xref: /linux/kernel/cgroup/cgroup.c (revision 78567e2bc723b444228644d2e34ae5255d4ab8a0)
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/sched/deadline.h>
61 #include <linux/psi.h>
62 #include <net/sock.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/cgroup.h>
66 
67 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
68 					 MAX_CFTYPE_NAME + 2)
69 /* let's not notify more than 100 times per second */
70 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
71 
72 /*
73  * To avoid confusing the compiler (and generating warnings) with code
74  * that attempts to access what would be a 0-element array (i.e. sized
75  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
76  * constant expression can be added.
77  */
78 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
79 
80 /*
81  * cgroup_mutex is the master lock.  Any modification to cgroup or its
82  * hierarchy must be performed while holding it.
83  *
84  * css_set_lock protects task->cgroups pointer, the list of css_set
85  * objects, and the chain of tasks off each css_set.
86  *
87  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88  * cgroup.h can use them for lockdep annotations.
89  */
90 DEFINE_MUTEX(cgroup_mutex);
91 DEFINE_SPINLOCK(css_set_lock);
92 
93 #ifdef CONFIG_PROVE_RCU
94 EXPORT_SYMBOL_GPL(cgroup_mutex);
95 EXPORT_SYMBOL_GPL(css_set_lock);
96 #endif
97 
98 DEFINE_SPINLOCK(trace_cgroup_path_lock);
99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
100 static bool cgroup_debug __read_mostly;
101 
102 /*
103  * Protects cgroup_idr and css_idr so that IDs can be released without
104  * grabbing cgroup_mutex.
105  */
106 static DEFINE_SPINLOCK(cgroup_idr_lock);
107 
108 /*
109  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
110  * against file removal/re-creation across css hiding.
111  */
112 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
113 
114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
115 
116 #define cgroup_assert_mutex_or_rcu_locked()				\
117 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
118 			   !lockdep_is_held(&cgroup_mutex),		\
119 			   "cgroup_mutex or RCU read lock required");
120 
121 /*
122  * cgroup destruction makes heavy use of work items and there can be a lot
123  * of concurrent destructions.  Use a separate workqueue so that cgroup
124  * destruction work items don't end up filling up max_active of system_wq
125  * which may lead to deadlock.
126  */
127 static struct workqueue_struct *cgroup_destroy_wq;
128 
129 /* generate an array of cgroup subsystem pointers */
130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
131 struct cgroup_subsys *cgroup_subsys[] = {
132 #include <linux/cgroup_subsys.h>
133 };
134 #undef SUBSYS
135 
136 /* array of cgroup subsystem names */
137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
138 static const char *cgroup_subsys_name[] = {
139 #include <linux/cgroup_subsys.h>
140 };
141 #undef SUBSYS
142 
143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
144 #define SUBSYS(_x)								\
145 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
146 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
147 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
148 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
149 #include <linux/cgroup_subsys.h>
150 #undef SUBSYS
151 
152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
153 static struct static_key_true *cgroup_subsys_enabled_key[] = {
154 #include <linux/cgroup_subsys.h>
155 };
156 #undef SUBSYS
157 
158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
160 #include <linux/cgroup_subsys.h>
161 };
162 #undef SUBSYS
163 
164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
165 
166 /* the default hierarchy */
167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
168 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
169 
170 /*
171  * The default hierarchy always exists but is hidden until mounted for the
172  * first time.  This is for backward compatibility.
173  */
174 static bool cgrp_dfl_visible;
175 
176 /* some controllers are not supported in the default hierarchy */
177 static u16 cgrp_dfl_inhibit_ss_mask;
178 
179 /* some controllers are implicitly enabled on the default hierarchy */
180 static u16 cgrp_dfl_implicit_ss_mask;
181 
182 /* some controllers can be threaded on the default hierarchy */
183 static u16 cgrp_dfl_threaded_ss_mask;
184 
185 /* The list of hierarchy roots */
186 LIST_HEAD(cgroup_roots);
187 static int cgroup_root_count;
188 
189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
190 static DEFINE_IDR(cgroup_hierarchy_idr);
191 
192 /*
193  * Assign a monotonically increasing serial number to csses.  It guarantees
194  * cgroups with bigger numbers are newer than those with smaller numbers.
195  * Also, as csses are always appended to the parent's ->children list, it
196  * guarantees that sibling csses are always sorted in the ascending serial
197  * number order on the list.  Protected by cgroup_mutex.
198  */
199 static u64 css_serial_nr_next = 1;
200 
201 /*
202  * These bitmasks identify subsystems with specific features to avoid
203  * having to do iterative checks repeatedly.
204  */
205 static u16 have_fork_callback __read_mostly;
206 static u16 have_exit_callback __read_mostly;
207 static u16 have_release_callback __read_mostly;
208 static u16 have_canfork_callback __read_mostly;
209 
210 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
211 
212 /* cgroup namespace for init task */
213 struct cgroup_namespace init_cgroup_ns = {
214 	.ns.count	= REFCOUNT_INIT(2),
215 	.user_ns	= &init_user_ns,
216 	.ns.ops		= &cgroupns_operations,
217 	.ns.inum	= PROC_CGROUP_INIT_INO,
218 	.root_cset	= &init_css_set,
219 };
220 
221 static struct file_system_type cgroup2_fs_type;
222 static struct cftype cgroup_base_files[];
223 static struct cftype cgroup_psi_files[];
224 
225 /* cgroup optional features */
226 enum cgroup_opt_features {
227 #ifdef CONFIG_PSI
228 	OPT_FEATURE_PRESSURE,
229 #endif
230 	OPT_FEATURE_COUNT
231 };
232 
233 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
234 #ifdef CONFIG_PSI
235 	"pressure",
236 #endif
237 };
238 
239 static u16 cgroup_feature_disable_mask __read_mostly;
240 
241 static int cgroup_apply_control(struct cgroup *cgrp);
242 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
243 static void css_task_iter_skip(struct css_task_iter *it,
244 			       struct task_struct *task);
245 static int cgroup_destroy_locked(struct cgroup *cgrp);
246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
247 					      struct cgroup_subsys *ss);
248 static void css_release(struct percpu_ref *ref);
249 static void kill_css(struct cgroup_subsys_state *css);
250 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
251 			      struct cgroup *cgrp, struct cftype cfts[],
252 			      bool is_add);
253 
254 #ifdef CONFIG_DEBUG_CGROUP_REF
255 #define CGROUP_REF_FN_ATTRS	noinline
256 #define CGROUP_REF_EXPORT(fn)	EXPORT_SYMBOL_GPL(fn);
257 #include <linux/cgroup_refcnt.h>
258 #endif
259 
260 /**
261  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
262  * @ssid: subsys ID of interest
263  *
264  * cgroup_subsys_enabled() can only be used with literal subsys names which
265  * is fine for individual subsystems but unsuitable for cgroup core.  This
266  * is slower static_key_enabled() based test indexed by @ssid.
267  */
268 bool cgroup_ssid_enabled(int ssid)
269 {
270 	if (!CGROUP_HAS_SUBSYS_CONFIG)
271 		return false;
272 
273 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
274 }
275 
276 /**
277  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
278  * @cgrp: the cgroup of interest
279  *
280  * The default hierarchy is the v2 interface of cgroup and this function
281  * can be used to test whether a cgroup is on the default hierarchy for
282  * cases where a subsystem should behave differently depending on the
283  * interface version.
284  *
285  * List of changed behaviors:
286  *
287  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
288  *   and "name" are disallowed.
289  *
290  * - When mounting an existing superblock, mount options should match.
291  *
292  * - rename(2) is disallowed.
293  *
294  * - "tasks" is removed.  Everything should be at process granularity.  Use
295  *   "cgroup.procs" instead.
296  *
297  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
298  *   recycled in-between reads.
299  *
300  * - "release_agent" and "notify_on_release" are removed.  Replacement
301  *   notification mechanism will be implemented.
302  *
303  * - "cgroup.clone_children" is removed.
304  *
305  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
306  *   and its descendants contain no task; otherwise, 1.  The file also
307  *   generates kernfs notification which can be monitored through poll and
308  *   [di]notify when the value of the file changes.
309  *
310  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
311  *   take masks of ancestors with non-empty cpus/mems, instead of being
312  *   moved to an ancestor.
313  *
314  * - cpuset: a task can be moved into an empty cpuset, and again it takes
315  *   masks of ancestors.
316  *
317  * - blkcg: blk-throttle becomes properly hierarchical.
318  */
319 bool cgroup_on_dfl(const struct cgroup *cgrp)
320 {
321 	return cgrp->root == &cgrp_dfl_root;
322 }
323 
324 /* IDR wrappers which synchronize using cgroup_idr_lock */
325 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
326 			    gfp_t gfp_mask)
327 {
328 	int ret;
329 
330 	idr_preload(gfp_mask);
331 	spin_lock_bh(&cgroup_idr_lock);
332 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
333 	spin_unlock_bh(&cgroup_idr_lock);
334 	idr_preload_end();
335 	return ret;
336 }
337 
338 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
339 {
340 	void *ret;
341 
342 	spin_lock_bh(&cgroup_idr_lock);
343 	ret = idr_replace(idr, ptr, id);
344 	spin_unlock_bh(&cgroup_idr_lock);
345 	return ret;
346 }
347 
348 static void cgroup_idr_remove(struct idr *idr, int id)
349 {
350 	spin_lock_bh(&cgroup_idr_lock);
351 	idr_remove(idr, id);
352 	spin_unlock_bh(&cgroup_idr_lock);
353 }
354 
355 static bool cgroup_has_tasks(struct cgroup *cgrp)
356 {
357 	return cgrp->nr_populated_csets;
358 }
359 
360 static bool cgroup_is_threaded(struct cgroup *cgrp)
361 {
362 	return cgrp->dom_cgrp != cgrp;
363 }
364 
365 /* can @cgrp host both domain and threaded children? */
366 static bool cgroup_is_mixable(struct cgroup *cgrp)
367 {
368 	/*
369 	 * Root isn't under domain level resource control exempting it from
370 	 * the no-internal-process constraint, so it can serve as a thread
371 	 * root and a parent of resource domains at the same time.
372 	 */
373 	return !cgroup_parent(cgrp);
374 }
375 
376 /* can @cgrp become a thread root? Should always be true for a thread root */
377 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
378 {
379 	/* mixables don't care */
380 	if (cgroup_is_mixable(cgrp))
381 		return true;
382 
383 	/* domain roots can't be nested under threaded */
384 	if (cgroup_is_threaded(cgrp))
385 		return false;
386 
387 	/* can only have either domain or threaded children */
388 	if (cgrp->nr_populated_domain_children)
389 		return false;
390 
391 	/* and no domain controllers can be enabled */
392 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
393 		return false;
394 
395 	return true;
396 }
397 
398 /* is @cgrp root of a threaded subtree? */
399 static bool cgroup_is_thread_root(struct cgroup *cgrp)
400 {
401 	/* thread root should be a domain */
402 	if (cgroup_is_threaded(cgrp))
403 		return false;
404 
405 	/* a domain w/ threaded children is a thread root */
406 	if (cgrp->nr_threaded_children)
407 		return true;
408 
409 	/*
410 	 * A domain which has tasks and explicit threaded controllers
411 	 * enabled is a thread root.
412 	 */
413 	if (cgroup_has_tasks(cgrp) &&
414 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
415 		return true;
416 
417 	return false;
418 }
419 
420 /* a domain which isn't connected to the root w/o brekage can't be used */
421 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
422 {
423 	/* the cgroup itself can be a thread root */
424 	if (cgroup_is_threaded(cgrp))
425 		return false;
426 
427 	/* but the ancestors can't be unless mixable */
428 	while ((cgrp = cgroup_parent(cgrp))) {
429 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
430 			return false;
431 		if (cgroup_is_threaded(cgrp))
432 			return false;
433 	}
434 
435 	return true;
436 }
437 
438 /* subsystems visibly enabled on a cgroup */
439 static u16 cgroup_control(struct cgroup *cgrp)
440 {
441 	struct cgroup *parent = cgroup_parent(cgrp);
442 	u16 root_ss_mask = cgrp->root->subsys_mask;
443 
444 	if (parent) {
445 		u16 ss_mask = parent->subtree_control;
446 
447 		/* threaded cgroups can only have threaded controllers */
448 		if (cgroup_is_threaded(cgrp))
449 			ss_mask &= cgrp_dfl_threaded_ss_mask;
450 		return ss_mask;
451 	}
452 
453 	if (cgroup_on_dfl(cgrp))
454 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
455 				  cgrp_dfl_implicit_ss_mask);
456 	return root_ss_mask;
457 }
458 
459 /* subsystems enabled on a cgroup */
460 static u16 cgroup_ss_mask(struct cgroup *cgrp)
461 {
462 	struct cgroup *parent = cgroup_parent(cgrp);
463 
464 	if (parent) {
465 		u16 ss_mask = parent->subtree_ss_mask;
466 
467 		/* threaded cgroups can only have threaded controllers */
468 		if (cgroup_is_threaded(cgrp))
469 			ss_mask &= cgrp_dfl_threaded_ss_mask;
470 		return ss_mask;
471 	}
472 
473 	return cgrp->root->subsys_mask;
474 }
475 
476 /**
477  * cgroup_css - obtain a cgroup's css for the specified subsystem
478  * @cgrp: the cgroup of interest
479  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
480  *
481  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
482  * function must be called either under cgroup_mutex or rcu_read_lock() and
483  * the caller is responsible for pinning the returned css if it wants to
484  * keep accessing it outside the said locks.  This function may return
485  * %NULL if @cgrp doesn't have @subsys_id enabled.
486  */
487 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
488 					      struct cgroup_subsys *ss)
489 {
490 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
491 		return rcu_dereference_check(cgrp->subsys[ss->id],
492 					lockdep_is_held(&cgroup_mutex));
493 	else
494 		return &cgrp->self;
495 }
496 
497 /**
498  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499  * @cgrp: the cgroup of interest
500  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
501  *
502  * Similar to cgroup_css() but returns the effective css, which is defined
503  * as the matching css of the nearest ancestor including self which has @ss
504  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
505  * function is guaranteed to return non-NULL css.
506  */
507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508 							struct cgroup_subsys *ss)
509 {
510 	lockdep_assert_held(&cgroup_mutex);
511 
512 	if (!ss)
513 		return &cgrp->self;
514 
515 	/*
516 	 * This function is used while updating css associations and thus
517 	 * can't test the csses directly.  Test ss_mask.
518 	 */
519 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
520 		cgrp = cgroup_parent(cgrp);
521 		if (!cgrp)
522 			return NULL;
523 	}
524 
525 	return cgroup_css(cgrp, ss);
526 }
527 
528 /**
529  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530  * @cgrp: the cgroup of interest
531  * @ss: the subsystem of interest
532  *
533  * Find and get the effective css of @cgrp for @ss.  The effective css is
534  * defined as the matching css of the nearest ancestor including self which
535  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
536  * the root css is returned, so this function always returns a valid css.
537  *
538  * The returned css is not guaranteed to be online, and therefore it is the
539  * callers responsibility to try get a reference for it.
540  */
541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542 					 struct cgroup_subsys *ss)
543 {
544 	struct cgroup_subsys_state *css;
545 
546 	if (!CGROUP_HAS_SUBSYS_CONFIG)
547 		return NULL;
548 
549 	do {
550 		css = cgroup_css(cgrp, ss);
551 
552 		if (css)
553 			return css;
554 		cgrp = cgroup_parent(cgrp);
555 	} while (cgrp);
556 
557 	return init_css_set.subsys[ss->id];
558 }
559 
560 /**
561  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
562  * @cgrp: the cgroup of interest
563  * @ss: the subsystem of interest
564  *
565  * Find and get the effective css of @cgrp for @ss.  The effective css is
566  * defined as the matching css of the nearest ancestor including self which
567  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
568  * the root css is returned, so this function always returns a valid css.
569  * The returned css must be put using css_put().
570  */
571 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
572 					     struct cgroup_subsys *ss)
573 {
574 	struct cgroup_subsys_state *css;
575 
576 	if (!CGROUP_HAS_SUBSYS_CONFIG)
577 		return NULL;
578 
579 	rcu_read_lock();
580 
581 	do {
582 		css = cgroup_css(cgrp, ss);
583 
584 		if (css && css_tryget_online(css))
585 			goto out_unlock;
586 		cgrp = cgroup_parent(cgrp);
587 	} while (cgrp);
588 
589 	css = init_css_set.subsys[ss->id];
590 	css_get(css);
591 out_unlock:
592 	rcu_read_unlock();
593 	return css;
594 }
595 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
596 
597 static void cgroup_get_live(struct cgroup *cgrp)
598 {
599 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
600 	cgroup_get(cgrp);
601 }
602 
603 /**
604  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
605  * is responsible for taking the css_set_lock.
606  * @cgrp: the cgroup in question
607  */
608 int __cgroup_task_count(const struct cgroup *cgrp)
609 {
610 	int count = 0;
611 	struct cgrp_cset_link *link;
612 
613 	lockdep_assert_held(&css_set_lock);
614 
615 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
616 		count += link->cset->nr_tasks;
617 
618 	return count;
619 }
620 
621 /**
622  * cgroup_task_count - count the number of tasks in a cgroup.
623  * @cgrp: the cgroup in question
624  */
625 int cgroup_task_count(const struct cgroup *cgrp)
626 {
627 	int count;
628 
629 	spin_lock_irq(&css_set_lock);
630 	count = __cgroup_task_count(cgrp);
631 	spin_unlock_irq(&css_set_lock);
632 
633 	return count;
634 }
635 
636 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
637 {
638 	struct cgroup *cgrp = of->kn->parent->priv;
639 	struct cftype *cft = of_cft(of);
640 
641 	/*
642 	 * This is open and unprotected implementation of cgroup_css().
643 	 * seq_css() is only called from a kernfs file operation which has
644 	 * an active reference on the file.  Because all the subsystem
645 	 * files are drained before a css is disassociated with a cgroup,
646 	 * the matching css from the cgroup's subsys table is guaranteed to
647 	 * be and stay valid until the enclosing operation is complete.
648 	 */
649 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
650 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
651 	else
652 		return &cgrp->self;
653 }
654 EXPORT_SYMBOL_GPL(of_css);
655 
656 /**
657  * for_each_css - iterate all css's of a cgroup
658  * @css: the iteration cursor
659  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
660  * @cgrp: the target cgroup to iterate css's of
661  *
662  * Should be called under cgroup_mutex.
663  */
664 #define for_each_css(css, ssid, cgrp)					\
665 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
666 		if (!((css) = rcu_dereference_check(			\
667 				(cgrp)->subsys[(ssid)],			\
668 				lockdep_is_held(&cgroup_mutex)))) { }	\
669 		else
670 
671 /**
672  * do_each_subsys_mask - filter for_each_subsys with a bitmask
673  * @ss: the iteration cursor
674  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
675  * @ss_mask: the bitmask
676  *
677  * The block will only run for cases where the ssid-th bit (1 << ssid) of
678  * @ss_mask is set.
679  */
680 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
681 	unsigned long __ss_mask = (ss_mask);				\
682 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
683 		(ssid) = 0;						\
684 		break;							\
685 	}								\
686 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
687 		(ss) = cgroup_subsys[ssid];				\
688 		{
689 
690 #define while_each_subsys_mask()					\
691 		}							\
692 	}								\
693 } while (false)
694 
695 /* iterate over child cgrps, lock should be held throughout iteration */
696 #define cgroup_for_each_live_child(child, cgrp)				\
697 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
698 		if (({ lockdep_assert_held(&cgroup_mutex);		\
699 		       cgroup_is_dead(child); }))			\
700 			;						\
701 		else
702 
703 /* walk live descendants in pre order */
704 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
705 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
706 		if (({ lockdep_assert_held(&cgroup_mutex);		\
707 		       (dsct) = (d_css)->cgroup;			\
708 		       cgroup_is_dead(dsct); }))			\
709 			;						\
710 		else
711 
712 /* walk live descendants in postorder */
713 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
714 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
715 		if (({ lockdep_assert_held(&cgroup_mutex);		\
716 		       (dsct) = (d_css)->cgroup;			\
717 		       cgroup_is_dead(dsct); }))			\
718 			;						\
719 		else
720 
721 /*
722  * The default css_set - used by init and its children prior to any
723  * hierarchies being mounted. It contains a pointer to the root state
724  * for each subsystem. Also used to anchor the list of css_sets. Not
725  * reference-counted, to improve performance when child cgroups
726  * haven't been created.
727  */
728 struct css_set init_css_set = {
729 	.refcount		= REFCOUNT_INIT(1),
730 	.dom_cset		= &init_css_set,
731 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
732 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
733 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
734 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
735 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
736 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
737 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
738 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
739 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
740 
741 	/*
742 	 * The following field is re-initialized when this cset gets linked
743 	 * in cgroup_init().  However, let's initialize the field
744 	 * statically too so that the default cgroup can be accessed safely
745 	 * early during boot.
746 	 */
747 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
748 };
749 
750 static int css_set_count	= 1;	/* 1 for init_css_set */
751 
752 static bool css_set_threaded(struct css_set *cset)
753 {
754 	return cset->dom_cset != cset;
755 }
756 
757 /**
758  * css_set_populated - does a css_set contain any tasks?
759  * @cset: target css_set
760  *
761  * css_set_populated() should be the same as !!cset->nr_tasks at steady
762  * state. However, css_set_populated() can be called while a task is being
763  * added to or removed from the linked list before the nr_tasks is
764  * properly updated. Hence, we can't just look at ->nr_tasks here.
765  */
766 static bool css_set_populated(struct css_set *cset)
767 {
768 	lockdep_assert_held(&css_set_lock);
769 
770 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
771 }
772 
773 /**
774  * cgroup_update_populated - update the populated count of a cgroup
775  * @cgrp: the target cgroup
776  * @populated: inc or dec populated count
777  *
778  * One of the css_sets associated with @cgrp is either getting its first
779  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
780  * count is propagated towards root so that a given cgroup's
781  * nr_populated_children is zero iff none of its descendants contain any
782  * tasks.
783  *
784  * @cgrp's interface file "cgroup.populated" is zero if both
785  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
786  * 1 otherwise.  When the sum changes from or to zero, userland is notified
787  * that the content of the interface file has changed.  This can be used to
788  * detect when @cgrp and its descendants become populated or empty.
789  */
790 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
791 {
792 	struct cgroup *child = NULL;
793 	int adj = populated ? 1 : -1;
794 
795 	lockdep_assert_held(&css_set_lock);
796 
797 	do {
798 		bool was_populated = cgroup_is_populated(cgrp);
799 
800 		if (!child) {
801 			cgrp->nr_populated_csets += adj;
802 		} else {
803 			if (cgroup_is_threaded(child))
804 				cgrp->nr_populated_threaded_children += adj;
805 			else
806 				cgrp->nr_populated_domain_children += adj;
807 		}
808 
809 		if (was_populated == cgroup_is_populated(cgrp))
810 			break;
811 
812 		cgroup1_check_for_release(cgrp);
813 		TRACE_CGROUP_PATH(notify_populated, cgrp,
814 				  cgroup_is_populated(cgrp));
815 		cgroup_file_notify(&cgrp->events_file);
816 
817 		child = cgrp;
818 		cgrp = cgroup_parent(cgrp);
819 	} while (cgrp);
820 }
821 
822 /**
823  * css_set_update_populated - update populated state of a css_set
824  * @cset: target css_set
825  * @populated: whether @cset is populated or depopulated
826  *
827  * @cset is either getting the first task or losing the last.  Update the
828  * populated counters of all associated cgroups accordingly.
829  */
830 static void css_set_update_populated(struct css_set *cset, bool populated)
831 {
832 	struct cgrp_cset_link *link;
833 
834 	lockdep_assert_held(&css_set_lock);
835 
836 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
837 		cgroup_update_populated(link->cgrp, populated);
838 }
839 
840 /*
841  * @task is leaving, advance task iterators which are pointing to it so
842  * that they can resume at the next position.  Advancing an iterator might
843  * remove it from the list, use safe walk.  See css_task_iter_skip() for
844  * details.
845  */
846 static void css_set_skip_task_iters(struct css_set *cset,
847 				    struct task_struct *task)
848 {
849 	struct css_task_iter *it, *pos;
850 
851 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
852 		css_task_iter_skip(it, task);
853 }
854 
855 /**
856  * css_set_move_task - move a task from one css_set to another
857  * @task: task being moved
858  * @from_cset: css_set @task currently belongs to (may be NULL)
859  * @to_cset: new css_set @task is being moved to (may be NULL)
860  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
861  *
862  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
863  * css_set, @from_cset can be NULL.  If @task is being disassociated
864  * instead of moved, @to_cset can be NULL.
865  *
866  * This function automatically handles populated counter updates and
867  * css_task_iter adjustments but the caller is responsible for managing
868  * @from_cset and @to_cset's reference counts.
869  */
870 static void css_set_move_task(struct task_struct *task,
871 			      struct css_set *from_cset, struct css_set *to_cset,
872 			      bool use_mg_tasks)
873 {
874 	lockdep_assert_held(&css_set_lock);
875 
876 	if (to_cset && !css_set_populated(to_cset))
877 		css_set_update_populated(to_cset, true);
878 
879 	if (from_cset) {
880 		WARN_ON_ONCE(list_empty(&task->cg_list));
881 
882 		css_set_skip_task_iters(from_cset, task);
883 		list_del_init(&task->cg_list);
884 		if (!css_set_populated(from_cset))
885 			css_set_update_populated(from_cset, false);
886 	} else {
887 		WARN_ON_ONCE(!list_empty(&task->cg_list));
888 	}
889 
890 	if (to_cset) {
891 		/*
892 		 * We are synchronized through cgroup_threadgroup_rwsem
893 		 * against PF_EXITING setting such that we can't race
894 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
895 		 */
896 		WARN_ON_ONCE(task->flags & PF_EXITING);
897 
898 		cgroup_move_task(task, to_cset);
899 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
900 							     &to_cset->tasks);
901 	}
902 }
903 
904 /*
905  * hash table for cgroup groups. This improves the performance to find
906  * an existing css_set. This hash doesn't (currently) take into
907  * account cgroups in empty hierarchies.
