2087 LIST_HEAD(tmp_links); 2088 struct cgroup *root_cgrp = &root->cgrp; 2089 struct kernfs_syscall_ops *kf_sops; 2090 struct css_set *cset; 2091 int i, ret; 2092 2093 lockdep_assert_held(&cgroup_mutex); 2094 2095 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2096 0, GFP_KERNEL); 2097 if (ret) 2098 goto out; 2099 2100 /* 2101 * We're accessing css_set_count without locking css_set_lock here, 2102 * but that's OK - it can only be increased by someone holding 2103 * cgroup_lock, and that's us. Later rebinding may disable 2104 * controllers on the default hierarchy and thus create new csets, 2105 * which can't be more than the existing ones. Allocate 2x. 2106 */ 2107 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2108 if (ret) 2109 goto cancel_ref; 2110 2111 ret = cgroup_init_root_id(root); 2112 if (ret) 2113 goto cancel_ref; 2114 2115 kf_sops = root == &cgrp_dfl_root ? 2116 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2117 2118 root->kf_root = kernfs_create_root(kf_sops, 2119 KERNFS_ROOT_CREATE_DEACTIVATED | 2120 KERNFS_ROOT_SUPPORT_EXPORTOP | 2121 KERNFS_ROOT_SUPPORT_USER_XATTR, 2122 root_cgrp); 2123 if (IS_ERR(root->kf_root)) { 2124 ret = PTR_ERR(root->kf_root); 2125 goto exit_root_id; 2126 } 2127 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2128 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2129 root_cgrp->ancestors[0] = root_cgrp; 2130 2131 ret = css_populate_dir(&root_cgrp->self); 2132 if (ret) 2133 goto destroy_root; 2134 2135 ret = cgroup_rstat_init(root_cgrp); 2136 if (ret) 2137 goto destroy_root; 2138 2139 ret = rebind_subsystems(root, ss_mask); 2140 if (ret) 2141 goto exit_stats; 2142 2143 ret = cgroup_bpf_inherit(root_cgrp); 2144 WARN_ON_ONCE(ret); 2145 2146 trace_cgroup_setup_root(root); 2147 2148 /* 2149 * There must be no failure case after here, since rebinding takes 2150 * care of subsystems' refcounts, which are explicitly dropped in 2151 * the failure exit path. 2152 */ 2153 list_add_rcu(&root->root_list, &cgroup_roots); 2154 cgroup_root_count++; 2155 2156 /* 2157 * Link the root cgroup in this hierarchy into all the css_set 2158 * objects. 2159 */ 2160 spin_lock_irq(&css_set_lock); 2161 hash_for_each(css_set_table, i, cset, hlist) { 2162 link_css_set(&tmp_links, cset, root_cgrp); 2163 if (css_set_populated(cset)) 2164 cgroup_update_populated(root_cgrp, true); 2165 } 2166 spin_unlock_irq(&css_set_lock); 2167 2168 BUG_ON(!list_empty(&root_cgrp->self.children)); 2169 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2170 2171 ret = 0; 2172 goto out; 2173 2174 exit_stats: 2175 cgroup_rstat_exit(root_cgrp); 2176 destroy_root: 2177 kernfs_destroy_root(root->kf_root); 2178 root->kf_root = NULL; 2179 exit_root_id: 2180 cgroup_exit_root_id(root); 2181 cancel_ref: 2182 percpu_ref_exit(&root_cgrp->self.refcnt); 2183 out: 2184 free_cgrp_cset_links(&tmp_links); 2185 return ret; 2186 } 2187 2188 int cgroup_do_get_tree(struct fs_context *fc) 2189 { 2190 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2191 int ret; 2192 2193 ctx->kfc.root = ctx->root->kf_root; 2194 if (fc->fs_type == &cgroup2_fs_type) 2195 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2196 else 2197 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2198 ret = kernfs_get_tree(fc); 2199 2200 /* 2201 * In non-init cgroup namespace, instead of root cgroup's dentry, 2202 * we return the dentry corresponding to the cgroupns->root_cgrp. 2203 */ 2204 if (!ret && ctx->ns != &init_cgroup_ns) { 2205 struct dentry *nsdentry; 2206 struct super_block *sb = fc->root->d_sb; 2207 struct cgroup *cgrp; 2208 2209 cgroup_lock(); 2210 spin_lock_irq(&css_set_lock); 2211 2212 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2213 2214 spin_unlock_irq(&css_set_lock); 2215 cgroup_unlock(); 2216 2217 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2218 dput(fc->root); 2219 if (IS_ERR(nsdentry)) { 2220 deactivate_locked_super(sb); 2221 ret = PTR_ERR(nsdentry); 2222 nsdentry = NULL; 2223 } 2224 fc->root = nsdentry; 2225 } 2226 2227 if (!ctx->kfc.new_sb_created) 2228 cgroup_put(&ctx->root->cgrp); 2229 2230 return ret; 2231 } 2232 2233 /* 2234 * Destroy a cgroup filesystem context. 2235 */ 2236 static void cgroup_fs_context_free(struct fs_context *fc) 2237 { 2238 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2239 2240 kfree(ctx->name); 2241 kfree(ctx->release_agent); 2242 put_cgroup_ns(ctx->ns); 2243 kernfs_free_fs_context(fc); 2244 kfree(ctx); 2245 } 2246 2247 static int cgroup_get_tree(struct fs_context *fc) 2248 { 2249 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2250 int ret; 2251 2252 WRITE_ONCE(cgrp_dfl_visible, true); 2253 cgroup_get_live(&cgrp_dfl_root.cgrp); 2254 ctx->root = &cgrp_dfl_root; 2255 2256 ret = cgroup_do_get_tree(fc); 2257 if (!ret) 2258 apply_cgroup_root_flags(ctx->flags); 2259 return ret; 2260 } 2261 2262 static const struct fs_context_operations cgroup_fs_context_ops = { 2263 .free = cgroup_fs_context_free, 2264 .parse_param = cgroup2_parse_param, 2265 .get_tree = cgroup_get_tree, 2266 .reconfigure = cgroup_reconfigure, 2267 }; 2268 2269 static const struct fs_context_operations cgroup1_fs_context_ops = { 2270 .free = cgroup_fs_context_free, 2271 .parse_param = cgroup1_parse_param, 2272 .get_tree = cgroup1_get_tree, 2273 .reconfigure = cgroup1_reconfigure, 2274 }; 2275 2276 /* 2277 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2278 * we select the namespace we're going to use. 2279 */ 2280 static int cgroup_init_fs_context(struct fs_context *fc) 2281 { 2282 struct cgroup_fs_context *ctx; 2283 2284 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2285 if (!ctx) 2286 return -ENOMEM; 2287 2288 ctx->ns = current->nsproxy->cgroup_ns; 2289 get_cgroup_ns(ctx->ns); 2290 fc->fs_private = &ctx->kfc; 2291 if (fc->fs_type == &cgroup2_fs_type) 2292 fc->ops = &cgroup_fs_context_ops; 2293 else 2294 fc->ops = &cgroup1_fs_context_ops; 2295 put_user_ns(fc->user_ns); 2296 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2297 fc->global = true; 2298 2299 if (have_favordynmods) 2300 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2301 2302 return 0; 2303 } 2304 2305 static void cgroup_kill_sb(struct super_block *sb) 2306 { 2307 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2308 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2309 2310 /* 2311 * If @root doesn't have any children, start killing it. 2312 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2313 * 2314 * And don't kill the default root. 2315 */ 2316 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2317 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2318 cgroup_bpf_offline(&root->cgrp); 2319 percpu_ref_kill(&root->cgrp.self.refcnt); 2320 } 2321 cgroup_put(&root->cgrp); 2322 kernfs_kill_sb(sb); 2323 } 2324 2325 struct file_system_type cgroup_fs_type = { 2326 .name = "cgroup", 2327 .init_fs_context = cgroup_init_fs_context, 2328 .parameters = cgroup1_fs_parameters, 2329 .kill_sb = cgroup_kill_sb, 2330 .fs_flags = FS_USERNS_MOUNT, 2331 }; 2332 2333 static struct file_system_type cgroup2_fs_type = { 2334 .name = "cgroup2", 2335 .init_fs_context = cgroup_init_fs_context, 2336 .parameters = cgroup2_fs_parameters, 2337 .kill_sb = cgroup_kill_sb, 2338 .fs_flags = FS_USERNS_MOUNT, 2339 }; 2340 2341 #ifdef CONFIG_CPUSETS_V1 2342 static const struct fs_context_operations cpuset_fs_context_ops = { 2343 .get_tree = cgroup1_get_tree, 2344 .free = cgroup_fs_context_free, 2345 }; 2346 2347 /* 2348 * This is ugly, but preserves the userspace API for existing cpuset 2349 * users. If someone tries to mount the "cpuset" filesystem, we 2350 * silently switch it to mount "cgroup" instead 2351 */ 2352 static int cpuset_init_fs_context(struct fs_context *fc) 2353 { 2354 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2355 struct cgroup_fs_context *ctx; 2356 int err; 2357 2358 err = cgroup_init_fs_context(fc); 2359 if (err) { 2360 kfree(agent); 2361 return err; 2362 } 2363 2364 fc->ops = &cpuset_fs_context_ops; 2365 2366 ctx = cgroup_fc2context(fc); 2367 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2368 ctx->flags |= CGRP_ROOT_NOPREFIX; 2369 ctx->release_agent = agent; 2370 2371 get_filesystem(&cgroup_fs_type); 2372 put_filesystem(fc->fs_type); 2373 fc->fs_type = &cgroup_fs_type; 2374 2375 return 0; 2376 } 2377 2378 static struct file_system_type cpuset_fs_type = { 2379 .name = "cpuset", 2380 .init_fs_context = cpuset_init_fs_context, 2381 .fs_flags = FS_USERNS_MOUNT, 2382 }; 2383 #endif 2384 2385 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2386 struct cgroup_namespace *ns) 2387 { 2388 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2389 2390 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2391 } 2392 2393 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2394 struct cgroup_namespace *ns) 2395 { 2396 int ret; 2397 2398 cgroup_lock(); 2399 spin_lock_irq(&css_set_lock); 2400 2401 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2402 2403 spin_unlock_irq(&css_set_lock); 2404 cgroup_unlock(); 2405 2406 return ret; 2407 } 2408 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2409 2410 /** 2411 * cgroup_attach_lock - Lock for ->attach() 2412 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2413 * 2414 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2415 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2416 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2417 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2418 * lead to deadlocks. 2419 * 2420 * Bringing up a CPU may involve creating and destroying tasks which requires 2421 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2422 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2423 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2424 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2425 * the threadgroup_rwsem to be released to create new tasks. For more details: 2426 * 2427 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2428 * 2429 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2430 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2431 * CPU hotplug is disabled on entry. 2432 */ 2433 void cgroup_attach_lock(bool lock_threadgroup) 2434 { 2435 cpus_read_lock(); 2436 if (lock_threadgroup) 2437 percpu_down_write(&cgroup_threadgroup_rwsem); 2438 } 2439 2440 /** 2441 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2442 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2443 */ 2444 void cgroup_attach_unlock(bool lock_threadgroup) 2445 { 2446 if (lock_threadgroup) 2447 percpu_up_write(&cgroup_threadgroup_rwsem); 2448 cpus_read_unlock(); 2449 } 2450 2451 /** 2452 * cgroup_migrate_add_task - add a migration target task to a migration context 2453 * @task: target task 2454 * @mgctx: target migration context 2455 * 2456 * Add @task, which is a migration target, to @mgctx->tset. This function 2457 * becomes noop if @task doesn't need to be migrated. @task's css_set 2458 * should have been added as a migration source and @task->cg_list will be 2459 * moved from the css_set's tasks list to mg_tasks one. 2460 */ 2461 static void cgroup_migrate_add_task(struct task_struct *task, 2462 struct cgroup_mgctx *mgctx) 2463 { 2464 struct css_set *cset; 2465 2466 lockdep_assert_held(&css_set_lock); 2467 2468 /* @task either already exited or can't exit until the end */ 2469 if (task->flags & PF_EXITING) 2470 return; 2471 2472 /* cgroup_threadgroup_rwsem protects racing against forks */ 2473 WARN_ON_ONCE(list_empty(&task->cg_list)); 2474 2475 cset = task_css_set(task); 2476 if (!cset->mg_src_cgrp) 2477 return; 2478 2479 mgctx->tset.nr_tasks++; 2480 2481 list_move_tail(&task->cg_list, &cset->mg_tasks); 2482 if (list_empty(&cset->mg_node)) 2483 list_add_tail(&cset->mg_node, 2484 &mgctx->tset.src_csets); 2485 if (list_empty(&cset->mg_dst_cset->mg_node)) 2486 list_add_tail(&cset->mg_dst_cset->mg_node, 2487 &mgctx->tset.dst_csets); 2488 } 2489 2490 /** 2491 * cgroup_taskset_first - reset taskset and return the first task 2492 * @tset: taskset of interest 2493 * @dst_cssp: output variable for the destination css 2494 * 2495 * @tset iteration is initialized and the first task is returned. 2496 */ 2497 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2498 struct cgroup_subsys_state **dst_cssp) 2499 { 2500 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2501 tset->cur_task = NULL; 2502 2503 return cgroup_taskset_next(tset, dst_cssp); 2504 } 2505 2506 /** 2507 * cgroup_taskset_next - iterate to the next task in taskset 2508 * @tset: taskset of interest 2509 * @dst_cssp: output variable for the destination css 2510 * 2511 * Return the next task in @tset. Iteration must have been initialized 2512 * with cgroup_taskset_first(). 2513 */ 2514 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2515 struct cgroup_subsys_state **dst_cssp) 2516 { 2517 struct css_set *cset = tset->cur_cset; 2518 struct task_struct *task = tset->cur_task; 2519 2520 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2521 if (!task) 2522 task = list_first_entry(&cset->mg_tasks, 2523 struct task_struct, cg_list); 2524 else 2525 task = list_next_entry(task, cg_list); 2526 2527 if (&task->cg_list != &cset->mg_tasks) { 2528 tset->cur_cset = cset; 2529 tset->cur_task = task; 2530 2531 /* 2532 * This function may be called both before and 2533 * after cgroup_migrate_execute(). The two cases 2534 * can be distinguished by looking at whether @cset 2535 * has its ->mg_dst_cset set. 2536 */ 2537 if (cset->mg_dst_cset) 2538 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2539 else 2540 *dst_cssp = cset->subsys[tset->ssid]; 2541 2542 return task; 2543 } 2544 2545 cset = list_next_entry(cset, mg_node); 2546 task = NULL; 2547 } 2548 2549 return NULL; 2550 } 2551 2552 /** 2553 * cgroup_migrate_execute - migrate a taskset 2554 * @mgctx: migration context 2555 * 2556 * Migrate tasks in @mgctx as setup by migration preparation functions. 2557 * This function fails iff one of the ->can_attach callbacks fails and 2558 * guarantees that either all or none of the tasks in @mgctx are migrated. 2559 * @mgctx is consumed regardless of success. 2560 */ 2561 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2562 { 2563 struct cgroup_taskset *tset = &mgctx->tset; 2564 struct cgroup_subsys *ss; 2565 struct task_struct *task, *tmp_task; 2566 struct css_set *cset, *tmp_cset; 2567 int ssid, failed_ssid, ret; 2568 2569 /* check that we can legitimately attach to the cgroup */ 2570 if (tset->nr_tasks) { 2571 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2572 if (ss->can_attach) { 2573 tset->ssid = ssid; 2574 ret = ss->can_attach(tset); 2575 if (ret) { 2576 failed_ssid = ssid; 2577 goto out_cancel_attach; 2578 } 2579 } 2580 } while_each_subsys_mask(); 2581 } 2582 2583 /* 2584 * Now that we're guaranteed success, proceed to move all tasks to 2585 * the new cgroup. There are no failure cases after here, so this 2586 * is the commit point. 2587 */ 2588 spin_lock_irq(&css_set_lock); 2589 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2590 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2591 struct css_set *from_cset = task_css_set(task); 2592 struct css_set *to_cset = cset->mg_dst_cset; 2593 2594 get_css_set(to_cset); 2595 to_cset->nr_tasks++; 2596 css_set_move_task(task, from_cset, to_cset, true); 2597 from_cset->nr_tasks--; 2598 /* 2599 * If the source or destination cgroup is frozen, 2600 * the task might require to change its state. 2601 */ 2602 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2603 to_cset->dfl_cgrp); 2604 put_css_set_locked(from_cset); 2605 2606 } 2607 } 2608 spin_unlock_irq(&css_set_lock); 2609 2610 /* 2611 * Migration is committed, all target tasks are now on dst_csets. 2612 * Nothing is sensitive to fork() after this point. Notify 2613 * controllers that migration is complete. 2614 */ 2615 tset->csets = &tset->dst_csets; 2616 2617 if (tset->nr_tasks) { 2618 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2619 if (ss->attach) { 2620 tset->ssid = ssid; 2621 ss->attach(tset); 2622 } 2623 } while_each_subsys_mask(); 2624 } 2625 2626 ret = 0; 2627 goto out_release_tset; 2628 2629 out_cancel_attach: 2630 if (tset->nr_tasks) { 2631 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2632 if (ssid == failed_ssid) 2633 break; 2634 if (ss->cancel_attach) { 2635 tset->ssid = ssid; 2636 ss->cancel_attach(tset); 2637 } 2638 } while_each_subsys_mask(); 2639 } 2640 out_release_tset: 2641 spin_lock_irq(&css_set_lock); 2642 list_splice_init(&tset->dst_csets, &tset->src_csets); 2643 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2644 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2645 list_del_init(&cset->mg_node); 2646 } 2647 spin_unlock_irq(&css_set_lock); 2648 2649 /* 2650 * Re-initialize the cgroup_taskset structure in case it is reused 2651 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2652 * iteration. 2653 */ 2654 tset->nr_tasks = 0; 2655 tset->csets = &tset->src_csets; 2656 return ret; 2657 } 2658 2659 /** 2660 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2661 * @dst_cgrp: destination cgroup to test 2662 * 2663 * On the default hierarchy, except for the mixable, (possible) thread root 2664 * and threaded cgroups, subtree_control must be zero for migration 2665 * destination cgroups with tasks so that child cgroups don't compete 2666 * against tasks. 2667 */ 2668 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2669 { 2670 /* v1 doesn't have any restriction */ 2671 if (!cgroup_on_dfl(dst_cgrp)) 2672 return 0; 2673 2674 /* verify @dst_cgrp can host resources */ 2675 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2676 return -EOPNOTSUPP; 2677 2678 /* 2679 * If @dst_cgrp is already or can become a thread root or is 2680 * threaded, it doesn't matter. 2681 */ 2682 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2683 return 0; 2684 2685 /* apply no-internal-process constraint */ 2686 if (dst_cgrp->subtree_control) 2687 return -EBUSY; 2688 2689 return 0; 2690 } 2691 2692 /** 2693 * cgroup_migrate_finish - cleanup after attach 2694 * @mgctx: migration context 2695 * 2696 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2697 * those functions for details. 