1 /* 2 * Generic process-grouping system. 3 * 4 * Based originally on the cpuset system, extracted by Paul Menage 5 * Copyright (C) 2006 Google, Inc 6 * 7 * Notifications support 8 * Copyright (C) 2009 Nokia Corporation 9 * Author: Kirill A. Shutemov 10 * 11 * Copyright notices from the original cpuset code: 12 * -------------------------------------------------- 13 * Copyright (C) 2003 BULL SA. 14 * Copyright (C) 2004-2006 Silicon Graphics, Inc. 15 * 16 * Portions derived from Patrick Mochel's sysfs code. 17 * sysfs is Copyright (c) 2001-3 Patrick Mochel 18 * 19 * 2003-10-10 Written by Simon Derr. 20 * 2003-10-22 Updates by Stephen Hemminger. 21 * 2004 May-July Rework by Paul Jackson. 22 * --------------------------------------------------- 23 * 24 * This file is subject to the terms and conditions of the GNU General Public 25 * License. See the file COPYING in the main directory of the Linux 26 * distribution for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #include "cgroup-internal.h" 32 33 #include <linux/bpf-cgroup.h> 34 #include <linux/cred.h> 35 #include <linux/errno.h> 36 #include <linux/init_task.h> 37 #include <linux/kernel.h> 38 #include <linux/magic.h> 39 #include <linux/mutex.h> 40 #include <linux/mount.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/rcupdate.h> 44 #include <linux/sched.h> 45 #include <linux/sched/task.h> 46 #include <linux/slab.h> 47 #include <linux/spinlock.h> 48 #include <linux/percpu-rwsem.h> 49 #include <linux/string.h> 50 #include <linux/hashtable.h> 51 #include <linux/idr.h> 52 #include <linux/kthread.h> 53 #include <linux/atomic.h> 54 #include <linux/cpuset.h> 55 #include <linux/proc_ns.h> 56 #include <linux/nsproxy.h> 57 #include <linux/file.h> 58 #include <linux/fs_parser.h> 59 #include <linux/sched/cputime.h> 60 #include <linux/psi.h> 61 #include <net/sock.h> 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/cgroup.h> 65 66 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ 67 MAX_CFTYPE_NAME + 2) 68 /* let's not notify more than 100 times per second */ 69 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100) 70 71 /* 72 * To avoid confusing the compiler (and generating warnings) with code 73 * that attempts to access what would be a 0-element array (i.e. sized 74 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this 75 * constant expression can be added. 76 */ 77 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0) 78 79 /* 80 * cgroup_mutex is the master lock. Any modification to cgroup or its 81 * hierarchy must be performed while holding it. 82 * 83 * css_set_lock protects task->cgroups pointer, the list of css_set 84 * objects, and the chain of tasks off each css_set. 85 * 86 * These locks are exported if CONFIG_PROVE_RCU so that accessors in 87 * cgroup.h can use them for lockdep annotations. 88 */ 89 DEFINE_MUTEX(cgroup_mutex); 90 DEFINE_SPINLOCK(css_set_lock); 91 92 #ifdef CONFIG_PROVE_RCU 93 EXPORT_SYMBOL_GPL(cgroup_mutex); 94 EXPORT_SYMBOL_GPL(css_set_lock); 95 #endif 96 97 DEFINE_SPINLOCK(trace_cgroup_path_lock); 98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN]; 99 static bool cgroup_debug __read_mostly; 100 101 /* 102 * Protects cgroup_idr and css_idr so that IDs can be released without 103 * grabbing cgroup_mutex. 104 */ 105 static DEFINE_SPINLOCK(cgroup_idr_lock); 106 107 /* 108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications 109 * against file removal/re-creation across css hiding. 110 */ 111 static DEFINE_SPINLOCK(cgroup_file_kn_lock); 112 113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem); 114 115 #define cgroup_assert_mutex_or_rcu_locked() \ 116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 117 !lockdep_is_held(&cgroup_mutex), \ 118 "cgroup_mutex or RCU read lock required"); 119 120 /* 121 * cgroup destruction makes heavy use of work items and there can be a lot 122 * of concurrent destructions. Use a separate workqueue so that cgroup 123 * destruction work items don't end up filling up max_active of system_wq 124 * which may lead to deadlock. 125 */ 126 static struct workqueue_struct *cgroup_destroy_wq; 127 128 /* generate an array of cgroup subsystem pointers */ 129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, 130 struct cgroup_subsys *cgroup_subsys[] = { 131 #include <linux/cgroup_subsys.h> 132 }; 133 #undef SUBSYS 134 135 /* array of cgroup subsystem names */ 136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x, 137 static const char *cgroup_subsys_name[] = { 138 #include <linux/cgroup_subsys.h> 139 }; 140 #undef SUBSYS 141 142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ 143 #define SUBSYS(_x) \ 144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ 145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ 146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ 147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); 148 #include <linux/cgroup_subsys.h> 149 #undef SUBSYS 150 151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, 152 static struct static_key_true *cgroup_subsys_enabled_key[] = { 153 #include <linux/cgroup_subsys.h> 154 }; 155 #undef SUBSYS 156 157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, 158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = { 159 #include <linux/cgroup_subsys.h> 160 }; 161 #undef SUBSYS 162 163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu); 164 165 /* the default hierarchy */ 166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu }; 167 EXPORT_SYMBOL_GPL(cgrp_dfl_root); 168 169 /* 170 * The default hierarchy always exists but is hidden until mounted for the 171 * first time. This is for backward compatibility. 172 */ 173 static bool cgrp_dfl_visible; 174 175 /* some controllers are not supported in the default hierarchy */ 176 static u16 cgrp_dfl_inhibit_ss_mask; 177 178 /* some controllers are implicitly enabled on the default hierarchy */ 179 static u16 cgrp_dfl_implicit_ss_mask; 180 181 /* some controllers can be threaded on the default hierarchy */ 182 static u16 cgrp_dfl_threaded_ss_mask; 183 184 /* The list of hierarchy roots */ 185 LIST_HEAD(cgroup_roots); 186 static int cgroup_root_count; 187 188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */ 189 static DEFINE_IDR(cgroup_hierarchy_idr); 190 191 /* 192 * Assign a monotonically increasing serial number to csses. It guarantees 193 * cgroups with bigger numbers are newer than those with smaller numbers. 194 * Also, as csses are always appended to the parent's ->children list, it 195 * guarantees that sibling csses are always sorted in the ascending serial 196 * number order on the list. Protected by cgroup_mutex. 197 */ 198 static u64 css_serial_nr_next = 1; 199 200 /* 201 * These bitmasks identify subsystems with specific features to avoid 202 * having to do iterative checks repeatedly. 203 */ 204 static u16 have_fork_callback __read_mostly; 205 static u16 have_exit_callback __read_mostly; 206 static u16 have_release_callback __read_mostly; 207 static u16 have_canfork_callback __read_mostly; 208 209 /* cgroup namespace for init task */ 210 struct cgroup_namespace init_cgroup_ns = { 211 .ns.count = REFCOUNT_INIT(2), 212 .user_ns = &init_user_ns, 213 .ns.ops = &cgroupns_operations, 214 .ns.inum = PROC_CGROUP_INIT_INO, 215 .root_cset = &init_css_set, 216 }; 217 218 static struct file_system_type cgroup2_fs_type; 219 static struct cftype cgroup_base_files[]; 220 static struct cftype cgroup_psi_files[]; 221 222 /* cgroup optional features */ 223 enum cgroup_opt_features { 224 #ifdef CONFIG_PSI 225 OPT_FEATURE_PRESSURE, 226 #endif 227 OPT_FEATURE_COUNT 228 }; 229 230 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = { 231 #ifdef CONFIG_PSI 232 "pressure", 233 #endif 234 }; 235 236 static u16 cgroup_feature_disable_mask __read_mostly; 237 238 static int cgroup_apply_control(struct cgroup *cgrp); 239 static void cgroup_finalize_control(struct cgroup *cgrp, int ret); 240 static void css_task_iter_skip(struct css_task_iter *it, 241 struct task_struct *task); 242 static int cgroup_destroy_locked(struct cgroup *cgrp); 243 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 244 struct cgroup_subsys *ss); 245 static void css_release(struct percpu_ref *ref); 246 static void kill_css(struct cgroup_subsys_state *css); 247 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 248 struct cgroup *cgrp, struct cftype cfts[], 249 bool is_add); 250 251 #ifdef CONFIG_DEBUG_CGROUP_REF 252 #define CGROUP_REF_FN_ATTRS noinline 253 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn); 254 #include <linux/cgroup_refcnt.h> 255 #endif 256 257 /** 258 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID 259 * @ssid: subsys ID of interest 260 * 261 * cgroup_subsys_enabled() can only be used with literal subsys names which 262 * is fine for individual subsystems but unsuitable for cgroup core. This 263 * is slower static_key_enabled() based test indexed by @ssid. 264 */ 265 bool cgroup_ssid_enabled(int ssid) 266 { 267 if (!CGROUP_HAS_SUBSYS_CONFIG) 268 return false; 269 270 return static_key_enabled(cgroup_subsys_enabled_key[ssid]); 271 } 272 273 /** 274 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy 275 * @cgrp: the cgroup of interest 276 * 277 * The default hierarchy is the v2 interface of cgroup and this function 278 * can be used to test whether a cgroup is on the default hierarchy for 279 * cases where a subsystem should behave differently depending on the 280 * interface version. 281 * 282 * List of changed behaviors: 283 * 284 * - Mount options "noprefix", "xattr", "clone_children", "release_agent" 285 * and "name" are disallowed. 286 * 287 * - When mounting an existing superblock, mount options should match. 288 * 289 * - rename(2) is disallowed. 290 * 291 * - "tasks" is removed. Everything should be at process granularity. Use 292 * "cgroup.procs" instead. 293 * 294 * - "cgroup.procs" is not sorted. pids will be unique unless they got 295 * recycled in-between reads. 296 * 297 * - "release_agent" and "notify_on_release" are removed. Replacement 298 * notification mechanism will be implemented. 299 * 300 * - "cgroup.clone_children" is removed. 301 * 302 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup 303 * and its descendants contain no task; otherwise, 1. The file also 304 * generates kernfs notification which can be monitored through poll and 305 * [di]notify when the value of the file changes. 306 * 307 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and 308 * take masks of ancestors with non-empty cpus/mems, instead of being 309 * moved to an ancestor. 310 * 311 * - cpuset: a task can be moved into an empty cpuset, and again it takes 312 * masks of ancestors. 313 * 314 * - blkcg: blk-throttle becomes properly hierarchical. 315 * 316 * - debug: disallowed on the default hierarchy. 317 */ 318 bool cgroup_on_dfl(const struct cgroup *cgrp) 319 { 320 return cgrp->root == &cgrp_dfl_root; 321 } 322 323 /* IDR wrappers which synchronize using cgroup_idr_lock */ 324 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, 325 gfp_t gfp_mask) 326 { 327 int ret; 328 329 idr_preload(gfp_mask); 330 spin_lock_bh(&cgroup_idr_lock); 331 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); 332 spin_unlock_bh(&cgroup_idr_lock); 333 idr_preload_end(); 334 return ret; 335 } 336 337 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) 338 { 339 void *ret; 340 341 spin_lock_bh(&cgroup_idr_lock); 342 ret = idr_replace(idr, ptr, id); 343 spin_unlock_bh(&cgroup_idr_lock); 344 return ret; 345 } 346 347 static void cgroup_idr_remove(struct idr *idr, int id) 348 { 349 spin_lock_bh(&cgroup_idr_lock); 350 idr_remove(idr, id); 351 spin_unlock_bh(&cgroup_idr_lock); 352 } 353 354 static bool cgroup_has_tasks(struct cgroup *cgrp) 355 { 356 return cgrp->nr_populated_csets; 357 } 358 359 bool cgroup_is_threaded(struct cgroup *cgrp) 360 { 361 return cgrp->dom_cgrp != cgrp; 362 } 363 364 /* can @cgrp host both domain and threaded children? */ 365 static bool cgroup_is_mixable(struct cgroup *cgrp) 366 { 367 /* 368 * Root isn't under domain level resource control exempting it from 369 * the no-internal-process constraint, so it can serve as a thread 370 * root and a parent of resource domains at the same time. 371 */ 372 return !cgroup_parent(cgrp); 373 } 374 375 /* can @cgrp become a thread root? Should always be true for a thread root */ 376 static bool cgroup_can_be_thread_root(struct cgroup *cgrp) 377 { 378 /* mixables don't care */ 379 if (cgroup_is_mixable(cgrp)) 380 return true; 381 382 /* domain roots can't be nested under threaded */ 383 if (cgroup_is_threaded(cgrp)) 384 return false; 385 386 /* can only have either domain or threaded children */ 387 if (cgrp->nr_populated_domain_children) 388 return false; 389 390 /* and no domain controllers can be enabled */ 391 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 392 return false; 393 394 return true; 395 } 396 397 /* is @cgrp root of a threaded subtree? */ 398 bool cgroup_is_thread_root(struct cgroup *cgrp) 399 { 400 /* thread root should be a domain */ 401 if (cgroup_is_threaded(cgrp)) 402 return false; 403 404 /* a domain w/ threaded children is a thread root */ 405 if (cgrp->nr_threaded_children) 406 return true; 407 408 /* 409 * A domain which has tasks and explicit threaded controllers 410 * enabled is a thread root. 411 */ 412 if (cgroup_has_tasks(cgrp) && 413 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask)) 414 return true; 415 416 return false; 417 } 418 419 /* a domain which isn't connected to the root w/o brekage can't be used */ 420 static bool cgroup_is_valid_domain(struct cgroup *cgrp) 421 { 422 /* the cgroup itself can be a thread root */ 423 if (cgroup_is_threaded(cgrp)) 424 return false; 425 426 /* but the ancestors can't be unless mixable */ 427 while ((cgrp = cgroup_parent(cgrp))) { 428 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp)) 429 return false; 430 if (cgroup_is_threaded(cgrp)) 431 return false; 432 } 433 434 return true; 435 } 436 437 /* subsystems visibly enabled on a cgroup */ 438 static u16 cgroup_control(struct cgroup *cgrp) 439 { 440 struct cgroup *parent = cgroup_parent(cgrp); 441 u16 root_ss_mask = cgrp->root->subsys_mask; 442 443 if (parent) { 444 u16 ss_mask = parent->subtree_control; 445 446 /* threaded cgroups can only have threaded controllers */ 447 if (cgroup_is_threaded(cgrp)) 448 ss_mask &= cgrp_dfl_threaded_ss_mask; 449 return ss_mask; 450 } 451 452 if (cgroup_on_dfl(cgrp)) 453 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | 454 cgrp_dfl_implicit_ss_mask); 455 return root_ss_mask; 456 } 457 458 /* subsystems enabled on a cgroup */ 459 static u16 cgroup_ss_mask(struct cgroup *cgrp) 460 { 461 struct cgroup *parent = cgroup_parent(cgrp); 462 463 if (parent) { 464 u16 ss_mask = parent->subtree_ss_mask; 465 466 /* threaded cgroups can only have threaded controllers */ 467 if (cgroup_is_threaded(cgrp)) 468 ss_mask &= cgrp_dfl_threaded_ss_mask; 469 return ss_mask; 470 } 471 472 return cgrp->root->subsys_mask; 473 } 474 475 /** 476 * cgroup_css - obtain a cgroup's css for the specified subsystem 477 * @cgrp: the cgroup of interest 478 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 479 * 480 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This 481 * function must be called either under cgroup_mutex or rcu_read_lock() and 482 * the caller is responsible for pinning the returned css if it wants to 483 * keep accessing it outside the said locks. This function may return 484 * %NULL if @cgrp doesn't have @subsys_id enabled. 485 */ 486 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, 487 struct cgroup_subsys *ss) 488 { 489 if (CGROUP_HAS_SUBSYS_CONFIG && ss) 490 return rcu_dereference_check(cgrp->subsys[ss->id], 491 lockdep_is_held(&cgroup_mutex)); 492 else 493 return &cgrp->self; 494 } 495 496 /** 497 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem 498 * @cgrp: the cgroup of interest 499 * @ss: the subsystem of interest 500 * 501 * Find and get @cgrp's css associated with @ss. If the css doesn't exist 502 * or is offline, %NULL is returned. 503 */ 504 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp, 505 struct cgroup_subsys *ss) 506 { 507 struct cgroup_subsys_state *css; 508 509 rcu_read_lock(); 510 css = cgroup_css(cgrp, ss); 511 if (css && !css_tryget_online(css)) 512 css = NULL; 513 rcu_read_unlock(); 514 515 return css; 516 } 517 518 /** 519 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss 520 * @cgrp: the cgroup of interest 521 * @ss: the subsystem of interest (%NULL returns @cgrp->self) 522 * 523 * Similar to cgroup_css() but returns the effective css, which is defined 524 * as the matching css of the nearest ancestor including self which has @ss 525 * enabled. If @ss is associated with the hierarchy @cgrp is on, this 526 * function is guaranteed to return non-NULL css. 527 */ 528 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp, 529 struct cgroup_subsys *ss) 530 { 531 lockdep_assert_held(&cgroup_mutex); 532 533 if (!ss) 534 return &cgrp->self; 535 536 /* 537 * This function is used while updating css associations and thus 538 * can't test the csses directly. Test ss_mask. 539 */ 540 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { 541 cgrp = cgroup_parent(cgrp); 542 if (!cgrp) 543 return NULL; 544 } 545 546 return cgroup_css(cgrp, ss); 547 } 548 549 /** 550 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem 551 * @cgrp: the cgroup of interest 552 * @ss: the subsystem of interest 553 * 554 * Find and get the effective css of @cgrp for @ss. The effective css is 555 * defined as the matching css of the nearest ancestor including self which 556 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 557 * the root css is returned, so this function always returns a valid css. 558 * 559 * The returned css is not guaranteed to be online, and therefore it is the 560 * callers responsibility to try get a reference for it. 561 */ 562 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, 563 struct cgroup_subsys *ss) 564 { 565 struct cgroup_subsys_state *css; 566 567 if (!CGROUP_HAS_SUBSYS_CONFIG) 568 return NULL; 569 570 do { 571 css = cgroup_css(cgrp, ss); 572 573 if (css) 574 return css; 575 cgrp = cgroup_parent(cgrp); 576 } while (cgrp); 577 578 return init_css_set.subsys[ss->id]; 579 } 580 581 /** 582 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem 583 * @cgrp: the cgroup of interest 584 * @ss: the subsystem of interest 585 * 586 * Find and get the effective css of @cgrp for @ss. The effective css is 587 * defined as the matching css of the nearest ancestor including self which 588 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, 589 * the root css is returned, so this function always returns a valid css. 590 * The returned css must be put using css_put(). 591 */ 592 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, 593 struct cgroup_subsys *ss) 594 { 595 struct cgroup_subsys_state *css; 596 597 if (!CGROUP_HAS_SUBSYS_CONFIG) 598 return NULL; 599 600 rcu_read_lock(); 601 602 do { 603 css = cgroup_css(cgrp, ss); 604 605 if (css && css_tryget_online(css)) 606 goto out_unlock; 607 cgrp = cgroup_parent(cgrp); 608 } while (cgrp); 609 610 css = init_css_set.subsys[ss->id]; 611 css_get(css); 612 out_unlock: 613 rcu_read_unlock(); 614 return css; 615 } 616 EXPORT_SYMBOL_GPL(cgroup_get_e_css); 617 618 static void cgroup_get_live(struct cgroup *cgrp) 619 { 620 WARN_ON_ONCE(cgroup_is_dead(cgrp)); 621 css_get(&cgrp->self); 622 } 623 624 /** 625 * __cgroup_task_count - count the number of tasks in a cgroup. The caller 626 * is responsible for taking the css_set_lock. 627 * @cgrp: the cgroup in question 628 */ 629 int __cgroup_task_count(const struct cgroup *cgrp) 630 { 631 int count = 0; 632 struct cgrp_cset_link *link; 633 634 lockdep_assert_held(&css_set_lock); 635 636 list_for_each_entry(link, &cgrp->cset_links, cset_link) 637 count += link->cset->nr_tasks; 638 639 return count; 640 } 641 642 /** 643 * cgroup_task_count - count the number of tasks in a cgroup. 644 * @cgrp: the cgroup in question 645 */ 646 int cgroup_task_count(const struct cgroup *cgrp) 647 { 648 int count; 649 650 spin_lock_irq(&css_set_lock); 651 count = __cgroup_task_count(cgrp); 652 spin_unlock_irq(&css_set_lock); 653 654 return count; 655 } 656 657 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) 658 { 659 struct cgroup *cgrp = of->kn->parent->priv; 660 struct cftype *cft = of_cft(of); 661 662 /* 663 * This is open and unprotected implementation of cgroup_css(). 664 * seq_css() is only called from a kernfs file operation which has 665 * an active reference on the file. Because all the subsystem 666 * files are drained before a css is disassociated with a cgroup, 667 * the matching css from the cgroup's subsys table is guaranteed to 668 * be and stay valid until the enclosing operation is complete. 669 */ 670 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss) 671 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); 672 else 673 return &cgrp->self; 674 } 675 EXPORT_SYMBOL_GPL(of_css); 676 677 /** 678 * for_each_css - iterate all css's of a cgroup 679 * @css: the iteration cursor 680 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 681 * @cgrp: the target cgroup to iterate css's of 682 * 683 * Should be called under cgroup_[tree_]mutex. 684 */ 685 #define for_each_css(css, ssid, cgrp) \ 686 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 687 if (!((css) = rcu_dereference_check( \ 688 (cgrp)->subsys[(ssid)], \ 689 lockdep_is_held(&cgroup_mutex)))) { } \ 690 else 691 692 /** 693 * for_each_e_css - iterate all effective css's of a cgroup 694 * @css: the iteration cursor 695 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end 696 * @cgrp: the target cgroup to iterate css's of 697 * 698 * Should be called under cgroup_[tree_]mutex. 699 */ 700 #define for_each_e_css(css, ssid, cgrp) \ 701 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ 702 if (!((css) = cgroup_e_css_by_mask(cgrp, \ 703 cgroup_subsys[(ssid)]))) \ 704 ; \ 705 else 706 707 /** 708 * do_each_subsys_mask - filter for_each_subsys with a bitmask 709 * @ss: the iteration cursor 710 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end 711 * @ss_mask: the bitmask 712 * 713 * The block will only run for cases where the ssid-th bit (1 << ssid) of 714 * @ss_mask is set. 715 */ 716 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \ 717 unsigned long __ss_mask = (ss_mask); \ 718 if (!CGROUP_HAS_SUBSYS_CONFIG) { \ 719 (ssid) = 0; \ 720 break; \ 721 } \ 722 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ 723 (ss) = cgroup_subsys[ssid]; \ 724 { 725 726 #define while_each_subsys_mask() \ 727 } \ 728 } \ 729 } while (false) 730 731 /* iterate over child cgrps, lock should be held throughout iteration */ 732 #define cgroup_for_each_live_child(child, cgrp) \ 733 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ 734 if (({ lockdep_assert_held(&cgroup_mutex); \ 735 cgroup_is_dead(child); })) \ 736 ; \ 737 else 738 739 /* walk live descendants in pre order */ 740 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ 741 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ 742 if (({ lockdep_assert_held(&cgroup_mutex); \ 743 (dsct) = (d_css)->cgroup; \ 744 cgroup_is_dead(dsct); })) \ 745 ; \ 746 else 747 748 /* walk live descendants in postorder */ 749 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ 750 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ 751 if (({ lockdep_assert_held(&cgroup_mutex); \ 752 (dsct) = (d_css)->cgroup; \ 753 cgroup_is_dead(dsct); })) \ 754 ; \ 755 else 756 757 /* 758 * The default css_set - used by init and its children prior to any 759 * hierarchies being mounted. It contains a pointer to the root state 760 * for each subsystem. Also used to anchor the list of css_sets. Not 761 * reference-counted, to improve performance when child cgroups 762 * haven't been created. 763 */ 764 struct css_set init_css_set = { 765 .refcount = REFCOUNT_INIT(1), 766 .dom_cset = &init_css_set, 767 .tasks = LIST_HEAD_INIT(init_css_set.tasks), 768 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), 769 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks), 770 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), 771 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets), 772 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), 773 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node), 774 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node), 775 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), 776 777 /* 778 * The following field is re-initialized when this cset gets linked 779 * in cgroup_init(). However, let's initialize the field 780 * statically too so that the default cgroup can be accessed safely 781 * early during boot. 782 */ 783 .dfl_cgrp = &cgrp_dfl_root.cgrp, 784 }; 785 786 static int css_set_count = 1; /* 1 for init_css_set */ 787 788 static bool css_set_threaded(struct css_set *cset) 789 { 790 return cset->dom_cset != cset; 791 } 792 793 /** 794 * css_set_populated - does a css_set contain any tasks? 795 * @cset: target css_set 796 * 797 * css_set_populated() should be the same as !!cset->nr_tasks at steady 798 * state. However, css_set_populated() can be called while a task is being 799 * added to or removed from the linked list before the nr_tasks is 800 * properly updated. Hence, we can't just look at ->nr_tasks here. 801 */ 802 static bool css_set_populated(struct css_set *cset) 803 { 804 lockdep_assert_held(&css_set_lock); 805 806 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); 807 } 808 809 /** 810 * cgroup_update_populated - update the populated count of a cgroup 811 * @cgrp: the target cgroup 812 * @populated: inc or dec populated count 813 * 814 * One of the css_sets associated with @cgrp is either getting its first 815 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The 816 * count is propagated towards root so that a given cgroup's 817 * nr_populated_children is zero iff none of its descendants contain any 818 * tasks. 