908  */
909 #define CSS_SET_HASH_BITS	7
910 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
911 
912 static unsigned long css_set_hash(struct cgroup_subsys_state **css)
913 {
914 	unsigned long key = 0UL;
915 	struct cgroup_subsys *ss;
916 	int i;
917 
918 	for_each_subsys(ss, i)
919 		key += (unsigned long)css[i];
920 	key = (key >> 16) ^ key;
921 
922 	return key;
923 }
924 
925 void put_css_set_locked(struct css_set *cset)
926 {
927 	struct cgrp_cset_link *link, *tmp_link;
928 	struct cgroup_subsys *ss;
929 	int ssid;
930 
931 	lockdep_assert_held(&css_set_lock);
932 
933 	if (!refcount_dec_and_test(&cset->refcount))
934 		return;
935 
936 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
937 
938 	/* This css_set is dead. Unlink it and release cgroup and css refs */
939 	for_each_subsys(ss, ssid) {
940 		list_del(&cset->e_cset_node[ssid]);
941 		css_put(cset->subsys[ssid]);
942 	}
943 	hash_del(&cset->hlist);
944 	css_set_count--;
945 
946 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
947 		list_del(&link->cset_link);
948 		list_del(&link->cgrp_link);
949 		if (cgroup_parent(link->cgrp))
950 			cgroup_put(link->cgrp);
951 		kfree(link);
952 	}
953 
954 	if (css_set_threaded(cset)) {
955 		list_del(&cset->threaded_csets_node);
956 		put_css_set_locked(cset->dom_cset);
957 	}
958 
959 	kfree_rcu(cset, rcu_head);
960 }
961 
962 /**
963  * compare_css_sets - helper function for find_existing_css_set().
964  * @cset: candidate css_set being tested
965  * @old_cset: existing css_set for a task
966  * @new_cgrp: cgroup that's being entered by the task
967  * @template: desired set of css pointers in css_set (pre-calculated)
968  *
969  * Returns true if "cset" matches "old_cset" except for the hierarchy
970  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
971  */
972 static bool compare_css_sets(struct css_set *cset,
973 			     struct css_set *old_cset,
974 			     struct cgroup *new_cgrp,
975 			     struct cgroup_subsys_state *template[])
976 {
977 	struct cgroup *new_dfl_cgrp;
978 	struct list_head *l1, *l2;
979 
980 	/*
981 	 * On the default hierarchy, there can be csets which are
982 	 * associated with the same set of cgroups but different csses.
983 	 * Let's first ensure that csses match.
984 	 */
985 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
986 		return false;
987 
988 
989 	/* @cset's domain should match the default cgroup's */
990 	if (cgroup_on_dfl(new_cgrp))
991 		new_dfl_cgrp = new_cgrp;
992 	else
993 		new_dfl_cgrp = old_cset->dfl_cgrp;
994 
995 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
996 		return false;
997 
998 	/*
999 	 * Compare cgroup pointers in order to distinguish between
1000 	 * different cgroups in hierarchies.  As different cgroups may
1001 	 * share the same effective css, this comparison is always
1002 	 * necessary.
1003 	 */
1004 	l1 = &cset->cgrp_links;
1005 	l2 = &old_cset->cgrp_links;
1006 	while (1) {
1007 		struct cgrp_cset_link *link1, *link2;
1008 		struct cgroup *cgrp1, *cgrp2;
1009 
1010 		l1 = l1->next;
1011 		l2 = l2->next;
1012 		/* See if we reached the end - both lists are equal length. */
1013 		if (l1 == &cset->cgrp_links) {
1014 			BUG_ON(l2 != &old_cset->cgrp_links);
1015 			break;
1016 		} else {
1017 			BUG_ON(l2 == &old_cset->cgrp_links);
1018 		}
1019 		/* Locate the cgroups associated with these links. */
1020 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1021 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1022 		cgrp1 = link1->cgrp;
1023 		cgrp2 = link2->cgrp;
1024 		/* Hierarchies should be linked in the same order. */
1025 		BUG_ON(cgrp1->root != cgrp2->root);
1026 
1027 		/*
1028 		 * If this hierarchy is the hierarchy of the cgroup
1029 		 * that's changing, then we need to check that this
1030 		 * css_set points to the new cgroup; if it's any other
1031 		 * hierarchy, then this css_set should point to the
1032 		 * same cgroup as the old css_set.
1033 		 */
1034 		if (cgrp1->root == new_cgrp->root) {
1035 			if (cgrp1 != new_cgrp)
1036 				return false;
1037 		} else {
1038 			if (cgrp1 != cgrp2)
1039 				return false;
1040 		}
1041 	}
1042 	return true;
1043 }
1044 
1045 /**
1046  * find_existing_css_set - init css array and find the matching css_set
1047  * @old_cset: the css_set that we're using before the cgroup transition
1048  * @cgrp: the cgroup that we're moving into
1049  * @template: out param for the new set of csses, should be clear on entry
1050  */
1051 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1052 					struct cgroup *cgrp,
1053 					struct cgroup_subsys_state **template)
1054 {
1055 	struct cgroup_root *root = cgrp->root;
1056 	struct cgroup_subsys *ss;
1057 	struct css_set *cset;
1058 	unsigned long key;
1059 	int i;
1060 
1061 	/*
1062 	 * Build the set of subsystem state objects that we want to see in the
1063 	 * new css_set. While subsystems can change globally, the entries here
1064 	 * won't change, so no need for locking.
1065 	 */
1066 	for_each_subsys(ss, i) {
1067 		if (root->subsys_mask & (1UL << i)) {
1068 			/*
1069 			 * @ss is in this hierarchy, so we want the
1070 			 * effective css from @cgrp.
1071 			 */
1072 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1073 		} else {
1074 			/*
1075 			 * @ss is not in this hierarchy, so we don't want
1076 			 * to change the css.
1077 			 */
1078 			template[i] = old_cset->subsys[i];
1079 		}
1080 	}
1081 
1082 	key = css_set_hash(template);
1083 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1084 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1085 			continue;
1086 
1087 		/* This css_set matches what we need */
1088 		return cset;
1089 	}
1090 
1091 	/* No existing cgroup group matched */
1092 	return NULL;
1093 }
1094 
1095 static void free_cgrp_cset_links(struct list_head *links_to_free)
1096 {
1097 	struct cgrp_cset_link *link, *tmp_link;
1098 
1099 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1100 		list_del(&link->cset_link);
1101 		kfree(link);
1102 	}
1103 }
1104 
1105 /**
1106  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1107  * @count: the number of links to allocate
1108  * @tmp_links: list_head the allocated links are put on
1109  *
1110  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1111  * through ->cset_link.  Returns 0 on success or -errno.
1112  */
1113 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1114 {
1115 	struct cgrp_cset_link *link;
1116 	int i;
1117 
1118 	INIT_LIST_HEAD(tmp_links);
1119 
1120 	for (i = 0; i < count; i++) {
1121 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1122 		if (!link) {
1123 			free_cgrp_cset_links(tmp_links);
1124 			return -ENOMEM;
1125 		}
1126 		list_add(&link->cset_link, tmp_links);
1127 	}
1128 	return 0;
1129 }
1130 
1131 /**
1132  * link_css_set - a helper function to link a css_set to a cgroup
1133  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1134  * @cset: the css_set to be linked
1135  * @cgrp: the destination cgroup
1136  */
1137 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1138 			 struct cgroup *cgrp)
1139 {
1140 	struct cgrp_cset_link *link;
1141 
1142 	BUG_ON(list_empty(tmp_links));
1143 
1144 	if (cgroup_on_dfl(cgrp))
1145 		cset->dfl_cgrp = cgrp;
1146 
1147 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1148 	link->cset = cset;
1149 	link->cgrp = cgrp;
1150 
1151 	/*
1152 	 * Always add links to the tail of the lists so that the lists are
1153 	 * in chronological order.
1154 	 */
1155 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1156 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1157 
1158 	if (cgroup_parent(cgrp))
1159 		cgroup_get_live(cgrp);
1160 }
1161 
1162 /**
1163  * find_css_set - return a new css_set with one cgroup updated
1164  * @old_cset: the baseline css_set
1165  * @cgrp: the cgroup to be updated
1166  *
1167  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1168  * substituted into the appropriate hierarchy.
1169  */
1170 static struct css_set *find_css_set(struct css_set *old_cset,
1171 				    struct cgroup *cgrp)
1172 {
1173 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1174 	struct css_set *cset;
1175 	struct list_head tmp_links;
1176 	struct cgrp_cset_link *link;
1177 	struct cgroup_subsys *ss;
1178 	unsigned long key;
1179 	int ssid;
1180 
1181 	lockdep_assert_held(&cgroup_mutex);
1182 
1183 	/* First see if we already have a cgroup group that matches
1184 	 * the desired set */
1185 	spin_lock_irq(&css_set_lock);
1186 	cset = find_existing_css_set(old_cset, cgrp, template);
1187 	if (cset)
1188 		get_css_set(cset);
1189 	spin_unlock_irq(&css_set_lock);
1190 
1191 	if (cset)
1192 		return cset;
1193 
1194 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1195 	if (!cset)
1196 		return NULL;
1197 
1198 	/* Allocate all the cgrp_cset_link objects that we'll need */
1199 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1200 		kfree(cset);
1201 		return NULL;
1202 	}
1203 
1204 	refcount_set(&cset->refcount, 1);
1205 	cset->dom_cset = cset;
1206 	INIT_LIST_HEAD(&cset->tasks);
1207 	INIT_LIST_HEAD(&cset->mg_tasks);
1208 	INIT_LIST_HEAD(&cset->dying_tasks);
1209 	INIT_LIST_HEAD(&cset->task_iters);
1210 	INIT_LIST_HEAD(&cset->threaded_csets);
1211 	INIT_HLIST_NODE(&cset->hlist);
1212 	INIT_LIST_HEAD(&cset->cgrp_links);
1213 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1214 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1215 	INIT_LIST_HEAD(&cset->mg_node);
1216 
1217 	/* Copy the set of subsystem state objects generated in
1218 	 * find_existing_css_set() */
1219 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1220 
1221 	spin_lock_irq(&css_set_lock);
1222 	/* Add reference counts and links from the new css_set. */
1223 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224 		struct cgroup *c = link->cgrp;
1225 
1226 		if (c->root == cgrp->root)
1227 			c = cgrp;
1228 		link_css_set(&tmp_links, cset, c);
1229 	}
1230 
1231 	BUG_ON(!list_empty(&tmp_links));
1232 
1233 	css_set_count++;
1234 
1235 	/* Add @cset to the hash table */
1236 	key = css_set_hash(cset->subsys);
1237 	hash_add(css_set_table, &cset->hlist, key);
1238 
1239 	for_each_subsys(ss, ssid) {
1240 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1241 
1242 		list_add_tail(&cset->e_cset_node[ssid],
1243 			      &css->cgroup->e_csets[ssid]);
1244 		css_get(css);
1245 	}
1246 
1247 	spin_unlock_irq(&css_set_lock);
1248 
1249 	/*
1250 	 * If @cset should be threaded, look up the matching dom_cset and
1251 	 * link them up.  We first fully initialize @cset then look for the
1252 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1253 	 * to stay empty until we return.
1254 	 */
1255 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256 		struct css_set *dcset;
1257 
1258 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259 		if (!dcset) {
1260 			put_css_set(cset);
1261 			return NULL;
1262 		}
1263 
1264 		spin_lock_irq(&css_set_lock);
1265 		cset->dom_cset = dcset;
1266 		list_add_tail(&cset->threaded_csets_node,
1267 			      &dcset->threaded_csets);
1268 		spin_unlock_irq(&css_set_lock);
1269 	}
1270 
1271 	return cset;
1272 }
1273 
1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275 {
1276 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1277 
1278 	return root_cgrp->root;
1279 }
1280 
1281 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1282 {
1283 	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1284 
1285 	/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1286 	if (favor && !favoring) {
1287 		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1288 		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1289 	} else if (!favor && favoring) {
1290 		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1291 		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1292 	}
1293 }
1294 
1295 static int cgroup_init_root_id(struct cgroup_root *root)
1296 {
1297 	int id;
1298 
1299 	lockdep_assert_held(&cgroup_mutex);
1300 
1301 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1302 	if (id < 0)
1303 		return id;
1304 
1305 	root->hierarchy_id = id;
1306 	return 0;
1307 }
1308 
1309 static void cgroup_exit_root_id(struct cgroup_root *root)
1310 {
1311 	lockdep_assert_held(&cgroup_mutex);
1312 
1313 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1314 }
1315 
1316 void cgroup_free_root(struct cgroup_root *root)
1317 {
1318 	kfree_rcu(root, rcu);
1319 }
1320 
1321 static void cgroup_destroy_root(struct cgroup_root *root)
1322 {
1323 	struct cgroup *cgrp = &root->cgrp;
1324 	struct cgrp_cset_link *link, *tmp_link;
1325 
1326 	trace_cgroup_destroy_root(root);
1327 
1328 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1329 
1330 	BUG_ON(atomic_read(&root->nr_cgrps));
1331 	BUG_ON(!list_empty(&cgrp->self.children));
1332 
1333 	/* Rebind all subsystems back to the default hierarchy */
1334 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1335 
1336 	/*
1337 	 * Release all the links from cset_links to this hierarchy's
1338 	 * root cgroup
1339 	 */
1340 	spin_lock_irq(&css_set_lock);
1341 
1342 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1343 		list_del(&link->cset_link);
1344 		list_del(&link->cgrp_link);
1345 		kfree(link);
1346 	}
1347 
1348 	spin_unlock_irq(&css_set_lock);
1349 
1350 	WARN_ON_ONCE(list_empty(&root->root_list));
1351 	list_del_rcu(&root->root_list);
1352 	cgroup_root_count--;
1353 
1354 	if (!have_favordynmods)
1355 		cgroup_favor_dynmods(root, false);
1356 
1357 	cgroup_exit_root_id(root);
1358 
1359 	cgroup_unlock();
1360 
1361 	cgroup_rstat_exit(cgrp);
1362 	kernfs_destroy_root(root->kf_root);
1363 	cgroup_free_root(root);
1364 }
1365 
1366 /*
1367  * Returned cgroup is without refcount but it's valid as long as cset pins it.
1368  */
1369 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1370 					    struct cgroup_root *root)
1371 {
1372 	struct cgroup *res_cgroup = NULL;
1373 
1374 	if (cset == &init_css_set) {
1375 		res_cgroup = &root->cgrp;
1376 	} else if (root == &cgrp_dfl_root) {
1377 		res_cgroup = cset->dfl_cgrp;
1378 	} else {
1379 		struct cgrp_cset_link *link;
1380 		lockdep_assert_held(&css_set_lock);
1381 
1382 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1383 			struct cgroup *c = link->cgrp;
1384 
1385 			if (c->root == root) {
1386 				res_cgroup = c;
1387 				break;
1388 			}
1389 		}
1390 	}
1391 
1392 	/*
1393 	 * If cgroup_mutex is not held, the cgrp_cset_link will be freed
1394 	 * before we remove the cgroup root from the root_list. Consequently,
1395 	 * when accessing a cgroup root, the cset_link may have already been
1396 	 * freed, resulting in a NULL res_cgroup. However, by holding the
1397 	 * cgroup_mutex, we ensure that res_cgroup can't be NULL.
1398 	 * If we don't hold cgroup_mutex in the caller, we must do the NULL
1399 	 * check.
1400 	 */
1401 	return res_cgroup;
1402 }
1403 
1404 /*
1405  * look up cgroup associated with current task's cgroup namespace on the
1406  * specified hierarchy
1407  */
1408 static struct cgroup *
1409 current_cgns_cgroup_from_root(struct cgroup_root *root)
1410 {
1411 	struct cgroup *res = NULL;
1412 	struct css_set *cset;
1413 
1414 	lockdep_assert_held(&css_set_lock);
1415 
1416 	rcu_read_lock();
1417 
1418 	cset = current->nsproxy->cgroup_ns->root_cset;
1419 	res = __cset_cgroup_from_root(cset, root);
1420 
1421 	rcu_read_unlock();
1422 
1423 	/*
1424 	 * The namespace_sem is held by current, so the root cgroup can't
1425 	 * be umounted. Therefore, we can ensure that the res is non-NULL.
1426 	 */
1427 	WARN_ON_ONCE(!res);
1428 	return res;
1429 }
1430 
1431 /*
1432  * Look up cgroup associated with current task's cgroup namespace on the default
1433  * hierarchy.
1434  *
1435  * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1436  * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1437  *   pointers.
1438  * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1439  * - As a bonus returned cgrp is pinned with the current because it cannot
1440  *   switch cgroup_ns asynchronously.
1441  */
1442 static struct cgroup *current_cgns_cgroup_dfl(void)
1443 {
1444 	struct css_set *cset;
1445 
1446 	if (current->nsproxy) {
1447 		cset = current->nsproxy->cgroup_ns->root_cset;
1448 		return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1449 	} else {
1450 		/*
1451 		 * NOTE: This function may be called from bpf_cgroup_from_id()
1452 		 * on a task which has already passed exit_task_namespaces() and
1453 		 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1454 		 * cgroups visible for lookups.
1455 		 */
1456 		return &cgrp_dfl_root.cgrp;
1457 	}
1458 }
1459 
1460 /* look up cgroup associated with given css_set on the specified hierarchy */
1461 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1462 					    struct cgroup_root *root)
1463 {
1464 	lockdep_assert_held(&css_set_lock);
1465 
1466 	return __cset_cgroup_from_root(cset, root);
1467 }
1468 
1469 /*
1470  * Return the cgroup for "task" from the given hierarchy. Must be
1471  * called with css_set_lock held to prevent task's groups from being modified.
1472  * Must be called with either cgroup_mutex or rcu read lock to prevent the
1473  * cgroup root from being destroyed.
1474  */
1475 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1476 				     struct cgroup_root *root)
1477 {
1478 	/*
1479 	 * No need to lock the task - since we hold css_set_lock the
1480 	 * task can't change groups.
1481 	 */
1482 	return cset_cgroup_from_root(task_css_set(task), root);
1483 }
1484 
1485 /*
1486  * A task must hold cgroup_mutex to modify cgroups.
1487  *
1488  * Any task can increment and decrement the count field without lock.
1489  * So in general, code holding cgroup_mutex can't rely on the count
1490  * field not changing.  However, if the count goes to zero, then only
1491  * cgroup_attach_task() can increment it again.  Because a count of zero
1492  * means that no tasks are currently attached, therefore there is no
1493  * way a task attached to that cgroup can fork (the other way to
1494  * increment the count).  So code holding cgroup_mutex can safely
1495  * assume that if the count is zero, it will stay zero. Similarly, if
1496  * a task holds cgroup_mutex on a cgroup with zero count, it
1497  * knows that the cgroup won't be removed, as cgroup_rmdir()
1498  * needs that mutex.
1499  *
1500  * A cgroup can only be deleted if both its 'count' of using tasks
1501  * is zero, and its list of 'children' cgroups is empty.  Since all
1502  * tasks in the system use _some_ cgroup, and since there is always at
1503  * least one task in the system (init, pid == 1), therefore, root cgroup
1504  * always has either children cgroups and/or using tasks.  So we don't
1505  * need a special hack to ensure that root cgroup cannot be deleted.
1506  *
1507  * P.S.  One more locking exception.  RCU is used to guard the
1508  * update of a tasks cgroup pointer by cgroup_attach_task()
1509  */
1510 
1511 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1512 
1513 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1514 			      char *buf)
1515 {
1516 	struct cgroup_subsys *ss = cft->ss;
1517 
1518 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1519 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1520 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1521 
1522 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1523 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1524 			 cft->name);
1525 	} else {
1526 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1527 	}
1528 	return buf;
1529 }
1530 
1531 /**
1532  * cgroup_file_mode - deduce file mode of a control file
1533  * @cft: the control file in question
1534  *
1535  * S_IRUGO for read, S_IWUSR for write.
1536  */
1537 static umode_t cgroup_file_mode(const struct cftype *cft)
1538 {
1539 	umode_t mode = 0;
1540 
1541 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1542 		mode |= S_IRUGO;
1543 
1544 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1545 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1546 			mode |= S_IWUGO;
1547 		else
1548 			mode |= S_IWUSR;
1549 	}
1550 
1551 	return mode;
1552 }
1553 
1554 /**
1555  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1556  * @subtree_control: the new subtree_control mask to consider
1557  * @this_ss_mask: available subsystems
1558  *
1559  * On the default hierarchy, a subsystem may request other subsystems to be
1560  * enabled together through its ->depends_on mask.  In such cases, more
1561  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1562  *
1563  * This function calculates which subsystems need to be enabled if
1564  * @subtree_control is to be applied while restricted to @this_ss_mask.
1565  */
1566 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1567 {
1568 	u16 cur_ss_mask = subtree_control;
1569 	struct cgroup_subsys *ss;
1570 	int ssid;
1571 
1572 	lockdep_assert_held(&cgroup_mutex);
1573 
1574 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1575 
1576 	while (true) {
1577 		u16 new_ss_mask = cur_ss_mask;
1578 
1579 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1580 			new_ss_mask |= ss->depends_on;
1581 		} while_each_subsys_mask();
1582 
1583 		/*
1584 		 * Mask out subsystems which aren't available.  This can
1585 		 * happen only if some depended-upon subsystems were bound
1586 		 * to non-default hierarchies.
1587 		 */
1588 		new_ss_mask &= this_ss_mask;
1589 
1590 		if (new_ss_mask == cur_ss_mask)
1591 			break;
1592 		cur_ss_mask = new_ss_mask;
1593 	}
1594 
1595 	return cur_ss_mask;
1596 }
1597 
1598 /**
1599  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1600  * @kn: the kernfs_node being serviced
1601  *
1602  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1603  * the method finishes if locking succeeded.  Note that once this function
1604  * returns the cgroup returned by cgroup_kn_lock_live() may become
1605  * inaccessible any time.  If the caller intends to continue to access the
1606  * cgroup, it should pin it before invoking this function.
1607  */
1608 void cgroup_kn_unlock(struct kernfs_node *kn)
1609 {
1610 	struct cgroup *cgrp;
1611 
1612 	if (kernfs_type(kn) == KERNFS_DIR)
1613 		cgrp = kn->priv;
1614 	else
1615 		cgrp = kn->parent->priv;
1616 
1617 	cgroup_unlock();
1618 
1619 	kernfs_unbreak_active_protection(kn);
1620 	cgroup_put(cgrp);
1621 }
1622 
1623 /**
1624  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1625  * @kn: the kernfs_node being serviced
1626  * @drain_offline: perform offline draining on the cgroup
1627  *
1628  * This helper is to be used by a cgroup kernfs method currently servicing
1629  * @kn.  It breaks the active protection, performs cgroup locking and
1630  * verifies that the associated cgroup is alive.  Returns the cgroup if
1631  * alive; otherwise, %NULL.  A successful return should be undone by a
1632  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1633  * cgroup is drained of offlining csses before return.
1634  *
1635  * Any cgroup kernfs method implementation which requires locking the
1636  * associated cgroup should use this helper.  It avoids nesting cgroup
1637  * locking under kernfs active protection and allows all kernfs operations
1638  * including self-removal.
1639  */
1640 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1641 {
1642 	struct cgroup *cgrp;
1643 
1644 	if (kernfs_type(kn) == KERNFS_DIR)
1645 		cgrp = kn->priv;
1646 	else
1647 		cgrp = kn->parent->priv;
1648 
1649 	/*
1650 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1651 	 * active_ref.  cgroup liveliness check alone provides enough
1652 	 * protection against removal.  Ensure @cgrp stays accessible and
1653 	 * break the active_ref protection.
1654 	 */
1655 	if (!cgroup_tryget(cgrp))
1656 		return NULL;
1657 	kernfs_break_active_protection(kn);
1658 
1659 	if (drain_offline)
1660 		cgroup_lock_and_drain_offline(cgrp);
1661 	else
1662 		cgroup_lock();
1663 
1664 	if (!cgroup_is_dead(cgrp))
1665 		return cgrp;
1666 
1667 	cgroup_kn_unlock(kn);
1668 	return NULL;
1669 }
1670 
1671 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1672 {
1673 	char name[CGROUP_FILE_NAME_MAX];
1674 
1675 	lockdep_assert_held(&cgroup_mutex);
1676 
1677 	if (cft->file_offset) {
1678 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1679 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1680 
1681 		spin_lock_irq(&cgroup_file_kn_lock);
1682 		cfile->kn = NULL;
1683 		spin_unlock_irq(&cgroup_file_kn_lock);
1684 
1685 		del_timer_sync(&cfile->notify_timer);
1686 	}
1687 
1688 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1689 }
1690 
1691 /**
1692  * css_clear_dir - remove subsys files in a cgroup directory
1693  * @css: target css
1694  */
1695 static void css_clear_dir(struct cgroup_subsys_state *css)
1696 {
1697 	struct cgroup *cgrp = css->cgroup;
1698 	struct cftype *cfts;
1699 
1700 	if (!(css->flags & CSS_VISIBLE))
1701 		return;
1702 
1703 	css->flags &= ~CSS_VISIBLE;
1704 
1705 	if (!css->ss) {
1706 		if (cgroup_on_dfl(cgrp)) {
1707 			cgroup_addrm_files(css, cgrp,
1708 					   cgroup_base_files, false);
1709 			if (cgroup_psi_enabled())
1710 				cgroup_addrm_files(css, cgrp,
1711 						   cgroup_psi_files, false);
1712 		} else {
1713 			cgroup_addrm_files(css, cgrp,
1714 					   cgroup1_base_files, false);
1715 		}
1716 	} else {
1717 		list_for_each_entry(cfts, &css->ss->cfts, node)
1718 			cgroup_addrm_files(css, cgrp, cfts, false);
1719 	}
1720 }
1721 
1722 /**
1723  * css_populate_dir - create subsys files in a cgroup directory
1724  * @css: target css
1725  *
1726  * On failure, no file is added.