2698 */ 2699 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2700 { 2701 struct css_set *cset, *tmp_cset; 2702 2703 lockdep_assert_held(&cgroup_mutex); 2704 2705 spin_lock_irq(&css_set_lock); 2706 2707 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2708 mg_src_preload_node) { 2709 cset->mg_src_cgrp = NULL; 2710 cset->mg_dst_cgrp = NULL; 2711 cset->mg_dst_cset = NULL; 2712 list_del_init(&cset->mg_src_preload_node); 2713 put_css_set_locked(cset); 2714 } 2715 2716 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2717 mg_dst_preload_node) { 2718 cset->mg_src_cgrp = NULL; 2719 cset->mg_dst_cgrp = NULL; 2720 cset->mg_dst_cset = NULL; 2721 list_del_init(&cset->mg_dst_preload_node); 2722 put_css_set_locked(cset); 2723 } 2724 2725 spin_unlock_irq(&css_set_lock); 2726 } 2727 2728 /** 2729 * cgroup_migrate_add_src - add a migration source css_set 2730 * @src_cset: the source css_set to add 2731 * @dst_cgrp: the destination cgroup 2732 * @mgctx: migration context 2733 * 2734 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2735 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2736 * up by cgroup_migrate_finish(). 2737 * 2738 * This function may be called without holding cgroup_threadgroup_rwsem 2739 * even if the target is a process. Threads may be created and destroyed 2740 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2741 * into play and the preloaded css_sets are guaranteed to cover all 2742 * migrations. 2743 */ 2744 void cgroup_migrate_add_src(struct css_set *src_cset, 2745 struct cgroup *dst_cgrp, 2746 struct cgroup_mgctx *mgctx) 2747 { 2748 struct cgroup *src_cgrp; 2749 2750 lockdep_assert_held(&cgroup_mutex); 2751 lockdep_assert_held(&css_set_lock); 2752 2753 /* 2754 * If ->dead, @src_set is associated with one or more dead cgroups 2755 * and doesn't contain any migratable tasks. Ignore it early so 2756 * that the rest of migration path doesn't get confused by it. 2757 */ 2758 if (src_cset->dead) 2759 return; 2760 2761 if (!list_empty(&src_cset->mg_src_preload_node)) 2762 return; 2763 2764 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2765 2766 WARN_ON(src_cset->mg_src_cgrp); 2767 WARN_ON(src_cset->mg_dst_cgrp); 2768 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2769 WARN_ON(!list_empty(&src_cset->mg_node)); 2770 2771 src_cset->mg_src_cgrp = src_cgrp; 2772 src_cset->mg_dst_cgrp = dst_cgrp; 2773 get_css_set(src_cset); 2774 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2775 } 2776 2777 /** 2778 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2779 * @mgctx: migration context 2780 * 2781 * Tasks are about to be moved and all the source css_sets have been 2782 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2783 * pins all destination css_sets, links each to its source, and append them 2784 * to @mgctx->preloaded_dst_csets. 2785 * 2786 * This function must be called after cgroup_migrate_add_src() has been 2787 * called on each migration source css_set. After migration is performed 2788 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2789 * @mgctx. 2790 */ 2791 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2792 { 2793 struct css_set *src_cset, *tmp_cset; 2794 2795 lockdep_assert_held(&cgroup_mutex); 2796 2797 /* look up the dst cset for each src cset and link it to src */ 2798 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2799 mg_src_preload_node) { 2800 struct css_set *dst_cset; 2801 struct cgroup_subsys *ss; 2802 int ssid; 2803 2804 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2805 if (!dst_cset) 2806 return -ENOMEM; 2807 2808 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2809 2810 /* 2811 * If src cset equals dst, it's noop. Drop the src. 2812 * cgroup_migrate() will skip the cset too. Note that we 2813 * can't handle src == dst as some nodes are used by both. 2814 */ 2815 if (src_cset == dst_cset) { 2816 src_cset->mg_src_cgrp = NULL; 2817 src_cset->mg_dst_cgrp = NULL; 2818 list_del_init(&src_cset->mg_src_preload_node); 2819 put_css_set(src_cset); 2820 put_css_set(dst_cset); 2821 continue; 2822 } 2823 2824 src_cset->mg_dst_cset = dst_cset; 2825 2826 if (list_empty(&dst_cset->mg_dst_preload_node)) 2827 list_add_tail(&dst_cset->mg_dst_preload_node, 2828 &mgctx->preloaded_dst_csets); 2829 else 2830 put_css_set(dst_cset); 2831 2832 for_each_subsys(ss, ssid) 2833 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2834 mgctx->ss_mask |= 1 << ssid; 2835 } 2836 2837 return 0; 2838 } 2839 2840 /** 2841 * cgroup_migrate - migrate a process or task to a cgroup 2842 * @leader: the leader of the process or the task to migrate 2843 * @threadgroup: whether @leader points to the whole process or a single task 2844 * @mgctx: migration context 2845 * 2846 * Migrate a process or task denoted by @leader. If migrating a process, 2847 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2848 * responsible for invoking cgroup_migrate_add_src() and 2849 * cgroup_migrate_prepare_dst() on the targets before invoking this 2850 * function and following up with cgroup_migrate_finish(). 2851 * 2852 * As long as a controller's ->can_attach() doesn't fail, this function is 2853 * guaranteed to succeed. This means that, excluding ->can_attach() 2854 * failure, when migrating multiple targets, the success or failure can be 2855 * decided for all targets by invoking group_migrate_prepare_dst() before 2856 * actually starting migrating. 2857 */ 2858 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2859 struct cgroup_mgctx *mgctx) 2860 { 2861 struct task_struct *task; 2862 2863 /* 2864 * The following thread iteration should be inside an RCU critical 2865 * section to prevent tasks from being freed while taking the snapshot. 2866 * spin_lock_irq() implies RCU critical section here. 2867 */ 2868 spin_lock_irq(&css_set_lock); 2869 task = leader; 2870 do { 2871 cgroup_migrate_add_task(task, mgctx); 2872 if (!threadgroup) 2873 break; 2874 } while_each_thread(leader, task); 2875 spin_unlock_irq(&css_set_lock); 2876 2877 return cgroup_migrate_execute(mgctx); 2878 } 2879 2880 /** 2881 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2882 * @dst_cgrp: the cgroup to attach to 2883 * @leader: the task or the leader of the threadgroup to be attached 2884 * @threadgroup: attach the whole threadgroup? 2885 * 2886 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2887 */ 2888 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2889 bool threadgroup) 2890 { 2891 DEFINE_CGROUP_MGCTX(mgctx); 2892 struct task_struct *task; 2893 int ret = 0; 2894 2895 /* look up all src csets */ 2896 spin_lock_irq(&css_set_lock); 2897 rcu_read_lock(); 2898 task = leader; 2899 do { 2900 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2901 if (!threadgroup) 2902 break; 2903 } while_each_thread(leader, task); 2904 rcu_read_unlock(); 2905 spin_unlock_irq(&css_set_lock); 2906 2907 /* prepare dst csets and commit */ 2908 ret = cgroup_migrate_prepare_dst(&mgctx); 2909 if (!ret) 2910 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2911 2912 cgroup_migrate_finish(&mgctx); 2913 2914 if (!ret) 2915 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2916 2917 return ret; 2918 } 2919 2920 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2921 bool *threadgroup_locked) 2922 { 2923 struct task_struct *tsk; 2924 pid_t pid; 2925 2926 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2927 return ERR_PTR(-EINVAL); 2928 2929 /* 2930 * If we migrate a single thread, we don't care about threadgroup 2931 * stability. If the thread is `current`, it won't exit(2) under our 2932 * hands or change PID through exec(2). We exclude 2933 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2934 * callers by cgroup_mutex. 2935 * Therefore, we can skip the global lock. 2936 */ 2937 lockdep_assert_held(&cgroup_mutex); 2938 *threadgroup_locked = pid || threadgroup; 2939 cgroup_attach_lock(*threadgroup_locked); 2940 2941 rcu_read_lock(); 2942 if (pid) { 2943 tsk = find_task_by_vpid(pid); 2944 if (!tsk) { 2945 tsk = ERR_PTR(-ESRCH); 2946 goto out_unlock_threadgroup; 2947 } 2948 } else { 2949 tsk = current; 2950 } 2951 2952 if (threadgroup) 2953 tsk = tsk->group_leader; 2954 2955 /* 2956 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2957 * If userland migrates such a kthread to a non-root cgroup, it can 2958 * become trapped in a cpuset, or RT kthread may be born in a 2959 * cgroup with no rt_runtime allocated. Just say no. 2960 */ 2961 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2962 tsk = ERR_PTR(-EINVAL); 2963 goto out_unlock_threadgroup; 2964 } 2965 2966 get_task_struct(tsk); 2967 goto out_unlock_rcu; 2968 2969 out_unlock_threadgroup: 2970 cgroup_attach_unlock(*threadgroup_locked); 2971 *threadgroup_locked = false; 2972 out_unlock_rcu: 2973 rcu_read_unlock(); 2974 return tsk; 2975 } 2976 2977 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 2978 { 2979 struct cgroup_subsys *ss; 2980 int ssid; 2981 2982 /* release reference from cgroup_procs_write_start() */ 2983 put_task_struct(task); 2984 2985 cgroup_attach_unlock(threadgroup_locked); 2986 2987 for_each_subsys(ss, ssid) 2988 if (ss->post_attach) 2989 ss->post_attach(); 2990 } 2991 2992 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2993 { 2994 struct cgroup_subsys *ss; 2995 bool printed = false; 2996 int ssid; 2997 2998 do_each_subsys_mask(ss, ssid, ss_mask) { 2999 if (printed) 3000 seq_putc(seq, ' '); 3001 seq_puts(seq, ss->name); 3002 printed = true; 3003 } while_each_subsys_mask(); 3004 if (printed) 3005 seq_putc(seq, '\n'); 3006 } 3007 3008 /* show controllers which are enabled from the parent */ 3009 static int cgroup_controllers_show(struct seq_file *seq, void *v) 3010 { 3011 struct cgroup *cgrp = seq_css(seq)->cgroup; 3012 3013 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 3014 return 0; 3015 } 3016 3017 /* show controllers which are enabled for a given cgroup's children */ 3018 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 3019 { 3020 struct cgroup *cgrp = seq_css(seq)->cgroup; 3021 3022 cgroup_print_ss_mask(seq, cgrp->subtree_control); 3023 return 0; 3024 } 3025 3026 /** 3027 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 3028 * @cgrp: root of the subtree to update csses for 3029 * 3030 * @cgrp's control masks have changed and its subtree's css associations 3031 * need to be updated accordingly. This function looks up all css_sets 3032 * which are attached to the subtree, creates the matching updated css_sets 3033 * and migrates the tasks to the new ones. 3034 */ 3035 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3036 { 3037 DEFINE_CGROUP_MGCTX(mgctx); 3038 struct cgroup_subsys_state *d_css; 3039 struct cgroup *dsct; 3040 struct css_set *src_cset; 3041 bool has_tasks; 3042 int ret; 3043 3044 lockdep_assert_held(&cgroup_mutex); 3045 3046 /* look up all csses currently attached to @cgrp's subtree */ 3047 spin_lock_irq(&css_set_lock); 3048 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3049 struct cgrp_cset_link *link; 3050 3051 /* 3052 * As cgroup_update_dfl_csses() is only called by 3053 * cgroup_apply_control(). The csses associated with the 3054 * given cgrp will not be affected by changes made to 3055 * its subtree_control file. We can skip them. 3056 */ 3057 if (dsct == cgrp) 3058 continue; 3059 3060 list_for_each_entry(link, &dsct->cset_links, cset_link) 3061 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3062 } 3063 spin_unlock_irq(&css_set_lock); 3064 3065 /* 3066 * We need to write-lock threadgroup_rwsem while migrating tasks. 3067 * However, if there are no source csets for @cgrp, changing its 3068 * controllers isn't gonna produce any task migrations and the 3069 * write-locking can be skipped safely. 3070 */ 3071 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3072 cgroup_attach_lock(has_tasks); 3073 3074 /* NULL dst indicates self on default hierarchy */ 3075 ret = cgroup_migrate_prepare_dst(&mgctx); 3076 if (ret) 3077 goto out_finish; 3078 3079 spin_lock_irq(&css_set_lock); 3080 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3081 mg_src_preload_node) { 3082 struct task_struct *task, *ntask; 3083 3084 /* all tasks in src_csets need to be migrated */ 3085 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3086 cgroup_migrate_add_task(task, &mgctx); 3087 } 3088 spin_unlock_irq(&css_set_lock); 3089 3090 ret = cgroup_migrate_execute(&mgctx); 3091 out_finish: 3092 cgroup_migrate_finish(&mgctx); 3093 cgroup_attach_unlock(has_tasks); 3094 return ret; 3095 } 3096 3097 /** 3098 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3099 * @cgrp: root of the target subtree 3100 * 3101 * Because css offlining is asynchronous, userland may try to re-enable a 3102 * controller while the previous css is still around. This function grabs 3103 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3104 */ 3105 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3106 __acquires(&cgroup_mutex) 3107 { 3108 struct cgroup *dsct; 3109 struct cgroup_subsys_state *d_css; 3110 struct cgroup_subsys *ss; 3111 int ssid; 3112 3113 restart: 3114 cgroup_lock(); 3115 3116 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3117 for_each_subsys(ss, ssid) { 3118 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3119 DEFINE_WAIT(wait); 3120 3121 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3122 continue; 3123 3124 cgroup_get_live(dsct); 3125 prepare_to_wait(&dsct->offline_waitq, &wait, 3126 TASK_UNINTERRUPTIBLE); 3127 3128 cgroup_unlock(); 3129 schedule(); 3130 finish_wait(&dsct->offline_waitq, &wait); 3131 3132 cgroup_put(dsct); 3133 goto restart; 3134 } 3135 } 3136 } 3137 3138 /** 3139 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3140 * @cgrp: root of the target subtree 3141 * 3142 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3143 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3144 * itself. 3145 */ 3146 static void cgroup_save_control(struct cgroup *cgrp) 3147 { 3148 struct cgroup *dsct; 3149 struct cgroup_subsys_state *d_css; 3150 3151 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3152 dsct->old_subtree_control = dsct->subtree_control; 3153 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3154 dsct->old_dom_cgrp = dsct->dom_cgrp; 3155 } 3156 } 3157 3158 /** 3159 * cgroup_propagate_control - refresh control masks of a subtree 3160 * @cgrp: root of the target subtree 3161 * 3162 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3163 * ->subtree_control and propagate controller availability through the 3164 * subtree so that descendants don't have unavailable controllers enabled. 3165 */ 3166 static void cgroup_propagate_control(struct cgroup *cgrp) 3167 { 3168 struct cgroup *dsct; 3169 struct cgroup_subsys_state *d_css; 3170 3171 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3172 dsct->subtree_control &= cgroup_control(dsct); 3173 dsct->subtree_ss_mask = 3174 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3175 cgroup_ss_mask(dsct)); 3176 } 3177 } 3178 3179 /** 3180 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3181 * @cgrp: root of the target subtree 3182 * 3183 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3184 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3185 * itself. 3186 */ 3187 static void cgroup_restore_control(struct cgroup *cgrp) 3188 { 3189 struct cgroup *dsct; 3190 struct cgroup_subsys_state *d_css; 3191 3192 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3193 dsct->subtree_control = dsct->old_subtree_control; 3194 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3195 dsct->dom_cgrp = dsct->old_dom_cgrp; 3196 } 3197 } 3198 3199 static bool css_visible(struct cgroup_subsys_state *css) 3200 { 3201 struct cgroup_subsys *ss = css->ss; 3202 struct cgroup *cgrp = css->cgroup; 3203 3204 if (cgroup_control(cgrp) & (1 << ss->id)) 3205 return true; 3206 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3207 return false; 3208 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3209 } 3210 3211 /** 3212 * cgroup_apply_control_enable - enable or show csses according to control 3213 * @cgrp: root of the target subtree 3214 * 3215 * Walk @cgrp's subtree and create new csses or make the existing ones 3216 * visible. A css is created invisible if it's being implicitly enabled 3217 * through dependency. An invisible css is made visible when the userland 3218 * explicitly enables it. 3219 * 3220 * Returns 0 on success, -errno on failure. On failure, csses which have 3221 * been processed already aren't cleaned up. The caller is responsible for 3222 * cleaning up with cgroup_apply_control_disable(). 3223 */ 3224 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3225 { 3226 struct cgroup *dsct; 3227 struct cgroup_subsys_state *d_css; 3228 struct cgroup_subsys *ss; 3229 int ssid, ret; 3230 3231 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3232 for_each_subsys(ss, ssid) { 3233 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3234 3235 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3236 continue; 3237 3238 if (!css) { 3239 css = css_create(dsct, ss); 3240 if (IS_ERR(css)) 3241 return PTR_ERR(css); 3242 } 3243 3244 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3245 3246 if (css_visible(css)) { 3247 ret = css_populate_dir(css); 3248 if (ret) 3249 return ret; 3250 } 3251 } 3252 } 3253 3254 return 0; 3255 } 3256 3257 /** 3258 * cgroup_apply_control_disable - kill or hide csses according to control 3259 * @cgrp: root of the target subtree 3260 * 3261 * Walk @cgrp's subtree and kill and hide csses so that they match 3262 * cgroup_ss_mask() and cgroup_visible_mask(). 3263 * 3264 * A css is hidden when the userland requests it to be disabled while other 3265 * subsystems are still depending on it. The css must not actively control 3266 * resources and be in the vanilla state if it's made visible again later. 3267 * Controllers which may be depended upon should provide ->css_reset() for 3268 * this purpose. 3269 */ 3270 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3271 { 3272 struct cgroup *dsct; 3273 struct cgroup_subsys_state *d_css; 3274 struct cgroup_subsys *ss; 3275 int ssid; 3276 3277 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3278 for_each_subsys(ss, ssid) { 3279 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3280 3281 if (!css) 3282 continue; 3283 3284 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3285 3286 if (css->parent && 3287 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3288 kill_css(css); 3289 } else if (!css_visible(css)) { 3290 css_clear_dir(css); 3291 if (ss->css_reset) 3292 ss->css_reset(css); 3293 } 3294 } 3295 } 3296 } 3297 3298 /** 3299 * cgroup_apply_control - apply control mask updates to the subtree 3300 * @cgrp: root of the target subtree 3301 * 3302 * subsystems can be enabled and disabled in a subtree using the following 3303 * steps. 