819 * 820 * @cgrp's interface file "cgroup.populated" is zero if both 821 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and 822 * 1 otherwise. When the sum changes from or to zero, userland is notified 823 * that the content of the interface file has changed. This can be used to 824 * detect when @cgrp and its descendants become populated or empty. 825 */ 826 static void cgroup_update_populated(struct cgroup *cgrp, bool populated) 827 { 828 struct cgroup *child = NULL; 829 int adj = populated ? 1 : -1; 830 831 lockdep_assert_held(&css_set_lock); 832 833 do { 834 bool was_populated = cgroup_is_populated(cgrp); 835 836 if (!child) { 837 cgrp->nr_populated_csets += adj; 838 } else { 839 if (cgroup_is_threaded(child)) 840 cgrp->nr_populated_threaded_children += adj; 841 else 842 cgrp->nr_populated_domain_children += adj; 843 } 844 845 if (was_populated == cgroup_is_populated(cgrp)) 846 break; 847 848 cgroup1_check_for_release(cgrp); 849 TRACE_CGROUP_PATH(notify_populated, cgrp, 850 cgroup_is_populated(cgrp)); 851 cgroup_file_notify(&cgrp->events_file); 852 853 child = cgrp; 854 cgrp = cgroup_parent(cgrp); 855 } while (cgrp); 856 } 857 858 /** 859 * css_set_update_populated - update populated state of a css_set 860 * @cset: target css_set 861 * @populated: whether @cset is populated or depopulated 862 * 863 * @cset is either getting the first task or losing the last. Update the 864 * populated counters of all associated cgroups accordingly. 865 */ 866 static void css_set_update_populated(struct css_set *cset, bool populated) 867 { 868 struct cgrp_cset_link *link; 869 870 lockdep_assert_held(&css_set_lock); 871 872 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) 873 cgroup_update_populated(link->cgrp, populated); 874 } 875 876 /* 877 * @task is leaving, advance task iterators which are pointing to it so 878 * that they can resume at the next position. Advancing an iterator might 879 * remove it from the list, use safe walk. See css_task_iter_skip() for 880 * details. 881 */ 882 static void css_set_skip_task_iters(struct css_set *cset, 883 struct task_struct *task) 884 { 885 struct css_task_iter *it, *pos; 886 887 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node) 888 css_task_iter_skip(it, task); 889 } 890 891 /** 892 * css_set_move_task - move a task from one css_set to another 893 * @task: task being moved 894 * @from_cset: css_set @task currently belongs to (may be NULL) 895 * @to_cset: new css_set @task is being moved to (may be NULL) 896 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks 897 * 898 * Move @task from @from_cset to @to_cset. If @task didn't belong to any 899 * css_set, @from_cset can be NULL. If @task is being disassociated 900 * instead of moved, @to_cset can be NULL. 901 * 902 * This function automatically handles populated counter updates and 903 * css_task_iter adjustments but the caller is responsible for managing 904 * @from_cset and @to_cset's reference counts. 905 */ 906 static void css_set_move_task(struct task_struct *task, 907 struct css_set *from_cset, struct css_set *to_cset, 908 bool use_mg_tasks) 909 { 910 lockdep_assert_held(&css_set_lock); 911 912 if (to_cset && !css_set_populated(to_cset)) 913 css_set_update_populated(to_cset, true); 914 915 if (from_cset) { 916 WARN_ON_ONCE(list_empty(&task->cg_list)); 917 918 css_set_skip_task_iters(from_cset, task); 919 list_del_init(&task->cg_list); 920 if (!css_set_populated(from_cset)) 921 css_set_update_populated(from_cset, false); 922 } else { 923 WARN_ON_ONCE(!list_empty(&task->cg_list)); 924 } 925 926 if (to_cset) { 927 /* 928 * We are synchronized through cgroup_threadgroup_rwsem 929 * against PF_EXITING setting such that we can't race 930 * against cgroup_exit()/cgroup_free() dropping the css_set. 931 */ 932 WARN_ON_ONCE(task->flags & PF_EXITING); 933 934 cgroup_move_task(task, to_cset); 935 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : 936 &to_cset->tasks); 937 } 938 } 939 940 /* 941 * hash table for cgroup groups. This improves the performance to find 942 * an existing css_set. This hash doesn't (currently) take into 943 * account cgroups in empty hierarchies. 944 */ 945 #define CSS_SET_HASH_BITS 7 946 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); 947 948 static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) 949 { 950 unsigned long key = 0UL; 951 struct cgroup_subsys *ss; 952 int i; 953 954 for_each_subsys(ss, i) 955 key += (unsigned long)css[i]; 956 key = (key >> 16) ^ key; 957 958 return key; 959 } 960 961 void put_css_set_locked(struct css_set *cset) 962 { 963 struct cgrp_cset_link *link, *tmp_link; 964 struct cgroup_subsys *ss; 965 int ssid; 966 967 lockdep_assert_held(&css_set_lock); 968 969 if (!refcount_dec_and_test(&cset->refcount)) 970 return; 971 972 WARN_ON_ONCE(!list_empty(&cset->threaded_csets)); 973 974 /* This css_set is dead. Unlink it and release cgroup and css refs */ 975 for_each_subsys(ss, ssid) { 976 list_del(&cset->e_cset_node[ssid]); 977 css_put(cset->subsys[ssid]); 978 } 979 hash_del(&cset->hlist); 980 css_set_count--; 981 982 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { 983 list_del(&link->cset_link); 984 list_del(&link->cgrp_link); 985 if (cgroup_parent(link->cgrp)) 986 cgroup_put(link->cgrp); 987 kfree(link); 988 } 989 990 if (css_set_threaded(cset)) { 991 list_del(&cset->threaded_csets_node); 992 put_css_set_locked(cset->dom_cset); 993 } 994 995 kfree_rcu(cset, rcu_head); 996 } 997 998 /** 999 * compare_css_sets - helper function for find_existing_css_set(). 1000 * @cset: candidate css_set being tested 1001 * @old_cset: existing css_set for a task 1002 * @new_cgrp: cgroup that's being entered by the task 1003 * @template: desired set of css pointers in css_set (pre-calculated) 1004 * 1005 * Returns true if "cset" matches "old_cset" except for the hierarchy 1006 * which "new_cgrp" belongs to, for which it should match "new_cgrp". 1007 */ 1008 static bool compare_css_sets(struct css_set *cset, 1009 struct css_set *old_cset, 1010 struct cgroup *new_cgrp, 1011 struct cgroup_subsys_state *template[]) 1012 { 1013 struct cgroup *new_dfl_cgrp; 1014 struct list_head *l1, *l2; 1015 1016 /* 1017 * On the default hierarchy, there can be csets which are 1018 * associated with the same set of cgroups but different csses. 1019 * Let's first ensure that csses match. 1020 */ 1021 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) 1022 return false; 1023 1024 1025 /* @cset's domain should match the default cgroup's */ 1026 if (cgroup_on_dfl(new_cgrp)) 1027 new_dfl_cgrp = new_cgrp; 1028 else 1029 new_dfl_cgrp = old_cset->dfl_cgrp; 1030 1031 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp) 1032 return false; 1033 1034 /* 1035 * Compare cgroup pointers in order to distinguish between 1036 * different cgroups in hierarchies. As different cgroups may 1037 * share the same effective css, this comparison is always 1038 * necessary. 1039 */ 1040 l1 = &cset->cgrp_links; 1041 l2 = &old_cset->cgrp_links; 1042 while (1) { 1043 struct cgrp_cset_link *link1, *link2; 1044 struct cgroup *cgrp1, *cgrp2; 1045 1046 l1 = l1->next; 1047 l2 = l2->next; 1048 /* See if we reached the end - both lists are equal length. */ 1049 if (l1 == &cset->cgrp_links) { 1050 BUG_ON(l2 != &old_cset->cgrp_links); 1051 break; 1052 } else { 1053 BUG_ON(l2 == &old_cset->cgrp_links); 1054 } 1055 /* Locate the cgroups associated with these links. */ 1056 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); 1057 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); 1058 cgrp1 = link1->cgrp; 1059 cgrp2 = link2->cgrp; 1060 /* Hierarchies should be linked in the same order. */ 1061 BUG_ON(cgrp1->root != cgrp2->root); 1062 1063 /* 1064 * If this hierarchy is the hierarchy of the cgroup 1065 * that's changing, then we need to check that this 1066 * css_set points to the new cgroup; if it's any other 1067 * hierarchy, then this css_set should point to the 1068 * same cgroup as the old css_set. 1069 */ 1070 if (cgrp1->root == new_cgrp->root) { 1071 if (cgrp1 != new_cgrp) 1072 return false; 1073 } else { 1074 if (cgrp1 != cgrp2) 1075 return false; 1076 } 1077 } 1078 return true; 1079 } 1080 1081 /** 1082 * find_existing_css_set - init css array and find the matching css_set 1083 * @old_cset: the css_set that we're using before the cgroup transition 1084 * @cgrp: the cgroup that we're moving into 1085 * @template: out param for the new set of csses, should be clear on entry 1086 */ 1087 static struct css_set *find_existing_css_set(struct css_set *old_cset, 1088 struct cgroup *cgrp, 1089 struct cgroup_subsys_state *template[]) 1090 { 1091 struct cgroup_root *root = cgrp->root; 1092 struct cgroup_subsys *ss; 1093 struct css_set *cset; 1094 unsigned long key; 1095 int i; 1096 1097 /* 1098 * Build the set of subsystem state objects that we want to see in the 1099 * new css_set. While subsystems can change globally, the entries here 1100 * won't change, so no need for locking. 1101 */ 1102 for_each_subsys(ss, i) { 1103 if (root->subsys_mask & (1UL << i)) { 1104 /* 1105 * @ss is in this hierarchy, so we want the 1106 * effective css from @cgrp. 1107 */ 1108 template[i] = cgroup_e_css_by_mask(cgrp, ss); 1109 } else { 1110 /* 1111 * @ss is not in this hierarchy, so we don't want 1112 * to change the css. 1113 */ 1114 template[i] = old_cset->subsys[i]; 1115 } 1116 } 1117 1118 key = css_set_hash(template); 1119 hash_for_each_possible(css_set_table, cset, hlist, key) { 1120 if (!compare_css_sets(cset, old_cset, cgrp, template)) 1121 continue; 1122 1123 /* This css_set matches what we need */ 1124 return cset; 1125 } 1126 1127 /* No existing cgroup group matched */ 1128 return NULL; 1129 } 1130 1131 static void free_cgrp_cset_links(struct list_head *links_to_free) 1132 { 1133 struct cgrp_cset_link *link, *tmp_link; 1134 1135 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { 1136 list_del(&link->cset_link); 1137 kfree(link); 1138 } 1139 } 1140 1141 /** 1142 * allocate_cgrp_cset_links - allocate cgrp_cset_links 1143 * @count: the number of links to allocate 1144 * @tmp_links: list_head the allocated links are put on 1145 * 1146 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links 1147 * through ->cset_link. Returns 0 on success or -errno. 1148 */ 1149 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) 1150 { 1151 struct cgrp_cset_link *link; 1152 int i; 1153 1154 INIT_LIST_HEAD(tmp_links); 1155 1156 for (i = 0; i < count; i++) { 1157 link = kzalloc(sizeof(*link), GFP_KERNEL); 1158 if (!link) { 1159 free_cgrp_cset_links(tmp_links); 1160 return -ENOMEM; 1161 } 1162 list_add(&link->cset_link, tmp_links); 1163 } 1164 return 0; 1165 } 1166 1167 /** 1168 * link_css_set - a helper function to link a css_set to a cgroup 1169 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() 1170 * @cset: the css_set to be linked 1171 * @cgrp: the destination cgroup 1172 */ 1173 static void link_css_set(struct list_head *tmp_links, struct css_set *cset, 1174 struct cgroup *cgrp) 1175 { 1176 struct cgrp_cset_link *link; 1177 1178 BUG_ON(list_empty(tmp_links)); 1179 1180 if (cgroup_on_dfl(cgrp)) 1181 cset->dfl_cgrp = cgrp; 1182 1183 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); 1184 link->cset = cset; 1185 link->cgrp = cgrp; 1186 1187 /* 1188 * Always add links to the tail of the lists so that the lists are 1189 * in chronological order. 1190 */ 1191 list_move_tail(&link->cset_link, &cgrp->cset_links); 1192 list_add_tail(&link->cgrp_link, &cset->cgrp_links); 1193 1194 if (cgroup_parent(cgrp)) 1195 cgroup_get_live(cgrp); 1196 } 1197 1198 /** 1199 * find_css_set - return a new css_set with one cgroup updated 1200 * @old_cset: the baseline css_set 1201 * @cgrp: the cgroup to be updated 1202 * 1203 * Return a new css_set that's equivalent to @old_cset, but with @cgrp 1204 * substituted into the appropriate hierarchy. 1205 */ 1206 static struct css_set *find_css_set(struct css_set *old_cset, 1207 struct cgroup *cgrp) 1208 { 1209 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; 1210 struct css_set *cset; 1211 struct list_head tmp_links; 1212 struct cgrp_cset_link *link; 1213 struct cgroup_subsys *ss; 1214 unsigned long key; 1215 int ssid; 1216 1217 lockdep_assert_held(&cgroup_mutex); 1218 1219 /* First see if we already have a cgroup group that matches 1220 * the desired set */ 1221 spin_lock_irq(&css_set_lock); 1222 cset = find_existing_css_set(old_cset, cgrp, template); 1223 if (cset) 1224 get_css_set(cset); 1225 spin_unlock_irq(&css_set_lock); 1226 1227 if (cset) 1228 return cset; 1229 1230 cset = kzalloc(sizeof(*cset), GFP_KERNEL); 1231 if (!cset) 1232 return NULL; 1233 1234 /* Allocate all the cgrp_cset_link objects that we'll need */ 1235 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { 1236 kfree(cset); 1237 return NULL; 1238 } 1239 1240 refcount_set(&cset->refcount, 1); 1241 cset->dom_cset = cset; 1242 INIT_LIST_HEAD(&cset->tasks); 1243 INIT_LIST_HEAD(&cset->mg_tasks); 1244 INIT_LIST_HEAD(&cset->dying_tasks); 1245 INIT_LIST_HEAD(&cset->task_iters); 1246 INIT_LIST_HEAD(&cset->threaded_csets); 1247 INIT_HLIST_NODE(&cset->hlist); 1248 INIT_LIST_HEAD(&cset->cgrp_links); 1249 INIT_LIST_HEAD(&cset->mg_src_preload_node); 1250 INIT_LIST_HEAD(&cset->mg_dst_preload_node); 1251 INIT_LIST_HEAD(&cset->mg_node); 1252 1253 /* Copy the set of subsystem state objects generated in 1254 * find_existing_css_set() */ 1255 memcpy(cset->subsys, template, sizeof(cset->subsys)); 1256 1257 spin_lock_irq(&css_set_lock); 1258 /* Add reference counts and links from the new css_set. */ 1259 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { 1260 struct cgroup *c = link->cgrp; 1261 1262 if (c->root == cgrp->root) 1263 c = cgrp; 1264 link_css_set(&tmp_links, cset, c); 1265 } 1266 1267 BUG_ON(!list_empty(&tmp_links)); 1268 1269 css_set_count++; 1270 1271 /* Add @cset to the hash table */ 1272 key = css_set_hash(cset->subsys); 1273 hash_add(css_set_table, &cset->hlist, key); 1274 1275 for_each_subsys(ss, ssid) { 1276 struct cgroup_subsys_state *css = cset->subsys[ssid]; 1277 1278 list_add_tail(&cset->e_cset_node[ssid], 1279 &css->cgroup->e_csets[ssid]); 1280 css_get(css); 1281 } 1282 1283 spin_unlock_irq(&css_set_lock); 1284 1285 /* 1286 * If @cset should be threaded, look up the matching dom_cset and 1287 * link them up. We first fully initialize @cset then look for the 1288 * dom_cset. It's simpler this way and safe as @cset is guaranteed 1289 * to stay empty until we return. 1290 */ 1291 if (cgroup_is_threaded(cset->dfl_cgrp)) { 1292 struct css_set *dcset; 1293 1294 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp); 1295 if (!dcset) { 1296 put_css_set(cset); 1297 return NULL; 1298 } 1299 1300 spin_lock_irq(&css_set_lock); 1301 cset->dom_cset = dcset; 1302 list_add_tail(&cset->threaded_csets_node, 1303 &dcset->threaded_csets); 1304 spin_unlock_irq(&css_set_lock); 1305 } 1306 1307 return cset; 1308 } 1309 1310 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) 1311 { 1312 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv; 1313 1314 return root_cgrp->root; 1315 } 1316 1317 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor) 1318 { 1319 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS; 1320 1321 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */ 1322 if (favor && !favoring) { 1323 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss); 1324 root->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1325 } else if (!favor && favoring) { 1326 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss); 1327 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS; 1328 } 1329 } 1330 1331 static int cgroup_init_root_id(struct cgroup_root *root) 1332 { 1333 int id; 1334 1335 lockdep_assert_held(&cgroup_mutex); 1336 1337 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); 1338 if (id < 0) 1339 return id; 1340 1341 root->hierarchy_id = id; 1342 return 0; 1343 } 1344 1345 static void cgroup_exit_root_id(struct cgroup_root *root) 1346 { 1347 lockdep_assert_held(&cgroup_mutex); 1348 1349 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); 1350 } 1351 1352 void cgroup_free_root(struct cgroup_root *root) 1353 { 1354 kfree(root); 1355 } 1356 1357 static void cgroup_destroy_root(struct cgroup_root *root) 1358 { 1359 struct cgroup *cgrp = &root->cgrp; 1360 struct cgrp_cset_link *link, *tmp_link; 1361 1362 trace_cgroup_destroy_root(root); 1363 1364 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); 1365 1366 BUG_ON(atomic_read(&root->nr_cgrps)); 1367 BUG_ON(!list_empty(&cgrp->self.children)); 1368 1369 /* Rebind all subsystems back to the default hierarchy */ 1370 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); 1371 1372 /* 1373 * Release all the links from cset_links to this hierarchy's 1374 * root cgroup 1375 */ 1376 spin_lock_irq(&css_set_lock); 1377 1378 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { 1379 list_del(&link->cset_link); 1380 list_del(&link->cgrp_link); 1381 kfree(link); 1382 } 1383 1384 spin_unlock_irq(&css_set_lock); 1385 1386 if (!list_empty(&root->root_list)) { 1387 list_del(&root->root_list); 1388 cgroup_root_count--; 1389 } 1390 1391 cgroup_favor_dynmods(root, false); 1392 cgroup_exit_root_id(root); 1393 1394 mutex_unlock(&cgroup_mutex); 1395 1396 cgroup_rstat_exit(cgrp); 1397 kernfs_destroy_root(root->kf_root); 1398 cgroup_free_root(root); 1399 } 1400 1401 /* 1402 * Returned cgroup is without refcount but it's valid as long as cset pins it. 1403 */ 1404 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset, 1405 struct cgroup_root *root) 1406 { 1407 struct cgroup *res_cgroup = NULL; 1408 1409 if (cset == &init_css_set) { 1410 res_cgroup = &root->cgrp; 1411 } else if (root == &cgrp_dfl_root) { 1412 res_cgroup = cset->dfl_cgrp; 1413 } else { 1414 struct cgrp_cset_link *link; 1415 lockdep_assert_held(&css_set_lock); 1416 1417 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { 1418 struct cgroup *c = link->cgrp; 1419 1420 if (c->root == root) { 1421 res_cgroup = c; 1422 break; 1423 } 1424 } 1425 } 1426 1427 BUG_ON(!res_cgroup); 1428 return res_cgroup; 1429 } 1430 1431 /* 1432 * look up cgroup associated with current task's cgroup namespace on the 1433 * specified hierarchy 1434 */ 1435 static struct cgroup * 1436 current_cgns_cgroup_from_root(struct cgroup_root *root) 1437 { 1438 struct cgroup *res = NULL; 1439 struct css_set *cset; 1440 1441 lockdep_assert_held(&css_set_lock); 1442 1443 rcu_read_lock(); 1444 1445 cset = current->nsproxy->cgroup_ns->root_cset; 1446 res = __cset_cgroup_from_root(cset, root); 1447 1448 rcu_read_unlock(); 1449 1450 return res; 1451 } 1452 1453 /* 1454 * Look up cgroup associated with current task's cgroup namespace on the default 1455 * hierarchy. 1456 * 1457 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks: 1458 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu 1459 * pointers. 1460 * - css_set_lock is not needed because we just read cset->dfl_cgrp. 1461 * - As a bonus returned cgrp is pinned with the current because it cannot 1462 * switch cgroup_ns asynchronously. 1463 */ 1464 static struct cgroup *current_cgns_cgroup_dfl(void) 1465 { 1466 struct css_set *cset; 1467 1468 cset = current->nsproxy->cgroup_ns->root_cset; 1469 return __cset_cgroup_from_root(cset, &cgrp_dfl_root); 1470 } 1471 1472 /* look up cgroup associated with given css_set on the specified hierarchy */ 1473 static struct cgroup *cset_cgroup_from_root(struct css_set *cset, 1474 struct cgroup_root *root) 1475 { 1476 lockdep_assert_held(&cgroup_mutex); 1477 lockdep_assert_held(&css_set_lock); 1478 1479 return __cset_cgroup_from_root(cset, root); 1480 } 1481 1482 /* 1483 * Return the cgroup for "task" from the given hierarchy. Must be 1484 * called with cgroup_mutex and css_set_lock held. 1485 */ 1486 struct cgroup *task_cgroup_from_root(struct task_struct *task, 1487 struct cgroup_root *root) 1488 { 1489 /* 1490 * No need to lock the task - since we hold css_set_lock the 1491 * task can't change groups. 1492 */ 1493 return cset_cgroup_from_root(task_css_set(task), root); 1494 } 1495 1496 /* 1497 * A task must hold cgroup_mutex to modify cgroups. 1498 * 1499 * Any task can increment and decrement the count field without lock. 1500 * So in general, code holding cgroup_mutex can't rely on the count 1501 * field not changing. However, if the count goes to zero, then only 1502 * cgroup_attach_task() can increment it again. Because a count of zero 1503 * means that no tasks are currently attached, therefore there is no 1504 * way a task attached to that cgroup can fork (the other way to 1505 * increment the count). So code holding cgroup_mutex can safely 1506 * assume that if the count is zero, it will stay zero. Similarly, if 1507 * a task holds cgroup_mutex on a cgroup with zero count, it 1508 * knows that the cgroup won't be removed, as cgroup_rmdir() 1509 * needs that mutex. 1510 * 1511 * A cgroup can only be deleted if both its 'count' of using tasks 1512 * is zero, and its list of 'children' cgroups is empty. Since all 1513 * tasks in the system use _some_ cgroup, and since there is always at 1514 * least one task in the system (init, pid == 1), therefore, root cgroup 1515 * always has either children cgroups and/or using tasks. So we don't 1516 * need a special hack to ensure that root cgroup cannot be deleted. 1517 * 1518 * P.S. One more locking exception. RCU is used to guard the 1519 * update of a tasks cgroup pointer by cgroup_attach_task() 1520 */ 1521 1522 static struct kernfs_syscall_ops cgroup_kf_syscall_ops; 1523 1524 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, 1525 char *buf) 1526 { 1527 struct cgroup_subsys *ss = cft->ss; 1528 1529 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && 1530 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { 1531 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : ""; 1532 1533 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s", 1534 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, 1535 cft->name); 1536 } else { 1537 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX); 1538 } 1539 return buf; 1540 } 1541 1542 /** 1543 * cgroup_file_mode - deduce file mode of a control file 1544 * @cft: the control file in question 1545 * 1546 * S_IRUGO for read, S_IWUSR for write. 1547 */ 1548 static umode_t cgroup_file_mode(const struct cftype *cft) 1549 { 1550 umode_t mode = 0; 1551 1552 if (cft->read_u64 || cft->read_s64 || cft->seq_show) 1553 mode |= S_IRUGO; 1554 1555 if (cft->write_u64 || cft->write_s64 || cft->write) { 1556 if (cft->flags & CFTYPE_WORLD_WRITABLE) 1557 mode |= S_IWUGO; 1558 else 1559 mode |= S_IWUSR; 1560 } 1561 1562 return mode; 1563 } 1564 1565 /** 1566 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask 1567 * @subtree_control: the new subtree_control mask to consider 1568 * @this_ss_mask: available subsystems 1569 * 1570 * On the default hierarchy, a subsystem may request other subsystems to be 1571 * enabled together through its ->depends_on mask. In such cases, more 1572 * subsystems than specified in "cgroup.subtree_control" may be enabled. 1573 * 1574 * This function calculates which subsystems need to be enabled if 1575 * @subtree_control is to be applied while restricted to @this_ss_mask. 1576 */ 1577 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) 1578 { 1579 u16 cur_ss_mask = subtree_control; 1580 struct cgroup_subsys *ss; 1581 int ssid; 1582 1583 lockdep_assert_held(&cgroup_mutex); 1584 1585 cur_ss_mask |= cgrp_dfl_implicit_ss_mask; 1586 1587 while (true) { 1588 u16 new_ss_mask = cur_ss_mask; 1589 1590 do_each_subsys_mask(ss, ssid, cur_ss_mask) { 1591 new_ss_mask |= ss->depends_on; 1592 } while_each_subsys_mask(); 1593 1594 /* 1595 * Mask out subsystems which aren't available. This can 1596 * happen only if some depended-upon subsystems were bound 1597 * to non-default hierarchies. 1598 */ 1599 new_ss_mask &= this_ss_mask; 1600 1601 if (new_ss_mask == cur_ss_mask) 1602 break; 1603 cur_ss_mask = new_ss_mask; 1604 } 1605 1606 return cur_ss_mask; 1607 } 1608 1609 /** 1610 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods 1611 * @kn: the kernfs_node being serviced 1612 * 1613 * This helper undoes cgroup_kn_lock_live() and should be invoked before 1614 * the method finishes if locking succeeded. Note that once this function 1615 * returns the cgroup returned by cgroup_kn_lock_live() may become 1616 * inaccessible any time. If the caller intends to continue to access the 1617 * cgroup, it should pin it before invoking this function. 1618 */ 1619 void cgroup_kn_unlock(struct kernfs_node *kn) 1620 { 1621 struct cgroup *cgrp; 1622 1623 if (kernfs_type(kn) == KERNFS_DIR) 1624 cgrp = kn->priv; 1625 else 1626 cgrp = kn->parent->priv; 1627 1628 mutex_unlock(&cgroup_mutex); 1629 1630 kernfs_unbreak_active_protection(kn); 1631 cgroup_put(cgrp); 1632 } 1633 1634 /** 1635 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods 1636 * @kn: the kernfs_node being serviced 1637 * @drain_offline: perform offline draining on the cgroup 1638 * 1639 * This helper is to be used by a cgroup kernfs method currently servicing 1640 * @kn. It breaks the active protection, performs cgroup locking and 1641 * verifies that the associated cgroup is alive. Returns the cgroup if 1642 * alive; otherwise, %NULL. A successful return should be undone by a 1643 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the 1644 * cgroup is drained of offlining csses before return. 1645 * 1646 * Any cgroup kernfs method implementation which requires locking the 1647 * associated cgroup should use this helper. It avoids nesting cgroup 1648 * locking under kernfs active protection and allows all kernfs operations 1649 * including self-removal. 1650 */ 1651 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) 1652 { 1653 struct cgroup *cgrp; 1654 1655 if (kernfs_type(kn) == KERNFS_DIR) 1656 cgrp = kn->priv; 1657 else 1658 cgrp = kn->parent->priv; 1659 1660 /* 1661 * We're gonna grab cgroup_mutex which nests outside kernfs 1662 * active_ref. cgroup liveliness check alone provides enough 1663 * protection against removal. Ensure @cgrp stays accessible and 1664 * break the active_ref protection. 