xref: /linux/kernel/cgroup/cgroup.c (revision 83439a0f1ce6a592f95e41338320b5f01b98a356)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/psi.h>
61 #include <net/sock.h>
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/cgroup.h>
65 
66 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
67 					 MAX_CFTYPE_NAME + 2)
68 /* let's not notify more than 100 times per second */
69 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
70 
71 /*
72  * To avoid confusing the compiler (and generating warnings) with code
73  * that attempts to access what would be a 0-element array (i.e. sized
74  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
75  * constant expression can be added.
76  */
77 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
78 
79 /*
80  * cgroup_mutex is the master lock.  Any modification to cgroup or its
81  * hierarchy must be performed while holding it.
82  *
83  * css_set_lock protects task->cgroups pointer, the list of css_set
84  * objects, and the chain of tasks off each css_set.
85  *
86  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
87  * cgroup.h can use them for lockdep annotations.
88  */
89 DEFINE_MUTEX(cgroup_mutex);
90 DEFINE_SPINLOCK(css_set_lock);
91 
92 #ifdef CONFIG_PROVE_RCU
93 EXPORT_SYMBOL_GPL(cgroup_mutex);
94 EXPORT_SYMBOL_GPL(css_set_lock);
95 #endif
96 
97 DEFINE_SPINLOCK(trace_cgroup_path_lock);
98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
99 static bool cgroup_debug __read_mostly;
100 
101 /*
102  * Protects cgroup_idr and css_idr so that IDs can be released without
103  * grabbing cgroup_mutex.
104  */
105 static DEFINE_SPINLOCK(cgroup_idr_lock);
106 
107 /*
108  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
109  * against file removal/re-creation across css hiding.
110  */
111 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
112 
113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
114 
115 #define cgroup_assert_mutex_or_rcu_locked()				\
116 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
117 			   !lockdep_is_held(&cgroup_mutex),		\
118 			   "cgroup_mutex or RCU read lock required");
119 
120 /*
121  * cgroup destruction makes heavy use of work items and there can be a lot
122  * of concurrent destructions.  Use a separate workqueue so that cgroup
123  * destruction work items don't end up filling up max_active of system_wq
124  * which may lead to deadlock.
125  */
126 static struct workqueue_struct *cgroup_destroy_wq;
127 
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134 
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141 
142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143 #define SUBSYS(_x)								\
144 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
145 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
146 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
147 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148 #include <linux/cgroup_subsys.h>
149 #undef SUBSYS
150 
151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152 static struct static_key_true *cgroup_subsys_enabled_key[] = {
153 #include <linux/cgroup_subsys.h>
154 };
155 #undef SUBSYS
156 
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162 
163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
164 
165 /* the default hierarchy */
166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
167 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
168 
169 /*
170  * The default hierarchy always exists but is hidden until mounted for the
171  * first time.  This is for backward compatibility.
172  */
173 static bool cgrp_dfl_visible;
174 
175 /* some controllers are not supported in the default hierarchy */
176 static u16 cgrp_dfl_inhibit_ss_mask;
177 
178 /* some controllers are implicitly enabled on the default hierarchy */
179 static u16 cgrp_dfl_implicit_ss_mask;
180 
181 /* some controllers can be threaded on the default hierarchy */
182 static u16 cgrp_dfl_threaded_ss_mask;
183 
184 /* The list of hierarchy roots */
185 LIST_HEAD(cgroup_roots);
186 static int cgroup_root_count;
187 
188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
189 static DEFINE_IDR(cgroup_hierarchy_idr);
190 
191 /*
192  * Assign a monotonically increasing serial number to csses.  It guarantees
193  * cgroups with bigger numbers are newer than those with smaller numbers.
194  * Also, as csses are always appended to the parent's ->children list, it
195  * guarantees that sibling csses are always sorted in the ascending serial
196  * number order on the list.  Protected by cgroup_mutex.
197  */
198 static u64 css_serial_nr_next = 1;
199 
200 /*
201  * These bitmasks identify subsystems with specific features to avoid
202  * having to do iterative checks repeatedly.
203  */
204 static u16 have_fork_callback __read_mostly;
205 static u16 have_exit_callback __read_mostly;
206 static u16 have_release_callback __read_mostly;
207 static u16 have_canfork_callback __read_mostly;
208 
209 /* cgroup namespace for init task */
210 struct cgroup_namespace init_cgroup_ns = {
211 	.ns.count	= REFCOUNT_INIT(2),
212 	.user_ns	= &init_user_ns,
213 	.ns.ops		= &cgroupns_operations,
214 	.ns.inum	= PROC_CGROUP_INIT_INO,
215 	.root_cset	= &init_css_set,
216 };
217 
218 static struct file_system_type cgroup2_fs_type;
219 static struct cftype cgroup_base_files[];
220 static struct cftype cgroup_psi_files[];
221 
222 /* cgroup optional features */
223 enum cgroup_opt_features {
224 #ifdef CONFIG_PSI
225 	OPT_FEATURE_PRESSURE,
226 #endif
227 	OPT_FEATURE_COUNT
228 };
229 
230 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
231 #ifdef CONFIG_PSI
232 	"pressure",
233 #endif
234 };
235 
236 static u16 cgroup_feature_disable_mask __read_mostly;
237 
238 static int cgroup_apply_control(struct cgroup *cgrp);
239 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
240 static void css_task_iter_skip(struct css_task_iter *it,
241 			       struct task_struct *task);
242 static int cgroup_destroy_locked(struct cgroup *cgrp);
243 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
244 					      struct cgroup_subsys *ss);
245 static void css_release(struct percpu_ref *ref);
246 static void kill_css(struct cgroup_subsys_state *css);
247 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
248 			      struct cgroup *cgrp, struct cftype cfts[],
249 			      bool is_add);
250 
251 /**
252  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
253  * @ssid: subsys ID of interest
254  *
255  * cgroup_subsys_enabled() can only be used with literal subsys names which
256  * is fine for individual subsystems but unsuitable for cgroup core.  This
257  * is slower static_key_enabled() based test indexed by @ssid.
258  */
259 bool cgroup_ssid_enabled(int ssid)
260 {
261 	if (!CGROUP_HAS_SUBSYS_CONFIG)
262 		return false;
263 
264 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
265 }
266 
267 /**
268  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
269  * @cgrp: the cgroup of interest
270  *
271  * The default hierarchy is the v2 interface of cgroup and this function
272  * can be used to test whether a cgroup is on the default hierarchy for
273  * cases where a subsystem should behave differently depending on the
274  * interface version.
275  *
276  * List of changed behaviors:
277  *
278  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
279  *   and "name" are disallowed.
280  *
281  * - When mounting an existing superblock, mount options should match.
282  *
283  * - rename(2) is disallowed.
284  *
285  * - "tasks" is removed.  Everything should be at process granularity.  Use
286  *   "cgroup.procs" instead.
287  *
288  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
289  *   recycled in-between reads.
290  *
291  * - "release_agent" and "notify_on_release" are removed.  Replacement
292  *   notification mechanism will be implemented.
293  *
294  * - "cgroup.clone_children" is removed.
295  *
296  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
297  *   and its descendants contain no task; otherwise, 1.  The file also
298  *   generates kernfs notification which can be monitored through poll and
299  *   [di]notify when the value of the file changes.
300  *
301  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
302  *   take masks of ancestors with non-empty cpus/mems, instead of being
303  *   moved to an ancestor.
304  *
305  * - cpuset: a task can be moved into an empty cpuset, and again it takes
306  *   masks of ancestors.
307  *
308  * - blkcg: blk-throttle becomes properly hierarchical.
309  *
310  * - debug: disallowed on the default hierarchy.
311  */
312 bool cgroup_on_dfl(const struct cgroup *cgrp)
313 {
314 	return cgrp->root == &cgrp_dfl_root;
315 }
316 
317 /* IDR wrappers which synchronize using cgroup_idr_lock */
318 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
319 			    gfp_t gfp_mask)
320 {
321 	int ret;
322 
323 	idr_preload(gfp_mask);
324 	spin_lock_bh(&cgroup_idr_lock);
325 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
326 	spin_unlock_bh(&cgroup_idr_lock);
327 	idr_preload_end();
328 	return ret;
329 }
330 
331 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
332 {
333 	void *ret;
334 
335 	spin_lock_bh(&cgroup_idr_lock);
336 	ret = idr_replace(idr, ptr, id);
337 	spin_unlock_bh(&cgroup_idr_lock);
338 	return ret;
339 }
340 
341 static void cgroup_idr_remove(struct idr *idr, int id)
342 {
343 	spin_lock_bh(&cgroup_idr_lock);
344 	idr_remove(idr, id);
345 	spin_unlock_bh(&cgroup_idr_lock);
346 }
347 
348 static bool cgroup_has_tasks(struct cgroup *cgrp)
349 {
350 	return cgrp->nr_populated_csets;
351 }
352 
353 bool cgroup_is_threaded(struct cgroup *cgrp)
354 {
355 	return cgrp->dom_cgrp != cgrp;
356 }
357 
358 /* can @cgrp host both domain and threaded children? */
359 static bool cgroup_is_mixable(struct cgroup *cgrp)
360 {
361 	/*
362 	 * Root isn't under domain level resource control exempting it from
363 	 * the no-internal-process constraint, so it can serve as a thread
364 	 * root and a parent of resource domains at the same time.
365 	 */
366 	return !cgroup_parent(cgrp);
367 }
368 
369 /* can @cgrp become a thread root? Should always be true for a thread root */
370 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
371 {
372 	/* mixables don't care */
373 	if (cgroup_is_mixable(cgrp))
374 		return true;
375 
376 	/* domain roots can't be nested under threaded */
377 	if (cgroup_is_threaded(cgrp))
378 		return false;
379 
380 	/* can only have either domain or threaded children */
381 	if (cgrp->nr_populated_domain_children)
382 		return false;
383 
384 	/* and no domain controllers can be enabled */
385 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
386 		return false;
387 
388 	return true;
389 }
390 
391 /* is @cgrp root of a threaded subtree? */
392 bool cgroup_is_thread_root(struct cgroup *cgrp)
393 {
394 	/* thread root should be a domain */
395 	if (cgroup_is_threaded(cgrp))
396 		return false;
397 
398 	/* a domain w/ threaded children is a thread root */
399 	if (cgrp->nr_threaded_children)
400 		return true;
401 
402 	/*
403 	 * A domain which has tasks and explicit threaded controllers
404 	 * enabled is a thread root.
405 	 */
406 	if (cgroup_has_tasks(cgrp) &&
407 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
408 		return true;
409 
410 	return false;
411 }
412 
413 /* a domain which isn't connected to the root w/o brekage can't be used */
414 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
415 {
416 	/* the cgroup itself can be a thread root */
417 	if (cgroup_is_threaded(cgrp))
418 		return false;
419 
420 	/* but the ancestors can't be unless mixable */
421 	while ((cgrp = cgroup_parent(cgrp))) {
422 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
423 			return false;
424 		if (cgroup_is_threaded(cgrp))
425 			return false;
426 	}
427 
428 	return true;
429 }
430 
431 /* subsystems visibly enabled on a cgroup */
432 static u16 cgroup_control(struct cgroup *cgrp)
433 {
434 	struct cgroup *parent = cgroup_parent(cgrp);
435 	u16 root_ss_mask = cgrp->root->subsys_mask;
436 
437 	if (parent) {
438 		u16 ss_mask = parent->subtree_control;
439 
440 		/* threaded cgroups can only have threaded controllers */
441 		if (cgroup_is_threaded(cgrp))
442 			ss_mask &= cgrp_dfl_threaded_ss_mask;
443 		return ss_mask;
444 	}
445 
446 	if (cgroup_on_dfl(cgrp))
447 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
448 				  cgrp_dfl_implicit_ss_mask);
449 	return root_ss_mask;
450 }
451 
452 /* subsystems enabled on a cgroup */
453 static u16 cgroup_ss_mask(struct cgroup *cgrp)
454 {
455 	struct cgroup *parent = cgroup_parent(cgrp);
456 
457 	if (parent) {
458 		u16 ss_mask = parent->subtree_ss_mask;
459 
460 		/* threaded cgroups can only have threaded controllers */
461 		if (cgroup_is_threaded(cgrp))
462 			ss_mask &= cgrp_dfl_threaded_ss_mask;
463 		return ss_mask;
464 	}
465 
466 	return cgrp->root->subsys_mask;
467 }
468 
469 /**
470  * cgroup_css - obtain a cgroup's css for the specified subsystem
471  * @cgrp: the cgroup of interest
472  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
473  *
474  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
475  * function must be called either under cgroup_mutex or rcu_read_lock() and
476  * the caller is responsible for pinning the returned css if it wants to
477  * keep accessing it outside the said locks.  This function may return
478  * %NULL if @cgrp doesn't have @subsys_id enabled.
479  */
480 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
481 					      struct cgroup_subsys *ss)
482 {
483 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
484 		return rcu_dereference_check(cgrp->subsys[ss->id],
485 					lockdep_is_held(&cgroup_mutex));
486 	else
487 		return &cgrp->self;
488 }
489 
490 /**
491  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
492  * @cgrp: the cgroup of interest
493  * @ss: the subsystem of interest
494  *
495  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
496  * or is offline, %NULL is returned.
497  */
498 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
499 						     struct cgroup_subsys *ss)
500 {
501 	struct cgroup_subsys_state *css;
502 
503 	rcu_read_lock();
504 	css = cgroup_css(cgrp, ss);
505 	if (css && !css_tryget_online(css))
506 		css = NULL;
507 	rcu_read_unlock();
508 
509 	return css;
510 }
511 
512 /**
513  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
514  * @cgrp: the cgroup of interest
515  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
516  *
517  * Similar to cgroup_css() but returns the effective css, which is defined
518  * as the matching css of the nearest ancestor including self which has @ss
519  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
520  * function is guaranteed to return non-NULL css.
521  */
522 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
523 							struct cgroup_subsys *ss)
524 {
525 	lockdep_assert_held(&cgroup_mutex);
526 
527 	if (!ss)
528 		return &cgrp->self;
529 
530 	/*
531 	 * This function is used while updating css associations and thus
532 	 * can't test the csses directly.  Test ss_mask.
533 	 */
534 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
535 		cgrp = cgroup_parent(cgrp);
536 		if (!cgrp)
537 			return NULL;
538 	}
539 
540 	return cgroup_css(cgrp, ss);
541 }
542 
543 /**
544  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
545  * @cgrp: the cgroup of interest
546  * @ss: the subsystem of interest
547  *
548  * Find and get the effective css of @cgrp for @ss.  The effective css is
549  * defined as the matching css of the nearest ancestor including self which
550  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
551  * the root css is returned, so this function always returns a valid css.
552  *
553  * The returned css is not guaranteed to be online, and therefore it is the
554  * callers responsibility to try get a reference for it.
555  */
556 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
557 					 struct cgroup_subsys *ss)
558 {
559 	struct cgroup_subsys_state *css;
560 
561 	if (!CGROUP_HAS_SUBSYS_CONFIG)
562 		return NULL;
563 
564 	do {
565 		css = cgroup_css(cgrp, ss);
566 
567 		if (css)
568 			return css;
569 		cgrp = cgroup_parent(cgrp);
570 	} while (cgrp);
571 
572 	return init_css_set.subsys[ss->id];
573 }
574 
575 /**
576  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
577  * @cgrp: the cgroup of interest
578  * @ss: the subsystem of interest
579  *
580  * Find and get the effective css of @cgrp for @ss.  The effective css is
581  * defined as the matching css of the nearest ancestor including self which
582  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
583  * the root css is returned, so this function always returns a valid css.
584  * The returned css must be put using css_put().
585  */
586 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
587 					     struct cgroup_subsys *ss)
588 {
589 	struct cgroup_subsys_state *css;
590 
591 	if (!CGROUP_HAS_SUBSYS_CONFIG)
592 		return NULL;
593 
594 	rcu_read_lock();
595 
596 	do {
597 		css = cgroup_css(cgrp, ss);
598 
599 		if (css && css_tryget_online(css))
600 			goto out_unlock;
601 		cgrp = cgroup_parent(cgrp);
602 	} while (cgrp);
603 
604 	css = init_css_set.subsys[ss->id];
605 	css_get(css);
606 out_unlock:
607 	rcu_read_unlock();
608 	return css;
609 }
610 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
611 
612 static void cgroup_get_live(struct cgroup *cgrp)
613 {
614 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
615 	css_get(&cgrp->self);
616 }
617 
618 /**
619  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
620  * is responsible for taking the css_set_lock.
621  * @cgrp: the cgroup in question
622  */
623 int __cgroup_task_count(const struct cgroup *cgrp)
624 {
625 	int count = 0;
626 	struct cgrp_cset_link *link;
627 
628 	lockdep_assert_held(&css_set_lock);
629 
630 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
631 		count += link->cset->nr_tasks;
632 
633 	return count;
634 }
635 
636 /**
637  * cgroup_task_count - count the number of tasks in a cgroup.
638  * @cgrp: the cgroup in question
639  */
640 int cgroup_task_count(const struct cgroup *cgrp)
641 {
642 	int count;
643 
644 	spin_lock_irq(&css_set_lock);
645 	count = __cgroup_task_count(cgrp);
646 	spin_unlock_irq(&css_set_lock);
647 
648 	return count;
649 }
650 
651 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
652 {
653 	struct cgroup *cgrp = of->kn->parent->priv;
654 	struct cftype *cft = of_cft(of);
655 
656 	/*
657 	 * This is open and unprotected implementation of cgroup_css().
658 	 * seq_css() is only called from a kernfs file operation which has
659 	 * an active reference on the file.  Because all the subsystem
660 	 * files are drained before a css is disassociated with a cgroup,
661 	 * the matching css from the cgroup's subsys table is guaranteed to
662 	 * be and stay valid until the enclosing operation is complete.
663 	 */
664 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
665 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
666 	else
667 		return &cgrp->self;
668 }
669 EXPORT_SYMBOL_GPL(of_css);
670 
671 /**
672  * for_each_css - iterate all css's of a cgroup
673  * @css: the iteration cursor
674  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
675  * @cgrp: the target cgroup to iterate css's of
676  *
677  * Should be called under cgroup_[tree_]mutex.
678  */
679 #define for_each_css(css, ssid, cgrp)					\
680 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
681 		if (!((css) = rcu_dereference_check(			\
682 				(cgrp)->subsys[(ssid)],			\
683 				lockdep_is_held(&cgroup_mutex)))) { }	\
684 		else
685 
686 /**
687  * for_each_e_css - iterate all effective css's of a cgroup
688  * @css: the iteration cursor
689  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
690  * @cgrp: the target cgroup to iterate css's of
691  *
692  * Should be called under cgroup_[tree_]mutex.
693  */
694 #define for_each_e_css(css, ssid, cgrp)					    \
695 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
696 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
697 						   cgroup_subsys[(ssid)]))) \
698 			;						    \
699 		else
700 
701 /**
702  * do_each_subsys_mask - filter for_each_subsys with a bitmask
703  * @ss: the iteration cursor
704  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
705  * @ss_mask: the bitmask
706  *
707  * The block will only run for cases where the ssid-th bit (1 << ssid) of
708  * @ss_mask is set.
709  */
710 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
711 	unsigned long __ss_mask = (ss_mask);				\
712 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
713 		(ssid) = 0;						\
714 		break;							\
715 	}								\
716 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
717 		(ss) = cgroup_subsys[ssid];				\
718 		{
719 
720 #define while_each_subsys_mask()					\
721 		}							\
722 	}								\
723 } while (false)
724 
725 /* iterate over child cgrps, lock should be held throughout iteration */
726 #define cgroup_for_each_live_child(child, cgrp)				\
727 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
728 		if (({ lockdep_assert_held(&cgroup_mutex);		\
729 		       cgroup_is_dead(child); }))			\
730 			;						\
731 		else
732 
733 /* walk live descendants in pre order */
734 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
735 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
736 		if (({ lockdep_assert_held(&cgroup_mutex);		\
737 		       (dsct) = (d_css)->cgroup;			\
738 		       cgroup_is_dead(dsct); }))			\
739 			;						\
740 		else
741 
742 /* walk live descendants in postorder */
743 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
744 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
745 		if (({ lockdep_assert_held(&cgroup_mutex);		\
746 		       (dsct) = (d_css)->cgroup;			\
747 		       cgroup_is_dead(dsct); }))			\
748 			;						\
749 		else
750 
751 /*
752  * The default css_set - used by init and its children prior to any
753  * hierarchies being mounted. It contains a pointer to the root state
754  * for each subsystem. Also used to anchor the list of css_sets. Not
755  * reference-counted, to improve performance when child cgroups
756  * haven't been created.
757  */
758 struct css_set init_css_set = {
759 	.refcount		= REFCOUNT_INIT(1),
760 	.dom_cset		= &init_css_set,
761 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
762 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
763 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
764 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
765 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
766 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
767 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
768 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
769 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
770 
771 	/*
772 	 * The following field is re-initialized when this cset gets linked
773 	 * in cgroup_init().  However, let's initialize the field
774 	 * statically too so that the default cgroup can be accessed safely
775 	 * early during boot.
776 	 */
777 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
778 };
779 
780 static int css_set_count	= 1;	/* 1 for init_css_set */
781 
782 static bool css_set_threaded(struct css_set *cset)
783 {
784 	return cset->dom_cset != cset;
785 }
786 
787 /**
788  * css_set_populated - does a css_set contain any tasks?
789  * @cset: target css_set
790  *
791  * css_set_populated() should be the same as !!cset->nr_tasks at steady
792  * state. However, css_set_populated() can be called while a task is being
793  * added to or removed from the linked list before the nr_tasks is
794  * properly updated. Hence, we can't just look at ->nr_tasks here.
795  */
796 static bool css_set_populated(struct css_set *cset)
797 {
798 	lockdep_assert_held(&css_set_lock);
799 
800 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
801 }
802 
803 /**
804  * cgroup_update_populated - update the populated count of a cgroup
805  * @cgrp: the target cgroup
806  * @populated: inc or dec populated count
807  *
808  * One of the css_sets associated with @cgrp is either getting its first
809  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
810  * count is propagated towards root so that a given cgroup's
811  * nr_populated_children is zero iff none of its descendants contain any
812  * tasks.
813  *
814  * @cgrp's interface file "cgroup.populated" is zero if both
815  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
816  * 1 otherwise.  When the sum changes from or to zero, userland is notified
817  * that the content of the interface file has changed.  This can be used to
818  * detect when @cgrp and its descendants become populated or empty.
819  */
820 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
821 {
822 	struct cgroup *child = NULL;
823 	int adj = populated ? 1 : -1;
824 
825 	lockdep_assert_held(&css_set_lock);
826 
827 	do {
828 		bool was_populated = cgroup_is_populated(cgrp);
829 
830 		if (!child) {
831 			cgrp->nr_populated_csets += adj;
832 		} else {
833 			if (cgroup_is_threaded(child))
834 				cgrp->nr_populated_threaded_children += adj;
835 			else
836 				cgrp->nr_populated_domain_children += adj;
837 		}
838 
839 		if (was_populated == cgroup_is_populated(cgrp))
840 			break;
841 
842 		cgroup1_check_for_release(cgrp);
843 		TRACE_CGROUP_PATH(notify_populated, cgrp,
844 				  cgroup_is_populated(cgrp));
845 		cgroup_file_notify(&cgrp->events_file);
846 
847 		child = cgrp;
848 		cgrp = cgroup_parent(cgrp);
849 	} while (cgrp);
850 }
851 
852 /**
853  * css_set_update_populated - update populated state of a css_set
854  * @cset: target css_set
855  * @populated: whether @cset is populated or depopulated
856  *
857  * @cset is either getting the first task or losing the last.  Update the
858  * populated counters of all associated cgroups accordingly.
859  */
860 static void css_set_update_populated(struct css_set *cset, bool populated)
861 {
862 	struct cgrp_cset_link *link;
863 
864 	lockdep_assert_held(&css_set_lock);
865 
866 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
867 		cgroup_update_populated(link->cgrp, populated);
868 }
869 
870 /*
871  * @task is leaving, advance task iterators which are pointing to it so
872  * that they can resume at the next position.  Advancing an iterator might
873  * remove it from the list, use safe walk.  See css_task_iter_skip() for
874  * details.
875  */
876 static void css_set_skip_task_iters(struct css_set *cset,
877 				    struct task_struct *task)
878 {
879 	struct css_task_iter *it, *pos;
880 
881 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
882 		css_task_iter_skip(it, task);
883 }
884 
885 /**
886  * css_set_move_task - move a task from one css_set to another
887  * @task: task being moved
888  * @from_cset: css_set @task currently belongs to (may be NULL)
889  * @to_cset: new css_set @task is being moved to (may be NULL)
890  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
891  *
892  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
893  * css_set, @from_cset can be NULL.  If @task is being disassociated
894  * instead of moved, @to_cset can be NULL.
895  *
896  * This function automatically handles populated counter updates and
897  * css_task_iter adjustments but the caller is responsible for managing
898  * @from_cset and @to_cset's reference counts.
899  */
900 static void css_set_move_task(struct task_struct *task,
901 			      struct css_set *from_cset, struct css_set *to_cset,
902 			      bool use_mg_tasks)
903 {
904 	lockdep_assert_held(&css_set_lock);
905 
906 	if (to_cset && !css_set_populated(to_cset))
907 		css_set_update_populated(to_cset, true);
908 
909 	if (from_cset) {
910 		WARN_ON_ONCE(list_empty(&task->cg_list));
911 
912 		css_set_skip_task_iters(from_cset, task);
913 		list_del_init(&task->cg_list);
914 		if (!css_set_populated(from_cset))
915 			css_set_update_populated(from_cset, false);
916 	} else {
917 		WARN_ON_ONCE(!list_empty(&task->cg_list));
918 	}
919 
920 	if (to_cset) {
921 		/*
922 		 * We are synchronized through cgroup_threadgroup_rwsem
923 		 * against PF_EXITING setting such that we can't race
924 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
925 		 */
926 		WARN_ON_ONCE(task->flags & PF_EXITING);
927 
928 		cgroup_move_task(task, to_cset);
929 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
930 							     &to_cset->tasks);
931 	}
932 }
933 
934 /*
935  * hash table for cgroup groups. This improves the performance to find
936  * an existing css_set. This hash doesn't (currently) take into
937  * account cgroups in empty hierarchies.