3304 * 3305 * 1. Call cgroup_save_control() to stash the current state. 3306 * 2. Update ->subtree_control masks in the subtree as desired. 3307 * 3. Call cgroup_apply_control() to apply the changes. 3308 * 4. Optionally perform other related operations. 3309 * 5. Call cgroup_finalize_control() to finish up. 3310 * 3311 * This function implements step 3 and propagates the mask changes 3312 * throughout @cgrp's subtree, updates csses accordingly and perform 3313 * process migrations. 3314 */ 3315 static int cgroup_apply_control(struct cgroup *cgrp) 3316 { 3317 int ret; 3318 3319 cgroup_propagate_control(cgrp); 3320 3321 ret = cgroup_apply_control_enable(cgrp); 3322 if (ret) 3323 return ret; 3324 3325 /* 3326 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3327 * making the following cgroup_update_dfl_csses() properly update 3328 * css associations of all tasks in the subtree. 3329 */ 3330 return cgroup_update_dfl_csses(cgrp); 3331 } 3332 3333 /** 3334 * cgroup_finalize_control - finalize control mask update 3335 * @cgrp: root of the target subtree 3336 * @ret: the result of the update 3337 * 3338 * Finalize control mask update. See cgroup_apply_control() for more info. 3339 */ 3340 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3341 { 3342 if (ret) { 3343 cgroup_restore_control(cgrp); 3344 cgroup_propagate_control(cgrp); 3345 } 3346 3347 cgroup_apply_control_disable(cgrp); 3348 } 3349 3350 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3351 { 3352 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3353 3354 /* if nothing is getting enabled, nothing to worry about */ 3355 if (!enable) 3356 return 0; 3357 3358 /* can @cgrp host any resources? */ 3359 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3360 return -EOPNOTSUPP; 3361 3362 /* mixables don't care */ 3363 if (cgroup_is_mixable(cgrp)) 3364 return 0; 3365 3366 if (domain_enable) { 3367 /* can't enable domain controllers inside a thread subtree */ 3368 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3369 return -EOPNOTSUPP; 3370 } else { 3371 /* 3372 * Threaded controllers can handle internal competitions 3373 * and are always allowed inside a (prospective) thread 3374 * subtree. 3375 */ 3376 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3377 return 0; 3378 } 3379 3380 /* 3381 * Controllers can't be enabled for a cgroup with tasks to avoid 3382 * child cgroups competing against tasks. 3383 */ 3384 if (cgroup_has_tasks(cgrp)) 3385 return -EBUSY; 3386 3387 return 0; 3388 } 3389 3390 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3391 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3392 char *buf, size_t nbytes, 3393 loff_t off) 3394 { 3395 u16 enable = 0, disable = 0; 3396 struct cgroup *cgrp, *child; 3397 struct cgroup_subsys *ss; 3398 char *tok; 3399 int ssid, ret; 3400 3401 /* 3402 * Parse input - space separated list of subsystem names prefixed 3403 * with either + or -. 3404 */ 3405 buf = strstrip(buf); 3406 while ((tok = strsep(&buf, " "))) { 3407 if (tok[0] == '\0') 3408 continue; 3409 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3410 if (!cgroup_ssid_enabled(ssid) || 3411 strcmp(tok + 1, ss->name)) 3412 continue; 3413 3414 if (*tok == '+') { 3415 enable |= 1 << ssid; 3416 disable &= ~(1 << ssid); 3417 } else if (*tok == '-') { 3418 disable |= 1 << ssid; 3419 enable &= ~(1 << ssid); 3420 } else { 3421 return -EINVAL; 3422 } 3423 break; 3424 } while_each_subsys_mask(); 3425 if (ssid == CGROUP_SUBSYS_COUNT) 3426 return -EINVAL; 3427 } 3428 3429 cgrp = cgroup_kn_lock_live(of->kn, true); 3430 if (!cgrp) 3431 return -ENODEV; 3432 3433 for_each_subsys(ss, ssid) { 3434 if (enable & (1 << ssid)) { 3435 if (cgrp->subtree_control & (1 << ssid)) { 3436 enable &= ~(1 << ssid); 3437 continue; 3438 } 3439 3440 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3441 ret = -ENOENT; 3442 goto out_unlock; 3443 } 3444 } else if (disable & (1 << ssid)) { 3445 if (!(cgrp->subtree_control & (1 << ssid))) { 3446 disable &= ~(1 << ssid); 3447 continue; 3448 } 3449 3450 /* a child has it enabled? */ 3451 cgroup_for_each_live_child(child, cgrp) { 3452 if (child->subtree_control & (1 << ssid)) { 3453 ret = -EBUSY; 3454 goto out_unlock; 3455 } 3456 } 3457 } 3458 } 3459 3460 if (!enable && !disable) { 3461 ret = 0; 3462 goto out_unlock; 3463 } 3464 3465 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3466 if (ret) 3467 goto out_unlock; 3468 3469 /* save and update control masks and prepare csses */ 3470 cgroup_save_control(cgrp); 3471 3472 cgrp->subtree_control |= enable; 3473 cgrp->subtree_control &= ~disable; 3474 3475 ret = cgroup_apply_control(cgrp); 3476 cgroup_finalize_control(cgrp, ret); 3477 if (ret) 3478 goto out_unlock; 3479 3480 kernfs_activate(cgrp->kn); 3481 out_unlock: 3482 cgroup_kn_unlock(of->kn); 3483 return ret ?: nbytes; 3484 } 3485 3486 /** 3487 * cgroup_enable_threaded - make @cgrp threaded 3488 * @cgrp: the target cgroup 3489 * 3490 * Called when "threaded" is written to the cgroup.type interface file and 3491 * tries to make @cgrp threaded and join the parent's resource domain. 3492 * This function is never called on the root cgroup as cgroup.type doesn't 3493 * exist on it. 3494 */ 3495 static int cgroup_enable_threaded(struct cgroup *cgrp) 3496 { 3497 struct cgroup *parent = cgroup_parent(cgrp); 3498 struct cgroup *dom_cgrp = parent->dom_cgrp; 3499 struct cgroup *dsct; 3500 struct cgroup_subsys_state *d_css; 3501 int ret; 3502 3503 lockdep_assert_held(&cgroup_mutex); 3504 3505 /* noop if already threaded */ 3506 if (cgroup_is_threaded(cgrp)) 3507 return 0; 3508 3509 /* 3510 * If @cgroup is populated or has domain controllers enabled, it 3511 * can't be switched. While the below cgroup_can_be_thread_root() 3512 * test can catch the same conditions, that's only when @parent is 3513 * not mixable, so let's check it explicitly. 3514 */ 3515 if (cgroup_is_populated(cgrp) || 3516 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3517 return -EOPNOTSUPP; 3518 3519 /* we're joining the parent's domain, ensure its validity */ 3520 if (!cgroup_is_valid_domain(dom_cgrp) || 3521 !cgroup_can_be_thread_root(dom_cgrp)) 3522 return -EOPNOTSUPP; 3523 3524 /* 3525 * The following shouldn't cause actual migrations and should 3526 * always succeed. 3527 */ 3528 cgroup_save_control(cgrp); 3529 3530 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3531 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3532 dsct->dom_cgrp = dom_cgrp; 3533 3534 ret = cgroup_apply_control(cgrp); 3535 if (!ret) 3536 parent->nr_threaded_children++; 3537 3538 cgroup_finalize_control(cgrp, ret); 3539 return ret; 3540 } 3541 3542 static int cgroup_type_show(struct seq_file *seq, void *v) 3543 { 3544 struct cgroup *cgrp = seq_css(seq)->cgroup; 3545 3546 if (cgroup_is_threaded(cgrp)) 3547 seq_puts(seq, "threaded\n"); 3548 else if (!cgroup_is_valid_domain(cgrp)) 3549 seq_puts(seq, "domain invalid\n"); 3550 else if (cgroup_is_thread_root(cgrp)) 3551 seq_puts(seq, "domain threaded\n"); 3552 else 3553 seq_puts(seq, "domain\n"); 3554 3555 return 0; 3556 } 3557 3558 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3559 size_t nbytes, loff_t off) 3560 { 3561 struct cgroup *cgrp; 3562 int ret; 3563 3564 /* only switching to threaded mode is supported */ 3565 if (strcmp(strstrip(buf), "threaded")) 3566 return -EINVAL; 3567 3568 /* drain dying csses before we re-apply (threaded) subtree control */ 3569 cgrp = cgroup_kn_lock_live(of->kn, true); 3570 if (!cgrp) 3571 return -ENOENT; 3572 3573 /* threaded can only be enabled */ 3574 ret = cgroup_enable_threaded(cgrp); 3575 3576 cgroup_kn_unlock(of->kn); 3577 return ret ?: nbytes; 3578 } 3579 3580 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3581 { 3582 struct cgroup *cgrp = seq_css(seq)->cgroup; 3583 int descendants = READ_ONCE(cgrp->max_descendants); 3584 3585 if (descendants == INT_MAX) 3586 seq_puts(seq, "max\n"); 3587 else 3588 seq_printf(seq, "%d\n", descendants); 3589 3590 return 0; 3591 } 3592 3593 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3594 char *buf, size_t nbytes, loff_t off) 3595 { 3596 struct cgroup *cgrp; 3597 int descendants; 3598 ssize_t ret; 3599 3600 buf = strstrip(buf); 3601 if (!strcmp(buf, "max")) { 3602 descendants = INT_MAX; 3603 } else { 3604 ret = kstrtoint(buf, 0, &descendants); 3605 if (ret) 3606 return ret; 3607 } 3608 3609 if (descendants < 0) 3610 return -ERANGE; 3611 3612 cgrp = cgroup_kn_lock_live(of->kn, false); 3613 if (!cgrp) 3614 return -ENOENT; 3615 3616 cgrp->max_descendants = descendants; 3617 3618 cgroup_kn_unlock(of->kn); 3619 3620 return nbytes; 3621 } 3622 3623 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3624 { 3625 struct cgroup *cgrp = seq_css(seq)->cgroup; 3626 int depth = READ_ONCE(cgrp->max_depth); 3627 3628 if (depth == INT_MAX) 3629 seq_puts(seq, "max\n"); 3630 else 3631 seq_printf(seq, "%d\n", depth); 3632 3633 return 0; 3634 } 3635 3636 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3637 char *buf, size_t nbytes, loff_t off) 3638 { 3639 struct cgroup *cgrp; 3640 ssize_t ret; 3641 int depth; 3642 3643 buf = strstrip(buf); 3644 if (!strcmp(buf, "max")) { 3645 depth = INT_MAX; 3646 } else { 3647 ret = kstrtoint(buf, 0, &depth); 3648 if (ret) 3649 return ret; 3650 } 3651 3652 if (depth < 0) 3653 return -ERANGE; 3654 3655 cgrp = cgroup_kn_lock_live(of->kn, false); 3656 if (!cgrp) 3657 return -ENOENT; 3658 3659 cgrp->max_depth = depth; 3660 3661 cgroup_kn_unlock(of->kn); 3662 3663 return nbytes; 3664 } 3665 3666 static int cgroup_events_show(struct seq_file *seq, void *v) 3667 { 3668 struct cgroup *cgrp = seq_css(seq)->cgroup; 3669 3670 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3671 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3672 3673 return 0; 3674 } 3675 3676 static int cgroup_stat_show(struct seq_file *seq, void *v) 3677 { 3678 struct cgroup *cgroup = seq_css(seq)->cgroup; 3679 struct cgroup_subsys_state *css; 3680 int dying_cnt[CGROUP_SUBSYS_COUNT]; 3681 int ssid; 3682 3683 seq_printf(seq, "nr_descendants %d\n", 3684 cgroup->nr_descendants); 3685 3686 /* 3687 * Show the number of live and dying csses associated with each of 3688 * non-inhibited cgroup subsystems that is bound to cgroup v2. 3689 * 3690 * Without proper lock protection, racing is possible. So the 3691 * numbers may not be consistent when that happens. 3692 */ 3693 rcu_read_lock(); 3694 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { 3695 dying_cnt[ssid] = -1; 3696 if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) || 3697 (cgroup_subsys[ssid]->root != &cgrp_dfl_root)) 3698 continue; 3699 css = rcu_dereference_raw(cgroup->subsys[ssid]); 3700 dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid]; 3701 seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name, 3702 css ? (css->nr_descendants + 1) : 0); 3703 } 3704 3705 seq_printf(seq, "nr_dying_descendants %d\n", 3706 cgroup->nr_dying_descendants); 3707 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) { 3708 if (dying_cnt[ssid] >= 0) 3709 seq_printf(seq, "nr_dying_subsys_%s %d\n", 3710 cgroup_subsys[ssid]->name, dying_cnt[ssid]); 3711 } 3712 rcu_read_unlock(); 3713 return 0; 3714 } 3715 3716 #ifdef CONFIG_CGROUP_SCHED 3717 /** 3718 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 3719 * @cgrp: the cgroup of interest 3720 * @ss: the subsystem of interest 3721 * 3722 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 3723 * or is offline, %NULL is returned. 3724 */ 3725 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 3726 struct cgroup_subsys *ss) 3727 { 3728 struct cgroup_subsys_state *css; 3729 3730 rcu_read_lock(); 3731 css = cgroup_css(cgrp, ss); 3732 if (css && !css_tryget_online(css)) 3733 css = NULL; 3734 rcu_read_unlock(); 3735 3736 return css; 3737 } 3738 3739 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid) 3740 { 3741 struct cgroup *cgrp = seq_css(seq)->cgroup; 3742 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3743 struct cgroup_subsys_state *css; 3744 int ret; 3745 3746 if (!ss->css_extra_stat_show) 3747 return 0; 3748 3749 css = cgroup_tryget_css(cgrp, ss); 3750 if (!css) 3751 return 0; 3752 3753 ret = ss->css_extra_stat_show(seq, css); 3754 css_put(css); 3755 return ret; 3756 } 3757 3758 static int cgroup_local_stat_show(struct seq_file *seq, 3759 struct cgroup *cgrp, int ssid) 3760 { 3761 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3762 struct cgroup_subsys_state *css; 3763 int ret; 3764 3765 if (!ss->css_local_stat_show) 3766 return 0; 3767 3768 css = cgroup_tryget_css(cgrp, ss); 3769 if (!css) 3770 return 0; 3771 3772 ret = ss->css_local_stat_show(seq, css); 3773 css_put(css); 3774 return ret; 3775 } 3776 #endif 3777 3778 static int cpu_stat_show(struct seq_file *seq, void *v) 3779 { 3780 int ret = 0; 3781 3782 cgroup_base_stat_cputime_show(seq); 3783 #ifdef CONFIG_CGROUP_SCHED 3784 ret = cgroup_extra_stat_show(seq, cpu_cgrp_id); 3785 #endif 3786 return ret; 3787 } 3788 3789 static int cpu_local_stat_show(struct seq_file *seq, void *v) 3790 { 3791 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3792 int ret = 0; 3793 3794 #ifdef CONFIG_CGROUP_SCHED 3795 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id); 3796 #endif 3797 return ret; 3798 } 3799 3800 #ifdef CONFIG_PSI 3801 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3802 { 3803 struct cgroup *cgrp = seq_css(seq)->cgroup; 3804 struct psi_group *psi = cgroup_psi(cgrp); 3805 3806 return psi_show(seq, psi, PSI_IO); 3807 } 3808 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3809 { 3810 struct cgroup *cgrp = seq_css(seq)->cgroup; 3811 struct psi_group *psi = cgroup_psi(cgrp); 3812 3813 return psi_show(seq, psi, PSI_MEM); 3814 } 3815 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3816 { 3817 struct cgroup *cgrp = seq_css(seq)->cgroup; 3818 struct psi_group *psi = cgroup_psi(cgrp); 3819 3820 return psi_show(seq, psi, PSI_CPU); 3821 } 3822 3823 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3824 size_t nbytes, enum psi_res res) 3825 { 3826 struct cgroup_file_ctx *ctx = of->priv; 3827 struct psi_trigger *new; 3828 struct cgroup *cgrp; 3829 struct psi_group *psi; 3830 3831 cgrp = cgroup_kn_lock_live(of->kn, false); 3832 if (!cgrp) 3833 return -ENODEV; 3834 3835 cgroup_get(cgrp); 3836 cgroup_kn_unlock(of->kn); 3837 3838 /* Allow only one trigger per file descriptor */ 3839 if (ctx->psi.trigger) { 3840 cgroup_put(cgrp); 3841 return -EBUSY; 3842 } 3843 3844 psi = cgroup_psi(cgrp); 3845 new = psi_trigger_create(psi, buf, res, of->file, of); 3846 if (IS_ERR(new)) { 3847 cgroup_put(cgrp); 3848 return PTR_ERR(new); 3849 } 3850 3851 smp_store_release(&ctx->psi.trigger, new); 3852 cgroup_put(cgrp); 3853 3854 return nbytes; 3855 } 3856 3857 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3858 char *buf, size_t nbytes, 3859 loff_t off) 3860 { 3861 return pressure_write(of, buf, nbytes, PSI_IO); 3862 } 3863 3864 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3865 char *buf, size_t nbytes, 3866 loff_t off) 3867 { 3868 return pressure_write(of, buf, nbytes, PSI_MEM); 3869 } 3870 3871 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3872 char *buf, size_t nbytes, 3873 loff_t off) 3874 { 3875 return pressure_write(of, buf, nbytes, PSI_CPU); 3876 } 3877 3878 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3879 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3880 { 3881 struct cgroup *cgrp = seq_css(seq)->cgroup; 3882 struct psi_group *psi = cgroup_psi(cgrp); 3883 3884 return psi_show(seq, psi, PSI_IRQ); 3885 } 3886 3887 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3888 char *buf, size_t nbytes, 3889 loff_t off) 3890 { 3891 return pressure_write(of, buf, nbytes, PSI_IRQ); 3892 } 3893 #endif 3894 3895 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3896 { 3897 struct cgroup *cgrp = seq_css(seq)->cgroup; 3898 struct psi_group *psi = cgroup_psi(cgrp); 3899 3900 seq_printf(seq, "%d\n", psi->enabled); 3901 3902 return 0; 3903 } 3904 3905 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3906 char *buf, size_t nbytes, 3907 loff_t off) 3908 { 3909 ssize_t ret; 3910 int enable; 3911 struct cgroup *cgrp; 3912 struct psi_group *psi; 3913 3914 ret = kstrtoint(strstrip(buf), 0, &enable); 3915 if (ret) 3916 return ret; 3917 3918 if (enable < 0 || enable > 1) 3919 return -ERANGE; 3920 3921 cgrp = cgroup_kn_lock_live(of->kn, false); 3922 if (!cgrp) 3923 return -ENOENT; 3924 3925 psi = cgroup_psi(cgrp); 3926 if (psi->enabled != enable) { 3927 int i; 3928 3929 /* show or hide {cpu,memory,io,irq}.pressure files */ 3930 for (i = 0; i < NR_PSI_RESOURCES; i++) 3931 cgroup_file_show(&cgrp->psi_files[i], enable); 3932 3933 psi->enabled = enable; 3934 if (enable) 3935 psi_cgroup_restart(psi); 3936 } 3937 3938 cgroup_kn_unlock(of->kn); 3939 3940 return nbytes; 3941 } 3942 3943 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3944 poll_table *pt) 3945 { 3946 struct cgroup_file_ctx *ctx = of->priv; 3947 3948 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3949 } 3950 3951 static void cgroup_pressure_release(struct kernfs_open_file *of) 3952 { 3953 struct cgroup_file_ctx *ctx = of->priv; 3954 3955 psi_trigger_destroy(ctx->psi.trigger); 3956 } 3957 3958 bool cgroup_psi_enabled(void) 3959 { 3960 if (static_branch_likely(&psi_disabled)) 3961 return false; 3962 3963 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3964 } 3965 3966 #else /* CONFIG_PSI */ 3967 bool cgroup_psi_enabled(void) 3968 { 3969 return false; 3970 } 3971 3972 #endif /* CONFIG_PSI */ 3973 3974 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3975 { 3976 struct cgroup *cgrp = seq_css(seq)->cgroup; 3977 3978 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3979 3980 return 0; 3981 } 3982 3983 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3984 char *buf, size_t nbytes, loff_t off) 3985 { 3986 struct cgroup *cgrp; 3987 ssize_t ret; 3988 int freeze; 3989 3990 ret = kstrtoint(strstrip(buf), 0, &freeze); 3991 if (ret) 3992 return ret; 3993 3994 if (freeze < 0 || freeze > 1) 3995 return -ERANGE; 3996 3997 cgrp = cgroup_kn_lock_live(of->kn, false); 3998 if (!cgrp) 3999 return -ENOENT; 4000 4001 cgroup_freeze(cgrp, freeze); 4002 4003 cgroup_kn_unlock(of->kn); 4004 4005 return nbytes; 4006 } 4007 4008 static void __cgroup_kill(struct cgroup *cgrp) 4009 { 4010 struct css_task_iter it; 4011 struct task_struct *task; 4012 4013 lockdep_assert_held(&cgroup_mutex); 4014 4015 spin_lock_irq(&css_set_lock); 4016 set_bit(CGRP_KILL, &cgrp->flags); 4017 spin_unlock_irq(&css_set_lock); 4018 4019 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 4020 while ((task = css_task_iter_next(&it))) { 4021 /* Ignore kernel threads here. */ 4022 if (task->flags & PF_KTHREAD) 4023 continue; 4024 4025 /* Skip tasks that are already dying. */ 4026 if (__fatal_signal_pending(task)) 4027 continue; 4028 4029 send_sig(SIGKILL, task, 0); 4030 } 4031 css_task_iter_end(&it); 4032 4033 spin_lock_irq(&css_set_lock); 4034 clear_bit(CGRP_KILL, &cgrp->flags); 4035 spin_unlock_irq(&css_set_lock); 4036 } 4037 4038 static void cgroup_kill(struct cgroup *cgrp) 4039 { 4040 struct cgroup_subsys_state *css; 4041 struct cgroup *dsct; 4042 4043 lockdep_assert_held(&cgroup_mutex); 4044 4045 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 4046 __cgroup_kill(dsct); 4047 } 4048 4049 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 4050 size_t nbytes, loff_t off) 4051 { 4052 ssize_t ret = 0; 4053 int kill; 4054 struct cgroup *cgrp; 4055 4056 ret = kstrtoint(strstrip(buf), 0, &kill); 4057 if (ret) 4058 return ret; 4059 4060 if (kill != 1) 4061 return -ERANGE; 4062 4063 cgrp = cgroup_kn_lock_live(of->kn, false); 4064 if (!cgrp) 4065 return -ENOENT; 4066 4067 /* 4068 * Killing is a process directed operation, i.e. the whole thread-group 4069 * is taken down so act like we do for cgroup.procs and only make this 4070 * writable in non-threaded cgroups. 