1665 */ 1666 if (!cgroup_tryget(cgrp)) 1667 return NULL; 1668 kernfs_break_active_protection(kn); 1669 1670 if (drain_offline) 1671 cgroup_lock_and_drain_offline(cgrp); 1672 else 1673 mutex_lock(&cgroup_mutex); 1674 1675 if (!cgroup_is_dead(cgrp)) 1676 return cgrp; 1677 1678 cgroup_kn_unlock(kn); 1679 return NULL; 1680 } 1681 1682 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) 1683 { 1684 char name[CGROUP_FILE_NAME_MAX]; 1685 1686 lockdep_assert_held(&cgroup_mutex); 1687 1688 if (cft->file_offset) { 1689 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); 1690 struct cgroup_file *cfile = (void *)css + cft->file_offset; 1691 1692 spin_lock_irq(&cgroup_file_kn_lock); 1693 cfile->kn = NULL; 1694 spin_unlock_irq(&cgroup_file_kn_lock); 1695 1696 del_timer_sync(&cfile->notify_timer); 1697 } 1698 1699 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); 1700 } 1701 1702 /** 1703 * css_clear_dir - remove subsys files in a cgroup directory 1704 * @css: target css 1705 */ 1706 static void css_clear_dir(struct cgroup_subsys_state *css) 1707 { 1708 struct cgroup *cgrp = css->cgroup; 1709 struct cftype *cfts; 1710 1711 if (!(css->flags & CSS_VISIBLE)) 1712 return; 1713 1714 css->flags &= ~CSS_VISIBLE; 1715 1716 if (!css->ss) { 1717 if (cgroup_on_dfl(cgrp)) { 1718 cgroup_addrm_files(css, cgrp, 1719 cgroup_base_files, false); 1720 if (cgroup_psi_enabled()) 1721 cgroup_addrm_files(css, cgrp, 1722 cgroup_psi_files, false); 1723 } else { 1724 cgroup_addrm_files(css, cgrp, 1725 cgroup1_base_files, false); 1726 } 1727 } else { 1728 list_for_each_entry(cfts, &css->ss->cfts, node) 1729 cgroup_addrm_files(css, cgrp, cfts, false); 1730 } 1731 } 1732 1733 /** 1734 * css_populate_dir - create subsys files in a cgroup directory 1735 * @css: target css 1736 * 1737 * On failure, no file is added. 1738 */ 1739 static int css_populate_dir(struct cgroup_subsys_state *css) 1740 { 1741 struct cgroup *cgrp = css->cgroup; 1742 struct cftype *cfts, *failed_cfts; 1743 int ret; 1744 1745 if ((css->flags & CSS_VISIBLE) || !cgrp->kn) 1746 return 0; 1747 1748 if (!css->ss) { 1749 if (cgroup_on_dfl(cgrp)) { 1750 ret = cgroup_addrm_files(&cgrp->self, cgrp, 1751 cgroup_base_files, true); 1752 if (ret < 0) 1753 return ret; 1754 1755 if (cgroup_psi_enabled()) { 1756 ret = cgroup_addrm_files(&cgrp->self, cgrp, 1757 cgroup_psi_files, true); 1758 if (ret < 0) 1759 return ret; 1760 } 1761 } else { 1762 cgroup_addrm_files(css, cgrp, 1763 cgroup1_base_files, true); 1764 } 1765 } else { 1766 list_for_each_entry(cfts, &css->ss->cfts, node) { 1767 ret = cgroup_addrm_files(css, cgrp, cfts, true); 1768 if (ret < 0) { 1769 failed_cfts = cfts; 1770 goto err; 1771 } 1772 } 1773 } 1774 1775 css->flags |= CSS_VISIBLE; 1776 1777 return 0; 1778 err: 1779 list_for_each_entry(cfts, &css->ss->cfts, node) { 1780 if (cfts == failed_cfts) 1781 break; 1782 cgroup_addrm_files(css, cgrp, cfts, false); 1783 } 1784 return ret; 1785 } 1786 1787 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) 1788 { 1789 struct cgroup *dcgrp = &dst_root->cgrp; 1790 struct cgroup_subsys *ss; 1791 int ssid, i, ret; 1792 u16 dfl_disable_ss_mask = 0; 1793 1794 lockdep_assert_held(&cgroup_mutex); 1795 1796 do_each_subsys_mask(ss, ssid, ss_mask) { 1797 /* 1798 * If @ss has non-root csses attached to it, can't move. 1799 * If @ss is an implicit controller, it is exempt from this 1800 * rule and can be stolen. 1801 */ 1802 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && 1803 !ss->implicit_on_dfl) 1804 return -EBUSY; 1805 1806 /* can't move between two non-dummy roots either */ 1807 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) 1808 return -EBUSY; 1809 1810 /* 1811 * Collect ssid's that need to be disabled from default 1812 * hierarchy. 1813 */ 1814 if (ss->root == &cgrp_dfl_root) 1815 dfl_disable_ss_mask |= 1 << ssid; 1816 1817 } while_each_subsys_mask(); 1818 1819 if (dfl_disable_ss_mask) { 1820 struct cgroup *scgrp = &cgrp_dfl_root.cgrp; 1821 1822 /* 1823 * Controllers from default hierarchy that need to be rebound 1824 * are all disabled together in one go. 1825 */ 1826 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask; 1827 WARN_ON(cgroup_apply_control(scgrp)); 1828 cgroup_finalize_control(scgrp, 0); 1829 } 1830 1831 do_each_subsys_mask(ss, ssid, ss_mask) { 1832 struct cgroup_root *src_root = ss->root; 1833 struct cgroup *scgrp = &src_root->cgrp; 1834 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); 1835 struct css_set *cset; 1836 1837 WARN_ON(!css || cgroup_css(dcgrp, ss)); 1838 1839 if (src_root != &cgrp_dfl_root) { 1840 /* disable from the source */ 1841 src_root->subsys_mask &= ~(1 << ssid); 1842 WARN_ON(cgroup_apply_control(scgrp)); 1843 cgroup_finalize_control(scgrp, 0); 1844 } 1845 1846 /* rebind */ 1847 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); 1848 rcu_assign_pointer(dcgrp->subsys[ssid], css); 1849 ss->root = dst_root; 1850 css->cgroup = dcgrp; 1851 1852 spin_lock_irq(&css_set_lock); 1853 hash_for_each(css_set_table, i, cset, hlist) 1854 list_move_tail(&cset->e_cset_node[ss->id], 1855 &dcgrp->e_csets[ss->id]); 1856 spin_unlock_irq(&css_set_lock); 1857 1858 if (ss->css_rstat_flush) { 1859 list_del_rcu(&css->rstat_css_node); 1860 synchronize_rcu(); 1861 list_add_rcu(&css->rstat_css_node, 1862 &dcgrp->rstat_css_list); 1863 } 1864 1865 /* default hierarchy doesn't enable controllers by default */ 1866 dst_root->subsys_mask |= 1 << ssid; 1867 if (dst_root == &cgrp_dfl_root) { 1868 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); 1869 } else { 1870 dcgrp->subtree_control |= 1 << ssid; 1871 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); 1872 } 1873 1874 ret = cgroup_apply_control(dcgrp); 1875 if (ret) 1876 pr_warn("partial failure to rebind %s controller (err=%d)\n", 1877 ss->name, ret); 1878 1879 if (ss->bind) 1880 ss->bind(css); 1881 } while_each_subsys_mask(); 1882 1883 kernfs_activate(dcgrp->kn); 1884 return 0; 1885 } 1886 1887 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, 1888 struct kernfs_root *kf_root) 1889 { 1890 int len = 0; 1891 char *buf = NULL; 1892 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); 1893 struct cgroup *ns_cgroup; 1894 1895 buf = kmalloc(PATH_MAX, GFP_KERNEL); 1896 if (!buf) 1897 return -ENOMEM; 1898 1899 spin_lock_irq(&css_set_lock); 1900 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); 1901 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); 1902 spin_unlock_irq(&css_set_lock); 1903 1904 if (len >= PATH_MAX) 1905 len = -ERANGE; 1906 else if (len > 0) { 1907 seq_escape(sf, buf, " \t\n\\"); 1908 len = 0; 1909 } 1910 kfree(buf); 1911 return len; 1912 } 1913 1914 enum cgroup2_param { 1915 Opt_nsdelegate, 1916 Opt_favordynmods, 1917 Opt_memory_localevents, 1918 Opt_memory_recursiveprot, 1919 nr__cgroup2_params 1920 }; 1921 1922 static const struct fs_parameter_spec cgroup2_fs_parameters[] = { 1923 fsparam_flag("nsdelegate", Opt_nsdelegate), 1924 fsparam_flag("favordynmods", Opt_favordynmods), 1925 fsparam_flag("memory_localevents", Opt_memory_localevents), 1926 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot), 1927 {} 1928 }; 1929 1930 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param) 1931 { 1932 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1933 struct fs_parse_result result; 1934 int opt; 1935 1936 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result); 1937 if (opt < 0) 1938 return opt; 1939 1940 switch (opt) { 1941 case Opt_nsdelegate: 1942 ctx->flags |= CGRP_ROOT_NS_DELEGATE; 1943 return 0; 1944 case Opt_favordynmods: 1945 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 1946 return 0; 1947 case Opt_memory_localevents: 1948 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1949 return 0; 1950 case Opt_memory_recursiveprot: 1951 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1952 return 0; 1953 } 1954 return -EINVAL; 1955 } 1956 1957 static void apply_cgroup_root_flags(unsigned int root_flags) 1958 { 1959 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) { 1960 if (root_flags & CGRP_ROOT_NS_DELEGATE) 1961 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE; 1962 else 1963 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE; 1964 1965 cgroup_favor_dynmods(&cgrp_dfl_root, 1966 root_flags & CGRP_ROOT_FAVOR_DYNMODS); 1967 1968 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1969 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1970 else 1971 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS; 1972 1973 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1974 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1975 else 1976 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT; 1977 } 1978 } 1979 1980 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root) 1981 { 1982 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) 1983 seq_puts(seq, ",nsdelegate"); 1984 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS) 1985 seq_puts(seq, ",favordynmods"); 1986 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1987 seq_puts(seq, ",memory_localevents"); 1988 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT) 1989 seq_puts(seq, ",memory_recursiveprot"); 1990 return 0; 1991 } 1992 1993 static int cgroup_reconfigure(struct fs_context *fc) 1994 { 1995 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 1996 1997 apply_cgroup_root_flags(ctx->flags); 1998 return 0; 1999 } 2000 2001 static void init_cgroup_housekeeping(struct cgroup *cgrp) 2002 { 2003 struct cgroup_subsys *ss; 2004 int ssid; 2005 2006 INIT_LIST_HEAD(&cgrp->self.sibling); 2007 INIT_LIST_HEAD(&cgrp->self.children); 2008 INIT_LIST_HEAD(&cgrp->cset_links); 2009 INIT_LIST_HEAD(&cgrp->pidlists); 2010 mutex_init(&cgrp->pidlist_mutex); 2011 cgrp->self.cgroup = cgrp; 2012 cgrp->self.flags |= CSS_ONLINE; 2013 cgrp->dom_cgrp = cgrp; 2014 cgrp->max_descendants = INT_MAX; 2015 cgrp->max_depth = INT_MAX; 2016 INIT_LIST_HEAD(&cgrp->rstat_css_list); 2017 prev_cputime_init(&cgrp->prev_cputime); 2018 2019 for_each_subsys(ss, ssid) 2020 INIT_LIST_HEAD(&cgrp->e_csets[ssid]); 2021 2022 init_waitqueue_head(&cgrp->offline_waitq); 2023 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); 2024 } 2025 2026 void init_cgroup_root(struct cgroup_fs_context *ctx) 2027 { 2028 struct cgroup_root *root = ctx->root; 2029 struct cgroup *cgrp = &root->cgrp; 2030 2031 INIT_LIST_HEAD(&root->root_list); 2032 atomic_set(&root->nr_cgrps, 1); 2033 cgrp->root = root; 2034 init_cgroup_housekeeping(cgrp); 2035 2036 /* DYNMODS must be modified through cgroup_favor_dynmods() */ 2037 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS; 2038 if (ctx->release_agent) 2039 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX); 2040 if (ctx->name) 2041 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN); 2042 if (ctx->cpuset_clone_children) 2043 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); 2044 } 2045 2046 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) 2047 { 2048 LIST_HEAD(tmp_links); 2049 struct cgroup *root_cgrp = &root->cgrp; 2050 struct kernfs_syscall_ops *kf_sops; 2051 struct css_set *cset; 2052 int i, ret; 2053 2054 lockdep_assert_held(&cgroup_mutex); 2055 2056 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 2057 0, GFP_KERNEL); 2058 if (ret) 2059 goto out; 2060 2061 /* 2062 * We're accessing css_set_count without locking css_set_lock here, 2063 * but that's OK - it can only be increased by someone holding 2064 * cgroup_lock, and that's us. Later rebinding may disable 2065 * controllers on the default hierarchy and thus create new csets, 2066 * which can't be more than the existing ones. Allocate 2x. 2067 */ 2068 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); 2069 if (ret) 2070 goto cancel_ref; 2071 2072 ret = cgroup_init_root_id(root); 2073 if (ret) 2074 goto cancel_ref; 2075 2076 kf_sops = root == &cgrp_dfl_root ? 2077 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; 2078 2079 root->kf_root = kernfs_create_root(kf_sops, 2080 KERNFS_ROOT_CREATE_DEACTIVATED | 2081 KERNFS_ROOT_SUPPORT_EXPORTOP | 2082 KERNFS_ROOT_SUPPORT_USER_XATTR, 2083 root_cgrp); 2084 if (IS_ERR(root->kf_root)) { 2085 ret = PTR_ERR(root->kf_root); 2086 goto exit_root_id; 2087 } 2088 root_cgrp->kn = kernfs_root_to_node(root->kf_root); 2089 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1); 2090 root_cgrp->ancestors[0] = root_cgrp; 2091 2092 ret = css_populate_dir(&root_cgrp->self); 2093 if (ret) 2094 goto destroy_root; 2095 2096 ret = cgroup_rstat_init(root_cgrp); 2097 if (ret) 2098 goto destroy_root; 2099 2100 ret = rebind_subsystems(root, ss_mask); 2101 if (ret) 2102 goto exit_stats; 2103 2104 ret = cgroup_bpf_inherit(root_cgrp); 2105 WARN_ON_ONCE(ret); 2106 2107 trace_cgroup_setup_root(root); 2108 2109 /* 2110 * There must be no failure case after here, since rebinding takes 2111 * care of subsystems' refcounts, which are explicitly dropped in 2112 * the failure exit path. 2113 */ 2114 list_add(&root->root_list, &cgroup_roots); 2115 cgroup_root_count++; 2116 2117 /* 2118 * Link the root cgroup in this hierarchy into all the css_set 2119 * objects. 2120 */ 2121 spin_lock_irq(&css_set_lock); 2122 hash_for_each(css_set_table, i, cset, hlist) { 2123 link_css_set(&tmp_links, cset, root_cgrp); 2124 if (css_set_populated(cset)) 2125 cgroup_update_populated(root_cgrp, true); 2126 } 2127 spin_unlock_irq(&css_set_lock); 2128 2129 BUG_ON(!list_empty(&root_cgrp->self.children)); 2130 BUG_ON(atomic_read(&root->nr_cgrps) != 1); 2131 2132 ret = 0; 2133 goto out; 2134 2135 exit_stats: 2136 cgroup_rstat_exit(root_cgrp); 2137 destroy_root: 2138 kernfs_destroy_root(root->kf_root); 2139 root->kf_root = NULL; 2140 exit_root_id: 2141 cgroup_exit_root_id(root); 2142 cancel_ref: 2143 percpu_ref_exit(&root_cgrp->self.refcnt); 2144 out: 2145 free_cgrp_cset_links(&tmp_links); 2146 return ret; 2147 } 2148 2149 int cgroup_do_get_tree(struct fs_context *fc) 2150 { 2151 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2152 int ret; 2153 2154 ctx->kfc.root = ctx->root->kf_root; 2155 if (fc->fs_type == &cgroup2_fs_type) 2156 ctx->kfc.magic = CGROUP2_SUPER_MAGIC; 2157 else 2158 ctx->kfc.magic = CGROUP_SUPER_MAGIC; 2159 ret = kernfs_get_tree(fc); 2160 2161 /* 2162 * In non-init cgroup namespace, instead of root cgroup's dentry, 2163 * we return the dentry corresponding to the cgroupns->root_cgrp. 2164 */ 2165 if (!ret && ctx->ns != &init_cgroup_ns) { 2166 struct dentry *nsdentry; 2167 struct super_block *sb = fc->root->d_sb; 2168 struct cgroup *cgrp; 2169 2170 mutex_lock(&cgroup_mutex); 2171 spin_lock_irq(&css_set_lock); 2172 2173 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root); 2174 2175 spin_unlock_irq(&css_set_lock); 2176 mutex_unlock(&cgroup_mutex); 2177 2178 nsdentry = kernfs_node_dentry(cgrp->kn, sb); 2179 dput(fc->root); 2180 if (IS_ERR(nsdentry)) { 2181 deactivate_locked_super(sb); 2182 ret = PTR_ERR(nsdentry); 2183 nsdentry = NULL; 2184 } 2185 fc->root = nsdentry; 2186 } 2187 2188 if (!ctx->kfc.new_sb_created) 2189 cgroup_put(&ctx->root->cgrp); 2190 2191 return ret; 2192 } 2193 2194 /* 2195 * Destroy a cgroup filesystem context. 2196 */ 2197 static void cgroup_fs_context_free(struct fs_context *fc) 2198 { 2199 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2200 2201 kfree(ctx->name); 2202 kfree(ctx->release_agent); 2203 put_cgroup_ns(ctx->ns); 2204 kernfs_free_fs_context(fc); 2205 kfree(ctx); 2206 } 2207 2208 static int cgroup_get_tree(struct fs_context *fc) 2209 { 2210 struct cgroup_fs_context *ctx = cgroup_fc2context(fc); 2211 int ret; 2212 2213 WRITE_ONCE(cgrp_dfl_visible, true); 2214 cgroup_get_live(&cgrp_dfl_root.cgrp); 2215 ctx->root = &cgrp_dfl_root; 2216 2217 ret = cgroup_do_get_tree(fc); 2218 if (!ret) 2219 apply_cgroup_root_flags(ctx->flags); 2220 return ret; 2221 } 2222 2223 static const struct fs_context_operations cgroup_fs_context_ops = { 2224 .free = cgroup_fs_context_free, 2225 .parse_param = cgroup2_parse_param, 2226 .get_tree = cgroup_get_tree, 2227 .reconfigure = cgroup_reconfigure, 2228 }; 2229 2230 static const struct fs_context_operations cgroup1_fs_context_ops = { 2231 .free = cgroup_fs_context_free, 2232 .parse_param = cgroup1_parse_param, 2233 .get_tree = cgroup1_get_tree, 2234 .reconfigure = cgroup1_reconfigure, 2235 }; 2236 2237 /* 2238 * Initialise the cgroup filesystem creation/reconfiguration context. Notably, 2239 * we select the namespace we're going to use. 2240 */ 2241 static int cgroup_init_fs_context(struct fs_context *fc) 2242 { 2243 struct cgroup_fs_context *ctx; 2244 2245 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL); 2246 if (!ctx) 2247 return -ENOMEM; 2248 2249 ctx->ns = current->nsproxy->cgroup_ns; 2250 get_cgroup_ns(ctx->ns); 2251 fc->fs_private = &ctx->kfc; 2252 if (fc->fs_type == &cgroup2_fs_type) 2253 fc->ops = &cgroup_fs_context_ops; 2254 else 2255 fc->ops = &cgroup1_fs_context_ops; 2256 put_user_ns(fc->user_ns); 2257 fc->user_ns = get_user_ns(ctx->ns->user_ns); 2258 fc->global = true; 2259 2260 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS 2261 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS; 2262 #endif 2263 return 0; 2264 } 2265 2266 static void cgroup_kill_sb(struct super_block *sb) 2267 { 2268 struct kernfs_root *kf_root = kernfs_root_from_sb(sb); 2269 struct cgroup_root *root = cgroup_root_from_kf(kf_root); 2270 2271 /* 2272 * If @root doesn't have any children, start killing it. 2273 * This prevents new mounts by disabling percpu_ref_tryget_live(). 2274 * 2275 * And don't kill the default root. 2276 */ 2277 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root && 2278 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) { 2279 cgroup_bpf_offline(&root->cgrp); 2280 percpu_ref_kill(&root->cgrp.self.refcnt); 2281 } 2282 cgroup_put(&root->cgrp); 2283 kernfs_kill_sb(sb); 2284 } 2285 2286 struct file_system_type cgroup_fs_type = { 2287 .name = "cgroup", 2288 .init_fs_context = cgroup_init_fs_context, 2289 .parameters = cgroup1_fs_parameters, 2290 .kill_sb = cgroup_kill_sb, 2291 .fs_flags = FS_USERNS_MOUNT, 2292 }; 2293 2294 static struct file_system_type cgroup2_fs_type = { 2295 .name = "cgroup2", 2296 .init_fs_context = cgroup_init_fs_context, 2297 .parameters = cgroup2_fs_parameters, 2298 .kill_sb = cgroup_kill_sb, 2299 .fs_flags = FS_USERNS_MOUNT, 2300 }; 2301 2302 #ifdef CONFIG_CPUSETS 2303 static const struct fs_context_operations cpuset_fs_context_ops = { 2304 .get_tree = cgroup1_get_tree, 2305 .free = cgroup_fs_context_free, 2306 }; 2307 2308 /* 2309 * This is ugly, but preserves the userspace API for existing cpuset 2310 * users. If someone tries to mount the "cpuset" filesystem, we 2311 * silently switch it to mount "cgroup" instead 2312 */ 2313 static int cpuset_init_fs_context(struct fs_context *fc) 2314 { 2315 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER); 2316 struct cgroup_fs_context *ctx; 2317 int err; 2318 2319 err = cgroup_init_fs_context(fc); 2320 if (err) { 2321 kfree(agent); 2322 return err; 2323 } 2324 2325 fc->ops = &cpuset_fs_context_ops; 2326 2327 ctx = cgroup_fc2context(fc); 2328 ctx->subsys_mask = 1 << cpuset_cgrp_id; 2329 ctx->flags |= CGRP_ROOT_NOPREFIX; 2330 ctx->release_agent = agent; 2331 2332 get_filesystem(&cgroup_fs_type); 2333 put_filesystem(fc->fs_type); 2334 fc->fs_type = &cgroup_fs_type; 2335 2336 return 0; 2337 } 2338 2339 static struct file_system_type cpuset_fs_type = { 2340 .name = "cpuset", 2341 .init_fs_context = cpuset_init_fs_context, 2342 .fs_flags = FS_USERNS_MOUNT, 2343 }; 2344 #endif 2345 2346 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, 2347 struct cgroup_namespace *ns) 2348 { 2349 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); 2350 2351 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); 2352 } 2353 2354 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, 2355 struct cgroup_namespace *ns) 2356 { 2357 int ret; 2358 2359 mutex_lock(&cgroup_mutex); 2360 spin_lock_irq(&css_set_lock); 2361 2362 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); 2363 2364 spin_unlock_irq(&css_set_lock); 2365 mutex_unlock(&cgroup_mutex); 2366 2367 return ret; 2368 } 2369 EXPORT_SYMBOL_GPL(cgroup_path_ns); 2370 2371 /** 2372 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy 2373 * @task: target task 2374 * @buf: the buffer to write the path into 2375 * @buflen: the length of the buffer 2376 * 2377 * Determine @task's cgroup on the first (the one with the lowest non-zero 2378 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This 2379 * function grabs cgroup_mutex and shouldn't be used inside locks used by 2380 * cgroup controller callbacks. 2381 * 2382 * Return value is the same as kernfs_path(). 2383 */ 2384 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) 2385 { 2386 struct cgroup_root *root; 2387 struct cgroup *cgrp; 2388 int hierarchy_id = 1; 2389 int ret; 2390 2391 mutex_lock(&cgroup_mutex); 2392 spin_lock_irq(&css_set_lock); 2393 2394 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); 2395 2396 if (root) { 2397 cgrp = task_cgroup_from_root(task, root); 2398 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); 2399 } else { 2400 /* if no hierarchy exists, everyone is in "/" */ 2401 ret = strscpy(buf, "/", buflen); 2402 } 2403 2404 spin_unlock_irq(&css_set_lock); 2405 mutex_unlock(&cgroup_mutex); 2406 return ret; 2407 } 2408 EXPORT_SYMBOL_GPL(task_cgroup_path); 2409 2410 /** 2411 * cgroup_attach_lock - Lock for ->attach() 2412 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem 2413 * 2414 * cgroup migration sometimes needs to stabilize threadgroups against forks and 2415 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach() 2416 * implementations (e.g. cpuset), also need to disable CPU hotplug. 2417 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can 2418 * lead to deadlocks. 2419 * 2420 * Bringing up a CPU may involve creating and destroying tasks which requires 2421 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside 2422 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while 2423 * write-locking threadgroup_rwsem, the locking order is reversed and we end up 2424 * waiting for an on-going CPU hotplug operation which in turn is waiting for 2425 * the threadgroup_rwsem to be released to create new tasks. For more details: 2426 * 2427 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu 2428 * 2429 * Resolve the situation by always acquiring cpus_read_lock() before optionally 2430 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that 2431 * CPU hotplug is disabled on entry. 2432 */ 2433 void cgroup_attach_lock(bool lock_threadgroup) 2434 { 2435 cpus_read_lock(); 2436 if (lock_threadgroup) 2437 percpu_down_write(&cgroup_threadgroup_rwsem); 2438 } 2439 2440 /** 2441 * cgroup_attach_unlock - Undo cgroup_attach_lock() 2442 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem 2443 */ 2444 void cgroup_attach_unlock(bool lock_threadgroup) 2445 { 2446 if (lock_threadgroup) 2447 percpu_up_write(&cgroup_threadgroup_rwsem); 2448 cpus_read_unlock(); 2449 } 2450 2451 /** 2452 * cgroup_migrate_add_task - add a migration target task to a migration context 2453 * @task: target task 2454 * @mgctx: target migration context 2455 * 2456 * Add @task, which is a migration target, to @mgctx->tset. This function 2457 * becomes noop if @task doesn't need to be migrated. @task's css_set 2458 * should have been added as a migration source and @task->cg_list will be 2459 * moved from the css_set's tasks list to mg_tasks one. 2460 */ 2461 static void cgroup_migrate_add_task(struct task_struct *task, 2462 struct cgroup_mgctx *mgctx) 2463 { 2464 struct css_set *cset; 2465 2466 lockdep_assert_held(&css_set_lock); 2467 2468 /* @task either already exited or can't exit until the end */ 2469 if (task->flags & PF_EXITING) 2470 return; 2471 2472 /* cgroup_threadgroup_rwsem protects racing against forks */ 2473 WARN_ON_ONCE(list_empty(&task->cg_list)); 2474 2475 cset = task_css_set(task); 2476 if (!cset->mg_src_cgrp) 2477 return; 2478 2479 mgctx->tset.nr_tasks++; 2480 2481 list_move_tail(&task->cg_list, &cset->mg_tasks); 2482 if (list_empty(&cset->mg_node)) 2483 list_add_tail(&cset->mg_node, 2484 &mgctx->tset.src_csets); 2485 if (list_empty(&cset->mg_dst_cset->mg_node)) 2486 list_add_tail(&cset->mg_dst_cset->mg_node, 2487 &mgctx->tset.dst_csets); 2488 } 2489 2490 /** 2491 * cgroup_taskset_first - reset taskset and return the first task 2492 * @tset: taskset of interest 2493 * @dst_cssp: output variable for the destination css 2494 * 2495 * @tset iteration is initialized and the first task is returned. 2496 */ 2497 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, 2498 struct cgroup_subsys_state **dst_cssp) 2499 { 2500 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); 2501 tset->cur_task = NULL; 2502 2503 return cgroup_taskset_next(tset, dst_cssp); 2504 } 2505 2506 /** 2507 * cgroup_taskset_next - iterate to the next task in taskset 2508 * @tset: taskset of interest 2509 * @dst_cssp: output variable for the destination css 2510 * 2511 * Return the next task in @tset. Iteration must have been initialized 2512 * with cgroup_taskset_first(). 2513 */ 2514 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, 2515 struct cgroup_subsys_state **dst_cssp) 2516 { 2517 struct css_set *cset = tset->cur_cset; 2518 struct task_struct *task = tset->cur_task; 2519 2520 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) { 2521 if (!task) 2522 task = list_first_entry(&cset->mg_tasks, 2523 struct task_struct, cg_list); 2524 else 2525 task = list_next_entry(task, cg_list); 2526 2527 if (&task->cg_list != &cset->mg_tasks) { 2528 tset->cur_cset = cset; 2529 tset->cur_task = task; 2530 2531 /* 2532 * This function may be called both before and 2533 * after cgroup_taskset_migrate(). The two cases 2534 * can be distinguished by looking at whether @cset 2535 * has its ->mg_dst_cset set. 2536 */ 2537 if (cset->mg_dst_cset) 2538 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; 2539 else 2540 *dst_cssp = cset->subsys[tset->ssid]; 2541 2542 return task; 2543 } 2544 2545 cset = list_next_entry(cset, mg_node); 2546 task = NULL; 2547 } 2548 2549 return NULL; 2550 } 2551 2552 /** 2553 * cgroup_migrate_execute - migrate a taskset 2554 * @mgctx: migration context 2555 * 2556 * Migrate tasks in @mgctx as setup by migration preparation functions. 2557 * This function fails iff one of the ->can_attach callbacks fails and 2558 * guarantees that either all or none of the tasks in @mgctx are migrated. 