1727  */
1728 static int css_populate_dir(struct cgroup_subsys_state *css)
1729 {
1730 	struct cgroup *cgrp = css->cgroup;
1731 	struct cftype *cfts, *failed_cfts;
1732 	int ret;
1733 
1734 	if (css->flags & CSS_VISIBLE)
1735 		return 0;
1736 
1737 	if (!css->ss) {
1738 		if (cgroup_on_dfl(cgrp)) {
1739 			ret = cgroup_addrm_files(css, cgrp,
1740 						 cgroup_base_files, true);
1741 			if (ret < 0)
1742 				return ret;
1743 
1744 			if (cgroup_psi_enabled()) {
1745 				ret = cgroup_addrm_files(css, cgrp,
1746 							 cgroup_psi_files, true);
1747 				if (ret < 0) {
1748 					cgroup_addrm_files(css, cgrp,
1749 							   cgroup_base_files, false);
1750 					return ret;
1751 				}
1752 			}
1753 		} else {
1754 			ret = cgroup_addrm_files(css, cgrp,
1755 						 cgroup1_base_files, true);
1756 			if (ret < 0)
1757 				return ret;
1758 		}
1759 	} else {
1760 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1761 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1762 			if (ret < 0) {
1763 				failed_cfts = cfts;
1764 				goto err;
1765 			}
1766 		}
1767 	}
1768 
1769 	css->flags |= CSS_VISIBLE;
1770 
1771 	return 0;
1772 err:
1773 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1774 		if (cfts == failed_cfts)
1775 			break;
1776 		cgroup_addrm_files(css, cgrp, cfts, false);
1777 	}
1778 	return ret;
1779 }
1780 
1781 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1782 {
1783 	struct cgroup *dcgrp = &dst_root->cgrp;
1784 	struct cgroup_subsys *ss;
1785 	int ssid, ret;
1786 	u16 dfl_disable_ss_mask = 0;
1787 
1788 	lockdep_assert_held(&cgroup_mutex);
1789 
1790 	do_each_subsys_mask(ss, ssid, ss_mask) {
1791 		/*
1792 		 * If @ss has non-root csses attached to it, can't move.
1793 		 * If @ss is an implicit controller, it is exempt from this
1794 		 * rule and can be stolen.
1795 		 */
1796 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1797 		    !ss->implicit_on_dfl)
1798 			return -EBUSY;
1799 
1800 		/* can't move between two non-dummy roots either */
1801 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1802 			return -EBUSY;
1803 
1804 		/*
1805 		 * Collect ssid's that need to be disabled from default
1806 		 * hierarchy.
1807 		 */
1808 		if (ss->root == &cgrp_dfl_root)
1809 			dfl_disable_ss_mask |= 1 << ssid;
1810 
1811 	} while_each_subsys_mask();
1812 
1813 	if (dfl_disable_ss_mask) {
1814 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1815 
1816 		/*
1817 		 * Controllers from default hierarchy that need to be rebound
1818 		 * are all disabled together in one go.
1819 		 */
1820 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1821 		WARN_ON(cgroup_apply_control(scgrp));
1822 		cgroup_finalize_control(scgrp, 0);
1823 	}
1824 
1825 	do_each_subsys_mask(ss, ssid, ss_mask) {
1826 		struct cgroup_root *src_root = ss->root;
1827 		struct cgroup *scgrp = &src_root->cgrp;
1828 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1829 		struct css_set *cset, *cset_pos;
1830 		struct css_task_iter *it;
1831 
1832 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1833 
1834 		if (src_root != &cgrp_dfl_root) {
1835 			/* disable from the source */
1836 			src_root->subsys_mask &= ~(1 << ssid);
1837 			WARN_ON(cgroup_apply_control(scgrp));
1838 			cgroup_finalize_control(scgrp, 0);
1839 		}
1840 
1841 		/* rebind */
1842 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1843 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1844 		ss->root = dst_root;
1845 
1846 		spin_lock_irq(&css_set_lock);
1847 		css->cgroup = dcgrp;
1848 		WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1849 		list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1850 					 e_cset_node[ss->id]) {
1851 			list_move_tail(&cset->e_cset_node[ss->id],
1852 				       &dcgrp->e_csets[ss->id]);
1853 			/*
1854 			 * all css_sets of scgrp together in same order to dcgrp,
1855 			 * patch in-flight iterators to preserve correct iteration.
1856 			 * since the iterator is always advanced right away and
1857 			 * finished when it->cset_pos meets it->cset_head, so only
1858 			 * update it->cset_head is enough here.
1859 			 */
1860 			list_for_each_entry(it, &cset->task_iters, iters_node)
1861 				if (it->cset_head == &scgrp->e_csets[ss->id])
1862 					it->cset_head = &dcgrp->e_csets[ss->id];
1863 		}
1864 		spin_unlock_irq(&css_set_lock);
1865 
1866 		if (ss->css_rstat_flush) {
1867 			list_del_rcu(&css->rstat_css_node);
1868 			synchronize_rcu();
1869 			list_add_rcu(&css->rstat_css_node,
1870 				     &dcgrp->rstat_css_list);
1871 		}
1872 
1873 		/* default hierarchy doesn't enable controllers by default */
1874 		dst_root->subsys_mask |= 1 << ssid;
1875 		if (dst_root == &cgrp_dfl_root) {
1876 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1877 		} else {
1878 			dcgrp->subtree_control |= 1 << ssid;
1879 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1880 		}
1881 
1882 		ret = cgroup_apply_control(dcgrp);
1883 		if (ret)
1884 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1885 				ss->name, ret);
1886 
1887 		if (ss->bind)
1888 			ss->bind(css);
1889 	} while_each_subsys_mask();
1890 
1891 	kernfs_activate(dcgrp->kn);
1892 	return 0;
1893 }
1894 
1895 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1896 		     struct kernfs_root *kf_root)
1897 {
1898 	int len = 0;
1899 	char *buf = NULL;
1900 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1901 	struct cgroup *ns_cgroup;
1902 
1903 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1904 	if (!buf)
1905 		return -ENOMEM;
1906 
1907 	spin_lock_irq(&css_set_lock);
1908 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1909 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1910 	spin_unlock_irq(&css_set_lock);
1911 
1912 	if (len == -E2BIG)
1913 		len = -ERANGE;
1914 	else if (len > 0) {
1915 		seq_escape(sf, buf, " \t\n\\");
1916 		len = 0;
1917 	}
1918 	kfree(buf);
1919 	return len;
1920 }
1921 
1922 enum cgroup2_param {
1923 	Opt_nsdelegate,
1924 	Opt_favordynmods,
1925 	Opt_memory_localevents,
1926 	Opt_memory_recursiveprot,
1927 	Opt_memory_hugetlb_accounting,
1928 	Opt_pids_localevents,
1929 	nr__cgroup2_params
1930 };
1931 
1932 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1933 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1934 	fsparam_flag("favordynmods",		Opt_favordynmods),
1935 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1936 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1937 	fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
1938 	fsparam_flag("pids_localevents",	Opt_pids_localevents),
1939 	{}
1940 };
1941 
1942 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1943 {
1944 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1945 	struct fs_parse_result result;
1946 	int opt;
1947 
1948 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1949 	if (opt < 0)
1950 		return opt;
1951 
1952 	switch (opt) {
1953 	case Opt_nsdelegate:
1954 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1955 		return 0;
1956 	case Opt_favordynmods:
1957 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1958 		return 0;
1959 	case Opt_memory_localevents:
1960 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1961 		return 0;
1962 	case Opt_memory_recursiveprot:
1963 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1964 		return 0;
1965 	case Opt_memory_hugetlb_accounting:
1966 		ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1967 		return 0;
1968 	case Opt_pids_localevents:
1969 		ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
1970 		return 0;
1971 	}
1972 	return -EINVAL;
1973 }
1974 
1975 static void apply_cgroup_root_flags(unsigned int root_flags)
1976 {
1977 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1978 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1979 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1980 		else
1981 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1982 
1983 		cgroup_favor_dynmods(&cgrp_dfl_root,
1984 				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1985 
1986 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1987 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1988 		else
1989 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1990 
1991 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1992 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1993 		else
1994 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1995 
1996 		if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
1997 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1998 		else
1999 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2000 
2001 		if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2002 			cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2003 		else
2004 			cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS;
2005 	}
2006 }
2007 
2008 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
2009 {
2010 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
2011 		seq_puts(seq, ",nsdelegate");
2012 	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2013 		seq_puts(seq, ",favordynmods");
2014 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2015 		seq_puts(seq, ",memory_localevents");
2016 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2017 		seq_puts(seq, ",memory_recursiveprot");
2018 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2019 		seq_puts(seq, ",memory_hugetlb_accounting");
2020 	if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2021 		seq_puts(seq, ",pids_localevents");
2022 	return 0;
2023 }
2024 
2025 static int cgroup_reconfigure(struct fs_context *fc)
2026 {
2027 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2028 
2029 	apply_cgroup_root_flags(ctx->flags);
2030 	return 0;
2031 }
2032 
2033 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2034 {
2035 	struct cgroup_subsys *ss;
2036 	int ssid;
2037 
2038 	INIT_LIST_HEAD(&cgrp->self.sibling);
2039 	INIT_LIST_HEAD(&cgrp->self.children);
2040 	INIT_LIST_HEAD(&cgrp->cset_links);
2041 	INIT_LIST_HEAD(&cgrp->pidlists);
2042 	mutex_init(&cgrp->pidlist_mutex);
2043 	cgrp->self.cgroup = cgrp;
2044 	cgrp->self.flags |= CSS_ONLINE;
2045 	cgrp->dom_cgrp = cgrp;
2046 	cgrp->max_descendants = INT_MAX;
2047 	cgrp->max_depth = INT_MAX;
2048 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
2049 	prev_cputime_init(&cgrp->prev_cputime);
2050 
2051 	for_each_subsys(ss, ssid)
2052 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2053 
2054 	init_waitqueue_head(&cgrp->offline_waitq);
2055 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2056 }
2057 
2058 void init_cgroup_root(struct cgroup_fs_context *ctx)
2059 {
2060 	struct cgroup_root *root = ctx->root;
2061 	struct cgroup *cgrp = &root->cgrp;
2062 
2063 	INIT_LIST_HEAD_RCU(&root->root_list);
2064 	atomic_set(&root->nr_cgrps, 1);
2065 	cgrp->root = root;
2066 	init_cgroup_housekeeping(cgrp);
2067 
2068 	/* DYNMODS must be modified through cgroup_favor_dynmods() */
2069 	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2070 	if (ctx->release_agent)
2071 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2072 	if (ctx->name)
2073 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2074 	if (ctx->cpuset_clone_children)
2075 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2076 }
2077 
2078 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2079 {
2080 	LIST_HEAD(tmp_links);
2081 	struct cgroup *root_cgrp = &root->cgrp;
2082 	struct kernfs_syscall_ops *kf_sops;
2083 	struct css_set *cset;
2084 	int i, ret;
2085 
2086 	lockdep_assert_held(&cgroup_mutex);
2087 
2088 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2089 			      0, GFP_KERNEL);
2090 	if (ret)
2091 		goto out;
2092 
2093 	/*
2094 	 * We're accessing css_set_count without locking css_set_lock here,
2095 	 * but that's OK - it can only be increased by someone holding
2096 	 * cgroup_lock, and that's us.  Later rebinding may disable
2097 	 * controllers on the default hierarchy and thus create new csets,
2098 	 * which can't be more than the existing ones.  Allocate 2x.
2099 	 */
2100 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2101 	if (ret)
2102 		goto cancel_ref;
2103 
2104 	ret = cgroup_init_root_id(root);
2105 	if (ret)
2106 		goto cancel_ref;
2107 
2108 	kf_sops = root == &cgrp_dfl_root ?
2109 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2110 
2111 	root->kf_root = kernfs_create_root(kf_sops,
2112 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2113 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2114 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2115 					   root_cgrp);
2116 	if (IS_ERR(root->kf_root)) {
2117 		ret = PTR_ERR(root->kf_root);
2118 		goto exit_root_id;
2119 	}
2120 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2121 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2122 	root_cgrp->ancestors[0] = root_cgrp;
2123 
2124 	ret = css_populate_dir(&root_cgrp->self);
2125 	if (ret)
2126 		goto destroy_root;
2127 
2128 	ret = cgroup_rstat_init(root_cgrp);
2129 	if (ret)
2130 		goto destroy_root;
2131 
2132 	ret = rebind_subsystems(root, ss_mask);
2133 	if (ret)
2134 		goto exit_stats;
2135 
2136 	ret = cgroup_bpf_inherit(root_cgrp);
2137 	WARN_ON_ONCE(ret);
2138 
2139 	trace_cgroup_setup_root(root);
2140 
2141 	/*
2142 	 * There must be no failure case after here, since rebinding takes
2143 	 * care of subsystems' refcounts, which are explicitly dropped in
2144 	 * the failure exit path.
2145 	 */
2146 	list_add_rcu(&root->root_list, &cgroup_roots);
2147 	cgroup_root_count++;
2148 
2149 	/*
2150 	 * Link the root cgroup in this hierarchy into all the css_set
2151 	 * objects.
2152 	 */
2153 	spin_lock_irq(&css_set_lock);
2154 	hash_for_each(css_set_table, i, cset, hlist) {
2155 		link_css_set(&tmp_links, cset, root_cgrp);
2156 		if (css_set_populated(cset))
2157 			cgroup_update_populated(root_cgrp, true);
2158 	}
2159 	spin_unlock_irq(&css_set_lock);
2160 
2161 	BUG_ON(!list_empty(&root_cgrp->self.children));
2162 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2163 
2164 	ret = 0;
2165 	goto out;
2166 
2167 exit_stats:
2168 	cgroup_rstat_exit(root_cgrp);
2169 destroy_root:
2170 	kernfs_destroy_root(root->kf_root);
2171 	root->kf_root = NULL;
2172 exit_root_id:
2173 	cgroup_exit_root_id(root);
2174 cancel_ref:
2175 	percpu_ref_exit(&root_cgrp->self.refcnt);
2176 out:
2177 	free_cgrp_cset_links(&tmp_links);
2178 	return ret;
2179 }
2180 
2181 int cgroup_do_get_tree(struct fs_context *fc)
2182 {
2183 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2184 	int ret;
2185 
2186 	ctx->kfc.root = ctx->root->kf_root;
2187 	if (fc->fs_type == &cgroup2_fs_type)
2188 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2189 	else
2190 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2191 	ret = kernfs_get_tree(fc);
2192 
2193 	/*
2194 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2195 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2196 	 */
2197 	if (!ret && ctx->ns != &init_cgroup_ns) {
2198 		struct dentry *nsdentry;
2199 		struct super_block *sb = fc->root->d_sb;
2200 		struct cgroup *cgrp;
2201 
2202 		cgroup_lock();
2203 		spin_lock_irq(&css_set_lock);
2204 
2205 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2206 
2207 		spin_unlock_irq(&css_set_lock);
2208 		cgroup_unlock();
2209 
2210 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2211 		dput(fc->root);
2212 		if (IS_ERR(nsdentry)) {
2213 			deactivate_locked_super(sb);
2214 			ret = PTR_ERR(nsdentry);
2215 			nsdentry = NULL;
2216 		}
2217 		fc->root = nsdentry;
2218 	}
2219 
2220 	if (!ctx->kfc.new_sb_created)
2221 		cgroup_put(&ctx->root->cgrp);
2222 
2223 	return ret;
2224 }
2225 
2226 /*
2227  * Destroy a cgroup filesystem context.
2228  */
2229 static void cgroup_fs_context_free(struct fs_context *fc)
2230 {
2231 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2232 
2233 	kfree(ctx->name);
2234 	kfree(ctx->release_agent);
2235 	put_cgroup_ns(ctx->ns);
2236 	kernfs_free_fs_context(fc);
2237 	kfree(ctx);
2238 }
2239 
2240 static int cgroup_get_tree(struct fs_context *fc)
2241 {
2242 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2243 	int ret;
2244 
2245 	WRITE_ONCE(cgrp_dfl_visible, true);
2246 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2247 	ctx->root = &cgrp_dfl_root;
2248 
2249 	ret = cgroup_do_get_tree(fc);
2250 	if (!ret)
2251 		apply_cgroup_root_flags(ctx->flags);
2252 	return ret;
2253 }
2254 
2255 static const struct fs_context_operations cgroup_fs_context_ops = {
2256 	.free		= cgroup_fs_context_free,
2257 	.parse_param	= cgroup2_parse_param,
2258 	.get_tree	= cgroup_get_tree,
2259 	.reconfigure	= cgroup_reconfigure,
2260 };
2261 
2262 static const struct fs_context_operations cgroup1_fs_context_ops = {
2263 	.free		= cgroup_fs_context_free,
2264 	.parse_param	= cgroup1_parse_param,
2265 	.get_tree	= cgroup1_get_tree,
2266 	.reconfigure	= cgroup1_reconfigure,
2267 };
2268 
2269 /*
2270  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2271  * we select the namespace we're going to use.
2272  */
2273 static int cgroup_init_fs_context(struct fs_context *fc)
2274 {
2275 	struct cgroup_fs_context *ctx;
2276 
2277 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2278 	if (!ctx)
2279 		return -ENOMEM;
2280 
2281 	ctx->ns = current->nsproxy->cgroup_ns;
2282 	get_cgroup_ns(ctx->ns);
2283 	fc->fs_private = &ctx->kfc;
2284 	if (fc->fs_type == &cgroup2_fs_type)
2285 		fc->ops = &cgroup_fs_context_ops;
2286 	else
2287 		fc->ops = &cgroup1_fs_context_ops;
2288 	put_user_ns(fc->user_ns);
2289 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2290 	fc->global = true;
2291 
2292 	if (have_favordynmods)
2293 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2294 
2295 	return 0;
2296 }
2297 
2298 static void cgroup_kill_sb(struct super_block *sb)
2299 {
2300 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2301 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2302 
2303 	/*
2304 	 * If @root doesn't have any children, start killing it.
2305 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2306 	 *
2307 	 * And don't kill the default root.
2308 	 */
2309 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2310 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2311 		cgroup_bpf_offline(&root->cgrp);
2312 		percpu_ref_kill(&root->cgrp.self.refcnt);
2313 	}
2314 	cgroup_put(&root->cgrp);
2315 	kernfs_kill_sb(sb);
2316 }
2317 
2318 struct file_system_type cgroup_fs_type = {
2319 	.name			= "cgroup",
2320 	.init_fs_context	= cgroup_init_fs_context,
2321 	.parameters		= cgroup1_fs_parameters,
2322 	.kill_sb		= cgroup_kill_sb,
2323 	.fs_flags		= FS_USERNS_MOUNT,
2324 };
2325 
2326 static struct file_system_type cgroup2_fs_type = {
2327 	.name			= "cgroup2",
2328 	.init_fs_context	= cgroup_init_fs_context,
2329 	.parameters		= cgroup2_fs_parameters,
2330 	.kill_sb		= cgroup_kill_sb,
2331 	.fs_flags		= FS_USERNS_MOUNT,
2332 };
2333 
2334 #ifdef CONFIG_CPUSETS_V1
2335 static const struct fs_context_operations cpuset_fs_context_ops = {
2336 	.get_tree	= cgroup1_get_tree,
2337 	.free		= cgroup_fs_context_free,
2338 };
2339 
2340 /*
2341  * This is ugly, but preserves the userspace API for existing cpuset
2342  * users. If someone tries to mount the "cpuset" filesystem, we
2343  * silently switch it to mount "cgroup" instead
2344  */
2345 static int cpuset_init_fs_context(struct fs_context *fc)
2346 {
2347 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2348 	struct cgroup_fs_context *ctx;
2349 	int err;
2350 
2351 	err = cgroup_init_fs_context(fc);
2352 	if (err) {
2353 		kfree(agent);
2354 		return err;
2355 	}
2356 
2357 	fc->ops = &cpuset_fs_context_ops;
2358 
2359 	ctx = cgroup_fc2context(fc);
2360 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2361 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2362 	ctx->release_agent = agent;
2363 
2364 	get_filesystem(&cgroup_fs_type);
2365 	put_filesystem(fc->fs_type);
2366 	fc->fs_type = &cgroup_fs_type;
2367 
2368 	return 0;
2369 }
2370 
2371 static struct file_system_type cpuset_fs_type = {
2372 	.name			= "cpuset",
2373 	.init_fs_context	= cpuset_init_fs_context,
2374 	.fs_flags		= FS_USERNS_MOUNT,
2375 };
2376 #endif
2377 
2378 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2379 			  struct cgroup_namespace *ns)
2380 {
2381 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2382 
2383 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2384 }
2385 
2386 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2387 		   struct cgroup_namespace *ns)
2388 {
2389 	int ret;
2390 
2391 	cgroup_lock();
2392 	spin_lock_irq(&css_set_lock);
2393 
2394 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2395 
2396 	spin_unlock_irq(&css_set_lock);
2397 	cgroup_unlock();
2398 
2399 	return ret;
2400 }
2401 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2402 
2403 /**
2404  * cgroup_attach_lock - Lock for ->attach()
2405  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2406  *
2407  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2408  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2409  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2410  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2411  * lead to deadlocks.
2412  *
2413  * Bringing up a CPU may involve creating and destroying tasks which requires
2414  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2415  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2416  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2417  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2418  * the threadgroup_rwsem to be released to create new tasks. For more details:
2419  *
2420  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2421  *
2422  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2423  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2424  * CPU hotplug is disabled on entry.
2425  */
2426 void cgroup_attach_lock(bool lock_threadgroup)
2427 {
2428 	cpus_read_lock();
2429 	if (lock_threadgroup)
2430 		percpu_down_write(&cgroup_threadgroup_rwsem);
2431 }
2432 
2433 /**
2434  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2435  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2436  */
2437 void cgroup_attach_unlock(bool lock_threadgroup)
2438 {
2439 	if (lock_threadgroup)
2440 		percpu_up_write(&cgroup_threadgroup_rwsem);
2441 	cpus_read_unlock();
2442 }
2443 
2444 /**
2445  * cgroup_migrate_add_task - add a migration target task to a migration context
2446  * @task: target task
2447  * @mgctx: target migration context
2448  *
2449  * Add @task, which is a migration target, to @mgctx->tset.  This function
2450  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2451  * should have been added as a migration source and @task->cg_list will be
2452  * moved from the css_set's tasks list to mg_tasks one.
2453  */
2454 static void cgroup_migrate_add_task(struct task_struct *task,
2455 				    struct cgroup_mgctx *mgctx)
2456 {
2457 	struct css_set *cset;
2458 
2459 	lockdep_assert_held(&css_set_lock);
2460 
2461 	/* @task either already exited or can't exit until the end */
2462 	if (task->flags & PF_EXITING)
2463 		return;
2464 
2465 	/* cgroup_threadgroup_rwsem protects racing against forks */
2466 	WARN_ON_ONCE(list_empty(&task->cg_list));
2467 
2468 	cset = task_css_set(task);
2469 	if (!cset->mg_src_cgrp)
2470 		return;
2471 
2472 	mgctx->tset.nr_tasks++;
2473 
2474 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2475 	if (list_empty(&cset->mg_node))
2476 		list_add_tail(&cset->mg_node,
2477 			      &mgctx->tset.src_csets);
2478 	if (list_empty(&cset->mg_dst_cset->mg_node))
2479 		list_add_tail(&cset->mg_dst_cset->mg_node,
2480 			      &mgctx->tset.dst_csets);
2481 }
2482 
2483 /**
2484  * cgroup_taskset_first - reset taskset and return the first task
2485  * @tset: taskset of interest
2486  * @dst_cssp: output variable for the destination css
2487  *
2488  * @tset iteration is initialized and the first task is returned.
2489  */
2490 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2491 					 struct cgroup_subsys_state **dst_cssp)
2492 {
2493 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2494 	tset->cur_task = NULL;
2495 
2496 	return cgroup_taskset_next(tset, dst_cssp);
2497 }
2498 
2499 /**
2500  * cgroup_taskset_next - iterate to the next task in taskset
2501  * @tset: taskset of interest
2502  * @dst_cssp: output variable for the destination css
2503  *
2504  * Return the next task in @tset.  Iteration must have been initialized
2505  * with cgroup_taskset_first().
2506  */
2507 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2508 					struct cgroup_subsys_state **dst_cssp)
2509 {
2510 	struct css_set *cset = tset->cur_cset;
2511 	struct task_struct *task = tset->cur_task;
2512 
2513 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2514 		if (!task)
2515 			task = list_first_entry(&cset->mg_tasks,
2516 						struct task_struct, cg_list);
2517 		else
2518 			task = list_next_entry(task, cg_list);
2519 
2520 		if (&task->cg_list != &cset->mg_tasks) {
2521 			tset->cur_cset = cset;
2522 			tset->cur_task = task;
2523 
2524 			/*
2525 			 * This function may be called both before and
2526 			 * after cgroup_migrate_execute().  The two cases
2527 			 * can be distinguished by looking at whether @cset
2528 			 * has its ->mg_dst_cset set.
2529 			 */
2530 			if (cset->mg_dst_cset)
2531 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2532 			else
2533 				*dst_cssp = cset->subsys[tset->ssid];
2534 
2535 			return task;
2536 		}
2537 
2538 		cset = list_next_entry(cset, mg_node);
2539 		task = NULL;
2540 	}
2541 
2542 	return NULL;
2543 }
2544 
2545 /**
2546  * cgroup_migrate_execute - migrate a taskset
2547  * @mgctx: migration context
2548  *
2549  * Migrate tasks in @mgctx as setup by migration preparation functions.
2550  * This function fails iff one of the ->can_attach callbacks fails and
2551  * guarantees that either all or none of the tasks in @mgctx are migrated.
2552  * @mgctx is consumed regardless of success.
2553  */
2554 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2555 {
2556 	struct cgroup_taskset *tset = &mgctx->tset;
2557 	struct cgroup_subsys *ss;
2558 	struct task_struct *task, *tmp_task;
2559 	struct css_set *cset, *tmp_cset;
2560 	int ssid, failed_ssid, ret;
2561 
2562 	/* check that we can legitimately attach to the cgroup */
2563 	if (tset->nr_tasks) {
2564 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2565 			if (ss->can_attach) {
2566 				tset->ssid = ssid;
2567 				ret = ss->can_attach(tset);
2568 				if (ret) {
2569 					failed_ssid = ssid;
2570 					goto out_cancel_attach;
2571 				}
2572 			}
2573 		} while_each_subsys_mask();
2574 	}
2575 
2576 	/*
2577 	 * Now that we're guaranteed success, proceed to move all tasks to
2578 	 * the new cgroup.  There are no failure cases after here, so this
2579 	 * is the commit point.