938  */
939 #define CSS_SET_HASH_BITS	7
940 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
941 
942 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
943 {
944 	unsigned long key = 0UL;
945 	struct cgroup_subsys *ss;
946 	int i;
947 
948 	for_each_subsys(ss, i)
949 		key += (unsigned long)css[i];
950 	key = (key >> 16) ^ key;
951 
952 	return key;
953 }
954 
955 void put_css_set_locked(struct css_set *cset)
956 {
957 	struct cgrp_cset_link *link, *tmp_link;
958 	struct cgroup_subsys *ss;
959 	int ssid;
960 
961 	lockdep_assert_held(&css_set_lock);
962 
963 	if (!refcount_dec_and_test(&cset->refcount))
964 		return;
965 
966 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
967 
968 	/* This css_set is dead. Unlink it and release cgroup and css refs */
969 	for_each_subsys(ss, ssid) {
970 		list_del(&cset->e_cset_node[ssid]);
971 		css_put(cset->subsys[ssid]);
972 	}
973 	hash_del(&cset->hlist);
974 	css_set_count--;
975 
976 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
977 		list_del(&link->cset_link);
978 		list_del(&link->cgrp_link);
979 		if (cgroup_parent(link->cgrp))
980 			cgroup_put(link->cgrp);
981 		kfree(link);
982 	}
983 
984 	if (css_set_threaded(cset)) {
985 		list_del(&cset->threaded_csets_node);
986 		put_css_set_locked(cset->dom_cset);
987 	}
988 
989 	kfree_rcu(cset, rcu_head);
990 }
991 
992 /**
993  * compare_css_sets - helper function for find_existing_css_set().
994  * @cset: candidate css_set being tested
995  * @old_cset: existing css_set for a task
996  * @new_cgrp: cgroup that's being entered by the task
997  * @template: desired set of css pointers in css_set (pre-calculated)
998  *
999  * Returns true if "cset" matches "old_cset" except for the hierarchy
1000  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1001  */
1002 static bool compare_css_sets(struct css_set *cset,
1003 			     struct css_set *old_cset,
1004 			     struct cgroup *new_cgrp,
1005 			     struct cgroup_subsys_state *template[])
1006 {
1007 	struct cgroup *new_dfl_cgrp;
1008 	struct list_head *l1, *l2;
1009 
1010 	/*
1011 	 * On the default hierarchy, there can be csets which are
1012 	 * associated with the same set of cgroups but different csses.
1013 	 * Let's first ensure that csses match.
1014 	 */
1015 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1016 		return false;
1017 
1018 
1019 	/* @cset's domain should match the default cgroup's */
1020 	if (cgroup_on_dfl(new_cgrp))
1021 		new_dfl_cgrp = new_cgrp;
1022 	else
1023 		new_dfl_cgrp = old_cset->dfl_cgrp;
1024 
1025 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1026 		return false;
1027 
1028 	/*
1029 	 * Compare cgroup pointers in order to distinguish between
1030 	 * different cgroups in hierarchies.  As different cgroups may
1031 	 * share the same effective css, this comparison is always
1032 	 * necessary.
1033 	 */
1034 	l1 = &cset->cgrp_links;
1035 	l2 = &old_cset->cgrp_links;
1036 	while (1) {
1037 		struct cgrp_cset_link *link1, *link2;
1038 		struct cgroup *cgrp1, *cgrp2;
1039 
1040 		l1 = l1->next;
1041 		l2 = l2->next;
1042 		/* See if we reached the end - both lists are equal length. */
1043 		if (l1 == &cset->cgrp_links) {
1044 			BUG_ON(l2 != &old_cset->cgrp_links);
1045 			break;
1046 		} else {
1047 			BUG_ON(l2 == &old_cset->cgrp_links);
1048 		}
1049 		/* Locate the cgroups associated with these links. */
1050 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1051 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1052 		cgrp1 = link1->cgrp;
1053 		cgrp2 = link2->cgrp;
1054 		/* Hierarchies should be linked in the same order. */
1055 		BUG_ON(cgrp1->root != cgrp2->root);
1056 
1057 		/*
1058 		 * If this hierarchy is the hierarchy of the cgroup
1059 		 * that's changing, then we need to check that this
1060 		 * css_set points to the new cgroup; if it's any other
1061 		 * hierarchy, then this css_set should point to the
1062 		 * same cgroup as the old css_set.
1063 		 */
1064 		if (cgrp1->root == new_cgrp->root) {
1065 			if (cgrp1 != new_cgrp)
1066 				return false;
1067 		} else {
1068 			if (cgrp1 != cgrp2)
1069 				return false;
1070 		}
1071 	}
1072 	return true;
1073 }
1074 
1075 /**
1076  * find_existing_css_set - init css array and find the matching css_set
1077  * @old_cset: the css_set that we're using before the cgroup transition
1078  * @cgrp: the cgroup that we're moving into
1079  * @template: out param for the new set of csses, should be clear on entry
1080  */
1081 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1082 					struct cgroup *cgrp,
1083 					struct cgroup_subsys_state *template[])
1084 {
1085 	struct cgroup_root *root = cgrp->root;
1086 	struct cgroup_subsys *ss;
1087 	struct css_set *cset;
1088 	unsigned long key;
1089 	int i;
1090 
1091 	/*
1092 	 * Build the set of subsystem state objects that we want to see in the
1093 	 * new css_set. While subsystems can change globally, the entries here
1094 	 * won't change, so no need for locking.
1095 	 */
1096 	for_each_subsys(ss, i) {
1097 		if (root->subsys_mask & (1UL << i)) {
1098 			/*
1099 			 * @ss is in this hierarchy, so we want the
1100 			 * effective css from @cgrp.
1101 			 */
1102 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1103 		} else {
1104 			/*
1105 			 * @ss is not in this hierarchy, so we don't want
1106 			 * to change the css.
1107 			 */
1108 			template[i] = old_cset->subsys[i];
1109 		}
1110 	}
1111 
1112 	key = css_set_hash(template);
1113 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1114 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1115 			continue;
1116 
1117 		/* This css_set matches what we need */
1118 		return cset;
1119 	}
1120 
1121 	/* No existing cgroup group matched */
1122 	return NULL;
1123 }
1124 
1125 static void free_cgrp_cset_links(struct list_head *links_to_free)
1126 {
1127 	struct cgrp_cset_link *link, *tmp_link;
1128 
1129 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1130 		list_del(&link->cset_link);
1131 		kfree(link);
1132 	}
1133 }
1134 
1135 /**
1136  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1137  * @count: the number of links to allocate
1138  * @tmp_links: list_head the allocated links are put on
1139  *
1140  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1141  * through ->cset_link.  Returns 0 on success or -errno.
1142  */
1143 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1144 {
1145 	struct cgrp_cset_link *link;
1146 	int i;
1147 
1148 	INIT_LIST_HEAD(tmp_links);
1149 
1150 	for (i = 0; i < count; i++) {
1151 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1152 		if (!link) {
1153 			free_cgrp_cset_links(tmp_links);
1154 			return -ENOMEM;
1155 		}
1156 		list_add(&link->cset_link, tmp_links);
1157 	}
1158 	return 0;
1159 }
1160 
1161 /**
1162  * link_css_set - a helper function to link a css_set to a cgroup
1163  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1164  * @cset: the css_set to be linked
1165  * @cgrp: the destination cgroup
1166  */
1167 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1168 			 struct cgroup *cgrp)
1169 {
1170 	struct cgrp_cset_link *link;
1171 
1172 	BUG_ON(list_empty(tmp_links));
1173 
1174 	if (cgroup_on_dfl(cgrp))
1175 		cset->dfl_cgrp = cgrp;
1176 
1177 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1178 	link->cset = cset;
1179 	link->cgrp = cgrp;
1180 
1181 	/*
1182 	 * Always add links to the tail of the lists so that the lists are
1183 	 * in chronological order.
1184 	 */
1185 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1186 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1187 
1188 	if (cgroup_parent(cgrp))
1189 		cgroup_get_live(cgrp);
1190 }
1191 
1192 /**
1193  * find_css_set - return a new css_set with one cgroup updated
1194  * @old_cset: the baseline css_set
1195  * @cgrp: the cgroup to be updated
1196  *
1197  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1198  * substituted into the appropriate hierarchy.
1199  */
1200 static struct css_set *find_css_set(struct css_set *old_cset,
1201 				    struct cgroup *cgrp)
1202 {
1203 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1204 	struct css_set *cset;
1205 	struct list_head tmp_links;
1206 	struct cgrp_cset_link *link;
1207 	struct cgroup_subsys *ss;
1208 	unsigned long key;
1209 	int ssid;
1210 
1211 	lockdep_assert_held(&cgroup_mutex);
1212 
1213 	/* First see if we already have a cgroup group that matches
1214 	 * the desired set */
1215 	spin_lock_irq(&css_set_lock);
1216 	cset = find_existing_css_set(old_cset, cgrp, template);
1217 	if (cset)
1218 		get_css_set(cset);
1219 	spin_unlock_irq(&css_set_lock);
1220 
1221 	if (cset)
1222 		return cset;
1223 
1224 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1225 	if (!cset)
1226 		return NULL;
1227 
1228 	/* Allocate all the cgrp_cset_link objects that we'll need */
1229 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1230 		kfree(cset);
1231 		return NULL;
1232 	}
1233 
1234 	refcount_set(&cset->refcount, 1);
1235 	cset->dom_cset = cset;
1236 	INIT_LIST_HEAD(&cset->tasks);
1237 	INIT_LIST_HEAD(&cset->mg_tasks);
1238 	INIT_LIST_HEAD(&cset->dying_tasks);
1239 	INIT_LIST_HEAD(&cset->task_iters);
1240 	INIT_LIST_HEAD(&cset->threaded_csets);
1241 	INIT_HLIST_NODE(&cset->hlist);
1242 	INIT_LIST_HEAD(&cset->cgrp_links);
1243 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1244 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1245 	INIT_LIST_HEAD(&cset->mg_node);
1246 
1247 	/* Copy the set of subsystem state objects generated in
1248 	 * find_existing_css_set() */
1249 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1250 
1251 	spin_lock_irq(&css_set_lock);
1252 	/* Add reference counts and links from the new css_set. */
1253 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1254 		struct cgroup *c = link->cgrp;
1255 
1256 		if (c->root == cgrp->root)
1257 			c = cgrp;
1258 		link_css_set(&tmp_links, cset, c);
1259 	}
1260 
1261 	BUG_ON(!list_empty(&tmp_links));
1262 
1263 	css_set_count++;
1264 
1265 	/* Add @cset to the hash table */
1266 	key = css_set_hash(cset->subsys);
1267 	hash_add(css_set_table, &cset->hlist, key);
1268 
1269 	for_each_subsys(ss, ssid) {
1270 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1271 
1272 		list_add_tail(&cset->e_cset_node[ssid],
1273 			      &css->cgroup->e_csets[ssid]);
1274 		css_get(css);
1275 	}
1276 
1277 	spin_unlock_irq(&css_set_lock);
1278 
1279 	/*
1280 	 * If @cset should be threaded, look up the matching dom_cset and
1281 	 * link them up.  We first fully initialize @cset then look for the
1282 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1283 	 * to stay empty until we return.
1284 	 */
1285 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1286 		struct css_set *dcset;
1287 
1288 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1289 		if (!dcset) {
1290 			put_css_set(cset);
1291 			return NULL;
1292 		}
1293 
1294 		spin_lock_irq(&css_set_lock);
1295 		cset->dom_cset = dcset;
1296 		list_add_tail(&cset->threaded_csets_node,
1297 			      &dcset->threaded_csets);
1298 		spin_unlock_irq(&css_set_lock);
1299 	}
1300 
1301 	return cset;
1302 }
1303 
1304 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1305 {
1306 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1307 
1308 	return root_cgrp->root;
1309 }
1310 
1311 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1312 {
1313 	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1314 
1315 	/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1316 	if (favor && !favoring) {
1317 		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1318 		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1319 	} else if (!favor && favoring) {
1320 		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1321 		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1322 	}
1323 }
1324 
1325 static int cgroup_init_root_id(struct cgroup_root *root)
1326 {
1327 	int id;
1328 
1329 	lockdep_assert_held(&cgroup_mutex);
1330 
1331 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1332 	if (id < 0)
1333 		return id;
1334 
1335 	root->hierarchy_id = id;
1336 	return 0;
1337 }
1338 
1339 static void cgroup_exit_root_id(struct cgroup_root *root)
1340 {
1341 	lockdep_assert_held(&cgroup_mutex);
1342 
1343 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1344 }
1345 
1346 void cgroup_free_root(struct cgroup_root *root)
1347 {
1348 	kfree(root);
1349 }
1350 
1351 static void cgroup_destroy_root(struct cgroup_root *root)
1352 {
1353 	struct cgroup *cgrp = &root->cgrp;
1354 	struct cgrp_cset_link *link, *tmp_link;
1355 
1356 	trace_cgroup_destroy_root(root);
1357 
1358 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1359 
1360 	BUG_ON(atomic_read(&root->nr_cgrps));
1361 	BUG_ON(!list_empty(&cgrp->self.children));
1362 
1363 	/* Rebind all subsystems back to the default hierarchy */
1364 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1365 
1366 	/*
1367 	 * Release all the links from cset_links to this hierarchy's
1368 	 * root cgroup
1369 	 */
1370 	spin_lock_irq(&css_set_lock);
1371 
1372 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1373 		list_del(&link->cset_link);
1374 		list_del(&link->cgrp_link);
1375 		kfree(link);
1376 	}
1377 
1378 	spin_unlock_irq(&css_set_lock);
1379 
1380 	if (!list_empty(&root->root_list)) {
1381 		list_del(&root->root_list);
1382 		cgroup_root_count--;
1383 	}
1384 
1385 	cgroup_favor_dynmods(root, false);
1386 	cgroup_exit_root_id(root);
1387 
1388 	mutex_unlock(&cgroup_mutex);
1389 
1390 	cgroup_rstat_exit(cgrp);
1391 	kernfs_destroy_root(root->kf_root);
1392 	cgroup_free_root(root);
1393 }
1394 
1395 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1396 					    struct cgroup_root *root)
1397 {
1398 	struct cgroup *res_cgroup = NULL;
1399 
1400 	if (cset == &init_css_set) {
1401 		res_cgroup = &root->cgrp;
1402 	} else if (root == &cgrp_dfl_root) {
1403 		res_cgroup = cset->dfl_cgrp;
1404 	} else {
1405 		struct cgrp_cset_link *link;
1406 
1407 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1408 			struct cgroup *c = link->cgrp;
1409 
1410 			if (c->root == root) {
1411 				res_cgroup = c;
1412 				break;
1413 			}
1414 		}
1415 	}
1416 
1417 	return res_cgroup;
1418 }
1419 
1420 /*
1421  * look up cgroup associated with current task's cgroup namespace on the
1422  * specified hierarchy
1423  */
1424 static struct cgroup *
1425 current_cgns_cgroup_from_root(struct cgroup_root *root)
1426 {
1427 	struct cgroup *res = NULL;
1428 	struct css_set *cset;
1429 
1430 	lockdep_assert_held(&css_set_lock);
1431 
1432 	rcu_read_lock();
1433 
1434 	cset = current->nsproxy->cgroup_ns->root_cset;
1435 	res = __cset_cgroup_from_root(cset, root);
1436 
1437 	rcu_read_unlock();
1438 
1439 	BUG_ON(!res);
1440 	return res;
1441 }
1442 
1443 /* look up cgroup associated with given css_set on the specified hierarchy */
1444 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1445 					    struct cgroup_root *root)
1446 {
1447 	struct cgroup *res = NULL;
1448 
1449 	lockdep_assert_held(&cgroup_mutex);
1450 	lockdep_assert_held(&css_set_lock);
1451 
1452 	res = __cset_cgroup_from_root(cset, root);
1453 
1454 	BUG_ON(!res);
1455 	return res;
1456 }
1457 
1458 /*
1459  * Return the cgroup for "task" from the given hierarchy. Must be
1460  * called with cgroup_mutex and css_set_lock held.
1461  */
1462 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1463 				     struct cgroup_root *root)
1464 {
1465 	/*
1466 	 * No need to lock the task - since we hold css_set_lock the
1467 	 * task can't change groups.
1468 	 */
1469 	return cset_cgroup_from_root(task_css_set(task), root);
1470 }
1471 
1472 /*
1473  * A task must hold cgroup_mutex to modify cgroups.
1474  *
1475  * Any task can increment and decrement the count field without lock.
1476  * So in general, code holding cgroup_mutex can't rely on the count
1477  * field not changing.  However, if the count goes to zero, then only
1478  * cgroup_attach_task() can increment it again.  Because a count of zero
1479  * means that no tasks are currently attached, therefore there is no
1480  * way a task attached to that cgroup can fork (the other way to
1481  * increment the count).  So code holding cgroup_mutex can safely
1482  * assume that if the count is zero, it will stay zero. Similarly, if
1483  * a task holds cgroup_mutex on a cgroup with zero count, it
1484  * knows that the cgroup won't be removed, as cgroup_rmdir()
1485  * needs that mutex.
1486  *
1487  * A cgroup can only be deleted if both its 'count' of using tasks
1488  * is zero, and its list of 'children' cgroups is empty.  Since all
1489  * tasks in the system use _some_ cgroup, and since there is always at
1490  * least one task in the system (init, pid == 1), therefore, root cgroup
1491  * always has either children cgroups and/or using tasks.  So we don't
1492  * need a special hack to ensure that root cgroup cannot be deleted.
1493  *
1494  * P.S.  One more locking exception.  RCU is used to guard the
1495  * update of a tasks cgroup pointer by cgroup_attach_task()
1496  */
1497 
1498 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1499 
1500 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1501 			      char *buf)
1502 {
1503 	struct cgroup_subsys *ss = cft->ss;
1504 
1505 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1506 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1507 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1508 
1509 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1510 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1511 			 cft->name);
1512 	} else {
1513 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1514 	}
1515 	return buf;
1516 }
1517 
1518 /**
1519  * cgroup_file_mode - deduce file mode of a control file
1520  * @cft: the control file in question
1521  *
1522  * S_IRUGO for read, S_IWUSR for write.
1523  */
1524 static umode_t cgroup_file_mode(const struct cftype *cft)
1525 {
1526 	umode_t mode = 0;
1527 
1528 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1529 		mode |= S_IRUGO;
1530 
1531 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1532 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1533 			mode |= S_IWUGO;
1534 		else
1535 			mode |= S_IWUSR;
1536 	}
1537 
1538 	return mode;
1539 }
1540 
1541 /**
1542  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1543  * @subtree_control: the new subtree_control mask to consider
1544  * @this_ss_mask: available subsystems
1545  *
1546  * On the default hierarchy, a subsystem may request other subsystems to be
1547  * enabled together through its ->depends_on mask.  In such cases, more
1548  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1549  *
1550  * This function calculates which subsystems need to be enabled if
1551  * @subtree_control is to be applied while restricted to @this_ss_mask.
1552  */
1553 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1554 {
1555 	u16 cur_ss_mask = subtree_control;
1556 	struct cgroup_subsys *ss;
1557 	int ssid;
1558 
1559 	lockdep_assert_held(&cgroup_mutex);
1560 
1561 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1562 
1563 	while (true) {
1564 		u16 new_ss_mask = cur_ss_mask;
1565 
1566 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1567 			new_ss_mask |= ss->depends_on;
1568 		} while_each_subsys_mask();
1569 
1570 		/*
1571 		 * Mask out subsystems which aren't available.  This can
1572 		 * happen only if some depended-upon subsystems were bound
1573 		 * to non-default hierarchies.
1574 		 */
1575 		new_ss_mask &= this_ss_mask;
1576 
1577 		if (new_ss_mask == cur_ss_mask)
1578 			break;
1579 		cur_ss_mask = new_ss_mask;
1580 	}
1581 
1582 	return cur_ss_mask;
1583 }
1584 
1585 /**
1586  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1587  * @kn: the kernfs_node being serviced
1588  *
1589  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1590  * the method finishes if locking succeeded.  Note that once this function
1591  * returns the cgroup returned by cgroup_kn_lock_live() may become
1592  * inaccessible any time.  If the caller intends to continue to access the
1593  * cgroup, it should pin it before invoking this function.
1594  */
1595 void cgroup_kn_unlock(struct kernfs_node *kn)
1596 {
1597 	struct cgroup *cgrp;
1598 
1599 	if (kernfs_type(kn) == KERNFS_DIR)
1600 		cgrp = kn->priv;
1601 	else
1602 		cgrp = kn->parent->priv;
1603 
1604 	mutex_unlock(&cgroup_mutex);
1605 
1606 	kernfs_unbreak_active_protection(kn);
1607 	cgroup_put(cgrp);
1608 }
1609 
1610 /**
1611  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1612  * @kn: the kernfs_node being serviced
1613  * @drain_offline: perform offline draining on the cgroup
1614  *
1615  * This helper is to be used by a cgroup kernfs method currently servicing
1616  * @kn.  It breaks the active protection, performs cgroup locking and
1617  * verifies that the associated cgroup is alive.  Returns the cgroup if
1618  * alive; otherwise, %NULL.  A successful return should be undone by a
1619  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1620  * cgroup is drained of offlining csses before return.
1621  *
1622  * Any cgroup kernfs method implementation which requires locking the
1623  * associated cgroup should use this helper.  It avoids nesting cgroup
1624  * locking under kernfs active protection and allows all kernfs operations
1625  * including self-removal.
1626  */
1627 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1628 {
1629 	struct cgroup *cgrp;
1630 
1631 	if (kernfs_type(kn) == KERNFS_DIR)
1632 		cgrp = kn->priv;
1633 	else
1634 		cgrp = kn->parent->priv;
1635 
1636 	/*
1637 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1638 	 * active_ref.  cgroup liveliness check alone provides enough
1639 	 * protection against removal.  Ensure @cgrp stays accessible and
1640 	 * break the active_ref protection.
1641 	 */
1642 	if (!cgroup_tryget(cgrp))
1643 		return NULL;
1644 	kernfs_break_active_protection(kn);
1645 
1646 	if (drain_offline)
1647 		cgroup_lock_and_drain_offline(cgrp);
1648 	else
1649 		mutex_lock(&cgroup_mutex);
1650 
1651 	if (!cgroup_is_dead(cgrp))
1652 		return cgrp;
1653 
1654 	cgroup_kn_unlock(kn);
1655 	return NULL;
1656 }
1657 
1658 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1659 {
1660 	char name[CGROUP_FILE_NAME_MAX];
1661 
1662 	lockdep_assert_held(&cgroup_mutex);
1663 
1664 	if (cft->file_offset) {
1665 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1666 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1667 
1668 		spin_lock_irq(&cgroup_file_kn_lock);
1669 		cfile->kn = NULL;
1670 		spin_unlock_irq(&cgroup_file_kn_lock);
1671 
1672 		del_timer_sync(&cfile->notify_timer);
1673 	}
1674 
1675 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1676 }
1677 
1678 /**
1679  * css_clear_dir - remove subsys files in a cgroup directory
1680  * @css: target css
1681  */
1682 static void css_clear_dir(struct cgroup_subsys_state *css)
1683 {
1684 	struct cgroup *cgrp = css->cgroup;
1685 	struct cftype *cfts;
1686 
1687 	if (!(css->flags & CSS_VISIBLE))
1688 		return;
1689 
1690 	css->flags &= ~CSS_VISIBLE;
1691 
1692 	if (!css->ss) {
1693 		if (cgroup_on_dfl(cgrp)) {
1694 			cgroup_addrm_files(css, cgrp,
1695 					   cgroup_base_files, false);
1696 			if (cgroup_psi_enabled())
1697 				cgroup_addrm_files(css, cgrp,
1698 						   cgroup_psi_files, false);
1699 		} else {
1700 			cgroup_addrm_files(css, cgrp,
1701 					   cgroup1_base_files, false);
1702 		}
1703 	} else {
1704 		list_for_each_entry(cfts, &css->ss->cfts, node)
1705 			cgroup_addrm_files(css, cgrp, cfts, false);
1706 	}
1707 }
1708 
1709 /**
1710  * css_populate_dir - create subsys files in a cgroup directory
1711  * @css: target css
1712  *
1713  * On failure, no file is added.
1714  */
1715 static int css_populate_dir(struct cgroup_subsys_state *css)
1716 {
1717 	struct cgroup *cgrp = css->cgroup;
1718 	struct cftype *cfts, *failed_cfts;
1719 	int ret;
1720 
1721 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1722 		return 0;
1723 
1724 	if (!css->ss) {
1725 		if (cgroup_on_dfl(cgrp)) {
1726 			ret = cgroup_addrm_files(&cgrp->self, cgrp,
1727 						 cgroup_base_files, true);
1728 			if (ret < 0)
1729 				return ret;
1730 
1731 			if (cgroup_psi_enabled()) {
1732 				ret = cgroup_addrm_files(&cgrp->self, cgrp,
1733 							 cgroup_psi_files, true);
1734 				if (ret < 0)
1735 					return ret;
1736 			}
1737 		} else {
1738 			cgroup_addrm_files(css, cgrp,
1739 					   cgroup1_base_files, true);
1740 		}
1741 	} else {
1742 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1743 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1744 			if (ret < 0) {
1745 				failed_cfts = cfts;
1746 				goto err;
1747 			}
1748 		}
1749 	}
1750 
1751 	css->flags |= CSS_VISIBLE;
1752 
1753 	return 0;
1754 err:
1755 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1756 		if (cfts == failed_cfts)
1757 			break;
1758 		cgroup_addrm_files(css, cgrp, cfts, false);
1759 	}
1760 	return ret;
1761 }
1762 
1763 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1764 {
1765 	struct cgroup *dcgrp = &dst_root->cgrp;
1766 	struct cgroup_subsys *ss;
1767 	int ssid, i, ret;
1768 	u16 dfl_disable_ss_mask = 0;
1769 
1770 	lockdep_assert_held(&cgroup_mutex);
1771 
1772 	do_each_subsys_mask(ss, ssid, ss_mask) {
1773 		/*
1774 		 * If @ss has non-root csses attached to it, can't move.
1775 		 * If @ss is an implicit controller, it is exempt from this
1776 		 * rule and can be stolen.
1777 		 */
1778 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1779 		    !ss->implicit_on_dfl)
1780 			return -EBUSY;
1781 
1782 		/* can't move between two non-dummy roots either */
1783 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1784 			return -EBUSY;
1785 
1786 		/*
1787 		 * Collect ssid's that need to be disabled from default
1788 		 * hierarchy.