2559 * @mgctx is consumed regardless of success. 2560 */ 2561 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) 2562 { 2563 struct cgroup_taskset *tset = &mgctx->tset; 2564 struct cgroup_subsys *ss; 2565 struct task_struct *task, *tmp_task; 2566 struct css_set *cset, *tmp_cset; 2567 int ssid, failed_ssid, ret; 2568 2569 /* check that we can legitimately attach to the cgroup */ 2570 if (tset->nr_tasks) { 2571 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2572 if (ss->can_attach) { 2573 tset->ssid = ssid; 2574 ret = ss->can_attach(tset); 2575 if (ret) { 2576 failed_ssid = ssid; 2577 goto out_cancel_attach; 2578 } 2579 } 2580 } while_each_subsys_mask(); 2581 } 2582 2583 /* 2584 * Now that we're guaranteed success, proceed to move all tasks to 2585 * the new cgroup. There are no failure cases after here, so this 2586 * is the commit point. 2587 */ 2588 spin_lock_irq(&css_set_lock); 2589 list_for_each_entry(cset, &tset->src_csets, mg_node) { 2590 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { 2591 struct css_set *from_cset = task_css_set(task); 2592 struct css_set *to_cset = cset->mg_dst_cset; 2593 2594 get_css_set(to_cset); 2595 to_cset->nr_tasks++; 2596 css_set_move_task(task, from_cset, to_cset, true); 2597 from_cset->nr_tasks--; 2598 /* 2599 * If the source or destination cgroup is frozen, 2600 * the task might require to change its state. 2601 */ 2602 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp, 2603 to_cset->dfl_cgrp); 2604 put_css_set_locked(from_cset); 2605 2606 } 2607 } 2608 spin_unlock_irq(&css_set_lock); 2609 2610 /* 2611 * Migration is committed, all target tasks are now on dst_csets. 2612 * Nothing is sensitive to fork() after this point. Notify 2613 * controllers that migration is complete. 2614 */ 2615 tset->csets = &tset->dst_csets; 2616 2617 if (tset->nr_tasks) { 2618 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2619 if (ss->attach) { 2620 tset->ssid = ssid; 2621 ss->attach(tset); 2622 } 2623 } while_each_subsys_mask(); 2624 } 2625 2626 ret = 0; 2627 goto out_release_tset; 2628 2629 out_cancel_attach: 2630 if (tset->nr_tasks) { 2631 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { 2632 if (ssid == failed_ssid) 2633 break; 2634 if (ss->cancel_attach) { 2635 tset->ssid = ssid; 2636 ss->cancel_attach(tset); 2637 } 2638 } while_each_subsys_mask(); 2639 } 2640 out_release_tset: 2641 spin_lock_irq(&css_set_lock); 2642 list_splice_init(&tset->dst_csets, &tset->src_csets); 2643 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { 2644 list_splice_tail_init(&cset->mg_tasks, &cset->tasks); 2645 list_del_init(&cset->mg_node); 2646 } 2647 spin_unlock_irq(&css_set_lock); 2648 2649 /* 2650 * Re-initialize the cgroup_taskset structure in case it is reused 2651 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute() 2652 * iteration. 2653 */ 2654 tset->nr_tasks = 0; 2655 tset->csets = &tset->src_csets; 2656 return ret; 2657 } 2658 2659 /** 2660 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination 2661 * @dst_cgrp: destination cgroup to test 2662 * 2663 * On the default hierarchy, except for the mixable, (possible) thread root 2664 * and threaded cgroups, subtree_control must be zero for migration 2665 * destination cgroups with tasks so that child cgroups don't compete 2666 * against tasks. 2667 */ 2668 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp) 2669 { 2670 /* v1 doesn't have any restriction */ 2671 if (!cgroup_on_dfl(dst_cgrp)) 2672 return 0; 2673 2674 /* verify @dst_cgrp can host resources */ 2675 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp)) 2676 return -EOPNOTSUPP; 2677 2678 /* 2679 * If @dst_cgrp is already or can become a thread root or is 2680 * threaded, it doesn't matter. 2681 */ 2682 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp)) 2683 return 0; 2684 2685 /* apply no-internal-process constraint */ 2686 if (dst_cgrp->subtree_control) 2687 return -EBUSY; 2688 2689 return 0; 2690 } 2691 2692 /** 2693 * cgroup_migrate_finish - cleanup after attach 2694 * @mgctx: migration context 2695 * 2696 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See 2697 * those functions for details. 2698 */ 2699 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) 2700 { 2701 struct css_set *cset, *tmp_cset; 2702 2703 lockdep_assert_held(&cgroup_mutex); 2704 2705 spin_lock_irq(&css_set_lock); 2706 2707 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets, 2708 mg_src_preload_node) { 2709 cset->mg_src_cgrp = NULL; 2710 cset->mg_dst_cgrp = NULL; 2711 cset->mg_dst_cset = NULL; 2712 list_del_init(&cset->mg_src_preload_node); 2713 put_css_set_locked(cset); 2714 } 2715 2716 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets, 2717 mg_dst_preload_node) { 2718 cset->mg_src_cgrp = NULL; 2719 cset->mg_dst_cgrp = NULL; 2720 cset->mg_dst_cset = NULL; 2721 list_del_init(&cset->mg_dst_preload_node); 2722 put_css_set_locked(cset); 2723 } 2724 2725 spin_unlock_irq(&css_set_lock); 2726 } 2727 2728 /** 2729 * cgroup_migrate_add_src - add a migration source css_set 2730 * @src_cset: the source css_set to add 2731 * @dst_cgrp: the destination cgroup 2732 * @mgctx: migration context 2733 * 2734 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin 2735 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned 2736 * up by cgroup_migrate_finish(). 2737 * 2738 * This function may be called without holding cgroup_threadgroup_rwsem 2739 * even if the target is a process. Threads may be created and destroyed 2740 * but as long as cgroup_mutex is not dropped, no new css_set can be put 2741 * into play and the preloaded css_sets are guaranteed to cover all 2742 * migrations. 2743 */ 2744 void cgroup_migrate_add_src(struct css_set *src_cset, 2745 struct cgroup *dst_cgrp, 2746 struct cgroup_mgctx *mgctx) 2747 { 2748 struct cgroup *src_cgrp; 2749 2750 lockdep_assert_held(&cgroup_mutex); 2751 lockdep_assert_held(&css_set_lock); 2752 2753 /* 2754 * If ->dead, @src_set is associated with one or more dead cgroups 2755 * and doesn't contain any migratable tasks. Ignore it early so 2756 * that the rest of migration path doesn't get confused by it. 2757 */ 2758 if (src_cset->dead) 2759 return; 2760 2761 if (!list_empty(&src_cset->mg_src_preload_node)) 2762 return; 2763 2764 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); 2765 2766 WARN_ON(src_cset->mg_src_cgrp); 2767 WARN_ON(src_cset->mg_dst_cgrp); 2768 WARN_ON(!list_empty(&src_cset->mg_tasks)); 2769 WARN_ON(!list_empty(&src_cset->mg_node)); 2770 2771 src_cset->mg_src_cgrp = src_cgrp; 2772 src_cset->mg_dst_cgrp = dst_cgrp; 2773 get_css_set(src_cset); 2774 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets); 2775 } 2776 2777 /** 2778 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration 2779 * @mgctx: migration context 2780 * 2781 * Tasks are about to be moved and all the source css_sets have been 2782 * preloaded to @mgctx->preloaded_src_csets. This function looks up and 2783 * pins all destination css_sets, links each to its source, and append them 2784 * to @mgctx->preloaded_dst_csets. 2785 * 2786 * This function must be called after cgroup_migrate_add_src() has been 2787 * called on each migration source css_set. After migration is performed 2788 * using cgroup_migrate(), cgroup_migrate_finish() must be called on 2789 * @mgctx. 2790 */ 2791 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) 2792 { 2793 struct css_set *src_cset, *tmp_cset; 2794 2795 lockdep_assert_held(&cgroup_mutex); 2796 2797 /* look up the dst cset for each src cset and link it to src */ 2798 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, 2799 mg_src_preload_node) { 2800 struct css_set *dst_cset; 2801 struct cgroup_subsys *ss; 2802 int ssid; 2803 2804 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); 2805 if (!dst_cset) 2806 return -ENOMEM; 2807 2808 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); 2809 2810 /* 2811 * If src cset equals dst, it's noop. Drop the src. 2812 * cgroup_migrate() will skip the cset too. Note that we 2813 * can't handle src == dst as some nodes are used by both. 2814 */ 2815 if (src_cset == dst_cset) { 2816 src_cset->mg_src_cgrp = NULL; 2817 src_cset->mg_dst_cgrp = NULL; 2818 list_del_init(&src_cset->mg_src_preload_node); 2819 put_css_set(src_cset); 2820 put_css_set(dst_cset); 2821 continue; 2822 } 2823 2824 src_cset->mg_dst_cset = dst_cset; 2825 2826 if (list_empty(&dst_cset->mg_dst_preload_node)) 2827 list_add_tail(&dst_cset->mg_dst_preload_node, 2828 &mgctx->preloaded_dst_csets); 2829 else 2830 put_css_set(dst_cset); 2831 2832 for_each_subsys(ss, ssid) 2833 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) 2834 mgctx->ss_mask |= 1 << ssid; 2835 } 2836 2837 return 0; 2838 } 2839 2840 /** 2841 * cgroup_migrate - migrate a process or task to a cgroup 2842 * @leader: the leader of the process or the task to migrate 2843 * @threadgroup: whether @leader points to the whole process or a single task 2844 * @mgctx: migration context 2845 * 2846 * Migrate a process or task denoted by @leader. If migrating a process, 2847 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also 2848 * responsible for invoking cgroup_migrate_add_src() and 2849 * cgroup_migrate_prepare_dst() on the targets before invoking this 2850 * function and following up with cgroup_migrate_finish(). 2851 * 2852 * As long as a controller's ->can_attach() doesn't fail, this function is 2853 * guaranteed to succeed. This means that, excluding ->can_attach() 2854 * failure, when migrating multiple targets, the success or failure can be 2855 * decided for all targets by invoking group_migrate_prepare_dst() before 2856 * actually starting migrating. 2857 */ 2858 int cgroup_migrate(struct task_struct *leader, bool threadgroup, 2859 struct cgroup_mgctx *mgctx) 2860 { 2861 struct task_struct *task; 2862 2863 /* 2864 * Prevent freeing of tasks while we take a snapshot. Tasks that are 2865 * already PF_EXITING could be freed from underneath us unless we 2866 * take an rcu_read_lock. 2867 */ 2868 spin_lock_irq(&css_set_lock); 2869 task = leader; 2870 do { 2871 cgroup_migrate_add_task(task, mgctx); 2872 if (!threadgroup) 2873 break; 2874 } while_each_thread(leader, task); 2875 spin_unlock_irq(&css_set_lock); 2876 2877 return cgroup_migrate_execute(mgctx); 2878 } 2879 2880 /** 2881 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup 2882 * @dst_cgrp: the cgroup to attach to 2883 * @leader: the task or the leader of the threadgroup to be attached 2884 * @threadgroup: attach the whole threadgroup? 2885 * 2886 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. 2887 */ 2888 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, 2889 bool threadgroup) 2890 { 2891 DEFINE_CGROUP_MGCTX(mgctx); 2892 struct task_struct *task; 2893 int ret = 0; 2894 2895 /* look up all src csets */ 2896 spin_lock_irq(&css_set_lock); 2897 rcu_read_lock(); 2898 task = leader; 2899 do { 2900 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); 2901 if (!threadgroup) 2902 break; 2903 } while_each_thread(leader, task); 2904 rcu_read_unlock(); 2905 spin_unlock_irq(&css_set_lock); 2906 2907 /* prepare dst csets and commit */ 2908 ret = cgroup_migrate_prepare_dst(&mgctx); 2909 if (!ret) 2910 ret = cgroup_migrate(leader, threadgroup, &mgctx); 2911 2912 cgroup_migrate_finish(&mgctx); 2913 2914 if (!ret) 2915 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup); 2916 2917 return ret; 2918 } 2919 2920 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup, 2921 bool *threadgroup_locked) 2922 { 2923 struct task_struct *tsk; 2924 pid_t pid; 2925 2926 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 2927 return ERR_PTR(-EINVAL); 2928 2929 /* 2930 * If we migrate a single thread, we don't care about threadgroup 2931 * stability. If the thread is `current`, it won't exit(2) under our 2932 * hands or change PID through exec(2). We exclude 2933 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write 2934 * callers by cgroup_mutex. 2935 * Therefore, we can skip the global lock. 2936 */ 2937 lockdep_assert_held(&cgroup_mutex); 2938 *threadgroup_locked = pid || threadgroup; 2939 cgroup_attach_lock(*threadgroup_locked); 2940 2941 rcu_read_lock(); 2942 if (pid) { 2943 tsk = find_task_by_vpid(pid); 2944 if (!tsk) { 2945 tsk = ERR_PTR(-ESRCH); 2946 goto out_unlock_threadgroup; 2947 } 2948 } else { 2949 tsk = current; 2950 } 2951 2952 if (threadgroup) 2953 tsk = tsk->group_leader; 2954 2955 /* 2956 * kthreads may acquire PF_NO_SETAFFINITY during initialization. 2957 * If userland migrates such a kthread to a non-root cgroup, it can 2958 * become trapped in a cpuset, or RT kthread may be born in a 2959 * cgroup with no rt_runtime allocated. Just say no. 2960 */ 2961 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) { 2962 tsk = ERR_PTR(-EINVAL); 2963 goto out_unlock_threadgroup; 2964 } 2965 2966 get_task_struct(tsk); 2967 goto out_unlock_rcu; 2968 2969 out_unlock_threadgroup: 2970 cgroup_attach_unlock(*threadgroup_locked); 2971 *threadgroup_locked = false; 2972 out_unlock_rcu: 2973 rcu_read_unlock(); 2974 return tsk; 2975 } 2976 2977 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked) 2978 { 2979 struct cgroup_subsys *ss; 2980 int ssid; 2981 2982 /* release reference from cgroup_procs_write_start() */ 2983 put_task_struct(task); 2984 2985 cgroup_attach_unlock(threadgroup_locked); 2986 2987 for_each_subsys(ss, ssid) 2988 if (ss->post_attach) 2989 ss->post_attach(); 2990 } 2991 2992 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) 2993 { 2994 struct cgroup_subsys *ss; 2995 bool printed = false; 2996 int ssid; 2997 2998 do_each_subsys_mask(ss, ssid, ss_mask) { 2999 if (printed) 3000 seq_putc(seq, ' '); 3001 seq_puts(seq, ss->name); 3002 printed = true; 3003 } while_each_subsys_mask(); 3004 if (printed) 3005 seq_putc(seq, '\n'); 3006 } 3007 3008 /* show controllers which are enabled from the parent */ 3009 static int cgroup_controllers_show(struct seq_file *seq, void *v) 3010 { 3011 struct cgroup *cgrp = seq_css(seq)->cgroup; 3012 3013 cgroup_print_ss_mask(seq, cgroup_control(cgrp)); 3014 return 0; 3015 } 3016 3017 /* show controllers which are enabled for a given cgroup's children */ 3018 static int cgroup_subtree_control_show(struct seq_file *seq, void *v) 3019 { 3020 struct cgroup *cgrp = seq_css(seq)->cgroup; 3021 3022 cgroup_print_ss_mask(seq, cgrp->subtree_control); 3023 return 0; 3024 } 3025 3026 /** 3027 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy 3028 * @cgrp: root of the subtree to update csses for 3029 * 3030 * @cgrp's control masks have changed and its subtree's css associations 3031 * need to be updated accordingly. This function looks up all css_sets 3032 * which are attached to the subtree, creates the matching updated css_sets 3033 * and migrates the tasks to the new ones. 3034 */ 3035 static int cgroup_update_dfl_csses(struct cgroup *cgrp) 3036 { 3037 DEFINE_CGROUP_MGCTX(mgctx); 3038 struct cgroup_subsys_state *d_css; 3039 struct cgroup *dsct; 3040 struct css_set *src_cset; 3041 bool has_tasks; 3042 int ret; 3043 3044 lockdep_assert_held(&cgroup_mutex); 3045 3046 /* look up all csses currently attached to @cgrp's subtree */ 3047 spin_lock_irq(&css_set_lock); 3048 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3049 struct cgrp_cset_link *link; 3050 3051 /* 3052 * As cgroup_update_dfl_csses() is only called by 3053 * cgroup_apply_control(). The csses associated with the 3054 * given cgrp will not be affected by changes made to 3055 * its subtree_control file. We can skip them. 3056 */ 3057 if (dsct == cgrp) 3058 continue; 3059 3060 list_for_each_entry(link, &dsct->cset_links, cset_link) 3061 cgroup_migrate_add_src(link->cset, dsct, &mgctx); 3062 } 3063 spin_unlock_irq(&css_set_lock); 3064 3065 /* 3066 * We need to write-lock threadgroup_rwsem while migrating tasks. 3067 * However, if there are no source csets for @cgrp, changing its 3068 * controllers isn't gonna produce any task migrations and the 3069 * write-locking can be skipped safely. 3070 */ 3071 has_tasks = !list_empty(&mgctx.preloaded_src_csets); 3072 cgroup_attach_lock(has_tasks); 3073 3074 /* NULL dst indicates self on default hierarchy */ 3075 ret = cgroup_migrate_prepare_dst(&mgctx); 3076 if (ret) 3077 goto out_finish; 3078 3079 spin_lock_irq(&css_set_lock); 3080 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, 3081 mg_src_preload_node) { 3082 struct task_struct *task, *ntask; 3083 3084 /* all tasks in src_csets need to be migrated */ 3085 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) 3086 cgroup_migrate_add_task(task, &mgctx); 3087 } 3088 spin_unlock_irq(&css_set_lock); 3089 3090 ret = cgroup_migrate_execute(&mgctx); 3091 out_finish: 3092 cgroup_migrate_finish(&mgctx); 3093 cgroup_attach_unlock(has_tasks); 3094 return ret; 3095 } 3096 3097 /** 3098 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses 3099 * @cgrp: root of the target subtree 3100 * 3101 * Because css offlining is asynchronous, userland may try to re-enable a 3102 * controller while the previous css is still around. This function grabs 3103 * cgroup_mutex and drains the previous css instances of @cgrp's subtree. 3104 */ 3105 void cgroup_lock_and_drain_offline(struct cgroup *cgrp) 3106 __acquires(&cgroup_mutex) 3107 { 3108 struct cgroup *dsct; 3109 struct cgroup_subsys_state *d_css; 3110 struct cgroup_subsys *ss; 3111 int ssid; 3112 3113 restart: 3114 mutex_lock(&cgroup_mutex); 3115 3116 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3117 for_each_subsys(ss, ssid) { 3118 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3119 DEFINE_WAIT(wait); 3120 3121 if (!css || !percpu_ref_is_dying(&css->refcnt)) 3122 continue; 3123 3124 cgroup_get_live(dsct); 3125 prepare_to_wait(&dsct->offline_waitq, &wait, 3126 TASK_UNINTERRUPTIBLE); 3127 3128 mutex_unlock(&cgroup_mutex); 3129 schedule(); 3130 finish_wait(&dsct->offline_waitq, &wait); 3131 3132 cgroup_put(dsct); 3133 goto restart; 3134 } 3135 } 3136 } 3137 3138 /** 3139 * cgroup_save_control - save control masks and dom_cgrp of a subtree 3140 * @cgrp: root of the target subtree 3141 * 3142 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the 3143 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3144 * itself. 3145 */ 3146 static void cgroup_save_control(struct cgroup *cgrp) 3147 { 3148 struct cgroup *dsct; 3149 struct cgroup_subsys_state *d_css; 3150 3151 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3152 dsct->old_subtree_control = dsct->subtree_control; 3153 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; 3154 dsct->old_dom_cgrp = dsct->dom_cgrp; 3155 } 3156 } 3157 3158 /** 3159 * cgroup_propagate_control - refresh control masks of a subtree 3160 * @cgrp: root of the target subtree 3161 * 3162 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches 3163 * ->subtree_control and propagate controller availability through the 3164 * subtree so that descendants don't have unavailable controllers enabled. 3165 */ 3166 static void cgroup_propagate_control(struct cgroup *cgrp) 3167 { 3168 struct cgroup *dsct; 3169 struct cgroup_subsys_state *d_css; 3170 3171 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3172 dsct->subtree_control &= cgroup_control(dsct); 3173 dsct->subtree_ss_mask = 3174 cgroup_calc_subtree_ss_mask(dsct->subtree_control, 3175 cgroup_ss_mask(dsct)); 3176 } 3177 } 3178 3179 /** 3180 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree 3181 * @cgrp: root of the target subtree 3182 * 3183 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the 3184 * respective old_ prefixed fields for @cgrp's subtree including @cgrp 3185 * itself. 3186 */ 3187 static void cgroup_restore_control(struct cgroup *cgrp) 3188 { 3189 struct cgroup *dsct; 3190 struct cgroup_subsys_state *d_css; 3191 3192 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3193 dsct->subtree_control = dsct->old_subtree_control; 3194 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; 3195 dsct->dom_cgrp = dsct->old_dom_cgrp; 3196 } 3197 } 3198 3199 static bool css_visible(struct cgroup_subsys_state *css) 3200 { 3201 struct cgroup_subsys *ss = css->ss; 3202 struct cgroup *cgrp = css->cgroup; 3203 3204 if (cgroup_control(cgrp) & (1 << ss->id)) 3205 return true; 3206 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) 3207 return false; 3208 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; 3209 } 3210 3211 /** 3212 * cgroup_apply_control_enable - enable or show csses according to control 3213 * @cgrp: root of the target subtree 3214 * 3215 * Walk @cgrp's subtree and create new csses or make the existing ones 3216 * visible. A css is created invisible if it's being implicitly enabled 3217 * through dependency. An invisible css is made visible when the userland 3218 * explicitly enables it. 3219 * 3220 * Returns 0 on success, -errno on failure. On failure, csses which have 3221 * been processed already aren't cleaned up. The caller is responsible for 3222 * cleaning up with cgroup_apply_control_disable(). 3223 */ 3224 static int cgroup_apply_control_enable(struct cgroup *cgrp) 3225 { 3226 struct cgroup *dsct; 3227 struct cgroup_subsys_state *d_css; 3228 struct cgroup_subsys *ss; 3229 int ssid, ret; 3230 3231 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { 3232 for_each_subsys(ss, ssid) { 3233 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3234 3235 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) 3236 continue; 3237 3238 if (!css) { 3239 css = css_create(dsct, ss); 3240 if (IS_ERR(css)) 3241 return PTR_ERR(css); 3242 } 3243 3244 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3245 3246 if (css_visible(css)) { 3247 ret = css_populate_dir(css); 3248 if (ret) 3249 return ret; 3250 } 3251 } 3252 } 3253 3254 return 0; 3255 } 3256 3257 /** 3258 * cgroup_apply_control_disable - kill or hide csses according to control 3259 * @cgrp: root of the target subtree 3260 * 3261 * Walk @cgrp's subtree and kill and hide csses so that they match 3262 * cgroup_ss_mask() and cgroup_visible_mask(). 3263 * 3264 * A css is hidden when the userland requests it to be disabled while other 3265 * subsystems are still depending on it. The css must not actively control 3266 * resources and be in the vanilla state if it's made visible again later. 3267 * Controllers which may be depended upon should provide ->css_reset() for 3268 * this purpose. 3269 */ 3270 static void cgroup_apply_control_disable(struct cgroup *cgrp) 3271 { 3272 struct cgroup *dsct; 3273 struct cgroup_subsys_state *d_css; 3274 struct cgroup_subsys *ss; 3275 int ssid; 3276 3277 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { 3278 for_each_subsys(ss, ssid) { 3279 struct cgroup_subsys_state *css = cgroup_css(dsct, ss); 3280 3281 if (!css) 3282 continue; 3283 3284 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt)); 3285 3286 if (css->parent && 3287 !(cgroup_ss_mask(dsct) & (1 << ss->id))) { 3288 kill_css(css); 3289 } else if (!css_visible(css)) { 3290 css_clear_dir(css); 3291 if (ss->css_reset) 3292 ss->css_reset(css); 3293 } 3294 } 3295 } 3296 } 3297 3298 /** 3299 * cgroup_apply_control - apply control mask updates to the subtree 3300 * @cgrp: root of the target subtree 3301 * 3302 * subsystems can be enabled and disabled in a subtree using the following 3303 * steps. 3304 * 3305 * 1. Call cgroup_save_control() to stash the current state. 3306 * 2. Update ->subtree_control masks in the subtree as desired. 3307 * 3. Call cgroup_apply_control() to apply the changes. 3308 * 4. Optionally perform other related operations. 3309 * 5. Call cgroup_finalize_control() to finish up. 3310 * 3311 * This function implements step 3 and propagates the mask changes 3312 * throughout @cgrp's subtree, updates csses accordingly and perform 3313 * process migrations. 3314 */ 3315 static int cgroup_apply_control(struct cgroup *cgrp) 3316 { 3317 int ret; 3318 3319 cgroup_propagate_control(cgrp); 3320 3321 ret = cgroup_apply_control_enable(cgrp); 3322 if (ret) 3323 return ret; 3324 3325 /* 3326 * At this point, cgroup_e_css_by_mask() results reflect the new csses 3327 * making the following cgroup_update_dfl_csses() properly update 3328 * css associations of all tasks in the subtree. 3329 */ 3330 return cgroup_update_dfl_csses(cgrp); 3331 } 3332 3333 /** 3334 * cgroup_finalize_control - finalize control mask update 3335 * @cgrp: root of the target subtree 3336 * @ret: the result of the update 3337 * 3338 * Finalize control mask update. See cgroup_apply_control() for more info. 3339 */ 3340 static void cgroup_finalize_control(struct cgroup *cgrp, int ret) 3341 { 3342 if (ret) { 3343 cgroup_restore_control(cgrp); 3344 cgroup_propagate_control(cgrp); 3345 } 3346 3347 cgroup_apply_control_disable(cgrp); 3348 } 3349 3350 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable) 3351 { 3352 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask; 3353 3354 /* if nothing is getting enabled, nothing to worry about */ 3355 if (!enable) 3356 return 0; 3357 3358 /* can @cgrp host any resources? */ 3359 if (!cgroup_is_valid_domain(cgrp->dom_cgrp)) 3360 return -EOPNOTSUPP; 3361 3362 /* mixables don't care */ 3363 if (cgroup_is_mixable(cgrp)) 3364 return 0; 3365 3366 if (domain_enable) { 3367 /* can't enable domain controllers inside a thread subtree */ 3368 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3369 return -EOPNOTSUPP; 3370 } else { 3371 /* 3372 * Threaded controllers can handle internal competitions 3373 * and are always allowed inside a (prospective) thread 3374 * subtree. 3375 */ 3376 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp)) 3377 return 0; 3378 } 3379 3380 /* 3381 * Controllers can't be enabled for a cgroup with tasks to avoid 3382 * child cgroups competing against tasks. 3383 */ 3384 if (cgroup_has_tasks(cgrp)) 3385 return -EBUSY; 3386 3387 return 0; 3388 } 3389 3390 /* change the enabled child controllers for a cgroup in the default hierarchy */ 3391 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, 3392 char *buf, size_t nbytes, 3393 loff_t off) 3394 { 3395 u16 enable = 0, disable = 0; 3396 struct cgroup *cgrp, *child; 3397 struct cgroup_subsys *ss; 3398 char *tok; 3399 int ssid, ret; 3400 3401 /* 3402 * Parse input - space separated list of subsystem names prefixed 3403 * with either + or -. 