4071 */ 4072 if (cgroup_is_threaded(cgrp)) 4073 ret = -EOPNOTSUPP; 4074 else 4075 cgroup_kill(cgrp); 4076 4077 cgroup_kn_unlock(of->kn); 4078 4079 return ret ?: nbytes; 4080 } 4081 4082 static int cgroup_file_open(struct kernfs_open_file *of) 4083 { 4084 struct cftype *cft = of_cft(of); 4085 struct cgroup_file_ctx *ctx; 4086 int ret; 4087 4088 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 4089 if (!ctx) 4090 return -ENOMEM; 4091 4092 ctx->ns = current->nsproxy->cgroup_ns; 4093 get_cgroup_ns(ctx->ns); 4094 of->priv = ctx; 4095 4096 if (!cft->open) 4097 return 0; 4098 4099 ret = cft->open(of); 4100 if (ret) { 4101 put_cgroup_ns(ctx->ns); 4102 kfree(ctx); 4103 } 4104 return ret; 4105 } 4106 4107 static void cgroup_file_release(struct kernfs_open_file *of) 4108 { 4109 struct cftype *cft = of_cft(of); 4110 struct cgroup_file_ctx *ctx = of->priv; 4111 4112 if (cft->release) 4113 cft->release(of); 4114 put_cgroup_ns(ctx->ns); 4115 kfree(ctx); 4116 } 4117 4118 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4119 size_t nbytes, loff_t off) 4120 { 4121 struct cgroup_file_ctx *ctx = of->priv; 4122 struct cgroup *cgrp = of->kn->parent->priv; 4123 struct cftype *cft = of_cft(of); 4124 struct cgroup_subsys_state *css; 4125 int ret; 4126 4127 if (!nbytes) 4128 return 0; 4129 4130 /* 4131 * If namespaces are delegation boundaries, disallow writes to 4132 * files in an non-init namespace root from inside the namespace 4133 * except for the files explicitly marked delegatable - 4134 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control. 4135 */ 4136 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4137 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4138 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4139 return -EPERM; 4140 4141 if (cft->write) 4142 return cft->write(of, buf, nbytes, off); 4143 4144 /* 4145 * kernfs guarantees that a file isn't deleted with operations in 4146 * flight, which means that the matching css is and stays alive and 4147 * doesn't need to be pinned. The RCU locking is not necessary 4148 * either. It's just for the convenience of using cgroup_css(). 4149 */ 4150 rcu_read_lock(); 4151 css = cgroup_css(cgrp, cft->ss); 4152 rcu_read_unlock(); 4153 4154 if (cft->write_u64) { 4155 unsigned long long v; 4156 ret = kstrtoull(buf, 0, &v); 4157 if (!ret) 4158 ret = cft->write_u64(css, cft, v); 4159 } else if (cft->write_s64) { 4160 long long v; 4161 ret = kstrtoll(buf, 0, &v); 4162 if (!ret) 4163 ret = cft->write_s64(css, cft, v); 4164 } else { 4165 ret = -EINVAL; 4166 } 4167 4168 return ret ?: nbytes; 4169 } 4170 4171 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4172 { 4173 struct cftype *cft = of_cft(of); 4174 4175 if (cft->poll) 4176 return cft->poll(of, pt); 4177 4178 return kernfs_generic_poll(of, pt); 4179 } 4180 4181 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4182 { 4183 return seq_cft(seq)->seq_start(seq, ppos); 4184 } 4185 4186 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4187 { 4188 return seq_cft(seq)->seq_next(seq, v, ppos); 4189 } 4190 4191 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4192 { 4193 if (seq_cft(seq)->seq_stop) 4194 seq_cft(seq)->seq_stop(seq, v); 4195 } 4196 4197 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4198 { 4199 struct cftype *cft = seq_cft(m); 4200 struct cgroup_subsys_state *css = seq_css(m); 4201 4202 if (cft->seq_show) 4203 return cft->seq_show(m, arg); 4204 4205 if (cft->read_u64) 4206 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4207 else if (cft->read_s64) 4208 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4209 else 4210 return -EINVAL; 4211 return 0; 4212 } 4213 4214 static struct kernfs_ops cgroup_kf_single_ops = { 4215 .atomic_write_len = PAGE_SIZE, 4216 .open = cgroup_file_open, 4217 .release = cgroup_file_release, 4218 .write = cgroup_file_write, 4219 .poll = cgroup_file_poll, 4220 .seq_show = cgroup_seqfile_show, 4221 }; 4222 4223 static struct kernfs_ops cgroup_kf_ops = { 4224 .atomic_write_len = PAGE_SIZE, 4225 .open = cgroup_file_open, 4226 .release = cgroup_file_release, 4227 .write = cgroup_file_write, 4228 .poll = cgroup_file_poll, 4229 .seq_start = cgroup_seqfile_start, 4230 .seq_next = cgroup_seqfile_next, 4231 .seq_stop = cgroup_seqfile_stop, 4232 .seq_show = cgroup_seqfile_show, 4233 }; 4234 4235 static void cgroup_file_notify_timer(struct timer_list *timer) 4236 { 4237 cgroup_file_notify(container_of(timer, struct cgroup_file, 4238 notify_timer)); 4239 } 4240 4241 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4242 struct cftype *cft) 4243 { 4244 char name[CGROUP_FILE_NAME_MAX]; 4245 struct kernfs_node *kn; 4246 struct lock_class_key *key = NULL; 4247 4248 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4249 key = &cft->lockdep_key; 4250 #endif 4251 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4252 cgroup_file_mode(cft), 4253 current_fsuid(), current_fsgid(), 4254 0, cft->kf_ops, cft, 4255 NULL, key); 4256 if (IS_ERR(kn)) 4257 return PTR_ERR(kn); 4258 4259 if (cft->file_offset) { 4260 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4261 4262 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4263 4264 spin_lock_irq(&cgroup_file_kn_lock); 4265 cfile->kn = kn; 4266 spin_unlock_irq(&cgroup_file_kn_lock); 4267 } 4268 4269 return 0; 4270 } 4271 4272 /** 4273 * cgroup_addrm_files - add or remove files to a cgroup directory 4274 * @css: the target css 4275 * @cgrp: the target cgroup (usually css->cgroup) 4276 * @cfts: array of cftypes to be added 4277 * @is_add: whether to add or remove 4278 * 4279 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4280 * For removals, this function never fails. 4281 */ 4282 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4283 struct cgroup *cgrp, struct cftype cfts[], 4284 bool is_add) 4285 { 4286 struct cftype *cft, *cft_end = NULL; 4287 int ret = 0; 4288 4289 lockdep_assert_held(&cgroup_mutex); 4290 4291 restart: 4292 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4293 /* does cft->flags tell us to skip this file on @cgrp? */ 4294 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4295 continue; 4296 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4297 continue; 4298 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4299 continue; 4300 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4301 continue; 4302 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4303 continue; 4304 if (is_add) { 4305 ret = cgroup_add_file(css, cgrp, cft); 4306 if (ret) { 4307 pr_warn("%s: failed to add %s, err=%d\n", 4308 __func__, cft->name, ret); 4309 cft_end = cft; 4310 is_add = false; 4311 goto restart; 4312 } 4313 } else { 4314 cgroup_rm_file(cgrp, cft); 4315 } 4316 } 4317 return ret; 4318 } 4319 4320 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4321 { 4322 struct cgroup_subsys *ss = cfts[0].ss; 4323 struct cgroup *root = &ss->root->cgrp; 4324 struct cgroup_subsys_state *css; 4325 int ret = 0; 4326 4327 lockdep_assert_held(&cgroup_mutex); 4328 4329 /* add/rm files for all cgroups created before */ 4330 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4331 struct cgroup *cgrp = css->cgroup; 4332 4333 if (!(css->flags & CSS_VISIBLE)) 4334 continue; 4335 4336 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4337 if (ret) 4338 break; 4339 } 4340 4341 if (is_add && !ret) 4342 kernfs_activate(root->kn); 4343 return ret; 4344 } 4345 4346 static void cgroup_exit_cftypes(struct cftype *cfts) 4347 { 4348 struct cftype *cft; 4349 4350 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4351 /* free copy for custom atomic_write_len, see init_cftypes() */ 4352 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4353 kfree(cft->kf_ops); 4354 cft->kf_ops = NULL; 4355 cft->ss = NULL; 4356 4357 /* revert flags set by cgroup core while adding @cfts */ 4358 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4359 __CFTYPE_ADDED); 4360 } 4361 } 4362 4363 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4364 { 4365 struct cftype *cft; 4366 int ret = 0; 4367 4368 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4369 struct kernfs_ops *kf_ops; 4370 4371 WARN_ON(cft->ss || cft->kf_ops); 4372 4373 if (cft->flags & __CFTYPE_ADDED) { 4374 ret = -EBUSY; 4375 break; 4376 } 4377 4378 if (cft->seq_start) 4379 kf_ops = &cgroup_kf_ops; 4380 else 4381 kf_ops = &cgroup_kf_single_ops; 4382 4383 /* 4384 * Ugh... if @cft wants a custom max_write_len, we need to 4385 * make a copy of kf_ops to set its atomic_write_len. 4386 */ 4387 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4388 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4389 if (!kf_ops) { 4390 ret = -ENOMEM; 4391 break; 4392 } 4393 kf_ops->atomic_write_len = cft->max_write_len; 4394 } 4395 4396 cft->kf_ops = kf_ops; 4397 cft->ss = ss; 4398 cft->flags |= __CFTYPE_ADDED; 4399 } 4400 4401 if (ret) 4402 cgroup_exit_cftypes(cfts); 4403 return ret; 4404 } 4405 4406 static void cgroup_rm_cftypes_locked(struct cftype *cfts) 4407 { 4408 lockdep_assert_held(&cgroup_mutex); 4409 4410 list_del(&cfts->node); 4411 cgroup_apply_cftypes(cfts, false); 4412 cgroup_exit_cftypes(cfts); 4413 } 4414 4415 /** 4416 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4417 * @cfts: zero-length name terminated array of cftypes 4418 * 4419 * Unregister @cfts. Files described by @cfts are removed from all 4420 * existing cgroups and all future cgroups won't have them either. This 4421 * function can be called anytime whether @cfts' subsys is attached or not. 4422 * 4423 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4424 * registered. 4425 */ 4426 int cgroup_rm_cftypes(struct cftype *cfts) 4427 { 4428 if (!cfts || cfts[0].name[0] == '\0') 4429 return 0; 4430 4431 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4432 return -ENOENT; 4433 4434 cgroup_lock(); 4435 cgroup_rm_cftypes_locked(cfts); 4436 cgroup_unlock(); 4437 return 0; 4438 } 4439 4440 /** 4441 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4442 * @ss: target cgroup subsystem 4443 * @cfts: zero-length name terminated array of cftypes 4444 * 4445 * Register @cfts to @ss. Files described by @cfts are created for all 4446 * existing cgroups to which @ss is attached and all future cgroups will 4447 * have them too. This function can be called anytime whether @ss is 4448 * attached or not. 4449 * 4450 * Returns 0 on successful registration, -errno on failure. Note that this 4451 * function currently returns 0 as long as @cfts registration is successful 4452 * even if some file creation attempts on existing cgroups fail. 4453 */ 4454 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4455 { 4456 int ret; 4457 4458 if (!cgroup_ssid_enabled(ss->id)) 4459 return 0; 4460 4461 if (!cfts || cfts[0].name[0] == '\0') 4462 return 0; 4463 4464 ret = cgroup_init_cftypes(ss, cfts); 4465 if (ret) 4466 return ret; 4467 4468 cgroup_lock(); 4469 4470 list_add_tail(&cfts->node, &ss->cfts); 4471 ret = cgroup_apply_cftypes(cfts, true); 4472 if (ret) 4473 cgroup_rm_cftypes_locked(cfts); 4474 4475 cgroup_unlock(); 4476 return ret; 4477 } 4478 4479 /** 4480 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4481 * @ss: target cgroup subsystem 4482 * @cfts: zero-length name terminated array of cftypes 4483 * 4484 * Similar to cgroup_add_cftypes() but the added files are only used for 4485 * the default hierarchy. 4486 */ 4487 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4488 { 4489 struct cftype *cft; 4490 4491 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4492 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4493 return cgroup_add_cftypes(ss, cfts); 4494 } 4495 4496 /** 4497 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4498 * @ss: target cgroup subsystem 4499 * @cfts: zero-length name terminated array of cftypes 4500 * 4501 * Similar to cgroup_add_cftypes() but the added files are only used for 4502 * the legacy hierarchies. 4503 */ 4504 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4505 { 4506 struct cftype *cft; 4507 4508 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4509 cft->flags |= __CFTYPE_NOT_ON_DFL; 4510 return cgroup_add_cftypes(ss, cfts); 4511 } 4512 4513 /** 4514 * cgroup_file_notify - generate a file modified event for a cgroup_file 4515 * @cfile: target cgroup_file 4516 * 4517 * @cfile must have been obtained by setting cftype->file_offset. 4518 */ 4519 void cgroup_file_notify(struct cgroup_file *cfile) 4520 { 4521 unsigned long flags; 4522 4523 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4524 if (cfile->kn) { 4525 unsigned long last = cfile->notified_at; 4526 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4527 4528 if (time_in_range(jiffies, last, next)) { 4529 timer_reduce(&cfile->notify_timer, next); 4530 } else { 4531 kernfs_notify(cfile->kn); 4532 cfile->notified_at = jiffies; 4533 } 4534 } 4535 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4536 } 4537 4538 /** 4539 * cgroup_file_show - show or hide a hidden cgroup file 4540 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4541 * @show: whether to show or hide 4542 */ 4543 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4544 { 4545 struct kernfs_node *kn; 4546 4547 spin_lock_irq(&cgroup_file_kn_lock); 4548 kn = cfile->kn; 4549 kernfs_get(kn); 4550 spin_unlock_irq(&cgroup_file_kn_lock); 4551 4552 if (kn) 4553 kernfs_show(kn, show); 4554 4555 kernfs_put(kn); 4556 } 4557 4558 /** 4559 * css_next_child - find the next child of a given css 4560 * @pos: the current position (%NULL to initiate traversal) 4561 * @parent: css whose children to walk 4562 * 4563 * This function returns the next child of @parent and should be called 4564 * under either cgroup_mutex or RCU read lock. The only requirement is 4565 * that @parent and @pos are accessible. The next sibling is guaranteed to 4566 * be returned regardless of their states. 4567 * 4568 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4569 * css which finished ->css_online() is guaranteed to be visible in the 4570 * future iterations and will stay visible until the last reference is put. 4571 * A css which hasn't finished ->css_online() or already finished 4572 * ->css_offline() may show up during traversal. It's each subsystem's 4573 * responsibility to synchronize against on/offlining. 4574 */ 4575 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4576 struct cgroup_subsys_state *parent) 4577 { 4578 struct cgroup_subsys_state *next; 4579 4580 cgroup_assert_mutex_or_rcu_locked(); 4581 4582 /* 4583 * @pos could already have been unlinked from the sibling list. 4584 * Once a cgroup is removed, its ->sibling.next is no longer 4585 * updated when its next sibling changes. CSS_RELEASED is set when 4586 * @pos is taken off list, at which time its next pointer is valid, 4587 * and, as releases are serialized, the one pointed to by the next 4588 * pointer is guaranteed to not have started release yet. This 4589 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4590 * critical section, the one pointed to by its next pointer is 4591 * guaranteed to not have finished its RCU grace period even if we 4592 * have dropped rcu_read_lock() in-between iterations. 4593 * 4594 * If @pos has CSS_RELEASED set, its next pointer can't be 4595 * dereferenced; however, as each css is given a monotonically 4596 * increasing unique serial number and always appended to the 4597 * sibling list, the next one can be found by walking the parent's 4598 * children until the first css with higher serial number than 4599 * @pos's. While this path can be slower, it happens iff iteration 4600 * races against release and the race window is very small. 4601 */ 4602 if (!pos) { 4603 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4604 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4605 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4606 } else { 4607 list_for_each_entry_rcu(next, &parent->children, sibling, 4608 lockdep_is_held(&cgroup_mutex)) 4609 if (next->serial_nr > pos->serial_nr) 4610 break; 4611 } 4612 4613 /* 4614 * @next, if not pointing to the head, can be dereferenced and is 4615 * the next sibling. 4616 */ 4617 if (&next->sibling != &parent->children) 4618 return next; 4619 return NULL; 4620 } 4621 4622 /** 4623 * css_next_descendant_pre - find the next descendant for pre-order walk 4624 * @pos: the current position (%NULL to initiate traversal) 4625 * @root: css whose descendants to walk 4626 * 4627 * To be used by css_for_each_descendant_pre(). Find the next descendant 4628 * to visit for pre-order traversal of @root's descendants. @root is 4629 * included in the iteration and the first node to be visited. 