2580 	 */
2581 	spin_lock_irq(&css_set_lock);
2582 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2583 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2584 			struct css_set *from_cset = task_css_set(task);
2585 			struct css_set *to_cset = cset->mg_dst_cset;
2586 
2587 			get_css_set(to_cset);
2588 			to_cset->nr_tasks++;
2589 			css_set_move_task(task, from_cset, to_cset, true);
2590 			from_cset->nr_tasks--;
2591 			/*
2592 			 * If the source or destination cgroup is frozen,
2593 			 * the task might require to change its state.
2594 			 */
2595 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2596 						    to_cset->dfl_cgrp);
2597 			put_css_set_locked(from_cset);
2598 
2599 		}
2600 	}
2601 	spin_unlock_irq(&css_set_lock);
2602 
2603 	/*
2604 	 * Migration is committed, all target tasks are now on dst_csets.
2605 	 * Nothing is sensitive to fork() after this point.  Notify
2606 	 * controllers that migration is complete.
2607 	 */
2608 	tset->csets = &tset->dst_csets;
2609 
2610 	if (tset->nr_tasks) {
2611 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2612 			if (ss->attach) {
2613 				tset->ssid = ssid;
2614 				ss->attach(tset);
2615 			}
2616 		} while_each_subsys_mask();
2617 	}
2618 
2619 	ret = 0;
2620 	goto out_release_tset;
2621 
2622 out_cancel_attach:
2623 	if (tset->nr_tasks) {
2624 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2625 			if (ssid == failed_ssid)
2626 				break;
2627 			if (ss->cancel_attach) {
2628 				tset->ssid = ssid;
2629 				ss->cancel_attach(tset);
2630 			}
2631 		} while_each_subsys_mask();
2632 	}
2633 out_release_tset:
2634 	spin_lock_irq(&css_set_lock);
2635 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2636 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2637 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2638 		list_del_init(&cset->mg_node);
2639 	}
2640 	spin_unlock_irq(&css_set_lock);
2641 
2642 	/*
2643 	 * Re-initialize the cgroup_taskset structure in case it is reused
2644 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2645 	 * iteration.
2646 	 */
2647 	tset->nr_tasks = 0;
2648 	tset->csets    = &tset->src_csets;
2649 	return ret;
2650 }
2651 
2652 /**
2653  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2654  * @dst_cgrp: destination cgroup to test
2655  *
2656  * On the default hierarchy, except for the mixable, (possible) thread root
2657  * and threaded cgroups, subtree_control must be zero for migration
2658  * destination cgroups with tasks so that child cgroups don't compete
2659  * against tasks.
2660  */
2661 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2662 {
2663 	/* v1 doesn't have any restriction */
2664 	if (!cgroup_on_dfl(dst_cgrp))
2665 		return 0;
2666 
2667 	/* verify @dst_cgrp can host resources */
2668 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2669 		return -EOPNOTSUPP;
2670 
2671 	/*
2672 	 * If @dst_cgrp is already or can become a thread root or is
2673 	 * threaded, it doesn't matter.
2674 	 */
2675 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2676 		return 0;
2677 
2678 	/* apply no-internal-process constraint */
2679 	if (dst_cgrp->subtree_control)
2680 		return -EBUSY;
2681 
2682 	return 0;
2683 }
2684 
2685 /**
2686  * cgroup_migrate_finish - cleanup after attach
2687  * @mgctx: migration context
2688  *
2689  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2690  * those functions for details.
2691  */
2692 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2693 {
2694 	struct css_set *cset, *tmp_cset;
2695 
2696 	lockdep_assert_held(&cgroup_mutex);
2697 
2698 	spin_lock_irq(&css_set_lock);
2699 
2700 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2701 				 mg_src_preload_node) {
2702 		cset->mg_src_cgrp = NULL;
2703 		cset->mg_dst_cgrp = NULL;
2704 		cset->mg_dst_cset = NULL;
2705 		list_del_init(&cset->mg_src_preload_node);
2706 		put_css_set_locked(cset);
2707 	}
2708 
2709 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2710 				 mg_dst_preload_node) {
2711 		cset->mg_src_cgrp = NULL;
2712 		cset->mg_dst_cgrp = NULL;
2713 		cset->mg_dst_cset = NULL;
2714 		list_del_init(&cset->mg_dst_preload_node);
2715 		put_css_set_locked(cset);
2716 	}
2717 
2718 	spin_unlock_irq(&css_set_lock);
2719 }
2720 
2721 /**
2722  * cgroup_migrate_add_src - add a migration source css_set
2723  * @src_cset: the source css_set to add
2724  * @dst_cgrp: the destination cgroup
2725  * @mgctx: migration context
2726  *
2727  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2728  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2729  * up by cgroup_migrate_finish().
2730  *
2731  * This function may be called without holding cgroup_threadgroup_rwsem
2732  * even if the target is a process.  Threads may be created and destroyed
2733  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2734  * into play and the preloaded css_sets are guaranteed to cover all
2735  * migrations.
2736  */
2737 void cgroup_migrate_add_src(struct css_set *src_cset,
2738 			    struct cgroup *dst_cgrp,
2739 			    struct cgroup_mgctx *mgctx)
2740 {
2741 	struct cgroup *src_cgrp;
2742 
2743 	lockdep_assert_held(&cgroup_mutex);
2744 	lockdep_assert_held(&css_set_lock);
2745 
2746 	/*
2747 	 * If ->dead, @src_set is associated with one or more dead cgroups
2748 	 * and doesn't contain any migratable tasks.  Ignore it early so
2749 	 * that the rest of migration path doesn't get confused by it.
2750 	 */
2751 	if (src_cset->dead)
2752 		return;
2753 
2754 	if (!list_empty(&src_cset->mg_src_preload_node))
2755 		return;
2756 
2757 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2758 
2759 	WARN_ON(src_cset->mg_src_cgrp);
2760 	WARN_ON(src_cset->mg_dst_cgrp);
2761 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2762 	WARN_ON(!list_empty(&src_cset->mg_node));
2763 
2764 	src_cset->mg_src_cgrp = src_cgrp;
2765 	src_cset->mg_dst_cgrp = dst_cgrp;
2766 	get_css_set(src_cset);
2767 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2768 }
2769 
2770 /**
2771  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2772  * @mgctx: migration context
2773  *
2774  * Tasks are about to be moved and all the source css_sets have been
2775  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2776  * pins all destination css_sets, links each to its source, and append them
2777  * to @mgctx->preloaded_dst_csets.
2778  *
2779  * This function must be called after cgroup_migrate_add_src() has been
2780  * called on each migration source css_set.  After migration is performed
2781  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2782  * @mgctx.
2783  */
2784 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2785 {
2786 	struct css_set *src_cset, *tmp_cset;
2787 
2788 	lockdep_assert_held(&cgroup_mutex);
2789 
2790 	/* look up the dst cset for each src cset and link it to src */
2791 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2792 				 mg_src_preload_node) {
2793 		struct css_set *dst_cset;
2794 		struct cgroup_subsys *ss;
2795 		int ssid;
2796 
2797 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2798 		if (!dst_cset)
2799 			return -ENOMEM;
2800 
2801 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2802 
2803 		/*
2804 		 * If src cset equals dst, it's noop.  Drop the src.
2805 		 * cgroup_migrate() will skip the cset too.  Note that we
2806 		 * can't handle src == dst as some nodes are used by both.
2807 		 */
2808 		if (src_cset == dst_cset) {
2809 			src_cset->mg_src_cgrp = NULL;
2810 			src_cset->mg_dst_cgrp = NULL;
2811 			list_del_init(&src_cset->mg_src_preload_node);
2812 			put_css_set(src_cset);
2813 			put_css_set(dst_cset);
2814 			continue;
2815 		}
2816 
2817 		src_cset->mg_dst_cset = dst_cset;
2818 
2819 		if (list_empty(&dst_cset->mg_dst_preload_node))
2820 			list_add_tail(&dst_cset->mg_dst_preload_node,
2821 				      &mgctx->preloaded_dst_csets);
2822 		else
2823 			put_css_set(dst_cset);
2824 
2825 		for_each_subsys(ss, ssid)
2826 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2827 				mgctx->ss_mask |= 1 << ssid;
2828 	}
2829 
2830 	return 0;
2831 }
2832 
2833 /**
2834  * cgroup_migrate - migrate a process or task to a cgroup
2835  * @leader: the leader of the process or the task to migrate
2836  * @threadgroup: whether @leader points to the whole process or a single task
2837  * @mgctx: migration context
2838  *
2839  * Migrate a process or task denoted by @leader.  If migrating a process,
2840  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2841  * responsible for invoking cgroup_migrate_add_src() and
2842  * cgroup_migrate_prepare_dst() on the targets before invoking this
2843  * function and following up with cgroup_migrate_finish().
2844  *
2845  * As long as a controller's ->can_attach() doesn't fail, this function is
2846  * guaranteed to succeed.  This means that, excluding ->can_attach()
2847  * failure, when migrating multiple targets, the success or failure can be
2848  * decided for all targets by invoking group_migrate_prepare_dst() before
2849  * actually starting migrating.
2850  */
2851 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2852 		   struct cgroup_mgctx *mgctx)
2853 {
2854 	struct task_struct *task;
2855 
2856 	/*
2857 	 * The following thread iteration should be inside an RCU critical
2858 	 * section to prevent tasks from being freed while taking the snapshot.
2859 	 * spin_lock_irq() implies RCU critical section here.
2860 	 */
2861 	spin_lock_irq(&css_set_lock);
2862 	task = leader;
2863 	do {
2864 		cgroup_migrate_add_task(task, mgctx);
2865 		if (!threadgroup)
2866 			break;
2867 	} while_each_thread(leader, task);
2868 	spin_unlock_irq(&css_set_lock);
2869 
2870 	return cgroup_migrate_execute(mgctx);
2871 }
2872 
2873 /**
2874  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2875  * @dst_cgrp: the cgroup to attach to
2876  * @leader: the task or the leader of the threadgroup to be attached
2877  * @threadgroup: attach the whole threadgroup?
2878  *
2879  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2880  */
2881 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2882 		       bool threadgroup)
2883 {
2884 	DEFINE_CGROUP_MGCTX(mgctx);
2885 	struct task_struct *task;
2886 	int ret = 0;
2887 
2888 	/* look up all src csets */
2889 	spin_lock_irq(&css_set_lock);
2890 	rcu_read_lock();
2891 	task = leader;
2892 	do {
2893 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2894 		if (!threadgroup)
2895 			break;
2896 	} while_each_thread(leader, task);
2897 	rcu_read_unlock();
2898 	spin_unlock_irq(&css_set_lock);
2899 
2900 	/* prepare dst csets and commit */
2901 	ret = cgroup_migrate_prepare_dst(&mgctx);
2902 	if (!ret)
2903 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2904 
2905 	cgroup_migrate_finish(&mgctx);
2906 
2907 	if (!ret)
2908 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2909 
2910 	return ret;
2911 }
2912 
2913 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2914 					     bool *threadgroup_locked)
2915 {
2916 	struct task_struct *tsk;
2917 	pid_t pid;
2918 
2919 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2920 		return ERR_PTR(-EINVAL);
2921 
2922 	/*
2923 	 * If we migrate a single thread, we don't care about threadgroup
2924 	 * stability. If the thread is `current`, it won't exit(2) under our
2925 	 * hands or change PID through exec(2). We exclude
2926 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2927 	 * callers by cgroup_mutex.
2928 	 * Therefore, we can skip the global lock.
2929 	 */
2930 	lockdep_assert_held(&cgroup_mutex);
2931 	*threadgroup_locked = pid || threadgroup;
2932 	cgroup_attach_lock(*threadgroup_locked);
2933 
2934 	rcu_read_lock();
2935 	if (pid) {
2936 		tsk = find_task_by_vpid(pid);
2937 		if (!tsk) {
2938 			tsk = ERR_PTR(-ESRCH);
2939 			goto out_unlock_threadgroup;
2940 		}
2941 	} else {
2942 		tsk = current;
2943 	}
2944 
2945 	if (threadgroup)
2946 		tsk = tsk->group_leader;
2947 
2948 	/*
2949 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2950 	 * If userland migrates such a kthread to a non-root cgroup, it can
2951 	 * become trapped in a cpuset, or RT kthread may be born in a
2952 	 * cgroup with no rt_runtime allocated.  Just say no.
2953 	 */
2954 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2955 		tsk = ERR_PTR(-EINVAL);
2956 		goto out_unlock_threadgroup;
2957 	}
2958 
2959 	get_task_struct(tsk);
2960 	goto out_unlock_rcu;
2961 
2962 out_unlock_threadgroup:
2963 	cgroup_attach_unlock(*threadgroup_locked);
2964 	*threadgroup_locked = false;
2965 out_unlock_rcu:
2966 	rcu_read_unlock();
2967 	return tsk;
2968 }
2969 
2970 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2971 {
2972 	struct cgroup_subsys *ss;
2973 	int ssid;
2974 
2975 	/* release reference from cgroup_procs_write_start() */
2976 	put_task_struct(task);
2977 
2978 	cgroup_attach_unlock(threadgroup_locked);
2979 
2980 	for_each_subsys(ss, ssid)
2981 		if (ss->post_attach)
2982 			ss->post_attach();
2983 }
2984 
2985 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2986 {
2987 	struct cgroup_subsys *ss;
2988 	bool printed = false;
2989 	int ssid;
2990 
2991 	do_each_subsys_mask(ss, ssid, ss_mask) {
2992 		if (printed)
2993 			seq_putc(seq, ' ');
2994 		seq_puts(seq, ss->name);
2995 		printed = true;
2996 	} while_each_subsys_mask();
2997 	if (printed)
2998 		seq_putc(seq, '\n');
2999 }
3000 
3001 /* show controllers which are enabled from the parent */
3002 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3003 {
3004 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3005 
3006 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3007 	return 0;
3008 }
3009 
3010 /* show controllers which are enabled for a given cgroup's children */
3011 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3012 {
3013 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3014 
3015 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
3016 	return 0;
3017 }
3018 
3019 /**
3020  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3021  * @cgrp: root of the subtree to update csses for
3022  *
3023  * @cgrp's control masks have changed and its subtree's css associations
3024  * need to be updated accordingly.  This function looks up all css_sets
3025  * which are attached to the subtree, creates the matching updated css_sets
3026  * and migrates the tasks to the new ones.
3027  */
3028 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3029 {
3030 	DEFINE_CGROUP_MGCTX(mgctx);
3031 	struct cgroup_subsys_state *d_css;
3032 	struct cgroup *dsct;
3033 	struct css_set *src_cset;
3034 	bool has_tasks;
3035 	int ret;
3036 
3037 	lockdep_assert_held(&cgroup_mutex);
3038 
3039 	/* look up all csses currently attached to @cgrp's subtree */
3040 	spin_lock_irq(&css_set_lock);
3041 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3042 		struct cgrp_cset_link *link;
3043 
3044 		/*
3045 		 * As cgroup_update_dfl_csses() is only called by
3046 		 * cgroup_apply_control(). The csses associated with the
3047 		 * given cgrp will not be affected by changes made to
3048 		 * its subtree_control file. We can skip them.
3049 		 */
3050 		if (dsct == cgrp)
3051 			continue;
3052 
3053 		list_for_each_entry(link, &dsct->cset_links, cset_link)
3054 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3055 	}
3056 	spin_unlock_irq(&css_set_lock);
3057 
3058 	/*
3059 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3060 	 * However, if there are no source csets for @cgrp, changing its
3061 	 * controllers isn't gonna produce any task migrations and the
3062 	 * write-locking can be skipped safely.
3063 	 */
3064 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3065 	cgroup_attach_lock(has_tasks);
3066 
3067 	/* NULL dst indicates self on default hierarchy */
3068 	ret = cgroup_migrate_prepare_dst(&mgctx);
3069 	if (ret)
3070 		goto out_finish;
3071 
3072 	spin_lock_irq(&css_set_lock);
3073 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3074 			    mg_src_preload_node) {
3075 		struct task_struct *task, *ntask;
3076 
3077 		/* all tasks in src_csets need to be migrated */
3078 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3079 			cgroup_migrate_add_task(task, &mgctx);
3080 	}
3081 	spin_unlock_irq(&css_set_lock);
3082 
3083 	ret = cgroup_migrate_execute(&mgctx);
3084 out_finish:
3085 	cgroup_migrate_finish(&mgctx);
3086 	cgroup_attach_unlock(has_tasks);
3087 	return ret;
3088 }
3089 
3090 /**
3091  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3092  * @cgrp: root of the target subtree
3093  *
3094  * Because css offlining is asynchronous, userland may try to re-enable a
3095  * controller while the previous css is still around.  This function grabs
3096  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3097  */
3098 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3099 	__acquires(&cgroup_mutex)
3100 {
3101 	struct cgroup *dsct;
3102 	struct cgroup_subsys_state *d_css;
3103 	struct cgroup_subsys *ss;
3104 	int ssid;
3105 
3106 restart:
3107 	cgroup_lock();
3108 
3109 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3110 		for_each_subsys(ss, ssid) {
3111 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3112 			DEFINE_WAIT(wait);
3113 
3114 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3115 				continue;
3116 
3117 			cgroup_get_live(dsct);
3118 			prepare_to_wait(&dsct->offline_waitq, &wait,
3119 					TASK_UNINTERRUPTIBLE);
3120 
3121 			cgroup_unlock();
3122 			schedule();
3123 			finish_wait(&dsct->offline_waitq, &wait);
3124 
3125 			cgroup_put(dsct);
3126 			goto restart;
3127 		}
3128 	}
3129 }
3130 
3131 /**
3132  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3133  * @cgrp: root of the target subtree
3134  *
3135  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3136  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3137  * itself.
3138  */
3139 static void cgroup_save_control(struct cgroup *cgrp)
3140 {
3141 	struct cgroup *dsct;
3142 	struct cgroup_subsys_state *d_css;
3143 
3144 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3145 		dsct->old_subtree_control = dsct->subtree_control;
3146 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3147 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3148 	}
3149 }
3150 
3151 /**
3152  * cgroup_propagate_control - refresh control masks of a subtree
3153  * @cgrp: root of the target subtree
3154  *
3155  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3156  * ->subtree_control and propagate controller availability through the
3157  * subtree so that descendants don't have unavailable controllers enabled.
3158  */
3159 static void cgroup_propagate_control(struct cgroup *cgrp)
3160 {
3161 	struct cgroup *dsct;
3162 	struct cgroup_subsys_state *d_css;
3163 
3164 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3165 		dsct->subtree_control &= cgroup_control(dsct);
3166 		dsct->subtree_ss_mask =
3167 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3168 						    cgroup_ss_mask(dsct));
3169 	}
3170 }
3171 
3172 /**
3173  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3174  * @cgrp: root of the target subtree
3175  *
3176  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3177  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3178  * itself.
3179  */
3180 static void cgroup_restore_control(struct cgroup *cgrp)
3181 {
3182 	struct cgroup *dsct;
3183 	struct cgroup_subsys_state *d_css;
3184 
3185 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3186 		dsct->subtree_control = dsct->old_subtree_control;
3187 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3188 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3189 	}
3190 }
3191 
3192 static bool css_visible(struct cgroup_subsys_state *css)
3193 {
3194 	struct cgroup_subsys *ss = css->ss;
3195 	struct cgroup *cgrp = css->cgroup;
3196 
3197 	if (cgroup_control(cgrp) & (1 << ss->id))
3198 		return true;
3199 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3200 		return false;
3201 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3202 }
3203 
3204 /**
3205  * cgroup_apply_control_enable - enable or show csses according to control
3206  * @cgrp: root of the target subtree
3207  *
3208  * Walk @cgrp's subtree and create new csses or make the existing ones
3209  * visible.  A css is created invisible if it's being implicitly enabled
3210  * through dependency.  An invisible css is made visible when the userland
3211  * explicitly enables it.
3212  *
3213  * Returns 0 on success, -errno on failure.  On failure, csses which have
3214  * been processed already aren't cleaned up.  The caller is responsible for
3215  * cleaning up with cgroup_apply_control_disable().
3216  */
3217 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3218 {
3219 	struct cgroup *dsct;
3220 	struct cgroup_subsys_state *d_css;
3221 	struct cgroup_subsys *ss;
3222 	int ssid, ret;
3223 
3224 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3225 		for_each_subsys(ss, ssid) {
3226 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3227 
3228 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3229 				continue;
3230 
3231 			if (!css) {
3232 				css = css_create(dsct, ss);
3233 				if (IS_ERR(css))
3234 					return PTR_ERR(css);
3235 			}
3236 
3237 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3238 
3239 			if (css_visible(css)) {
3240 				ret = css_populate_dir(css);
3241 				if (ret)
3242 					return ret;
3243 			}
3244 		}
3245 	}
3246 
3247 	return 0;
3248 }
3249 
3250 /**
3251  * cgroup_apply_control_disable - kill or hide csses according to control
3252  * @cgrp: root of the target subtree
3253  *
3254  * Walk @cgrp's subtree and kill and hide csses so that they match
3255  * cgroup_ss_mask() and cgroup_visible_mask().
3256  *
3257  * A css is hidden when the userland requests it to be disabled while other
3258  * subsystems are still depending on it.  The css must not actively control
3259  * resources and be in the vanilla state if it's made visible again later.
3260  * Controllers which may be depended upon should provide ->css_reset() for
3261  * this purpose.
3262  */
3263 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3264 {
3265 	struct cgroup *dsct;
3266 	struct cgroup_subsys_state *d_css;
3267 	struct cgroup_subsys *ss;
3268 	int ssid;
3269 
3270 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3271 		for_each_subsys(ss, ssid) {
3272 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3273 
3274 			if (!css)
3275 				continue;
3276 
3277 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3278 
3279 			if (css->parent &&
3280 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3281 				kill_css(css);
3282 			} else if (!css_visible(css)) {
3283 				css_clear_dir(css);
3284 				if (ss->css_reset)
3285 					ss->css_reset(css);
3286 			}
3287 		}
3288 	}
3289 }
3290 
3291 /**
3292  * cgroup_apply_control - apply control mask updates to the subtree
3293  * @cgrp: root of the target subtree
3294  *
3295  * subsystems can be enabled and disabled in a subtree using the following
3296  * steps.
3297  *
3298  * 1. Call cgroup_save_control() to stash the current state.
3299  * 2. Update ->subtree_control masks in the subtree as desired.
3300  * 3. Call cgroup_apply_control() to apply the changes.
3301  * 4. Optionally perform other related operations.
3302  * 5. Call cgroup_finalize_control() to finish up.
3303  *
3304  * This function implements step 3 and propagates the mask changes
3305  * throughout @cgrp's subtree, updates csses accordingly and perform
3306  * process migrations.
3307  */
3308 static int cgroup_apply_control(struct cgroup *cgrp)
3309 {
3310 	int ret;
3311 
3312 	cgroup_propagate_control(cgrp);
3313 
3314 	ret = cgroup_apply_control_enable(cgrp);
3315 	if (ret)
3316 		return ret;
3317 
3318 	/*
3319 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3320 	 * making the following cgroup_update_dfl_csses() properly update
3321 	 * css associations of all tasks in the subtree.
3322 	 */
3323 	return cgroup_update_dfl_csses(cgrp);
3324 }
3325 
3326 /**
3327  * cgroup_finalize_control - finalize control mask update
3328  * @cgrp: root of the target subtree
3329  * @ret: the result of the update
3330  *
3331  * Finalize control mask update.  See cgroup_apply_control() for more info.
3332  */
3333 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3334 {
3335 	if (ret) {
3336 		cgroup_restore_control(cgrp);
3337 		cgroup_propagate_control(cgrp);
3338 	}
3339 
3340 	cgroup_apply_control_disable(cgrp);
3341 }
3342 
3343 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3344 {
3345 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3346 
3347 	/* if nothing is getting enabled, nothing to worry about */
3348 	if (!enable)
3349 		return 0;
3350 
3351 	/* can @cgrp host any resources? */
3352 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3353 		return -EOPNOTSUPP;
3354 
3355 	/* mixables don't care */
3356 	if (cgroup_is_mixable(cgrp))
3357 		return 0;
3358 
3359 	if (domain_enable) {
3360 		/* can't enable domain controllers inside a thread subtree */
3361 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3362 			return -EOPNOTSUPP;
3363 	} else {
3364 		/*
3365 		 * Threaded controllers can handle internal competitions
3366 		 * and are always allowed inside a (prospective) thread
3367 		 * subtree.
3368 		 */
3369 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3370 			return 0;
3371 	}
3372 
3373 	/*
3374 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3375 	 * child cgroups competing against tasks.
3376 	 */
3377 	if (cgroup_has_tasks(cgrp))
3378 		return -EBUSY;
3379 
3380 	return 0;
3381 }
3382 
3383 /* change the enabled child controllers for a cgroup in the default hierarchy */
3384 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3385 					    char *buf, size_t nbytes,
3386 					    loff_t off)
3387 {
3388 	u16 enable = 0, disable = 0;
3389 	struct cgroup *cgrp, *child;
3390 	struct cgroup_subsys *ss;
3391 	char *tok;
3392 	int ssid, ret;
3393 
3394 	/*
3395 	 * Parse input - space separated list of subsystem names prefixed
3396 	 * with either + or -.