3404 */ 3405 buf = strstrip(buf); 3406 while ((tok = strsep(&buf, " "))) { 3407 if (tok[0] == '\0') 3408 continue; 3409 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { 3410 if (!cgroup_ssid_enabled(ssid) || 3411 strcmp(tok + 1, ss->name)) 3412 continue; 3413 3414 if (*tok == '+') { 3415 enable |= 1 << ssid; 3416 disable &= ~(1 << ssid); 3417 } else if (*tok == '-') { 3418 disable |= 1 << ssid; 3419 enable &= ~(1 << ssid); 3420 } else { 3421 return -EINVAL; 3422 } 3423 break; 3424 } while_each_subsys_mask(); 3425 if (ssid == CGROUP_SUBSYS_COUNT) 3426 return -EINVAL; 3427 } 3428 3429 cgrp = cgroup_kn_lock_live(of->kn, true); 3430 if (!cgrp) 3431 return -ENODEV; 3432 3433 for_each_subsys(ss, ssid) { 3434 if (enable & (1 << ssid)) { 3435 if (cgrp->subtree_control & (1 << ssid)) { 3436 enable &= ~(1 << ssid); 3437 continue; 3438 } 3439 3440 if (!(cgroup_control(cgrp) & (1 << ssid))) { 3441 ret = -ENOENT; 3442 goto out_unlock; 3443 } 3444 } else if (disable & (1 << ssid)) { 3445 if (!(cgrp->subtree_control & (1 << ssid))) { 3446 disable &= ~(1 << ssid); 3447 continue; 3448 } 3449 3450 /* a child has it enabled? */ 3451 cgroup_for_each_live_child(child, cgrp) { 3452 if (child->subtree_control & (1 << ssid)) { 3453 ret = -EBUSY; 3454 goto out_unlock; 3455 } 3456 } 3457 } 3458 } 3459 3460 if (!enable && !disable) { 3461 ret = 0; 3462 goto out_unlock; 3463 } 3464 3465 ret = cgroup_vet_subtree_control_enable(cgrp, enable); 3466 if (ret) 3467 goto out_unlock; 3468 3469 /* save and update control masks and prepare csses */ 3470 cgroup_save_control(cgrp); 3471 3472 cgrp->subtree_control |= enable; 3473 cgrp->subtree_control &= ~disable; 3474 3475 ret = cgroup_apply_control(cgrp); 3476 cgroup_finalize_control(cgrp, ret); 3477 if (ret) 3478 goto out_unlock; 3479 3480 kernfs_activate(cgrp->kn); 3481 out_unlock: 3482 cgroup_kn_unlock(of->kn); 3483 return ret ?: nbytes; 3484 } 3485 3486 /** 3487 * cgroup_enable_threaded - make @cgrp threaded 3488 * @cgrp: the target cgroup 3489 * 3490 * Called when "threaded" is written to the cgroup.type interface file and 3491 * tries to make @cgrp threaded and join the parent's resource domain. 3492 * This function is never called on the root cgroup as cgroup.type doesn't 3493 * exist on it. 3494 */ 3495 static int cgroup_enable_threaded(struct cgroup *cgrp) 3496 { 3497 struct cgroup *parent = cgroup_parent(cgrp); 3498 struct cgroup *dom_cgrp = parent->dom_cgrp; 3499 struct cgroup *dsct; 3500 struct cgroup_subsys_state *d_css; 3501 int ret; 3502 3503 lockdep_assert_held(&cgroup_mutex); 3504 3505 /* noop if already threaded */ 3506 if (cgroup_is_threaded(cgrp)) 3507 return 0; 3508 3509 /* 3510 * If @cgroup is populated or has domain controllers enabled, it 3511 * can't be switched. While the below cgroup_can_be_thread_root() 3512 * test can catch the same conditions, that's only when @parent is 3513 * not mixable, so let's check it explicitly. 3514 */ 3515 if (cgroup_is_populated(cgrp) || 3516 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask) 3517 return -EOPNOTSUPP; 3518 3519 /* we're joining the parent's domain, ensure its validity */ 3520 if (!cgroup_is_valid_domain(dom_cgrp) || 3521 !cgroup_can_be_thread_root(dom_cgrp)) 3522 return -EOPNOTSUPP; 3523 3524 /* 3525 * The following shouldn't cause actual migrations and should 3526 * always succeed. 3527 */ 3528 cgroup_save_control(cgrp); 3529 3530 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) 3531 if (dsct == cgrp || cgroup_is_threaded(dsct)) 3532 dsct->dom_cgrp = dom_cgrp; 3533 3534 ret = cgroup_apply_control(cgrp); 3535 if (!ret) 3536 parent->nr_threaded_children++; 3537 3538 cgroup_finalize_control(cgrp, ret); 3539 return ret; 3540 } 3541 3542 static int cgroup_type_show(struct seq_file *seq, void *v) 3543 { 3544 struct cgroup *cgrp = seq_css(seq)->cgroup; 3545 3546 if (cgroup_is_threaded(cgrp)) 3547 seq_puts(seq, "threaded\n"); 3548 else if (!cgroup_is_valid_domain(cgrp)) 3549 seq_puts(seq, "domain invalid\n"); 3550 else if (cgroup_is_thread_root(cgrp)) 3551 seq_puts(seq, "domain threaded\n"); 3552 else 3553 seq_puts(seq, "domain\n"); 3554 3555 return 0; 3556 } 3557 3558 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf, 3559 size_t nbytes, loff_t off) 3560 { 3561 struct cgroup *cgrp; 3562 int ret; 3563 3564 /* only switching to threaded mode is supported */ 3565 if (strcmp(strstrip(buf), "threaded")) 3566 return -EINVAL; 3567 3568 /* drain dying csses before we re-apply (threaded) subtree control */ 3569 cgrp = cgroup_kn_lock_live(of->kn, true); 3570 if (!cgrp) 3571 return -ENOENT; 3572 3573 /* threaded can only be enabled */ 3574 ret = cgroup_enable_threaded(cgrp); 3575 3576 cgroup_kn_unlock(of->kn); 3577 return ret ?: nbytes; 3578 } 3579 3580 static int cgroup_max_descendants_show(struct seq_file *seq, void *v) 3581 { 3582 struct cgroup *cgrp = seq_css(seq)->cgroup; 3583 int descendants = READ_ONCE(cgrp->max_descendants); 3584 3585 if (descendants == INT_MAX) 3586 seq_puts(seq, "max\n"); 3587 else 3588 seq_printf(seq, "%d\n", descendants); 3589 3590 return 0; 3591 } 3592 3593 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of, 3594 char *buf, size_t nbytes, loff_t off) 3595 { 3596 struct cgroup *cgrp; 3597 int descendants; 3598 ssize_t ret; 3599 3600 buf = strstrip(buf); 3601 if (!strcmp(buf, "max")) { 3602 descendants = INT_MAX; 3603 } else { 3604 ret = kstrtoint(buf, 0, &descendants); 3605 if (ret) 3606 return ret; 3607 } 3608 3609 if (descendants < 0) 3610 return -ERANGE; 3611 3612 cgrp = cgroup_kn_lock_live(of->kn, false); 3613 if (!cgrp) 3614 return -ENOENT; 3615 3616 cgrp->max_descendants = descendants; 3617 3618 cgroup_kn_unlock(of->kn); 3619 3620 return nbytes; 3621 } 3622 3623 static int cgroup_max_depth_show(struct seq_file *seq, void *v) 3624 { 3625 struct cgroup *cgrp = seq_css(seq)->cgroup; 3626 int depth = READ_ONCE(cgrp->max_depth); 3627 3628 if (depth == INT_MAX) 3629 seq_puts(seq, "max\n"); 3630 else 3631 seq_printf(seq, "%d\n", depth); 3632 3633 return 0; 3634 } 3635 3636 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of, 3637 char *buf, size_t nbytes, loff_t off) 3638 { 3639 struct cgroup *cgrp; 3640 ssize_t ret; 3641 int depth; 3642 3643 buf = strstrip(buf); 3644 if (!strcmp(buf, "max")) { 3645 depth = INT_MAX; 3646 } else { 3647 ret = kstrtoint(buf, 0, &depth); 3648 if (ret) 3649 return ret; 3650 } 3651 3652 if (depth < 0) 3653 return -ERANGE; 3654 3655 cgrp = cgroup_kn_lock_live(of->kn, false); 3656 if (!cgrp) 3657 return -ENOENT; 3658 3659 cgrp->max_depth = depth; 3660 3661 cgroup_kn_unlock(of->kn); 3662 3663 return nbytes; 3664 } 3665 3666 static int cgroup_events_show(struct seq_file *seq, void *v) 3667 { 3668 struct cgroup *cgrp = seq_css(seq)->cgroup; 3669 3670 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp)); 3671 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags)); 3672 3673 return 0; 3674 } 3675 3676 static int cgroup_stat_show(struct seq_file *seq, void *v) 3677 { 3678 struct cgroup *cgroup = seq_css(seq)->cgroup; 3679 3680 seq_printf(seq, "nr_descendants %d\n", 3681 cgroup->nr_descendants); 3682 seq_printf(seq, "nr_dying_descendants %d\n", 3683 cgroup->nr_dying_descendants); 3684 3685 return 0; 3686 } 3687 3688 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq, 3689 struct cgroup *cgrp, int ssid) 3690 { 3691 struct cgroup_subsys *ss = cgroup_subsys[ssid]; 3692 struct cgroup_subsys_state *css; 3693 int ret; 3694 3695 if (!ss->css_extra_stat_show) 3696 return 0; 3697 3698 css = cgroup_tryget_css(cgrp, ss); 3699 if (!css) 3700 return 0; 3701 3702 ret = ss->css_extra_stat_show(seq, css); 3703 css_put(css); 3704 return ret; 3705 } 3706 3707 static int cpu_stat_show(struct seq_file *seq, void *v) 3708 { 3709 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup; 3710 int ret = 0; 3711 3712 cgroup_base_stat_cputime_show(seq); 3713 #ifdef CONFIG_CGROUP_SCHED 3714 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id); 3715 #endif 3716 return ret; 3717 } 3718 3719 #ifdef CONFIG_PSI 3720 static int cgroup_io_pressure_show(struct seq_file *seq, void *v) 3721 { 3722 struct cgroup *cgrp = seq_css(seq)->cgroup; 3723 struct psi_group *psi = cgroup_psi(cgrp); 3724 3725 return psi_show(seq, psi, PSI_IO); 3726 } 3727 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v) 3728 { 3729 struct cgroup *cgrp = seq_css(seq)->cgroup; 3730 struct psi_group *psi = cgroup_psi(cgrp); 3731 3732 return psi_show(seq, psi, PSI_MEM); 3733 } 3734 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v) 3735 { 3736 struct cgroup *cgrp = seq_css(seq)->cgroup; 3737 struct psi_group *psi = cgroup_psi(cgrp); 3738 3739 return psi_show(seq, psi, PSI_CPU); 3740 } 3741 3742 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf, 3743 size_t nbytes, enum psi_res res) 3744 { 3745 struct cgroup_file_ctx *ctx = of->priv; 3746 struct psi_trigger *new; 3747 struct cgroup *cgrp; 3748 struct psi_group *psi; 3749 3750 cgrp = cgroup_kn_lock_live(of->kn, false); 3751 if (!cgrp) 3752 return -ENODEV; 3753 3754 cgroup_get(cgrp); 3755 cgroup_kn_unlock(of->kn); 3756 3757 /* Allow only one trigger per file descriptor */ 3758 if (ctx->psi.trigger) { 3759 cgroup_put(cgrp); 3760 return -EBUSY; 3761 } 3762 3763 psi = cgroup_psi(cgrp); 3764 new = psi_trigger_create(psi, buf, res); 3765 if (IS_ERR(new)) { 3766 cgroup_put(cgrp); 3767 return PTR_ERR(new); 3768 } 3769 3770 smp_store_release(&ctx->psi.trigger, new); 3771 cgroup_put(cgrp); 3772 3773 return nbytes; 3774 } 3775 3776 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of, 3777 char *buf, size_t nbytes, 3778 loff_t off) 3779 { 3780 return pressure_write(of, buf, nbytes, PSI_IO); 3781 } 3782 3783 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of, 3784 char *buf, size_t nbytes, 3785 loff_t off) 3786 { 3787 return pressure_write(of, buf, nbytes, PSI_MEM); 3788 } 3789 3790 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of, 3791 char *buf, size_t nbytes, 3792 loff_t off) 3793 { 3794 return pressure_write(of, buf, nbytes, PSI_CPU); 3795 } 3796 3797 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3798 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v) 3799 { 3800 struct cgroup *cgrp = seq_css(seq)->cgroup; 3801 struct psi_group *psi = cgroup_psi(cgrp); 3802 3803 return psi_show(seq, psi, PSI_IRQ); 3804 } 3805 3806 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of, 3807 char *buf, size_t nbytes, 3808 loff_t off) 3809 { 3810 return pressure_write(of, buf, nbytes, PSI_IRQ); 3811 } 3812 #endif 3813 3814 static int cgroup_pressure_show(struct seq_file *seq, void *v) 3815 { 3816 struct cgroup *cgrp = seq_css(seq)->cgroup; 3817 struct psi_group *psi = cgroup_psi(cgrp); 3818 3819 seq_printf(seq, "%d\n", psi->enabled); 3820 3821 return 0; 3822 } 3823 3824 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, 3825 char *buf, size_t nbytes, 3826 loff_t off) 3827 { 3828 ssize_t ret; 3829 int enable; 3830 struct cgroup *cgrp; 3831 struct psi_group *psi; 3832 3833 ret = kstrtoint(strstrip(buf), 0, &enable); 3834 if (ret) 3835 return ret; 3836 3837 if (enable < 0 || enable > 1) 3838 return -ERANGE; 3839 3840 cgrp = cgroup_kn_lock_live(of->kn, false); 3841 if (!cgrp) 3842 return -ENOENT; 3843 3844 psi = cgroup_psi(cgrp); 3845 if (psi->enabled != enable) { 3846 int i; 3847 3848 /* show or hide {cpu,memory,io,irq}.pressure files */ 3849 for (i = 0; i < NR_PSI_RESOURCES; i++) 3850 cgroup_file_show(&cgrp->psi_files[i], enable); 3851 3852 psi->enabled = enable; 3853 if (enable) 3854 psi_cgroup_restart(psi); 3855 } 3856 3857 cgroup_kn_unlock(of->kn); 3858 3859 return nbytes; 3860 } 3861 3862 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of, 3863 poll_table *pt) 3864 { 3865 struct cgroup_file_ctx *ctx = of->priv; 3866 3867 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt); 3868 } 3869 3870 static void cgroup_pressure_release(struct kernfs_open_file *of) 3871 { 3872 struct cgroup_file_ctx *ctx = of->priv; 3873 3874 psi_trigger_destroy(ctx->psi.trigger); 3875 } 3876 3877 bool cgroup_psi_enabled(void) 3878 { 3879 if (static_branch_likely(&psi_disabled)) 3880 return false; 3881 3882 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0; 3883 } 3884 3885 #else /* CONFIG_PSI */ 3886 bool cgroup_psi_enabled(void) 3887 { 3888 return false; 3889 } 3890 3891 #endif /* CONFIG_PSI */ 3892 3893 static int cgroup_freeze_show(struct seq_file *seq, void *v) 3894 { 3895 struct cgroup *cgrp = seq_css(seq)->cgroup; 3896 3897 seq_printf(seq, "%d\n", cgrp->freezer.freeze); 3898 3899 return 0; 3900 } 3901 3902 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of, 3903 char *buf, size_t nbytes, loff_t off) 3904 { 3905 struct cgroup *cgrp; 3906 ssize_t ret; 3907 int freeze; 3908 3909 ret = kstrtoint(strstrip(buf), 0, &freeze); 3910 if (ret) 3911 return ret; 3912 3913 if (freeze < 0 || freeze > 1) 3914 return -ERANGE; 3915 3916 cgrp = cgroup_kn_lock_live(of->kn, false); 3917 if (!cgrp) 3918 return -ENOENT; 3919 3920 cgroup_freeze(cgrp, freeze); 3921 3922 cgroup_kn_unlock(of->kn); 3923 3924 return nbytes; 3925 } 3926 3927 static void __cgroup_kill(struct cgroup *cgrp) 3928 { 3929 struct css_task_iter it; 3930 struct task_struct *task; 3931 3932 lockdep_assert_held(&cgroup_mutex); 3933 3934 spin_lock_irq(&css_set_lock); 3935 set_bit(CGRP_KILL, &cgrp->flags); 3936 spin_unlock_irq(&css_set_lock); 3937 3938 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it); 3939 while ((task = css_task_iter_next(&it))) { 3940 /* Ignore kernel threads here. */ 3941 if (task->flags & PF_KTHREAD) 3942 continue; 3943 3944 /* Skip tasks that are already dying. */ 3945 if (__fatal_signal_pending(task)) 3946 continue; 3947 3948 send_sig(SIGKILL, task, 0); 3949 } 3950 css_task_iter_end(&it); 3951 3952 spin_lock_irq(&css_set_lock); 3953 clear_bit(CGRP_KILL, &cgrp->flags); 3954 spin_unlock_irq(&css_set_lock); 3955 } 3956 3957 static void cgroup_kill(struct cgroup *cgrp) 3958 { 3959 struct cgroup_subsys_state *css; 3960 struct cgroup *dsct; 3961 3962 lockdep_assert_held(&cgroup_mutex); 3963 3964 cgroup_for_each_live_descendant_pre(dsct, css, cgrp) 3965 __cgroup_kill(dsct); 3966 } 3967 3968 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf, 3969 size_t nbytes, loff_t off) 3970 { 3971 ssize_t ret = 0; 3972 int kill; 3973 struct cgroup *cgrp; 3974 3975 ret = kstrtoint(strstrip(buf), 0, &kill); 3976 if (ret) 3977 return ret; 3978 3979 if (kill != 1) 3980 return -ERANGE; 3981 3982 cgrp = cgroup_kn_lock_live(of->kn, false); 3983 if (!cgrp) 3984 return -ENOENT; 3985 3986 /* 3987 * Killing is a process directed operation, i.e. the whole thread-group 3988 * is taken down so act like we do for cgroup.procs and only make this 3989 * writable in non-threaded cgroups. 3990 */ 3991 if (cgroup_is_threaded(cgrp)) 3992 ret = -EOPNOTSUPP; 3993 else 3994 cgroup_kill(cgrp); 3995 3996 cgroup_kn_unlock(of->kn); 3997 3998 return ret ?: nbytes; 3999 } 4000 4001 static int cgroup_file_open(struct kernfs_open_file *of) 4002 { 4003 struct cftype *cft = of_cft(of); 4004 struct cgroup_file_ctx *ctx; 4005 int ret; 4006 4007 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 4008 if (!ctx) 4009 return -ENOMEM; 4010 4011 ctx->ns = current->nsproxy->cgroup_ns; 4012 get_cgroup_ns(ctx->ns); 4013 of->priv = ctx; 4014 4015 if (!cft->open) 4016 return 0; 4017 4018 ret = cft->open(of); 4019 if (ret) { 4020 put_cgroup_ns(ctx->ns); 4021 kfree(ctx); 4022 } 4023 return ret; 4024 } 4025 4026 static void cgroup_file_release(struct kernfs_open_file *of) 4027 { 4028 struct cftype *cft = of_cft(of); 4029 struct cgroup_file_ctx *ctx = of->priv; 4030 4031 if (cft->release) 4032 cft->release(of); 4033 put_cgroup_ns(ctx->ns); 4034 kfree(ctx); 4035 } 4036 4037 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, 4038 size_t nbytes, loff_t off) 4039 { 4040 struct cgroup_file_ctx *ctx = of->priv; 4041 struct cgroup *cgrp = of->kn->parent->priv; 4042 struct cftype *cft = of_cft(of); 4043 struct cgroup_subsys_state *css; 4044 int ret; 4045 4046 if (!nbytes) 4047 return 0; 4048 4049 /* 4050 * If namespaces are delegation boundaries, disallow writes to 4051 * files in an non-init namespace root from inside the namespace 4052 * except for the files explicitly marked delegatable - 4053 * cgroup.procs and cgroup.subtree_control. 4054 */ 4055 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) && 4056 !(cft->flags & CFTYPE_NS_DELEGATABLE) && 4057 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp) 4058 return -EPERM; 4059 4060 if (cft->write) 4061 return cft->write(of, buf, nbytes, off); 4062 4063 /* 4064 * kernfs guarantees that a file isn't deleted with operations in 4065 * flight, which means that the matching css is and stays alive and 4066 * doesn't need to be pinned. The RCU locking is not necessary 4067 * either. It's just for the convenience of using cgroup_css(). 4068 */ 4069 rcu_read_lock(); 4070 css = cgroup_css(cgrp, cft->ss); 4071 rcu_read_unlock(); 4072 4073 if (cft->write_u64) { 4074 unsigned long long v; 4075 ret = kstrtoull(buf, 0, &v); 4076 if (!ret) 4077 ret = cft->write_u64(css, cft, v); 4078 } else if (cft->write_s64) { 4079 long long v; 4080 ret = kstrtoll(buf, 0, &v); 4081 if (!ret) 4082 ret = cft->write_s64(css, cft, v); 4083 } else { 4084 ret = -EINVAL; 4085 } 4086 4087 return ret ?: nbytes; 4088 } 4089 4090 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt) 4091 { 4092 struct cftype *cft = of_cft(of); 4093 4094 if (cft->poll) 4095 return cft->poll(of, pt); 4096 4097 return kernfs_generic_poll(of, pt); 4098 } 4099 4100 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) 4101 { 4102 return seq_cft(seq)->seq_start(seq, ppos); 4103 } 4104 4105 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) 4106 { 4107 return seq_cft(seq)->seq_next(seq, v, ppos); 4108 } 4109 4110 static void cgroup_seqfile_stop(struct seq_file *seq, void *v) 4111 { 4112 if (seq_cft(seq)->seq_stop) 4113 seq_cft(seq)->seq_stop(seq, v); 4114 } 4115 4116 static int cgroup_seqfile_show(struct seq_file *m, void *arg) 4117 { 4118 struct cftype *cft = seq_cft(m); 4119 struct cgroup_subsys_state *css = seq_css(m); 4120 4121 if (cft->seq_show) 4122 return cft->seq_show(m, arg); 4123 4124 if (cft->read_u64) 4125 seq_printf(m, "%llu\n", cft->read_u64(css, cft)); 4126 else if (cft->read_s64) 4127 seq_printf(m, "%lld\n", cft->read_s64(css, cft)); 4128 else 4129 return -EINVAL; 4130 return 0; 4131 } 4132 4133 static struct kernfs_ops cgroup_kf_single_ops = { 4134 .atomic_write_len = PAGE_SIZE, 4135 .open = cgroup_file_open, 4136 .release = cgroup_file_release, 4137 .write = cgroup_file_write, 4138 .poll = cgroup_file_poll, 4139 .seq_show = cgroup_seqfile_show, 4140 }; 4141 4142 static struct kernfs_ops cgroup_kf_ops = { 4143 .atomic_write_len = PAGE_SIZE, 4144 .open = cgroup_file_open, 4145 .release = cgroup_file_release, 4146 .write = cgroup_file_write, 4147 .poll = cgroup_file_poll, 4148 .seq_start = cgroup_seqfile_start, 4149 .seq_next = cgroup_seqfile_next, 4150 .seq_stop = cgroup_seqfile_stop, 4151 .seq_show = cgroup_seqfile_show, 4152 }; 4153 4154 /* set uid and gid of cgroup dirs and files to that of the creator */ 4155 static int cgroup_kn_set_ugid(struct kernfs_node *kn) 4156 { 4157 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 4158 .ia_uid = current_fsuid(), 4159 .ia_gid = current_fsgid(), }; 4160 4161 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 4162 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 4163 return 0; 4164 4165 return kernfs_setattr(kn, &iattr); 4166 } 4167 4168 static void cgroup_file_notify_timer(struct timer_list *timer) 4169 { 4170 cgroup_file_notify(container_of(timer, struct cgroup_file, 4171 notify_timer)); 4172 } 4173 4174 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, 4175 struct cftype *cft) 4176 { 4177 char name[CGROUP_FILE_NAME_MAX]; 4178 struct kernfs_node *kn; 4179 struct lock_class_key *key = NULL; 4180 int ret; 4181 4182 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4183 key = &cft->lockdep_key; 4184 #endif 4185 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), 4186 cgroup_file_mode(cft), 4187 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 4188 0, cft->kf_ops, cft, 4189 NULL, key); 4190 if (IS_ERR(kn)) 4191 return PTR_ERR(kn); 4192 4193 ret = cgroup_kn_set_ugid(kn); 4194 if (ret) { 4195 kernfs_remove(kn); 4196 return ret; 4197 } 4198 4199 if (cft->file_offset) { 4200 struct cgroup_file *cfile = (void *)css + cft->file_offset; 4201 4202 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0); 4203 4204 spin_lock_irq(&cgroup_file_kn_lock); 4205 cfile->kn = kn; 4206 spin_unlock_irq(&cgroup_file_kn_lock); 4207 } 4208 4209 return 0; 4210 } 4211 4212 /** 4213 * cgroup_addrm_files - add or remove files to a cgroup directory 4214 * @css: the target css 4215 * @cgrp: the target cgroup (usually css->cgroup) 4216 * @cfts: array of cftypes to be added 4217 * @is_add: whether to add or remove 4218 * 4219 * Depending on @is_add, add or remove files defined by @cfts on @cgrp. 4220 * For removals, this function never fails. 4221 */ 4222 static int cgroup_addrm_files(struct cgroup_subsys_state *css, 4223 struct cgroup *cgrp, struct cftype cfts[], 4224 bool is_add) 4225 { 4226 struct cftype *cft, *cft_end = NULL; 4227 int ret = 0; 4228 4229 lockdep_assert_held(&cgroup_mutex); 4230 4231 restart: 4232 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { 4233 /* does cft->flags tell us to skip this file on @cgrp? */ 4234 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) 4235 continue; 4236 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) 4237 continue; 4238 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) 4239 continue; 4240 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) 4241 continue; 4242 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug) 4243 continue; 4244 if (is_add) { 4245 ret = cgroup_add_file(css, cgrp, cft); 4246 if (ret) { 4247 pr_warn("%s: failed to add %s, err=%d\n", 4248 __func__, cft->name, ret); 4249 cft_end = cft; 4250 is_add = false; 4251 goto restart; 4252 } 4253 } else { 4254 cgroup_rm_file(cgrp, cft); 4255 } 4256 } 4257 return ret; 4258 } 4259 4260 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) 4261 { 4262 struct cgroup_subsys *ss = cfts[0].ss; 4263 struct cgroup *root = &ss->root->cgrp; 4264 struct cgroup_subsys_state *css; 4265 int ret = 0; 4266 4267 lockdep_assert_held(&cgroup_mutex); 4268 4269 /* add/rm files for all cgroups created before */ 4270 css_for_each_descendant_pre(css, cgroup_css(root, ss)) { 4271 struct cgroup *cgrp = css->cgroup; 4272 4273 if (!(css->flags & CSS_VISIBLE)) 4274 continue; 4275 4276 ret = cgroup_addrm_files(css, cgrp, cfts, is_add); 4277 if (ret) 4278 break; 4279 } 4280 4281 if (is_add && !ret) 4282 kernfs_activate(root->kn); 4283 return ret; 4284 } 4285 4286 static void cgroup_exit_cftypes(struct cftype *cfts) 4287 { 4288 struct cftype *cft; 4289 4290 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4291 /* free copy for custom atomic_write_len, see init_cftypes() */ 4292 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) 4293 kfree(cft->kf_ops); 4294 cft->kf_ops = NULL; 4295 cft->ss = NULL; 4296 4297 /* revert flags set by cgroup core while adding @cfts */ 4298 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL | 4299 __CFTYPE_ADDED); 4300 } 4301 } 4302 4303 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4304 { 4305 struct cftype *cft; 4306 int ret = 0; 4307 4308 for (cft = cfts; cft->name[0] != '\0'; cft++) { 4309 struct kernfs_ops *kf_ops; 4310 4311 WARN_ON(cft->ss || cft->kf_ops); 4312 4313 if (cft->flags & __CFTYPE_ADDED) { 4314 ret = -EBUSY; 4315 break; 4316 } 4317 4318 if (cft->seq_start) 4319 kf_ops = &cgroup_kf_ops; 4320 else 4321 kf_ops = &cgroup_kf_single_ops; 4322 4323 /* 4324 * Ugh... if @cft wants a custom max_write_len, we need to 4325 * make a copy of kf_ops to set its atomic_write_len. 4326 */ 4327 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { 4328 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); 4329 if (!kf_ops) { 4330 ret = -ENOMEM; 4331 break; 4332 } 4333 kf_ops->atomic_write_len = cft->max_write_len; 4334 } 4335 4336 cft->kf_ops = kf_ops; 4337 cft->ss = ss; 4338 cft->flags |= __CFTYPE_ADDED; 4339 } 4340 4341 if (ret) 4342 cgroup_exit_cftypes(cfts); 4343 return ret; 4344 } 4345 4346 static int cgroup_rm_cftypes_locked(struct cftype *cfts) 4347 { 4348 lockdep_assert_held(&cgroup_mutex); 4349 4350 list_del(&cfts->node); 4351 cgroup_apply_cftypes(cfts, false); 4352 cgroup_exit_cftypes(cfts); 4353 return 0; 4354 } 4355 4356 /** 4357 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem 4358 * @cfts: zero-length name terminated array of cftypes 4359 * 4360 * Unregister @cfts. Files described by @cfts are removed from all 4361 * existing cgroups and all future cgroups won't have them either. This 4362 * function can be called anytime whether @cfts' subsys is attached or not. 4363 * 4364 * Returns 0 on successful unregistration, -ENOENT if @cfts is not 4365 * registered. 4366 */ 4367 int cgroup_rm_cftypes(struct cftype *cfts) 4368 { 4369 int ret; 4370 4371 if (!cfts || cfts[0].name[0] == '\0') 4372 return 0; 4373 4374 if (!(cfts[0].flags & __CFTYPE_ADDED)) 4375 return -ENOENT; 4376 4377 mutex_lock(&cgroup_mutex); 4378 ret = cgroup_rm_cftypes_locked(cfts); 4379 mutex_unlock(&cgroup_mutex); 4380 return ret; 4381 } 4382 4383 /** 4384 * cgroup_add_cftypes - add an array of cftypes to a subsystem 4385 * @ss: target cgroup subsystem 4386 * @cfts: zero-length name terminated array of cftypes 4387 * 4388 * Register @cfts to @ss. Files described by @cfts are created for all 4389 * existing cgroups to which @ss is attached and all future cgroups will 4390 * have them too. This function can be called anytime whether @ss is 4391 * attached or not. 4392 * 4393 * Returns 0 on successful registration, -errno on failure. Note that this 4394 * function currently returns 0 as long as @cfts registration is successful 4395 * even if some file creation attempts on existing cgroups fail. 4396 */ 4397 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4398 { 4399 int ret; 4400 4401 if (!cgroup_ssid_enabled(ss->id)) 4402 return 0; 4403 4404 if (!cfts || cfts[0].name[0] == '\0') 4405 return 0; 4406 4407 ret = cgroup_init_cftypes(ss, cfts); 4408 if (ret) 4409 return ret; 4410 4411 mutex_lock(&cgroup_mutex); 4412 4413 list_add_tail(&cfts->node, &ss->cfts); 4414 ret = cgroup_apply_cftypes(cfts, true); 4415 if (ret) 4416 cgroup_rm_cftypes_locked(cfts); 4417 4418 mutex_unlock(&cgroup_mutex); 4419 return ret; 4420 } 4421 4422 /** 4423 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy 4424 * @ss: target cgroup subsystem 4425 * @cfts: zero-length name terminated array of cftypes 4426 * 4427 * Similar to cgroup_add_cftypes() but the added files are only used for 4428 * the default hierarchy. 