4630 * 4631 * While this function requires cgroup_mutex or RCU read locking, it 4632 * doesn't require the whole traversal to be contained in a single critical 4633 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4634 * This function will return the correct next descendant as long as both @pos 4635 * and @root are accessible and @pos is a descendant of @root. 4636 * 4637 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4638 * css which finished ->css_online() is guaranteed to be visible in the 4639 * future iterations and will stay visible until the last reference is put. 4640 * A css which hasn't finished ->css_online() or already finished 4641 * ->css_offline() may show up during traversal. It's each subsystem's 4642 * responsibility to synchronize against on/offlining. 4643 */ 4644 struct cgroup_subsys_state * 4645 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4646 struct cgroup_subsys_state *root) 4647 { 4648 struct cgroup_subsys_state *next; 4649 4650 cgroup_assert_mutex_or_rcu_locked(); 4651 4652 /* if first iteration, visit @root */ 4653 if (!pos) 4654 return root; 4655 4656 /* visit the first child if exists */ 4657 next = css_next_child(NULL, pos); 4658 if (next) 4659 return next; 4660 4661 /* no child, visit my or the closest ancestor's next sibling */ 4662 while (pos != root) { 4663 next = css_next_child(pos, pos->parent); 4664 if (next) 4665 return next; 4666 pos = pos->parent; 4667 } 4668 4669 return NULL; 4670 } 4671 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4672 4673 /** 4674 * css_rightmost_descendant - return the rightmost descendant of a css 4675 * @pos: css of interest 4676 * 4677 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4678 * is returned. This can be used during pre-order traversal to skip 4679 * subtree of @pos. 4680 * 4681 * While this function requires cgroup_mutex or RCU read locking, it 4682 * doesn't require the whole traversal to be contained in a single critical 4683 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4684 * This function will return the correct rightmost descendant as long as @pos 4685 * is accessible. 4686 */ 4687 struct cgroup_subsys_state * 4688 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4689 { 4690 struct cgroup_subsys_state *last, *tmp; 4691 4692 cgroup_assert_mutex_or_rcu_locked(); 4693 4694 do { 4695 last = pos; 4696 /* ->prev isn't RCU safe, walk ->next till the end */ 4697 pos = NULL; 4698 css_for_each_child(tmp, last) 4699 pos = tmp; 4700 } while (pos); 4701 4702 return last; 4703 } 4704 4705 static struct cgroup_subsys_state * 4706 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4707 { 4708 struct cgroup_subsys_state *last; 4709 4710 do { 4711 last = pos; 4712 pos = css_next_child(NULL, pos); 4713 } while (pos); 4714 4715 return last; 4716 } 4717 4718 /** 4719 * css_next_descendant_post - find the next descendant for post-order walk 4720 * @pos: the current position (%NULL to initiate traversal) 4721 * @root: css whose descendants to walk 4722 * 4723 * To be used by css_for_each_descendant_post(). Find the next descendant 4724 * to visit for post-order traversal of @root's descendants. @root is 4725 * included in the iteration and the last node to be visited. 4726 * 4727 * While this function requires cgroup_mutex or RCU read locking, it 4728 * doesn't require the whole traversal to be contained in a single critical 4729 * section. Additionally, it isn't necessary to hold onto a reference to @pos. 4730 * This function will return the correct next descendant as long as both @pos 4731 * and @cgroup are accessible and @pos is a descendant of @cgroup. 4732 * 4733 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4734 * css which finished ->css_online() is guaranteed to be visible in the 4735 * future iterations and will stay visible until the last reference is put. 4736 * A css which hasn't finished ->css_online() or already finished 4737 * ->css_offline() may show up during traversal. It's each subsystem's 4738 * responsibility to synchronize against on/offlining. 4739 */ 4740 struct cgroup_subsys_state * 4741 css_next_descendant_post(struct cgroup_subsys_state *pos, 4742 struct cgroup_subsys_state *root) 4743 { 4744 struct cgroup_subsys_state *next; 4745 4746 cgroup_assert_mutex_or_rcu_locked(); 4747 4748 /* if first iteration, visit leftmost descendant which may be @root */ 4749 if (!pos) 4750 return css_leftmost_descendant(root); 4751 4752 /* if we visited @root, we're done */ 4753 if (pos == root) 4754 return NULL; 4755 4756 /* if there's an unvisited sibling, visit its leftmost descendant */ 4757 next = css_next_child(pos, pos->parent); 4758 if (next) 4759 return css_leftmost_descendant(next); 4760 4761 /* no sibling left, visit parent */ 4762 return pos->parent; 4763 } 4764 4765 /** 4766 * css_has_online_children - does a css have online children 4767 * @css: the target css 4768 * 4769 * Returns %true if @css has any online children; otherwise, %false. This 4770 * function can be called from any context but the caller is responsible 4771 * for synchronizing against on/offlining as necessary. 4772 */ 4773 bool css_has_online_children(struct cgroup_subsys_state *css) 4774 { 4775 struct cgroup_subsys_state *child; 4776 bool ret = false; 4777 4778 rcu_read_lock(); 4779 css_for_each_child(child, css) { 4780 if (child->flags & CSS_ONLINE) { 4781 ret = true; 4782 break; 4783 } 4784 } 4785 rcu_read_unlock(); 4786 return ret; 4787 } 4788 4789 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4790 { 4791 struct list_head *l; 4792 struct cgrp_cset_link *link; 4793 struct css_set *cset; 4794 4795 lockdep_assert_held(&css_set_lock); 4796 4797 /* find the next threaded cset */ 4798 if (it->tcset_pos) { 4799 l = it->tcset_pos->next; 4800 4801 if (l != it->tcset_head) { 4802 it->tcset_pos = l; 4803 return container_of(l, struct css_set, 4804 threaded_csets_node); 4805 } 4806 4807 it->tcset_pos = NULL; 4808 } 4809 4810 /* find the next cset */ 4811 l = it->cset_pos; 4812 l = l->next; 4813 if (l == it->cset_head) { 4814 it->cset_pos = NULL; 4815 return NULL; 4816 } 4817 4818 if (it->ss) { 4819 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4820 } else { 4821 link = list_entry(l, struct cgrp_cset_link, cset_link); 4822 cset = link->cset; 4823 } 4824 4825 it->cset_pos = l; 4826 4827 /* initialize threaded css_set walking */ 4828 if (it->flags & CSS_TASK_ITER_THREADED) { 4829 if (it->cur_dcset) 4830 put_css_set_locked(it->cur_dcset); 4831 it->cur_dcset = cset; 4832 get_css_set(cset); 4833 4834 it->tcset_head = &cset->threaded_csets; 4835 it->tcset_pos = &cset->threaded_csets; 4836 } 4837 4838 return cset; 4839 } 4840 4841 /** 4842 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4843 * @it: the iterator to advance 4844 * 4845 * Advance @it to the next css_set to walk. 4846 */ 4847 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4848 { 4849 struct css_set *cset; 4850 4851 lockdep_assert_held(&css_set_lock); 4852 4853 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4854 while ((cset = css_task_iter_next_css_set(it))) { 4855 if (!list_empty(&cset->tasks)) { 4856 it->cur_tasks_head = &cset->tasks; 4857 break; 4858 } else if (!list_empty(&cset->mg_tasks)) { 4859 it->cur_tasks_head = &cset->mg_tasks; 4860 break; 4861 } else if (!list_empty(&cset->dying_tasks)) { 4862 it->cur_tasks_head = &cset->dying_tasks; 4863 break; 4864 } 4865 } 4866 if (!cset) { 4867 it->task_pos = NULL; 4868 return; 4869 } 4870 it->task_pos = it->cur_tasks_head->next; 4871 4872 /* 4873 * We don't keep css_sets locked across iteration steps and thus 4874 * need to take steps to ensure that iteration can be resumed after 4875 * the lock is re-acquired. Iteration is performed at two levels - 4876 * css_sets and tasks in them. 4877 * 4878 * Once created, a css_set never leaves its cgroup lists, so a 4879 * pinned css_set is guaranteed to stay put and we can resume 4880 * iteration afterwards. 4881 * 4882 * Tasks may leave @cset across iteration steps. This is resolved 4883 * by registering each iterator with the css_set currently being 4884 * walked and making css_set_move_task() advance iterators whose 4885 * next task is leaving. 4886 */ 4887 if (it->cur_cset) { 4888 list_del(&it->iters_node); 4889 put_css_set_locked(it->cur_cset); 4890 } 4891 get_css_set(cset); 4892 it->cur_cset = cset; 4893 list_add(&it->iters_node, &cset->task_iters); 4894 } 4895 4896 static void css_task_iter_skip(struct css_task_iter *it, 4897 struct task_struct *task) 4898 { 4899 lockdep_assert_held(&css_set_lock); 4900 4901 if (it->task_pos == &task->cg_list) { 4902 it->task_pos = it->task_pos->next; 4903 it->flags |= CSS_TASK_ITER_SKIPPED; 4904 } 4905 } 4906 4907 static void css_task_iter_advance(struct css_task_iter *it) 4908 { 4909 struct task_struct *task; 4910 4911 lockdep_assert_held(&css_set_lock); 4912 repeat: 4913 if (it->task_pos) { 4914 /* 4915 * Advance iterator to find next entry. We go through cset 4916 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4917 * the next cset. 4918 */ 4919 if (it->flags & CSS_TASK_ITER_SKIPPED) 4920 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4921 else 4922 it->task_pos = it->task_pos->next; 4923 4924 if (it->task_pos == &it->cur_cset->tasks) { 4925 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4926 it->task_pos = it->cur_tasks_head->next; 4927 } 4928 if (it->task_pos == &it->cur_cset->mg_tasks) { 4929 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4930 it->task_pos = it->cur_tasks_head->next; 4931 } 4932 if (it->task_pos == &it->cur_cset->dying_tasks) 4933 css_task_iter_advance_css_set(it); 4934 } else { 4935 /* called from start, proceed to the first cset */ 4936 css_task_iter_advance_css_set(it); 4937 } 4938 4939 if (!it->task_pos) 4940 return; 4941 4942 task = list_entry(it->task_pos, struct task_struct, cg_list); 4943 4944 if (it->flags & CSS_TASK_ITER_PROCS) { 4945 /* if PROCS, skip over tasks which aren't group leaders */ 4946 if (!thread_group_leader(task)) 4947 goto repeat; 4948 4949 /* and dying leaders w/o live member threads */ 4950 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4951 !atomic_read(&task->signal->live)) 4952 goto repeat; 4953 } else { 4954 /* skip all dying ones */ 4955 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4956 goto repeat; 4957 } 4958 } 4959 4960 /** 4961 * css_task_iter_start - initiate task iteration 4962 * @css: the css to walk tasks of 4963 * @flags: CSS_TASK_ITER_* flags 4964 * @it: the task iterator to use 4965 * 4966 * Initiate iteration through the tasks of @css. The caller can call 4967 * css_task_iter_next() to walk through the tasks until the function 4968 * returns NULL. On completion of iteration, css_task_iter_end() must be 4969 * called. 4970 */ 4971 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4972 struct css_task_iter *it) 4973 { 4974 unsigned long irqflags; 4975 4976 memset(it, 0, sizeof(*it)); 4977 4978 spin_lock_irqsave(&css_set_lock, irqflags); 4979 4980 it->ss = css->ss; 4981 it->flags = flags; 4982 4983 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4984 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4985 else 4986 it->cset_pos = &css->cgroup->cset_links; 4987 4988 it->cset_head = it->cset_pos; 4989 4990 css_task_iter_advance(it); 4991 4992 spin_unlock_irqrestore(&css_set_lock, irqflags); 4993 } 4994 4995 /** 4996 * css_task_iter_next - return the next task for the iterator 4997 * @it: the task iterator being iterated 4998 * 4999 * The "next" function for task iteration. @it should have been 5000 * initialized via css_task_iter_start(). Returns NULL when the iteration 5001 * reaches the end. 5002 */ 5003 struct task_struct *css_task_iter_next(struct css_task_iter *it) 5004 { 5005 unsigned long irqflags; 5006 5007 if (it->cur_task) { 5008 put_task_struct(it->cur_task); 5009 it->cur_task = NULL; 5010 } 5011 5012 spin_lock_irqsave(&css_set_lock, irqflags); 5013 5014 /* @it may be half-advanced by skips, finish advancing */ 5015 if (it->flags & CSS_TASK_ITER_SKIPPED) 5016 css_task_iter_advance(it); 5017 5018 if (it->task_pos) { 5019 it->cur_task = list_entry(it->task_pos, struct task_struct, 5020 cg_list); 5021 get_task_struct(it->cur_task); 5022 css_task_iter_advance(it); 5023 } 5024 5025 spin_unlock_irqrestore(&css_set_lock, irqflags); 5026 5027 return it->cur_task; 5028 } 5029 5030 /** 5031 * css_task_iter_end - finish task iteration 5032 * @it: the task iterator to finish 5033 * 5034 * Finish task iteration started by css_task_iter_start(). 5035 */ 5036 void css_task_iter_end(struct css_task_iter *it) 5037 { 5038 unsigned long irqflags; 5039 5040 if (it->cur_cset) { 5041 spin_lock_irqsave(&css_set_lock, irqflags); 5042 list_del(&it->iters_node); 5043 put_css_set_locked(it->cur_cset); 5044 spin_unlock_irqrestore(&css_set_lock, irqflags); 5045 } 5046 5047 if (it->cur_dcset) 5048 put_css_set(it->cur_dcset); 5049 5050 if (it->cur_task) 5051 put_task_struct(it->cur_task); 5052 } 5053 5054 static void cgroup_procs_release(struct kernfs_open_file *of) 5055 { 5056 struct cgroup_file_ctx *ctx = of->priv; 5057 5058 if (ctx->procs.started) 5059 css_task_iter_end(&ctx->procs.iter); 5060 } 5061 5062 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 5063 { 5064 struct kernfs_open_file *of = s->private; 5065 struct cgroup_file_ctx *ctx = of->priv; 5066 5067 if (pos) 5068 (*pos)++; 5069 5070 return css_task_iter_next(&ctx->procs.iter); 5071 } 5072 5073 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 5074 unsigned int iter_flags) 5075 { 5076 struct kernfs_open_file *of = s->private; 5077 struct cgroup *cgrp = seq_css(s)->cgroup; 5078 struct cgroup_file_ctx *ctx = of->priv; 5079 struct css_task_iter *it = &ctx->procs.iter; 5080 5081 /* 5082 * When a seq_file is seeked, it's always traversed sequentially 5083 * from position 0, so we can simply keep iterating on !0 *pos. 5084 */ 5085 if (!ctx->procs.started) { 5086 if (WARN_ON_ONCE((*pos))) 5087 return ERR_PTR(-EINVAL); 5088 css_task_iter_start(&cgrp->self, iter_flags, it); 5089 ctx->procs.started = true; 5090 } else if (!(*pos)) { 5091 css_task_iter_end(it); 5092 css_task_iter_start(&cgrp->self, iter_flags, it); 5093 } else 5094 return it->cur_task; 5095 5096 return cgroup_procs_next(s, NULL, NULL); 5097 } 5098 5099 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5100 { 5101 struct cgroup *cgrp = seq_css(s)->cgroup; 5102 5103 /* 5104 * All processes of a threaded subtree belong to the domain cgroup 5105 * of the subtree. Only threads can be distributed across the 5106 * subtree. Reject reads on cgroup.procs in the subtree proper. 5107 * They're always empty anyway. 5108 */ 5109 if (cgroup_is_threaded(cgrp)) 5110 return ERR_PTR(-EOPNOTSUPP); 5111 5112 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5113 CSS_TASK_ITER_THREADED); 5114 } 5115 5116 static int cgroup_procs_show(struct seq_file *s, void *v) 5117 { 5118 seq_printf(s, "%d\n", task_pid_vnr(v)); 5119 return 0; 5120 } 5121 5122 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5123 { 5124 int ret; 5125 struct inode *inode; 5126 5127 lockdep_assert_held(&cgroup_mutex); 5128 5129 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5130 if (!inode) 5131 return -ENOMEM; 5132 5133 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); 5134 iput(inode); 5135 return ret; 5136 } 5137 5138 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5139 struct cgroup *dst_cgrp, 5140 struct super_block *sb, 5141 struct cgroup_namespace *ns) 5142 { 5143 struct cgroup *com_cgrp = src_cgrp; 5144 int ret; 5145 5146 lockdep_assert_held(&cgroup_mutex); 5147 5148 /* find the common ancestor */ 5149 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5150 com_cgrp = cgroup_parent(com_cgrp); 5151 5152 /* %current should be authorized to migrate to the common ancestor */ 5153 ret = cgroup_may_write(com_cgrp, sb); 5154 if (ret) 5155 return ret; 5156 5157 /* 5158 * If namespaces are delegation boundaries, %current must be able 5159 * to see both source and destination cgroups from its namespace. 5160 */ 5161 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5162 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5163 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5164 return -ENOENT; 5165 5166 return 0; 5167 } 5168 5169 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5170 struct cgroup *dst_cgrp, 5171 struct super_block *sb, bool threadgroup, 5172 struct cgroup_namespace *ns) 5173 { 5174 int ret = 0; 5175 5176 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5177 if (ret) 5178 return ret; 5179 5180 ret = cgroup_migrate_vet_dst(dst_cgrp); 5181 if (ret) 5182 return ret; 5183 5184 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5185 ret = -EOPNOTSUPP; 5186 5187 return ret; 5188 } 5189 5190 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5191 bool threadgroup) 5192 { 5193 struct cgroup_file_ctx *ctx = of->priv; 5194 struct cgroup *src_cgrp, *dst_cgrp; 5195 struct task_struct *task; 5196 const struct cred *saved_cred; 5197 ssize_t ret; 5198 bool threadgroup_locked; 5199 5200 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5201 if (!dst_cgrp) 5202 return -ENODEV; 5203 5204 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5205 ret = PTR_ERR_OR_ZERO(task); 5206 if (ret) 5207 goto out_unlock; 5208 5209 /* find the source cgroup */ 5210 spin_lock_irq(&css_set_lock); 5211 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5212 spin_unlock_irq(&css_set_lock); 5213 5214 /* 5215 * Process and thread migrations follow same delegation rule. Check 5216 * permissions using the credentials from file open to protect against 5217 * inherited fd attacks. 