1789 		 */
1790 		if (ss->root == &cgrp_dfl_root)
1791 			dfl_disable_ss_mask |= 1 << ssid;
1792 
1793 	} while_each_subsys_mask();
1794 
1795 	if (dfl_disable_ss_mask) {
1796 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1797 
1798 		/*
1799 		 * Controllers from default hierarchy that need to be rebound
1800 		 * are all disabled together in one go.
1801 		 */
1802 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1803 		WARN_ON(cgroup_apply_control(scgrp));
1804 		cgroup_finalize_control(scgrp, 0);
1805 	}
1806 
1807 	do_each_subsys_mask(ss, ssid, ss_mask) {
1808 		struct cgroup_root *src_root = ss->root;
1809 		struct cgroup *scgrp = &src_root->cgrp;
1810 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1811 		struct css_set *cset;
1812 
1813 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1814 
1815 		if (src_root != &cgrp_dfl_root) {
1816 			/* disable from the source */
1817 			src_root->subsys_mask &= ~(1 << ssid);
1818 			WARN_ON(cgroup_apply_control(scgrp));
1819 			cgroup_finalize_control(scgrp, 0);
1820 		}
1821 
1822 		/* rebind */
1823 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1824 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1825 		ss->root = dst_root;
1826 		css->cgroup = dcgrp;
1827 
1828 		spin_lock_irq(&css_set_lock);
1829 		hash_for_each(css_set_table, i, cset, hlist)
1830 			list_move_tail(&cset->e_cset_node[ss->id],
1831 				       &dcgrp->e_csets[ss->id]);
1832 		spin_unlock_irq(&css_set_lock);
1833 
1834 		if (ss->css_rstat_flush) {
1835 			list_del_rcu(&css->rstat_css_node);
1836 			synchronize_rcu();
1837 			list_add_rcu(&css->rstat_css_node,
1838 				     &dcgrp->rstat_css_list);
1839 		}
1840 
1841 		/* default hierarchy doesn't enable controllers by default */
1842 		dst_root->subsys_mask |= 1 << ssid;
1843 		if (dst_root == &cgrp_dfl_root) {
1844 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1845 		} else {
1846 			dcgrp->subtree_control |= 1 << ssid;
1847 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1848 		}
1849 
1850 		ret = cgroup_apply_control(dcgrp);
1851 		if (ret)
1852 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1853 				ss->name, ret);
1854 
1855 		if (ss->bind)
1856 			ss->bind(css);
1857 	} while_each_subsys_mask();
1858 
1859 	kernfs_activate(dcgrp->kn);
1860 	return 0;
1861 }
1862 
1863 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1864 		     struct kernfs_root *kf_root)
1865 {
1866 	int len = 0;
1867 	char *buf = NULL;
1868 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1869 	struct cgroup *ns_cgroup;
1870 
1871 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1872 	if (!buf)
1873 		return -ENOMEM;
1874 
1875 	spin_lock_irq(&css_set_lock);
1876 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1877 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1878 	spin_unlock_irq(&css_set_lock);
1879 
1880 	if (len >= PATH_MAX)
1881 		len = -ERANGE;
1882 	else if (len > 0) {
1883 		seq_escape(sf, buf, " \t\n\\");
1884 		len = 0;
1885 	}
1886 	kfree(buf);
1887 	return len;
1888 }
1889 
1890 enum cgroup2_param {
1891 	Opt_nsdelegate,
1892 	Opt_favordynmods,
1893 	Opt_memory_localevents,
1894 	Opt_memory_recursiveprot,
1895 	nr__cgroup2_params
1896 };
1897 
1898 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1899 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1900 	fsparam_flag("favordynmods",		Opt_favordynmods),
1901 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1902 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1903 	{}
1904 };
1905 
1906 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1907 {
1908 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1909 	struct fs_parse_result result;
1910 	int opt;
1911 
1912 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1913 	if (opt < 0)
1914 		return opt;
1915 
1916 	switch (opt) {
1917 	case Opt_nsdelegate:
1918 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1919 		return 0;
1920 	case Opt_favordynmods:
1921 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1922 		return 0;
1923 	case Opt_memory_localevents:
1924 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1925 		return 0;
1926 	case Opt_memory_recursiveprot:
1927 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1928 		return 0;
1929 	}
1930 	return -EINVAL;
1931 }
1932 
1933 static void apply_cgroup_root_flags(unsigned int root_flags)
1934 {
1935 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1936 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1937 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1938 		else
1939 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1940 
1941 		cgroup_favor_dynmods(&cgrp_dfl_root,
1942 				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1943 
1944 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1945 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1946 		else
1947 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1948 
1949 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1950 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1951 		else
1952 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1953 	}
1954 }
1955 
1956 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1957 {
1958 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1959 		seq_puts(seq, ",nsdelegate");
1960 	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
1961 		seq_puts(seq, ",favordynmods");
1962 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1963 		seq_puts(seq, ",memory_localevents");
1964 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1965 		seq_puts(seq, ",memory_recursiveprot");
1966 	return 0;
1967 }
1968 
1969 static int cgroup_reconfigure(struct fs_context *fc)
1970 {
1971 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1972 
1973 	apply_cgroup_root_flags(ctx->flags);
1974 	return 0;
1975 }
1976 
1977 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1978 {
1979 	struct cgroup_subsys *ss;
1980 	int ssid;
1981 
1982 	INIT_LIST_HEAD(&cgrp->self.sibling);
1983 	INIT_LIST_HEAD(&cgrp->self.children);
1984 	INIT_LIST_HEAD(&cgrp->cset_links);
1985 	INIT_LIST_HEAD(&cgrp->pidlists);
1986 	mutex_init(&cgrp->pidlist_mutex);
1987 	cgrp->self.cgroup = cgrp;
1988 	cgrp->self.flags |= CSS_ONLINE;
1989 	cgrp->dom_cgrp = cgrp;
1990 	cgrp->max_descendants = INT_MAX;
1991 	cgrp->max_depth = INT_MAX;
1992 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1993 	prev_cputime_init(&cgrp->prev_cputime);
1994 
1995 	for_each_subsys(ss, ssid)
1996 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1997 
1998 	init_waitqueue_head(&cgrp->offline_waitq);
1999 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2000 }
2001 
2002 void init_cgroup_root(struct cgroup_fs_context *ctx)
2003 {
2004 	struct cgroup_root *root = ctx->root;
2005 	struct cgroup *cgrp = &root->cgrp;
2006 
2007 	INIT_LIST_HEAD(&root->root_list);
2008 	atomic_set(&root->nr_cgrps, 1);
2009 	cgrp->root = root;
2010 	init_cgroup_housekeeping(cgrp);
2011 
2012 	/* DYNMODS must be modified through cgroup_favor_dynmods() */
2013 	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2014 	if (ctx->release_agent)
2015 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2016 	if (ctx->name)
2017 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2018 	if (ctx->cpuset_clone_children)
2019 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2020 }
2021 
2022 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2023 {
2024 	LIST_HEAD(tmp_links);
2025 	struct cgroup *root_cgrp = &root->cgrp;
2026 	struct kernfs_syscall_ops *kf_sops;
2027 	struct css_set *cset;
2028 	int i, ret;
2029 
2030 	lockdep_assert_held(&cgroup_mutex);
2031 
2032 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2033 			      0, GFP_KERNEL);
2034 	if (ret)
2035 		goto out;
2036 
2037 	/*
2038 	 * We're accessing css_set_count without locking css_set_lock here,
2039 	 * but that's OK - it can only be increased by someone holding
2040 	 * cgroup_lock, and that's us.  Later rebinding may disable
2041 	 * controllers on the default hierarchy and thus create new csets,
2042 	 * which can't be more than the existing ones.  Allocate 2x.
2043 	 */
2044 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2045 	if (ret)
2046 		goto cancel_ref;
2047 
2048 	ret = cgroup_init_root_id(root);
2049 	if (ret)
2050 		goto cancel_ref;
2051 
2052 	kf_sops = root == &cgrp_dfl_root ?
2053 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2054 
2055 	root->kf_root = kernfs_create_root(kf_sops,
2056 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2057 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2058 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2059 					   root_cgrp);
2060 	if (IS_ERR(root->kf_root)) {
2061 		ret = PTR_ERR(root->kf_root);
2062 		goto exit_root_id;
2063 	}
2064 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2065 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2066 	root_cgrp->ancestors[0] = root_cgrp;
2067 
2068 	ret = css_populate_dir(&root_cgrp->self);
2069 	if (ret)
2070 		goto destroy_root;
2071 
2072 	ret = cgroup_rstat_init(root_cgrp);
2073 	if (ret)
2074 		goto destroy_root;
2075 
2076 	ret = rebind_subsystems(root, ss_mask);
2077 	if (ret)
2078 		goto exit_stats;
2079 
2080 	ret = cgroup_bpf_inherit(root_cgrp);
2081 	WARN_ON_ONCE(ret);
2082 
2083 	trace_cgroup_setup_root(root);
2084 
2085 	/*
2086 	 * There must be no failure case after here, since rebinding takes
2087 	 * care of subsystems' refcounts, which are explicitly dropped in
2088 	 * the failure exit path.
2089 	 */
2090 	list_add(&root->root_list, &cgroup_roots);
2091 	cgroup_root_count++;
2092 
2093 	/*
2094 	 * Link the root cgroup in this hierarchy into all the css_set
2095 	 * objects.
2096 	 */
2097 	spin_lock_irq(&css_set_lock);
2098 	hash_for_each(css_set_table, i, cset, hlist) {
2099 		link_css_set(&tmp_links, cset, root_cgrp);
2100 		if (css_set_populated(cset))
2101 			cgroup_update_populated(root_cgrp, true);
2102 	}
2103 	spin_unlock_irq(&css_set_lock);
2104 
2105 	BUG_ON(!list_empty(&root_cgrp->self.children));
2106 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2107 
2108 	ret = 0;
2109 	goto out;
2110 
2111 exit_stats:
2112 	cgroup_rstat_exit(root_cgrp);
2113 destroy_root:
2114 	kernfs_destroy_root(root->kf_root);
2115 	root->kf_root = NULL;
2116 exit_root_id:
2117 	cgroup_exit_root_id(root);
2118 cancel_ref:
2119 	percpu_ref_exit(&root_cgrp->self.refcnt);
2120 out:
2121 	free_cgrp_cset_links(&tmp_links);
2122 	return ret;
2123 }
2124 
2125 int cgroup_do_get_tree(struct fs_context *fc)
2126 {
2127 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2128 	int ret;
2129 
2130 	ctx->kfc.root = ctx->root->kf_root;
2131 	if (fc->fs_type == &cgroup2_fs_type)
2132 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2133 	else
2134 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2135 	ret = kernfs_get_tree(fc);
2136 
2137 	/*
2138 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2139 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2140 	 */
2141 	if (!ret && ctx->ns != &init_cgroup_ns) {
2142 		struct dentry *nsdentry;
2143 		struct super_block *sb = fc->root->d_sb;
2144 		struct cgroup *cgrp;
2145 
2146 		mutex_lock(&cgroup_mutex);
2147 		spin_lock_irq(&css_set_lock);
2148 
2149 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2150 
2151 		spin_unlock_irq(&css_set_lock);
2152 		mutex_unlock(&cgroup_mutex);
2153 
2154 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2155 		dput(fc->root);
2156 		if (IS_ERR(nsdentry)) {
2157 			deactivate_locked_super(sb);
2158 			ret = PTR_ERR(nsdentry);
2159 			nsdentry = NULL;
2160 		}
2161 		fc->root = nsdentry;
2162 	}
2163 
2164 	if (!ctx->kfc.new_sb_created)
2165 		cgroup_put(&ctx->root->cgrp);
2166 
2167 	return ret;
2168 }
2169 
2170 /*
2171  * Destroy a cgroup filesystem context.
2172  */
2173 static void cgroup_fs_context_free(struct fs_context *fc)
2174 {
2175 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2176 
2177 	kfree(ctx->name);
2178 	kfree(ctx->release_agent);
2179 	put_cgroup_ns(ctx->ns);
2180 	kernfs_free_fs_context(fc);
2181 	kfree(ctx);
2182 }
2183 
2184 static int cgroup_get_tree(struct fs_context *fc)
2185 {
2186 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2187 	int ret;
2188 
2189 	WRITE_ONCE(cgrp_dfl_visible, true);
2190 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2191 	ctx->root = &cgrp_dfl_root;
2192 
2193 	ret = cgroup_do_get_tree(fc);
2194 	if (!ret)
2195 		apply_cgroup_root_flags(ctx->flags);
2196 	return ret;
2197 }
2198 
2199 static const struct fs_context_operations cgroup_fs_context_ops = {
2200 	.free		= cgroup_fs_context_free,
2201 	.parse_param	= cgroup2_parse_param,
2202 	.get_tree	= cgroup_get_tree,
2203 	.reconfigure	= cgroup_reconfigure,
2204 };
2205 
2206 static const struct fs_context_operations cgroup1_fs_context_ops = {
2207 	.free		= cgroup_fs_context_free,
2208 	.parse_param	= cgroup1_parse_param,
2209 	.get_tree	= cgroup1_get_tree,
2210 	.reconfigure	= cgroup1_reconfigure,
2211 };
2212 
2213 /*
2214  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2215  * we select the namespace we're going to use.
2216  */
2217 static int cgroup_init_fs_context(struct fs_context *fc)
2218 {
2219 	struct cgroup_fs_context *ctx;
2220 
2221 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2222 	if (!ctx)
2223 		return -ENOMEM;
2224 
2225 	ctx->ns = current->nsproxy->cgroup_ns;
2226 	get_cgroup_ns(ctx->ns);
2227 	fc->fs_private = &ctx->kfc;
2228 	if (fc->fs_type == &cgroup2_fs_type)
2229 		fc->ops = &cgroup_fs_context_ops;
2230 	else
2231 		fc->ops = &cgroup1_fs_context_ops;
2232 	put_user_ns(fc->user_ns);
2233 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2234 	fc->global = true;
2235 
2236 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS
2237 	ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2238 #endif
2239 	return 0;
2240 }
2241 
2242 static void cgroup_kill_sb(struct super_block *sb)
2243 {
2244 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2245 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2246 
2247 	/*
2248 	 * If @root doesn't have any children, start killing it.
2249 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2250 	 *
2251 	 * And don't kill the default root.
2252 	 */
2253 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2254 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2255 		cgroup_bpf_offline(&root->cgrp);
2256 		percpu_ref_kill(&root->cgrp.self.refcnt);
2257 	}
2258 	cgroup_put(&root->cgrp);
2259 	kernfs_kill_sb(sb);
2260 }
2261 
2262 struct file_system_type cgroup_fs_type = {
2263 	.name			= "cgroup",
2264 	.init_fs_context	= cgroup_init_fs_context,
2265 	.parameters		= cgroup1_fs_parameters,
2266 	.kill_sb		= cgroup_kill_sb,
2267 	.fs_flags		= FS_USERNS_MOUNT,
2268 };
2269 
2270 static struct file_system_type cgroup2_fs_type = {
2271 	.name			= "cgroup2",
2272 	.init_fs_context	= cgroup_init_fs_context,
2273 	.parameters		= cgroup2_fs_parameters,
2274 	.kill_sb		= cgroup_kill_sb,
2275 	.fs_flags		= FS_USERNS_MOUNT,
2276 };
2277 
2278 #ifdef CONFIG_CPUSETS
2279 static const struct fs_context_operations cpuset_fs_context_ops = {
2280 	.get_tree	= cgroup1_get_tree,
2281 	.free		= cgroup_fs_context_free,
2282 };
2283 
2284 /*
2285  * This is ugly, but preserves the userspace API for existing cpuset
2286  * users. If someone tries to mount the "cpuset" filesystem, we
2287  * silently switch it to mount "cgroup" instead
2288  */
2289 static int cpuset_init_fs_context(struct fs_context *fc)
2290 {
2291 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2292 	struct cgroup_fs_context *ctx;
2293 	int err;
2294 
2295 	err = cgroup_init_fs_context(fc);
2296 	if (err) {
2297 		kfree(agent);
2298 		return err;
2299 	}
2300 
2301 	fc->ops = &cpuset_fs_context_ops;
2302 
2303 	ctx = cgroup_fc2context(fc);
2304 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2305 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2306 	ctx->release_agent = agent;
2307 
2308 	get_filesystem(&cgroup_fs_type);
2309 	put_filesystem(fc->fs_type);
2310 	fc->fs_type = &cgroup_fs_type;
2311 
2312 	return 0;
2313 }
2314 
2315 static struct file_system_type cpuset_fs_type = {
2316 	.name			= "cpuset",
2317 	.init_fs_context	= cpuset_init_fs_context,
2318 	.fs_flags		= FS_USERNS_MOUNT,
2319 };
2320 #endif
2321 
2322 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2323 			  struct cgroup_namespace *ns)
2324 {
2325 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2326 
2327 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2328 }
2329 
2330 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2331 		   struct cgroup_namespace *ns)
2332 {
2333 	int ret;
2334 
2335 	mutex_lock(&cgroup_mutex);
2336 	spin_lock_irq(&css_set_lock);
2337 
2338 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2339 
2340 	spin_unlock_irq(&css_set_lock);
2341 	mutex_unlock(&cgroup_mutex);
2342 
2343 	return ret;
2344 }
2345 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2346 
2347 /**
2348  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2349  * @task: target task
2350  * @buf: the buffer to write the path into
2351  * @buflen: the length of the buffer
2352  *
2353  * Determine @task's cgroup on the first (the one with the lowest non-zero
2354  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2355  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2356  * cgroup controller callbacks.
2357  *
2358  * Return value is the same as kernfs_path().
2359  */
2360 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2361 {
2362 	struct cgroup_root *root;
2363 	struct cgroup *cgrp;
2364 	int hierarchy_id = 1;
2365 	int ret;
2366 
2367 	mutex_lock(&cgroup_mutex);
2368 	spin_lock_irq(&css_set_lock);
2369 
2370 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2371 
2372 	if (root) {
2373 		cgrp = task_cgroup_from_root(task, root);
2374 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2375 	} else {
2376 		/* if no hierarchy exists, everyone is in "/" */
2377 		ret = strscpy(buf, "/", buflen);
2378 	}
2379 
2380 	spin_unlock_irq(&css_set_lock);
2381 	mutex_unlock(&cgroup_mutex);
2382 	return ret;
2383 }
2384 EXPORT_SYMBOL_GPL(task_cgroup_path);
2385 
2386 /**
2387  * cgroup_attach_lock - Lock for ->attach()
2388  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2389  *
2390  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2391  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2392  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2393  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2394  * lead to deadlocks.
2395  *
2396  * Bringing up a CPU may involve creating and destroying tasks which requires
2397  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2398  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2399  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2400  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2401  * the threadgroup_rwsem to be released to create new tasks. For more details:
2402  *
2403  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2404  *
2405  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2406  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2407  * CPU hotplug is disabled on entry.
2408  */
2409 void cgroup_attach_lock(bool lock_threadgroup)
2410 {
2411 	cpus_read_lock();
2412 	if (lock_threadgroup)
2413 		percpu_down_write(&cgroup_threadgroup_rwsem);
2414 }
2415 
2416 /**
2417  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2418  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2419  */
2420 void cgroup_attach_unlock(bool lock_threadgroup)
2421 {
2422 	if (lock_threadgroup)
2423 		percpu_up_write(&cgroup_threadgroup_rwsem);
2424 	cpus_read_unlock();
2425 }
2426 
2427 /**
2428  * cgroup_migrate_add_task - add a migration target task to a migration context
2429  * @task: target task
2430  * @mgctx: target migration context
2431  *
2432  * Add @task, which is a migration target, to @mgctx->tset.  This function
2433  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2434  * should have been added as a migration source and @task->cg_list will be
2435  * moved from the css_set's tasks list to mg_tasks one.
2436  */
2437 static void cgroup_migrate_add_task(struct task_struct *task,
2438 				    struct cgroup_mgctx *mgctx)
2439 {
2440 	struct css_set *cset;
2441 
2442 	lockdep_assert_held(&css_set_lock);
2443 
2444 	/* @task either already exited or can't exit until the end */
2445 	if (task->flags & PF_EXITING)
2446 		return;
2447 
2448 	/* cgroup_threadgroup_rwsem protects racing against forks */
2449 	WARN_ON_ONCE(list_empty(&task->cg_list));
2450 
2451 	cset = task_css_set(task);
2452 	if (!cset->mg_src_cgrp)
2453 		return;
2454 
2455 	mgctx->tset.nr_tasks++;
2456 
2457 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2458 	if (list_empty(&cset->mg_node))
2459 		list_add_tail(&cset->mg_node,
2460 			      &mgctx->tset.src_csets);
2461 	if (list_empty(&cset->mg_dst_cset->mg_node))
2462 		list_add_tail(&cset->mg_dst_cset->mg_node,
2463 			      &mgctx->tset.dst_csets);
2464 }
2465 
2466 /**
2467  * cgroup_taskset_first - reset taskset and return the first task
2468  * @tset: taskset of interest
2469  * @dst_cssp: output variable for the destination css
2470  *
2471  * @tset iteration is initialized and the first task is returned.
2472  */
2473 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2474 					 struct cgroup_subsys_state **dst_cssp)
2475 {
2476 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2477 	tset->cur_task = NULL;
2478 
2479 	return cgroup_taskset_next(tset, dst_cssp);
2480 }
2481 
2482 /**
2483  * cgroup_taskset_next - iterate to the next task in taskset
2484  * @tset: taskset of interest
2485  * @dst_cssp: output variable for the destination css
2486  *
2487  * Return the next task in @tset.  Iteration must have been initialized
2488  * with cgroup_taskset_first().
2489  */
2490 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2491 					struct cgroup_subsys_state **dst_cssp)
2492 {
2493 	struct css_set *cset = tset->cur_cset;
2494 	struct task_struct *task = tset->cur_task;
2495 
2496 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2497 		if (!task)
2498 			task = list_first_entry(&cset->mg_tasks,
2499 						struct task_struct, cg_list);
2500 		else
2501 			task = list_next_entry(task, cg_list);
2502 
2503 		if (&task->cg_list != &cset->mg_tasks) {
2504 			tset->cur_cset = cset;
2505 			tset->cur_task = task;
2506 
2507 			/*
2508 			 * This function may be called both before and
2509 			 * after cgroup_taskset_migrate().  The two cases
2510 			 * can be distinguished by looking at whether @cset
2511 			 * has its ->mg_dst_cset set.
2512 			 */
2513 			if (cset->mg_dst_cset)
2514 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2515 			else
2516 				*dst_cssp = cset->subsys[tset->ssid];
2517 
2518 			return task;
2519 		}
2520 
2521 		cset = list_next_entry(cset, mg_node);
2522 		task = NULL;
2523 	}
2524 
2525 	return NULL;
2526 }
2527 
2528 /**
2529  * cgroup_migrate_execute - migrate a taskset
2530  * @mgctx: migration context
2531  *
2532  * Migrate tasks in @mgctx as setup by migration preparation functions.
2533  * This function fails iff one of the ->can_attach callbacks fails and
2534  * guarantees that either all or none of the tasks in @mgctx are migrated.
2535  * @mgctx is consumed regardless of success.
2536  */
2537 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2538 {
2539 	struct cgroup_taskset *tset = &mgctx->tset;
2540 	struct cgroup_subsys *ss;
2541 	struct task_struct *task, *tmp_task;
2542 	struct css_set *cset, *tmp_cset;
2543 	int ssid, failed_ssid, ret;
2544 
2545 	/* check that we can legitimately attach to the cgroup */
2546 	if (tset->nr_tasks) {
2547 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2548 			if (ss->can_attach) {
2549 				tset->ssid = ssid;
2550 				ret = ss->can_attach(tset);
2551 				if (ret) {
2552 					failed_ssid = ssid;
2553 					goto out_cancel_attach;
2554 				}
2555 			}
2556 		} while_each_subsys_mask();
2557 	}
2558 
2559 	/*
2560 	 * Now that we're guaranteed success, proceed to move all tasks to
2561 	 * the new cgroup.  There are no failure cases after here, so this
2562 	 * is the commit point.
2563 	 */
2564 	spin_lock_irq(&css_set_lock);
2565 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2566 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2567 			struct css_set *from_cset = task_css_set(task);
2568 			struct css_set *to_cset = cset->mg_dst_cset;
2569 
2570 			get_css_set(to_cset);
2571 			to_cset->nr_tasks++;
2572 			css_set_move_task(task, from_cset, to_cset, true);
2573 			from_cset->nr_tasks--;
2574 			/*
2575 			 * If the source or destination cgroup is frozen,
2576 			 * the task might require to change its state.
2577 			 */
2578 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2579 						    to_cset->dfl_cgrp);
2580 			put_css_set_locked(from_cset);
2581 
2582 		}
2583 	}
2584 	spin_unlock_irq(&css_set_lock);
2585 
2586 	/*
2587 	 * Migration is committed, all target tasks are now on dst_csets.
2588 	 * Nothing is sensitive to fork() after this point.  Notify
2589 	 * controllers that migration is complete.
2590 	 */
2591 	tset->csets = &tset->dst_csets;
2592 
2593 	if (tset->nr_tasks) {
2594 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2595 			if (ss->attach) {
2596 				tset->ssid = ssid;
2597 				ss->attach(tset);
2598 			}
2599 		} while_each_subsys_mask();
2600 	}
2601 
2602 	ret = 0;
2603 	goto out_release_tset;
2604 
2605 out_cancel_attach:
2606 	if (tset->nr_tasks) {
2607 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2608 			if (ssid == failed_ssid)
2609 				break;
2610 			if (ss->cancel_attach) {
2611 				tset->ssid = ssid;
2612 				ss->cancel_attach(tset);
2613 			}
2614 		} while_each_subsys_mask();
2615 	}
2616 out_release_tset:
2617 	spin_lock_irq(&css_set_lock);
2618 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2619 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2620 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2621 		list_del_init(&cset->mg_node);
2622 	}
2623 	spin_unlock_irq(&css_set_lock);
2624 
2625 	/*
2626 	 * Re-initialize the cgroup_taskset structure in case it is reused
2627 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2628 	 * iteration.
2629 	 */
2630 	tset->nr_tasks = 0;
2631 	tset->csets    = &tset->src_csets;
2632 	return ret;
2633 }
2634 
2635 /**
2636  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2637  * @dst_cgrp: destination cgroup to test
2638  *
2639  * On the default hierarchy, except for the mixable, (possible) thread root
2640  * and threaded cgroups, subtree_control must be zero for migration
2641  * destination cgroups with tasks so that child cgroups don't compete
2642  * against tasks.