4429 */ 4430 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4431 { 4432 struct cftype *cft; 4433 4434 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4435 cft->flags |= __CFTYPE_ONLY_ON_DFL; 4436 return cgroup_add_cftypes(ss, cfts); 4437 } 4438 4439 /** 4440 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies 4441 * @ss: target cgroup subsystem 4442 * @cfts: zero-length name terminated array of cftypes 4443 * 4444 * Similar to cgroup_add_cftypes() but the added files are only used for 4445 * the legacy hierarchies. 4446 */ 4447 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) 4448 { 4449 struct cftype *cft; 4450 4451 for (cft = cfts; cft && cft->name[0] != '\0'; cft++) 4452 cft->flags |= __CFTYPE_NOT_ON_DFL; 4453 return cgroup_add_cftypes(ss, cfts); 4454 } 4455 4456 /** 4457 * cgroup_file_notify - generate a file modified event for a cgroup_file 4458 * @cfile: target cgroup_file 4459 * 4460 * @cfile must have been obtained by setting cftype->file_offset. 4461 */ 4462 void cgroup_file_notify(struct cgroup_file *cfile) 4463 { 4464 unsigned long flags; 4465 4466 spin_lock_irqsave(&cgroup_file_kn_lock, flags); 4467 if (cfile->kn) { 4468 unsigned long last = cfile->notified_at; 4469 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV; 4470 4471 if (time_in_range(jiffies, last, next)) { 4472 timer_reduce(&cfile->notify_timer, next); 4473 } else { 4474 kernfs_notify(cfile->kn); 4475 cfile->notified_at = jiffies; 4476 } 4477 } 4478 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); 4479 } 4480 4481 /** 4482 * cgroup_file_show - show or hide a hidden cgroup file 4483 * @cfile: target cgroup_file obtained by setting cftype->file_offset 4484 * @show: whether to show or hide 4485 */ 4486 void cgroup_file_show(struct cgroup_file *cfile, bool show) 4487 { 4488 struct kernfs_node *kn; 4489 4490 spin_lock_irq(&cgroup_file_kn_lock); 4491 kn = cfile->kn; 4492 kernfs_get(kn); 4493 spin_unlock_irq(&cgroup_file_kn_lock); 4494 4495 if (kn) 4496 kernfs_show(kn, show); 4497 4498 kernfs_put(kn); 4499 } 4500 4501 /** 4502 * css_next_child - find the next child of a given css 4503 * @pos: the current position (%NULL to initiate traversal) 4504 * @parent: css whose children to walk 4505 * 4506 * This function returns the next child of @parent and should be called 4507 * under either cgroup_mutex or RCU read lock. The only requirement is 4508 * that @parent and @pos are accessible. The next sibling is guaranteed to 4509 * be returned regardless of their states. 4510 * 4511 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4512 * css which finished ->css_online() is guaranteed to be visible in the 4513 * future iterations and will stay visible until the last reference is put. 4514 * A css which hasn't finished ->css_online() or already finished 4515 * ->css_offline() may show up during traversal. It's each subsystem's 4516 * responsibility to synchronize against on/offlining. 4517 */ 4518 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, 4519 struct cgroup_subsys_state *parent) 4520 { 4521 struct cgroup_subsys_state *next; 4522 4523 cgroup_assert_mutex_or_rcu_locked(); 4524 4525 /* 4526 * @pos could already have been unlinked from the sibling list. 4527 * Once a cgroup is removed, its ->sibling.next is no longer 4528 * updated when its next sibling changes. CSS_RELEASED is set when 4529 * @pos is taken off list, at which time its next pointer is valid, 4530 * and, as releases are serialized, the one pointed to by the next 4531 * pointer is guaranteed to not have started release yet. This 4532 * implies that if we observe !CSS_RELEASED on @pos in this RCU 4533 * critical section, the one pointed to by its next pointer is 4534 * guaranteed to not have finished its RCU grace period even if we 4535 * have dropped rcu_read_lock() in-between iterations. 4536 * 4537 * If @pos has CSS_RELEASED set, its next pointer can't be 4538 * dereferenced; however, as each css is given a monotonically 4539 * increasing unique serial number and always appended to the 4540 * sibling list, the next one can be found by walking the parent's 4541 * children until the first css with higher serial number than 4542 * @pos's. While this path can be slower, it happens iff iteration 4543 * races against release and the race window is very small. 4544 */ 4545 if (!pos) { 4546 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); 4547 } else if (likely(!(pos->flags & CSS_RELEASED))) { 4548 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); 4549 } else { 4550 list_for_each_entry_rcu(next, &parent->children, sibling, 4551 lockdep_is_held(&cgroup_mutex)) 4552 if (next->serial_nr > pos->serial_nr) 4553 break; 4554 } 4555 4556 /* 4557 * @next, if not pointing to the head, can be dereferenced and is 4558 * the next sibling. 4559 */ 4560 if (&next->sibling != &parent->children) 4561 return next; 4562 return NULL; 4563 } 4564 4565 /** 4566 * css_next_descendant_pre - find the next descendant for pre-order walk 4567 * @pos: the current position (%NULL to initiate traversal) 4568 * @root: css whose descendants to walk 4569 * 4570 * To be used by css_for_each_descendant_pre(). Find the next descendant 4571 * to visit for pre-order traversal of @root's descendants. @root is 4572 * included in the iteration and the first node to be visited. 4573 * 4574 * While this function requires cgroup_mutex or RCU read locking, it 4575 * doesn't require the whole traversal to be contained in a single critical 4576 * section. This function will return the correct next descendant as long 4577 * as both @pos and @root are accessible and @pos is a descendant of @root. 4578 * 4579 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4580 * css which finished ->css_online() is guaranteed to be visible in the 4581 * future iterations and will stay visible until the last reference is put. 4582 * A css which hasn't finished ->css_online() or already finished 4583 * ->css_offline() may show up during traversal. It's each subsystem's 4584 * responsibility to synchronize against on/offlining. 4585 */ 4586 struct cgroup_subsys_state * 4587 css_next_descendant_pre(struct cgroup_subsys_state *pos, 4588 struct cgroup_subsys_state *root) 4589 { 4590 struct cgroup_subsys_state *next; 4591 4592 cgroup_assert_mutex_or_rcu_locked(); 4593 4594 /* if first iteration, visit @root */ 4595 if (!pos) 4596 return root; 4597 4598 /* visit the first child if exists */ 4599 next = css_next_child(NULL, pos); 4600 if (next) 4601 return next; 4602 4603 /* no child, visit my or the closest ancestor's next sibling */ 4604 while (pos != root) { 4605 next = css_next_child(pos, pos->parent); 4606 if (next) 4607 return next; 4608 pos = pos->parent; 4609 } 4610 4611 return NULL; 4612 } 4613 EXPORT_SYMBOL_GPL(css_next_descendant_pre); 4614 4615 /** 4616 * css_rightmost_descendant - return the rightmost descendant of a css 4617 * @pos: css of interest 4618 * 4619 * Return the rightmost descendant of @pos. If there's no descendant, @pos 4620 * is returned. This can be used during pre-order traversal to skip 4621 * subtree of @pos. 4622 * 4623 * While this function requires cgroup_mutex or RCU read locking, it 4624 * doesn't require the whole traversal to be contained in a single critical 4625 * section. This function will return the correct rightmost descendant as 4626 * long as @pos is accessible. 4627 */ 4628 struct cgroup_subsys_state * 4629 css_rightmost_descendant(struct cgroup_subsys_state *pos) 4630 { 4631 struct cgroup_subsys_state *last, *tmp; 4632 4633 cgroup_assert_mutex_or_rcu_locked(); 4634 4635 do { 4636 last = pos; 4637 /* ->prev isn't RCU safe, walk ->next till the end */ 4638 pos = NULL; 4639 css_for_each_child(tmp, last) 4640 pos = tmp; 4641 } while (pos); 4642 4643 return last; 4644 } 4645 4646 static struct cgroup_subsys_state * 4647 css_leftmost_descendant(struct cgroup_subsys_state *pos) 4648 { 4649 struct cgroup_subsys_state *last; 4650 4651 do { 4652 last = pos; 4653 pos = css_next_child(NULL, pos); 4654 } while (pos); 4655 4656 return last; 4657 } 4658 4659 /** 4660 * css_next_descendant_post - find the next descendant for post-order walk 4661 * @pos: the current position (%NULL to initiate traversal) 4662 * @root: css whose descendants to walk 4663 * 4664 * To be used by css_for_each_descendant_post(). Find the next descendant 4665 * to visit for post-order traversal of @root's descendants. @root is 4666 * included in the iteration and the last node to be visited. 4667 * 4668 * While this function requires cgroup_mutex or RCU read locking, it 4669 * doesn't require the whole traversal to be contained in a single critical 4670 * section. This function will return the correct next descendant as long 4671 * as both @pos and @cgroup are accessible and @pos is a descendant of 4672 * @cgroup. 4673 * 4674 * If a subsystem synchronizes ->css_online() and the start of iteration, a 4675 * css which finished ->css_online() is guaranteed to be visible in the 4676 * future iterations and will stay visible until the last reference is put. 4677 * A css which hasn't finished ->css_online() or already finished 4678 * ->css_offline() may show up during traversal. It's each subsystem's 4679 * responsibility to synchronize against on/offlining. 4680 */ 4681 struct cgroup_subsys_state * 4682 css_next_descendant_post(struct cgroup_subsys_state *pos, 4683 struct cgroup_subsys_state *root) 4684 { 4685 struct cgroup_subsys_state *next; 4686 4687 cgroup_assert_mutex_or_rcu_locked(); 4688 4689 /* if first iteration, visit leftmost descendant which may be @root */ 4690 if (!pos) 4691 return css_leftmost_descendant(root); 4692 4693 /* if we visited @root, we're done */ 4694 if (pos == root) 4695 return NULL; 4696 4697 /* if there's an unvisited sibling, visit its leftmost descendant */ 4698 next = css_next_child(pos, pos->parent); 4699 if (next) 4700 return css_leftmost_descendant(next); 4701 4702 /* no sibling left, visit parent */ 4703 return pos->parent; 4704 } 4705 4706 /** 4707 * css_has_online_children - does a css have online children 4708 * @css: the target css 4709 * 4710 * Returns %true if @css has any online children; otherwise, %false. This 4711 * function can be called from any context but the caller is responsible 4712 * for synchronizing against on/offlining as necessary. 4713 */ 4714 bool css_has_online_children(struct cgroup_subsys_state *css) 4715 { 4716 struct cgroup_subsys_state *child; 4717 bool ret = false; 4718 4719 rcu_read_lock(); 4720 css_for_each_child(child, css) { 4721 if (child->flags & CSS_ONLINE) { 4722 ret = true; 4723 break; 4724 } 4725 } 4726 rcu_read_unlock(); 4727 return ret; 4728 } 4729 4730 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it) 4731 { 4732 struct list_head *l; 4733 struct cgrp_cset_link *link; 4734 struct css_set *cset; 4735 4736 lockdep_assert_held(&css_set_lock); 4737 4738 /* find the next threaded cset */ 4739 if (it->tcset_pos) { 4740 l = it->tcset_pos->next; 4741 4742 if (l != it->tcset_head) { 4743 it->tcset_pos = l; 4744 return container_of(l, struct css_set, 4745 threaded_csets_node); 4746 } 4747 4748 it->tcset_pos = NULL; 4749 } 4750 4751 /* find the next cset */ 4752 l = it->cset_pos; 4753 l = l->next; 4754 if (l == it->cset_head) { 4755 it->cset_pos = NULL; 4756 return NULL; 4757 } 4758 4759 if (it->ss) { 4760 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]); 4761 } else { 4762 link = list_entry(l, struct cgrp_cset_link, cset_link); 4763 cset = link->cset; 4764 } 4765 4766 it->cset_pos = l; 4767 4768 /* initialize threaded css_set walking */ 4769 if (it->flags & CSS_TASK_ITER_THREADED) { 4770 if (it->cur_dcset) 4771 put_css_set_locked(it->cur_dcset); 4772 it->cur_dcset = cset; 4773 get_css_set(cset); 4774 4775 it->tcset_head = &cset->threaded_csets; 4776 it->tcset_pos = &cset->threaded_csets; 4777 } 4778 4779 return cset; 4780 } 4781 4782 /** 4783 * css_task_iter_advance_css_set - advance a task iterator to the next css_set 4784 * @it: the iterator to advance 4785 * 4786 * Advance @it to the next css_set to walk. 4787 */ 4788 static void css_task_iter_advance_css_set(struct css_task_iter *it) 4789 { 4790 struct css_set *cset; 4791 4792 lockdep_assert_held(&css_set_lock); 4793 4794 /* Advance to the next non-empty css_set and find first non-empty tasks list*/ 4795 while ((cset = css_task_iter_next_css_set(it))) { 4796 if (!list_empty(&cset->tasks)) { 4797 it->cur_tasks_head = &cset->tasks; 4798 break; 4799 } else if (!list_empty(&cset->mg_tasks)) { 4800 it->cur_tasks_head = &cset->mg_tasks; 4801 break; 4802 } else if (!list_empty(&cset->dying_tasks)) { 4803 it->cur_tasks_head = &cset->dying_tasks; 4804 break; 4805 } 4806 } 4807 if (!cset) { 4808 it->task_pos = NULL; 4809 return; 4810 } 4811 it->task_pos = it->cur_tasks_head->next; 4812 4813 /* 4814 * We don't keep css_sets locked across iteration steps and thus 4815 * need to take steps to ensure that iteration can be resumed after 4816 * the lock is re-acquired. Iteration is performed at two levels - 4817 * css_sets and tasks in them. 4818 * 4819 * Once created, a css_set never leaves its cgroup lists, so a 4820 * pinned css_set is guaranteed to stay put and we can resume 4821 * iteration afterwards. 4822 * 4823 * Tasks may leave @cset across iteration steps. This is resolved 4824 * by registering each iterator with the css_set currently being 4825 * walked and making css_set_move_task() advance iterators whose 4826 * next task is leaving. 4827 */ 4828 if (it->cur_cset) { 4829 list_del(&it->iters_node); 4830 put_css_set_locked(it->cur_cset); 4831 } 4832 get_css_set(cset); 4833 it->cur_cset = cset; 4834 list_add(&it->iters_node, &cset->task_iters); 4835 } 4836 4837 static void css_task_iter_skip(struct css_task_iter *it, 4838 struct task_struct *task) 4839 { 4840 lockdep_assert_held(&css_set_lock); 4841 4842 if (it->task_pos == &task->cg_list) { 4843 it->task_pos = it->task_pos->next; 4844 it->flags |= CSS_TASK_ITER_SKIPPED; 4845 } 4846 } 4847 4848 static void css_task_iter_advance(struct css_task_iter *it) 4849 { 4850 struct task_struct *task; 4851 4852 lockdep_assert_held(&css_set_lock); 4853 repeat: 4854 if (it->task_pos) { 4855 /* 4856 * Advance iterator to find next entry. We go through cset 4857 * tasks, mg_tasks and dying_tasks, when consumed we move onto 4858 * the next cset. 4859 */ 4860 if (it->flags & CSS_TASK_ITER_SKIPPED) 4861 it->flags &= ~CSS_TASK_ITER_SKIPPED; 4862 else 4863 it->task_pos = it->task_pos->next; 4864 4865 if (it->task_pos == &it->cur_cset->tasks) { 4866 it->cur_tasks_head = &it->cur_cset->mg_tasks; 4867 it->task_pos = it->cur_tasks_head->next; 4868 } 4869 if (it->task_pos == &it->cur_cset->mg_tasks) { 4870 it->cur_tasks_head = &it->cur_cset->dying_tasks; 4871 it->task_pos = it->cur_tasks_head->next; 4872 } 4873 if (it->task_pos == &it->cur_cset->dying_tasks) 4874 css_task_iter_advance_css_set(it); 4875 } else { 4876 /* called from start, proceed to the first cset */ 4877 css_task_iter_advance_css_set(it); 4878 } 4879 4880 if (!it->task_pos) 4881 return; 4882 4883 task = list_entry(it->task_pos, struct task_struct, cg_list); 4884 4885 if (it->flags & CSS_TASK_ITER_PROCS) { 4886 /* if PROCS, skip over tasks which aren't group leaders */ 4887 if (!thread_group_leader(task)) 4888 goto repeat; 4889 4890 /* and dying leaders w/o live member threads */ 4891 if (it->cur_tasks_head == &it->cur_cset->dying_tasks && 4892 !atomic_read(&task->signal->live)) 4893 goto repeat; 4894 } else { 4895 /* skip all dying ones */ 4896 if (it->cur_tasks_head == &it->cur_cset->dying_tasks) 4897 goto repeat; 4898 } 4899 } 4900 4901 /** 4902 * css_task_iter_start - initiate task iteration 4903 * @css: the css to walk tasks of 4904 * @flags: CSS_TASK_ITER_* flags 4905 * @it: the task iterator to use 4906 * 4907 * Initiate iteration through the tasks of @css. The caller can call 4908 * css_task_iter_next() to walk through the tasks until the function 4909 * returns NULL. On completion of iteration, css_task_iter_end() must be 4910 * called. 4911 */ 4912 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags, 4913 struct css_task_iter *it) 4914 { 4915 memset(it, 0, sizeof(*it)); 4916 4917 spin_lock_irq(&css_set_lock); 4918 4919 it->ss = css->ss; 4920 it->flags = flags; 4921 4922 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss) 4923 it->cset_pos = &css->cgroup->e_csets[css->ss->id]; 4924 else 4925 it->cset_pos = &css->cgroup->cset_links; 4926 4927 it->cset_head = it->cset_pos; 4928 4929 css_task_iter_advance(it); 4930 4931 spin_unlock_irq(&css_set_lock); 4932 } 4933 4934 /** 4935 * css_task_iter_next - return the next task for the iterator 4936 * @it: the task iterator being iterated 4937 * 4938 * The "next" function for task iteration. @it should have been 4939 * initialized via css_task_iter_start(). Returns NULL when the iteration 4940 * reaches the end. 4941 */ 4942 struct task_struct *css_task_iter_next(struct css_task_iter *it) 4943 { 4944 if (it->cur_task) { 4945 put_task_struct(it->cur_task); 4946 it->cur_task = NULL; 4947 } 4948 4949 spin_lock_irq(&css_set_lock); 4950 4951 /* @it may be half-advanced by skips, finish advancing */ 4952 if (it->flags & CSS_TASK_ITER_SKIPPED) 4953 css_task_iter_advance(it); 4954 4955 if (it->task_pos) { 4956 it->cur_task = list_entry(it->task_pos, struct task_struct, 4957 cg_list); 4958 get_task_struct(it->cur_task); 4959 css_task_iter_advance(it); 4960 } 4961 4962 spin_unlock_irq(&css_set_lock); 4963 4964 return it->cur_task; 4965 } 4966 4967 /** 4968 * css_task_iter_end - finish task iteration 4969 * @it: the task iterator to finish 4970 * 4971 * Finish task iteration started by css_task_iter_start(). 4972 */ 4973 void css_task_iter_end(struct css_task_iter *it) 4974 { 4975 if (it->cur_cset) { 4976 spin_lock_irq(&css_set_lock); 4977 list_del(&it->iters_node); 4978 put_css_set_locked(it->cur_cset); 4979 spin_unlock_irq(&css_set_lock); 4980 } 4981 4982 if (it->cur_dcset) 4983 put_css_set(it->cur_dcset); 4984 4985 if (it->cur_task) 4986 put_task_struct(it->cur_task); 4987 } 4988 4989 static void cgroup_procs_release(struct kernfs_open_file *of) 4990 { 4991 struct cgroup_file_ctx *ctx = of->priv; 4992 4993 if (ctx->procs.started) 4994 css_task_iter_end(&ctx->procs.iter); 4995 } 4996 4997 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) 4998 { 4999 struct kernfs_open_file *of = s->private; 5000 struct cgroup_file_ctx *ctx = of->priv; 5001 5002 if (pos) 5003 (*pos)++; 5004 5005 return css_task_iter_next(&ctx->procs.iter); 5006 } 5007 5008 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos, 5009 unsigned int iter_flags) 5010 { 5011 struct kernfs_open_file *of = s->private; 5012 struct cgroup *cgrp = seq_css(s)->cgroup; 5013 struct cgroup_file_ctx *ctx = of->priv; 5014 struct css_task_iter *it = &ctx->procs.iter; 5015 5016 /* 5017 * When a seq_file is seeked, it's always traversed sequentially 5018 * from position 0, so we can simply keep iterating on !0 *pos. 5019 */ 5020 if (!ctx->procs.started) { 5021 if (WARN_ON_ONCE((*pos))) 5022 return ERR_PTR(-EINVAL); 5023 css_task_iter_start(&cgrp->self, iter_flags, it); 5024 ctx->procs.started = true; 5025 } else if (!(*pos)) { 5026 css_task_iter_end(it); 5027 css_task_iter_start(&cgrp->self, iter_flags, it); 5028 } else 5029 return it->cur_task; 5030 5031 return cgroup_procs_next(s, NULL, NULL); 5032 } 5033 5034 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) 5035 { 5036 struct cgroup *cgrp = seq_css(s)->cgroup; 5037 5038 /* 5039 * All processes of a threaded subtree belong to the domain cgroup 5040 * of the subtree. Only threads can be distributed across the 5041 * subtree. Reject reads on cgroup.procs in the subtree proper. 5042 * They're always empty anyway. 5043 */ 5044 if (cgroup_is_threaded(cgrp)) 5045 return ERR_PTR(-EOPNOTSUPP); 5046 5047 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS | 5048 CSS_TASK_ITER_THREADED); 5049 } 5050 5051 static int cgroup_procs_show(struct seq_file *s, void *v) 5052 { 5053 seq_printf(s, "%d\n", task_pid_vnr(v)); 5054 return 0; 5055 } 5056 5057 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb) 5058 { 5059 int ret; 5060 struct inode *inode; 5061 5062 lockdep_assert_held(&cgroup_mutex); 5063 5064 inode = kernfs_get_inode(sb, cgrp->procs_file.kn); 5065 if (!inode) 5066 return -ENOMEM; 5067 5068 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE); 5069 iput(inode); 5070 return ret; 5071 } 5072 5073 static int cgroup_procs_write_permission(struct cgroup *src_cgrp, 5074 struct cgroup *dst_cgrp, 5075 struct super_block *sb, 5076 struct cgroup_namespace *ns) 5077 { 5078 struct cgroup *com_cgrp = src_cgrp; 5079 int ret; 5080 5081 lockdep_assert_held(&cgroup_mutex); 5082 5083 /* find the common ancestor */ 5084 while (!cgroup_is_descendant(dst_cgrp, com_cgrp)) 5085 com_cgrp = cgroup_parent(com_cgrp); 5086 5087 /* %current should be authorized to migrate to the common ancestor */ 5088 ret = cgroup_may_write(com_cgrp, sb); 5089 if (ret) 5090 return ret; 5091 5092 /* 5093 * If namespaces are delegation boundaries, %current must be able 5094 * to see both source and destination cgroups from its namespace. 5095 */ 5096 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) && 5097 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) || 5098 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp))) 5099 return -ENOENT; 5100 5101 return 0; 5102 } 5103 5104 static int cgroup_attach_permissions(struct cgroup *src_cgrp, 5105 struct cgroup *dst_cgrp, 5106 struct super_block *sb, bool threadgroup, 5107 struct cgroup_namespace *ns) 5108 { 5109 int ret = 0; 5110 5111 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns); 5112 if (ret) 5113 return ret; 5114 5115 ret = cgroup_migrate_vet_dst(dst_cgrp); 5116 if (ret) 5117 return ret; 5118 5119 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)) 5120 ret = -EOPNOTSUPP; 5121 5122 return ret; 5123 } 5124 5125 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, 5126 bool threadgroup) 5127 { 5128 struct cgroup_file_ctx *ctx = of->priv; 5129 struct cgroup *src_cgrp, *dst_cgrp; 5130 struct task_struct *task; 5131 const struct cred *saved_cred; 5132 ssize_t ret; 5133 bool threadgroup_locked; 5134 5135 dst_cgrp = cgroup_kn_lock_live(of->kn, false); 5136 if (!dst_cgrp) 5137 return -ENODEV; 5138 5139 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked); 5140 ret = PTR_ERR_OR_ZERO(task); 5141 if (ret) 5142 goto out_unlock; 5143 5144 /* find the source cgroup */ 5145 spin_lock_irq(&css_set_lock); 5146 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); 5147 spin_unlock_irq(&css_set_lock); 5148 5149 /* 5150 * Process and thread migrations follow same delegation rule. Check 5151 * permissions using the credentials from file open to protect against 5152 * inherited fd attacks. 5153 */ 5154 saved_cred = override_creds(of->file->f_cred); 5155 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp, 5156 of->file->f_path.dentry->d_sb, 5157 threadgroup, ctx->ns); 5158 revert_creds(saved_cred); 5159 if (ret) 5160 goto out_finish; 5161 5162 ret = cgroup_attach_task(dst_cgrp, task, threadgroup); 5163 5164 out_finish: 5165 cgroup_procs_write_finish(task, threadgroup_locked); 5166 out_unlock: 5167 cgroup_kn_unlock(of->kn); 5168 5169 return ret; 5170 } 5171 5172 static ssize_t cgroup_procs_write(struct kernfs_open_file *of, 5173 char *buf, size_t nbytes, loff_t off) 5174 { 5175 return __cgroup_procs_write(of, buf, true) ?: nbytes; 5176 } 5177 5178 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos) 5179 { 5180 return __cgroup_procs_start(s, pos, 0); 5181 } 5182 5183 static ssize_t cgroup_threads_write(struct kernfs_open_file *of, 5184 char *buf, size_t nbytes, loff_t off) 5185 { 5186 return __cgroup_procs_write(of, buf, false) ?: nbytes; 5187 } 5188 5189 /* cgroup core interface files for the default hierarchy */ 5190 static struct cftype cgroup_base_files[] = { 5191 { 5192 .name = "cgroup.type", 5193 .flags = CFTYPE_NOT_ON_ROOT, 5194 .seq_show = cgroup_type_show, 5195 .write = cgroup_type_write, 5196 }, 5197 { 5198 .name = "cgroup.procs", 5199 .flags = CFTYPE_NS_DELEGATABLE, 5200 .file_offset = offsetof(struct cgroup, procs_file), 5201 .release = cgroup_procs_release, 5202 .seq_start = cgroup_procs_start, 5203 .seq_next = cgroup_procs_next, 5204 .seq_show = cgroup_procs_show, 5205 .write = cgroup_procs_write, 5206 }, 5207 { 5208 .name = "cgroup.threads", 5209 .flags = CFTYPE_NS_DELEGATABLE, 5210 .release = cgroup_procs_release, 5211 .seq_start = cgroup_threads_start, 5212 .seq_next = cgroup_procs_next, 5213 .seq_show = cgroup_procs_show, 5214 .write = cgroup_threads_write, 5215 }, 5216 { 5217 .name = "cgroup.controllers", 5218 .seq_show = cgroup_controllers_show, 5219 }, 5220 { 5221 .name = "cgroup.subtree_control", 5222 .flags = CFTYPE_NS_DELEGATABLE, 5223 .seq_show = cgroup_subtree_control_show, 5224 .write = cgroup_subtree_control_write, 5225 }, 5226 { 5227 .name = "cgroup.events", 5228 .flags = CFTYPE_NOT_ON_ROOT, 5229 .file_offset = offsetof(struct cgroup, events_file), 5230 .seq_show = cgroup_events_show, 5231 }, 5232 { 5233 .name = "cgroup.max.descendants", 5234 .seq_show = cgroup_max_descendants_show, 5235 .write = cgroup_max_descendants_write, 5236 }, 5237 { 5238 .name = "cgroup.max.depth", 5239 .seq_show = cgroup_max_depth_show, 5240 .write = cgroup_max_depth_write, 5241 }, 5242 { 5243 .name = "cgroup.stat", 5244 .seq_show = cgroup_stat_show, 5245 }, 5246 { 5247 .name = "cgroup.freeze", 5248 .flags = CFTYPE_NOT_ON_ROOT, 5249 .seq_show = cgroup_freeze_show, 5250 .write = cgroup_freeze_write, 5251 }, 5252 { 5253 .name = "cgroup.kill", 5254 .flags = CFTYPE_NOT_ON_ROOT, 5255 .write = cgroup_kill_write, 5256 }, 5257 { 5258 .name = "cpu.stat", 5259 .seq_show = cpu_stat_show, 5260 }, 5261 { } /* terminate */ 5262 }; 5263 5264 static struct cftype cgroup_psi_files[] = { 5265 #ifdef CONFIG_PSI 5266 { 5267 .name = "io.pressure", 5268 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]), 5269 .seq_show = cgroup_io_pressure_show, 5270 .write = cgroup_io_pressure_write, 5271 .poll = cgroup_pressure_poll, 5272 .release = cgroup_pressure_release, 5273 }, 5274 { 5275 .name = "memory.pressure", 5276 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]), 5277 .seq_show = cgroup_memory_pressure_show, 5278 .write = cgroup_memory_pressure_write, 5279 .poll = cgroup_pressure_poll, 5280 .release = cgroup_pressure_release, 5281 }, 5282 { 5283 .name = "cpu.pressure", 5284 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]), 5285 .seq_show = cgroup_cpu_pressure_show, 5286 .write = cgroup_cpu_pressure_write, 5287 .poll = cgroup_pressure_poll, 5288 .release = cgroup_pressure_release, 5289 }, 5290 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 5291 { 5292 .name = "irq.pressure", 5293 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]), 5294 .seq_show = cgroup_irq_pressure_show, 5295 .write = cgroup_irq_pressure_write, 5296 .poll = cgroup_pressure_poll, 5297 .release = cgroup_pressure_release, 5298 }, 5299 #endif 5300 { 5301 .name = "cgroup.pressure", 5302 .seq_show = cgroup_pressure_show, 5303 .write = cgroup_pressure_write, 5304 }, 5305 #endif /* CONFIG_PSI */ 5306 { } /* terminate */ 5307 }; 5308 5309 /* 5310 * css destruction is four-stage process. 