5218 */ 5219 saved_cred = override_creds(of->file->f_cred); 5220 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5221 of->file->f_path.dentry->d_sb, 5222 threadgroup, ctx->ns); 5223 revert_creds(saved_cred); 5224 if (ret) 5225 goto out_finish; 5226 5227 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5228 5229 out_finish: 5230 cgroup_procs_write_finish(task, threadgroup_locked); 5231 out_unlock: 5232 cgroup_kn_unlock(of->kn); 5233 5234 return ret; 5235 } 5236 5237 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5238 char *buf, size_t nbytes, loff_t off) 5239 { 5240 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5241 } 5242 5243 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5244 { 5245 return __cgroup_procs_start(s, pos, 0); 5246 } 5247 5248 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5249 char *buf, size_t nbytes, loff_t off) 5250 { 5251 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5252 } 5253 5254 /* cgroup core interface files for the default hierarchy */ 5255 static struct cftype cgroup_base_files[] = { 5256 { 5257 .name = "cgroup.type", 5258 .flags = CFTYPE_NOT_ON_ROOT, 5259 .seq_show = cgroup_type_show, 5260 .write = cgroup_type_write, 5261 }, 5262 { 5263 .name = "cgroup.procs", 5264 .flags = CFTYPE_NS_DELEGATABLE, 5265 .file_offset = offsetof(struct cgroup, procs_file), 5266 .release = cgroup_procs_release, 5267 .seq_start = cgroup_procs_start, 5268 .seq_next = cgroup_procs_next, 5269 .seq_show = cgroup_procs_show, 5270 .write = cgroup_procs_write, 5271 }, 5272 { 5273 .name = "cgroup.threads", 5274 .flags = CFTYPE_NS_DELEGATABLE, 5275 .release = cgroup_procs_release, 5276 .seq_start = cgroup_threads_start, 5277 .seq_next = cgroup_procs_next, 5278 .seq_show = cgroup_procs_show, 5279 .write = cgroup_threads_write, 5280 }, 5281 { 5282 .name = "cgroup.controllers", 5283 .seq_show = cgroup_controllers_show, 5284 }, 5285 { 5286 .name = "cgroup.subtree_control", 5287 .flags = CFTYPE_NS_DELEGATABLE, 5288 .seq_show = cgroup_subtree_control_show, 5289 .write = cgroup_subtree_control_write, 5290 }, 5291 { 5292 .name = "cgroup.events", 5293 .flags = CFTYPE_NOT_ON_ROOT, 5294 .file_offset = offsetof(struct cgroup, events_file), 5295 .seq_show = cgroup_events_show, 5296 }, 5297 { 5298 .name = "cgroup.max.descendants", 5299 .seq_show = cgroup_max_descendants_show, 5300 .write = cgroup_max_descendants_write, 5301 }, 5302 { 5303 .name = "cgroup.max.depth", 5304 .seq_show = cgroup_max_depth_show, 5305 .write = cgroup_max_depth_write, 5306 }, 5307 { 5308 .name = "cgroup.stat", 5309 .seq_show = cgroup_stat_show, 5310 }, 5311 { 5312 .name = "cgroup.freeze", 5313 .flags = CFTYPE_NOT_ON_ROOT, 5314 .seq_show = cgroup_freeze_show, 5315 .write = cgroup_freeze_write, 5316 }, 5317 { 5318 .name = "cgroup.kill", 5319 .flags = CFTYPE_NOT_ON_ROOT, 5320 .write = cgroup_kill_write, 5321 }, 5322 { 5323 .name = "cpu.stat", 5324 .seq_show = cpu_stat_show, 5325 }, 5326 { 5327 .name = "cpu.stat.local", 5328 .seq_show = cpu_local_stat_show, 5329 }, 5330 { } /* terminate */ 5331 }; 5332 5333 static struct cftype cgroup_psi_files[] = { 5334 #ifdef CONFIG_PSI 5335 { 5336 .name = "io.pressure", 5337 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5338 .seq_show = cgroup_io_pressure_show, 5339 .write = cgroup_io_pressure_write, 5340 .poll = cgroup_pressure_poll, 5341 .release = cgroup_pressure_release, 5342 }, 5343 { 5344 .name = "memory.pressure", 5345 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5346 .seq_show = cgroup_memory_pressure_show, 5347 .write = cgroup_memory_pressure_write, 5348 .poll = cgroup_pressure_poll, 5349 .release = cgroup_pressure_release, 5350 }, 5351 { 5352 .name = "cpu.pressure", 5353 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5354 .seq_show = cgroup_cpu_pressure_show, 5355 .write = cgroup_cpu_pressure_write, 5356 .poll = cgroup_pressure_poll, 5357 .release = cgroup_pressure_release, 5358 }, 5359 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5360 { 5361 .name = "irq.pressure", 5362 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5363 .seq_show = cgroup_irq_pressure_show, 5364 .write = cgroup_irq_pressure_write, 5365 .poll = cgroup_pressure_poll, 5366 .release = cgroup_pressure_release, 5367 }, 5368 #endif 5369 { 5370 .name = "cgroup.pressure", 5371 .seq_show = cgroup_pressure_show, 5372 .write = cgroup_pressure_write, 5373 }, 5374 #endif /* CONFIG_PSI */ 5375 { } /* terminate */ 5376 }; 5377 5378 /* 5379 * css destruction is four-stage process. 5380 * 5381 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5382 * Implemented in kill_css(). 5383 * 5384 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5385 * and thus css_tryget_online() is guaranteed to fail, the css can be 5386 * offlined by invoking offline_css(). After offlining, the base ref is 5387 * put. Implemented in css_killed_work_fn(). 5388 * 5389 * 3. When the percpu_ref reaches zero, the only possible remaining 5390 * accessors are inside RCU read sections. css_release() schedules the 5391 * RCU callback. 5392 * 5393 * 4. After the grace period, the css can be freed. Implemented in 5394 * css_free_rwork_fn(). 5395 * 5396 * It is actually hairier because both step 2 and 4 require process context 5397 * and thus involve punting to css->destroy_work adding two additional 5398 * steps to the already complex sequence. 5399 */ 5400 static void css_free_rwork_fn(struct work_struct *work) 5401 { 5402 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5403 struct cgroup_subsys_state, destroy_rwork); 5404 struct cgroup_subsys *ss = css->ss; 5405 struct cgroup *cgrp = css->cgroup; 5406 5407 percpu_ref_exit(&css->refcnt); 5408 5409 if (ss) { 5410 /* css free path */ 5411 struct cgroup_subsys_state *parent = css->parent; 5412 int id = css->id; 5413 5414 ss->css_free(css); 5415 cgroup_idr_remove(&ss->css_idr, id); 5416 cgroup_put(cgrp); 5417 5418 if (parent) 5419 css_put(parent); 5420 } else { 5421 /* cgroup free path */ 5422 atomic_dec(&cgrp->root->nr_cgrps); 5423 if (!cgroup_on_dfl(cgrp)) 5424 cgroup1_pidlist_destroy_all(cgrp); 5425 cancel_work_sync(&cgrp->release_agent_work); 5426 bpf_cgrp_storage_free(cgrp); 5427 5428 if (cgroup_parent(cgrp)) { 5429 /* 5430 * We get a ref to the parent, and put the ref when 5431 * this cgroup is being freed, so it's guaranteed 5432 * that the parent won't be destroyed before its 5433 * children. 5434 */ 5435 cgroup_put(cgroup_parent(cgrp)); 5436 kernfs_put(cgrp->kn); 5437 psi_cgroup_free(cgrp); 5438 cgroup_rstat_exit(cgrp); 5439 kfree(cgrp); 5440 } else { 5441 /* 5442 * This is root cgroup's refcnt reaching zero, 5443 * which indicates that the root should be 5444 * released. 5445 */ 5446 cgroup_destroy_root(cgrp->root); 5447 } 5448 } 5449 } 5450 5451 static void css_release_work_fn(struct work_struct *work) 5452 { 5453 struct cgroup_subsys_state *css = 5454 container_of(work, struct cgroup_subsys_state, destroy_work); 5455 struct cgroup_subsys *ss = css->ss; 5456 struct cgroup *cgrp = css->cgroup; 5457 5458 cgroup_lock(); 5459 5460 css->flags |= CSS_RELEASED; 5461 list_del_rcu(&css->sibling); 5462 5463 if (ss) { 5464 struct cgroup *parent_cgrp; 5465 5466 /* css release path */ 5467 if (!list_empty(&css->rstat_css_node)) { 5468 cgroup_rstat_flush(cgrp); 5469 list_del_rcu(&css->rstat_css_node); 5470 } 5471 5472 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5473 if (ss->css_released) 5474 ss->css_released(css); 5475 5476 cgrp->nr_dying_subsys[ss->id]--; 5477 /* 5478 * When a css is released and ready to be freed, its 5479 * nr_descendants must be zero. However, the corresponding 5480 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem 5481 * is activated and deactivated multiple times with one or 5482 * more of its previous activation leaving behind dying csses. 5483 */ 5484 WARN_ON_ONCE(css->nr_descendants); 5485 parent_cgrp = cgroup_parent(cgrp); 5486 while (parent_cgrp) { 5487 parent_cgrp->nr_dying_subsys[ss->id]--; 5488 parent_cgrp = cgroup_parent(parent_cgrp); 5489 } 5490 } else { 5491 struct cgroup *tcgrp; 5492 5493 /* cgroup release path */ 5494 TRACE_CGROUP_PATH(release, cgrp); 5495 5496 cgroup_rstat_flush(cgrp); 5497 5498 spin_lock_irq(&css_set_lock); 5499 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5500 tcgrp = cgroup_parent(tcgrp)) 5501 tcgrp->nr_dying_descendants--; 5502 spin_unlock_irq(&css_set_lock); 5503 5504 /* 5505 * There are two control paths which try to determine 5506 * cgroup from dentry without going through kernfs - 5507 * cgroupstats_build() and css_tryget_online_from_dir(). 5508 * Those are supported by RCU protecting clearing of 5509 * cgrp->kn->priv backpointer. 5510 */ 5511 if (cgrp->kn) 5512 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5513 NULL); 5514 } 5515 5516 cgroup_unlock(); 5517 5518 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5519 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5520 } 5521 5522 static void css_release(struct percpu_ref *ref) 5523 { 5524 struct cgroup_subsys_state *css = 5525 container_of(ref, struct cgroup_subsys_state, refcnt); 5526 5527 INIT_WORK(&css->destroy_work, css_release_work_fn); 5528 queue_work(cgroup_destroy_wq, &css->destroy_work); 5529 } 5530 5531 static void init_and_link_css(struct cgroup_subsys_state *css, 5532 struct cgroup_subsys *ss, struct cgroup *cgrp) 5533 { 5534 lockdep_assert_held(&cgroup_mutex); 5535 5536 cgroup_get_live(cgrp); 5537 5538 memset(css, 0, sizeof(*css)); 5539 css->cgroup = cgrp; 5540 css->ss = ss; 5541 css->id = -1; 5542 INIT_LIST_HEAD(&css->sibling); 5543 INIT_LIST_HEAD(&css->children); 5544 INIT_LIST_HEAD(&css->rstat_css_node); 5545 css->serial_nr = css_serial_nr_next++; 5546 atomic_set(&css->online_cnt, 0); 5547 5548 if (cgroup_parent(cgrp)) { 5549 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5550 css_get(css->parent); 5551 } 5552 5553 if (ss->css_rstat_flush) 5554 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5555 5556 BUG_ON(cgroup_css(cgrp, ss)); 5557 } 5558 5559 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5560 static int online_css(struct cgroup_subsys_state *css) 5561 { 5562 struct cgroup_subsys *ss = css->ss; 5563 int ret = 0; 5564 5565 lockdep_assert_held(&cgroup_mutex); 5566 5567 if (ss->css_online) 5568 ret = ss->css_online(css); 5569 if (!ret) { 5570 css->flags |= CSS_ONLINE; 5571 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5572 5573 atomic_inc(&css->online_cnt); 5574 if (css->parent) { 5575 atomic_inc(&css->parent->online_cnt); 5576 while ((css = css->parent)) 5577 css->nr_descendants++; 5578 } 5579 } 5580 return ret; 5581 } 5582 5583 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5584 static void offline_css(struct cgroup_subsys_state *css) 5585 { 5586 struct cgroup_subsys *ss = css->ss; 5587 5588 lockdep_assert_held(&cgroup_mutex); 5589 5590 if (!(css->flags & CSS_ONLINE)) 5591 return; 5592 5593 if (ss->css_offline) 5594 ss->css_offline(css); 5595 5596 css->flags &= ~CSS_ONLINE; 5597 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5598 5599 wake_up_all(&css->cgroup->offline_waitq); 5600 5601 css->cgroup->nr_dying_subsys[ss->id]++; 5602 /* 5603 * Parent css and cgroup cannot be freed until after the freeing 5604 * of child css, see css_free_rwork_fn(). 5605 */ 5606 while ((css = css->parent)) { 5607 css->nr_descendants--; 5608 css->cgroup->nr_dying_subsys[ss->id]++; 5609 } 5610 } 5611 5612 /** 5613 * css_create - create a cgroup_subsys_state 5614 * @cgrp: the cgroup new css will be associated with 5615 * @ss: the subsys of new css 5616 * 5617 * Create a new css associated with @cgrp - @ss pair. On success, the new 5618 * css is online and installed in @cgrp. This function doesn't create the 5619 * interface files. Returns 0 on success, -errno on failure. 5620 */ 5621 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5622 struct cgroup_subsys *ss) 5623 { 5624 struct cgroup *parent = cgroup_parent(cgrp); 5625 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5626 struct cgroup_subsys_state *css; 5627 int err; 5628 5629 lockdep_assert_held(&cgroup_mutex); 5630 5631 css = ss->css_alloc(parent_css); 5632 if (!css) 5633 css = ERR_PTR(-ENOMEM); 5634 if (IS_ERR(css)) 5635 return css; 5636 5637 init_and_link_css(css, ss, cgrp); 5638 5639 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5640 if (err) 5641 goto err_free_css; 5642 5643 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5644 if (err < 0) 5645 goto err_free_css; 5646 css->id = err; 5647 5648 /* @css is ready to be brought online now, make it visible */ 5649 list_add_tail_rcu(&css->sibling, &parent_css->children); 5650 cgroup_idr_replace(&ss->css_idr, css, css->id); 5651 5652 err = online_css(css); 5653 if (err) 5654 goto err_list_del; 5655 5656 return css; 5657 5658 err_list_del: 5659 list_del_rcu(&css->sibling); 5660 err_free_css: 5661 list_del_rcu(&css->rstat_css_node); 5662 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5663 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5664 return ERR_PTR(err); 5665 } 5666 5667 /* 5668 * The returned cgroup is fully initialized including its control mask, but 5669 * it doesn't have the control mask applied. 5670 */ 5671 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5672 umode_t mode) 5673 { 5674 struct cgroup_root *root = parent->root; 5675 struct cgroup *cgrp, *tcgrp; 5676 struct kernfs_node *kn; 5677 int level = parent->level + 1; 5678 int ret; 5679 5680 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5681 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5682 if (!cgrp) 5683 return ERR_PTR(-ENOMEM); 5684 5685 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5686 if (ret) 5687 goto out_free_cgrp; 5688 5689 ret = cgroup_rstat_init(cgrp); 5690 if (ret) 5691 goto out_cancel_ref; 5692 5693 /* create the directory */ 5694 kn = kernfs_create_dir_ns(parent->kn, name, mode, 5695 current_fsuid(), current_fsgid(), 5696 cgrp, NULL); 5697 if (IS_ERR(kn)) { 5698 ret = PTR_ERR(kn); 5699 goto out_stat_exit; 5700 } 5701 cgrp->kn = kn; 5702 5703 init_cgroup_housekeeping(cgrp); 5704 5705 cgrp->self.parent = &parent->self; 5706 cgrp->root = root; 5707 cgrp->level = level; 5708 5709 ret = psi_cgroup_alloc(cgrp); 5710 if (ret) 5711 goto out_kernfs_remove; 5712 5713 ret = cgroup_bpf_inherit(cgrp); 5714 if (ret) 5715 goto out_psi_free; 5716 5717 /* 5718 * New cgroup inherits effective freeze counter, and 5719 * if the parent has to be frozen, the child has too. 5720 */ 5721 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5722 if (cgrp->freezer.e_freeze) { 5723 /* 5724 * Set the CGRP_FREEZE flag, so when a process will be 5725 * attached to the child cgroup, it will become frozen. 5726 * At this point the new cgroup is unpopulated, so we can 5727 * consider it frozen immediately. 5728 */ 5729 set_bit(CGRP_FREEZE, &cgrp->flags); 5730 set_bit(CGRP_FROZEN, &cgrp->flags); 5731 } 5732 5733 spin_lock_irq(&css_set_lock); 5734 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5735 cgrp->ancestors[tcgrp->level] = tcgrp; 5736 5737 if (tcgrp != cgrp) { 5738 tcgrp->nr_descendants++; 5739 5740 /* 5741 * If the new cgroup is frozen, all ancestor cgroups 5742 * get a new frozen descendant, but their state can't 5743 * change because of this. 5744 */ 5745 if (cgrp->freezer.e_freeze) 5746 tcgrp->freezer.nr_frozen_descendants++; 5747 } 5748 } 5749 spin_unlock_irq(&css_set_lock); 5750 5751 if (notify_on_release(parent)) 5752 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5753 5754 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5755 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5756 5757 cgrp->self.serial_nr = css_serial_nr_next++; 5758 5759 /* allocation complete, commit to creation */ 5760 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5761 atomic_inc(&root->nr_cgrps); 5762 cgroup_get_live(parent); 5763 5764 /* 5765 * On the default hierarchy, a child doesn't automatically inherit 5766 * subtree_control from the parent. Each is configured manually. 5767 */ 5768 if (!cgroup_on_dfl(cgrp)) 5769 cgrp->subtree_control = cgroup_control(cgrp); 5770 5771 cgroup_propagate_control(cgrp); 5772 5773 return cgrp; 5774 5775 out_psi_free: 5776 psi_cgroup_free(cgrp); 5777 out_kernfs_remove: 5778 kernfs_remove(cgrp->kn); 5779 out_stat_exit: 5780 cgroup_rstat_exit(cgrp); 5781 out_cancel_ref: 5782 percpu_ref_exit(&cgrp->self.refcnt); 5783 out_free_cgrp: 5784 kfree(cgrp); 5785 return ERR_PTR(ret); 5786 } 5787 5788 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5789 { 5790 struct cgroup *cgroup; 5791 int ret = false; 5792 int level = 0; 5793 5794 lockdep_assert_held(&cgroup_mutex); 5795 5796 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5797 if (cgroup->nr_descendants >= cgroup->max_descendants) 5798 goto fail; 5799 5800 if (level >= cgroup->max_depth) 5801 goto fail; 5802 5803 level++; 5804 } 5805 5806 ret = true; 5807 fail: 5808 return ret; 5809 } 5810 5811 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5812 { 5813 struct cgroup *parent, *cgrp; 5814 int ret; 5815 5816 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5817 if (strchr(name, '\n')) 5818 return -EINVAL; 5819 5820 parent = cgroup_kn_lock_live(parent_kn, false); 5821 if (!parent) 5822 return -ENODEV; 5823 5824 if (!cgroup_check_hierarchy_limits(parent)) { 5825 ret = -EAGAIN; 5826 goto out_unlock; 5827 } 5828 5829 cgrp = cgroup_create(parent, name, mode); 5830 if (IS_ERR(cgrp)) { 5831 ret = PTR_ERR(cgrp); 5832 goto out_unlock; 5833 } 5834 5835 /* 5836 * This extra ref will be put in cgroup_free_fn() and guarantees 5837 * that @cgrp->kn is always accessible. 5838 */ 5839 kernfs_get(cgrp->kn); 5840 5841 ret = css_populate_dir(&cgrp->self); 5842 if (ret) 5843 goto out_destroy; 5844 5845 ret = cgroup_apply_control_enable(cgrp); 5846 if (ret) 5847 goto out_destroy; 5848 5849 TRACE_CGROUP_PATH(mkdir, cgrp); 5850 5851 /* let's create and online css's */ 5852 kernfs_activate(cgrp->kn); 5853 5854 ret = 0; 5855 goto out_unlock; 5856 5857 out_destroy: 5858 cgroup_destroy_locked(cgrp); 5859 out_unlock: 5860 cgroup_kn_unlock(parent_kn); 5861 return ret; 5862 } 5863 5864 /* 5865 * This is called when the refcnt of a css is confirmed to be killed. 5866 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5867 * initiate destruction and put the css ref from kill_css(). 5868 */ 5869 static void css_killed_work_fn(struct work_struct *work) 5870 { 5871 struct cgroup_subsys_state *css = 5872 container_of(work, struct cgroup_subsys_state, destroy_work); 5873 5874 cgroup_lock(); 5875 5876 do { 5877 offline_css(css); 5878 css_put(css); 5879 /* @css can't go away while we're holding cgroup_mutex */ 5880 css = css->parent; 5881 } while (css && atomic_dec_and_test(&css->online_cnt)); 5882 5883 cgroup_unlock(); 5884 } 5885 5886 /* css kill confirmation processing requires process context, bounce */ 5887 static void css_killed_ref_fn(struct percpu_ref *ref) 5888 { 5889 struct cgroup_subsys_state *css = 5890 container_of(ref, struct cgroup_subsys_state, refcnt); 5891 5892 if (atomic_dec_and_test(&css->online_cnt)) { 5893 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5894 queue_work(cgroup_destroy_wq, &css->destroy_work); 5895 } 5896 } 5897 5898 /** 5899 * kill_css - destroy a css 5900 * @css: css to destroy 5901 * 5902 * This function initiates destruction of @css by removing cgroup interface 5903 * files and putting its base reference. ->css_offline() will be invoked 5904 * asynchronously once css_tryget_online() is guaranteed to fail and when 5905 * the reference count reaches zero, @css will be released. 