2643  */
2644 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2645 {
2646 	/* v1 doesn't have any restriction */
2647 	if (!cgroup_on_dfl(dst_cgrp))
2648 		return 0;
2649 
2650 	/* verify @dst_cgrp can host resources */
2651 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2652 		return -EOPNOTSUPP;
2653 
2654 	/*
2655 	 * If @dst_cgrp is already or can become a thread root or is
2656 	 * threaded, it doesn't matter.
2657 	 */
2658 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2659 		return 0;
2660 
2661 	/* apply no-internal-process constraint */
2662 	if (dst_cgrp->subtree_control)
2663 		return -EBUSY;
2664 
2665 	return 0;
2666 }
2667 
2668 /**
2669  * cgroup_migrate_finish - cleanup after attach
2670  * @mgctx: migration context
2671  *
2672  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2673  * those functions for details.
2674  */
2675 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2676 {
2677 	struct css_set *cset, *tmp_cset;
2678 
2679 	lockdep_assert_held(&cgroup_mutex);
2680 
2681 	spin_lock_irq(&css_set_lock);
2682 
2683 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2684 				 mg_src_preload_node) {
2685 		cset->mg_src_cgrp = NULL;
2686 		cset->mg_dst_cgrp = NULL;
2687 		cset->mg_dst_cset = NULL;
2688 		list_del_init(&cset->mg_src_preload_node);
2689 		put_css_set_locked(cset);
2690 	}
2691 
2692 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2693 				 mg_dst_preload_node) {
2694 		cset->mg_src_cgrp = NULL;
2695 		cset->mg_dst_cgrp = NULL;
2696 		cset->mg_dst_cset = NULL;
2697 		list_del_init(&cset->mg_dst_preload_node);
2698 		put_css_set_locked(cset);
2699 	}
2700 
2701 	spin_unlock_irq(&css_set_lock);
2702 }
2703 
2704 /**
2705  * cgroup_migrate_add_src - add a migration source css_set
2706  * @src_cset: the source css_set to add
2707  * @dst_cgrp: the destination cgroup
2708  * @mgctx: migration context
2709  *
2710  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2711  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2712  * up by cgroup_migrate_finish().
2713  *
2714  * This function may be called without holding cgroup_threadgroup_rwsem
2715  * even if the target is a process.  Threads may be created and destroyed
2716  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2717  * into play and the preloaded css_sets are guaranteed to cover all
2718  * migrations.
2719  */
2720 void cgroup_migrate_add_src(struct css_set *src_cset,
2721 			    struct cgroup *dst_cgrp,
2722 			    struct cgroup_mgctx *mgctx)
2723 {
2724 	struct cgroup *src_cgrp;
2725 
2726 	lockdep_assert_held(&cgroup_mutex);
2727 	lockdep_assert_held(&css_set_lock);
2728 
2729 	/*
2730 	 * If ->dead, @src_set is associated with one or more dead cgroups
2731 	 * and doesn't contain any migratable tasks.  Ignore it early so
2732 	 * that the rest of migration path doesn't get confused by it.
2733 	 */
2734 	if (src_cset->dead)
2735 		return;
2736 
2737 	if (!list_empty(&src_cset->mg_src_preload_node))
2738 		return;
2739 
2740 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2741 
2742 	WARN_ON(src_cset->mg_src_cgrp);
2743 	WARN_ON(src_cset->mg_dst_cgrp);
2744 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2745 	WARN_ON(!list_empty(&src_cset->mg_node));
2746 
2747 	src_cset->mg_src_cgrp = src_cgrp;
2748 	src_cset->mg_dst_cgrp = dst_cgrp;
2749 	get_css_set(src_cset);
2750 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2751 }
2752 
2753 /**
2754  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2755  * @mgctx: migration context
2756  *
2757  * Tasks are about to be moved and all the source css_sets have been
2758  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2759  * pins all destination css_sets, links each to its source, and append them
2760  * to @mgctx->preloaded_dst_csets.
2761  *
2762  * This function must be called after cgroup_migrate_add_src() has been
2763  * called on each migration source css_set.  After migration is performed
2764  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2765  * @mgctx.
2766  */
2767 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2768 {
2769 	struct css_set *src_cset, *tmp_cset;
2770 
2771 	lockdep_assert_held(&cgroup_mutex);
2772 
2773 	/* look up the dst cset for each src cset and link it to src */
2774 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2775 				 mg_src_preload_node) {
2776 		struct css_set *dst_cset;
2777 		struct cgroup_subsys *ss;
2778 		int ssid;
2779 
2780 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2781 		if (!dst_cset)
2782 			return -ENOMEM;
2783 
2784 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2785 
2786 		/*
2787 		 * If src cset equals dst, it's noop.  Drop the src.
2788 		 * cgroup_migrate() will skip the cset too.  Note that we
2789 		 * can't handle src == dst as some nodes are used by both.
2790 		 */
2791 		if (src_cset == dst_cset) {
2792 			src_cset->mg_src_cgrp = NULL;
2793 			src_cset->mg_dst_cgrp = NULL;
2794 			list_del_init(&src_cset->mg_src_preload_node);
2795 			put_css_set(src_cset);
2796 			put_css_set(dst_cset);
2797 			continue;
2798 		}
2799 
2800 		src_cset->mg_dst_cset = dst_cset;
2801 
2802 		if (list_empty(&dst_cset->mg_dst_preload_node))
2803 			list_add_tail(&dst_cset->mg_dst_preload_node,
2804 				      &mgctx->preloaded_dst_csets);
2805 		else
2806 			put_css_set(dst_cset);
2807 
2808 		for_each_subsys(ss, ssid)
2809 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2810 				mgctx->ss_mask |= 1 << ssid;
2811 	}
2812 
2813 	return 0;
2814 }
2815 
2816 /**
2817  * cgroup_migrate - migrate a process or task to a cgroup
2818  * @leader: the leader of the process or the task to migrate
2819  * @threadgroup: whether @leader points to the whole process or a single task
2820  * @mgctx: migration context
2821  *
2822  * Migrate a process or task denoted by @leader.  If migrating a process,
2823  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2824  * responsible for invoking cgroup_migrate_add_src() and
2825  * cgroup_migrate_prepare_dst() on the targets before invoking this
2826  * function and following up with cgroup_migrate_finish().
2827  *
2828  * As long as a controller's ->can_attach() doesn't fail, this function is
2829  * guaranteed to succeed.  This means that, excluding ->can_attach()
2830  * failure, when migrating multiple targets, the success or failure can be
2831  * decided for all targets by invoking group_migrate_prepare_dst() before
2832  * actually starting migrating.
2833  */
2834 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2835 		   struct cgroup_mgctx *mgctx)
2836 {
2837 	struct task_struct *task;
2838 
2839 	/*
2840 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2841 	 * already PF_EXITING could be freed from underneath us unless we
2842 	 * take an rcu_read_lock.
2843 	 */
2844 	spin_lock_irq(&css_set_lock);
2845 	rcu_read_lock();
2846 	task = leader;
2847 	do {
2848 		cgroup_migrate_add_task(task, mgctx);
2849 		if (!threadgroup)
2850 			break;
2851 	} while_each_thread(leader, task);
2852 	rcu_read_unlock();
2853 	spin_unlock_irq(&css_set_lock);
2854 
2855 	return cgroup_migrate_execute(mgctx);
2856 }
2857 
2858 /**
2859  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2860  * @dst_cgrp: the cgroup to attach to
2861  * @leader: the task or the leader of the threadgroup to be attached
2862  * @threadgroup: attach the whole threadgroup?
2863  *
2864  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2865  */
2866 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2867 		       bool threadgroup)
2868 {
2869 	DEFINE_CGROUP_MGCTX(mgctx);
2870 	struct task_struct *task;
2871 	int ret = 0;
2872 
2873 	/* look up all src csets */
2874 	spin_lock_irq(&css_set_lock);
2875 	rcu_read_lock();
2876 	task = leader;
2877 	do {
2878 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2879 		if (!threadgroup)
2880 			break;
2881 	} while_each_thread(leader, task);
2882 	rcu_read_unlock();
2883 	spin_unlock_irq(&css_set_lock);
2884 
2885 	/* prepare dst csets and commit */
2886 	ret = cgroup_migrate_prepare_dst(&mgctx);
2887 	if (!ret)
2888 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2889 
2890 	cgroup_migrate_finish(&mgctx);
2891 
2892 	if (!ret)
2893 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2894 
2895 	return ret;
2896 }
2897 
2898 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2899 					     bool *threadgroup_locked)
2900 {
2901 	struct task_struct *tsk;
2902 	pid_t pid;
2903 
2904 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2905 		return ERR_PTR(-EINVAL);
2906 
2907 	/*
2908 	 * If we migrate a single thread, we don't care about threadgroup
2909 	 * stability. If the thread is `current`, it won't exit(2) under our
2910 	 * hands or change PID through exec(2). We exclude
2911 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2912 	 * callers by cgroup_mutex.
2913 	 * Therefore, we can skip the global lock.
2914 	 */
2915 	lockdep_assert_held(&cgroup_mutex);
2916 	*threadgroup_locked = pid || threadgroup;
2917 	cgroup_attach_lock(*threadgroup_locked);
2918 
2919 	rcu_read_lock();
2920 	if (pid) {
2921 		tsk = find_task_by_vpid(pid);
2922 		if (!tsk) {
2923 			tsk = ERR_PTR(-ESRCH);
2924 			goto out_unlock_threadgroup;
2925 		}
2926 	} else {
2927 		tsk = current;
2928 	}
2929 
2930 	if (threadgroup)
2931 		tsk = tsk->group_leader;
2932 
2933 	/*
2934 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2935 	 * If userland migrates such a kthread to a non-root cgroup, it can
2936 	 * become trapped in a cpuset, or RT kthread may be born in a
2937 	 * cgroup with no rt_runtime allocated.  Just say no.
2938 	 */
2939 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2940 		tsk = ERR_PTR(-EINVAL);
2941 		goto out_unlock_threadgroup;
2942 	}
2943 
2944 	get_task_struct(tsk);
2945 	goto out_unlock_rcu;
2946 
2947 out_unlock_threadgroup:
2948 	cgroup_attach_unlock(*threadgroup_locked);
2949 	*threadgroup_locked = false;
2950 out_unlock_rcu:
2951 	rcu_read_unlock();
2952 	return tsk;
2953 }
2954 
2955 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2956 {
2957 	struct cgroup_subsys *ss;
2958 	int ssid;
2959 
2960 	/* release reference from cgroup_procs_write_start() */
2961 	put_task_struct(task);
2962 
2963 	cgroup_attach_unlock(threadgroup_locked);
2964 
2965 	for_each_subsys(ss, ssid)
2966 		if (ss->post_attach)
2967 			ss->post_attach();
2968 }
2969 
2970 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2971 {
2972 	struct cgroup_subsys *ss;
2973 	bool printed = false;
2974 	int ssid;
2975 
2976 	do_each_subsys_mask(ss, ssid, ss_mask) {
2977 		if (printed)
2978 			seq_putc(seq, ' ');
2979 		seq_puts(seq, ss->name);
2980 		printed = true;
2981 	} while_each_subsys_mask();
2982 	if (printed)
2983 		seq_putc(seq, '\n');
2984 }
2985 
2986 /* show controllers which are enabled from the parent */
2987 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2988 {
2989 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2990 
2991 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2992 	return 0;
2993 }
2994 
2995 /* show controllers which are enabled for a given cgroup's children */
2996 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2997 {
2998 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2999 
3000 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
3001 	return 0;
3002 }
3003 
3004 /**
3005  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3006  * @cgrp: root of the subtree to update csses for
3007  *
3008  * @cgrp's control masks have changed and its subtree's css associations
3009  * need to be updated accordingly.  This function looks up all css_sets
3010  * which are attached to the subtree, creates the matching updated css_sets
3011  * and migrates the tasks to the new ones.
3012  */
3013 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3014 {
3015 	DEFINE_CGROUP_MGCTX(mgctx);
3016 	struct cgroup_subsys_state *d_css;
3017 	struct cgroup *dsct;
3018 	struct css_set *src_cset;
3019 	bool has_tasks;
3020 	int ret;
3021 
3022 	lockdep_assert_held(&cgroup_mutex);
3023 
3024 	/* look up all csses currently attached to @cgrp's subtree */
3025 	spin_lock_irq(&css_set_lock);
3026 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3027 		struct cgrp_cset_link *link;
3028 
3029 		/*
3030 		 * As cgroup_update_dfl_csses() is only called by
3031 		 * cgroup_apply_control(). The csses associated with the
3032 		 * given cgrp will not be affected by changes made to
3033 		 * its subtree_control file. We can skip them.
3034 		 */
3035 		if (dsct == cgrp)
3036 			continue;
3037 
3038 		list_for_each_entry(link, &dsct->cset_links, cset_link)
3039 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3040 	}
3041 	spin_unlock_irq(&css_set_lock);
3042 
3043 	/*
3044 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3045 	 * However, if there are no source csets for @cgrp, changing its
3046 	 * controllers isn't gonna produce any task migrations and the
3047 	 * write-locking can be skipped safely.
3048 	 */
3049 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3050 	cgroup_attach_lock(has_tasks);
3051 
3052 	/* NULL dst indicates self on default hierarchy */
3053 	ret = cgroup_migrate_prepare_dst(&mgctx);
3054 	if (ret)
3055 		goto out_finish;
3056 
3057 	spin_lock_irq(&css_set_lock);
3058 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3059 			    mg_src_preload_node) {
3060 		struct task_struct *task, *ntask;
3061 
3062 		/* all tasks in src_csets need to be migrated */
3063 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3064 			cgroup_migrate_add_task(task, &mgctx);
3065 	}
3066 	spin_unlock_irq(&css_set_lock);
3067 
3068 	ret = cgroup_migrate_execute(&mgctx);
3069 out_finish:
3070 	cgroup_migrate_finish(&mgctx);
3071 	cgroup_attach_unlock(has_tasks);
3072 	return ret;
3073 }
3074 
3075 /**
3076  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3077  * @cgrp: root of the target subtree
3078  *
3079  * Because css offlining is asynchronous, userland may try to re-enable a
3080  * controller while the previous css is still around.  This function grabs
3081  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3082  */
3083 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3084 	__acquires(&cgroup_mutex)
3085 {
3086 	struct cgroup *dsct;
3087 	struct cgroup_subsys_state *d_css;
3088 	struct cgroup_subsys *ss;
3089 	int ssid;
3090 
3091 restart:
3092 	mutex_lock(&cgroup_mutex);
3093 
3094 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3095 		for_each_subsys(ss, ssid) {
3096 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3097 			DEFINE_WAIT(wait);
3098 
3099 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3100 				continue;
3101 
3102 			cgroup_get_live(dsct);
3103 			prepare_to_wait(&dsct->offline_waitq, &wait,
3104 					TASK_UNINTERRUPTIBLE);
3105 
3106 			mutex_unlock(&cgroup_mutex);
3107 			schedule();
3108 			finish_wait(&dsct->offline_waitq, &wait);
3109 
3110 			cgroup_put(dsct);
3111 			goto restart;
3112 		}
3113 	}
3114 }
3115 
3116 /**
3117  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3118  * @cgrp: root of the target subtree
3119  *
3120  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3121  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3122  * itself.
3123  */
3124 static void cgroup_save_control(struct cgroup *cgrp)
3125 {
3126 	struct cgroup *dsct;
3127 	struct cgroup_subsys_state *d_css;
3128 
3129 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3130 		dsct->old_subtree_control = dsct->subtree_control;
3131 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3132 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3133 	}
3134 }
3135 
3136 /**
3137  * cgroup_propagate_control - refresh control masks of a subtree
3138  * @cgrp: root of the target subtree
3139  *
3140  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3141  * ->subtree_control and propagate controller availability through the
3142  * subtree so that descendants don't have unavailable controllers enabled.
3143  */
3144 static void cgroup_propagate_control(struct cgroup *cgrp)
3145 {
3146 	struct cgroup *dsct;
3147 	struct cgroup_subsys_state *d_css;
3148 
3149 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3150 		dsct->subtree_control &= cgroup_control(dsct);
3151 		dsct->subtree_ss_mask =
3152 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3153 						    cgroup_ss_mask(dsct));
3154 	}
3155 }
3156 
3157 /**
3158  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3159  * @cgrp: root of the target subtree
3160  *
3161  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3162  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3163  * itself.
3164  */
3165 static void cgroup_restore_control(struct cgroup *cgrp)
3166 {
3167 	struct cgroup *dsct;
3168 	struct cgroup_subsys_state *d_css;
3169 
3170 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3171 		dsct->subtree_control = dsct->old_subtree_control;
3172 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3173 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3174 	}
3175 }
3176 
3177 static bool css_visible(struct cgroup_subsys_state *css)
3178 {
3179 	struct cgroup_subsys *ss = css->ss;
3180 	struct cgroup *cgrp = css->cgroup;
3181 
3182 	if (cgroup_control(cgrp) & (1 << ss->id))
3183 		return true;
3184 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3185 		return false;
3186 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3187 }
3188 
3189 /**
3190  * cgroup_apply_control_enable - enable or show csses according to control
3191  * @cgrp: root of the target subtree
3192  *
3193  * Walk @cgrp's subtree and create new csses or make the existing ones
3194  * visible.  A css is created invisible if it's being implicitly enabled
3195  * through dependency.  An invisible css is made visible when the userland
3196  * explicitly enables it.
3197  *
3198  * Returns 0 on success, -errno on failure.  On failure, csses which have
3199  * been processed already aren't cleaned up.  The caller is responsible for
3200  * cleaning up with cgroup_apply_control_disable().
3201  */
3202 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3203 {
3204 	struct cgroup *dsct;
3205 	struct cgroup_subsys_state *d_css;
3206 	struct cgroup_subsys *ss;
3207 	int ssid, ret;
3208 
3209 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3210 		for_each_subsys(ss, ssid) {
3211 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3212 
3213 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3214 				continue;
3215 
3216 			if (!css) {
3217 				css = css_create(dsct, ss);
3218 				if (IS_ERR(css))
3219 					return PTR_ERR(css);
3220 			}
3221 
3222 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3223 
3224 			if (css_visible(css)) {
3225 				ret = css_populate_dir(css);
3226 				if (ret)
3227 					return ret;
3228 			}
3229 		}
3230 	}
3231 
3232 	return 0;
3233 }
3234 
3235 /**
3236  * cgroup_apply_control_disable - kill or hide csses according to control
3237  * @cgrp: root of the target subtree
3238  *
3239  * Walk @cgrp's subtree and kill and hide csses so that they match
3240  * cgroup_ss_mask() and cgroup_visible_mask().
3241  *
3242  * A css is hidden when the userland requests it to be disabled while other
3243  * subsystems are still depending on it.  The css must not actively control
3244  * resources and be in the vanilla state if it's made visible again later.
3245  * Controllers which may be depended upon should provide ->css_reset() for
3246  * this purpose.
3247  */
3248 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3249 {
3250 	struct cgroup *dsct;
3251 	struct cgroup_subsys_state *d_css;
3252 	struct cgroup_subsys *ss;
3253 	int ssid;
3254 
3255 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3256 		for_each_subsys(ss, ssid) {
3257 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3258 
3259 			if (!css)
3260 				continue;
3261 
3262 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3263 
3264 			if (css->parent &&
3265 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3266 				kill_css(css);
3267 			} else if (!css_visible(css)) {
3268 				css_clear_dir(css);
3269 				if (ss->css_reset)
3270 					ss->css_reset(css);
3271 			}
3272 		}
3273 	}
3274 }
3275 
3276 /**
3277  * cgroup_apply_control - apply control mask updates to the subtree
3278  * @cgrp: root of the target subtree
3279  *
3280  * subsystems can be enabled and disabled in a subtree using the following
3281  * steps.
3282  *
3283  * 1. Call cgroup_save_control() to stash the current state.
3284  * 2. Update ->subtree_control masks in the subtree as desired.
3285  * 3. Call cgroup_apply_control() to apply the changes.
3286  * 4. Optionally perform other related operations.
3287  * 5. Call cgroup_finalize_control() to finish up.
3288  *
3289  * This function implements step 3 and propagates the mask changes
3290  * throughout @cgrp's subtree, updates csses accordingly and perform
3291  * process migrations.
3292  */
3293 static int cgroup_apply_control(struct cgroup *cgrp)
3294 {
3295 	int ret;
3296 
3297 	cgroup_propagate_control(cgrp);
3298 
3299 	ret = cgroup_apply_control_enable(cgrp);
3300 	if (ret)
3301 		return ret;
3302 
3303 	/*
3304 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3305 	 * making the following cgroup_update_dfl_csses() properly update
3306 	 * css associations of all tasks in the subtree.
3307 	 */
3308 	return cgroup_update_dfl_csses(cgrp);
3309 }
3310 
3311 /**
3312  * cgroup_finalize_control - finalize control mask update
3313  * @cgrp: root of the target subtree
3314  * @ret: the result of the update
3315  *
3316  * Finalize control mask update.  See cgroup_apply_control() for more info.
3317  */
3318 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3319 {
3320 	if (ret) {
3321 		cgroup_restore_control(cgrp);
3322 		cgroup_propagate_control(cgrp);
3323 	}
3324 
3325 	cgroup_apply_control_disable(cgrp);
3326 }
3327 
3328 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3329 {
3330 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3331 
3332 	/* if nothing is getting enabled, nothing to worry about */
3333 	if (!enable)
3334 		return 0;
3335 
3336 	/* can @cgrp host any resources? */
3337 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3338 		return -EOPNOTSUPP;
3339 
3340 	/* mixables don't care */
3341 	if (cgroup_is_mixable(cgrp))
3342 		return 0;
3343 
3344 	if (domain_enable) {
3345 		/* can't enable domain controllers inside a thread subtree */
3346 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3347 			return -EOPNOTSUPP;
3348 	} else {
3349 		/*
3350 		 * Threaded controllers can handle internal competitions
3351 		 * and are always allowed inside a (prospective) thread
3352 		 * subtree.
3353 		 */
3354 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3355 			return 0;
3356 	}
3357 
3358 	/*
3359 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3360 	 * child cgroups competing against tasks.
3361 	 */
3362 	if (cgroup_has_tasks(cgrp))
3363 		return -EBUSY;
3364 
3365 	return 0;
3366 }
3367 
3368 /* change the enabled child controllers for a cgroup in the default hierarchy */
3369 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3370 					    char *buf, size_t nbytes,
3371 					    loff_t off)
3372 {
3373 	u16 enable = 0, disable = 0;
3374 	struct cgroup *cgrp, *child;
3375 	struct cgroup_subsys *ss;
3376 	char *tok;
3377 	int ssid, ret;
3378 
3379 	/*
3380 	 * Parse input - space separated list of subsystem names prefixed
3381 	 * with either + or -.
3382 	 */
3383 	buf = strstrip(buf);
3384 	while ((tok = strsep(&buf, " "))) {
3385 		if (tok[0] == '\0')
3386 			continue;
3387 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3388 			if (!cgroup_ssid_enabled(ssid) ||
3389 			    strcmp(tok + 1, ss->name))
3390 				continue;
3391 
3392 			if (*tok == '+') {
3393 				enable |= 1 << ssid;
3394 				disable &= ~(1 << ssid);
3395 			} else if (*tok == '-') {
3396 				disable |= 1 << ssid;
3397 				enable &= ~(1 << ssid);
3398 			} else {
3399 				return -EINVAL;
3400 			}
3401 			break;
3402 		} while_each_subsys_mask();
3403 		if (ssid == CGROUP_SUBSYS_COUNT)
3404 			return -EINVAL;
3405 	}
3406 
3407 	cgrp = cgroup_kn_lock_live(of->kn, true);
3408 	if (!cgrp)
3409 		return -ENODEV;
3410 
3411 	for_each_subsys(ss, ssid) {
3412 		if (enable & (1 << ssid)) {
3413 			if (cgrp->subtree_control & (1 << ssid)) {
3414 				enable &= ~(1 << ssid);
3415 				continue;
3416 			}
3417 
3418 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3419 				ret = -ENOENT;
3420 				goto out_unlock;
3421 			}
3422 		} else if (disable & (1 << ssid)) {
3423 			if (!(cgrp->subtree_control & (1 << ssid))) {
3424 				disable &= ~(1 << ssid);
3425 				continue;
3426 			}
3427 
3428 			/* a child has it enabled? */
3429 			cgroup_for_each_live_child(child, cgrp) {
3430 				if (child->subtree_control & (1 << ssid)) {
3431 					ret = -EBUSY;
3432 					goto out_unlock;
3433 				}
3434 			}
3435 		}
3436 	}
3437 
3438 	if (!enable && !disable) {
3439 		ret = 0;
3440 		goto out_unlock;
3441 	}
3442 
3443 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3444 	if (ret)
3445 		goto out_unlock;
3446 
3447 	/* save and update control masks and prepare csses */
3448 	cgroup_save_control(cgrp);
3449 
3450 	cgrp->subtree_control |= enable;
3451 	cgrp->subtree_control &= ~disable;
3452 
3453 	ret = cgroup_apply_control(cgrp);
3454 	cgroup_finalize_control(cgrp, ret);
3455 	if (ret)
3456 		goto out_unlock;
3457 
3458 	kernfs_activate(cgrp->kn);
3459 out_unlock:
3460 	cgroup_kn_unlock(of->kn);
3461 	return ret ?: nbytes;
3462 }
3463 
3464 /**
3465  * cgroup_enable_threaded - make @cgrp threaded
3466  * @cgrp: the target cgroup
3467  *
3468  * Called when "threaded" is written to the cgroup.type interface file and
3469  * tries to make @cgrp threaded and join the parent's resource domain.
3470  * This function is never called on the root cgroup as cgroup.type doesn't
3471  * exist on it.
3472  */
3473 static int cgroup_enable_threaded(struct cgroup *cgrp)
3474 {
3475 	struct cgroup *parent = cgroup_parent(cgrp);
3476 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3477 	struct cgroup *dsct;
3478 	struct cgroup_subsys_state *d_css;
3479 	int ret;
3480 
3481 	lockdep_assert_held(&cgroup_mutex);
3482 
3483 	/* noop if already threaded */
3484 	if (cgroup_is_threaded(cgrp))
3485 		return 0;
3486 
3487 	/*
3488 	 * If @cgroup is populated or has domain controllers enabled, it
3489 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3490 	 * test can catch the same conditions, that's only when @parent is
3491 	 * not mixable, so let's check it explicitly.