5311 * 5312 * 1. Destruction starts. Killing of the percpu_ref is initiated. 5313 * Implemented in kill_css(). 5314 * 5315 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs 5316 * and thus css_tryget_online() is guaranteed to fail, the css can be 5317 * offlined by invoking offline_css(). After offlining, the base ref is 5318 * put. Implemented in css_killed_work_fn(). 5319 * 5320 * 3. When the percpu_ref reaches zero, the only possible remaining 5321 * accessors are inside RCU read sections. css_release() schedules the 5322 * RCU callback. 5323 * 5324 * 4. After the grace period, the css can be freed. Implemented in 5325 * css_free_work_fn(). 5326 * 5327 * It is actually hairier because both step 2 and 4 require process context 5328 * and thus involve punting to css->destroy_work adding two additional 5329 * steps to the already complex sequence. 5330 */ 5331 static void css_free_rwork_fn(struct work_struct *work) 5332 { 5333 struct cgroup_subsys_state *css = container_of(to_rcu_work(work), 5334 struct cgroup_subsys_state, destroy_rwork); 5335 struct cgroup_subsys *ss = css->ss; 5336 struct cgroup *cgrp = css->cgroup; 5337 5338 percpu_ref_exit(&css->refcnt); 5339 5340 if (ss) { 5341 /* css free path */ 5342 struct cgroup_subsys_state *parent = css->parent; 5343 int id = css->id; 5344 5345 ss->css_free(css); 5346 cgroup_idr_remove(&ss->css_idr, id); 5347 cgroup_put(cgrp); 5348 5349 if (parent) 5350 css_put(parent); 5351 } else { 5352 /* cgroup free path */ 5353 atomic_dec(&cgrp->root->nr_cgrps); 5354 cgroup1_pidlist_destroy_all(cgrp); 5355 cancel_work_sync(&cgrp->release_agent_work); 5356 bpf_cgrp_storage_free(cgrp); 5357 5358 if (cgroup_parent(cgrp)) { 5359 /* 5360 * We get a ref to the parent, and put the ref when 5361 * this cgroup is being freed, so it's guaranteed 5362 * that the parent won't be destroyed before its 5363 * children. 5364 */ 5365 cgroup_put(cgroup_parent(cgrp)); 5366 kernfs_put(cgrp->kn); 5367 psi_cgroup_free(cgrp); 5368 cgroup_rstat_exit(cgrp); 5369 kfree(cgrp); 5370 } else { 5371 /* 5372 * This is root cgroup's refcnt reaching zero, 5373 * which indicates that the root should be 5374 * released. 5375 */ 5376 cgroup_destroy_root(cgrp->root); 5377 } 5378 } 5379 } 5380 5381 static void css_release_work_fn(struct work_struct *work) 5382 { 5383 struct cgroup_subsys_state *css = 5384 container_of(work, struct cgroup_subsys_state, destroy_work); 5385 struct cgroup_subsys *ss = css->ss; 5386 struct cgroup *cgrp = css->cgroup; 5387 5388 mutex_lock(&cgroup_mutex); 5389 5390 css->flags |= CSS_RELEASED; 5391 list_del_rcu(&css->sibling); 5392 5393 if (ss) { 5394 /* css release path */ 5395 if (!list_empty(&css->rstat_css_node)) { 5396 cgroup_rstat_flush(cgrp); 5397 list_del_rcu(&css->rstat_css_node); 5398 } 5399 5400 cgroup_idr_replace(&ss->css_idr, NULL, css->id); 5401 if (ss->css_released) 5402 ss->css_released(css); 5403 } else { 5404 struct cgroup *tcgrp; 5405 5406 /* cgroup release path */ 5407 TRACE_CGROUP_PATH(release, cgrp); 5408 5409 cgroup_rstat_flush(cgrp); 5410 5411 spin_lock_irq(&css_set_lock); 5412 for (tcgrp = cgroup_parent(cgrp); tcgrp; 5413 tcgrp = cgroup_parent(tcgrp)) 5414 tcgrp->nr_dying_descendants--; 5415 spin_unlock_irq(&css_set_lock); 5416 5417 /* 5418 * There are two control paths which try to determine 5419 * cgroup from dentry without going through kernfs - 5420 * cgroupstats_build() and css_tryget_online_from_dir(). 5421 * Those are supported by RCU protecting clearing of 5422 * cgrp->kn->priv backpointer. 5423 */ 5424 if (cgrp->kn) 5425 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, 5426 NULL); 5427 } 5428 5429 mutex_unlock(&cgroup_mutex); 5430 5431 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5432 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5433 } 5434 5435 static void css_release(struct percpu_ref *ref) 5436 { 5437 struct cgroup_subsys_state *css = 5438 container_of(ref, struct cgroup_subsys_state, refcnt); 5439 5440 INIT_WORK(&css->destroy_work, css_release_work_fn); 5441 queue_work(cgroup_destroy_wq, &css->destroy_work); 5442 } 5443 5444 static void init_and_link_css(struct cgroup_subsys_state *css, 5445 struct cgroup_subsys *ss, struct cgroup *cgrp) 5446 { 5447 lockdep_assert_held(&cgroup_mutex); 5448 5449 cgroup_get_live(cgrp); 5450 5451 memset(css, 0, sizeof(*css)); 5452 css->cgroup = cgrp; 5453 css->ss = ss; 5454 css->id = -1; 5455 INIT_LIST_HEAD(&css->sibling); 5456 INIT_LIST_HEAD(&css->children); 5457 INIT_LIST_HEAD(&css->rstat_css_node); 5458 css->serial_nr = css_serial_nr_next++; 5459 atomic_set(&css->online_cnt, 0); 5460 5461 if (cgroup_parent(cgrp)) { 5462 css->parent = cgroup_css(cgroup_parent(cgrp), ss); 5463 css_get(css->parent); 5464 } 5465 5466 if (ss->css_rstat_flush) 5467 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list); 5468 5469 BUG_ON(cgroup_css(cgrp, ss)); 5470 } 5471 5472 /* invoke ->css_online() on a new CSS and mark it online if successful */ 5473 static int online_css(struct cgroup_subsys_state *css) 5474 { 5475 struct cgroup_subsys *ss = css->ss; 5476 int ret = 0; 5477 5478 lockdep_assert_held(&cgroup_mutex); 5479 5480 if (ss->css_online) 5481 ret = ss->css_online(css); 5482 if (!ret) { 5483 css->flags |= CSS_ONLINE; 5484 rcu_assign_pointer(css->cgroup->subsys[ss->id], css); 5485 5486 atomic_inc(&css->online_cnt); 5487 if (css->parent) 5488 atomic_inc(&css->parent->online_cnt); 5489 } 5490 return ret; 5491 } 5492 5493 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */ 5494 static void offline_css(struct cgroup_subsys_state *css) 5495 { 5496 struct cgroup_subsys *ss = css->ss; 5497 5498 lockdep_assert_held(&cgroup_mutex); 5499 5500 if (!(css->flags & CSS_ONLINE)) 5501 return; 5502 5503 if (ss->css_offline) 5504 ss->css_offline(css); 5505 5506 css->flags &= ~CSS_ONLINE; 5507 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); 5508 5509 wake_up_all(&css->cgroup->offline_waitq); 5510 } 5511 5512 /** 5513 * css_create - create a cgroup_subsys_state 5514 * @cgrp: the cgroup new css will be associated with 5515 * @ss: the subsys of new css 5516 * 5517 * Create a new css associated with @cgrp - @ss pair. On success, the new 5518 * css is online and installed in @cgrp. This function doesn't create the 5519 * interface files. Returns 0 on success, -errno on failure. 5520 */ 5521 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, 5522 struct cgroup_subsys *ss) 5523 { 5524 struct cgroup *parent = cgroup_parent(cgrp); 5525 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); 5526 struct cgroup_subsys_state *css; 5527 int err; 5528 5529 lockdep_assert_held(&cgroup_mutex); 5530 5531 css = ss->css_alloc(parent_css); 5532 if (!css) 5533 css = ERR_PTR(-ENOMEM); 5534 if (IS_ERR(css)) 5535 return css; 5536 5537 init_and_link_css(css, ss, cgrp); 5538 5539 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); 5540 if (err) 5541 goto err_free_css; 5542 5543 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); 5544 if (err < 0) 5545 goto err_free_css; 5546 css->id = err; 5547 5548 /* @css is ready to be brought online now, make it visible */ 5549 list_add_tail_rcu(&css->sibling, &parent_css->children); 5550 cgroup_idr_replace(&ss->css_idr, css, css->id); 5551 5552 err = online_css(css); 5553 if (err) 5554 goto err_list_del; 5555 5556 return css; 5557 5558 err_list_del: 5559 list_del_rcu(&css->sibling); 5560 err_free_css: 5561 list_del_rcu(&css->rstat_css_node); 5562 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn); 5563 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork); 5564 return ERR_PTR(err); 5565 } 5566 5567 /* 5568 * The returned cgroup is fully initialized including its control mask, but 5569 * it isn't associated with its kernfs_node and doesn't have the control 5570 * mask applied. 5571 */ 5572 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name, 5573 umode_t mode) 5574 { 5575 struct cgroup_root *root = parent->root; 5576 struct cgroup *cgrp, *tcgrp; 5577 struct kernfs_node *kn; 5578 int level = parent->level + 1; 5579 int ret; 5580 5581 /* allocate the cgroup and its ID, 0 is reserved for the root */ 5582 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL); 5583 if (!cgrp) 5584 return ERR_PTR(-ENOMEM); 5585 5586 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); 5587 if (ret) 5588 goto out_free_cgrp; 5589 5590 ret = cgroup_rstat_init(cgrp); 5591 if (ret) 5592 goto out_cancel_ref; 5593 5594 /* create the directory */ 5595 kn = kernfs_create_dir(parent->kn, name, mode, cgrp); 5596 if (IS_ERR(kn)) { 5597 ret = PTR_ERR(kn); 5598 goto out_stat_exit; 5599 } 5600 cgrp->kn = kn; 5601 5602 init_cgroup_housekeeping(cgrp); 5603 5604 cgrp->self.parent = &parent->self; 5605 cgrp->root = root; 5606 cgrp->level = level; 5607 5608 ret = psi_cgroup_alloc(cgrp); 5609 if (ret) 5610 goto out_kernfs_remove; 5611 5612 ret = cgroup_bpf_inherit(cgrp); 5613 if (ret) 5614 goto out_psi_free; 5615 5616 /* 5617 * New cgroup inherits effective freeze counter, and 5618 * if the parent has to be frozen, the child has too. 5619 */ 5620 cgrp->freezer.e_freeze = parent->freezer.e_freeze; 5621 if (cgrp->freezer.e_freeze) { 5622 /* 5623 * Set the CGRP_FREEZE flag, so when a process will be 5624 * attached to the child cgroup, it will become frozen. 5625 * At this point the new cgroup is unpopulated, so we can 5626 * consider it frozen immediately. 5627 */ 5628 set_bit(CGRP_FREEZE, &cgrp->flags); 5629 set_bit(CGRP_FROZEN, &cgrp->flags); 5630 } 5631 5632 spin_lock_irq(&css_set_lock); 5633 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5634 cgrp->ancestors[tcgrp->level] = tcgrp; 5635 5636 if (tcgrp != cgrp) { 5637 tcgrp->nr_descendants++; 5638 5639 /* 5640 * If the new cgroup is frozen, all ancestor cgroups 5641 * get a new frozen descendant, but their state can't 5642 * change because of this. 5643 */ 5644 if (cgrp->freezer.e_freeze) 5645 tcgrp->freezer.nr_frozen_descendants++; 5646 } 5647 } 5648 spin_unlock_irq(&css_set_lock); 5649 5650 if (notify_on_release(parent)) 5651 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); 5652 5653 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) 5654 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); 5655 5656 cgrp->self.serial_nr = css_serial_nr_next++; 5657 5658 /* allocation complete, commit to creation */ 5659 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); 5660 atomic_inc(&root->nr_cgrps); 5661 cgroup_get_live(parent); 5662 5663 /* 5664 * On the default hierarchy, a child doesn't automatically inherit 5665 * subtree_control from the parent. Each is configured manually. 5666 */ 5667 if (!cgroup_on_dfl(cgrp)) 5668 cgrp->subtree_control = cgroup_control(cgrp); 5669 5670 cgroup_propagate_control(cgrp); 5671 5672 return cgrp; 5673 5674 out_psi_free: 5675 psi_cgroup_free(cgrp); 5676 out_kernfs_remove: 5677 kernfs_remove(cgrp->kn); 5678 out_stat_exit: 5679 cgroup_rstat_exit(cgrp); 5680 out_cancel_ref: 5681 percpu_ref_exit(&cgrp->self.refcnt); 5682 out_free_cgrp: 5683 kfree(cgrp); 5684 return ERR_PTR(ret); 5685 } 5686 5687 static bool cgroup_check_hierarchy_limits(struct cgroup *parent) 5688 { 5689 struct cgroup *cgroup; 5690 int ret = false; 5691 int level = 1; 5692 5693 lockdep_assert_held(&cgroup_mutex); 5694 5695 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) { 5696 if (cgroup->nr_descendants >= cgroup->max_descendants) 5697 goto fail; 5698 5699 if (level > cgroup->max_depth) 5700 goto fail; 5701 5702 level++; 5703 } 5704 5705 ret = true; 5706 fail: 5707 return ret; 5708 } 5709 5710 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) 5711 { 5712 struct cgroup *parent, *cgrp; 5713 int ret; 5714 5715 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ 5716 if (strchr(name, '\n')) 5717 return -EINVAL; 5718 5719 parent = cgroup_kn_lock_live(parent_kn, false); 5720 if (!parent) 5721 return -ENODEV; 5722 5723 if (!cgroup_check_hierarchy_limits(parent)) { 5724 ret = -EAGAIN; 5725 goto out_unlock; 5726 } 5727 5728 cgrp = cgroup_create(parent, name, mode); 5729 if (IS_ERR(cgrp)) { 5730 ret = PTR_ERR(cgrp); 5731 goto out_unlock; 5732 } 5733 5734 /* 5735 * This extra ref will be put in cgroup_free_fn() and guarantees 5736 * that @cgrp->kn is always accessible. 5737 */ 5738 kernfs_get(cgrp->kn); 5739 5740 ret = cgroup_kn_set_ugid(cgrp->kn); 5741 if (ret) 5742 goto out_destroy; 5743 5744 ret = css_populate_dir(&cgrp->self); 5745 if (ret) 5746 goto out_destroy; 5747 5748 ret = cgroup_apply_control_enable(cgrp); 5749 if (ret) 5750 goto out_destroy; 5751 5752 TRACE_CGROUP_PATH(mkdir, cgrp); 5753 5754 /* let's create and online css's */ 5755 kernfs_activate(cgrp->kn); 5756 5757 ret = 0; 5758 goto out_unlock; 5759 5760 out_destroy: 5761 cgroup_destroy_locked(cgrp); 5762 out_unlock: 5763 cgroup_kn_unlock(parent_kn); 5764 return ret; 5765 } 5766 5767 /* 5768 * This is called when the refcnt of a css is confirmed to be killed. 5769 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to 5770 * initiate destruction and put the css ref from kill_css(). 5771 */ 5772 static void css_killed_work_fn(struct work_struct *work) 5773 { 5774 struct cgroup_subsys_state *css = 5775 container_of(work, struct cgroup_subsys_state, destroy_work); 5776 5777 mutex_lock(&cgroup_mutex); 5778 5779 do { 5780 offline_css(css); 5781 css_put(css); 5782 /* @css can't go away while we're holding cgroup_mutex */ 5783 css = css->parent; 5784 } while (css && atomic_dec_and_test(&css->online_cnt)); 5785 5786 mutex_unlock(&cgroup_mutex); 5787 } 5788 5789 /* css kill confirmation processing requires process context, bounce */ 5790 static void css_killed_ref_fn(struct percpu_ref *ref) 5791 { 5792 struct cgroup_subsys_state *css = 5793 container_of(ref, struct cgroup_subsys_state, refcnt); 5794 5795 if (atomic_dec_and_test(&css->online_cnt)) { 5796 INIT_WORK(&css->destroy_work, css_killed_work_fn); 5797 queue_work(cgroup_destroy_wq, &css->destroy_work); 5798 } 5799 } 5800 5801 /** 5802 * kill_css - destroy a css 5803 * @css: css to destroy 5804 * 5805 * This function initiates destruction of @css by removing cgroup interface 5806 * files and putting its base reference. ->css_offline() will be invoked 5807 * asynchronously once css_tryget_online() is guaranteed to fail and when 5808 * the reference count reaches zero, @css will be released. 5809 */ 5810 static void kill_css(struct cgroup_subsys_state *css) 5811 { 5812 lockdep_assert_held(&cgroup_mutex); 5813 5814 if (css->flags & CSS_DYING) 5815 return; 5816 5817 css->flags |= CSS_DYING; 5818 5819 /* 5820 * This must happen before css is disassociated with its cgroup. 5821 * See seq_css() for details. 5822 */ 5823 css_clear_dir(css); 5824 5825 /* 5826 * Killing would put the base ref, but we need to keep it alive 5827 * until after ->css_offline(). 5828 */ 5829 css_get(css); 5830 5831 /* 5832 * cgroup core guarantees that, by the time ->css_offline() is 5833 * invoked, no new css reference will be given out via 5834 * css_tryget_online(). We can't simply call percpu_ref_kill() and 5835 * proceed to offlining css's because percpu_ref_kill() doesn't 5836 * guarantee that the ref is seen as killed on all CPUs on return. 5837 * 5838 * Use percpu_ref_kill_and_confirm() to get notifications as each 5839 * css is confirmed to be seen as killed on all CPUs. 5840 */ 5841 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); 5842 } 5843 5844 /** 5845 * cgroup_destroy_locked - the first stage of cgroup destruction 5846 * @cgrp: cgroup to be destroyed 5847 * 5848 * css's make use of percpu refcnts whose killing latency shouldn't be 5849 * exposed to userland and are RCU protected. Also, cgroup core needs to 5850 * guarantee that css_tryget_online() won't succeed by the time 5851 * ->css_offline() is invoked. To satisfy all the requirements, 5852 * destruction is implemented in the following two steps. 5853 * 5854 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all 5855 * userland visible parts and start killing the percpu refcnts of 5856 * css's. Set up so that the next stage will be kicked off once all 5857 * the percpu refcnts are confirmed to be killed. 5858 * 5859 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the 5860 * rest of destruction. Once all cgroup references are gone, the 5861 * cgroup is RCU-freed. 5862 * 5863 * This function implements s1. After this step, @cgrp is gone as far as 5864 * the userland is concerned and a new cgroup with the same name may be 5865 * created. As cgroup doesn't care about the names internally, this 5866 * doesn't cause any problem. 5867 */ 5868 static int cgroup_destroy_locked(struct cgroup *cgrp) 5869 __releases(&cgroup_mutex) __acquires(&cgroup_mutex) 5870 { 5871 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp); 5872 struct cgroup_subsys_state *css; 5873 struct cgrp_cset_link *link; 5874 int ssid; 5875 5876 lockdep_assert_held(&cgroup_mutex); 5877 5878 /* 5879 * Only migration can raise populated from zero and we're already 5880 * holding cgroup_mutex. 5881 */ 5882 if (cgroup_is_populated(cgrp)) 5883 return -EBUSY; 5884 5885 /* 5886 * Make sure there's no live children. We can't test emptiness of 5887 * ->self.children as dead children linger on it while being 5888 * drained; otherwise, "rmdir parent/child parent" may fail. 5889 */ 5890 if (css_has_online_children(&cgrp->self)) 5891 return -EBUSY; 5892 5893 /* 5894 * Mark @cgrp and the associated csets dead. The former prevents 5895 * further task migration and child creation by disabling 5896 * cgroup_lock_live_group(). The latter makes the csets ignored by 5897 * the migration path. 5898 */ 5899 cgrp->self.flags &= ~CSS_ONLINE; 5900 5901 spin_lock_irq(&css_set_lock); 5902 list_for_each_entry(link, &cgrp->cset_links, cset_link) 5903 link->cset->dead = true; 5904 spin_unlock_irq(&css_set_lock); 5905 5906 /* initiate massacre of all css's */ 5907 for_each_css(css, ssid, cgrp) 5908 kill_css(css); 5909 5910 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */ 5911 css_clear_dir(&cgrp->self); 5912 kernfs_remove(cgrp->kn); 5913 5914 if (cgroup_is_threaded(cgrp)) 5915 parent->nr_threaded_children--; 5916 5917 spin_lock_irq(&css_set_lock); 5918 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) { 5919 tcgrp->nr_descendants--; 5920 tcgrp->nr_dying_descendants++; 5921 /* 5922 * If the dying cgroup is frozen, decrease frozen descendants 5923 * counters of ancestor cgroups. 5924 */ 5925 if (test_bit(CGRP_FROZEN, &cgrp->flags)) 5926 tcgrp->freezer.nr_frozen_descendants--; 5927 } 5928 spin_unlock_irq(&css_set_lock); 5929 5930 cgroup1_check_for_release(parent); 5931 5932 cgroup_bpf_offline(cgrp); 5933 5934 /* put the base reference */ 5935 percpu_ref_kill(&cgrp->self.refcnt); 5936 5937 return 0; 5938 }; 5939 5940 int cgroup_rmdir(struct kernfs_node *kn) 5941 { 5942 struct cgroup *cgrp; 5943 int ret = 0; 5944 5945 cgrp = cgroup_kn_lock_live(kn, false); 5946 if (!cgrp) 5947 return 0; 5948 5949 ret = cgroup_destroy_locked(cgrp); 5950 if (!ret) 5951 TRACE_CGROUP_PATH(rmdir, cgrp); 5952 5953 cgroup_kn_unlock(kn); 5954 return ret; 5955 } 5956 5957 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { 5958 .show_options = cgroup_show_options, 5959 .mkdir = cgroup_mkdir, 5960 .rmdir = cgroup_rmdir, 5961 .show_path = cgroup_show_path, 5962 }; 5963 5964 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) 5965 { 5966 struct cgroup_subsys_state *css; 5967 5968 pr_debug("Initializing cgroup subsys %s\n", ss->name); 5969 5970 mutex_lock(&cgroup_mutex); 5971 5972 idr_init(&ss->css_idr); 5973 INIT_LIST_HEAD(&ss->cfts); 5974 5975 /* Create the root cgroup state for this subsystem */ 5976 ss->root = &cgrp_dfl_root; 5977 css = ss->css_alloc(NULL); 5978 /* We don't handle early failures gracefully */ 5979 BUG_ON(IS_ERR(css)); 5980 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); 5981 5982 /* 5983 * Root csses are never destroyed and we can't initialize 5984 * percpu_ref during early init. Disable refcnting. 5985 */ 5986 css->flags |= CSS_NO_REF; 5987 5988 if (early) { 5989 /* allocation can't be done safely during early init */ 5990 css->id = 1; 5991 } else { 5992 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); 5993 BUG_ON(css->id < 0); 5994 } 5995 5996 /* Update the init_css_set to contain a subsys 5997 * pointer to this state - since the subsystem is 5998 * newly registered, all tasks and hence the 5999 * init_css_set is in the subsystem's root cgroup. */ 6000 init_css_set.subsys[ss->id] = css; 6001 6002 have_fork_callback |= (bool)ss->fork << ss->id; 6003 have_exit_callback |= (bool)ss->exit << ss->id; 6004 have_release_callback |= (bool)ss->release << ss->id; 6005 have_canfork_callback |= (bool)ss->can_fork << ss->id; 6006 6007 /* At system boot, before all subsystems have been 6008 * registered, no tasks have been forked, so we don't 6009 * need to invoke fork callbacks here. */ 6010 BUG_ON(!list_empty(&init_task.tasks)); 6011 6012 BUG_ON(online_css(css)); 6013 6014 mutex_unlock(&cgroup_mutex); 6015 } 6016 6017 /** 6018 * cgroup_init_early - cgroup initialization at system boot 6019 * 6020 * Initialize cgroups at system boot, and initialize any 6021 * subsystems that request early init. 6022 */ 6023 int __init cgroup_init_early(void) 6024 { 6025 static struct cgroup_fs_context __initdata ctx; 6026 struct cgroup_subsys *ss; 6027 int i; 6028 6029 ctx.root = &cgrp_dfl_root; 6030 init_cgroup_root(&ctx); 6031 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; 6032 6033 RCU_INIT_POINTER(init_task.cgroups, &init_css_set); 6034 6035 for_each_subsys(ss, i) { 6036 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, 6037 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", 6038 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, 6039 ss->id, ss->name); 6040 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, 6041 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); 6042 6043 ss->id = i; 6044 ss->name = cgroup_subsys_name[i]; 6045 if (!ss->legacy_name) 6046 ss->legacy_name = cgroup_subsys_name[i]; 6047 6048 if (ss->early_init) 6049 cgroup_init_subsys(ss, true); 6050 } 6051 return 0; 6052 } 6053 6054 /** 6055 * cgroup_init - cgroup initialization 6056 * 6057 * Register cgroup filesystem and /proc file, and initialize 6058 * any subsystems that didn't request early init. 6059 */ 6060 int __init cgroup_init(void) 6061 { 6062 struct cgroup_subsys *ss; 6063 int ssid; 6064 6065 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); 6066 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); 6067 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files)); 6068 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); 6069 6070 cgroup_rstat_boot(); 6071 6072 get_user_ns(init_cgroup_ns.user_ns); 6073 6074 mutex_lock(&cgroup_mutex); 6075 6076 /* 6077 * Add init_css_set to the hash table so that dfl_root can link to 6078 * it during init. 6079 */ 6080 hash_add(css_set_table, &init_css_set.hlist, 6081 css_set_hash(init_css_set.subsys)); 6082 6083 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); 6084 6085 mutex_unlock(&cgroup_mutex); 6086 6087 for_each_subsys(ss, ssid) { 6088 if (ss->early_init) { 6089 struct cgroup_subsys_state *css = 6090 init_css_set.subsys[ss->id]; 6091 6092 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, 6093 GFP_KERNEL); 6094 BUG_ON(css->id < 0); 6095 } else { 6096 cgroup_init_subsys(ss, false); 6097 } 6098 6099 list_add_tail(&init_css_set.e_cset_node[ssid], 6100 &cgrp_dfl_root.cgrp.e_csets[ssid]); 6101 6102 /* 6103 * Setting dfl_root subsys_mask needs to consider the 6104 * disabled flag and cftype registration needs kmalloc, 6105 * both of which aren't available during early_init. 6106 */ 6107 if (!cgroup_ssid_enabled(ssid)) 6108 continue; 6109 6110 if (cgroup1_ssid_disabled(ssid)) 6111 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", 6112 ss->name); 6113 6114 cgrp_dfl_root.subsys_mask |= 1 << ss->id; 6115 6116 /* implicit controllers must be threaded too */ 6117 WARN_ON(ss->implicit_on_dfl && !ss->threaded); 6118 6119 if (ss->implicit_on_dfl) 6120 cgrp_dfl_implicit_ss_mask |= 1 << ss->id; 6121 else if (!ss->dfl_cftypes) 6122 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; 6123 6124 if (ss->threaded) 6125 cgrp_dfl_threaded_ss_mask |= 1 << ss->id; 6126 6127 if (ss->dfl_cftypes == ss->legacy_cftypes) { 6128 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); 6129 } else { 6130 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); 6131 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); 6132 } 6133 6134 if (ss->bind) 6135 ss->bind(init_css_set.subsys[ssid]); 6136 6137 mutex_lock(&cgroup_mutex); 6138 css_populate_dir(init_css_set.subsys[ssid]); 6139 mutex_unlock(&cgroup_mutex); 6140 } 6141 6142 /* init_css_set.subsys[] has been updated, re-hash */ 6143 hash_del(&init_css_set.hlist); 6144 hash_add(css_set_table, &init_css_set.hlist, 6145 css_set_hash(init_css_set.subsys)); 6146 6147 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); 6148 WARN_ON(register_filesystem(&cgroup_fs_type)); 6149 WARN_ON(register_filesystem(&cgroup2_fs_type)); 6150 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show)); 6151 #ifdef CONFIG_CPUSETS 6152 WARN_ON(register_filesystem(&cpuset_fs_type)); 6153 #endif 6154 6155 return 0; 6156 } 6157 6158 static int __init cgroup_wq_init(void) 6159 { 6160 /* 6161 * There isn't much point in executing destruction path in 6162 * parallel. Good chunk is serialized with cgroup_mutex anyway. 