5906 */ 5907 static void kill_css(struct cgroup_subsys_state *css) 5908 { 5909 lockdep_assert_held(&cgroup_mutex); 5910 5911 if (css->flags & CSS_DYING) 5912 return; 5913 5914 css->flags |= CSS_DYING; 5915 5916 /* 5917 * This must happen before css is disassociated with its cgroup. 5918 * See seq_css() for details. 5919 */ 5920 css_clear_dir(css); 5921 5922 /* 5923 * Killing would put the base ref, but we need to keep it alive 5924 * until after ->css_offline(). 5925 */ 5926 css_get(css); 5927 5928 /* 5929 * cgroup core guarantees that, by the time ->css_offline() is 5930 * invoked, no new css reference will be given out via 5931 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5932 * proceed to offlining css's because percpu_ref_kill() doesn't 5933 * guarantee that the ref is seen as killed on all CPUs on return. 5934 * 5935 * Use percpu_ref_kill_and_confirm() to get notifications as each 5936 * css is confirmed to be seen as killed on all CPUs. 5937 */ 5938 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5939 } 5940 5941 /** 5942 * cgroup_destroy_locked - the first stage of cgroup destruction 5943 * @cgrp: cgroup to be destroyed 5944 * 5945 * css's make use of percpu refcnts whose killing latency shouldn't be 5946 * exposed to userland and are RCU protected. Also, cgroup core needs to 5947 * guarantee that css_tryget_online() won't succeed by the time 5948 * ->css_offline() is invoked. To satisfy all the requirements, 5949 * destruction is implemented in the following two steps. 5950 * 5951 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5952 * userland visible parts and start killing the percpu refcnts of 5953 * css's. Set up so that the next stage will be kicked off once all 5954 * the percpu refcnts are confirmed to be killed. 5955 * 5956 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5957 * rest of destruction. Once all cgroup references are gone, the 5958 * cgroup is RCU-freed. 5959 * 5960 * This function implements s1. After this step, @cgrp is gone as far as 5961 * the userland is concerned and a new cgroup with the same name may be 5962 * created. As cgroup doesn't care about the names internally, this 5963 * doesn't cause any problem. 5964 */ 5965 static int cgroup_destroy_locked(struct cgroup *cgrp) 5966 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5967 { 5968 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5969 struct cgroup_subsys_state *css; 5970 struct cgrp_cset_link *link; 5971 int ssid; 5972 5973 lockdep_assert_held(&cgroup_mutex); 5974 5975 /* 5976 * Only migration can raise populated from zero and we're already 5977 * holding cgroup_mutex. 5978 */ 5979 if (cgroup_is_populated(cgrp)) 5980 return -EBUSY; 5981 5982 /* 5983 * Make sure there's no live children. We can't test emptiness of 5984 * ->self.children as dead children linger on it while being 5985 * drained; otherwise, "rmdir parent/child parent" may fail. 5986 */ 5987 if (css_has_online_children(&cgrp->self)) 5988 return -EBUSY; 5989 5990 /* 5991 * Mark @cgrp and the associated csets dead. The former prevents 5992 * further task migration and child creation by disabling 5993 * cgroup_kn_lock_live(). The latter makes the csets ignored by 5994 * the migration path. 5995 */ 5996 cgrp->self.flags &= ~CSS_ONLINE; 5997 5998 spin_lock_irq(&css_set_lock); 5999 list_for_each_entry(link, &cgrp->cset_links, cset_link) 6000 link->cset->dead = true; 6001 spin_unlock_irq(&css_set_lock); 6002 6003 /* initiate massacre of all css's */ 6004 for_each_css(css, ssid, cgrp) 6005 kill_css(css); 6006 6007 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 6008 css_clear_dir(&cgrp->self); 6009 kernfs_remove(cgrp->kn); 6010 6011 if (cgroup_is_threaded(cgrp)) 6012 parent->nr_threaded_children--; 6013 6014 spin_lock_irq(&css_set_lock); 6015 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 6016 tcgrp->nr_descendants--; 6017 tcgrp->nr_dying_descendants++; 6018 /* 6019 * If the dying cgroup is frozen, decrease frozen descendants 6020 * counters of ancestor cgroups. 6021 */ 6022 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 6023 tcgrp->freezer.nr_frozen_descendants--; 6024 } 6025 spin_unlock_irq(&css_set_lock); 6026 6027 cgroup1_check_for_release(parent); 6028 6029 cgroup_bpf_offline(cgrp); 6030 6031 /* put the base reference */ 6032 percpu_ref_kill(&cgrp->self.refcnt); 6033 6034 return 0; 6035 }; 6036 6037 int cgroup_rmdir(struct kernfs_node *kn) 6038 { 6039 struct cgroup *cgrp; 6040 int ret = 0; 6041 6042 cgrp = cgroup_kn_lock_live(kn, false); 6043 if (!cgrp) 6044 return 0; 6045 6046 ret = cgroup_destroy_locked(cgrp); 6047 if (!ret) 6048 TRACE_CGROUP_PATH(rmdir, cgrp); 6049 6050 cgroup_kn_unlock(kn); 6051 return ret; 6052 } 6053 6054 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 6055 .show_options = cgroup_show_options, 6056 .mkdir = cgroup_mkdir, 6057 .rmdir = cgroup_rmdir, 6058 .show_path = cgroup_show_path, 6059 }; 6060 6061 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 6062 { 6063 struct cgroup_subsys_state *css; 6064 6065 pr_debug("Initializing cgroup subsys %s\n", ss->name); 6066 6067 cgroup_lock(); 6068 6069 idr_init(&ss->css_idr); 6070 INIT_LIST_HEAD(&ss->cfts); 6071 6072 /* Create the root cgroup state for this subsystem */ 6073 ss->root = &cgrp_dfl_root; 6074 css = ss->css_alloc(NULL); 6075 /* We don't handle early failures gracefully */ 6076 BUG_ON(IS_ERR(css)); 6077 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 6078 6079 /* 6080 * Root csses are never destroyed and we can't initialize 6081 * percpu_ref during early init. Disable refcnting. 6082 */ 6083 css->flags |= CSS_NO_REF; 6084 6085 if (early) { 6086 /* allocation can't be done safely during early init */ 6087 css->id = 1; 6088 } else { 6089 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 6090 BUG_ON(css->id < 0); 6091 } 6092 6093 /* Update the init_css_set to contain a subsys 6094 * pointer to this state - since the subsystem is 6095 * newly registered, all tasks and hence the 6096 * init_css_set is in the subsystem's root cgroup. */ 6097 init_css_set.subsys[ss->id] = css; 6098 6099 have_fork_callback |= (bool)ss->fork << ss->id; 6100 have_exit_callback |= (bool)ss->exit << ss->id; 6101 have_release_callback |= (bool)ss->release << ss->id; 6102 have_canfork_callback |= (bool)ss->can_fork << ss->id; 6103 6104 /* At system boot, before all subsystems have been 6105 * registered, no tasks have been forked, so we don't 6106 * need to invoke fork callbacks here. */ 6107 BUG_ON(!list_empty(&init_task.tasks)); 6108 6109 BUG_ON(online_css(css)); 6110 6111 cgroup_unlock(); 6112 } 6113 6114 /** 6115 * cgroup_init_early - cgroup initialization at system boot 6116 * 6117 * Initialize cgroups at system boot, and initialize any 6118 * subsystems that request early init. 6119 */ 6120 int __init cgroup_init_early(void) 6121 { 6122 static struct cgroup_fs_context __initdata ctx; 6123 struct cgroup_subsys *ss; 6124 int i; 6125 6126 ctx.root = &cgrp_dfl_root; 6127 init_cgroup_root(&ctx); 6128 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6129 6130 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6131 6132 for_each_subsys(ss, i) { 6133 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6134 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6135 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6136 ss->id, ss->name); 6137 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6138 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6139 6140 ss->id = i; 6141 ss->name = cgroup_subsys_name[i]; 6142 if (!ss->legacy_name) 6143 ss->legacy_name = cgroup_subsys_name[i]; 6144 6145 if (ss->early_init) 6146 cgroup_init_subsys(ss, true); 6147 } 6148 return 0; 6149 } 6150 6151 /** 6152 * cgroup_init - cgroup initialization 6153 * 6154 * Register cgroup filesystem and /proc file, and initialize 6155 * any subsystems that didn't request early init. 6156 */ 6157 int __init cgroup_init(void) 6158 { 6159 struct cgroup_subsys *ss; 6160 int ssid; 6161 6162 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6163 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6164 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6165 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6166 6167 cgroup_rstat_boot(); 6168 6169 get_user_ns(init_cgroup_ns.user_ns); 6170 6171 cgroup_lock(); 6172 6173 /* 6174 * Add init_css_set to the hash table so that dfl_root can link to 6175 * it during init. 6176 */ 6177 hash_add(css_set_table, &init_css_set.hlist, 6178 css_set_hash(init_css_set.subsys)); 6179 6180 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6181 6182 cgroup_unlock(); 6183 6184 for_each_subsys(ss, ssid) { 6185 if (ss->early_init) { 6186 struct cgroup_subsys_state *css = 6187 init_css_set.subsys[ss->id]; 6188 6189 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6190 GFP_KERNEL); 6191 BUG_ON(css->id < 0); 6192 } else { 6193 cgroup_init_subsys(ss, false); 6194 } 6195 6196 list_add_tail(&init_css_set.e_cset_node[ssid], 6197 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6198 6199 /* 6200 * Setting dfl_root subsys_mask needs to consider the 6201 * disabled flag and cftype registration needs kmalloc, 6202 * both of which aren't available during early_init. 6203 */ 6204 if (!cgroup_ssid_enabled(ssid)) 6205 continue; 6206 6207 if (cgroup1_ssid_disabled(ssid)) 6208 pr_info("Disabling %s control group subsystem in v1 mounts\n", 6209 ss->legacy_name); 6210 6211 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6212 6213 /* implicit controllers must be threaded too */ 6214 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6215 6216 if (ss->implicit_on_dfl) 6217 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6218 else if (!ss->dfl_cftypes) 6219 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6220 6221 if (ss->threaded) 6222 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6223 6224 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6225 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6226 } else { 6227 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6228 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6229 } 6230 6231 if (ss->bind) 6232 ss->bind(init_css_set.subsys[ssid]); 6233 6234 cgroup_lock(); 6235 css_populate_dir(init_css_set.subsys[ssid]); 6236 cgroup_unlock(); 6237 } 6238 6239 /* init_css_set.subsys[] has been updated, re-hash */ 6240 hash_del(&init_css_set.hlist); 6241 hash_add(css_set_table, &init_css_set.hlist, 6242 css_set_hash(init_css_set.subsys)); 6243 6244 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6245 WARN_ON(register_filesystem(&cgroup_fs_type)); 6246 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6247 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6248 #ifdef CONFIG_CPUSETS_V1 6249 WARN_ON(register_filesystem(&cpuset_fs_type)); 6250 #endif 6251 6252 return 0; 6253 } 6254 6255 static int __init cgroup_wq_init(void) 6256 { 6257 /* 6258 * There isn't much point in executing destruction path in 6259 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6260 * Use 1 for @max_active. 6261 * 6262 * We would prefer to do this in cgroup_init() above, but that 6263 * is called before init_workqueues(): so leave this until after. 6264 */ 6265 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6266 BUG_ON(!cgroup_destroy_wq); 6267 return 0; 6268 } 6269 core_initcall(cgroup_wq_init); 6270 6271 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6272 { 6273 struct kernfs_node *kn; 6274 6275 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6276 if (!kn) 6277 return; 6278 kernfs_path(kn, buf, buflen); 6279 kernfs_put(kn); 6280 } 6281 6282 /* 6283 * cgroup_get_from_id : get the cgroup associated with cgroup id 6284 * @id: cgroup id 6285 * On success return the cgrp or ERR_PTR on failure 6286 * Only cgroups within current task's cgroup NS are valid. 6287 */ 6288 struct cgroup *cgroup_get_from_id(u64 id) 6289 { 6290 struct kernfs_node *kn; 6291 struct cgroup *cgrp, *root_cgrp; 6292 6293 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6294 if (!kn) 6295 return ERR_PTR(-ENOENT); 6296 6297 if (kernfs_type(kn) != KERNFS_DIR) { 6298 kernfs_put(kn); 6299 return ERR_PTR(-ENOENT); 6300 } 6301 6302 rcu_read_lock(); 6303 6304 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6305 if (cgrp && !cgroup_tryget(cgrp)) 6306 cgrp = NULL; 6307 6308 rcu_read_unlock(); 6309 kernfs_put(kn); 6310 6311 if (!cgrp) 6312 return ERR_PTR(-ENOENT); 6313 6314 root_cgrp = current_cgns_cgroup_dfl(); 6315 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6316 cgroup_put(cgrp); 6317 return ERR_PTR(-ENOENT); 6318 } 6319 6320 return cgrp; 6321 } 6322 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6323 6324 /* 6325 * proc_cgroup_show() 6326 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6327 * - Used for /proc/<pid>/cgroup. 6328 */ 6329 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6330 struct pid *pid, struct task_struct *tsk) 6331 { 6332 char *buf; 6333 int retval; 6334 struct cgroup_root *root; 6335 6336 retval = -ENOMEM; 6337 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6338 if (!buf) 6339 goto out; 6340 6341 rcu_read_lock(); 6342 spin_lock_irq(&css_set_lock); 6343 6344 for_each_root(root) { 6345 struct cgroup_subsys *ss; 6346 struct cgroup *cgrp; 6347 int ssid, count = 0; 6348 6349 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6350 continue; 6351 6352 cgrp = task_cgroup_from_root(tsk, root); 6353 /* The root has already been unmounted. */ 6354 if (!cgrp) 6355 continue; 6356 6357 seq_printf(m, "%d:", root->hierarchy_id); 6358 if (root != &cgrp_dfl_root) 6359 for_each_subsys(ss, ssid) 6360 if (root->subsys_mask & (1 << ssid)) 6361 seq_printf(m, "%s%s", count++ ? "," : "", 6362 ss->legacy_name); 6363 if (strlen(root->name)) 6364 seq_printf(m, "%sname=%s", count ? "," : "", 6365 root->name); 6366 seq_putc(m, ':'); 6367 /* 6368 * On traditional hierarchies, all zombie tasks show up as 6369 * belonging to the root cgroup. On the default hierarchy, 6370 * while a zombie doesn't show up in "cgroup.procs" and 6371 * thus can't be migrated, its /proc/PID/cgroup keeps 6372 * reporting the cgroup it belonged to before exiting. If 6373 * the cgroup is removed before the zombie is reaped, 6374 * " (deleted)" is appended to the cgroup path. 6375 */ 6376 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6377 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6378 current->nsproxy->cgroup_ns); 6379 if (retval == -E2BIG) 6380 retval = -ENAMETOOLONG; 6381 if (retval < 0) 6382 goto out_unlock; 6383 6384 seq_puts(m, buf); 6385 } else { 6386 seq_puts(m, "/"); 6387 } 6388 6389 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6390 seq_puts(m, " (deleted)\n"); 6391 else 6392 seq_putc(m, '\n'); 6393 } 6394 6395 retval = 0; 6396 out_unlock: 6397 spin_unlock_irq(&css_set_lock); 6398 rcu_read_unlock(); 6399 kfree(buf); 6400 out: 6401 return retval; 6402 } 6403 6404 /** 6405 * cgroup_fork - initialize cgroup related fields during copy_process() 6406 * @child: pointer to task_struct of forking parent process. 6407 * 6408 * A task is associated with the init_css_set until cgroup_post_fork() 6409 * attaches it to the target css_set. 6410 */ 6411 void cgroup_fork(struct task_struct *child) 6412 { 6413 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6414 INIT_LIST_HEAD(&child->cg_list); 6415 } 6416 6417 /** 6418 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6419 * @f: file corresponding to cgroup_dir 6420 * 6421 * Find the cgroup from a file pointer associated with a cgroup directory. 6422 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6423 * cgroup cannot be found. 6424 */ 6425 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6426 { 6427 struct cgroup_subsys_state *css; 6428 6429 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6430 if (IS_ERR(css)) 6431 return ERR_CAST(css); 6432 6433 return css->cgroup; 6434 } 6435 6436 /** 6437 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6438 * cgroup2. 6439 * @f: file corresponding to cgroup2_dir 6440 */ 6441 static struct cgroup *cgroup_get_from_file(struct file *f) 6442 { 6443 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6444 6445 if (IS_ERR(cgrp)) 6446 return ERR_CAST(cgrp); 6447 6448 if (!cgroup_on_dfl(cgrp)) { 6449 cgroup_put(cgrp); 6450 return ERR_PTR(-EBADF); 6451 } 6452 6453 return cgrp; 6454 } 6455 6456 /** 6457 * cgroup_css_set_fork - find or create a css_set for a child process 6458 * @kargs: the arguments passed to create the child process 6459 * 6460 * This functions finds or creates a new css_set which the child 6461 * process will be attached to in cgroup_post_fork(). By default, 6462 * the child process will be given the same css_set as its parent. 6463 * 6464 * If CLONE_INTO_CGROUP is specified this function will try to find an 6465 * existing css_set which includes the requested cgroup and if not create 6466 * a new css_set that the child will be attached to later. If this function 6467 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6468 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6469 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6470 * to the target cgroup. 6471 */ 6472 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6473 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6474 { 6475 int ret; 6476 struct cgroup *dst_cgrp = NULL; 6477 struct css_set *cset; 6478 struct super_block *sb; 6479 struct file *f; 6480 6481 if (kargs->flags & CLONE_INTO_CGROUP) 6482 cgroup_lock(); 6483 6484 cgroup_threadgroup_change_begin(current); 6485 6486 spin_lock_irq(&css_set_lock); 6487 cset = task_css_set(current); 6488 get_css_set(cset); 6489 spin_unlock_irq(&css_set_lock); 6490 6491 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6492 kargs->cset = cset; 6493 return 0; 6494 } 6495 6496 f = fget_raw(kargs->cgroup); 6497 if (!f) { 6498 ret = -EBADF; 6499 goto err; 6500 } 6501 sb = f->f_path.dentry->d_sb; 6502 6503 dst_cgrp = cgroup_get_from_file(f); 6504 if (IS_ERR(dst_cgrp)) { 6505 ret = PTR_ERR(dst_cgrp); 6506 dst_cgrp = NULL; 6507 goto err; 6508 } 6509 6510 if (cgroup_is_dead(dst_cgrp)) { 6511 ret = -ENODEV; 6512 goto err; 6513 } 6514 6515 /* 6516 * Verify that we the target cgroup is writable for us. This is 6517 * usually done by the vfs layer but since we're not going through 6518 * the vfs layer here we need to do it "manually". 