3397 	 */
3398 	buf = strstrip(buf);
3399 	while ((tok = strsep(&buf, " "))) {
3400 		if (tok[0] == '\0')
3401 			continue;
3402 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3403 			if (!cgroup_ssid_enabled(ssid) ||
3404 			    strcmp(tok + 1, ss->name))
3405 				continue;
3406 
3407 			if (*tok == '+') {
3408 				enable |= 1 << ssid;
3409 				disable &= ~(1 << ssid);
3410 			} else if (*tok == '-') {
3411 				disable |= 1 << ssid;
3412 				enable &= ~(1 << ssid);
3413 			} else {
3414 				return -EINVAL;
3415 			}
3416 			break;
3417 		} while_each_subsys_mask();
3418 		if (ssid == CGROUP_SUBSYS_COUNT)
3419 			return -EINVAL;
3420 	}
3421 
3422 	cgrp = cgroup_kn_lock_live(of->kn, true);
3423 	if (!cgrp)
3424 		return -ENODEV;
3425 
3426 	for_each_subsys(ss, ssid) {
3427 		if (enable & (1 << ssid)) {
3428 			if (cgrp->subtree_control & (1 << ssid)) {
3429 				enable &= ~(1 << ssid);
3430 				continue;
3431 			}
3432 
3433 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3434 				ret = -ENOENT;
3435 				goto out_unlock;
3436 			}
3437 		} else if (disable & (1 << ssid)) {
3438 			if (!(cgrp->subtree_control & (1 << ssid))) {
3439 				disable &= ~(1 << ssid);
3440 				continue;
3441 			}
3442 
3443 			/* a child has it enabled? */
3444 			cgroup_for_each_live_child(child, cgrp) {
3445 				if (child->subtree_control & (1 << ssid)) {
3446 					ret = -EBUSY;
3447 					goto out_unlock;
3448 				}
3449 			}
3450 		}
3451 	}
3452 
3453 	if (!enable && !disable) {
3454 		ret = 0;
3455 		goto out_unlock;
3456 	}
3457 
3458 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3459 	if (ret)
3460 		goto out_unlock;
3461 
3462 	/* save and update control masks and prepare csses */
3463 	cgroup_save_control(cgrp);
3464 
3465 	cgrp->subtree_control |= enable;
3466 	cgrp->subtree_control &= ~disable;
3467 
3468 	ret = cgroup_apply_control(cgrp);
3469 	cgroup_finalize_control(cgrp, ret);
3470 	if (ret)
3471 		goto out_unlock;
3472 
3473 	kernfs_activate(cgrp->kn);
3474 out_unlock:
3475 	cgroup_kn_unlock(of->kn);
3476 	return ret ?: nbytes;
3477 }
3478 
3479 /**
3480  * cgroup_enable_threaded - make @cgrp threaded
3481  * @cgrp: the target cgroup
3482  *
3483  * Called when "threaded" is written to the cgroup.type interface file and
3484  * tries to make @cgrp threaded and join the parent's resource domain.
3485  * This function is never called on the root cgroup as cgroup.type doesn't
3486  * exist on it.
3487  */
3488 static int cgroup_enable_threaded(struct cgroup *cgrp)
3489 {
3490 	struct cgroup *parent = cgroup_parent(cgrp);
3491 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3492 	struct cgroup *dsct;
3493 	struct cgroup_subsys_state *d_css;
3494 	int ret;
3495 
3496 	lockdep_assert_held(&cgroup_mutex);
3497 
3498 	/* noop if already threaded */
3499 	if (cgroup_is_threaded(cgrp))
3500 		return 0;
3501 
3502 	/*
3503 	 * If @cgroup is populated or has domain controllers enabled, it
3504 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3505 	 * test can catch the same conditions, that's only when @parent is
3506 	 * not mixable, so let's check it explicitly.
3507 	 */
3508 	if (cgroup_is_populated(cgrp) ||
3509 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3510 		return -EOPNOTSUPP;
3511 
3512 	/* we're joining the parent's domain, ensure its validity */
3513 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3514 	    !cgroup_can_be_thread_root(dom_cgrp))
3515 		return -EOPNOTSUPP;
3516 
3517 	/*
3518 	 * The following shouldn't cause actual migrations and should
3519 	 * always succeed.
3520 	 */
3521 	cgroup_save_control(cgrp);
3522 
3523 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3524 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3525 			dsct->dom_cgrp = dom_cgrp;
3526 
3527 	ret = cgroup_apply_control(cgrp);
3528 	if (!ret)
3529 		parent->nr_threaded_children++;
3530 
3531 	cgroup_finalize_control(cgrp, ret);
3532 	return ret;
3533 }
3534 
3535 static int cgroup_type_show(struct seq_file *seq, void *v)
3536 {
3537 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3538 
3539 	if (cgroup_is_threaded(cgrp))
3540 		seq_puts(seq, "threaded\n");
3541 	else if (!cgroup_is_valid_domain(cgrp))
3542 		seq_puts(seq, "domain invalid\n");
3543 	else if (cgroup_is_thread_root(cgrp))
3544 		seq_puts(seq, "domain threaded\n");
3545 	else
3546 		seq_puts(seq, "domain\n");
3547 
3548 	return 0;
3549 }
3550 
3551 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3552 				 size_t nbytes, loff_t off)
3553 {
3554 	struct cgroup *cgrp;
3555 	int ret;
3556 
3557 	/* only switching to threaded mode is supported */
3558 	if (strcmp(strstrip(buf), "threaded"))
3559 		return -EINVAL;
3560 
3561 	/* drain dying csses before we re-apply (threaded) subtree control */
3562 	cgrp = cgroup_kn_lock_live(of->kn, true);
3563 	if (!cgrp)
3564 		return -ENOENT;
3565 
3566 	/* threaded can only be enabled */
3567 	ret = cgroup_enable_threaded(cgrp);
3568 
3569 	cgroup_kn_unlock(of->kn);
3570 	return ret ?: nbytes;
3571 }
3572 
3573 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3574 {
3575 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3576 	int descendants = READ_ONCE(cgrp->max_descendants);
3577 
3578 	if (descendants == INT_MAX)
3579 		seq_puts(seq, "max\n");
3580 	else
3581 		seq_printf(seq, "%d\n", descendants);
3582 
3583 	return 0;
3584 }
3585 
3586 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3587 					   char *buf, size_t nbytes, loff_t off)
3588 {
3589 	struct cgroup *cgrp;
3590 	int descendants;
3591 	ssize_t ret;
3592 
3593 	buf = strstrip(buf);
3594 	if (!strcmp(buf, "max")) {
3595 		descendants = INT_MAX;
3596 	} else {
3597 		ret = kstrtoint(buf, 0, &descendants);
3598 		if (ret)
3599 			return ret;
3600 	}
3601 
3602 	if (descendants < 0)
3603 		return -ERANGE;
3604 
3605 	cgrp = cgroup_kn_lock_live(of->kn, false);
3606 	if (!cgrp)
3607 		return -ENOENT;
3608 
3609 	cgrp->max_descendants = descendants;
3610 
3611 	cgroup_kn_unlock(of->kn);
3612 
3613 	return nbytes;
3614 }
3615 
3616 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3617 {
3618 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3619 	int depth = READ_ONCE(cgrp->max_depth);
3620 
3621 	if (depth == INT_MAX)
3622 		seq_puts(seq, "max\n");
3623 	else
3624 		seq_printf(seq, "%d\n", depth);
3625 
3626 	return 0;
3627 }
3628 
3629 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3630 				      char *buf, size_t nbytes, loff_t off)
3631 {
3632 	struct cgroup *cgrp;
3633 	ssize_t ret;
3634 	int depth;
3635 
3636 	buf = strstrip(buf);
3637 	if (!strcmp(buf, "max")) {
3638 		depth = INT_MAX;
3639 	} else {
3640 		ret = kstrtoint(buf, 0, &depth);
3641 		if (ret)
3642 			return ret;
3643 	}
3644 
3645 	if (depth < 0)
3646 		return -ERANGE;
3647 
3648 	cgrp = cgroup_kn_lock_live(of->kn, false);
3649 	if (!cgrp)
3650 		return -ENOENT;
3651 
3652 	cgrp->max_depth = depth;
3653 
3654 	cgroup_kn_unlock(of->kn);
3655 
3656 	return nbytes;
3657 }
3658 
3659 static int cgroup_events_show(struct seq_file *seq, void *v)
3660 {
3661 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3662 
3663 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3664 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3665 
3666 	return 0;
3667 }
3668 
3669 static int cgroup_stat_show(struct seq_file *seq, void *v)
3670 {
3671 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3672 	struct cgroup_subsys_state *css;
3673 	int dying_cnt[CGROUP_SUBSYS_COUNT];
3674 	int ssid;
3675 
3676 	seq_printf(seq, "nr_descendants %d\n",
3677 		   cgroup->nr_descendants);
3678 
3679 	/*
3680 	 * Show the number of live and dying csses associated with each of
3681 	 * non-inhibited cgroup subsystems that is bound to cgroup v2.
3682 	 *
3683 	 * Without proper lock protection, racing is possible. So the
3684 	 * numbers may not be consistent when that happens.
3685 	 */
3686 	rcu_read_lock();
3687 	for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3688 		dying_cnt[ssid] = -1;
3689 		if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) ||
3690 		    (cgroup_subsys[ssid]->root !=  &cgrp_dfl_root))
3691 			continue;
3692 		css = rcu_dereference_raw(cgroup->subsys[ssid]);
3693 		dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid];
3694 		seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name,
3695 			   css ? (css->nr_descendants + 1) : 0);
3696 	}
3697 
3698 	seq_printf(seq, "nr_dying_descendants %d\n",
3699 		   cgroup->nr_dying_descendants);
3700 	for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3701 		if (dying_cnt[ssid] >= 0)
3702 			seq_printf(seq, "nr_dying_subsys_%s %d\n",
3703 				   cgroup_subsys[ssid]->name, dying_cnt[ssid]);
3704 	}
3705 	rcu_read_unlock();
3706 	return 0;
3707 }
3708 
3709 #ifdef CONFIG_CGROUP_SCHED
3710 /**
3711  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3712  * @cgrp: the cgroup of interest
3713  * @ss: the subsystem of interest
3714  *
3715  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
3716  * or is offline, %NULL is returned.
3717  */
3718 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3719 						     struct cgroup_subsys *ss)
3720 {
3721 	struct cgroup_subsys_state *css;
3722 
3723 	rcu_read_lock();
3724 	css = cgroup_css(cgrp, ss);
3725 	if (css && !css_tryget_online(css))
3726 		css = NULL;
3727 	rcu_read_unlock();
3728 
3729 	return css;
3730 }
3731 
3732 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3733 {
3734 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3735 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3736 	struct cgroup_subsys_state *css;
3737 	int ret;
3738 
3739 	if (!ss->css_extra_stat_show)
3740 		return 0;
3741 
3742 	css = cgroup_tryget_css(cgrp, ss);
3743 	if (!css)
3744 		return 0;
3745 
3746 	ret = ss->css_extra_stat_show(seq, css);
3747 	css_put(css);
3748 	return ret;
3749 }
3750 
3751 static int cgroup_local_stat_show(struct seq_file *seq,
3752 				  struct cgroup *cgrp, int ssid)
3753 {
3754 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3755 	struct cgroup_subsys_state *css;
3756 	int ret;
3757 
3758 	if (!ss->css_local_stat_show)
3759 		return 0;
3760 
3761 	css = cgroup_tryget_css(cgrp, ss);
3762 	if (!css)
3763 		return 0;
3764 
3765 	ret = ss->css_local_stat_show(seq, css);
3766 	css_put(css);
3767 	return ret;
3768 }
3769 #endif
3770 
3771 static int cpu_stat_show(struct seq_file *seq, void *v)
3772 {
3773 	int ret = 0;
3774 
3775 	cgroup_base_stat_cputime_show(seq);
3776 #ifdef CONFIG_CGROUP_SCHED
3777 	ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3778 #endif
3779 	return ret;
3780 }
3781 
3782 static int cpu_local_stat_show(struct seq_file *seq, void *v)
3783 {
3784 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3785 	int ret = 0;
3786 
3787 #ifdef CONFIG_CGROUP_SCHED
3788 	ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3789 #endif
3790 	return ret;
3791 }
3792 
3793 #ifdef CONFIG_PSI
3794 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3795 {
3796 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3797 	struct psi_group *psi = cgroup_psi(cgrp);
3798 
3799 	return psi_show(seq, psi, PSI_IO);
3800 }
3801 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3802 {
3803 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3804 	struct psi_group *psi = cgroup_psi(cgrp);
3805 
3806 	return psi_show(seq, psi, PSI_MEM);
3807 }
3808 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3809 {
3810 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3811 	struct psi_group *psi = cgroup_psi(cgrp);
3812 
3813 	return psi_show(seq, psi, PSI_CPU);
3814 }
3815 
3816 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3817 			      size_t nbytes, enum psi_res res)
3818 {
3819 	struct cgroup_file_ctx *ctx = of->priv;
3820 	struct psi_trigger *new;
3821 	struct cgroup *cgrp;
3822 	struct psi_group *psi;
3823 
3824 	cgrp = cgroup_kn_lock_live(of->kn, false);
3825 	if (!cgrp)
3826 		return -ENODEV;
3827 
3828 	cgroup_get(cgrp);
3829 	cgroup_kn_unlock(of->kn);
3830 
3831 	/* Allow only one trigger per file descriptor */
3832 	if (ctx->psi.trigger) {
3833 		cgroup_put(cgrp);
3834 		return -EBUSY;
3835 	}
3836 
3837 	psi = cgroup_psi(cgrp);
3838 	new = psi_trigger_create(psi, buf, res, of->file, of);
3839 	if (IS_ERR(new)) {
3840 		cgroup_put(cgrp);
3841 		return PTR_ERR(new);
3842 	}
3843 
3844 	smp_store_release(&ctx->psi.trigger, new);
3845 	cgroup_put(cgrp);
3846 
3847 	return nbytes;
3848 }
3849 
3850 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3851 					  char *buf, size_t nbytes,
3852 					  loff_t off)
3853 {
3854 	return pressure_write(of, buf, nbytes, PSI_IO);
3855 }
3856 
3857 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3858 					  char *buf, size_t nbytes,
3859 					  loff_t off)
3860 {
3861 	return pressure_write(of, buf, nbytes, PSI_MEM);
3862 }
3863 
3864 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3865 					  char *buf, size_t nbytes,
3866 					  loff_t off)
3867 {
3868 	return pressure_write(of, buf, nbytes, PSI_CPU);
3869 }
3870 
3871 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3872 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3873 {
3874 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3875 	struct psi_group *psi = cgroup_psi(cgrp);
3876 
3877 	return psi_show(seq, psi, PSI_IRQ);
3878 }
3879 
3880 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3881 					 char *buf, size_t nbytes,
3882 					 loff_t off)
3883 {
3884 	return pressure_write(of, buf, nbytes, PSI_IRQ);
3885 }
3886 #endif
3887 
3888 static int cgroup_pressure_show(struct seq_file *seq, void *v)
3889 {
3890 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3891 	struct psi_group *psi = cgroup_psi(cgrp);
3892 
3893 	seq_printf(seq, "%d\n", psi->enabled);
3894 
3895 	return 0;
3896 }
3897 
3898 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3899 				     char *buf, size_t nbytes,
3900 				     loff_t off)
3901 {
3902 	ssize_t ret;
3903 	int enable;
3904 	struct cgroup *cgrp;
3905 	struct psi_group *psi;
3906 
3907 	ret = kstrtoint(strstrip(buf), 0, &enable);
3908 	if (ret)
3909 		return ret;
3910 
3911 	if (enable < 0 || enable > 1)
3912 		return -ERANGE;
3913 
3914 	cgrp = cgroup_kn_lock_live(of->kn, false);
3915 	if (!cgrp)
3916 		return -ENOENT;
3917 
3918 	psi = cgroup_psi(cgrp);
3919 	if (psi->enabled != enable) {
3920 		int i;
3921 
3922 		/* show or hide {cpu,memory,io,irq}.pressure files */
3923 		for (i = 0; i < NR_PSI_RESOURCES; i++)
3924 			cgroup_file_show(&cgrp->psi_files[i], enable);
3925 
3926 		psi->enabled = enable;
3927 		if (enable)
3928 			psi_cgroup_restart(psi);
3929 	}
3930 
3931 	cgroup_kn_unlock(of->kn);
3932 
3933 	return nbytes;
3934 }
3935 
3936 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3937 					  poll_table *pt)
3938 {
3939 	struct cgroup_file_ctx *ctx = of->priv;
3940 
3941 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3942 }
3943 
3944 static void cgroup_pressure_release(struct kernfs_open_file *of)
3945 {
3946 	struct cgroup_file_ctx *ctx = of->priv;
3947 
3948 	psi_trigger_destroy(ctx->psi.trigger);
3949 }
3950 
3951 bool cgroup_psi_enabled(void)
3952 {
3953 	if (static_branch_likely(&psi_disabled))
3954 		return false;
3955 
3956 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3957 }
3958 
3959 #else /* CONFIG_PSI */
3960 bool cgroup_psi_enabled(void)
3961 {
3962 	return false;
3963 }
3964 
3965 #endif /* CONFIG_PSI */
3966 
3967 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3968 {
3969 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3970 
3971 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3972 
3973 	return 0;
3974 }
3975 
3976 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3977 				   char *buf, size_t nbytes, loff_t off)
3978 {
3979 	struct cgroup *cgrp;
3980 	ssize_t ret;
3981 	int freeze;
3982 
3983 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3984 	if (ret)
3985 		return ret;
3986 
3987 	if (freeze < 0 || freeze > 1)
3988 		return -ERANGE;
3989 
3990 	cgrp = cgroup_kn_lock_live(of->kn, false);
3991 	if (!cgrp)
3992 		return -ENOENT;
3993 
3994 	cgroup_freeze(cgrp, freeze);
3995 
3996 	cgroup_kn_unlock(of->kn);
3997 
3998 	return nbytes;
3999 }
4000 
4001 static void __cgroup_kill(struct cgroup *cgrp)
4002 {
4003 	struct css_task_iter it;
4004 	struct task_struct *task;
4005 
4006 	lockdep_assert_held(&cgroup_mutex);
4007 
4008 	spin_lock_irq(&css_set_lock);
4009 	set_bit(CGRP_KILL, &cgrp->flags);
4010 	spin_unlock_irq(&css_set_lock);
4011 
4012 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
4013 	while ((task = css_task_iter_next(&it))) {
4014 		/* Ignore kernel threads here. */
4015 		if (task->flags & PF_KTHREAD)
4016 			continue;
4017 
4018 		/* Skip tasks that are already dying. */
4019 		if (__fatal_signal_pending(task))
4020 			continue;
4021 
4022 		send_sig(SIGKILL, task, 0);
4023 	}
4024 	css_task_iter_end(&it);
4025 
4026 	spin_lock_irq(&css_set_lock);
4027 	clear_bit(CGRP_KILL, &cgrp->flags);
4028 	spin_unlock_irq(&css_set_lock);
4029 }
4030 
4031 static void cgroup_kill(struct cgroup *cgrp)
4032 {
4033 	struct cgroup_subsys_state *css;
4034 	struct cgroup *dsct;
4035 
4036 	lockdep_assert_held(&cgroup_mutex);
4037 
4038 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
4039 		__cgroup_kill(dsct);
4040 }
4041 
4042 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4043 				 size_t nbytes, loff_t off)
4044 {
4045 	ssize_t ret = 0;
4046 	int kill;
4047 	struct cgroup *cgrp;
4048 
4049 	ret = kstrtoint(strstrip(buf), 0, &kill);
4050 	if (ret)
4051 		return ret;
4052 
4053 	if (kill != 1)
4054 		return -ERANGE;
4055 
4056 	cgrp = cgroup_kn_lock_live(of->kn, false);
4057 	if (!cgrp)
4058 		return -ENOENT;
4059 
4060 	/*
4061 	 * Killing is a process directed operation, i.e. the whole thread-group
4062 	 * is taken down so act like we do for cgroup.procs and only make this
4063 	 * writable in non-threaded cgroups.
4064 	 */
4065 	if (cgroup_is_threaded(cgrp))
4066 		ret = -EOPNOTSUPP;
4067 	else
4068 		cgroup_kill(cgrp);
4069 
4070 	cgroup_kn_unlock(of->kn);
4071 
4072 	return ret ?: nbytes;
4073 }
4074 
4075 static int cgroup_file_open(struct kernfs_open_file *of)
4076 {
4077 	struct cftype *cft = of_cft(of);
4078 	struct cgroup_file_ctx *ctx;
4079 	int ret;
4080 
4081 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4082 	if (!ctx)
4083 		return -ENOMEM;
4084 
4085 	ctx->ns = current->nsproxy->cgroup_ns;
4086 	get_cgroup_ns(ctx->ns);
4087 	of->priv = ctx;
4088 
4089 	if (!cft->open)
4090 		return 0;
4091 
4092 	ret = cft->open(of);
4093 	if (ret) {
4094 		put_cgroup_ns(ctx->ns);
4095 		kfree(ctx);
4096 	}
4097 	return ret;
4098 }
4099 
4100 static void cgroup_file_release(struct kernfs_open_file *of)
4101 {
4102 	struct cftype *cft = of_cft(of);
4103 	struct cgroup_file_ctx *ctx = of->priv;
4104 
4105 	if (cft->release)
4106 		cft->release(of);
4107 	put_cgroup_ns(ctx->ns);
4108 	kfree(ctx);
4109 }
4110 
4111 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4112 				 size_t nbytes, loff_t off)
4113 {
4114 	struct cgroup_file_ctx *ctx = of->priv;
4115 	struct cgroup *cgrp = of->kn->parent->priv;
4116 	struct cftype *cft = of_cft(of);
4117 	struct cgroup_subsys_state *css;
4118 	int ret;
4119 
4120 	if (!nbytes)
4121 		return 0;
4122 
4123 	/*
4124 	 * If namespaces are delegation boundaries, disallow writes to
4125 	 * files in an non-init namespace root from inside the namespace
4126 	 * except for the files explicitly marked delegatable -
4127 	 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control.
4128 	 */
4129 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4130 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4131 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4132 		return -EPERM;
4133 
4134 	if (cft->write)
4135 		return cft->write(of, buf, nbytes, off);
4136 
4137 	/*
4138 	 * kernfs guarantees that a file isn't deleted with operations in
4139 	 * flight, which means that the matching css is and stays alive and
4140 	 * doesn't need to be pinned.  The RCU locking is not necessary
4141 	 * either.  It's just for the convenience of using cgroup_css().
4142 	 */
4143 	rcu_read_lock();
4144 	css = cgroup_css(cgrp, cft->ss);
4145 	rcu_read_unlock();
4146 
4147 	if (cft->write_u64) {
4148 		unsigned long long v;
4149 		ret = kstrtoull(buf, 0, &v);
4150 		if (!ret)
4151 			ret = cft->write_u64(css, cft, v);
4152 	} else if (cft->write_s64) {
4153 		long long v;
4154 		ret = kstrtoll(buf, 0, &v);
4155 		if (!ret)
4156 			ret = cft->write_s64(css, cft, v);
4157 	} else {
4158 		ret = -EINVAL;
4159 	}
4160 
4161 	return ret ?: nbytes;
4162 }
4163 
4164 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4165 {
4166 	struct cftype *cft = of_cft(of);
4167 
4168 	if (cft->poll)
4169 		return cft->poll(of, pt);
4170 
4171 	return kernfs_generic_poll(of, pt);
4172 }
4173 
4174 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4175 {
4176 	return seq_cft(seq)->seq_start(seq, ppos);
4177 }
4178 
4179 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4180 {
4181 	return seq_cft(seq)->seq_next(seq, v, ppos);
4182 }
4183 
4184 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4185 {
4186 	if (seq_cft(seq)->seq_stop)
4187 		seq_cft(seq)->seq_stop(seq, v);
4188 }
4189 
4190 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4191 {
4192 	struct cftype *cft = seq_cft(m);
4193 	struct cgroup_subsys_state *css = seq_css(m);
4194 
4195 	if (cft->seq_show)
4196 		return cft->seq_show(m, arg);
4197 
4198 	if (cft->read_u64)
4199 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4200 	else if (cft->read_s64)
4201 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4202 	else
4203 		return -EINVAL;
4204 	return 0;
4205 }
4206 
4207 static struct kernfs_ops cgroup_kf_single_ops = {
4208 	.atomic_write_len	= PAGE_SIZE,
4209 	.open			= cgroup_file_open,
4210 	.release		= cgroup_file_release,
4211 	.write			= cgroup_file_write,
4212 	.poll			= cgroup_file_poll,
4213 	.seq_show		= cgroup_seqfile_show,
4214 };
4215 
4216 static struct kernfs_ops cgroup_kf_ops = {
4217 	.atomic_write_len	= PAGE_SIZE,
4218 	.open			= cgroup_file_open,
4219 	.release		= cgroup_file_release,
4220 	.write			= cgroup_file_write,
4221 	.poll			= cgroup_file_poll,
4222 	.seq_start		= cgroup_seqfile_start,
4223 	.seq_next		= cgroup_seqfile_next,
4224 	.seq_stop		= cgroup_seqfile_stop,
4225 	.seq_show		= cgroup_seqfile_show,
4226 };
4227 
4228 static void cgroup_file_notify_timer(struct timer_list *timer)
4229 {
4230 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4231 					notify_timer));
4232 }
4233 
4234 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4235 			   struct cftype *cft)
4236 {
4237 	char name[CGROUP_FILE_NAME_MAX];
4238 	struct kernfs_node *kn;
4239 	struct lock_class_key *key = NULL;
4240 
4241 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4242 	key = &cft->lockdep_key;
4243 #endif
4244 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4245 				  cgroup_file_mode(cft),
4246 				  current_fsuid(), current_fsgid(),
4247 				  0, cft->kf_ops, cft,
4248 				  NULL, key);
4249 	if (IS_ERR(kn))
4250 		return PTR_ERR(kn);
4251 
4252 	if (cft->file_offset) {
4253 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4254 
4255 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4256 
4257 		spin_lock_irq(&cgroup_file_kn_lock);
4258 		cfile->kn = kn;
4259 		spin_unlock_irq(&cgroup_file_kn_lock);
4260 	}
4261 
4262 	return 0;
4263 }
4264 
4265 /**
4266  * cgroup_addrm_files - add or remove files to a cgroup directory
4267  * @css: the target css
4268  * @cgrp: the target cgroup (usually css->cgroup)
4269  * @cfts: array of cftypes to be added
4270  * @is_add: whether to add or remove
4271  *
4272  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4273  * For removals, this function never fails.