6163 * Use 1 for @max_active. 6164 * 6165 * We would prefer to do this in cgroup_init() above, but that 6166 * is called before init_workqueues(): so leave this until after. 6167 */ 6168 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); 6169 BUG_ON(!cgroup_destroy_wq); 6170 return 0; 6171 } 6172 core_initcall(cgroup_wq_init); 6173 6174 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen) 6175 { 6176 struct kernfs_node *kn; 6177 6178 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6179 if (!kn) 6180 return; 6181 kernfs_path(kn, buf, buflen); 6182 kernfs_put(kn); 6183 } 6184 6185 /* 6186 * cgroup_get_from_id : get the cgroup associated with cgroup id 6187 * @id: cgroup id 6188 * On success return the cgrp or ERR_PTR on failure 6189 * Only cgroups within current task's cgroup NS are valid. 6190 */ 6191 struct cgroup *cgroup_get_from_id(u64 id) 6192 { 6193 struct kernfs_node *kn; 6194 struct cgroup *cgrp, *root_cgrp; 6195 6196 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id); 6197 if (!kn) 6198 return ERR_PTR(-ENOENT); 6199 6200 if (kernfs_type(kn) != KERNFS_DIR) { 6201 kernfs_put(kn); 6202 return ERR_PTR(-ENOENT); 6203 } 6204 6205 rcu_read_lock(); 6206 6207 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6208 if (cgrp && !cgroup_tryget(cgrp)) 6209 cgrp = NULL; 6210 6211 rcu_read_unlock(); 6212 kernfs_put(kn); 6213 6214 if (!cgrp) 6215 return ERR_PTR(-ENOENT); 6216 6217 root_cgrp = current_cgns_cgroup_dfl(); 6218 if (!cgroup_is_descendant(cgrp, root_cgrp)) { 6219 cgroup_put(cgrp); 6220 return ERR_PTR(-ENOENT); 6221 } 6222 6223 return cgrp; 6224 } 6225 EXPORT_SYMBOL_GPL(cgroup_get_from_id); 6226 6227 /* 6228 * proc_cgroup_show() 6229 * - Print task's cgroup paths into seq_file, one line for each hierarchy 6230 * - Used for /proc/<pid>/cgroup. 6231 */ 6232 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, 6233 struct pid *pid, struct task_struct *tsk) 6234 { 6235 char *buf; 6236 int retval; 6237 struct cgroup_root *root; 6238 6239 retval = -ENOMEM; 6240 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6241 if (!buf) 6242 goto out; 6243 6244 mutex_lock(&cgroup_mutex); 6245 spin_lock_irq(&css_set_lock); 6246 6247 for_each_root(root) { 6248 struct cgroup_subsys *ss; 6249 struct cgroup *cgrp; 6250 int ssid, count = 0; 6251 6252 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible)) 6253 continue; 6254 6255 seq_printf(m, "%d:", root->hierarchy_id); 6256 if (root != &cgrp_dfl_root) 6257 for_each_subsys(ss, ssid) 6258 if (root->subsys_mask & (1 << ssid)) 6259 seq_printf(m, "%s%s", count++ ? "," : "", 6260 ss->legacy_name); 6261 if (strlen(root->name)) 6262 seq_printf(m, "%sname=%s", count ? "," : "", 6263 root->name); 6264 seq_putc(m, ':'); 6265 6266 cgrp = task_cgroup_from_root(tsk, root); 6267 6268 /* 6269 * On traditional hierarchies, all zombie tasks show up as 6270 * belonging to the root cgroup. On the default hierarchy, 6271 * while a zombie doesn't show up in "cgroup.procs" and 6272 * thus can't be migrated, its /proc/PID/cgroup keeps 6273 * reporting the cgroup it belonged to before exiting. If 6274 * the cgroup is removed before the zombie is reaped, 6275 * " (deleted)" is appended to the cgroup path. 6276 */ 6277 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { 6278 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, 6279 current->nsproxy->cgroup_ns); 6280 if (retval >= PATH_MAX) 6281 retval = -ENAMETOOLONG; 6282 if (retval < 0) 6283 goto out_unlock; 6284 6285 seq_puts(m, buf); 6286 } else { 6287 seq_puts(m, "/"); 6288 } 6289 6290 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) 6291 seq_puts(m, " (deleted)\n"); 6292 else 6293 seq_putc(m, '\n'); 6294 } 6295 6296 retval = 0; 6297 out_unlock: 6298 spin_unlock_irq(&css_set_lock); 6299 mutex_unlock(&cgroup_mutex); 6300 kfree(buf); 6301 out: 6302 return retval; 6303 } 6304 6305 /** 6306 * cgroup_fork - initialize cgroup related fields during copy_process() 6307 * @child: pointer to task_struct of forking parent process. 6308 * 6309 * A task is associated with the init_css_set until cgroup_post_fork() 6310 * attaches it to the target css_set. 6311 */ 6312 void cgroup_fork(struct task_struct *child) 6313 { 6314 RCU_INIT_POINTER(child->cgroups, &init_css_set); 6315 INIT_LIST_HEAD(&child->cg_list); 6316 } 6317 6318 /** 6319 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer 6320 * @f: file corresponding to cgroup_dir 6321 * 6322 * Find the cgroup from a file pointer associated with a cgroup directory. 6323 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the 6324 * cgroup cannot be found. 6325 */ 6326 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f) 6327 { 6328 struct cgroup_subsys_state *css; 6329 6330 css = css_tryget_online_from_dir(f->f_path.dentry, NULL); 6331 if (IS_ERR(css)) 6332 return ERR_CAST(css); 6333 6334 return css->cgroup; 6335 } 6336 6337 /** 6338 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports 6339 * cgroup2. 6340 * @f: file corresponding to cgroup2_dir 6341 */ 6342 static struct cgroup *cgroup_get_from_file(struct file *f) 6343 { 6344 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f); 6345 6346 if (IS_ERR(cgrp)) 6347 return ERR_CAST(cgrp); 6348 6349 if (!cgroup_on_dfl(cgrp)) { 6350 cgroup_put(cgrp); 6351 return ERR_PTR(-EBADF); 6352 } 6353 6354 return cgrp; 6355 } 6356 6357 /** 6358 * cgroup_css_set_fork - find or create a css_set for a child process 6359 * @kargs: the arguments passed to create the child process 6360 * 6361 * This functions finds or creates a new css_set which the child 6362 * process will be attached to in cgroup_post_fork(). By default, 6363 * the child process will be given the same css_set as its parent. 6364 * 6365 * If CLONE_INTO_CGROUP is specified this function will try to find an 6366 * existing css_set which includes the requested cgroup and if not create 6367 * a new css_set that the child will be attached to later. If this function 6368 * succeeds it will hold cgroup_threadgroup_rwsem on return. If 6369 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex 6370 * before grabbing cgroup_threadgroup_rwsem and will hold a reference 6371 * to the target cgroup. 6372 */ 6373 static int cgroup_css_set_fork(struct kernel_clone_args *kargs) 6374 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem) 6375 { 6376 int ret; 6377 struct cgroup *dst_cgrp = NULL; 6378 struct css_set *cset; 6379 struct super_block *sb; 6380 struct file *f; 6381 6382 if (kargs->flags & CLONE_INTO_CGROUP) 6383 mutex_lock(&cgroup_mutex); 6384 6385 cgroup_threadgroup_change_begin(current); 6386 6387 spin_lock_irq(&css_set_lock); 6388 cset = task_css_set(current); 6389 get_css_set(cset); 6390 spin_unlock_irq(&css_set_lock); 6391 6392 if (!(kargs->flags & CLONE_INTO_CGROUP)) { 6393 kargs->cset = cset; 6394 return 0; 6395 } 6396 6397 f = fget_raw(kargs->cgroup); 6398 if (!f) { 6399 ret = -EBADF; 6400 goto err; 6401 } 6402 sb = f->f_path.dentry->d_sb; 6403 6404 dst_cgrp = cgroup_get_from_file(f); 6405 if (IS_ERR(dst_cgrp)) { 6406 ret = PTR_ERR(dst_cgrp); 6407 dst_cgrp = NULL; 6408 goto err; 6409 } 6410 6411 if (cgroup_is_dead(dst_cgrp)) { 6412 ret = -ENODEV; 6413 goto err; 6414 } 6415 6416 /* 6417 * Verify that we the target cgroup is writable for us. This is 6418 * usually done by the vfs layer but since we're not going through 6419 * the vfs layer here we need to do it "manually". 6420 */ 6421 ret = cgroup_may_write(dst_cgrp, sb); 6422 if (ret) 6423 goto err; 6424 6425 /* 6426 * Spawning a task directly into a cgroup works by passing a file 6427 * descriptor to the target cgroup directory. This can even be an O_PATH 6428 * file descriptor. But it can never be a cgroup.procs file descriptor. 6429 * This was done on purpose so spawning into a cgroup could be 6430 * conceptualized as an atomic 6431 * 6432 * fd = openat(dfd_cgroup, "cgroup.procs", ...); 6433 * write(fd, <child-pid>, ...); 6434 * 6435 * sequence, i.e. it's a shorthand for the caller opening and writing 6436 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us 6437 * to always use the caller's credentials. 6438 */ 6439 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb, 6440 !(kargs->flags & CLONE_THREAD), 6441 current->nsproxy->cgroup_ns); 6442 if (ret) 6443 goto err; 6444 6445 kargs->cset = find_css_set(cset, dst_cgrp); 6446 if (!kargs->cset) { 6447 ret = -ENOMEM; 6448 goto err; 6449 } 6450 6451 put_css_set(cset); 6452 fput(f); 6453 kargs->cgrp = dst_cgrp; 6454 return ret; 6455 6456 err: 6457 cgroup_threadgroup_change_end(current); 6458 mutex_unlock(&cgroup_mutex); 6459 if (f) 6460 fput(f); 6461 if (dst_cgrp) 6462 cgroup_put(dst_cgrp); 6463 put_css_set(cset); 6464 if (kargs->cset) 6465 put_css_set(kargs->cset); 6466 return ret; 6467 } 6468 6469 /** 6470 * cgroup_css_set_put_fork - drop references we took during fork 6471 * @kargs: the arguments passed to create the child process 6472 * 6473 * Drop references to the prepared css_set and target cgroup if 6474 * CLONE_INTO_CGROUP was requested. 6475 */ 6476 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs) 6477 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6478 { 6479 cgroup_threadgroup_change_end(current); 6480 6481 if (kargs->flags & CLONE_INTO_CGROUP) { 6482 struct cgroup *cgrp = kargs->cgrp; 6483 struct css_set *cset = kargs->cset; 6484 6485 mutex_unlock(&cgroup_mutex); 6486 6487 if (cset) { 6488 put_css_set(cset); 6489 kargs->cset = NULL; 6490 } 6491 6492 if (cgrp) { 6493 cgroup_put(cgrp); 6494 kargs->cgrp = NULL; 6495 } 6496 } 6497 } 6498 6499 /** 6500 * cgroup_can_fork - called on a new task before the process is exposed 6501 * @child: the child process 6502 * @kargs: the arguments passed to create the child process 6503 * 6504 * This prepares a new css_set for the child process which the child will 6505 * be attached to in cgroup_post_fork(). 6506 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork() 6507 * callback returns an error, the fork aborts with that error code. This 6508 * allows for a cgroup subsystem to conditionally allow or deny new forks. 6509 */ 6510 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs) 6511 { 6512 struct cgroup_subsys *ss; 6513 int i, j, ret; 6514 6515 ret = cgroup_css_set_fork(kargs); 6516 if (ret) 6517 return ret; 6518 6519 do_each_subsys_mask(ss, i, have_canfork_callback) { 6520 ret = ss->can_fork(child, kargs->cset); 6521 if (ret) 6522 goto out_revert; 6523 } while_each_subsys_mask(); 6524 6525 return 0; 6526 6527 out_revert: 6528 for_each_subsys(ss, j) { 6529 if (j >= i) 6530 break; 6531 if (ss->cancel_fork) 6532 ss->cancel_fork(child, kargs->cset); 6533 } 6534 6535 cgroup_css_set_put_fork(kargs); 6536 6537 return ret; 6538 } 6539 6540 /** 6541 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() 6542 * @child: the child process 6543 * @kargs: the arguments passed to create the child process 6544 * 6545 * This calls the cancel_fork() callbacks if a fork failed *after* 6546 * cgroup_can_fork() succeeded and cleans up references we took to 6547 * prepare a new css_set for the child process in cgroup_can_fork(). 6548 */ 6549 void cgroup_cancel_fork(struct task_struct *child, 6550 struct kernel_clone_args *kargs) 6551 { 6552 struct cgroup_subsys *ss; 6553 int i; 6554 6555 for_each_subsys(ss, i) 6556 if (ss->cancel_fork) 6557 ss->cancel_fork(child, kargs->cset); 6558 6559 cgroup_css_set_put_fork(kargs); 6560 } 6561 6562 /** 6563 * cgroup_post_fork - finalize cgroup setup for the child process 6564 * @child: the child process 6565 * @kargs: the arguments passed to create the child process 6566 * 6567 * Attach the child process to its css_set calling the subsystem fork() 6568 * callbacks. 6569 */ 6570 void cgroup_post_fork(struct task_struct *child, 6571 struct kernel_clone_args *kargs) 6572 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex) 6573 { 6574 unsigned long cgrp_flags = 0; 6575 bool kill = false; 6576 struct cgroup_subsys *ss; 6577 struct css_set *cset; 6578 int i; 6579 6580 cset = kargs->cset; 6581 kargs->cset = NULL; 6582 6583 spin_lock_irq(&css_set_lock); 6584 6585 /* init tasks are special, only link regular threads */ 6586 if (likely(child->pid)) { 6587 if (kargs->cgrp) 6588 cgrp_flags = kargs->cgrp->flags; 6589 else 6590 cgrp_flags = cset->dfl_cgrp->flags; 6591 6592 WARN_ON_ONCE(!list_empty(&child->cg_list)); 6593 cset->nr_tasks++; 6594 css_set_move_task(child, NULL, cset, false); 6595 } else { 6596 put_css_set(cset); 6597 cset = NULL; 6598 } 6599 6600 if (!(child->flags & PF_KTHREAD)) { 6601 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) { 6602 /* 6603 * If the cgroup has to be frozen, the new task has 6604 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to 6605 * get the task into the frozen state. 6606 */ 6607 spin_lock(&child->sighand->siglock); 6608 WARN_ON_ONCE(child->frozen); 6609 child->jobctl |= JOBCTL_TRAP_FREEZE; 6610 spin_unlock(&child->sighand->siglock); 6611 6612 /* 6613 * Calling cgroup_update_frozen() isn't required here, 6614 * because it will be called anyway a bit later from 6615 * do_freezer_trap(). So we avoid cgroup's transient 6616 * switch from the frozen state and back. 6617 */ 6618 } 6619 6620 /* 6621 * If the cgroup is to be killed notice it now and take the 6622 * child down right after we finished preparing it for 6623 * userspace. 6624 */ 6625 kill = test_bit(CGRP_KILL, &cgrp_flags); 6626 } 6627 6628 spin_unlock_irq(&css_set_lock); 6629 6630 /* 6631 * Call ss->fork(). This must happen after @child is linked on 6632 * css_set; otherwise, @child might change state between ->fork() 6633 * and addition to css_set. 6634 */ 6635 do_each_subsys_mask(ss, i, have_fork_callback) { 6636 ss->fork(child); 6637 } while_each_subsys_mask(); 6638 6639 /* Make the new cset the root_cset of the new cgroup namespace. */ 6640 if (kargs->flags & CLONE_NEWCGROUP) { 6641 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset; 6642 6643 get_css_set(cset); 6644 child->nsproxy->cgroup_ns->root_cset = cset; 6645 put_css_set(rcset); 6646 } 6647 6648 /* Cgroup has to be killed so take down child immediately. */ 6649 if (unlikely(kill)) 6650 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID); 6651 6652 cgroup_css_set_put_fork(kargs); 6653 } 6654 6655 /** 6656 * cgroup_exit - detach cgroup from exiting task 6657 * @tsk: pointer to task_struct of exiting process 6658 * 6659 * Description: Detach cgroup from @tsk. 6660 * 6661 */ 6662 void cgroup_exit(struct task_struct *tsk) 6663 { 6664 struct cgroup_subsys *ss; 6665 struct css_set *cset; 6666 int i; 6667 6668 spin_lock_irq(&css_set_lock); 6669 6670 WARN_ON_ONCE(list_empty(&tsk->cg_list)); 6671 cset = task_css_set(tsk); 6672 css_set_move_task(tsk, cset, NULL, false); 6673 list_add_tail(&tsk->cg_list, &cset->dying_tasks); 6674 cset->nr_tasks--; 6675 6676 WARN_ON_ONCE(cgroup_task_frozen(tsk)); 6677 if (unlikely(!(tsk->flags & PF_KTHREAD) && 6678 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags))) 6679 cgroup_update_frozen(task_dfl_cgroup(tsk)); 6680 6681 spin_unlock_irq(&css_set_lock); 6682 6683 /* see cgroup_post_fork() for details */ 6684 do_each_subsys_mask(ss, i, have_exit_callback) { 6685 ss->exit(tsk); 6686 } while_each_subsys_mask(); 6687 } 6688 6689 void cgroup_release(struct task_struct *task) 6690 { 6691 struct cgroup_subsys *ss; 6692 int ssid; 6693 6694 do_each_subsys_mask(ss, ssid, have_release_callback) { 6695 ss->release(task); 6696 } while_each_subsys_mask(); 6697 6698 spin_lock_irq(&css_set_lock); 6699 css_set_skip_task_iters(task_css_set(task), task); 6700 list_del_init(&task->cg_list); 6701 spin_unlock_irq(&css_set_lock); 6702 } 6703 6704 void cgroup_free(struct task_struct *task) 6705 { 6706 struct css_set *cset = task_css_set(task); 6707 put_css_set(cset); 6708 } 6709 6710 static int __init cgroup_disable(char *str) 6711 { 6712 struct cgroup_subsys *ss; 6713 char *token; 6714 int i; 6715 6716 while ((token = strsep(&str, ",")) != NULL) { 6717 if (!*token) 6718 continue; 6719 6720 for_each_subsys(ss, i) { 6721 if (strcmp(token, ss->name) && 6722 strcmp(token, ss->legacy_name)) 6723 continue; 6724 6725 static_branch_disable(cgroup_subsys_enabled_key[i]); 6726 pr_info("Disabling %s control group subsystem\n", 6727 ss->name); 6728 } 6729 6730 for (i = 0; i < OPT_FEATURE_COUNT; i++) { 6731 if (strcmp(token, cgroup_opt_feature_names[i])) 6732 continue; 6733 cgroup_feature_disable_mask |= 1 << i; 6734 pr_info("Disabling %s control group feature\n", 6735 cgroup_opt_feature_names[i]); 6736 break; 6737 } 6738 } 6739 return 1; 6740 } 6741 __setup("cgroup_disable=", cgroup_disable); 6742 6743 void __init __weak enable_debug_cgroup(void) { } 6744 6745 static int __init enable_cgroup_debug(char *str) 6746 { 6747 cgroup_debug = true; 6748 enable_debug_cgroup(); 6749 return 1; 6750 } 6751 __setup("cgroup_debug", enable_cgroup_debug); 6752 6753 /** 6754 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry 6755 * @dentry: directory dentry of interest 6756 * @ss: subsystem of interest 6757 * 6758 * If @dentry is a directory for a cgroup which has @ss enabled on it, try 6759 * to get the corresponding css and return it. If such css doesn't exist 6760 * or can't be pinned, an ERR_PTR value is returned. 6761 */ 6762 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, 6763 struct cgroup_subsys *ss) 6764 { 6765 struct kernfs_node *kn = kernfs_node_from_dentry(dentry); 6766 struct file_system_type *s_type = dentry->d_sb->s_type; 6767 struct cgroup_subsys_state *css = NULL; 6768 struct cgroup *cgrp; 6769 6770 /* is @dentry a cgroup dir? */ 6771 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || 6772 !kn || kernfs_type(kn) != KERNFS_DIR) 6773 return ERR_PTR(-EBADF); 6774 6775 rcu_read_lock(); 6776 6777 /* 6778 * This path doesn't originate from kernfs and @kn could already 6779 * have been or be removed at any point. @kn->priv is RCU 6780 * protected for this access. See css_release_work_fn() for details. 6781 */ 6782 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6783 if (cgrp) 6784 css = cgroup_css(cgrp, ss); 6785 6786 if (!css || !css_tryget_online(css)) 6787 css = ERR_PTR(-ENOENT); 6788 6789 rcu_read_unlock(); 6790 return css; 6791 } 6792 6793 /** 6794 * css_from_id - lookup css by id 6795 * @id: the cgroup id 6796 * @ss: cgroup subsys to be looked into 6797 * 6798 * Returns the css if there's valid one with @id, otherwise returns NULL. 6799 * Should be called under rcu_read_lock(). 6800 */ 6801 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) 6802 { 6803 WARN_ON_ONCE(!rcu_read_lock_held()); 6804 return idr_find(&ss->css_idr, id); 6805 } 6806 6807 /** 6808 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path 6809 * @path: path on the default hierarchy 6810 * 6811 * Find the cgroup at @path on the default hierarchy, increment its 6812 * reference count and return it. Returns pointer to the found cgroup on 6813 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already 6814 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory. 6815 */ 6816 struct cgroup *cgroup_get_from_path(const char *path) 6817 { 6818 struct kernfs_node *kn; 6819 struct cgroup *cgrp = ERR_PTR(-ENOENT); 6820 struct cgroup *root_cgrp; 6821 6822 root_cgrp = current_cgns_cgroup_dfl(); 6823 kn = kernfs_walk_and_get(root_cgrp->kn, path); 6824 if (!kn) 6825 goto out; 6826 6827 if (kernfs_type(kn) != KERNFS_DIR) { 6828 cgrp = ERR_PTR(-ENOTDIR); 6829 goto out_kernfs; 6830 } 6831 6832 rcu_read_lock(); 6833 6834 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); 6835 if (!cgrp || !cgroup_tryget(cgrp)) 6836 cgrp = ERR_PTR(-ENOENT); 6837 6838 rcu_read_unlock(); 6839 6840 out_kernfs: 6841 kernfs_put(kn); 6842 out: 6843 return cgrp; 6844 } 6845 EXPORT_SYMBOL_GPL(cgroup_get_from_path); 6846 6847 /** 6848 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd 6849 * @fd: fd obtained by open(cgroup_dir) 6850 * 6851 * Find the cgroup from a fd which should be obtained 6852 * by opening a cgroup directory. Returns a pointer to the 6853 * cgroup on success. ERR_PTR is returned if the cgroup 6854 * cannot be found. 6855 */ 6856 struct cgroup *cgroup_v1v2_get_from_fd(int fd) 6857 { 6858 struct cgroup *cgrp; 6859 struct file *f; 6860 6861 f = fget_raw(fd); 6862 if (!f) 6863 return ERR_PTR(-EBADF); 6864 6865 cgrp = cgroup_v1v2_get_from_file(f); 6866 fput(f); 6867 return cgrp; 6868 } 6869 6870 /** 6871 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports 6872 * cgroup2. 6873 * @fd: fd obtained by open(cgroup2_dir) 6874 */ 6875 struct cgroup *cgroup_get_from_fd(int fd) 6876 { 6877 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd); 6878 6879 if (IS_ERR(cgrp)) 6880 return ERR_CAST(cgrp); 6881 6882 if (!cgroup_on_dfl(cgrp)) { 6883 cgroup_put(cgrp); 6884 return ERR_PTR(-EBADF); 6885 } 6886 return cgrp; 6887 } 6888 EXPORT_SYMBOL_GPL(cgroup_get_from_fd); 6889 6890 static u64 power_of_ten(int power) 6891 { 6892 u64 v = 1; 6893 while (power--) 6894 v *= 10; 6895 return v; 6896 } 6897 6898 /** 6899 * cgroup_parse_float - parse a floating number 6900 * @input: input string 6901 * @dec_shift: number of decimal digits to shift 6902 * @v: output 6903 * 6904 * Parse a decimal floating point number in @input and store the result in 6905 * @v with decimal point right shifted @dec_shift times. For example, if 6906 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345. 6907 * Returns 0 on success, -errno otherwise. 6908 * 6909 * There's nothing cgroup specific about this function except that it's 6910 * currently the only user. 6911 */ 6912 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v) 6913 { 6914 s64 whole, frac = 0; 6915 int fstart = 0, fend = 0, flen; 6916 6917 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend)) 6918 return -EINVAL; 6919 if (frac < 0) 6920 return -EINVAL; 6921 6922 flen = fend > fstart ? fend - fstart : 0; 6923 if (flen < dec_shift) 6924 frac *= power_of_ten(dec_shift - flen); 6925 else 6926 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift)); 6927 6928 *v = whole * power_of_ten(dec_shift) + frac; 6929 return 0; 6930 } 6931 6932 /* 6933 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data 6934 * definition in cgroup-defs.h. 6935 */ 6936 #ifdef CONFIG_SOCK_CGROUP_DATA 6937 6938 void cgroup_sk_alloc(struct sock_cgroup_data *skcd) 6939 { 6940 struct cgroup *cgroup; 6941 6942 rcu_read_lock(); 6943 /* Don't associate the sock with unrelated interrupted task's cgroup. */ 6944 if (in_interrupt()) { 6945 cgroup = &cgrp_dfl_root.cgrp; 6946 cgroup_get(cgroup); 6947 goto out; 6948 } 6949 6950 while (true) { 6951 struct css_set *cset; 6952 6953 cset = task_css_set(current); 6954 if (likely(cgroup_tryget(cset->dfl_cgrp))) { 6955 cgroup = cset->dfl_cgrp; 6956 break; 6957 } 6958 cpu_relax(); 6959 } 6960 out: 6961 skcd->cgroup = cgroup; 6962 cgroup_bpf_get(cgroup); 6963 rcu_read_unlock(); 6964 } 6965 6966 void cgroup_sk_clone(struct sock_cgroup_data *skcd) 6967 { 6968 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6969 6970 /* 6971 * We might be cloning a socket which is left in an empty 6972 * cgroup and the cgroup might have already been rmdir'd. 6973 * Don't use cgroup_get_live(). 6974 */ 6975 cgroup_get(cgrp); 6976 cgroup_bpf_get(cgrp); 6977 } 6978 6979 void cgroup_sk_free(struct sock_cgroup_data *skcd) 6980 { 6981 struct cgroup *cgrp = sock_cgroup_ptr(skcd); 6982 6983 cgroup_bpf_put(cgrp); 6984 cgroup_put(cgrp); 6985 } 6986 6987 #endif /* CONFIG_SOCK_CGROUP_DATA */ 6988 6989 #ifdef CONFIG_SYSFS 6990 static ssize_t show_delegatable_files(struct cftype *files, char *buf, 6991 ssize_t size, const char *prefix) 6992 { 6993 struct cftype *cft; 6994 ssize_t ret = 0; 6995 6996 for (cft = files; cft && cft->name[0] != '\0'; cft++) { 6997 if (!(cft->flags & CFTYPE_NS_DELEGATABLE)) 6998 continue; 6999 7000 if (prefix) 7001 ret += snprintf(buf + ret, size - ret, "%s.", prefix); 7002 7003 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name); 7004 7005 if (WARN_ON(ret >= size)) 7006 break; 7007 } 7008 7009 return ret; 7010 } 7011 7012 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr, 7013 char *buf) 7014 { 7015 struct cgroup_subsys *ss; 7016 int ssid; 7017 ssize_t ret = 0; 7018 7019 ret = show_delegatable_files(cgroup_base_files, buf + ret, 7020 PAGE_SIZE - ret, NULL); 7021 if (cgroup_psi_enabled()) 7022 ret += show_delegatable_files(cgroup_psi_files, buf + ret, 7023 PAGE_SIZE - ret, NULL); 7024 7025 for_each_subsys(ss, ssid) 7026 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret, 7027 PAGE_SIZE - ret, 7028 cgroup_subsys_name[ssid]); 7029 7030 return ret; 7031 } 7032 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate); 7033 7034 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr, 7035 char *buf) 7036 { 7037 return snprintf(buf, PAGE_SIZE, 7038 "nsdelegate\n" 7039 "favordynmods\n" 7040 "memory_localevents\n" 7041 "memory_recursiveprot\n"); 7042 } 7043 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features); 7044 7045 static struct attribute *cgroup_sysfs_attrs[] = { 7046 &cgroup_delegate_attr.attr, 7047 &cgroup_features_attr.attr, 7048 NULL, 7049 }; 7050 7051 static const struct attribute_group cgroup_sysfs_attr_group = { 7052 .attrs = cgroup_sysfs_attrs, 7053 .name = "cgroup", 7054 }; 7055 7056 static int __init cgroup_sysfs_init(void) 7057 { 7058 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group); 7059 } 7060 subsys_initcall(cgroup_sysfs_init); 7061 7062 #endif /* CONFIG_SYSFS */ 7063