6519 */ 6520 ret = cgroup_may_write(dst_cgrp, sb); 6521 if (ret) 6522 goto err; 6523 6524 /* 6525 * Spawning a task directly into a cgroup works by passing a file 6526 * descriptor to the target cgroup directory. This can even be an O_PATH 6527 * file descriptor. But it can never be a cgroup.procs file descriptor. 6528 * This was done on purpose so spawning into a cgroup could be 6529 * conceptualized as an atomic 6530 * 6531 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6532 * write(fd, <child-pid>, ...); 6533 * 6534 * sequence, i.e. it's a shorthand for the caller opening and writing 6535 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6536 * to always use the caller's credentials. 6537 */ 6538 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6539 !(kargs->flags & CLONE_THREAD), 6540 current->nsproxy->cgroup_ns); 6541 if (ret) 6542 goto err; 6543 6544 kargs->cset = find_css_set(cset, dst_cgrp); 6545 if (!kargs->cset) { 6546 ret = -ENOMEM; 6547 goto err; 6548 } 6549 6550 put_css_set(cset); 6551 fput(f); 6552 kargs->cgrp = dst_cgrp; 6553 return ret; 6554 6555 err: 6556 cgroup_threadgroup_change_end(current); 6557 cgroup_unlock(); 6558 if (f) 6559 fput(f); 6560 if (dst_cgrp) 6561 cgroup_put(dst_cgrp); 6562 put_css_set(cset); 6563 if (kargs->cset) 6564 put_css_set(kargs->cset); 6565 return ret; 6566 } 6567 6568 /** 6569 * cgroup_css_set_put_fork - drop references we took during fork 6570 * @kargs: the arguments passed to create the child process 6571 * 6572 * Drop references to the prepared css_set and target cgroup if 6573 * CLONE_INTO_CGROUP was requested. 6574 */ 6575 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6576 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6577 { 6578 struct cgroup *cgrp = kargs->cgrp; 6579 struct css_set *cset = kargs->cset; 6580 6581 cgroup_threadgroup_change_end(current); 6582 6583 if (cset) { 6584 put_css_set(cset); 6585 kargs->cset = NULL; 6586 } 6587 6588 if (kargs->flags & CLONE_INTO_CGROUP) { 6589 cgroup_unlock(); 6590 if (cgrp) { 6591 cgroup_put(cgrp); 6592 kargs->cgrp = NULL; 6593 } 6594 } 6595 } 6596 6597 /** 6598 * cgroup_can_fork - called on a new task before the process is exposed 6599 * @child: the child process 6600 * @kargs: the arguments passed to create the child process 6601 * 6602 * This prepares a new css_set for the child process which the child will 6603 * be attached to in cgroup_post_fork(). 6604 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6605 * callback returns an error, the fork aborts with that error code. This 6606 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6607 */ 6608 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6609 { 6610 struct cgroup_subsys *ss; 6611 int i, j, ret; 6612 6613 ret = cgroup_css_set_fork(kargs); 6614 if (ret) 6615 return ret; 6616 6617 do_each_subsys_mask(ss, i, have_canfork_callback) { 6618 ret = ss->can_fork(child, kargs->cset); 6619 if (ret) 6620 goto out_revert; 6621 } while_each_subsys_mask(); 6622 6623 return 0; 6624 6625 out_revert: 6626 for_each_subsys(ss, j) { 6627 if (j >= i) 6628 break; 6629 if (ss->cancel_fork) 6630 ss->cancel_fork(child, kargs->cset); 6631 } 6632 6633 cgroup_css_set_put_fork(kargs); 6634 6635 return ret; 6636 } 6637 6638 /** 6639 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6640 * @child: the child process 6641 * @kargs: the arguments passed to create the child process 6642 * 6643 * This calls the cancel_fork() callbacks if a fork failed *after* 6644 * cgroup_can_fork() succeeded and cleans up references we took to 6645 * prepare a new css_set for the child process in cgroup_can_fork(). 6646 */ 6647 void cgroup_cancel_fork(struct task_struct *child, 6648 struct kernel_clone_args *kargs) 6649 { 6650 struct cgroup_subsys *ss; 6651 int i; 6652 6653 for_each_subsys(ss, i) 6654 if (ss->cancel_fork) 6655 ss->cancel_fork(child, kargs->cset); 6656 6657 cgroup_css_set_put_fork(kargs); 6658 } 6659 6660 /** 6661 * cgroup_post_fork - finalize cgroup setup for the child process 6662 * @child: the child process 6663 * @kargs: the arguments passed to create the child process 6664 * 6665 * Attach the child process to its css_set calling the subsystem fork() 6666 * callbacks. 6667 */ 6668 void cgroup_post_fork(struct task_struct *child, 6669 struct kernel_clone_args *kargs) 6670 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6671 { 6672 unsigned long cgrp_flags = 0; 6673 bool kill = false; 6674 struct cgroup_subsys *ss; 6675 struct css_set *cset; 6676 int i; 6677 6678 cset = kargs->cset; 6679 kargs->cset = NULL; 6680 6681 spin_lock_irq(&css_set_lock); 6682 6683 /* init tasks are special, only link regular threads */ 6684 if (likely(child->pid)) { 6685 if (kargs->cgrp) 6686 cgrp_flags = kargs->cgrp->flags; 6687 else 6688 cgrp_flags = cset->dfl_cgrp->flags; 6689 6690 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6691 cset->nr_tasks++; 6692 css_set_move_task(child, NULL, cset, false); 6693 } else { 6694 put_css_set(cset); 6695 cset = NULL; 6696 } 6697 6698 if (!(child->flags & PF_KTHREAD)) { 6699 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6700 /* 6701 * If the cgroup has to be frozen, the new task has 6702 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6703 * get the task into the frozen state. 6704 */ 6705 spin_lock(&child->sighand->siglock); 6706 WARN_ON_ONCE(child->frozen); 6707 child->jobctl |= JOBCTL_TRAP_FREEZE; 6708 spin_unlock(&child->sighand->siglock); 6709 6710 /* 6711 * Calling cgroup_update_frozen() isn't required here, 6712 * because it will be called anyway a bit later from 6713 * do_freezer_trap(). So we avoid cgroup's transient 6714 * switch from the frozen state and back. 6715 */ 6716 } 6717 6718 /* 6719 * If the cgroup is to be killed notice it now and take the 6720 * child down right after we finished preparing it for 6721 * userspace. 6722 */ 6723 kill = test_bit(CGRP_KILL, &cgrp_flags); 6724 } 6725 6726 spin_unlock_irq(&css_set_lock); 6727 6728 /* 6729 * Call ss->fork(). This must happen after @child is linked on 6730 * css_set; otherwise, @child might change state between ->fork() 6731 * and addition to css_set. 6732 */ 6733 do_each_subsys_mask(ss, i, have_fork_callback) { 6734 ss->fork(child); 6735 } while_each_subsys_mask(); 6736 6737 /* Make the new cset the root_cset of the new cgroup namespace. */ 6738 if (kargs->flags & CLONE_NEWCGROUP) { 6739 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6740 6741 get_css_set(cset); 6742 child->nsproxy->cgroup_ns->root_cset = cset; 6743 put_css_set(rcset); 6744 } 6745 6746 /* Cgroup has to be killed so take down child immediately. */ 6747 if (unlikely(kill)) 6748 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6749 6750 cgroup_css_set_put_fork(kargs); 6751 } 6752 6753 /** 6754 * cgroup_exit - detach cgroup from exiting task 6755 * @tsk: pointer to task_struct of exiting process 6756 * 6757 * Description: Detach cgroup from @tsk. 6758 * 6759 */ 6760 void cgroup_exit(struct task_struct *tsk) 6761 { 6762 struct cgroup_subsys *ss; 6763 struct css_set *cset; 6764 int i; 6765 6766 spin_lock_irq(&css_set_lock); 6767 6768 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6769 cset = task_css_set(tsk); 6770 css_set_move_task(tsk, cset, NULL, false); 6771 cset->nr_tasks--; 6772 /* matches the signal->live check in css_task_iter_advance() */ 6773 if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live)) 6774 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6775 6776 if (dl_task(tsk)) 6777 dec_dl_tasks_cs(tsk); 6778 6779 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6780 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6781 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6782 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6783 6784 spin_unlock_irq(&css_set_lock); 6785 6786 /* see cgroup_post_fork() for details */ 6787 do_each_subsys_mask(ss, i, have_exit_callback) { 6788 ss->exit(tsk); 6789 } while_each_subsys_mask(); 6790 } 6791 6792 void cgroup_release(struct task_struct *task) 6793 { 6794 struct cgroup_subsys *ss; 6795 int ssid; 6796 6797 do_each_subsys_mask(ss, ssid, have_release_callback) { 6798 ss->release(task); 6799 } while_each_subsys_mask(); 6800 6801 if (!list_empty(&task->cg_list)) { 6802 spin_lock_irq(&css_set_lock); 6803 css_set_skip_task_iters(task_css_set(task), task); 6804 list_del_init(&task->cg_list); 6805 spin_unlock_irq(&css_set_lock); 6806 } 6807 } 6808 6809 void cgroup_free(struct task_struct *task) 6810 { 6811 struct css_set *cset = task_css_set(task); 6812 put_css_set(cset); 6813 } 6814 6815 static int __init cgroup_disable(char *str) 6816 { 6817 struct cgroup_subsys *ss; 6818 char *token; 6819 int i; 6820 6821 while ((token = strsep(&str, ",")) != NULL) { 6822 if (!*token) 6823 continue; 6824 6825 for_each_subsys(ss, i) { 6826 if (strcmp(token, ss->name) && 6827 strcmp(token, ss->legacy_name)) 6828 continue; 6829 6830 static_branch_disable(cgroup_subsys_enabled_key[i]); 6831 pr_info("Disabling %s control group subsystem\n", 6832 ss->name); 6833 } 6834 6835 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6836 if (strcmp(token, cgroup_opt_feature_names[i])) 6837 continue; 6838 cgroup_feature_disable_mask |= 1 << i; 6839 pr_info("Disabling %s control group feature\n", 6840 cgroup_opt_feature_names[i]); 6841 break; 6842 } 6843 } 6844 return 1; 6845 } 6846 __setup("cgroup_disable=", cgroup_disable); 6847 6848 void __init __weak enable_debug_cgroup(void) { } 6849 6850 static int __init enable_cgroup_debug(char *str) 6851 { 6852 cgroup_debug = true; 6853 enable_debug_cgroup(); 6854 return 1; 6855 } 6856 __setup("cgroup_debug", enable_cgroup_debug); 6857 6858 static int __init cgroup_favordynmods_setup(char *str) 6859 { 6860 return (kstrtobool(str, &have_favordynmods) == 0); 6861 } 6862 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup); 6863 6864 /** 6865 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6866 * @dentry: directory dentry of interest 6867 * @ss: subsystem of interest 6868 * 6869 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6870 * to get the corresponding css and return it. If such css doesn't exist 6871 * or can't be pinned, an ERR_PTR value is returned. 6872 */ 6873 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6874 struct cgroup_subsys *ss) 6875 { 6876 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6877 struct file_system_type *s_type = dentry->d_sb->s_type; 6878 struct cgroup_subsys_state *css = NULL; 6879 struct cgroup *cgrp; 6880 6881 /* is @dentry a cgroup dir? */ 6882 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6883 !kn || kernfs_type(kn) != KERNFS_DIR) 6884 return ERR_PTR(-EBADF); 6885 6886 rcu_read_lock(); 6887 6888 /* 6889 * This path doesn't originate from kernfs and @kn could already 6890 * have been or be removed at any point. @kn->priv is RCU 6891 * protected for this access. See css_release_work_fn() for details. 6892 */ 6893 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6894 if (cgrp) 6895 css = cgroup_css(cgrp, ss); 6896 6897 if (!css || !css_tryget_online(css)) 6898 css = ERR_PTR(-ENOENT); 6899 6900 rcu_read_unlock(); 6901 return css; 6902 } 6903 6904 /** 6905 * css_from_id - lookup css by id 6906 * @id: the cgroup id 6907 * @ss: cgroup subsys to be looked into 6908 * 6909 * Returns the css if there's valid one with @id, otherwise returns NULL. 6910 * Should be called under rcu_read_lock(). 6911 */ 6912 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6913 { 6914 WARN_ON_ONCE(!rcu_read_lock_held()); 6915 return idr_find(&ss->css_idr, id); 6916 } 6917 6918 /** 6919 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6920 * @path: path on the default hierarchy 6921 * 6922 * Find the cgroup at @path on the default hierarchy, increment its 6923 * reference count and return it. Returns pointer to the found cgroup on 6924 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6925 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6926 */ 6927 struct cgroup *cgroup_get_from_path(const char *path) 6928 { 6929 struct kernfs_node *kn; 6930 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6931 struct cgroup *root_cgrp; 6932 6933 root_cgrp = current_cgns_cgroup_dfl(); 6934 kn = kernfs_walk_and_get(root_cgrp->kn, path); 6935 if (!kn) 6936 goto out; 6937 6938 if (kernfs_type(kn) != KERNFS_DIR) { 6939 cgrp = ERR_PTR(-ENOTDIR); 6940 goto out_kernfs; 6941 } 6942 6943 rcu_read_lock(); 6944 6945 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6946 if (!cgrp || !cgroup_tryget(cgrp)) 6947 cgrp = ERR_PTR(-ENOENT); 6948 6949 rcu_read_unlock(); 6950 6951 out_kernfs: 6952 kernfs_put(kn); 6953 out: 6954 return cgrp; 6955 } 6956 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6957 6958 /** 6959 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 6960 * @fd: fd obtained by open(cgroup_dir) 6961 * 6962 * Find the cgroup from a fd which should be obtained 6963 * by opening a cgroup directory. Returns a pointer to the 6964 * cgroup on success. ERR_PTR is returned if the cgroup 6965 * cannot be found. 6966 */ 6967 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 6968 { 6969 struct cgroup *cgrp; 6970 struct fd f = fdget_raw(fd); 6971 if (!fd_file(f)) 6972 return ERR_PTR(-EBADF); 6973 6974 cgrp = cgroup_v1v2_get_from_file(fd_file(f)); 6975 fdput(f); 6976 return cgrp; 6977 } 6978 6979 /** 6980 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 6981 * cgroup2. 6982 * @fd: fd obtained by open(cgroup2_dir) 6983 */ 6984 struct cgroup *cgroup_get_from_fd(int fd) 6985 { 6986 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 6987 6988 if (IS_ERR(cgrp)) 6989 return ERR_CAST(cgrp); 6990 6991 if (!cgroup_on_dfl(cgrp)) { 6992 cgroup_put(cgrp); 6993 return ERR_PTR(-EBADF); 6994 } 6995 return cgrp; 6996 } 6997 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6998 6999 static u64 power_of_ten(int power) 7000 { 7001 u64 v = 1; 7002 while (power--) 7003 v *= 10; 7004 return v; 7005 } 7006 7007 /** 7008 * cgroup_parse_float - parse a floating number 7009 * @input: input string 7010 * @dec_shift: number of decimal digits to shift 7011 * @v: output 7012 * 7013 * Parse a decimal floating point number in @input and store the result in 7014 * @v with decimal point right shifted @dec_shift times. For example, if 7015 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 7016 * Returns 0 on success, -errno otherwise. 7017 * 7018 * There's nothing cgroup specific about this function except that it's 7019 * currently the only user. 7020 */ 7021 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 7022 { 7023 s64 whole, frac = 0; 7024 int fstart = 0, fend = 0, flen; 7025 7026 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 7027 return -EINVAL; 7028 if (frac < 0) 7029 return -EINVAL; 7030 7031 flen = fend > fstart ? fend - fstart : 0; 7032 if (flen < dec_shift) 7033 frac *= power_of_ten(dec_shift - flen); 7034 else 7035 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 7036 7037 *v = whole * power_of_ten(dec_shift) + frac; 7038 return 0; 7039 } 7040 7041 /* 7042 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 7043 * definition in cgroup-defs.h. 7044 */ 7045 #ifdef CONFIG_SOCK_CGROUP_DATA 7046 7047 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 7048 { 7049 struct cgroup *cgroup; 7050 7051 rcu_read_lock(); 7052 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 7053 if (in_interrupt()) { 7054 cgroup = &cgrp_dfl_root.cgrp; 7055 cgroup_get(cgroup); 7056 goto out; 7057 } 7058 7059 while (true) { 7060 struct css_set *cset; 7061 7062 cset = task_css_set(current); 7063 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 7064 cgroup = cset->dfl_cgrp; 7065 break; 7066 } 7067 cpu_relax(); 7068 } 7069 out: 7070 skcd->cgroup = cgroup; 7071 cgroup_bpf_get(cgroup); 7072 rcu_read_unlock(); 7073 } 7074 7075 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 7076 { 7077 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7078 7079 /* 7080 * We might be cloning a socket which is left in an empty 7081 * cgroup and the cgroup might have already been rmdir'd. 7082 * Don't use cgroup_get_live(). 7083 */ 7084 cgroup_get(cgrp); 7085 cgroup_bpf_get(cgrp); 7086 } 7087 7088 void cgroup_sk_free(struct sock_cgroup_data *skcd) 7089 { 7090 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 7091 7092 cgroup_bpf_put(cgrp); 7093 cgroup_put(cgrp); 7094 } 7095 7096 #endif /* CONFIG_SOCK_CGROUP_DATA */ 7097 7098 #ifdef CONFIG_SYSFS 7099 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 7100 ssize_t size, const char *prefix) 7101 { 7102 struct cftype *cft; 7103 ssize_t ret = 0; 7104 7105 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 7106 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 7107 continue; 7108 7109 if (prefix) 7110 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 7111 7112 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 7113 7114 if (WARN_ON(ret >= size)) 7115 break; 7116 } 7117 7118 return ret; 7119 } 7120 7121 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 7122 char *buf) 7123 { 7124 struct cgroup_subsys *ss; 7125 int ssid; 7126 ssize_t ret = 0; 7127 7128 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7129 PAGE_SIZE - ret, NULL); 7130 if (cgroup_psi_enabled()) 7131 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7132 PAGE_SIZE - ret, NULL); 7133 7134 for_each_subsys(ss, ssid) 7135 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7136 PAGE_SIZE - ret, 7137 cgroup_subsys_name[ssid]); 7138 7139 return ret; 7140 } 7141 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7142 7143 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7144 char *buf) 7145 { 7146 return snprintf(buf, PAGE_SIZE, 7147 "nsdelegate\n" 7148 "favordynmods\n" 7149 "memory_localevents\n" 7150 "memory_recursiveprot\n" 7151 "memory_hugetlb_accounting\n" 7152 "pids_localevents\n"); 7153 } 7154 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7155 7156 static struct attribute *cgroup_sysfs_attrs[] = { 7157 &cgroup_delegate_attr.attr, 7158 &cgroup_features_attr.attr, 7159 NULL, 7160 }; 7161 7162 static const struct attribute_group cgroup_sysfs_attr_group = { 7163 .attrs = cgroup_sysfs_attrs, 7164 .name = "cgroup", 7165 }; 7166 7167 static int __init cgroup_sysfs_init(void) 7168 { 7169 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7170 } 7171 subsys_initcall(cgroup_sysfs_init); 7172 7173 #endif /* CONFIG_SYSFS */ 7174