3492 	 */
3493 	if (cgroup_is_populated(cgrp) ||
3494 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3495 		return -EOPNOTSUPP;
3496 
3497 	/* we're joining the parent's domain, ensure its validity */
3498 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3499 	    !cgroup_can_be_thread_root(dom_cgrp))
3500 		return -EOPNOTSUPP;
3501 
3502 	/*
3503 	 * The following shouldn't cause actual migrations and should
3504 	 * always succeed.
3505 	 */
3506 	cgroup_save_control(cgrp);
3507 
3508 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3509 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3510 			dsct->dom_cgrp = dom_cgrp;
3511 
3512 	ret = cgroup_apply_control(cgrp);
3513 	if (!ret)
3514 		parent->nr_threaded_children++;
3515 
3516 	cgroup_finalize_control(cgrp, ret);
3517 	return ret;
3518 }
3519 
3520 static int cgroup_type_show(struct seq_file *seq, void *v)
3521 {
3522 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3523 
3524 	if (cgroup_is_threaded(cgrp))
3525 		seq_puts(seq, "threaded\n");
3526 	else if (!cgroup_is_valid_domain(cgrp))
3527 		seq_puts(seq, "domain invalid\n");
3528 	else if (cgroup_is_thread_root(cgrp))
3529 		seq_puts(seq, "domain threaded\n");
3530 	else
3531 		seq_puts(seq, "domain\n");
3532 
3533 	return 0;
3534 }
3535 
3536 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3537 				 size_t nbytes, loff_t off)
3538 {
3539 	struct cgroup *cgrp;
3540 	int ret;
3541 
3542 	/* only switching to threaded mode is supported */
3543 	if (strcmp(strstrip(buf), "threaded"))
3544 		return -EINVAL;
3545 
3546 	/* drain dying csses before we re-apply (threaded) subtree control */
3547 	cgrp = cgroup_kn_lock_live(of->kn, true);
3548 	if (!cgrp)
3549 		return -ENOENT;
3550 
3551 	/* threaded can only be enabled */
3552 	ret = cgroup_enable_threaded(cgrp);
3553 
3554 	cgroup_kn_unlock(of->kn);
3555 	return ret ?: nbytes;
3556 }
3557 
3558 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3559 {
3560 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3561 	int descendants = READ_ONCE(cgrp->max_descendants);
3562 
3563 	if (descendants == INT_MAX)
3564 		seq_puts(seq, "max\n");
3565 	else
3566 		seq_printf(seq, "%d\n", descendants);
3567 
3568 	return 0;
3569 }
3570 
3571 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3572 					   char *buf, size_t nbytes, loff_t off)
3573 {
3574 	struct cgroup *cgrp;
3575 	int descendants;
3576 	ssize_t ret;
3577 
3578 	buf = strstrip(buf);
3579 	if (!strcmp(buf, "max")) {
3580 		descendants = INT_MAX;
3581 	} else {
3582 		ret = kstrtoint(buf, 0, &descendants);
3583 		if (ret)
3584 			return ret;
3585 	}
3586 
3587 	if (descendants < 0)
3588 		return -ERANGE;
3589 
3590 	cgrp = cgroup_kn_lock_live(of->kn, false);
3591 	if (!cgrp)
3592 		return -ENOENT;
3593 
3594 	cgrp->max_descendants = descendants;
3595 
3596 	cgroup_kn_unlock(of->kn);
3597 
3598 	return nbytes;
3599 }
3600 
3601 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3602 {
3603 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3604 	int depth = READ_ONCE(cgrp->max_depth);
3605 
3606 	if (depth == INT_MAX)
3607 		seq_puts(seq, "max\n");
3608 	else
3609 		seq_printf(seq, "%d\n", depth);
3610 
3611 	return 0;
3612 }
3613 
3614 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3615 				      char *buf, size_t nbytes, loff_t off)
3616 {
3617 	struct cgroup *cgrp;
3618 	ssize_t ret;
3619 	int depth;
3620 
3621 	buf = strstrip(buf);
3622 	if (!strcmp(buf, "max")) {
3623 		depth = INT_MAX;
3624 	} else {
3625 		ret = kstrtoint(buf, 0, &depth);
3626 		if (ret)
3627 			return ret;
3628 	}
3629 
3630 	if (depth < 0)
3631 		return -ERANGE;
3632 
3633 	cgrp = cgroup_kn_lock_live(of->kn, false);
3634 	if (!cgrp)
3635 		return -ENOENT;
3636 
3637 	cgrp->max_depth = depth;
3638 
3639 	cgroup_kn_unlock(of->kn);
3640 
3641 	return nbytes;
3642 }
3643 
3644 static int cgroup_events_show(struct seq_file *seq, void *v)
3645 {
3646 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3647 
3648 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3649 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3650 
3651 	return 0;
3652 }
3653 
3654 static int cgroup_stat_show(struct seq_file *seq, void *v)
3655 {
3656 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3657 
3658 	seq_printf(seq, "nr_descendants %d\n",
3659 		   cgroup->nr_descendants);
3660 	seq_printf(seq, "nr_dying_descendants %d\n",
3661 		   cgroup->nr_dying_descendants);
3662 
3663 	return 0;
3664 }
3665 
3666 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3667 						 struct cgroup *cgrp, int ssid)
3668 {
3669 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3670 	struct cgroup_subsys_state *css;
3671 	int ret;
3672 
3673 	if (!ss->css_extra_stat_show)
3674 		return 0;
3675 
3676 	css = cgroup_tryget_css(cgrp, ss);
3677 	if (!css)
3678 		return 0;
3679 
3680 	ret = ss->css_extra_stat_show(seq, css);
3681 	css_put(css);
3682 	return ret;
3683 }
3684 
3685 static int cpu_stat_show(struct seq_file *seq, void *v)
3686 {
3687 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3688 	int ret = 0;
3689 
3690 	cgroup_base_stat_cputime_show(seq);
3691 #ifdef CONFIG_CGROUP_SCHED
3692 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3693 #endif
3694 	return ret;
3695 }
3696 
3697 #ifdef CONFIG_PSI
3698 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3699 {
3700 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3701 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3702 
3703 	return psi_show(seq, psi, PSI_IO);
3704 }
3705 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3706 {
3707 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3708 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3709 
3710 	return psi_show(seq, psi, PSI_MEM);
3711 }
3712 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3713 {
3714 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3715 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3716 
3717 	return psi_show(seq, psi, PSI_CPU);
3718 }
3719 
3720 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3721 					  size_t nbytes, enum psi_res res)
3722 {
3723 	struct cgroup_file_ctx *ctx = of->priv;
3724 	struct psi_trigger *new;
3725 	struct cgroup *cgrp;
3726 	struct psi_group *psi;
3727 
3728 	cgrp = cgroup_kn_lock_live(of->kn, false);
3729 	if (!cgrp)
3730 		return -ENODEV;
3731 
3732 	cgroup_get(cgrp);
3733 	cgroup_kn_unlock(of->kn);
3734 
3735 	/* Allow only one trigger per file descriptor */
3736 	if (ctx->psi.trigger) {
3737 		cgroup_put(cgrp);
3738 		return -EBUSY;
3739 	}
3740 
3741 	psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3742 	new = psi_trigger_create(psi, buf, res);
3743 	if (IS_ERR(new)) {
3744 		cgroup_put(cgrp);
3745 		return PTR_ERR(new);
3746 	}
3747 
3748 	smp_store_release(&ctx->psi.trigger, new);
3749 	cgroup_put(cgrp);
3750 
3751 	return nbytes;
3752 }
3753 
3754 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3755 					  char *buf, size_t nbytes,
3756 					  loff_t off)
3757 {
3758 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3759 }
3760 
3761 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3762 					  char *buf, size_t nbytes,
3763 					  loff_t off)
3764 {
3765 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3766 }
3767 
3768 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3769 					  char *buf, size_t nbytes,
3770 					  loff_t off)
3771 {
3772 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3773 }
3774 
3775 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3776 					  poll_table *pt)
3777 {
3778 	struct cgroup_file_ctx *ctx = of->priv;
3779 
3780 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3781 }
3782 
3783 static void cgroup_pressure_release(struct kernfs_open_file *of)
3784 {
3785 	struct cgroup_file_ctx *ctx = of->priv;
3786 
3787 	psi_trigger_destroy(ctx->psi.trigger);
3788 }
3789 
3790 bool cgroup_psi_enabled(void)
3791 {
3792 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3793 }
3794 
3795 #else /* CONFIG_PSI */
3796 bool cgroup_psi_enabled(void)
3797 {
3798 	return false;
3799 }
3800 
3801 #endif /* CONFIG_PSI */
3802 
3803 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3804 {
3805 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3806 
3807 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3808 
3809 	return 0;
3810 }
3811 
3812 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3813 				   char *buf, size_t nbytes, loff_t off)
3814 {
3815 	struct cgroup *cgrp;
3816 	ssize_t ret;
3817 	int freeze;
3818 
3819 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3820 	if (ret)
3821 		return ret;
3822 
3823 	if (freeze < 0 || freeze > 1)
3824 		return -ERANGE;
3825 
3826 	cgrp = cgroup_kn_lock_live(of->kn, false);
3827 	if (!cgrp)
3828 		return -ENOENT;
3829 
3830 	cgroup_freeze(cgrp, freeze);
3831 
3832 	cgroup_kn_unlock(of->kn);
3833 
3834 	return nbytes;
3835 }
3836 
3837 static void __cgroup_kill(struct cgroup *cgrp)
3838 {
3839 	struct css_task_iter it;
3840 	struct task_struct *task;
3841 
3842 	lockdep_assert_held(&cgroup_mutex);
3843 
3844 	spin_lock_irq(&css_set_lock);
3845 	set_bit(CGRP_KILL, &cgrp->flags);
3846 	spin_unlock_irq(&css_set_lock);
3847 
3848 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3849 	while ((task = css_task_iter_next(&it))) {
3850 		/* Ignore kernel threads here. */
3851 		if (task->flags & PF_KTHREAD)
3852 			continue;
3853 
3854 		/* Skip tasks that are already dying. */
3855 		if (__fatal_signal_pending(task))
3856 			continue;
3857 
3858 		send_sig(SIGKILL, task, 0);
3859 	}
3860 	css_task_iter_end(&it);
3861 
3862 	spin_lock_irq(&css_set_lock);
3863 	clear_bit(CGRP_KILL, &cgrp->flags);
3864 	spin_unlock_irq(&css_set_lock);
3865 }
3866 
3867 static void cgroup_kill(struct cgroup *cgrp)
3868 {
3869 	struct cgroup_subsys_state *css;
3870 	struct cgroup *dsct;
3871 
3872 	lockdep_assert_held(&cgroup_mutex);
3873 
3874 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3875 		__cgroup_kill(dsct);
3876 }
3877 
3878 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3879 				 size_t nbytes, loff_t off)
3880 {
3881 	ssize_t ret = 0;
3882 	int kill;
3883 	struct cgroup *cgrp;
3884 
3885 	ret = kstrtoint(strstrip(buf), 0, &kill);
3886 	if (ret)
3887 		return ret;
3888 
3889 	if (kill != 1)
3890 		return -ERANGE;
3891 
3892 	cgrp = cgroup_kn_lock_live(of->kn, false);
3893 	if (!cgrp)
3894 		return -ENOENT;
3895 
3896 	/*
3897 	 * Killing is a process directed operation, i.e. the whole thread-group
3898 	 * is taken down so act like we do for cgroup.procs and only make this
3899 	 * writable in non-threaded cgroups.
3900 	 */
3901 	if (cgroup_is_threaded(cgrp))
3902 		ret = -EOPNOTSUPP;
3903 	else
3904 		cgroup_kill(cgrp);
3905 
3906 	cgroup_kn_unlock(of->kn);
3907 
3908 	return ret ?: nbytes;
3909 }
3910 
3911 static int cgroup_file_open(struct kernfs_open_file *of)
3912 {
3913 	struct cftype *cft = of_cft(of);
3914 	struct cgroup_file_ctx *ctx;
3915 	int ret;
3916 
3917 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3918 	if (!ctx)
3919 		return -ENOMEM;
3920 
3921 	ctx->ns = current->nsproxy->cgroup_ns;
3922 	get_cgroup_ns(ctx->ns);
3923 	of->priv = ctx;
3924 
3925 	if (!cft->open)
3926 		return 0;
3927 
3928 	ret = cft->open(of);
3929 	if (ret) {
3930 		put_cgroup_ns(ctx->ns);
3931 		kfree(ctx);
3932 	}
3933 	return ret;
3934 }
3935 
3936 static void cgroup_file_release(struct kernfs_open_file *of)
3937 {
3938 	struct cftype *cft = of_cft(of);
3939 	struct cgroup_file_ctx *ctx = of->priv;
3940 
3941 	if (cft->release)
3942 		cft->release(of);
3943 	put_cgroup_ns(ctx->ns);
3944 	kfree(ctx);
3945 }
3946 
3947 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3948 				 size_t nbytes, loff_t off)
3949 {
3950 	struct cgroup_file_ctx *ctx = of->priv;
3951 	struct cgroup *cgrp = of->kn->parent->priv;
3952 	struct cftype *cft = of_cft(of);
3953 	struct cgroup_subsys_state *css;
3954 	int ret;
3955 
3956 	if (!nbytes)
3957 		return 0;
3958 
3959 	/*
3960 	 * If namespaces are delegation boundaries, disallow writes to
3961 	 * files in an non-init namespace root from inside the namespace
3962 	 * except for the files explicitly marked delegatable -
3963 	 * cgroup.procs and cgroup.subtree_control.
3964 	 */
3965 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3966 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3967 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3968 		return -EPERM;
3969 
3970 	if (cft->write)
3971 		return cft->write(of, buf, nbytes, off);
3972 
3973 	/*
3974 	 * kernfs guarantees that a file isn't deleted with operations in
3975 	 * flight, which means that the matching css is and stays alive and
3976 	 * doesn't need to be pinned.  The RCU locking is not necessary
3977 	 * either.  It's just for the convenience of using cgroup_css().
3978 	 */
3979 	rcu_read_lock();
3980 	css = cgroup_css(cgrp, cft->ss);
3981 	rcu_read_unlock();
3982 
3983 	if (cft->write_u64) {
3984 		unsigned long long v;
3985 		ret = kstrtoull(buf, 0, &v);
3986 		if (!ret)
3987 			ret = cft->write_u64(css, cft, v);
3988 	} else if (cft->write_s64) {
3989 		long long v;
3990 		ret = kstrtoll(buf, 0, &v);
3991 		if (!ret)
3992 			ret = cft->write_s64(css, cft, v);
3993 	} else {
3994 		ret = -EINVAL;
3995 	}
3996 
3997 	return ret ?: nbytes;
3998 }
3999 
4000 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4001 {
4002 	struct cftype *cft = of_cft(of);
4003 
4004 	if (cft->poll)
4005 		return cft->poll(of, pt);
4006 
4007 	return kernfs_generic_poll(of, pt);
4008 }
4009 
4010 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4011 {
4012 	return seq_cft(seq)->seq_start(seq, ppos);
4013 }
4014 
4015 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4016 {
4017 	return seq_cft(seq)->seq_next(seq, v, ppos);
4018 }
4019 
4020 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4021 {
4022 	if (seq_cft(seq)->seq_stop)
4023 		seq_cft(seq)->seq_stop(seq, v);
4024 }
4025 
4026 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4027 {
4028 	struct cftype *cft = seq_cft(m);
4029 	struct cgroup_subsys_state *css = seq_css(m);
4030 
4031 	if (cft->seq_show)
4032 		return cft->seq_show(m, arg);
4033 
4034 	if (cft->read_u64)
4035 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4036 	else if (cft->read_s64)
4037 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4038 	else
4039 		return -EINVAL;
4040 	return 0;
4041 }
4042 
4043 static struct kernfs_ops cgroup_kf_single_ops = {
4044 	.atomic_write_len	= PAGE_SIZE,
4045 	.open			= cgroup_file_open,
4046 	.release		= cgroup_file_release,
4047 	.write			= cgroup_file_write,
4048 	.poll			= cgroup_file_poll,
4049 	.seq_show		= cgroup_seqfile_show,
4050 };
4051 
4052 static struct kernfs_ops cgroup_kf_ops = {
4053 	.atomic_write_len	= PAGE_SIZE,
4054 	.open			= cgroup_file_open,
4055 	.release		= cgroup_file_release,
4056 	.write			= cgroup_file_write,
4057 	.poll			= cgroup_file_poll,
4058 	.seq_start		= cgroup_seqfile_start,
4059 	.seq_next		= cgroup_seqfile_next,
4060 	.seq_stop		= cgroup_seqfile_stop,
4061 	.seq_show		= cgroup_seqfile_show,
4062 };
4063 
4064 /* set uid and gid of cgroup dirs and files to that of the creator */
4065 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
4066 {
4067 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
4068 			       .ia_uid = current_fsuid(),
4069 			       .ia_gid = current_fsgid(), };
4070 
4071 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
4072 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
4073 		return 0;
4074 
4075 	return kernfs_setattr(kn, &iattr);
4076 }
4077 
4078 static void cgroup_file_notify_timer(struct timer_list *timer)
4079 {
4080 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4081 					notify_timer));
4082 }
4083 
4084 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4085 			   struct cftype *cft)
4086 {
4087 	char name[CGROUP_FILE_NAME_MAX];
4088 	struct kernfs_node *kn;
4089 	struct lock_class_key *key = NULL;
4090 	int ret;
4091 
4092 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4093 	key = &cft->lockdep_key;
4094 #endif
4095 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4096 				  cgroup_file_mode(cft),
4097 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4098 				  0, cft->kf_ops, cft,
4099 				  NULL, key);
4100 	if (IS_ERR(kn))
4101 		return PTR_ERR(kn);
4102 
4103 	ret = cgroup_kn_set_ugid(kn);
4104 	if (ret) {
4105 		kernfs_remove(kn);
4106 		return ret;
4107 	}
4108 
4109 	if (cft->file_offset) {
4110 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4111 
4112 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4113 
4114 		spin_lock_irq(&cgroup_file_kn_lock);
4115 		cfile->kn = kn;
4116 		spin_unlock_irq(&cgroup_file_kn_lock);
4117 	}
4118 
4119 	return 0;
4120 }
4121 
4122 /**
4123  * cgroup_addrm_files - add or remove files to a cgroup directory
4124  * @css: the target css
4125  * @cgrp: the target cgroup (usually css->cgroup)
4126  * @cfts: array of cftypes to be added
4127  * @is_add: whether to add or remove
4128  *
4129  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4130  * For removals, this function never fails.
4131  */
4132 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4133 			      struct cgroup *cgrp, struct cftype cfts[],
4134 			      bool is_add)
4135 {
4136 	struct cftype *cft, *cft_end = NULL;
4137 	int ret = 0;
4138 
4139 	lockdep_assert_held(&cgroup_mutex);
4140 
4141 restart:
4142 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4143 		/* does cft->flags tell us to skip this file on @cgrp? */
4144 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4145 			continue;
4146 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4147 			continue;
4148 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4149 			continue;
4150 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4151 			continue;
4152 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4153 			continue;
4154 		if (is_add) {
4155 			ret = cgroup_add_file(css, cgrp, cft);
4156 			if (ret) {
4157 				pr_warn("%s: failed to add %s, err=%d\n",
4158 					__func__, cft->name, ret);
4159 				cft_end = cft;
4160 				is_add = false;
4161 				goto restart;
4162 			}
4163 		} else {
4164 			cgroup_rm_file(cgrp, cft);
4165 		}
4166 	}
4167 	return ret;
4168 }
4169 
4170 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4171 {
4172 	struct cgroup_subsys *ss = cfts[0].ss;
4173 	struct cgroup *root = &ss->root->cgrp;
4174 	struct cgroup_subsys_state *css;
4175 	int ret = 0;
4176 
4177 	lockdep_assert_held(&cgroup_mutex);
4178 
4179 	/* add/rm files for all cgroups created before */
4180 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4181 		struct cgroup *cgrp = css->cgroup;
4182 
4183 		if (!(css->flags & CSS_VISIBLE))
4184 			continue;
4185 
4186 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4187 		if (ret)
4188 			break;
4189 	}
4190 
4191 	if (is_add && !ret)
4192 		kernfs_activate(root->kn);
4193 	return ret;
4194 }
4195 
4196 static void cgroup_exit_cftypes(struct cftype *cfts)
4197 {
4198 	struct cftype *cft;
4199 
4200 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4201 		/* free copy for custom atomic_write_len, see init_cftypes() */
4202 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4203 			kfree(cft->kf_ops);
4204 		cft->kf_ops = NULL;
4205 		cft->ss = NULL;
4206 
4207 		/* revert flags set by cgroup core while adding @cfts */
4208 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4209 				__CFTYPE_ADDED);
4210 	}
4211 }
4212 
4213 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4214 {
4215 	struct cftype *cft;
4216 	int ret = 0;
4217 
4218 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4219 		struct kernfs_ops *kf_ops;
4220 
4221 		WARN_ON(cft->ss || cft->kf_ops);
4222 
4223 		if (cft->flags & __CFTYPE_ADDED) {
4224 			ret = -EBUSY;
4225 			break;
4226 		}
4227 
4228 		if (cft->seq_start)
4229 			kf_ops = &cgroup_kf_ops;
4230 		else
4231 			kf_ops = &cgroup_kf_single_ops;
4232 
4233 		/*
4234 		 * Ugh... if @cft wants a custom max_write_len, we need to
4235 		 * make a copy of kf_ops to set its atomic_write_len.
4236 		 */
4237 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4238 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4239 			if (!kf_ops) {
4240 				ret = -ENOMEM;
4241 				break;
4242 			}
4243 			kf_ops->atomic_write_len = cft->max_write_len;
4244 		}
4245 
4246 		cft->kf_ops = kf_ops;
4247 		cft->ss = ss;
4248 		cft->flags |= __CFTYPE_ADDED;
4249 	}
4250 
4251 	if (ret)
4252 		cgroup_exit_cftypes(cfts);
4253 	return ret;
4254 }
4255 
4256 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4257 {
4258 	lockdep_assert_held(&cgroup_mutex);
4259 
4260 	list_del(&cfts->node);
4261 	cgroup_apply_cftypes(cfts, false);
4262 	cgroup_exit_cftypes(cfts);
4263 	return 0;
4264 }
4265 
4266 /**
4267  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4268  * @cfts: zero-length name terminated array of cftypes
4269  *
4270  * Unregister @cfts.  Files described by @cfts are removed from all
4271  * existing cgroups and all future cgroups won't have them either.  This
4272  * function can be called anytime whether @cfts' subsys is attached or not.
4273  *
4274  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4275  * registered.
4276  */
4277 int cgroup_rm_cftypes(struct cftype *cfts)
4278 {
4279 	int ret;
4280 
4281 	if (!cfts || cfts[0].name[0] == '\0')
4282 		return 0;
4283 
4284 	if (!(cfts[0].flags & __CFTYPE_ADDED))
4285 		return -ENOENT;
4286 
4287 	mutex_lock(&cgroup_mutex);
4288 	ret = cgroup_rm_cftypes_locked(cfts);
4289 	mutex_unlock(&cgroup_mutex);
4290 	return ret;
4291 }
4292 
4293 /**
4294  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4295  * @ss: target cgroup subsystem
4296  * @cfts: zero-length name terminated array of cftypes
4297  *
4298  * Register @cfts to @ss.  Files described by @cfts are created for all
4299  * existing cgroups to which @ss is attached and all future cgroups will
4300  * have them too.  This function can be called anytime whether @ss is
4301  * attached or not.
4302  *
4303  * Returns 0 on successful registration, -errno on failure.  Note that this
4304  * function currently returns 0 as long as @cfts registration is successful
4305  * even if some file creation attempts on existing cgroups fail.
4306  */
4307 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4308 {
4309 	int ret;
4310 
4311 	if (!cgroup_ssid_enabled(ss->id))
4312 		return 0;
4313 
4314 	if (!cfts || cfts[0].name[0] == '\0')
4315 		return 0;
4316 
4317 	ret = cgroup_init_cftypes(ss, cfts);
4318 	if (ret)
4319 		return ret;
4320 
4321 	mutex_lock(&cgroup_mutex);
4322 
4323 	list_add_tail(&cfts->node, &ss->cfts);
4324 	ret = cgroup_apply_cftypes(cfts, true);
4325 	if (ret)
4326 		cgroup_rm_cftypes_locked(cfts);
4327 
4328 	mutex_unlock(&cgroup_mutex);
4329 	return ret;
4330 }
4331 
4332 /**
4333  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4334  * @ss: target cgroup subsystem
4335  * @cfts: zero-length name terminated array of cftypes
4336  *
4337  * Similar to cgroup_add_cftypes() but the added files are only used for
4338  * the default hierarchy.
4339  */
4340 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4341 {
4342 	struct cftype *cft;
4343 
4344 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4345 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4346 	return cgroup_add_cftypes(ss, cfts);
4347 }
4348 
4349 /**
4350  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4351  * @ss: target cgroup subsystem
4352  * @cfts: zero-length name terminated array of cftypes
4353  *
4354  * Similar to cgroup_add_cftypes() but the added files are only used for
4355  * the legacy hierarchies.
4356  */
4357 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4358 {
4359 	struct cftype *cft;
4360 
4361 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4362 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4363 	return cgroup_add_cftypes(ss, cfts);
4364 }
4365 
4366 /**
4367  * cgroup_file_notify - generate a file modified event for a cgroup_file
4368  * @cfile: target cgroup_file
4369  *
4370  * @cfile must have been obtained by setting cftype->file_offset.
4371  */
4372 void cgroup_file_notify(struct cgroup_file *cfile)
4373 {
4374 	unsigned long flags;
4375 
4376 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4377 	if (cfile->kn) {
4378 		unsigned long last = cfile->notified_at;
4379 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4380 
4381 		if (time_in_range(jiffies, last, next)) {
4382 			timer_reduce(&cfile->notify_timer, next);
4383 		} else {
4384 			kernfs_notify(cfile->kn);
4385 			cfile->notified_at = jiffies;
4386 		}
4387 	}
4388 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4389 }
4390 
4391 /**
4392  * cgroup_file_show - show or hide a hidden cgroup file
4393  * @cfile: target cgroup_file obtained by setting cftype->file_offset
4394  * @show: whether to show or hide
4395  */
4396 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4397 {
4398 	struct kernfs_node *kn;
4399 
4400 	spin_lock_irq(&cgroup_file_kn_lock);
4401 	kn = cfile->kn;
4402 	kernfs_get(kn);
4403 	spin_unlock_irq(&cgroup_file_kn_lock);
4404 
4405 	if (kn)
4406 		kernfs_show(kn, show);
4407 
4408 	kernfs_put(kn);
4409 }
4410 
4411 /**
4412  * css_next_child - find the next child of a given css
4413  * @pos: the current position (%NULL to initiate traversal)
4414  * @parent: css whose children to walk
4415  *
4416  * This function returns the next child of @parent and should be called
4417  * under either cgroup_mutex or RCU read lock.  The only requirement is
4418  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4419  * be returned regardless of their states.