4274  */
4275 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4276 			      struct cgroup *cgrp, struct cftype cfts[],
4277 			      bool is_add)
4278 {
4279 	struct cftype *cft, *cft_end = NULL;
4280 	int ret = 0;
4281 
4282 	lockdep_assert_held(&cgroup_mutex);
4283 
4284 restart:
4285 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4286 		/* does cft->flags tell us to skip this file on @cgrp? */
4287 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4288 			continue;
4289 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4290 			continue;
4291 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4292 			continue;
4293 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4294 			continue;
4295 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4296 			continue;
4297 		if (is_add) {
4298 			ret = cgroup_add_file(css, cgrp, cft);
4299 			if (ret) {
4300 				pr_warn("%s: failed to add %s, err=%d\n",
4301 					__func__, cft->name, ret);
4302 				cft_end = cft;
4303 				is_add = false;
4304 				goto restart;
4305 			}
4306 		} else {
4307 			cgroup_rm_file(cgrp, cft);
4308 		}
4309 	}
4310 	return ret;
4311 }
4312 
4313 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4314 {
4315 	struct cgroup_subsys *ss = cfts[0].ss;
4316 	struct cgroup *root = &ss->root->cgrp;
4317 	struct cgroup_subsys_state *css;
4318 	int ret = 0;
4319 
4320 	lockdep_assert_held(&cgroup_mutex);
4321 
4322 	/* add/rm files for all cgroups created before */
4323 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4324 		struct cgroup *cgrp = css->cgroup;
4325 
4326 		if (!(css->flags & CSS_VISIBLE))
4327 			continue;
4328 
4329 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4330 		if (ret)
4331 			break;
4332 	}
4333 
4334 	if (is_add && !ret)
4335 		kernfs_activate(root->kn);
4336 	return ret;
4337 }
4338 
4339 static void cgroup_exit_cftypes(struct cftype *cfts)
4340 {
4341 	struct cftype *cft;
4342 
4343 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4344 		/* free copy for custom atomic_write_len, see init_cftypes() */
4345 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4346 			kfree(cft->kf_ops);
4347 		cft->kf_ops = NULL;
4348 		cft->ss = NULL;
4349 
4350 		/* revert flags set by cgroup core while adding @cfts */
4351 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4352 				__CFTYPE_ADDED);
4353 	}
4354 }
4355 
4356 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4357 {
4358 	struct cftype *cft;
4359 	int ret = 0;
4360 
4361 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4362 		struct kernfs_ops *kf_ops;
4363 
4364 		WARN_ON(cft->ss || cft->kf_ops);
4365 
4366 		if (cft->flags & __CFTYPE_ADDED) {
4367 			ret = -EBUSY;
4368 			break;
4369 		}
4370 
4371 		if (cft->seq_start)
4372 			kf_ops = &cgroup_kf_ops;
4373 		else
4374 			kf_ops = &cgroup_kf_single_ops;
4375 
4376 		/*
4377 		 * Ugh... if @cft wants a custom max_write_len, we need to
4378 		 * make a copy of kf_ops to set its atomic_write_len.
4379 		 */
4380 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4381 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4382 			if (!kf_ops) {
4383 				ret = -ENOMEM;
4384 				break;
4385 			}
4386 			kf_ops->atomic_write_len = cft->max_write_len;
4387 		}
4388 
4389 		cft->kf_ops = kf_ops;
4390 		cft->ss = ss;
4391 		cft->flags |= __CFTYPE_ADDED;
4392 	}
4393 
4394 	if (ret)
4395 		cgroup_exit_cftypes(cfts);
4396 	return ret;
4397 }
4398 
4399 static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4400 {
4401 	lockdep_assert_held(&cgroup_mutex);
4402 
4403 	list_del(&cfts->node);
4404 	cgroup_apply_cftypes(cfts, false);
4405 	cgroup_exit_cftypes(cfts);
4406 }
4407 
4408 /**
4409  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4410  * @cfts: zero-length name terminated array of cftypes
4411  *
4412  * Unregister @cfts.  Files described by @cfts are removed from all
4413  * existing cgroups and all future cgroups won't have them either.  This
4414  * function can be called anytime whether @cfts' subsys is attached or not.
4415  *
4416  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4417  * registered.
4418  */
4419 int cgroup_rm_cftypes(struct cftype *cfts)
4420 {
4421 	if (!cfts || cfts[0].name[0] == '\0')
4422 		return 0;
4423 
4424 	if (!(cfts[0].flags & __CFTYPE_ADDED))
4425 		return -ENOENT;
4426 
4427 	cgroup_lock();
4428 	cgroup_rm_cftypes_locked(cfts);
4429 	cgroup_unlock();
4430 	return 0;
4431 }
4432 
4433 /**
4434  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4435  * @ss: target cgroup subsystem
4436  * @cfts: zero-length name terminated array of cftypes
4437  *
4438  * Register @cfts to @ss.  Files described by @cfts are created for all
4439  * existing cgroups to which @ss is attached and all future cgroups will
4440  * have them too.  This function can be called anytime whether @ss is
4441  * attached or not.
4442  *
4443  * Returns 0 on successful registration, -errno on failure.  Note that this
4444  * function currently returns 0 as long as @cfts registration is successful
4445  * even if some file creation attempts on existing cgroups fail.
4446  */
4447 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4448 {
4449 	int ret;
4450 
4451 	if (!cgroup_ssid_enabled(ss->id))
4452 		return 0;
4453 
4454 	if (!cfts || cfts[0].name[0] == '\0')
4455 		return 0;
4456 
4457 	ret = cgroup_init_cftypes(ss, cfts);
4458 	if (ret)
4459 		return ret;
4460 
4461 	cgroup_lock();
4462 
4463 	list_add_tail(&cfts->node, &ss->cfts);
4464 	ret = cgroup_apply_cftypes(cfts, true);
4465 	if (ret)
4466 		cgroup_rm_cftypes_locked(cfts);
4467 
4468 	cgroup_unlock();
4469 	return ret;
4470 }
4471 
4472 /**
4473  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4474  * @ss: target cgroup subsystem
4475  * @cfts: zero-length name terminated array of cftypes
4476  *
4477  * Similar to cgroup_add_cftypes() but the added files are only used for
4478  * the default hierarchy.
4479  */
4480 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4481 {
4482 	struct cftype *cft;
4483 
4484 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4485 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4486 	return cgroup_add_cftypes(ss, cfts);
4487 }
4488 
4489 /**
4490  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4491  * @ss: target cgroup subsystem
4492  * @cfts: zero-length name terminated array of cftypes
4493  *
4494  * Similar to cgroup_add_cftypes() but the added files are only used for
4495  * the legacy hierarchies.
4496  */
4497 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4498 {
4499 	struct cftype *cft;
4500 
4501 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4502 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4503 	return cgroup_add_cftypes(ss, cfts);
4504 }
4505 
4506 /**
4507  * cgroup_file_notify - generate a file modified event for a cgroup_file
4508  * @cfile: target cgroup_file
4509  *
4510  * @cfile must have been obtained by setting cftype->file_offset.
4511  */
4512 void cgroup_file_notify(struct cgroup_file *cfile)
4513 {
4514 	unsigned long flags;
4515 
4516 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4517 	if (cfile->kn) {
4518 		unsigned long last = cfile->notified_at;
4519 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4520 
4521 		if (time_in_range(jiffies, last, next)) {
4522 			timer_reduce(&cfile->notify_timer, next);
4523 		} else {
4524 			kernfs_notify(cfile->kn);
4525 			cfile->notified_at = jiffies;
4526 		}
4527 	}
4528 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4529 }
4530 
4531 /**
4532  * cgroup_file_show - show or hide a hidden cgroup file
4533  * @cfile: target cgroup_file obtained by setting cftype->file_offset
4534  * @show: whether to show or hide
4535  */
4536 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4537 {
4538 	struct kernfs_node *kn;
4539 
4540 	spin_lock_irq(&cgroup_file_kn_lock);
4541 	kn = cfile->kn;
4542 	kernfs_get(kn);
4543 	spin_unlock_irq(&cgroup_file_kn_lock);
4544 
4545 	if (kn)
4546 		kernfs_show(kn, show);
4547 
4548 	kernfs_put(kn);
4549 }
4550 
4551 /**
4552  * css_next_child - find the next child of a given css
4553  * @pos: the current position (%NULL to initiate traversal)
4554  * @parent: css whose children to walk
4555  *
4556  * This function returns the next child of @parent and should be called
4557  * under either cgroup_mutex or RCU read lock.  The only requirement is
4558  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4559  * be returned regardless of their states.
4560  *
4561  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4562  * css which finished ->css_online() is guaranteed to be visible in the
4563  * future iterations and will stay visible until the last reference is put.
4564  * A css which hasn't finished ->css_online() or already finished
4565  * ->css_offline() may show up during traversal.  It's each subsystem's
4566  * responsibility to synchronize against on/offlining.
4567  */
4568 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4569 					   struct cgroup_subsys_state *parent)
4570 {
4571 	struct cgroup_subsys_state *next;
4572 
4573 	cgroup_assert_mutex_or_rcu_locked();
4574 
4575 	/*
4576 	 * @pos could already have been unlinked from the sibling list.
4577 	 * Once a cgroup is removed, its ->sibling.next is no longer
4578 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4579 	 * @pos is taken off list, at which time its next pointer is valid,
4580 	 * and, as releases are serialized, the one pointed to by the next
4581 	 * pointer is guaranteed to not have started release yet.  This
4582 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4583 	 * critical section, the one pointed to by its next pointer is
4584 	 * guaranteed to not have finished its RCU grace period even if we
4585 	 * have dropped rcu_read_lock() in-between iterations.
4586 	 *
4587 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4588 	 * dereferenced; however, as each css is given a monotonically
4589 	 * increasing unique serial number and always appended to the
4590 	 * sibling list, the next one can be found by walking the parent's
4591 	 * children until the first css with higher serial number than
4592 	 * @pos's.  While this path can be slower, it happens iff iteration
4593 	 * races against release and the race window is very small.
4594 	 */
4595 	if (!pos) {
4596 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4597 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4598 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4599 	} else {
4600 		list_for_each_entry_rcu(next, &parent->children, sibling,
4601 					lockdep_is_held(&cgroup_mutex))
4602 			if (next->serial_nr > pos->serial_nr)
4603 				break;
4604 	}
4605 
4606 	/*
4607 	 * @next, if not pointing to the head, can be dereferenced and is
4608 	 * the next sibling.
4609 	 */
4610 	if (&next->sibling != &parent->children)
4611 		return next;
4612 	return NULL;
4613 }
4614 
4615 /**
4616  * css_next_descendant_pre - find the next descendant for pre-order walk
4617  * @pos: the current position (%NULL to initiate traversal)
4618  * @root: css whose descendants to walk
4619  *
4620  * To be used by css_for_each_descendant_pre().  Find the next descendant
4621  * to visit for pre-order traversal of @root's descendants.  @root is
4622  * included in the iteration and the first node to be visited.
4623  *
4624  * While this function requires cgroup_mutex or RCU read locking, it
4625  * doesn't require the whole traversal to be contained in a single critical
4626  * section.  This function will return the correct next descendant as long
4627  * as both @pos and @root are accessible and @pos is a descendant of @root.
4628  *
4629  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4630  * css which finished ->css_online() is guaranteed to be visible in the
4631  * future iterations and will stay visible until the last reference is put.
4632  * A css which hasn't finished ->css_online() or already finished
4633  * ->css_offline() may show up during traversal.  It's each subsystem's
4634  * responsibility to synchronize against on/offlining.
4635  */
4636 struct cgroup_subsys_state *
4637 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4638 			struct cgroup_subsys_state *root)
4639 {
4640 	struct cgroup_subsys_state *next;
4641 
4642 	cgroup_assert_mutex_or_rcu_locked();
4643 
4644 	/* if first iteration, visit @root */
4645 	if (!pos)
4646 		return root;
4647 
4648 	/* visit the first child if exists */
4649 	next = css_next_child(NULL, pos);
4650 	if (next)
4651 		return next;
4652 
4653 	/* no child, visit my or the closest ancestor's next sibling */
4654 	while (pos != root) {
4655 		next = css_next_child(pos, pos->parent);
4656 		if (next)
4657 			return next;
4658 		pos = pos->parent;
4659 	}
4660 
4661 	return NULL;
4662 }
4663 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4664 
4665 /**
4666  * css_rightmost_descendant - return the rightmost descendant of a css
4667  * @pos: css of interest
4668  *
4669  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4670  * is returned.  This can be used during pre-order traversal to skip
4671  * subtree of @pos.
4672  *
4673  * While this function requires cgroup_mutex or RCU read locking, it
4674  * doesn't require the whole traversal to be contained in a single critical
4675  * section.  This function will return the correct rightmost descendant as
4676  * long as @pos is accessible.
4677  */
4678 struct cgroup_subsys_state *
4679 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4680 {
4681 	struct cgroup_subsys_state *last, *tmp;
4682 
4683 	cgroup_assert_mutex_or_rcu_locked();
4684 
4685 	do {
4686 		last = pos;
4687 		/* ->prev isn't RCU safe, walk ->next till the end */
4688 		pos = NULL;
4689 		css_for_each_child(tmp, last)
4690 			pos = tmp;
4691 	} while (pos);
4692 
4693 	return last;
4694 }
4695 
4696 static struct cgroup_subsys_state *
4697 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4698 {
4699 	struct cgroup_subsys_state *last;
4700 
4701 	do {
4702 		last = pos;
4703 		pos = css_next_child(NULL, pos);
4704 	} while (pos);
4705 
4706 	return last;
4707 }
4708 
4709 /**
4710  * css_next_descendant_post - find the next descendant for post-order walk
4711  * @pos: the current position (%NULL to initiate traversal)
4712  * @root: css whose descendants to walk
4713  *
4714  * To be used by css_for_each_descendant_post().  Find the next descendant
4715  * to visit for post-order traversal of @root's descendants.  @root is
4716  * included in the iteration and the last node to be visited.
4717  *
4718  * While this function requires cgroup_mutex or RCU read locking, it
4719  * doesn't require the whole traversal to be contained in a single critical
4720  * section.  This function will return the correct next descendant as long
4721  * as both @pos and @cgroup are accessible and @pos is a descendant of
4722  * @cgroup.
4723  *
4724  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4725  * css which finished ->css_online() is guaranteed to be visible in the
4726  * future iterations and will stay visible until the last reference is put.
4727  * A css which hasn't finished ->css_online() or already finished
4728  * ->css_offline() may show up during traversal.  It's each subsystem's
4729  * responsibility to synchronize against on/offlining.
4730  */
4731 struct cgroup_subsys_state *
4732 css_next_descendant_post(struct cgroup_subsys_state *pos,
4733 			 struct cgroup_subsys_state *root)
4734 {
4735 	struct cgroup_subsys_state *next;
4736 
4737 	cgroup_assert_mutex_or_rcu_locked();
4738 
4739 	/* if first iteration, visit leftmost descendant which may be @root */
4740 	if (!pos)
4741 		return css_leftmost_descendant(root);
4742 
4743 	/* if we visited @root, we're done */
4744 	if (pos == root)
4745 		return NULL;
4746 
4747 	/* if there's an unvisited sibling, visit its leftmost descendant */
4748 	next = css_next_child(pos, pos->parent);
4749 	if (next)
4750 		return css_leftmost_descendant(next);
4751 
4752 	/* no sibling left, visit parent */
4753 	return pos->parent;
4754 }
4755 
4756 /**
4757  * css_has_online_children - does a css have online children
4758  * @css: the target css
4759  *
4760  * Returns %true if @css has any online children; otherwise, %false.  This
4761  * function can be called from any context but the caller is responsible
4762  * for synchronizing against on/offlining as necessary.
4763  */
4764 bool css_has_online_children(struct cgroup_subsys_state *css)
4765 {
4766 	struct cgroup_subsys_state *child;
4767 	bool ret = false;
4768 
4769 	rcu_read_lock();
4770 	css_for_each_child(child, css) {
4771 		if (child->flags & CSS_ONLINE) {
4772 			ret = true;
4773 			break;
4774 		}
4775 	}
4776 	rcu_read_unlock();
4777 	return ret;
4778 }
4779 
4780 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4781 {
4782 	struct list_head *l;
4783 	struct cgrp_cset_link *link;
4784 	struct css_set *cset;
4785 
4786 	lockdep_assert_held(&css_set_lock);
4787 
4788 	/* find the next threaded cset */
4789 	if (it->tcset_pos) {
4790 		l = it->tcset_pos->next;
4791 
4792 		if (l != it->tcset_head) {
4793 			it->tcset_pos = l;
4794 			return container_of(l, struct css_set,
4795 					    threaded_csets_node);
4796 		}
4797 
4798 		it->tcset_pos = NULL;
4799 	}
4800 
4801 	/* find the next cset */
4802 	l = it->cset_pos;
4803 	l = l->next;
4804 	if (l == it->cset_head) {
4805 		it->cset_pos = NULL;
4806 		return NULL;
4807 	}
4808 
4809 	if (it->ss) {
4810 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4811 	} else {
4812 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4813 		cset = link->cset;
4814 	}
4815 
4816 	it->cset_pos = l;
4817 
4818 	/* initialize threaded css_set walking */
4819 	if (it->flags & CSS_TASK_ITER_THREADED) {
4820 		if (it->cur_dcset)
4821 			put_css_set_locked(it->cur_dcset);
4822 		it->cur_dcset = cset;
4823 		get_css_set(cset);
4824 
4825 		it->tcset_head = &cset->threaded_csets;
4826 		it->tcset_pos = &cset->threaded_csets;
4827 	}
4828 
4829 	return cset;
4830 }
4831 
4832 /**
4833  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4834  * @it: the iterator to advance
4835  *
4836  * Advance @it to the next css_set to walk.
4837  */
4838 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4839 {
4840 	struct css_set *cset;
4841 
4842 	lockdep_assert_held(&css_set_lock);
4843 
4844 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4845 	while ((cset = css_task_iter_next_css_set(it))) {
4846 		if (!list_empty(&cset->tasks)) {
4847 			it->cur_tasks_head = &cset->tasks;
4848 			break;
4849 		} else if (!list_empty(&cset->mg_tasks)) {
4850 			it->cur_tasks_head = &cset->mg_tasks;
4851 			break;
4852 		} else if (!list_empty(&cset->dying_tasks)) {
4853 			it->cur_tasks_head = &cset->dying_tasks;
4854 			break;
4855 		}
4856 	}
4857 	if (!cset) {
4858 		it->task_pos = NULL;
4859 		return;
4860 	}
4861 	it->task_pos = it->cur_tasks_head->next;
4862 
4863 	/*
4864 	 * We don't keep css_sets locked across iteration steps and thus
4865 	 * need to take steps to ensure that iteration can be resumed after
4866 	 * the lock is re-acquired.  Iteration is performed at two levels -
4867 	 * css_sets and tasks in them.
4868 	 *
4869 	 * Once created, a css_set never leaves its cgroup lists, so a
4870 	 * pinned css_set is guaranteed to stay put and we can resume
4871 	 * iteration afterwards.
4872 	 *
4873 	 * Tasks may leave @cset across iteration steps.  This is resolved
4874 	 * by registering each iterator with the css_set currently being
4875 	 * walked and making css_set_move_task() advance iterators whose
4876 	 * next task is leaving.
4877 	 */
4878 	if (it->cur_cset) {
4879 		list_del(&it->iters_node);
4880 		put_css_set_locked(it->cur_cset);
4881 	}
4882 	get_css_set(cset);
4883 	it->cur_cset = cset;
4884 	list_add(&it->iters_node, &cset->task_iters);
4885 }
4886 
4887 static void css_task_iter_skip(struct css_task_iter *it,
4888 			       struct task_struct *task)
4889 {
4890 	lockdep_assert_held(&css_set_lock);
4891 
4892 	if (it->task_pos == &task->cg_list) {
4893 		it->task_pos = it->task_pos->next;
4894 		it->flags |= CSS_TASK_ITER_SKIPPED;
4895 	}
4896 }
4897 
4898 static void css_task_iter_advance(struct css_task_iter *it)
4899 {
4900 	struct task_struct *task;
4901 
4902 	lockdep_assert_held(&css_set_lock);
4903 repeat:
4904 	if (it->task_pos) {
4905 		/*
4906 		 * Advance iterator to find next entry. We go through cset
4907 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4908 		 * the next cset.
4909 		 */
4910 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4911 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4912 		else
4913 			it->task_pos = it->task_pos->next;
4914 
4915 		if (it->task_pos == &it->cur_cset->tasks) {
4916 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4917 			it->task_pos = it->cur_tasks_head->next;
4918 		}
4919 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4920 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4921 			it->task_pos = it->cur_tasks_head->next;
4922 		}
4923 		if (it->task_pos == &it->cur_cset->dying_tasks)
4924 			css_task_iter_advance_css_set(it);
4925 	} else {
4926 		/* called from start, proceed to the first cset */
4927 		css_task_iter_advance_css_set(it);
4928 	}
4929 
4930 	if (!it->task_pos)
4931 		return;
4932 
4933 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4934 
4935 	if (it->flags & CSS_TASK_ITER_PROCS) {
4936 		/* if PROCS, skip over tasks which aren't group leaders */
4937 		if (!thread_group_leader(task))
4938 			goto repeat;
4939 
4940 		/* and dying leaders w/o live member threads */
4941 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4942 		    !atomic_read(&task->signal->live))
4943 			goto repeat;
4944 	} else {
4945 		/* skip all dying ones */
4946 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4947 			goto repeat;
4948 	}
4949 }
4950 
4951 /**
4952  * css_task_iter_start - initiate task iteration
4953  * @css: the css to walk tasks of
4954  * @flags: CSS_TASK_ITER_* flags
4955  * @it: the task iterator to use
4956  *
4957  * Initiate iteration through the tasks of @css.  The caller can call
4958  * css_task_iter_next() to walk through the tasks until the function
4959  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4960  * called.
4961  */
4962 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4963 			 struct css_task_iter *it)
4964 {
4965 	unsigned long irqflags;
4966 
4967 	memset(it, 0, sizeof(*it));
4968 
4969 	spin_lock_irqsave(&css_set_lock, irqflags);
4970 
4971 	it->ss = css->ss;
4972 	it->flags = flags;
4973 
4974 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4975 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4976 	else
4977 		it->cset_pos = &css->cgroup->cset_links;
4978 
4979 	it->cset_head = it->cset_pos;
4980 
4981 	css_task_iter_advance(it);
4982 
4983 	spin_unlock_irqrestore(&css_set_lock, irqflags);
4984 }
4985 
4986 /**
4987  * css_task_iter_next - return the next task for the iterator
4988  * @it: the task iterator being iterated
4989  *
4990  * The "next" function for task iteration.  @it should have been
4991  * initialized via css_task_iter_start().  Returns NULL when the iteration
4992  * reaches the end.
4993  */
4994 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4995 {
4996 	unsigned long irqflags;
4997 
4998 	if (it->cur_task) {
4999 		put_task_struct(it->cur_task);
5000 		it->cur_task = NULL;
5001 	}
5002 
5003 	spin_lock_irqsave(&css_set_lock, irqflags);
5004 
5005 	/* @it may be half-advanced by skips, finish advancing */
5006 	if (it->flags & CSS_TASK_ITER_SKIPPED)
5007 		css_task_iter_advance(it);
5008 
5009 	if (it->task_pos) {
5010 		it->cur_task = list_entry(it->task_pos, struct task_struct,
5011 					  cg_list);
5012 		get_task_struct(it->cur_task);
5013 		css_task_iter_advance(it);
5014 	}
5015 
5016 	spin_unlock_irqrestore(&css_set_lock, irqflags);
5017 
5018 	return it->cur_task;
5019 }
5020 
5021 /**
5022  * css_task_iter_end - finish task iteration
5023  * @it: the task iterator to finish
5024  *
5025  * Finish task iteration started by css_task_iter_start().
5026  */
5027 void css_task_iter_end(struct css_task_iter *it)
5028 {
5029 	unsigned long irqflags;
5030 
5031 	if (it->cur_cset) {
5032 		spin_lock_irqsave(&css_set_lock, irqflags);
5033 		list_del(&it->iters_node);
5034 		put_css_set_locked(it->cur_cset);
5035 		spin_unlock_irqrestore(&css_set_lock, irqflags);
5036 	}
5037 
5038 	if (it->cur_dcset)
5039 		put_css_set(it->cur_dcset);
5040 
5041 	if (it->cur_task)
5042 		put_task_struct(it->cur_task);
5043 }
5044 
5045 static void cgroup_procs_release(struct kernfs_open_file *of)
5046 {
5047 	struct cgroup_file_ctx *ctx = of->priv;
5048 
5049 	if (ctx->procs.started)
5050 		css_task_iter_end(&ctx->procs.iter);
5051 }
5052 
5053 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5054 {
5055 	struct kernfs_open_file *of = s->private;
5056 	struct cgroup_file_ctx *ctx = of->priv;
5057 
5058 	if (pos)
5059 		(*pos)++;
5060 
5061 	return css_task_iter_next(&ctx->procs.iter);
5062 }
5063 
5064 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5065 				  unsigned int iter_flags)
5066 {
5067 	struct kernfs_open_file *of = s->private;
5068 	struct cgroup *cgrp = seq_css(s)->cgroup;
5069 	struct cgroup_file_ctx *ctx = of->priv;
5070 	struct css_task_iter *it = &ctx->procs.iter;
5071 
5072 	/*
5073 	 * When a seq_file is seeked, it's always traversed sequentially
5074 	 * from position 0, so we can simply keep iterating on !0 *pos.
5075 	 */
5076 	if (!ctx->procs.started) {
5077 		if (WARN_ON_ONCE((*pos)))
5078 			return ERR_PTR(-EINVAL);
5079 		css_task_iter_start(&cgrp->self, iter_flags, it);
5080 		ctx->procs.started = true;
5081 	} else if (!(*pos)) {
5082 		css_task_iter_end(it);
5083 		css_task_iter_start(&cgrp->self, iter_flags, it);
5084 	} else
5085 		return it->cur_task;
5086 
5087 	return cgroup_procs_next(s, NULL, NULL);
5088 }
5089 
5090 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5091 {
5092 	struct cgroup *cgrp = seq_css(s)->cgroup;
5093 
5094 	/*
5095 	 * All processes of a threaded subtree belong to the domain cgroup
5096 	 * of the subtree.  Only threads can be distributed across the
5097 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
5098 	 * They're always empty anyway.