4420  *
4421  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4422  * css which finished ->css_online() is guaranteed to be visible in the
4423  * future iterations and will stay visible until the last reference is put.
4424  * A css which hasn't finished ->css_online() or already finished
4425  * ->css_offline() may show up during traversal.  It's each subsystem's
4426  * responsibility to synchronize against on/offlining.
4427  */
4428 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4429 					   struct cgroup_subsys_state *parent)
4430 {
4431 	struct cgroup_subsys_state *next;
4432 
4433 	cgroup_assert_mutex_or_rcu_locked();
4434 
4435 	/*
4436 	 * @pos could already have been unlinked from the sibling list.
4437 	 * Once a cgroup is removed, its ->sibling.next is no longer
4438 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4439 	 * @pos is taken off list, at which time its next pointer is valid,
4440 	 * and, as releases are serialized, the one pointed to by the next
4441 	 * pointer is guaranteed to not have started release yet.  This
4442 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4443 	 * critical section, the one pointed to by its next pointer is
4444 	 * guaranteed to not have finished its RCU grace period even if we
4445 	 * have dropped rcu_read_lock() in-between iterations.
4446 	 *
4447 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4448 	 * dereferenced; however, as each css is given a monotonically
4449 	 * increasing unique serial number and always appended to the
4450 	 * sibling list, the next one can be found by walking the parent's
4451 	 * children until the first css with higher serial number than
4452 	 * @pos's.  While this path can be slower, it happens iff iteration
4453 	 * races against release and the race window is very small.
4454 	 */
4455 	if (!pos) {
4456 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4457 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4458 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4459 	} else {
4460 		list_for_each_entry_rcu(next, &parent->children, sibling,
4461 					lockdep_is_held(&cgroup_mutex))
4462 			if (next->serial_nr > pos->serial_nr)
4463 				break;
4464 	}
4465 
4466 	/*
4467 	 * @next, if not pointing to the head, can be dereferenced and is
4468 	 * the next sibling.
4469 	 */
4470 	if (&next->sibling != &parent->children)
4471 		return next;
4472 	return NULL;
4473 }
4474 
4475 /**
4476  * css_next_descendant_pre - find the next descendant for pre-order walk
4477  * @pos: the current position (%NULL to initiate traversal)
4478  * @root: css whose descendants to walk
4479  *
4480  * To be used by css_for_each_descendant_pre().  Find the next descendant
4481  * to visit for pre-order traversal of @root's descendants.  @root is
4482  * included in the iteration and the first node to be visited.
4483  *
4484  * While this function requires cgroup_mutex or RCU read locking, it
4485  * doesn't require the whole traversal to be contained in a single critical
4486  * section.  This function will return the correct next descendant as long
4487  * as both @pos and @root are accessible and @pos is a descendant of @root.
4488  *
4489  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4490  * css which finished ->css_online() is guaranteed to be visible in the
4491  * future iterations and will stay visible until the last reference is put.
4492  * A css which hasn't finished ->css_online() or already finished
4493  * ->css_offline() may show up during traversal.  It's each subsystem's
4494  * responsibility to synchronize against on/offlining.
4495  */
4496 struct cgroup_subsys_state *
4497 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4498 			struct cgroup_subsys_state *root)
4499 {
4500 	struct cgroup_subsys_state *next;
4501 
4502 	cgroup_assert_mutex_or_rcu_locked();
4503 
4504 	/* if first iteration, visit @root */
4505 	if (!pos)
4506 		return root;
4507 
4508 	/* visit the first child if exists */
4509 	next = css_next_child(NULL, pos);
4510 	if (next)
4511 		return next;
4512 
4513 	/* no child, visit my or the closest ancestor's next sibling */
4514 	while (pos != root) {
4515 		next = css_next_child(pos, pos->parent);
4516 		if (next)
4517 			return next;
4518 		pos = pos->parent;
4519 	}
4520 
4521 	return NULL;
4522 }
4523 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4524 
4525 /**
4526  * css_rightmost_descendant - return the rightmost descendant of a css
4527  * @pos: css of interest
4528  *
4529  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4530  * is returned.  This can be used during pre-order traversal to skip
4531  * subtree of @pos.
4532  *
4533  * While this function requires cgroup_mutex or RCU read locking, it
4534  * doesn't require the whole traversal to be contained in a single critical
4535  * section.  This function will return the correct rightmost descendant as
4536  * long as @pos is accessible.
4537  */
4538 struct cgroup_subsys_state *
4539 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4540 {
4541 	struct cgroup_subsys_state *last, *tmp;
4542 
4543 	cgroup_assert_mutex_or_rcu_locked();
4544 
4545 	do {
4546 		last = pos;
4547 		/* ->prev isn't RCU safe, walk ->next till the end */
4548 		pos = NULL;
4549 		css_for_each_child(tmp, last)
4550 			pos = tmp;
4551 	} while (pos);
4552 
4553 	return last;
4554 }
4555 
4556 static struct cgroup_subsys_state *
4557 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4558 {
4559 	struct cgroup_subsys_state *last;
4560 
4561 	do {
4562 		last = pos;
4563 		pos = css_next_child(NULL, pos);
4564 	} while (pos);
4565 
4566 	return last;
4567 }
4568 
4569 /**
4570  * css_next_descendant_post - find the next descendant for post-order walk
4571  * @pos: the current position (%NULL to initiate traversal)
4572  * @root: css whose descendants to walk
4573  *
4574  * To be used by css_for_each_descendant_post().  Find the next descendant
4575  * to visit for post-order traversal of @root's descendants.  @root is
4576  * included in the iteration and the last node to be visited.
4577  *
4578  * While this function requires cgroup_mutex or RCU read locking, it
4579  * doesn't require the whole traversal to be contained in a single critical
4580  * section.  This function will return the correct next descendant as long
4581  * as both @pos and @cgroup are accessible and @pos is a descendant of
4582  * @cgroup.
4583  *
4584  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4585  * css which finished ->css_online() is guaranteed to be visible in the
4586  * future iterations and will stay visible until the last reference is put.
4587  * A css which hasn't finished ->css_online() or already finished
4588  * ->css_offline() may show up during traversal.  It's each subsystem's
4589  * responsibility to synchronize against on/offlining.
4590  */
4591 struct cgroup_subsys_state *
4592 css_next_descendant_post(struct cgroup_subsys_state *pos,
4593 			 struct cgroup_subsys_state *root)
4594 {
4595 	struct cgroup_subsys_state *next;
4596 
4597 	cgroup_assert_mutex_or_rcu_locked();
4598 
4599 	/* if first iteration, visit leftmost descendant which may be @root */
4600 	if (!pos)
4601 		return css_leftmost_descendant(root);
4602 
4603 	/* if we visited @root, we're done */
4604 	if (pos == root)
4605 		return NULL;
4606 
4607 	/* if there's an unvisited sibling, visit its leftmost descendant */
4608 	next = css_next_child(pos, pos->parent);
4609 	if (next)
4610 		return css_leftmost_descendant(next);
4611 
4612 	/* no sibling left, visit parent */
4613 	return pos->parent;
4614 }
4615 
4616 /**
4617  * css_has_online_children - does a css have online children
4618  * @css: the target css
4619  *
4620  * Returns %true if @css has any online children; otherwise, %false.  This
4621  * function can be called from any context but the caller is responsible
4622  * for synchronizing against on/offlining as necessary.
4623  */
4624 bool css_has_online_children(struct cgroup_subsys_state *css)
4625 {
4626 	struct cgroup_subsys_state *child;
4627 	bool ret = false;
4628 
4629 	rcu_read_lock();
4630 	css_for_each_child(child, css) {
4631 		if (child->flags & CSS_ONLINE) {
4632 			ret = true;
4633 			break;
4634 		}
4635 	}
4636 	rcu_read_unlock();
4637 	return ret;
4638 }
4639 
4640 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4641 {
4642 	struct list_head *l;
4643 	struct cgrp_cset_link *link;
4644 	struct css_set *cset;
4645 
4646 	lockdep_assert_held(&css_set_lock);
4647 
4648 	/* find the next threaded cset */
4649 	if (it->tcset_pos) {
4650 		l = it->tcset_pos->next;
4651 
4652 		if (l != it->tcset_head) {
4653 			it->tcset_pos = l;
4654 			return container_of(l, struct css_set,
4655 					    threaded_csets_node);
4656 		}
4657 
4658 		it->tcset_pos = NULL;
4659 	}
4660 
4661 	/* find the next cset */
4662 	l = it->cset_pos;
4663 	l = l->next;
4664 	if (l == it->cset_head) {
4665 		it->cset_pos = NULL;
4666 		return NULL;
4667 	}
4668 
4669 	if (it->ss) {
4670 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4671 	} else {
4672 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4673 		cset = link->cset;
4674 	}
4675 
4676 	it->cset_pos = l;
4677 
4678 	/* initialize threaded css_set walking */
4679 	if (it->flags & CSS_TASK_ITER_THREADED) {
4680 		if (it->cur_dcset)
4681 			put_css_set_locked(it->cur_dcset);
4682 		it->cur_dcset = cset;
4683 		get_css_set(cset);
4684 
4685 		it->tcset_head = &cset->threaded_csets;
4686 		it->tcset_pos = &cset->threaded_csets;
4687 	}
4688 
4689 	return cset;
4690 }
4691 
4692 /**
4693  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4694  * @it: the iterator to advance
4695  *
4696  * Advance @it to the next css_set to walk.
4697  */
4698 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4699 {
4700 	struct css_set *cset;
4701 
4702 	lockdep_assert_held(&css_set_lock);
4703 
4704 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4705 	while ((cset = css_task_iter_next_css_set(it))) {
4706 		if (!list_empty(&cset->tasks)) {
4707 			it->cur_tasks_head = &cset->tasks;
4708 			break;
4709 		} else if (!list_empty(&cset->mg_tasks)) {
4710 			it->cur_tasks_head = &cset->mg_tasks;
4711 			break;
4712 		} else if (!list_empty(&cset->dying_tasks)) {
4713 			it->cur_tasks_head = &cset->dying_tasks;
4714 			break;
4715 		}
4716 	}
4717 	if (!cset) {
4718 		it->task_pos = NULL;
4719 		return;
4720 	}
4721 	it->task_pos = it->cur_tasks_head->next;
4722 
4723 	/*
4724 	 * We don't keep css_sets locked across iteration steps and thus
4725 	 * need to take steps to ensure that iteration can be resumed after
4726 	 * the lock is re-acquired.  Iteration is performed at two levels -
4727 	 * css_sets and tasks in them.
4728 	 *
4729 	 * Once created, a css_set never leaves its cgroup lists, so a
4730 	 * pinned css_set is guaranteed to stay put and we can resume
4731 	 * iteration afterwards.
4732 	 *
4733 	 * Tasks may leave @cset across iteration steps.  This is resolved
4734 	 * by registering each iterator with the css_set currently being
4735 	 * walked and making css_set_move_task() advance iterators whose
4736 	 * next task is leaving.
4737 	 */
4738 	if (it->cur_cset) {
4739 		list_del(&it->iters_node);
4740 		put_css_set_locked(it->cur_cset);
4741 	}
4742 	get_css_set(cset);
4743 	it->cur_cset = cset;
4744 	list_add(&it->iters_node, &cset->task_iters);
4745 }
4746 
4747 static void css_task_iter_skip(struct css_task_iter *it,
4748 			       struct task_struct *task)
4749 {
4750 	lockdep_assert_held(&css_set_lock);
4751 
4752 	if (it->task_pos == &task->cg_list) {
4753 		it->task_pos = it->task_pos->next;
4754 		it->flags |= CSS_TASK_ITER_SKIPPED;
4755 	}
4756 }
4757 
4758 static void css_task_iter_advance(struct css_task_iter *it)
4759 {
4760 	struct task_struct *task;
4761 
4762 	lockdep_assert_held(&css_set_lock);
4763 repeat:
4764 	if (it->task_pos) {
4765 		/*
4766 		 * Advance iterator to find next entry. We go through cset
4767 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4768 		 * the next cset.
4769 		 */
4770 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4771 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4772 		else
4773 			it->task_pos = it->task_pos->next;
4774 
4775 		if (it->task_pos == &it->cur_cset->tasks) {
4776 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4777 			it->task_pos = it->cur_tasks_head->next;
4778 		}
4779 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4780 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4781 			it->task_pos = it->cur_tasks_head->next;
4782 		}
4783 		if (it->task_pos == &it->cur_cset->dying_tasks)
4784 			css_task_iter_advance_css_set(it);
4785 	} else {
4786 		/* called from start, proceed to the first cset */
4787 		css_task_iter_advance_css_set(it);
4788 	}
4789 
4790 	if (!it->task_pos)
4791 		return;
4792 
4793 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4794 
4795 	if (it->flags & CSS_TASK_ITER_PROCS) {
4796 		/* if PROCS, skip over tasks which aren't group leaders */
4797 		if (!thread_group_leader(task))
4798 			goto repeat;
4799 
4800 		/* and dying leaders w/o live member threads */
4801 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4802 		    !atomic_read(&task->signal->live))
4803 			goto repeat;
4804 	} else {
4805 		/* skip all dying ones */
4806 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4807 			goto repeat;
4808 	}
4809 }
4810 
4811 /**
4812  * css_task_iter_start - initiate task iteration
4813  * @css: the css to walk tasks of
4814  * @flags: CSS_TASK_ITER_* flags
4815  * @it: the task iterator to use
4816  *
4817  * Initiate iteration through the tasks of @css.  The caller can call
4818  * css_task_iter_next() to walk through the tasks until the function
4819  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4820  * called.
4821  */
4822 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4823 			 struct css_task_iter *it)
4824 {
4825 	memset(it, 0, sizeof(*it));
4826 
4827 	spin_lock_irq(&css_set_lock);
4828 
4829 	it->ss = css->ss;
4830 	it->flags = flags;
4831 
4832 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4833 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4834 	else
4835 		it->cset_pos = &css->cgroup->cset_links;
4836 
4837 	it->cset_head = it->cset_pos;
4838 
4839 	css_task_iter_advance(it);
4840 
4841 	spin_unlock_irq(&css_set_lock);
4842 }
4843 
4844 /**
4845  * css_task_iter_next - return the next task for the iterator
4846  * @it: the task iterator being iterated
4847  *
4848  * The "next" function for task iteration.  @it should have been
4849  * initialized via css_task_iter_start().  Returns NULL when the iteration
4850  * reaches the end.
4851  */
4852 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4853 {
4854 	if (it->cur_task) {
4855 		put_task_struct(it->cur_task);
4856 		it->cur_task = NULL;
4857 	}
4858 
4859 	spin_lock_irq(&css_set_lock);
4860 
4861 	/* @it may be half-advanced by skips, finish advancing */
4862 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4863 		css_task_iter_advance(it);
4864 
4865 	if (it->task_pos) {
4866 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4867 					  cg_list);
4868 		get_task_struct(it->cur_task);
4869 		css_task_iter_advance(it);
4870 	}
4871 
4872 	spin_unlock_irq(&css_set_lock);
4873 
4874 	return it->cur_task;
4875 }
4876 
4877 /**
4878  * css_task_iter_end - finish task iteration
4879  * @it: the task iterator to finish
4880  *
4881  * Finish task iteration started by css_task_iter_start().
4882  */
4883 void css_task_iter_end(struct css_task_iter *it)
4884 {
4885 	if (it->cur_cset) {
4886 		spin_lock_irq(&css_set_lock);
4887 		list_del(&it->iters_node);
4888 		put_css_set_locked(it->cur_cset);
4889 		spin_unlock_irq(&css_set_lock);
4890 	}
4891 
4892 	if (it->cur_dcset)
4893 		put_css_set(it->cur_dcset);
4894 
4895 	if (it->cur_task)
4896 		put_task_struct(it->cur_task);
4897 }
4898 
4899 static void cgroup_procs_release(struct kernfs_open_file *of)
4900 {
4901 	struct cgroup_file_ctx *ctx = of->priv;
4902 
4903 	if (ctx->procs.started)
4904 		css_task_iter_end(&ctx->procs.iter);
4905 }
4906 
4907 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4908 {
4909 	struct kernfs_open_file *of = s->private;
4910 	struct cgroup_file_ctx *ctx = of->priv;
4911 
4912 	if (pos)
4913 		(*pos)++;
4914 
4915 	return css_task_iter_next(&ctx->procs.iter);
4916 }
4917 
4918 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4919 				  unsigned int iter_flags)
4920 {
4921 	struct kernfs_open_file *of = s->private;
4922 	struct cgroup *cgrp = seq_css(s)->cgroup;
4923 	struct cgroup_file_ctx *ctx = of->priv;
4924 	struct css_task_iter *it = &ctx->procs.iter;
4925 
4926 	/*
4927 	 * When a seq_file is seeked, it's always traversed sequentially
4928 	 * from position 0, so we can simply keep iterating on !0 *pos.
4929 	 */
4930 	if (!ctx->procs.started) {
4931 		if (WARN_ON_ONCE((*pos)))
4932 			return ERR_PTR(-EINVAL);
4933 		css_task_iter_start(&cgrp->self, iter_flags, it);
4934 		ctx->procs.started = true;
4935 	} else if (!(*pos)) {
4936 		css_task_iter_end(it);
4937 		css_task_iter_start(&cgrp->self, iter_flags, it);
4938 	} else
4939 		return it->cur_task;
4940 
4941 	return cgroup_procs_next(s, NULL, NULL);
4942 }
4943 
4944 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4945 {
4946 	struct cgroup *cgrp = seq_css(s)->cgroup;
4947 
4948 	/*
4949 	 * All processes of a threaded subtree belong to the domain cgroup
4950 	 * of the subtree.  Only threads can be distributed across the
4951 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4952 	 * They're always empty anyway.
4953 	 */
4954 	if (cgroup_is_threaded(cgrp))
4955 		return ERR_PTR(-EOPNOTSUPP);
4956 
4957 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4958 					    CSS_TASK_ITER_THREADED);
4959 }
4960 
4961 static int cgroup_procs_show(struct seq_file *s, void *v)
4962 {
4963 	seq_printf(s, "%d\n", task_pid_vnr(v));
4964 	return 0;
4965 }
4966 
4967 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4968 {
4969 	int ret;
4970 	struct inode *inode;
4971 
4972 	lockdep_assert_held(&cgroup_mutex);
4973 
4974 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4975 	if (!inode)
4976 		return -ENOMEM;
4977 
4978 	ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4979 	iput(inode);
4980 	return ret;
4981 }
4982 
4983 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4984 					 struct cgroup *dst_cgrp,
4985 					 struct super_block *sb,
4986 					 struct cgroup_namespace *ns)
4987 {
4988 	struct cgroup *com_cgrp = src_cgrp;
4989 	int ret;
4990 
4991 	lockdep_assert_held(&cgroup_mutex);
4992 
4993 	/* find the common ancestor */
4994 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4995 		com_cgrp = cgroup_parent(com_cgrp);
4996 
4997 	/* %current should be authorized to migrate to the common ancestor */
4998 	ret = cgroup_may_write(com_cgrp, sb);
4999 	if (ret)
5000 		return ret;
5001 
5002 	/*
5003 	 * If namespaces are delegation boundaries, %current must be able
5004 	 * to see both source and destination cgroups from its namespace.
5005 	 */
5006 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5007 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5008 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5009 		return -ENOENT;
5010 
5011 	return 0;
5012 }
5013 
5014 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5015 				     struct cgroup *dst_cgrp,
5016 				     struct super_block *sb, bool threadgroup,
5017 				     struct cgroup_namespace *ns)
5018 {
5019 	int ret = 0;
5020 
5021 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5022 	if (ret)
5023 		return ret;
5024 
5025 	ret = cgroup_migrate_vet_dst(dst_cgrp);
5026 	if (ret)
5027 		return ret;
5028 
5029 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5030 		ret = -EOPNOTSUPP;
5031 
5032 	return ret;
5033 }
5034 
5035 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5036 				    bool threadgroup)
5037 {
5038 	struct cgroup_file_ctx *ctx = of->priv;
5039 	struct cgroup *src_cgrp, *dst_cgrp;
5040 	struct task_struct *task;
5041 	const struct cred *saved_cred;
5042 	ssize_t ret;
5043 	bool threadgroup_locked;
5044 
5045 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5046 	if (!dst_cgrp)
5047 		return -ENODEV;
5048 
5049 	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5050 	ret = PTR_ERR_OR_ZERO(task);
5051 	if (ret)
5052 		goto out_unlock;
5053 
5054 	/* find the source cgroup */
5055 	spin_lock_irq(&css_set_lock);
5056 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5057 	spin_unlock_irq(&css_set_lock);
5058 
5059 	/*
5060 	 * Process and thread migrations follow same delegation rule. Check
5061 	 * permissions using the credentials from file open to protect against
5062 	 * inherited fd attacks.
5063 	 */
5064 	saved_cred = override_creds(of->file->f_cred);
5065 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5066 					of->file->f_path.dentry->d_sb,
5067 					threadgroup, ctx->ns);
5068 	revert_creds(saved_cred);
5069 	if (ret)
5070 		goto out_finish;
5071 
5072 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5073 
5074 out_finish:
5075 	cgroup_procs_write_finish(task, threadgroup_locked);
5076 out_unlock:
5077 	cgroup_kn_unlock(of->kn);
5078 
5079 	return ret;
5080 }
5081 
5082 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5083 				  char *buf, size_t nbytes, loff_t off)
5084 {
5085 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5086 }
5087 
5088 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5089 {
5090 	return __cgroup_procs_start(s, pos, 0);
5091 }
5092 
5093 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5094 				    char *buf, size_t nbytes, loff_t off)
5095 {
5096 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5097 }
5098 
5099 /* cgroup core interface files for the default hierarchy */
5100 static struct cftype cgroup_base_files[] = {
5101 	{
5102 		.name = "cgroup.type",
5103 		.flags = CFTYPE_NOT_ON_ROOT,
5104 		.seq_show = cgroup_type_show,
5105 		.write = cgroup_type_write,
5106 	},
5107 	{
5108 		.name = "cgroup.procs",
5109 		.flags = CFTYPE_NS_DELEGATABLE,
5110 		.file_offset = offsetof(struct cgroup, procs_file),
5111 		.release = cgroup_procs_release,
5112 		.seq_start = cgroup_procs_start,
5113 		.seq_next = cgroup_procs_next,
5114 		.seq_show = cgroup_procs_show,
5115 		.write = cgroup_procs_write,
5116 	},
5117 	{
5118 		.name = "cgroup.threads",
5119 		.flags = CFTYPE_NS_DELEGATABLE,
5120 		.release = cgroup_procs_release,
5121 		.seq_start = cgroup_threads_start,
5122 		.seq_next = cgroup_procs_next,
5123 		.seq_show = cgroup_procs_show,
5124 		.write = cgroup_threads_write,
5125 	},
5126 	{
5127 		.name = "cgroup.controllers",
5128 		.seq_show = cgroup_controllers_show,
5129 	},
5130 	{
5131 		.name = "cgroup.subtree_control",
5132 		.flags = CFTYPE_NS_DELEGATABLE,
5133 		.seq_show = cgroup_subtree_control_show,
5134 		.write = cgroup_subtree_control_write,
5135 	},
5136 	{
5137 		.name = "cgroup.events",
5138 		.flags = CFTYPE_NOT_ON_ROOT,
5139 		.file_offset = offsetof(struct cgroup, events_file),
5140 		.seq_show = cgroup_events_show,
5141 	},
5142 	{
5143 		.name = "cgroup.max.descendants",
5144 		.seq_show = cgroup_max_descendants_show,
5145 		.write = cgroup_max_descendants_write,
5146 	},
5147 	{
5148 		.name = "cgroup.max.depth",
5149 		.seq_show = cgroup_max_depth_show,
5150 		.write = cgroup_max_depth_write,
5151 	},
5152 	{
5153 		.name = "cgroup.stat",
5154 		.seq_show = cgroup_stat_show,
5155 	},
5156 	{
5157 		.name = "cgroup.freeze",
5158 		.flags = CFTYPE_NOT_ON_ROOT,
5159 		.seq_show = cgroup_freeze_show,
5160 		.write = cgroup_freeze_write,
5161 	},
5162 	{
5163 		.name = "cgroup.kill",
5164 		.flags = CFTYPE_NOT_ON_ROOT,
5165 		.write = cgroup_kill_write,
5166 	},
5167 	{
5168 		.name = "cpu.stat",
5169 		.seq_show = cpu_stat_show,
5170 	},
5171 	{ }	/* terminate */
5172 };
5173 
5174 static struct cftype cgroup_psi_files[] = {
5175 #ifdef CONFIG_PSI
5176 	{
5177 		.name = "io.pressure",
5178 		.seq_show = cgroup_io_pressure_show,
5179 		.write = cgroup_io_pressure_write,
5180 		.poll = cgroup_pressure_poll,
5181 		.release = cgroup_pressure_release,
5182 	},
5183 	{
5184 		.name = "memory.pressure",
5185 		.seq_show = cgroup_memory_pressure_show,
5186 		.write = cgroup_memory_pressure_write,
5187 		.poll = cgroup_pressure_poll,
5188 		.release = cgroup_pressure_release,
5189 	},
5190 	{
5191 		.name = "cpu.pressure",
5192 		.seq_show = cgroup_cpu_pressure_show,
5193 		.write = cgroup_cpu_pressure_write,
5194 		.poll = cgroup_pressure_poll,
5195 		.release = cgroup_pressure_release,
5196 	},
5197 #endif /* CONFIG_PSI */
5198 	{ }	/* terminate */
5199 };
5200 
5201 /*
5202  * css destruction is four-stage process.
5203  *
5204  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5205  *    Implemented in kill_css().
5206  *
5207  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5208  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5209  *    offlined by invoking offline_css().  After offlining, the base ref is
5210  *    put.  Implemented in css_killed_work_fn().
5211  *
5212  * 3. When the percpu_ref reaches zero, the only possible remaining
5213  *    accessors are inside RCU read sections.  css_release() schedules the
5214  *    RCU callback.