5099 	 */
5100 	if (cgroup_is_threaded(cgrp))
5101 		return ERR_PTR(-EOPNOTSUPP);
5102 
5103 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5104 					    CSS_TASK_ITER_THREADED);
5105 }
5106 
5107 static int cgroup_procs_show(struct seq_file *s, void *v)
5108 {
5109 	seq_printf(s, "%d\n", task_pid_vnr(v));
5110 	return 0;
5111 }
5112 
5113 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5114 {
5115 	int ret;
5116 	struct inode *inode;
5117 
5118 	lockdep_assert_held(&cgroup_mutex);
5119 
5120 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5121 	if (!inode)
5122 		return -ENOMEM;
5123 
5124 	ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5125 	iput(inode);
5126 	return ret;
5127 }
5128 
5129 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5130 					 struct cgroup *dst_cgrp,
5131 					 struct super_block *sb,
5132 					 struct cgroup_namespace *ns)
5133 {
5134 	struct cgroup *com_cgrp = src_cgrp;
5135 	int ret;
5136 
5137 	lockdep_assert_held(&cgroup_mutex);
5138 
5139 	/* find the common ancestor */
5140 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5141 		com_cgrp = cgroup_parent(com_cgrp);
5142 
5143 	/* %current should be authorized to migrate to the common ancestor */
5144 	ret = cgroup_may_write(com_cgrp, sb);
5145 	if (ret)
5146 		return ret;
5147 
5148 	/*
5149 	 * If namespaces are delegation boundaries, %current must be able
5150 	 * to see both source and destination cgroups from its namespace.
5151 	 */
5152 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5153 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5154 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5155 		return -ENOENT;
5156 
5157 	return 0;
5158 }
5159 
5160 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5161 				     struct cgroup *dst_cgrp,
5162 				     struct super_block *sb, bool threadgroup,
5163 				     struct cgroup_namespace *ns)
5164 {
5165 	int ret = 0;
5166 
5167 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5168 	if (ret)
5169 		return ret;
5170 
5171 	ret = cgroup_migrate_vet_dst(dst_cgrp);
5172 	if (ret)
5173 		return ret;
5174 
5175 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5176 		ret = -EOPNOTSUPP;
5177 
5178 	return ret;
5179 }
5180 
5181 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5182 				    bool threadgroup)
5183 {
5184 	struct cgroup_file_ctx *ctx = of->priv;
5185 	struct cgroup *src_cgrp, *dst_cgrp;
5186 	struct task_struct *task;
5187 	const struct cred *saved_cred;
5188 	ssize_t ret;
5189 	bool threadgroup_locked;
5190 
5191 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5192 	if (!dst_cgrp)
5193 		return -ENODEV;
5194 
5195 	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5196 	ret = PTR_ERR_OR_ZERO(task);
5197 	if (ret)
5198 		goto out_unlock;
5199 
5200 	/* find the source cgroup */
5201 	spin_lock_irq(&css_set_lock);
5202 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5203 	spin_unlock_irq(&css_set_lock);
5204 
5205 	/*
5206 	 * Process and thread migrations follow same delegation rule. Check
5207 	 * permissions using the credentials from file open to protect against
5208 	 * inherited fd attacks.
5209 	 */
5210 	saved_cred = override_creds(of->file->f_cred);
5211 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5212 					of->file->f_path.dentry->d_sb,
5213 					threadgroup, ctx->ns);
5214 	revert_creds(saved_cred);
5215 	if (ret)
5216 		goto out_finish;
5217 
5218 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5219 
5220 out_finish:
5221 	cgroup_procs_write_finish(task, threadgroup_locked);
5222 out_unlock:
5223 	cgroup_kn_unlock(of->kn);
5224 
5225 	return ret;
5226 }
5227 
5228 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5229 				  char *buf, size_t nbytes, loff_t off)
5230 {
5231 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5232 }
5233 
5234 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5235 {
5236 	return __cgroup_procs_start(s, pos, 0);
5237 }
5238 
5239 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5240 				    char *buf, size_t nbytes, loff_t off)
5241 {
5242 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5243 }
5244 
5245 /* cgroup core interface files for the default hierarchy */
5246 static struct cftype cgroup_base_files[] = {
5247 	{
5248 		.name = "cgroup.type",
5249 		.flags = CFTYPE_NOT_ON_ROOT,
5250 		.seq_show = cgroup_type_show,
5251 		.write = cgroup_type_write,
5252 	},
5253 	{
5254 		.name = "cgroup.procs",
5255 		.flags = CFTYPE_NS_DELEGATABLE,
5256 		.file_offset = offsetof(struct cgroup, procs_file),
5257 		.release = cgroup_procs_release,
5258 		.seq_start = cgroup_procs_start,
5259 		.seq_next = cgroup_procs_next,
5260 		.seq_show = cgroup_procs_show,
5261 		.write = cgroup_procs_write,
5262 	},
5263 	{
5264 		.name = "cgroup.threads",
5265 		.flags = CFTYPE_NS_DELEGATABLE,
5266 		.release = cgroup_procs_release,
5267 		.seq_start = cgroup_threads_start,
5268 		.seq_next = cgroup_procs_next,
5269 		.seq_show = cgroup_procs_show,
5270 		.write = cgroup_threads_write,
5271 	},
5272 	{
5273 		.name = "cgroup.controllers",
5274 		.seq_show = cgroup_controllers_show,
5275 	},
5276 	{
5277 		.name = "cgroup.subtree_control",
5278 		.flags = CFTYPE_NS_DELEGATABLE,
5279 		.seq_show = cgroup_subtree_control_show,
5280 		.write = cgroup_subtree_control_write,
5281 	},
5282 	{
5283 		.name = "cgroup.events",
5284 		.flags = CFTYPE_NOT_ON_ROOT,
5285 		.file_offset = offsetof(struct cgroup, events_file),
5286 		.seq_show = cgroup_events_show,
5287 	},
5288 	{
5289 		.name = "cgroup.max.descendants",
5290 		.seq_show = cgroup_max_descendants_show,
5291 		.write = cgroup_max_descendants_write,
5292 	},
5293 	{
5294 		.name = "cgroup.max.depth",
5295 		.seq_show = cgroup_max_depth_show,
5296 		.write = cgroup_max_depth_write,
5297 	},
5298 	{
5299 		.name = "cgroup.stat",
5300 		.seq_show = cgroup_stat_show,
5301 	},
5302 	{
5303 		.name = "cgroup.freeze",
5304 		.flags = CFTYPE_NOT_ON_ROOT,
5305 		.seq_show = cgroup_freeze_show,
5306 		.write = cgroup_freeze_write,
5307 	},
5308 	{
5309 		.name = "cgroup.kill",
5310 		.flags = CFTYPE_NOT_ON_ROOT,
5311 		.write = cgroup_kill_write,
5312 	},
5313 	{
5314 		.name = "cpu.stat",
5315 		.seq_show = cpu_stat_show,
5316 	},
5317 	{
5318 		.name = "cpu.stat.local",
5319 		.seq_show = cpu_local_stat_show,
5320 	},
5321 	{ }	/* terminate */
5322 };
5323 
5324 static struct cftype cgroup_psi_files[] = {
5325 #ifdef CONFIG_PSI
5326 	{
5327 		.name = "io.pressure",
5328 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5329 		.seq_show = cgroup_io_pressure_show,
5330 		.write = cgroup_io_pressure_write,
5331 		.poll = cgroup_pressure_poll,
5332 		.release = cgroup_pressure_release,
5333 	},
5334 	{
5335 		.name = "memory.pressure",
5336 		.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5337 		.seq_show = cgroup_memory_pressure_show,
5338 		.write = cgroup_memory_pressure_write,
5339 		.poll = cgroup_pressure_poll,
5340 		.release = cgroup_pressure_release,
5341 	},
5342 	{
5343 		.name = "cpu.pressure",
5344 		.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5345 		.seq_show = cgroup_cpu_pressure_show,
5346 		.write = cgroup_cpu_pressure_write,
5347 		.poll = cgroup_pressure_poll,
5348 		.release = cgroup_pressure_release,
5349 	},
5350 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5351 	{
5352 		.name = "irq.pressure",
5353 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5354 		.seq_show = cgroup_irq_pressure_show,
5355 		.write = cgroup_irq_pressure_write,
5356 		.poll = cgroup_pressure_poll,
5357 		.release = cgroup_pressure_release,
5358 	},
5359 #endif
5360 	{
5361 		.name = "cgroup.pressure",
5362 		.seq_show = cgroup_pressure_show,
5363 		.write = cgroup_pressure_write,
5364 	},
5365 #endif /* CONFIG_PSI */
5366 	{ }	/* terminate */
5367 };
5368 
5369 /*
5370  * css destruction is four-stage process.
5371  *
5372  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5373  *    Implemented in kill_css().
5374  *
5375  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5376  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5377  *    offlined by invoking offline_css().  After offlining, the base ref is
5378  *    put.  Implemented in css_killed_work_fn().
5379  *
5380  * 3. When the percpu_ref reaches zero, the only possible remaining
5381  *    accessors are inside RCU read sections.  css_release() schedules the
5382  *    RCU callback.
5383  *
5384  * 4. After the grace period, the css can be freed.  Implemented in
5385  *    css_free_rwork_fn().
5386  *
5387  * It is actually hairier because both step 2 and 4 require process context
5388  * and thus involve punting to css->destroy_work adding two additional
5389  * steps to the already complex sequence.
5390  */
5391 static void css_free_rwork_fn(struct work_struct *work)
5392 {
5393 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5394 				struct cgroup_subsys_state, destroy_rwork);
5395 	struct cgroup_subsys *ss = css->ss;
5396 	struct cgroup *cgrp = css->cgroup;
5397 
5398 	percpu_ref_exit(&css->refcnt);
5399 
5400 	if (ss) {
5401 		/* css free path */
5402 		struct cgroup_subsys_state *parent = css->parent;
5403 		int id = css->id;
5404 
5405 		ss->css_free(css);
5406 		cgroup_idr_remove(&ss->css_idr, id);
5407 		cgroup_put(cgrp);
5408 
5409 		if (parent)
5410 			css_put(parent);
5411 	} else {
5412 		/* cgroup free path */
5413 		atomic_dec(&cgrp->root->nr_cgrps);
5414 		if (!cgroup_on_dfl(cgrp))
5415 			cgroup1_pidlist_destroy_all(cgrp);
5416 		cancel_work_sync(&cgrp->release_agent_work);
5417 		bpf_cgrp_storage_free(cgrp);
5418 
5419 		if (cgroup_parent(cgrp)) {
5420 			/*
5421 			 * We get a ref to the parent, and put the ref when
5422 			 * this cgroup is being freed, so it's guaranteed
5423 			 * that the parent won't be destroyed before its
5424 			 * children.
5425 			 */
5426 			cgroup_put(cgroup_parent(cgrp));
5427 			kernfs_put(cgrp->kn);
5428 			psi_cgroup_free(cgrp);
5429 			cgroup_rstat_exit(cgrp);
5430 			kfree(cgrp);
5431 		} else {
5432 			/*
5433 			 * This is root cgroup's refcnt reaching zero,
5434 			 * which indicates that the root should be
5435 			 * released.
5436 			 */
5437 			cgroup_destroy_root(cgrp->root);
5438 		}
5439 	}
5440 }
5441 
5442 static void css_release_work_fn(struct work_struct *work)
5443 {
5444 	struct cgroup_subsys_state *css =
5445 		container_of(work, struct cgroup_subsys_state, destroy_work);
5446 	struct cgroup_subsys *ss = css->ss;
5447 	struct cgroup *cgrp = css->cgroup;
5448 
5449 	cgroup_lock();
5450 
5451 	css->flags |= CSS_RELEASED;
5452 	list_del_rcu(&css->sibling);
5453 
5454 	if (ss) {
5455 		struct cgroup *parent_cgrp;
5456 
5457 		/* css release path */
5458 		if (!list_empty(&css->rstat_css_node)) {
5459 			cgroup_rstat_flush(cgrp);
5460 			list_del_rcu(&css->rstat_css_node);
5461 		}
5462 
5463 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5464 		if (ss->css_released)
5465 			ss->css_released(css);
5466 
5467 		cgrp->nr_dying_subsys[ss->id]--;
5468 		/*
5469 		 * When a css is released and ready to be freed, its
5470 		 * nr_descendants must be zero. However, the corresponding
5471 		 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem
5472 		 * is activated and deactivated multiple times with one or
5473 		 * more of its previous activation leaving behind dying csses.
5474 		 */
5475 		WARN_ON_ONCE(css->nr_descendants);
5476 		parent_cgrp = cgroup_parent(cgrp);
5477 		while (parent_cgrp) {
5478 			parent_cgrp->nr_dying_subsys[ss->id]--;
5479 			parent_cgrp = cgroup_parent(parent_cgrp);
5480 		}
5481 	} else {
5482 		struct cgroup *tcgrp;
5483 
5484 		/* cgroup release path */
5485 		TRACE_CGROUP_PATH(release, cgrp);
5486 
5487 		cgroup_rstat_flush(cgrp);
5488 
5489 		spin_lock_irq(&css_set_lock);
5490 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5491 		     tcgrp = cgroup_parent(tcgrp))
5492 			tcgrp->nr_dying_descendants--;
5493 		spin_unlock_irq(&css_set_lock);
5494 
5495 		/*
5496 		 * There are two control paths which try to determine
5497 		 * cgroup from dentry without going through kernfs -
5498 		 * cgroupstats_build() and css_tryget_online_from_dir().
5499 		 * Those are supported by RCU protecting clearing of
5500 		 * cgrp->kn->priv backpointer.
5501 		 */
5502 		if (cgrp->kn)
5503 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5504 					 NULL);
5505 	}
5506 
5507 	cgroup_unlock();
5508 
5509 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5510 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5511 }
5512 
5513 static void css_release(struct percpu_ref *ref)
5514 {
5515 	struct cgroup_subsys_state *css =
5516 		container_of(ref, struct cgroup_subsys_state, refcnt);
5517 
5518 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5519 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5520 }
5521 
5522 static void init_and_link_css(struct cgroup_subsys_state *css,
5523 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5524 {
5525 	lockdep_assert_held(&cgroup_mutex);
5526 
5527 	cgroup_get_live(cgrp);
5528 
5529 	memset(css, 0, sizeof(*css));
5530 	css->cgroup = cgrp;
5531 	css->ss = ss;
5532 	css->id = -1;
5533 	INIT_LIST_HEAD(&css->sibling);
5534 	INIT_LIST_HEAD(&css->children);
5535 	INIT_LIST_HEAD(&css->rstat_css_node);
5536 	css->serial_nr = css_serial_nr_next++;
5537 	atomic_set(&css->online_cnt, 0);
5538 
5539 	if (cgroup_parent(cgrp)) {
5540 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5541 		css_get(css->parent);
5542 	}
5543 
5544 	if (ss->css_rstat_flush)
5545 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5546 
5547 	BUG_ON(cgroup_css(cgrp, ss));
5548 }
5549 
5550 /* invoke ->css_online() on a new CSS and mark it online if successful */
5551 static int online_css(struct cgroup_subsys_state *css)
5552 {
5553 	struct cgroup_subsys *ss = css->ss;
5554 	int ret = 0;
5555 
5556 	lockdep_assert_held(&cgroup_mutex);
5557 
5558 	if (ss->css_online)
5559 		ret = ss->css_online(css);
5560 	if (!ret) {
5561 		css->flags |= CSS_ONLINE;
5562 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5563 
5564 		atomic_inc(&css->online_cnt);
5565 		if (css->parent) {
5566 			atomic_inc(&css->parent->online_cnt);
5567 			while ((css = css->parent))
5568 				css->nr_descendants++;
5569 		}
5570 	}
5571 	return ret;
5572 }
5573 
5574 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5575 static void offline_css(struct cgroup_subsys_state *css)
5576 {
5577 	struct cgroup_subsys *ss = css->ss;
5578 
5579 	lockdep_assert_held(&cgroup_mutex);
5580 
5581 	if (!(css->flags & CSS_ONLINE))
5582 		return;
5583 
5584 	if (ss->css_offline)
5585 		ss->css_offline(css);
5586 
5587 	css->flags &= ~CSS_ONLINE;
5588 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5589 
5590 	wake_up_all(&css->cgroup->offline_waitq);
5591 
5592 	css->cgroup->nr_dying_subsys[ss->id]++;
5593 	/*
5594 	 * Parent css and cgroup cannot be freed until after the freeing
5595 	 * of child css, see css_free_rwork_fn().
5596 	 */
5597 	while ((css = css->parent)) {
5598 		css->nr_descendants--;
5599 		css->cgroup->nr_dying_subsys[ss->id]++;
5600 	}
5601 }
5602 
5603 /**
5604  * css_create - create a cgroup_subsys_state
5605  * @cgrp: the cgroup new css will be associated with
5606  * @ss: the subsys of new css
5607  *
5608  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5609  * css is online and installed in @cgrp.  This function doesn't create the
5610  * interface files.  Returns 0 on success, -errno on failure.
5611  */
5612 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5613 					      struct cgroup_subsys *ss)
5614 {
5615 	struct cgroup *parent = cgroup_parent(cgrp);
5616 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5617 	struct cgroup_subsys_state *css;
5618 	int err;
5619 
5620 	lockdep_assert_held(&cgroup_mutex);
5621 
5622 	css = ss->css_alloc(parent_css);
5623 	if (!css)
5624 		css = ERR_PTR(-ENOMEM);
5625 	if (IS_ERR(css))
5626 		return css;
5627 
5628 	init_and_link_css(css, ss, cgrp);
5629 
5630 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5631 	if (err)
5632 		goto err_free_css;
5633 
5634 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5635 	if (err < 0)
5636 		goto err_free_css;
5637 	css->id = err;
5638 
5639 	/* @css is ready to be brought online now, make it visible */
5640 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5641 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5642 
5643 	err = online_css(css);
5644 	if (err)
5645 		goto err_list_del;
5646 
5647 	return css;
5648 
5649 err_list_del:
5650 	list_del_rcu(&css->sibling);
5651 err_free_css:
5652 	list_del_rcu(&css->rstat_css_node);
5653 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5654 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5655 	return ERR_PTR(err);
5656 }
5657 
5658 /*
5659  * The returned cgroup is fully initialized including its control mask, but
5660  * it doesn't have the control mask applied.
5661  */
5662 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5663 				    umode_t mode)
5664 {
5665 	struct cgroup_root *root = parent->root;
5666 	struct cgroup *cgrp, *tcgrp;
5667 	struct kernfs_node *kn;
5668 	int level = parent->level + 1;
5669 	int ret;
5670 
5671 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5672 	cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5673 	if (!cgrp)
5674 		return ERR_PTR(-ENOMEM);
5675 
5676 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5677 	if (ret)
5678 		goto out_free_cgrp;
5679 
5680 	ret = cgroup_rstat_init(cgrp);
5681 	if (ret)
5682 		goto out_cancel_ref;
5683 
5684 	/* create the directory */
5685 	kn = kernfs_create_dir_ns(parent->kn, name, mode,
5686 				  current_fsuid(), current_fsgid(),
5687 				  cgrp, NULL);
5688 	if (IS_ERR(kn)) {
5689 		ret = PTR_ERR(kn);
5690 		goto out_stat_exit;
5691 	}
5692 	cgrp->kn = kn;
5693 
5694 	init_cgroup_housekeeping(cgrp);
5695 
5696 	cgrp->self.parent = &parent->self;
5697 	cgrp->root = root;
5698 	cgrp->level = level;
5699 
5700 	ret = psi_cgroup_alloc(cgrp);
5701 	if (ret)
5702 		goto out_kernfs_remove;
5703 
5704 	ret = cgroup_bpf_inherit(cgrp);
5705 	if (ret)
5706 		goto out_psi_free;
5707 
5708 	/*
5709 	 * New cgroup inherits effective freeze counter, and
5710 	 * if the parent has to be frozen, the child has too.
5711 	 */
5712 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5713 	if (cgrp->freezer.e_freeze) {
5714 		/*
5715 		 * Set the CGRP_FREEZE flag, so when a process will be
5716 		 * attached to the child cgroup, it will become frozen.
5717 		 * At this point the new cgroup is unpopulated, so we can
5718 		 * consider it frozen immediately.
5719 		 */
5720 		set_bit(CGRP_FREEZE, &cgrp->flags);
5721 		set_bit(CGRP_FROZEN, &cgrp->flags);
5722 	}
5723 
5724 	spin_lock_irq(&css_set_lock);
5725 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5726 		cgrp->ancestors[tcgrp->level] = tcgrp;
5727 
5728 		if (tcgrp != cgrp) {
5729 			tcgrp->nr_descendants++;
5730 
5731 			/*
5732 			 * If the new cgroup is frozen, all ancestor cgroups
5733 			 * get a new frozen descendant, but their state can't
5734 			 * change because of this.
5735 			 */
5736 			if (cgrp->freezer.e_freeze)
5737 				tcgrp->freezer.nr_frozen_descendants++;
5738 		}
5739 	}
5740 	spin_unlock_irq(&css_set_lock);
5741 
5742 	if (notify_on_release(parent))
5743 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5744 
5745 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5746 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5747 
5748 	cgrp->self.serial_nr = css_serial_nr_next++;
5749 
5750 	/* allocation complete, commit to creation */
5751 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5752 	atomic_inc(&root->nr_cgrps);
5753 	cgroup_get_live(parent);
5754 
5755 	/*
5756 	 * On the default hierarchy, a child doesn't automatically inherit
5757 	 * subtree_control from the parent.  Each is configured manually.
5758 	 */
5759 	if (!cgroup_on_dfl(cgrp))
5760 		cgrp->subtree_control = cgroup_control(cgrp);
5761 
5762 	cgroup_propagate_control(cgrp);
5763 
5764 	return cgrp;
5765 
5766 out_psi_free:
5767 	psi_cgroup_free(cgrp);
5768 out_kernfs_remove:
5769 	kernfs_remove(cgrp->kn);
5770 out_stat_exit:
5771 	cgroup_rstat_exit(cgrp);
5772 out_cancel_ref:
5773 	percpu_ref_exit(&cgrp->self.refcnt);
5774 out_free_cgrp:
5775 	kfree(cgrp);
5776 	return ERR_PTR(ret);
5777 }
5778 
5779 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5780 {
5781 	struct cgroup *cgroup;
5782 	int ret = false;
5783 	int level = 1;
5784 
5785 	lockdep_assert_held(&cgroup_mutex);
5786 
5787 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5788 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5789 			goto fail;
5790 
5791 		if (level > cgroup->max_depth)
5792 			goto fail;
5793 
5794 		level++;
5795 	}
5796 
5797 	ret = true;
5798 fail:
5799 	return ret;
5800 }
5801 
5802 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5803 {
5804 	struct cgroup *parent, *cgrp;
5805 	int ret;
5806 
5807 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5808 	if (strchr(name, '\n'))
5809 		return -EINVAL;
5810 
5811 	parent = cgroup_kn_lock_live(parent_kn, false);
5812 	if (!parent)
5813 		return -ENODEV;
5814 
5815 	if (!cgroup_check_hierarchy_limits(parent)) {
5816 		ret = -EAGAIN;
5817 		goto out_unlock;
5818 	}
5819 
5820 	cgrp = cgroup_create(parent, name, mode);
5821 	if (IS_ERR(cgrp)) {
5822 		ret = PTR_ERR(cgrp);
5823 		goto out_unlock;
5824 	}
5825 
5826 	/*
5827 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5828 	 * that @cgrp->kn is always accessible.
5829 	 */
5830 	kernfs_get(cgrp->kn);
5831 
5832 	ret = css_populate_dir(&cgrp->self);
5833 	if (ret)
5834 		goto out_destroy;
5835 
5836 	ret = cgroup_apply_control_enable(cgrp);
5837 	if (ret)
5838 		goto out_destroy;
5839 
5840 	TRACE_CGROUP_PATH(mkdir, cgrp);
5841 
5842 	/* let's create and online css's */
5843 	kernfs_activate(cgrp->kn);
5844 
5845 	ret = 0;
5846 	goto out_unlock;
5847 
5848 out_destroy:
5849 	cgroup_destroy_locked(cgrp);
5850 out_unlock:
5851 	cgroup_kn_unlock(parent_kn);
5852 	return ret;
5853 }
5854 
5855 /*
5856  * This is called when the refcnt of a css is confirmed to be killed.
5857  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5858  * initiate destruction and put the css ref from kill_css().
5859  */
5860 static void css_killed_work_fn(struct work_struct *work)
5861 {
5862 	struct cgroup_subsys_state *css =
5863 		container_of(work, struct cgroup_subsys_state, destroy_work);
5864 
5865 	cgroup_lock();
5866 
5867 	do {
5868 		offline_css(css);
5869 		css_put(css);
5870 		/* @css can't go away while we're holding cgroup_mutex */
5871 		css = css->parent;
5872 	} while (css && atomic_dec_and_test(&css->online_cnt));
5873 
5874 	cgroup_unlock();
5875 }
5876 
5877 /* css kill confirmation processing requires process context, bounce */
5878 static void css_killed_ref_fn(struct percpu_ref *ref)
5879 {
5880 	struct cgroup_subsys_state *css =
5881 		container_of(ref, struct cgroup_subsys_state, refcnt);
5882 
5883 	if (atomic_dec_and_test(&css->online_cnt)) {
5884 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5885 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5886 	}
5887 }
5888 
5889 /**
5890  * kill_css - destroy a css
5891  * @css: css to destroy
5892  *
5893  * This function initiates destruction of @css by removing cgroup interface
5894  * files and putting its base reference.  ->css_offline() will be invoked
5895  * asynchronously once css_tryget_online() is guaranteed to fail and when
5896  * the reference count reaches zero, @css will be released.
5897  */
5898 static void kill_css(struct cgroup_subsys_state *css)
5899 {
5900 	lockdep_assert_held(&cgroup_mutex);
5901 
5902 	if (css->flags & CSS_DYING)
5903 		return;
5904 
5905 	css->flags |= CSS_DYING;
5906 
5907 	/*
5908 	 * This must happen before css is disassociated with its cgroup.
5909 	 * See seq_css() for details.
5910 	 */
5911 	css_clear_dir(css);
5912 
5913 	/*
5914 	 * Killing would put the base ref, but we need to keep it alive
5915 	 * until after ->css_offline().
5916 	 */
5917 	css_get(css);
5918 
5919 	/*
5920 	 * cgroup core guarantees that, by the time ->css_offline() is
5921 	 * invoked, no new css reference will be given out via
5922 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5923 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5924 	 * guarantee that the ref is seen as killed on all CPUs on return.