5215  *
5216  * 4. After the grace period, the css can be freed.  Implemented in
5217  *    css_free_work_fn().
5218  *
5219  * It is actually hairier because both step 2 and 4 require process context
5220  * and thus involve punting to css->destroy_work adding two additional
5221  * steps to the already complex sequence.
5222  */
5223 static void css_free_rwork_fn(struct work_struct *work)
5224 {
5225 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5226 				struct cgroup_subsys_state, destroy_rwork);
5227 	struct cgroup_subsys *ss = css->ss;
5228 	struct cgroup *cgrp = css->cgroup;
5229 
5230 	percpu_ref_exit(&css->refcnt);
5231 
5232 	if (ss) {
5233 		/* css free path */
5234 		struct cgroup_subsys_state *parent = css->parent;
5235 		int id = css->id;
5236 
5237 		ss->css_free(css);
5238 		cgroup_idr_remove(&ss->css_idr, id);
5239 		cgroup_put(cgrp);
5240 
5241 		if (parent)
5242 			css_put(parent);
5243 	} else {
5244 		/* cgroup free path */
5245 		atomic_dec(&cgrp->root->nr_cgrps);
5246 		cgroup1_pidlist_destroy_all(cgrp);
5247 		cancel_work_sync(&cgrp->release_agent_work);
5248 
5249 		if (cgroup_parent(cgrp)) {
5250 			/*
5251 			 * We get a ref to the parent, and put the ref when
5252 			 * this cgroup is being freed, so it's guaranteed
5253 			 * that the parent won't be destroyed before its
5254 			 * children.
5255 			 */
5256 			cgroup_put(cgroup_parent(cgrp));
5257 			kernfs_put(cgrp->kn);
5258 			psi_cgroup_free(cgrp);
5259 			cgroup_rstat_exit(cgrp);
5260 			kfree(cgrp);
5261 		} else {
5262 			/*
5263 			 * This is root cgroup's refcnt reaching zero,
5264 			 * which indicates that the root should be
5265 			 * released.
5266 			 */
5267 			cgroup_destroy_root(cgrp->root);
5268 		}
5269 	}
5270 }
5271 
5272 static void css_release_work_fn(struct work_struct *work)
5273 {
5274 	struct cgroup_subsys_state *css =
5275 		container_of(work, struct cgroup_subsys_state, destroy_work);
5276 	struct cgroup_subsys *ss = css->ss;
5277 	struct cgroup *cgrp = css->cgroup;
5278 
5279 	mutex_lock(&cgroup_mutex);
5280 
5281 	css->flags |= CSS_RELEASED;
5282 	list_del_rcu(&css->sibling);
5283 
5284 	if (ss) {
5285 		/* css release path */
5286 		if (!list_empty(&css->rstat_css_node)) {
5287 			cgroup_rstat_flush(cgrp);
5288 			list_del_rcu(&css->rstat_css_node);
5289 		}
5290 
5291 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5292 		if (ss->css_released)
5293 			ss->css_released(css);
5294 	} else {
5295 		struct cgroup *tcgrp;
5296 
5297 		/* cgroup release path */
5298 		TRACE_CGROUP_PATH(release, cgrp);
5299 
5300 		cgroup_rstat_flush(cgrp);
5301 
5302 		spin_lock_irq(&css_set_lock);
5303 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5304 		     tcgrp = cgroup_parent(tcgrp))
5305 			tcgrp->nr_dying_descendants--;
5306 		spin_unlock_irq(&css_set_lock);
5307 
5308 		/*
5309 		 * There are two control paths which try to determine
5310 		 * cgroup from dentry without going through kernfs -
5311 		 * cgroupstats_build() and css_tryget_online_from_dir().
5312 		 * Those are supported by RCU protecting clearing of
5313 		 * cgrp->kn->priv backpointer.
5314 		 */
5315 		if (cgrp->kn)
5316 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5317 					 NULL);
5318 	}
5319 
5320 	mutex_unlock(&cgroup_mutex);
5321 
5322 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5323 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5324 }
5325 
5326 static void css_release(struct percpu_ref *ref)
5327 {
5328 	struct cgroup_subsys_state *css =
5329 		container_of(ref, struct cgroup_subsys_state, refcnt);
5330 
5331 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5332 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5333 }
5334 
5335 static void init_and_link_css(struct cgroup_subsys_state *css,
5336 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5337 {
5338 	lockdep_assert_held(&cgroup_mutex);
5339 
5340 	cgroup_get_live(cgrp);
5341 
5342 	memset(css, 0, sizeof(*css));
5343 	css->cgroup = cgrp;
5344 	css->ss = ss;
5345 	css->id = -1;
5346 	INIT_LIST_HEAD(&css->sibling);
5347 	INIT_LIST_HEAD(&css->children);
5348 	INIT_LIST_HEAD(&css->rstat_css_node);
5349 	css->serial_nr = css_serial_nr_next++;
5350 	atomic_set(&css->online_cnt, 0);
5351 
5352 	if (cgroup_parent(cgrp)) {
5353 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5354 		css_get(css->parent);
5355 	}
5356 
5357 	if (ss->css_rstat_flush)
5358 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5359 
5360 	BUG_ON(cgroup_css(cgrp, ss));
5361 }
5362 
5363 /* invoke ->css_online() on a new CSS and mark it online if successful */
5364 static int online_css(struct cgroup_subsys_state *css)
5365 {
5366 	struct cgroup_subsys *ss = css->ss;
5367 	int ret = 0;
5368 
5369 	lockdep_assert_held(&cgroup_mutex);
5370 
5371 	if (ss->css_online)
5372 		ret = ss->css_online(css);
5373 	if (!ret) {
5374 		css->flags |= CSS_ONLINE;
5375 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5376 
5377 		atomic_inc(&css->online_cnt);
5378 		if (css->parent)
5379 			atomic_inc(&css->parent->online_cnt);
5380 	}
5381 	return ret;
5382 }
5383 
5384 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5385 static void offline_css(struct cgroup_subsys_state *css)
5386 {
5387 	struct cgroup_subsys *ss = css->ss;
5388 
5389 	lockdep_assert_held(&cgroup_mutex);
5390 
5391 	if (!(css->flags & CSS_ONLINE))
5392 		return;
5393 
5394 	if (ss->css_offline)
5395 		ss->css_offline(css);
5396 
5397 	css->flags &= ~CSS_ONLINE;
5398 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5399 
5400 	wake_up_all(&css->cgroup->offline_waitq);
5401 }
5402 
5403 /**
5404  * css_create - create a cgroup_subsys_state
5405  * @cgrp: the cgroup new css will be associated with
5406  * @ss: the subsys of new css
5407  *
5408  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5409  * css is online and installed in @cgrp.  This function doesn't create the
5410  * interface files.  Returns 0 on success, -errno on failure.
5411  */
5412 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5413 					      struct cgroup_subsys *ss)
5414 {
5415 	struct cgroup *parent = cgroup_parent(cgrp);
5416 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5417 	struct cgroup_subsys_state *css;
5418 	int err;
5419 
5420 	lockdep_assert_held(&cgroup_mutex);
5421 
5422 	css = ss->css_alloc(parent_css);
5423 	if (!css)
5424 		css = ERR_PTR(-ENOMEM);
5425 	if (IS_ERR(css))
5426 		return css;
5427 
5428 	init_and_link_css(css, ss, cgrp);
5429 
5430 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5431 	if (err)
5432 		goto err_free_css;
5433 
5434 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5435 	if (err < 0)
5436 		goto err_free_css;
5437 	css->id = err;
5438 
5439 	/* @css is ready to be brought online now, make it visible */
5440 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5441 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5442 
5443 	err = online_css(css);
5444 	if (err)
5445 		goto err_list_del;
5446 
5447 	return css;
5448 
5449 err_list_del:
5450 	list_del_rcu(&css->sibling);
5451 err_free_css:
5452 	list_del_rcu(&css->rstat_css_node);
5453 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5454 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5455 	return ERR_PTR(err);
5456 }
5457 
5458 /*
5459  * The returned cgroup is fully initialized including its control mask, but
5460  * it isn't associated with its kernfs_node and doesn't have the control
5461  * mask applied.
5462  */
5463 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5464 				    umode_t mode)
5465 {
5466 	struct cgroup_root *root = parent->root;
5467 	struct cgroup *cgrp, *tcgrp;
5468 	struct kernfs_node *kn;
5469 	int level = parent->level + 1;
5470 	int ret;
5471 
5472 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5473 	cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5474 	if (!cgrp)
5475 		return ERR_PTR(-ENOMEM);
5476 
5477 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5478 	if (ret)
5479 		goto out_free_cgrp;
5480 
5481 	ret = cgroup_rstat_init(cgrp);
5482 	if (ret)
5483 		goto out_cancel_ref;
5484 
5485 	/* create the directory */
5486 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5487 	if (IS_ERR(kn)) {
5488 		ret = PTR_ERR(kn);
5489 		goto out_stat_exit;
5490 	}
5491 	cgrp->kn = kn;
5492 
5493 	init_cgroup_housekeeping(cgrp);
5494 
5495 	cgrp->self.parent = &parent->self;
5496 	cgrp->root = root;
5497 	cgrp->level = level;
5498 
5499 	ret = psi_cgroup_alloc(cgrp);
5500 	if (ret)
5501 		goto out_kernfs_remove;
5502 
5503 	ret = cgroup_bpf_inherit(cgrp);
5504 	if (ret)
5505 		goto out_psi_free;
5506 
5507 	/*
5508 	 * New cgroup inherits effective freeze counter, and
5509 	 * if the parent has to be frozen, the child has too.
5510 	 */
5511 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5512 	if (cgrp->freezer.e_freeze) {
5513 		/*
5514 		 * Set the CGRP_FREEZE flag, so when a process will be
5515 		 * attached to the child cgroup, it will become frozen.
5516 		 * At this point the new cgroup is unpopulated, so we can
5517 		 * consider it frozen immediately.
5518 		 */
5519 		set_bit(CGRP_FREEZE, &cgrp->flags);
5520 		set_bit(CGRP_FROZEN, &cgrp->flags);
5521 	}
5522 
5523 	spin_lock_irq(&css_set_lock);
5524 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5525 		cgrp->ancestors[tcgrp->level] = tcgrp;
5526 
5527 		if (tcgrp != cgrp) {
5528 			tcgrp->nr_descendants++;
5529 
5530 			/*
5531 			 * If the new cgroup is frozen, all ancestor cgroups
5532 			 * get a new frozen descendant, but their state can't
5533 			 * change because of this.
5534 			 */
5535 			if (cgrp->freezer.e_freeze)
5536 				tcgrp->freezer.nr_frozen_descendants++;
5537 		}
5538 	}
5539 	spin_unlock_irq(&css_set_lock);
5540 
5541 	if (notify_on_release(parent))
5542 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5543 
5544 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5545 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5546 
5547 	cgrp->self.serial_nr = css_serial_nr_next++;
5548 
5549 	/* allocation complete, commit to creation */
5550 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5551 	atomic_inc(&root->nr_cgrps);
5552 	cgroup_get_live(parent);
5553 
5554 	/*
5555 	 * On the default hierarchy, a child doesn't automatically inherit
5556 	 * subtree_control from the parent.  Each is configured manually.
5557 	 */
5558 	if (!cgroup_on_dfl(cgrp))
5559 		cgrp->subtree_control = cgroup_control(cgrp);
5560 
5561 	cgroup_propagate_control(cgrp);
5562 
5563 	return cgrp;
5564 
5565 out_psi_free:
5566 	psi_cgroup_free(cgrp);
5567 out_kernfs_remove:
5568 	kernfs_remove(cgrp->kn);
5569 out_stat_exit:
5570 	cgroup_rstat_exit(cgrp);
5571 out_cancel_ref:
5572 	percpu_ref_exit(&cgrp->self.refcnt);
5573 out_free_cgrp:
5574 	kfree(cgrp);
5575 	return ERR_PTR(ret);
5576 }
5577 
5578 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5579 {
5580 	struct cgroup *cgroup;
5581 	int ret = false;
5582 	int level = 1;
5583 
5584 	lockdep_assert_held(&cgroup_mutex);
5585 
5586 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5587 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5588 			goto fail;
5589 
5590 		if (level > cgroup->max_depth)
5591 			goto fail;
5592 
5593 		level++;
5594 	}
5595 
5596 	ret = true;
5597 fail:
5598 	return ret;
5599 }
5600 
5601 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5602 {
5603 	struct cgroup *parent, *cgrp;
5604 	int ret;
5605 
5606 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5607 	if (strchr(name, '\n'))
5608 		return -EINVAL;
5609 
5610 	parent = cgroup_kn_lock_live(parent_kn, false);
5611 	if (!parent)
5612 		return -ENODEV;
5613 
5614 	if (!cgroup_check_hierarchy_limits(parent)) {
5615 		ret = -EAGAIN;
5616 		goto out_unlock;
5617 	}
5618 
5619 	cgrp = cgroup_create(parent, name, mode);
5620 	if (IS_ERR(cgrp)) {
5621 		ret = PTR_ERR(cgrp);
5622 		goto out_unlock;
5623 	}
5624 
5625 	/*
5626 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5627 	 * that @cgrp->kn is always accessible.
5628 	 */
5629 	kernfs_get(cgrp->kn);
5630 
5631 	ret = cgroup_kn_set_ugid(cgrp->kn);
5632 	if (ret)
5633 		goto out_destroy;
5634 
5635 	ret = css_populate_dir(&cgrp->self);
5636 	if (ret)
5637 		goto out_destroy;
5638 
5639 	ret = cgroup_apply_control_enable(cgrp);
5640 	if (ret)
5641 		goto out_destroy;
5642 
5643 	TRACE_CGROUP_PATH(mkdir, cgrp);
5644 
5645 	/* let's create and online css's */
5646 	kernfs_activate(cgrp->kn);
5647 
5648 	ret = 0;
5649 	goto out_unlock;
5650 
5651 out_destroy:
5652 	cgroup_destroy_locked(cgrp);
5653 out_unlock:
5654 	cgroup_kn_unlock(parent_kn);
5655 	return ret;
5656 }
5657 
5658 /*
5659  * This is called when the refcnt of a css is confirmed to be killed.
5660  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5661  * initiate destruction and put the css ref from kill_css().
5662  */
5663 static void css_killed_work_fn(struct work_struct *work)
5664 {
5665 	struct cgroup_subsys_state *css =
5666 		container_of(work, struct cgroup_subsys_state, destroy_work);
5667 
5668 	mutex_lock(&cgroup_mutex);
5669 
5670 	do {
5671 		offline_css(css);
5672 		css_put(css);
5673 		/* @css can't go away while we're holding cgroup_mutex */
5674 		css = css->parent;
5675 	} while (css && atomic_dec_and_test(&css->online_cnt));
5676 
5677 	mutex_unlock(&cgroup_mutex);
5678 }
5679 
5680 /* css kill confirmation processing requires process context, bounce */
5681 static void css_killed_ref_fn(struct percpu_ref *ref)
5682 {
5683 	struct cgroup_subsys_state *css =
5684 		container_of(ref, struct cgroup_subsys_state, refcnt);
5685 
5686 	if (atomic_dec_and_test(&css->online_cnt)) {
5687 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5688 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5689 	}
5690 }
5691 
5692 /**
5693  * kill_css - destroy a css
5694  * @css: css to destroy
5695  *
5696  * This function initiates destruction of @css by removing cgroup interface
5697  * files and putting its base reference.  ->css_offline() will be invoked
5698  * asynchronously once css_tryget_online() is guaranteed to fail and when
5699  * the reference count reaches zero, @css will be released.
5700  */
5701 static void kill_css(struct cgroup_subsys_state *css)
5702 {
5703 	lockdep_assert_held(&cgroup_mutex);
5704 
5705 	if (css->flags & CSS_DYING)
5706 		return;
5707 
5708 	css->flags |= CSS_DYING;
5709 
5710 	/*
5711 	 * This must happen before css is disassociated with its cgroup.
5712 	 * See seq_css() for details.
5713 	 */
5714 	css_clear_dir(css);
5715 
5716 	/*
5717 	 * Killing would put the base ref, but we need to keep it alive
5718 	 * until after ->css_offline().
5719 	 */
5720 	css_get(css);
5721 
5722 	/*
5723 	 * cgroup core guarantees that, by the time ->css_offline() is
5724 	 * invoked, no new css reference will be given out via
5725 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5726 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5727 	 * guarantee that the ref is seen as killed on all CPUs on return.
5728 	 *
5729 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5730 	 * css is confirmed to be seen as killed on all CPUs.
5731 	 */
5732 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5733 }
5734 
5735 /**
5736  * cgroup_destroy_locked - the first stage of cgroup destruction
5737  * @cgrp: cgroup to be destroyed
5738  *
5739  * css's make use of percpu refcnts whose killing latency shouldn't be
5740  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5741  * guarantee that css_tryget_online() won't succeed by the time
5742  * ->css_offline() is invoked.  To satisfy all the requirements,
5743  * destruction is implemented in the following two steps.
5744  *
5745  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5746  *     userland visible parts and start killing the percpu refcnts of
5747  *     css's.  Set up so that the next stage will be kicked off once all
5748  *     the percpu refcnts are confirmed to be killed.
5749  *
5750  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5751  *     rest of destruction.  Once all cgroup references are gone, the
5752  *     cgroup is RCU-freed.
5753  *
5754  * This function implements s1.  After this step, @cgrp is gone as far as
5755  * the userland is concerned and a new cgroup with the same name may be
5756  * created.  As cgroup doesn't care about the names internally, this
5757  * doesn't cause any problem.
5758  */
5759 static int cgroup_destroy_locked(struct cgroup *cgrp)
5760 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5761 {
5762 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5763 	struct cgroup_subsys_state *css;
5764 	struct cgrp_cset_link *link;
5765 	int ssid;
5766 
5767 	lockdep_assert_held(&cgroup_mutex);
5768 
5769 	/*
5770 	 * Only migration can raise populated from zero and we're already
5771 	 * holding cgroup_mutex.
5772 	 */
5773 	if (cgroup_is_populated(cgrp))
5774 		return -EBUSY;
5775 
5776 	/*
5777 	 * Make sure there's no live children.  We can't test emptiness of
5778 	 * ->self.children as dead children linger on it while being
5779 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5780 	 */
5781 	if (css_has_online_children(&cgrp->self))
5782 		return -EBUSY;
5783 
5784 	/*
5785 	 * Mark @cgrp and the associated csets dead.  The former prevents
5786 	 * further task migration and child creation by disabling
5787 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5788 	 * the migration path.
5789 	 */
5790 	cgrp->self.flags &= ~CSS_ONLINE;
5791 
5792 	spin_lock_irq(&css_set_lock);
5793 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5794 		link->cset->dead = true;
5795 	spin_unlock_irq(&css_set_lock);
5796 
5797 	/* initiate massacre of all css's */
5798 	for_each_css(css, ssid, cgrp)
5799 		kill_css(css);
5800 
5801 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5802 	css_clear_dir(&cgrp->self);
5803 	kernfs_remove(cgrp->kn);
5804 
5805 	if (cgroup_is_threaded(cgrp))
5806 		parent->nr_threaded_children--;
5807 
5808 	spin_lock_irq(&css_set_lock);
5809 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5810 		tcgrp->nr_descendants--;
5811 		tcgrp->nr_dying_descendants++;
5812 		/*
5813 		 * If the dying cgroup is frozen, decrease frozen descendants
5814 		 * counters of ancestor cgroups.
5815 		 */
5816 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5817 			tcgrp->freezer.nr_frozen_descendants--;
5818 	}
5819 	spin_unlock_irq(&css_set_lock);
5820 
5821 	cgroup1_check_for_release(parent);
5822 
5823 	cgroup_bpf_offline(cgrp);
5824 
5825 	/* put the base reference */
5826 	percpu_ref_kill(&cgrp->self.refcnt);
5827 
5828 	return 0;
5829 };
5830 
5831 int cgroup_rmdir(struct kernfs_node *kn)
5832 {
5833 	struct cgroup *cgrp;
5834 	int ret = 0;
5835 
5836 	cgrp = cgroup_kn_lock_live(kn, false);
5837 	if (!cgrp)
5838 		return 0;
5839 
5840 	ret = cgroup_destroy_locked(cgrp);
5841 	if (!ret)
5842 		TRACE_CGROUP_PATH(rmdir, cgrp);
5843 
5844 	cgroup_kn_unlock(kn);
5845 	return ret;
5846 }
5847 
5848 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5849 	.show_options		= cgroup_show_options,
5850 	.mkdir			= cgroup_mkdir,
5851 	.rmdir			= cgroup_rmdir,
5852 	.show_path		= cgroup_show_path,
5853 };
5854 
5855 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5856 {
5857 	struct cgroup_subsys_state *css;
5858 
5859 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5860 
5861 	mutex_lock(&cgroup_mutex);
5862 
5863 	idr_init(&ss->css_idr);
5864 	INIT_LIST_HEAD(&ss->cfts);
5865 
5866 	/* Create the root cgroup state for this subsystem */
5867 	ss->root = &cgrp_dfl_root;
5868 	css = ss->css_alloc(NULL);
5869 	/* We don't handle early failures gracefully */
5870 	BUG_ON(IS_ERR(css));
5871 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5872 
5873 	/*
5874 	 * Root csses are never destroyed and we can't initialize
5875 	 * percpu_ref during early init.  Disable refcnting.
5876 	 */
5877 	css->flags |= CSS_NO_REF;
5878 
5879 	if (early) {
5880 		/* allocation can't be done safely during early init */
5881 		css->id = 1;
5882 	} else {
5883 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5884 		BUG_ON(css->id < 0);
5885 	}
5886 
5887 	/* Update the init_css_set to contain a subsys
5888 	 * pointer to this state - since the subsystem is
5889 	 * newly registered, all tasks and hence the
5890 	 * init_css_set is in the subsystem's root cgroup. */
5891 	init_css_set.subsys[ss->id] = css;
5892 
5893 	have_fork_callback |= (bool)ss->fork << ss->id;
5894 	have_exit_callback |= (bool)ss->exit << ss->id;
5895 	have_release_callback |= (bool)ss->release << ss->id;
5896 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5897 
5898 	/* At system boot, before all subsystems have been
5899 	 * registered, no tasks have been forked, so we don't
5900 	 * need to invoke fork callbacks here. */
5901 	BUG_ON(!list_empty(&init_task.tasks));
5902 
5903 	BUG_ON(online_css(css));
5904 
5905 	mutex_unlock(&cgroup_mutex);
5906 }
5907 
5908 /**
5909  * cgroup_init_early - cgroup initialization at system boot
5910  *
5911  * Initialize cgroups at system boot, and initialize any
5912  * subsystems that request early init.
5913  */
5914 int __init cgroup_init_early(void)
5915 {
5916 	static struct cgroup_fs_context __initdata ctx;
5917 	struct cgroup_subsys *ss;
5918 	int i;
5919 
5920 	ctx.root = &cgrp_dfl_root;
5921 	init_cgroup_root(&ctx);
5922 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5923 
5924 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5925 
5926 	for_each_subsys(ss, i) {
5927 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5928 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5929 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5930 		     ss->id, ss->name);
5931 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5932 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5933 
5934 		ss->id = i;
5935 		ss->name = cgroup_subsys_name[i];
5936 		if (!ss->legacy_name)
5937 			ss->legacy_name = cgroup_subsys_name[i];
5938 
5939 		if (ss->early_init)
5940 			cgroup_init_subsys(ss, true);
5941 	}
5942 	return 0;
5943 }
5944 
5945 /**
5946  * cgroup_init - cgroup initialization
5947  *
5948  * Register cgroup filesystem and /proc file, and initialize
5949  * any subsystems that didn't request early init.
5950  */
5951 int __init cgroup_init(void)
5952 {
5953 	struct cgroup_subsys *ss;
5954 	int ssid;
5955 
5956 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5957 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5958 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
5959 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5960 
5961 	cgroup_rstat_boot();
5962 
5963 	get_user_ns(init_cgroup_ns.user_ns);
5964 
5965 	mutex_lock(&cgroup_mutex);
5966 
5967 	/*
5968 	 * Add init_css_set to the hash table so that dfl_root can link to
5969 	 * it during init.
5970 	 */
5971 	hash_add(css_set_table, &init_css_set.hlist,
5972 		 css_set_hash(init_css_set.subsys));
5973 
5974 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5975 
5976 	mutex_unlock(&cgroup_mutex);
5977 
5978 	for_each_subsys(ss, ssid) {
5979 		if (ss->early_init) {
5980 			struct cgroup_subsys_state *css =
5981 				init_css_set.subsys[ss->id];
5982 
5983 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5984 						   GFP_KERNEL);
5985 			BUG_ON(css->id < 0);
5986 		} else {
5987 			cgroup_init_subsys(ss, false);
5988 		}
5989 
5990 		list_add_tail(&init_css_set.e_cset_node[ssid],
5991 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5992 
5993 		/*
5994 		 * Setting dfl_root subsys_mask needs to consider the
5995 		 * disabled flag and cftype registration needs kmalloc,
5996 		 * both of which aren't available during early_init.
5997 		 */
5998 		if (!cgroup_ssid_enabled(ssid))
5999 			continue;
6000 
6001 		if (cgroup1_ssid_disabled(ssid))
6002 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
6003 			       ss->name);
6004 
6005 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6006 
6007 		/* implicit controllers must be threaded too */
6008 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6009 
6010 		if (ss->implicit_on_dfl)
6011 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6012 		else if (!ss->dfl_cftypes)
6013 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6014 
6015 		if (ss->threaded)
6016 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6017 
6018 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
6019 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6020 		} else {
6021 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6022 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6023 		}
6024 
6025 		if (ss->bind)
6026 			ss->bind(init_css_set.subsys[ssid]);
6027 
6028 		mutex_lock(&cgroup_mutex);
6029 		css_populate_dir(init_css_set.subsys[ssid]);
6030 		mutex_unlock(&cgroup_mutex);
6031 	}
6032 
6033 	/* init_css_set.subsys[] has been updated, re-hash */
6034 	hash_del(&init_css_set.hlist);
6035 	hash_add(css_set_table, &init_css_set.hlist,
6036 		 css_set_hash(init_css_set.subsys));
6037 
6038 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6039 	WARN_ON(register_filesystem(&cgroup_fs_type));
6040 	WARN_ON(register_filesystem(&cgroup2_fs_type));
6041 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6042 #ifdef CONFIG_CPUSETS
6043 	WARN_ON(register_filesystem(&cpuset_fs_type));
6044 #endif
6045 
6046 	return 0;
6047 }
6048 
6049 static int __init cgroup_wq_init(void)
6050 {
6051 	/*
6052 	 * There isn't much point in executing destruction path in
6053 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6054 	 * Use 1 for @max_active.
6055 	 *
6056 	 * We would prefer to do this in cgroup_init() above, but that
6057 	 * is called before init_workqueues(): so leave this until after.
6058 	 */
6059 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6060 	BUG_ON(!cgroup_destroy_wq);
6061 	return 0;
6062 }
6063 core_initcall(cgroup_wq_init);
6064 
6065 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6066 {
6067 	struct kernfs_node *kn;
6068 
6069 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6070 	if (!kn)
6071 		return;
6072 	kernfs_path(kn, buf, buflen);
6073 	kernfs_put(kn);
6074 }
6075 
6076 /*
6077  * cgroup_get_from_id : get the cgroup associated with cgroup id
6078  * @id: cgroup id
6079  * On success return the cgrp or ERR_PTR on failure
6080  * Only cgroups within current task's cgroup NS are valid.
6081  */
6082 struct cgroup *cgroup_get_from_id(u64 id)
6083 {
6084 	struct kernfs_node *kn;
6085 	struct cgroup *cgrp, *root_cgrp;
6086 
6087 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6088 	if (!kn)
6089 		return ERR_PTR(-ENOENT);
6090 
6091 	if (kernfs_type(kn) != KERNFS_DIR) {
6092 		kernfs_put(kn);
6093 		return ERR_PTR(-ENOENT);
6094 	}
6095 
6096 	rcu_read_lock();
6097 
6098 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6099 	if (cgrp && !cgroup_tryget(cgrp))
6100 		cgrp = NULL;
6101 
6102 	rcu_read_unlock();
6103 	kernfs_put(kn);
6104 
6105 	if (!cgrp)
6106 		return ERR_PTR(-ENOENT);
6107 
6108 	spin_lock_irq(&css_set_lock);
6109 	root_cgrp = current_cgns_cgroup_from_root(&cgrp_dfl_root);
6110 	spin_unlock_irq(&css_set_lock);
6111 	if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6112 		cgroup_put(cgrp);
6113 		return ERR_PTR(-ENOENT);
6114 	}
6115 
6116 	return cgrp;
6117 }
6118 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6119 
6120 /*
6121  * proc_cgroup_show()
6122  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6123  *  - Used for /proc/<pid>/cgroup.
6124  */
6125 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6126 		     struct pid *pid, struct task_struct *tsk)
6127 {
6128 	char *buf;
6129 	int retval;
6130 	struct cgroup_root *root;
6131 
6132 	retval = -ENOMEM;
6133 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6134 	if (!buf)
6135 		goto out;
6136 
6137 	mutex_lock(&cgroup_mutex);
6138 	spin_lock_irq(&css_set_lock);
6139 
6140 	for_each_root(root) {
6141 		struct cgroup_subsys *ss;
6142 		struct cgroup *cgrp;
6143 		int ssid, count = 0;
6144 
6145 		if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6146 			continue;
6147 
6148 		seq_printf(m, "%d:", root->hierarchy_id);
6149 		if (root != &cgrp_dfl_root)
6150 			for_each_subsys(ss, ssid)
6151 				if (root->subsys_mask & (1 << ssid))
6152 					seq_printf(m, "%s%s", count++ ? "," : "",
6153 						   ss->legacy_name);
6154 		if (strlen(root->name))
6155 			seq_printf(m, "%sname=%s", count ? "," : "",
6156 				   root->name);
6157 		seq_putc(m, ':');
6158 
6159 		cgrp = task_cgroup_from_root(tsk, root);
6160 
6161 		/*
6162 		 * On traditional hierarchies, all zombie tasks show up as
6163 		 * belonging to the root cgroup.  On the default hierarchy,
6164 		 * while a zombie doesn't show up in "cgroup.procs" and
6165 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6166 		 * reporting the cgroup it belonged to before exiting.  If
6167 		 * the cgroup is removed before the zombie is reaped,
6168 		 * " (deleted)" is appended to the cgroup path.
6169 		 */
6170 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6171 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6172 						current->nsproxy->cgroup_ns);
6173 			if (retval >= PATH_MAX)
6174 				retval = -ENAMETOOLONG;
6175 			if (retval < 0)
6176 				goto out_unlock;
6177 
6178 			seq_puts(m, buf);
6179 		} else {
6180 			seq_puts(m, "/");
6181 		}
6182 
6183 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6184 			seq_puts(m, " (deleted)\n");
6185 		else
6186 			seq_putc(m, '\n');
6187 	}
6188 
6189 	retval = 0;
6190 out_unlock:
6191 	spin_unlock_irq(&css_set_lock);
6192 	mutex_unlock(&cgroup_mutex);
6193 	kfree(buf);
6194 out:
6195 	return retval;
6196 }
6197 
6198 /**
6199  * cgroup_fork - initialize cgroup related fields during copy_process()
6200  * @child: pointer to task_struct of forking parent process.
6201  *
6202  * A task is associated with the init_css_set until cgroup_post_fork()
6203  * attaches it to the target css_set.
6204  */
6205 void cgroup_fork(struct task_struct *child)
6206 {
6207 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6208 	INIT_LIST_HEAD(&child->cg_list);
6209 }
6210 
6211 static struct cgroup *cgroup_get_from_file(struct file *f)
6212 {
6213 	struct cgroup_subsys_state *css;
6214 	struct cgroup *cgrp;
6215 
6216 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6217 	if (IS_ERR(css))
6218 		return ERR_CAST(css);
6219 
6220 	cgrp = css->cgroup;
6221 	return cgrp;
6222 }
6223 
6224 /**
6225  * cgroup_css_set_fork - find or create a css_set for a child process
6226  * @kargs: the arguments passed to create the child process
6227  *
6228  * This functions finds or creates a new css_set which the child
6229  * process will be attached to in cgroup_post_fork(). By default,
6230  * the child process will be given the same css_set as its parent.
6231  *
6232  * If CLONE_INTO_CGROUP is specified this function will try to find an
6233  * existing css_set which includes the requested cgroup and if not create
6234  * a new css_set that the child will be attached to later. If this function
6235  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6236  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6237  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6238  * to the target cgroup.
6239  */
6240 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6241 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6242 {
6243 	int ret;
6244 	struct cgroup *dst_cgrp = NULL;
6245 	struct css_set *cset;
6246 	struct super_block *sb;
6247 	struct file *f;
6248 
6249 	if (kargs->flags & CLONE_INTO_CGROUP)
6250 		mutex_lock(&cgroup_mutex);
6251 
6252 	cgroup_threadgroup_change_begin(current);
6253 
6254 	spin_lock_irq(&css_set_lock);
6255 	cset = task_css_set(current);
6256 	get_css_set(cset);
6257 	spin_unlock_irq(&css_set_lock);
6258 
6259 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6260 		kargs->cset = cset;
6261 		return 0;
6262 	}
6263 
6264 	f = fget_raw(kargs->cgroup);
6265 	if (!f) {
6266 		ret = -EBADF;
6267 		goto err;
6268 	}
6269 	sb = f->f_path.dentry->d_sb;
6270 
6271 	dst_cgrp = cgroup_get_from_file(f);
6272 	if (IS_ERR(dst_cgrp)) {
6273 		ret = PTR_ERR(dst_cgrp);
6274 		dst_cgrp = NULL;
6275 		goto err;
6276 	}
6277 
6278 	if (cgroup_is_dead(dst_cgrp)) {
6279 		ret = -ENODEV;
6280 		goto err;
6281 	}
6282 
6283 	/*
6284 	 * Verify that we the target cgroup is writable for us. This is
6285 	 * usually done by the vfs layer but since we're not going through
6286 	 * the vfs layer here we need to do it "manually".
6287 	 */
6288 	ret = cgroup_may_write(dst_cgrp, sb);
6289 	if (ret)
6290 		goto err;
6291 
6292 	/*
6293 	 * Spawning a task directly into a cgroup works by passing a file
6294 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6295 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6296 	 * This was done on purpose so spawning into a cgroup could be
6297 	 * conceptualized as an atomic
6298 	 *
6299 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6300 	 *   write(fd, <child-pid>, ...);
6301 	 *
6302 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6303 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6304 	 * to always use the caller's credentials.
6305 	 */
6306 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6307 					!(kargs->flags & CLONE_THREAD),
6308 					current->nsproxy->cgroup_ns);
6309 	if (ret)
6310 		goto err;
6311 
6312 	kargs->cset = find_css_set(cset, dst_cgrp);
6313 	if (!kargs->cset) {
6314 		ret = -ENOMEM;
6315 		goto err;
6316 	}
6317 
6318 	put_css_set(cset);
6319 	fput(f);
6320 	kargs->cgrp = dst_cgrp;
6321 	return ret;
6322 
6323 err:
6324 	cgroup_threadgroup_change_end(current);
6325 	mutex_unlock(&cgroup_mutex);
6326 	if (f)
6327 		fput(f);
6328 	if (dst_cgrp)
6329 		cgroup_put(dst_cgrp);
6330 	put_css_set(cset);
6331 	if (kargs->cset)
6332 		put_css_set(kargs->cset);
6333 	return ret;
6334 }
6335 
6336 /**
6337  * cgroup_css_set_put_fork - drop references we took during fork
6338  * @kargs: the arguments passed to create the child process
6339  *
6340  * Drop references to the prepared css_set and target cgroup if
6341  * CLONE_INTO_CGROUP was requested.
6342  */
6343 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6344 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6345 {
6346 	cgroup_threadgroup_change_end(current);
6347 
6348 	if (kargs->flags & CLONE_INTO_CGROUP) {
6349 		struct cgroup *cgrp = kargs->cgrp;
6350 		struct css_set *cset = kargs->cset;
6351 
6352 		mutex_unlock(&cgroup_mutex);
6353 
6354 		if (cset) {
6355 			put_css_set(cset);
6356 			kargs->cset = NULL;
6357 		}
6358 
6359 		if (cgrp) {
6360 			cgroup_put(cgrp);
6361 			kargs->cgrp = NULL;
6362 		}
6363 	}
6364 }
6365 
6366 /**
6367  * cgroup_can_fork - called on a new task before the process is exposed
6368  * @child: the child process
6369  * @kargs: the arguments passed to create the child process
6370  *
6371  * This prepares a new css_set for the child process which the child will
6372  * be attached to in cgroup_post_fork().
6373  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6374  * callback returns an error, the fork aborts with that error code. This
6375  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6376  */
6377 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6378 {
6379 	struct cgroup_subsys *ss;
6380 	int i, j, ret;
6381 
6382 	ret = cgroup_css_set_fork(kargs);
6383 	if (ret)
6384 		return ret;
6385 
6386 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6387 		ret = ss->can_fork(child, kargs->cset);
6388 		if (ret)
6389 			goto out_revert;
6390 	} while_each_subsys_mask();
6391 
6392 	return 0;
6393 
6394 out_revert:
6395 	for_each_subsys(ss, j) {
6396 		if (j >= i)
6397 			break;
6398 		if (ss->cancel_fork)
6399 			ss->cancel_fork(child, kargs->cset);
6400 	}
6401 
6402 	cgroup_css_set_put_fork(kargs);
6403 
6404 	return ret;
6405 }
6406 
6407 /**
6408  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6409  * @child: the child process
6410  * @kargs: the arguments passed to create the child process
6411  *
6412  * This calls the cancel_fork() callbacks if a fork failed *after*
6413  * cgroup_can_fork() succeeded and cleans up references we took to
6414  * prepare a new css_set for the child process in cgroup_can_fork().
6415  */
6416 void cgroup_cancel_fork(struct task_struct *child,
6417 			struct kernel_clone_args *kargs)
6418 {
6419 	struct cgroup_subsys *ss;
6420 	int i;
6421 
6422 	for_each_subsys(ss, i)
6423 		if (ss->cancel_fork)
6424 			ss->cancel_fork(child, kargs->cset);
6425 
6426 	cgroup_css_set_put_fork(kargs);
6427 }
6428 
6429 /**
6430  * cgroup_post_fork - finalize cgroup setup for the child process
6431  * @child: the child process
6432  * @kargs: the arguments passed to create the child process
6433  *
6434  * Attach the child process to its css_set calling the subsystem fork()
6435  * callbacks.
6436  */
6437 void cgroup_post_fork(struct task_struct *child,
6438 		      struct kernel_clone_args *kargs)
6439 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6440 {
6441 	unsigned long cgrp_flags = 0;
6442 	bool kill = false;
6443 	struct cgroup_subsys *ss;
6444 	struct css_set *cset;
6445 	int i;
6446 
6447 	cset = kargs->cset;
6448 	kargs->cset = NULL;
6449 
6450 	spin_lock_irq(&css_set_lock);
6451 
6452 	/* init tasks are special, only link regular threads */
6453 	if (likely(child->pid)) {
6454 		if (kargs->cgrp)
6455 			cgrp_flags = kargs->cgrp->flags;
6456 		else
6457 			cgrp_flags = cset->dfl_cgrp->flags;
6458 
6459 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6460 		cset->nr_tasks++;
6461 		css_set_move_task(child, NULL, cset, false);
6462 	} else {
6463 		put_css_set(cset);
6464 		cset = NULL;
6465 	}
6466 
6467 	if (!(child->flags & PF_KTHREAD)) {
6468 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6469 			/*
6470 			 * If the cgroup has to be frozen, the new task has
6471 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6472 			 * get the task into the frozen state.
6473 			 */
6474 			spin_lock(&child->sighand->siglock);
6475 			WARN_ON_ONCE(child->frozen);
6476 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6477 			spin_unlock(&child->sighand->siglock);
6478 
6479 			/*
6480 			 * Calling cgroup_update_frozen() isn't required here,
6481 			 * because it will be called anyway a bit later from
6482 			 * do_freezer_trap(). So we avoid cgroup's transient
6483 			 * switch from the frozen state and back.
6484 			 */
6485 		}
6486 
6487 		/*
6488 		 * If the cgroup is to be killed notice it now and take the
6489 		 * child down right after we finished preparing it for
6490 		 * userspace.
6491 		 */
6492 		kill = test_bit(CGRP_KILL, &cgrp_flags);
6493 	}
6494 
6495 	spin_unlock_irq(&css_set_lock);
6496 
6497 	/*
6498 	 * Call ss->fork().  This must happen after @child is linked on
6499 	 * css_set; otherwise, @child might change state between ->fork()
6500 	 * and addition to css_set.
6501 	 */
6502 	do_each_subsys_mask(ss, i, have_fork_callback) {
6503 		ss->fork(child);
6504 	} while_each_subsys_mask();
6505 
6506 	/* Make the new cset the root_cset of the new cgroup namespace. */
6507 	if (kargs->flags & CLONE_NEWCGROUP) {
6508 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6509 
6510 		get_css_set(cset);
6511 		child->nsproxy->cgroup_ns->root_cset = cset;
6512 		put_css_set(rcset);
6513 	}
6514 
6515 	/* Cgroup has to be killed so take down child immediately. */
6516 	if (unlikely(kill))
6517 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6518 
6519 	cgroup_css_set_put_fork(kargs);
6520 }
6521 
6522 /**
6523  * cgroup_exit - detach cgroup from exiting task
6524  * @tsk: pointer to task_struct of exiting process
6525  *
6526  * Description: Detach cgroup from @tsk.
6527  *
6528  */
6529 void cgroup_exit(struct task_struct *tsk)
6530 {
6531 	struct cgroup_subsys *ss;
6532 	struct css_set *cset;
6533 	int i;
6534 
6535 	spin_lock_irq(&css_set_lock);
6536 
6537 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6538 	cset = task_css_set(tsk);
6539 	css_set_move_task(tsk, cset, NULL, false);
6540 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6541 	cset->nr_tasks--;
6542 
6543 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6544 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6545 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6546 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6547 
6548 	spin_unlock_irq(&css_set_lock);
6549 
6550 	/* see cgroup_post_fork() for details */
6551 	do_each_subsys_mask(ss, i, have_exit_callback) {
6552 		ss->exit(tsk);
6553 	} while_each_subsys_mask();
6554 }
6555 
6556 void cgroup_release(struct task_struct *task)
6557 {
6558 	struct cgroup_subsys *ss;
6559 	int ssid;
6560 
6561 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6562 		ss->release(task);
6563 	} while_each_subsys_mask();
6564 
6565 	spin_lock_irq(&css_set_lock);
6566 	css_set_skip_task_iters(task_css_set(task), task);
6567 	list_del_init(&task->cg_list);
6568 	spin_unlock_irq(&css_set_lock);
6569 }
6570 
6571 void cgroup_free(struct task_struct *task)
6572 {
6573 	struct css_set *cset = task_css_set(task);
6574 	put_css_set(cset);
6575 }
6576 
6577 static int __init cgroup_disable(char *str)
6578 {
6579 	struct cgroup_subsys *ss;
6580 	char *token;
6581 	int i;
6582 
6583 	while ((token = strsep(&str, ",")) != NULL) {
6584 		if (!*token)
6585 			continue;
6586 
6587 		for_each_subsys(ss, i) {
6588 			if (strcmp(token, ss->name) &&
6589 			    strcmp(token, ss->legacy_name))
6590 				continue;
6591 
6592 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6593 			pr_info("Disabling %s control group subsystem\n",
6594 				ss->name);
6595 		}
6596 
6597 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6598 			if (strcmp(token, cgroup_opt_feature_names[i]))
6599 				continue;
6600 			cgroup_feature_disable_mask |= 1 << i;
6601 			pr_info("Disabling %s control group feature\n",
6602 				cgroup_opt_feature_names[i]);
6603 			break;
6604 		}
6605 	}
6606 	return 1;
6607 }
6608 __setup("cgroup_disable=", cgroup_disable);
6609 
6610 void __init __weak enable_debug_cgroup(void) { }
6611 
6612 static int __init enable_cgroup_debug(char *str)
6613 {
6614 	cgroup_debug = true;
6615 	enable_debug_cgroup();
6616 	return 1;
6617 }
6618 __setup("cgroup_debug", enable_cgroup_debug);
6619 
6620 /**
6621  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6622  * @dentry: directory dentry of interest
6623  * @ss: subsystem of interest
6624  *
6625  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6626  * to get the corresponding css and return it.  If such css doesn't exist
6627  * or can't be pinned, an ERR_PTR value is returned.
6628  */
6629 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6630 						       struct cgroup_subsys *ss)
6631 {
6632 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6633 	struct file_system_type *s_type = dentry->d_sb->s_type;
6634 	struct cgroup_subsys_state *css = NULL;
6635 	struct cgroup *cgrp;
6636 
6637 	/* is @dentry a cgroup dir? */
6638 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6639 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6640 		return ERR_PTR(-EBADF);
6641 
6642 	rcu_read_lock();
6643 
6644 	/*
6645 	 * This path doesn't originate from kernfs and @kn could already
6646 	 * have been or be removed at any point.  @kn->priv is RCU
6647 	 * protected for this access.  See css_release_work_fn() for details.
6648 	 */
6649 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6650 	if (cgrp)
6651 		css = cgroup_css(cgrp, ss);
6652 
6653 	if (!css || !css_tryget_online(css))
6654 		css = ERR_PTR(-ENOENT);
6655 
6656 	rcu_read_unlock();
6657 	return css;
6658 }
6659 
6660 /**
6661  * css_from_id - lookup css by id
6662  * @id: the cgroup id
6663  * @ss: cgroup subsys to be looked into
6664  *
6665  * Returns the css if there's valid one with @id, otherwise returns NULL.
6666  * Should be called under rcu_read_lock().
6667  */
6668 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6669 {
6670 	WARN_ON_ONCE(!rcu_read_lock_held());
6671 	return idr_find(&ss->css_idr, id);
6672 }
6673 
6674 /**
6675  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6676  * @path: path on the default hierarchy
6677  *
6678  * Find the cgroup at @path on the default hierarchy, increment its
6679  * reference count and return it.  Returns pointer to the found cgroup on
6680  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6681  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6682  */
6683 struct cgroup *cgroup_get_from_path(const char *path)
6684 {
6685 	struct kernfs_node *kn;
6686 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6687 	struct cgroup *root_cgrp;
6688 
6689 	spin_lock_irq(&css_set_lock);
6690 	root_cgrp = current_cgns_cgroup_from_root(&cgrp_dfl_root);
6691 	kn = kernfs_walk_and_get(root_cgrp->kn, path);
6692 	spin_unlock_irq(&css_set_lock);
6693 	if (!kn)
6694 		goto out;
6695 
6696 	if (kernfs_type(kn) != KERNFS_DIR) {
6697 		cgrp = ERR_PTR(-ENOTDIR);
6698 		goto out_kernfs;
6699 	}
6700 
6701 	rcu_read_lock();
6702 
6703 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6704 	if (!cgrp || !cgroup_tryget(cgrp))
6705 		cgrp = ERR_PTR(-ENOENT);
6706 
6707 	rcu_read_unlock();
6708 
6709 out_kernfs:
6710 	kernfs_put(kn);
6711 out:
6712 	return cgrp;
6713 }
6714 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6715 
6716 /**
6717  * cgroup_get_from_fd - get a cgroup pointer from a fd
6718  * @fd: fd obtained by open(cgroup2_dir)
6719  *
6720  * Find the cgroup from a fd which should be obtained
6721  * by opening a cgroup directory.  Returns a pointer to the
6722  * cgroup on success. ERR_PTR is returned if the cgroup
6723  * cannot be found.
6724  */
6725 struct cgroup *cgroup_get_from_fd(int fd)
6726 {
6727 	struct cgroup *cgrp;
6728 	struct file *f;
6729 
6730 	f = fget_raw(fd);
6731 	if (!f)
6732 		return ERR_PTR(-EBADF);
6733 
6734 	cgrp = cgroup_get_from_file(f);
6735 	fput(f);
6736 	return cgrp;
6737 }
6738 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6739 
6740 static u64 power_of_ten(int power)
6741 {
6742 	u64 v = 1;
6743 	while (power--)
6744 		v *= 10;
6745 	return v;
6746 }
6747 
6748 /**
6749  * cgroup_parse_float - parse a floating number
6750  * @input: input string
6751  * @dec_shift: number of decimal digits to shift
6752  * @v: output
6753  *
6754  * Parse a decimal floating point number in @input and store the result in
6755  * @v with decimal point right shifted @dec_shift times.  For example, if
6756  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6757  * Returns 0 on success, -errno otherwise.
6758  *
6759  * There's nothing cgroup specific about this function except that it's
6760  * currently the only user.
6761  */
6762 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6763 {
6764 	s64 whole, frac = 0;
6765 	int fstart = 0, fend = 0, flen;
6766 
6767 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6768 		return -EINVAL;
6769 	if (frac < 0)
6770 		return -EINVAL;
6771 
6772 	flen = fend > fstart ? fend - fstart : 0;
6773 	if (flen < dec_shift)
6774 		frac *= power_of_ten(dec_shift - flen);
6775 	else
6776 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6777 
6778 	*v = whole * power_of_ten(dec_shift) + frac;
6779 	return 0;
6780 }
6781 
6782 /*
6783  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6784  * definition in cgroup-defs.h.
6785  */
6786 #ifdef CONFIG_SOCK_CGROUP_DATA
6787 
6788 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6789 {
6790 	struct cgroup *cgroup;
6791 
6792 	rcu_read_lock();
6793 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6794 	if (in_interrupt()) {
6795 		cgroup = &cgrp_dfl_root.cgrp;
6796 		cgroup_get(cgroup);
6797 		goto out;
6798 	}
6799 
6800 	while (true) {
6801 		struct css_set *cset;
6802 
6803 		cset = task_css_set(current);
6804 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6805 			cgroup = cset->dfl_cgrp;
6806 			break;
6807 		}
6808 		cpu_relax();
6809 	}
6810 out:
6811 	skcd->cgroup = cgroup;
6812 	cgroup_bpf_get(cgroup);
6813 	rcu_read_unlock();
6814 }
6815 
6816 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6817 {
6818 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6819 
6820 	/*
6821 	 * We might be cloning a socket which is left in an empty
6822 	 * cgroup and the cgroup might have already been rmdir'd.
6823 	 * Don't use cgroup_get_live().
6824 	 */
6825 	cgroup_get(cgrp);
6826 	cgroup_bpf_get(cgrp);
6827 }
6828 
6829 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6830 {
6831 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6832 
6833 	cgroup_bpf_put(cgrp);
6834 	cgroup_put(cgrp);
6835 }
6836 
6837 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6838 
6839 #ifdef CONFIG_SYSFS
6840 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6841 				      ssize_t size, const char *prefix)
6842 {
6843 	struct cftype *cft;
6844 	ssize_t ret = 0;
6845 
6846 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6847 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6848 			continue;
6849 
6850 		if (prefix)
6851 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6852 
6853 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6854 
6855 		if (WARN_ON(ret >= size))
6856 			break;
6857 	}
6858 
6859 	return ret;
6860 }
6861 
6862 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6863 			      char *buf)
6864 {
6865 	struct cgroup_subsys *ss;
6866 	int ssid;
6867 	ssize_t ret = 0;
6868 
6869 	ret = show_delegatable_files(cgroup_base_files, buf + ret,
6870 				     PAGE_SIZE - ret, NULL);
6871 	if (cgroup_psi_enabled())
6872 		ret += show_delegatable_files(cgroup_psi_files, buf + ret,
6873 					      PAGE_SIZE - ret, NULL);
6874 
6875 	for_each_subsys(ss, ssid)
6876 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6877 					      PAGE_SIZE - ret,
6878 					      cgroup_subsys_name[ssid]);
6879 
6880 	return ret;
6881 }
6882 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6883 
6884 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6885 			     char *buf)
6886 {
6887 	return snprintf(buf, PAGE_SIZE,
6888 			"nsdelegate\n"
6889 			"favordynmods\n"
6890 			"memory_localevents\n"
6891 			"memory_recursiveprot\n");
6892 }
6893 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6894 
6895 static struct attribute *cgroup_sysfs_attrs[] = {
6896 	&cgroup_delegate_attr.attr,
6897 	&cgroup_features_attr.attr,
6898 	NULL,
6899 };
6900 
6901 static const struct attribute_group cgroup_sysfs_attr_group = {
6902 	.attrs = cgroup_sysfs_attrs,
6903 	.name = "cgroup",
6904 };
6905 
6906 static int __init cgroup_sysfs_init(void)
6907 {
6908 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6909 }
6910 subsys_initcall(cgroup_sysfs_init);
6911 
6912 #endif /* CONFIG_SYSFS */
6913