5925 	 *
5926 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5927 	 * css is confirmed to be seen as killed on all CPUs.
5928 	 */
5929 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5930 }
5931 
5932 /**
5933  * cgroup_destroy_locked - the first stage of cgroup destruction
5934  * @cgrp: cgroup to be destroyed
5935  *
5936  * css's make use of percpu refcnts whose killing latency shouldn't be
5937  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5938  * guarantee that css_tryget_online() won't succeed by the time
5939  * ->css_offline() is invoked.  To satisfy all the requirements,
5940  * destruction is implemented in the following two steps.
5941  *
5942  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5943  *     userland visible parts and start killing the percpu refcnts of
5944  *     css's.  Set up so that the next stage will be kicked off once all
5945  *     the percpu refcnts are confirmed to be killed.
5946  *
5947  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5948  *     rest of destruction.  Once all cgroup references are gone, the
5949  *     cgroup is RCU-freed.
5950  *
5951  * This function implements s1.  After this step, @cgrp is gone as far as
5952  * the userland is concerned and a new cgroup with the same name may be
5953  * created.  As cgroup doesn't care about the names internally, this
5954  * doesn't cause any problem.
5955  */
5956 static int cgroup_destroy_locked(struct cgroup *cgrp)
5957 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5958 {
5959 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5960 	struct cgroup_subsys_state *css;
5961 	struct cgrp_cset_link *link;
5962 	int ssid;
5963 
5964 	lockdep_assert_held(&cgroup_mutex);
5965 
5966 	/*
5967 	 * Only migration can raise populated from zero and we're already
5968 	 * holding cgroup_mutex.
5969 	 */
5970 	if (cgroup_is_populated(cgrp))
5971 		return -EBUSY;
5972 
5973 	/*
5974 	 * Make sure there's no live children.  We can't test emptiness of
5975 	 * ->self.children as dead children linger on it while being
5976 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5977 	 */
5978 	if (css_has_online_children(&cgrp->self))
5979 		return -EBUSY;
5980 
5981 	/*
5982 	 * Mark @cgrp and the associated csets dead.  The former prevents
5983 	 * further task migration and child creation by disabling
5984 	 * cgroup_kn_lock_live().  The latter makes the csets ignored by
5985 	 * the migration path.
5986 	 */
5987 	cgrp->self.flags &= ~CSS_ONLINE;
5988 
5989 	spin_lock_irq(&css_set_lock);
5990 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5991 		link->cset->dead = true;
5992 	spin_unlock_irq(&css_set_lock);
5993 
5994 	/* initiate massacre of all css's */
5995 	for_each_css(css, ssid, cgrp)
5996 		kill_css(css);
5997 
5998 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5999 	css_clear_dir(&cgrp->self);
6000 	kernfs_remove(cgrp->kn);
6001 
6002 	if (cgroup_is_threaded(cgrp))
6003 		parent->nr_threaded_children--;
6004 
6005 	spin_lock_irq(&css_set_lock);
6006 	for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
6007 		tcgrp->nr_descendants--;
6008 		tcgrp->nr_dying_descendants++;
6009 		/*
6010 		 * If the dying cgroup is frozen, decrease frozen descendants
6011 		 * counters of ancestor cgroups.
6012 		 */
6013 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
6014 			tcgrp->freezer.nr_frozen_descendants--;
6015 	}
6016 	spin_unlock_irq(&css_set_lock);
6017 
6018 	cgroup1_check_for_release(parent);
6019 
6020 	cgroup_bpf_offline(cgrp);
6021 
6022 	/* put the base reference */
6023 	percpu_ref_kill(&cgrp->self.refcnt);
6024 
6025 	return 0;
6026 };
6027 
6028 int cgroup_rmdir(struct kernfs_node *kn)
6029 {
6030 	struct cgroup *cgrp;
6031 	int ret = 0;
6032 
6033 	cgrp = cgroup_kn_lock_live(kn, false);
6034 	if (!cgrp)
6035 		return 0;
6036 
6037 	ret = cgroup_destroy_locked(cgrp);
6038 	if (!ret)
6039 		TRACE_CGROUP_PATH(rmdir, cgrp);
6040 
6041 	cgroup_kn_unlock(kn);
6042 	return ret;
6043 }
6044 
6045 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
6046 	.show_options		= cgroup_show_options,
6047 	.mkdir			= cgroup_mkdir,
6048 	.rmdir			= cgroup_rmdir,
6049 	.show_path		= cgroup_show_path,
6050 };
6051 
6052 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
6053 {
6054 	struct cgroup_subsys_state *css;
6055 
6056 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
6057 
6058 	cgroup_lock();
6059 
6060 	idr_init(&ss->css_idr);
6061 	INIT_LIST_HEAD(&ss->cfts);
6062 
6063 	/* Create the root cgroup state for this subsystem */
6064 	ss->root = &cgrp_dfl_root;
6065 	css = ss->css_alloc(NULL);
6066 	/* We don't handle early failures gracefully */
6067 	BUG_ON(IS_ERR(css));
6068 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
6069 
6070 	/*
6071 	 * Root csses are never destroyed and we can't initialize
6072 	 * percpu_ref during early init.  Disable refcnting.
6073 	 */
6074 	css->flags |= CSS_NO_REF;
6075 
6076 	if (early) {
6077 		/* allocation can't be done safely during early init */
6078 		css->id = 1;
6079 	} else {
6080 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6081 		BUG_ON(css->id < 0);
6082 	}
6083 
6084 	/* Update the init_css_set to contain a subsys
6085 	 * pointer to this state - since the subsystem is
6086 	 * newly registered, all tasks and hence the
6087 	 * init_css_set is in the subsystem's root cgroup. */
6088 	init_css_set.subsys[ss->id] = css;
6089 
6090 	have_fork_callback |= (bool)ss->fork << ss->id;
6091 	have_exit_callback |= (bool)ss->exit << ss->id;
6092 	have_release_callback |= (bool)ss->release << ss->id;
6093 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
6094 
6095 	/* At system boot, before all subsystems have been
6096 	 * registered, no tasks have been forked, so we don't
6097 	 * need to invoke fork callbacks here. */
6098 	BUG_ON(!list_empty(&init_task.tasks));
6099 
6100 	BUG_ON(online_css(css));
6101 
6102 	cgroup_unlock();
6103 }
6104 
6105 /**
6106  * cgroup_init_early - cgroup initialization at system boot
6107  *
6108  * Initialize cgroups at system boot, and initialize any
6109  * subsystems that request early init.
6110  */
6111 int __init cgroup_init_early(void)
6112 {
6113 	static struct cgroup_fs_context __initdata ctx;
6114 	struct cgroup_subsys *ss;
6115 	int i;
6116 
6117 	ctx.root = &cgrp_dfl_root;
6118 	init_cgroup_root(&ctx);
6119 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6120 
6121 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6122 
6123 	for_each_subsys(ss, i) {
6124 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6125 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6126 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6127 		     ss->id, ss->name);
6128 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6129 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6130 
6131 		ss->id = i;
6132 		ss->name = cgroup_subsys_name[i];
6133 		if (!ss->legacy_name)
6134 			ss->legacy_name = cgroup_subsys_name[i];
6135 
6136 		if (ss->early_init)
6137 			cgroup_init_subsys(ss, true);
6138 	}
6139 	return 0;
6140 }
6141 
6142 /**
6143  * cgroup_init - cgroup initialization
6144  *
6145  * Register cgroup filesystem and /proc file, and initialize
6146  * any subsystems that didn't request early init.
6147  */
6148 int __init cgroup_init(void)
6149 {
6150 	struct cgroup_subsys *ss;
6151 	int ssid;
6152 
6153 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6154 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6155 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6156 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6157 
6158 	cgroup_rstat_boot();
6159 
6160 	get_user_ns(init_cgroup_ns.user_ns);
6161 
6162 	cgroup_lock();
6163 
6164 	/*
6165 	 * Add init_css_set to the hash table so that dfl_root can link to
6166 	 * it during init.
6167 	 */
6168 	hash_add(css_set_table, &init_css_set.hlist,
6169 		 css_set_hash(init_css_set.subsys));
6170 
6171 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6172 
6173 	cgroup_unlock();
6174 
6175 	for_each_subsys(ss, ssid) {
6176 		if (ss->early_init) {
6177 			struct cgroup_subsys_state *css =
6178 				init_css_set.subsys[ss->id];
6179 
6180 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6181 						   GFP_KERNEL);
6182 			BUG_ON(css->id < 0);
6183 		} else {
6184 			cgroup_init_subsys(ss, false);
6185 		}
6186 
6187 		list_add_tail(&init_css_set.e_cset_node[ssid],
6188 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
6189 
6190 		/*
6191 		 * Setting dfl_root subsys_mask needs to consider the
6192 		 * disabled flag and cftype registration needs kmalloc,
6193 		 * both of which aren't available during early_init.
6194 		 */
6195 		if (!cgroup_ssid_enabled(ssid))
6196 			continue;
6197 
6198 		if (cgroup1_ssid_disabled(ssid))
6199 			pr_info("Disabling %s control group subsystem in v1 mounts\n",
6200 				ss->legacy_name);
6201 
6202 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6203 
6204 		/* implicit controllers must be threaded too */
6205 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6206 
6207 		if (ss->implicit_on_dfl)
6208 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6209 		else if (!ss->dfl_cftypes)
6210 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6211 
6212 		if (ss->threaded)
6213 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6214 
6215 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
6216 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6217 		} else {
6218 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6219 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6220 		}
6221 
6222 		if (ss->bind)
6223 			ss->bind(init_css_set.subsys[ssid]);
6224 
6225 		cgroup_lock();
6226 		css_populate_dir(init_css_set.subsys[ssid]);
6227 		cgroup_unlock();
6228 	}
6229 
6230 	/* init_css_set.subsys[] has been updated, re-hash */
6231 	hash_del(&init_css_set.hlist);
6232 	hash_add(css_set_table, &init_css_set.hlist,
6233 		 css_set_hash(init_css_set.subsys));
6234 
6235 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6236 	WARN_ON(register_filesystem(&cgroup_fs_type));
6237 	WARN_ON(register_filesystem(&cgroup2_fs_type));
6238 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6239 #ifdef CONFIG_CPUSETS_V1
6240 	WARN_ON(register_filesystem(&cpuset_fs_type));
6241 #endif
6242 
6243 	return 0;
6244 }
6245 
6246 static int __init cgroup_wq_init(void)
6247 {
6248 	/*
6249 	 * There isn't much point in executing destruction path in
6250 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6251 	 * Use 1 for @max_active.
6252 	 *
6253 	 * We would prefer to do this in cgroup_init() above, but that
6254 	 * is called before init_workqueues(): so leave this until after.
6255 	 */
6256 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6257 	BUG_ON(!cgroup_destroy_wq);
6258 	return 0;
6259 }
6260 core_initcall(cgroup_wq_init);
6261 
6262 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6263 {
6264 	struct kernfs_node *kn;
6265 
6266 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6267 	if (!kn)
6268 		return;
6269 	kernfs_path(kn, buf, buflen);
6270 	kernfs_put(kn);
6271 }
6272 
6273 /*
6274  * cgroup_get_from_id : get the cgroup associated with cgroup id
6275  * @id: cgroup id
6276  * On success return the cgrp or ERR_PTR on failure
6277  * Only cgroups within current task's cgroup NS are valid.
6278  */
6279 struct cgroup *cgroup_get_from_id(u64 id)
6280 {
6281 	struct kernfs_node *kn;
6282 	struct cgroup *cgrp, *root_cgrp;
6283 
6284 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6285 	if (!kn)
6286 		return ERR_PTR(-ENOENT);
6287 
6288 	if (kernfs_type(kn) != KERNFS_DIR) {
6289 		kernfs_put(kn);
6290 		return ERR_PTR(-ENOENT);
6291 	}
6292 
6293 	rcu_read_lock();
6294 
6295 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6296 	if (cgrp && !cgroup_tryget(cgrp))
6297 		cgrp = NULL;
6298 
6299 	rcu_read_unlock();
6300 	kernfs_put(kn);
6301 
6302 	if (!cgrp)
6303 		return ERR_PTR(-ENOENT);
6304 
6305 	root_cgrp = current_cgns_cgroup_dfl();
6306 	if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6307 		cgroup_put(cgrp);
6308 		return ERR_PTR(-ENOENT);
6309 	}
6310 
6311 	return cgrp;
6312 }
6313 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6314 
6315 /*
6316  * proc_cgroup_show()
6317  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6318  *  - Used for /proc/<pid>/cgroup.
6319  */
6320 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6321 		     struct pid *pid, struct task_struct *tsk)
6322 {
6323 	char *buf;
6324 	int retval;
6325 	struct cgroup_root *root;
6326 
6327 	retval = -ENOMEM;
6328 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6329 	if (!buf)
6330 		goto out;
6331 
6332 	rcu_read_lock();
6333 	spin_lock_irq(&css_set_lock);
6334 
6335 	for_each_root(root) {
6336 		struct cgroup_subsys *ss;
6337 		struct cgroup *cgrp;
6338 		int ssid, count = 0;
6339 
6340 		if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6341 			continue;
6342 
6343 		cgrp = task_cgroup_from_root(tsk, root);
6344 		/* The root has already been unmounted. */
6345 		if (!cgrp)
6346 			continue;
6347 
6348 		seq_printf(m, "%d:", root->hierarchy_id);
6349 		if (root != &cgrp_dfl_root)
6350 			for_each_subsys(ss, ssid)
6351 				if (root->subsys_mask & (1 << ssid))
6352 					seq_printf(m, "%s%s", count++ ? "," : "",
6353 						   ss->legacy_name);
6354 		if (strlen(root->name))
6355 			seq_printf(m, "%sname=%s", count ? "," : "",
6356 				   root->name);
6357 		seq_putc(m, ':');
6358 		/*
6359 		 * On traditional hierarchies, all zombie tasks show up as
6360 		 * belonging to the root cgroup.  On the default hierarchy,
6361 		 * while a zombie doesn't show up in "cgroup.procs" and
6362 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6363 		 * reporting the cgroup it belonged to before exiting.  If
6364 		 * the cgroup is removed before the zombie is reaped,
6365 		 * " (deleted)" is appended to the cgroup path.
6366 		 */
6367 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6368 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6369 						current->nsproxy->cgroup_ns);
6370 			if (retval == -E2BIG)
6371 				retval = -ENAMETOOLONG;
6372 			if (retval < 0)
6373 				goto out_unlock;
6374 
6375 			seq_puts(m, buf);
6376 		} else {
6377 			seq_puts(m, "/");
6378 		}
6379 
6380 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6381 			seq_puts(m, " (deleted)\n");
6382 		else
6383 			seq_putc(m, '\n');
6384 	}
6385 
6386 	retval = 0;
6387 out_unlock:
6388 	spin_unlock_irq(&css_set_lock);
6389 	rcu_read_unlock();
6390 	kfree(buf);
6391 out:
6392 	return retval;
6393 }
6394 
6395 /**
6396  * cgroup_fork - initialize cgroup related fields during copy_process()
6397  * @child: pointer to task_struct of forking parent process.
6398  *
6399  * A task is associated with the init_css_set until cgroup_post_fork()
6400  * attaches it to the target css_set.
6401  */
6402 void cgroup_fork(struct task_struct *child)
6403 {
6404 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6405 	INIT_LIST_HEAD(&child->cg_list);
6406 }
6407 
6408 /**
6409  * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6410  * @f: file corresponding to cgroup_dir
6411  *
6412  * Find the cgroup from a file pointer associated with a cgroup directory.
6413  * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6414  * cgroup cannot be found.
6415  */
6416 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6417 {
6418 	struct cgroup_subsys_state *css;
6419 
6420 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6421 	if (IS_ERR(css))
6422 		return ERR_CAST(css);
6423 
6424 	return css->cgroup;
6425 }
6426 
6427 /**
6428  * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6429  * cgroup2.
6430  * @f: file corresponding to cgroup2_dir
6431  */
6432 static struct cgroup *cgroup_get_from_file(struct file *f)
6433 {
6434 	struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6435 
6436 	if (IS_ERR(cgrp))
6437 		return ERR_CAST(cgrp);
6438 
6439 	if (!cgroup_on_dfl(cgrp)) {
6440 		cgroup_put(cgrp);
6441 		return ERR_PTR(-EBADF);
6442 	}
6443 
6444 	return cgrp;
6445 }
6446 
6447 /**
6448  * cgroup_css_set_fork - find or create a css_set for a child process
6449  * @kargs: the arguments passed to create the child process
6450  *
6451  * This functions finds or creates a new css_set which the child
6452  * process will be attached to in cgroup_post_fork(). By default,
6453  * the child process will be given the same css_set as its parent.
6454  *
6455  * If CLONE_INTO_CGROUP is specified this function will try to find an
6456  * existing css_set which includes the requested cgroup and if not create
6457  * a new css_set that the child will be attached to later. If this function
6458  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6459  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6460  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6461  * to the target cgroup.
6462  */
6463 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6464 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6465 {
6466 	int ret;
6467 	struct cgroup *dst_cgrp = NULL;
6468 	struct css_set *cset;
6469 	struct super_block *sb;
6470 	struct file *f;
6471 
6472 	if (kargs->flags & CLONE_INTO_CGROUP)
6473 		cgroup_lock();
6474 
6475 	cgroup_threadgroup_change_begin(current);
6476 
6477 	spin_lock_irq(&css_set_lock);
6478 	cset = task_css_set(current);
6479 	get_css_set(cset);
6480 	spin_unlock_irq(&css_set_lock);
6481 
6482 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6483 		kargs->cset = cset;
6484 		return 0;
6485 	}
6486 
6487 	f = fget_raw(kargs->cgroup);
6488 	if (!f) {
6489 		ret = -EBADF;
6490 		goto err;
6491 	}
6492 	sb = f->f_path.dentry->d_sb;
6493 
6494 	dst_cgrp = cgroup_get_from_file(f);
6495 	if (IS_ERR(dst_cgrp)) {
6496 		ret = PTR_ERR(dst_cgrp);
6497 		dst_cgrp = NULL;
6498 		goto err;
6499 	}
6500 
6501 	if (cgroup_is_dead(dst_cgrp)) {
6502 		ret = -ENODEV;
6503 		goto err;
6504 	}
6505 
6506 	/*
6507 	 * Verify that we the target cgroup is writable for us. This is
6508 	 * usually done by the vfs layer but since we're not going through
6509 	 * the vfs layer here we need to do it "manually".
6510 	 */
6511 	ret = cgroup_may_write(dst_cgrp, sb);
6512 	if (ret)
6513 		goto err;
6514 
6515 	/*
6516 	 * Spawning a task directly into a cgroup works by passing a file
6517 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6518 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6519 	 * This was done on purpose so spawning into a cgroup could be
6520 	 * conceptualized as an atomic
6521 	 *
6522 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6523 	 *   write(fd, <child-pid>, ...);
6524 	 *
6525 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6526 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6527 	 * to always use the caller's credentials.
6528 	 */
6529 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6530 					!(kargs->flags & CLONE_THREAD),
6531 					current->nsproxy->cgroup_ns);
6532 	if (ret)
6533 		goto err;
6534 
6535 	kargs->cset = find_css_set(cset, dst_cgrp);
6536 	if (!kargs->cset) {
6537 		ret = -ENOMEM;
6538 		goto err;
6539 	}
6540 
6541 	put_css_set(cset);
6542 	fput(f);
6543 	kargs->cgrp = dst_cgrp;
6544 	return ret;
6545 
6546 err:
6547 	cgroup_threadgroup_change_end(current);
6548 	cgroup_unlock();
6549 	if (f)
6550 		fput(f);
6551 	if (dst_cgrp)
6552 		cgroup_put(dst_cgrp);
6553 	put_css_set(cset);
6554 	if (kargs->cset)
6555 		put_css_set(kargs->cset);
6556 	return ret;
6557 }
6558 
6559 /**
6560  * cgroup_css_set_put_fork - drop references we took during fork
6561  * @kargs: the arguments passed to create the child process
6562  *
6563  * Drop references to the prepared css_set and target cgroup if
6564  * CLONE_INTO_CGROUP was requested.
6565  */
6566 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6567 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6568 {
6569 	struct cgroup *cgrp = kargs->cgrp;
6570 	struct css_set *cset = kargs->cset;
6571 
6572 	cgroup_threadgroup_change_end(current);
6573 
6574 	if (cset) {
6575 		put_css_set(cset);
6576 		kargs->cset = NULL;
6577 	}
6578 
6579 	if (kargs->flags & CLONE_INTO_CGROUP) {
6580 		cgroup_unlock();
6581 		if (cgrp) {
6582 			cgroup_put(cgrp);
6583 			kargs->cgrp = NULL;
6584 		}
6585 	}
6586 }
6587 
6588 /**
6589  * cgroup_can_fork - called on a new task before the process is exposed
6590  * @child: the child process
6591  * @kargs: the arguments passed to create the child process
6592  *
6593  * This prepares a new css_set for the child process which the child will
6594  * be attached to in cgroup_post_fork().
6595  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6596  * callback returns an error, the fork aborts with that error code. This
6597  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6598  */
6599 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6600 {
6601 	struct cgroup_subsys *ss;
6602 	int i, j, ret;
6603 
6604 	ret = cgroup_css_set_fork(kargs);
6605 	if (ret)
6606 		return ret;
6607 
6608 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6609 		ret = ss->can_fork(child, kargs->cset);
6610 		if (ret)
6611 			goto out_revert;
6612 	} while_each_subsys_mask();
6613 
6614 	return 0;
6615 
6616 out_revert:
6617 	for_each_subsys(ss, j) {
6618 		if (j >= i)
6619 			break;
6620 		if (ss->cancel_fork)
6621 			ss->cancel_fork(child, kargs->cset);
6622 	}
6623 
6624 	cgroup_css_set_put_fork(kargs);
6625 
6626 	return ret;
6627 }
6628 
6629 /**
6630  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6631  * @child: the child process
6632  * @kargs: the arguments passed to create the child process
6633  *
6634  * This calls the cancel_fork() callbacks if a fork failed *after*
6635  * cgroup_can_fork() succeeded and cleans up references we took to
6636  * prepare a new css_set for the child process in cgroup_can_fork().
6637  */
6638 void cgroup_cancel_fork(struct task_struct *child,
6639 			struct kernel_clone_args *kargs)
6640 {
6641 	struct cgroup_subsys *ss;
6642 	int i;
6643 
6644 	for_each_subsys(ss, i)
6645 		if (ss->cancel_fork)
6646 			ss->cancel_fork(child, kargs->cset);
6647 
6648 	cgroup_css_set_put_fork(kargs);
6649 }
6650 
6651 /**
6652  * cgroup_post_fork - finalize cgroup setup for the child process
6653  * @child: the child process
6654  * @kargs: the arguments passed to create the child process
6655  *
6656  * Attach the child process to its css_set calling the subsystem fork()
6657  * callbacks.
6658  */
6659 void cgroup_post_fork(struct task_struct *child,
6660 		      struct kernel_clone_args *kargs)
6661 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6662 {
6663 	unsigned long cgrp_flags = 0;
6664 	bool kill = false;
6665 	struct cgroup_subsys *ss;
6666 	struct css_set *cset;
6667 	int i;
6668 
6669 	cset = kargs->cset;
6670 	kargs->cset = NULL;
6671 
6672 	spin_lock_irq(&css_set_lock);
6673 
6674 	/* init tasks are special, only link regular threads */
6675 	if (likely(child->pid)) {
6676 		if (kargs->cgrp)
6677 			cgrp_flags = kargs->cgrp->flags;
6678 		else
6679 			cgrp_flags = cset->dfl_cgrp->flags;
6680 
6681 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6682 		cset->nr_tasks++;
6683 		css_set_move_task(child, NULL, cset, false);
6684 	} else {
6685 		put_css_set(cset);
6686 		cset = NULL;
6687 	}
6688 
6689 	if (!(child->flags & PF_KTHREAD)) {
6690 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6691 			/*
6692 			 * If the cgroup has to be frozen, the new task has
6693 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6694 			 * get the task into the frozen state.
6695 			 */
6696 			spin_lock(&child->sighand->siglock);
6697 			WARN_ON_ONCE(child->frozen);
6698 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6699 			spin_unlock(&child->sighand->siglock);
6700 
6701 			/*
6702 			 * Calling cgroup_update_frozen() isn't required here,
6703 			 * because it will be called anyway a bit later from
6704 			 * do_freezer_trap(). So we avoid cgroup's transient
6705 			 * switch from the frozen state and back.
6706 			 */
6707 		}
6708 
6709 		/*
6710 		 * If the cgroup is to be killed notice it now and take the
6711 		 * child down right after we finished preparing it for
6712 		 * userspace.
6713 		 */
6714 		kill = test_bit(CGRP_KILL, &cgrp_flags);
6715 	}
6716 
6717 	spin_unlock_irq(&css_set_lock);
6718 
6719 	/*
6720 	 * Call ss->fork().  This must happen after @child is linked on
6721 	 * css_set; otherwise, @child might change state between ->fork()
6722 	 * and addition to css_set.
6723 	 */
6724 	do_each_subsys_mask(ss, i, have_fork_callback) {
6725 		ss->fork(child);
6726 	} while_each_subsys_mask();
6727 
6728 	/* Make the new cset the root_cset of the new cgroup namespace. */
6729 	if (kargs->flags & CLONE_NEWCGROUP) {
6730 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6731 
6732 		get_css_set(cset);
6733 		child->nsproxy->cgroup_ns->root_cset = cset;
6734 		put_css_set(rcset);
6735 	}
6736 
6737 	/* Cgroup has to be killed so take down child immediately. */
6738 	if (unlikely(kill))
6739 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6740 
6741 	cgroup_css_set_put_fork(kargs);
6742 }
6743 
6744 /**
6745  * cgroup_exit - detach cgroup from exiting task
6746  * @tsk: pointer to task_struct of exiting process
6747  *
6748  * Description: Detach cgroup from @tsk.
6749  *
6750  */
6751 void cgroup_exit(struct task_struct *tsk)
6752 {
6753 	struct cgroup_subsys *ss;
6754 	struct css_set *cset;
6755 	int i;
6756 
6757 	spin_lock_irq(&css_set_lock);
6758 
6759 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6760 	cset = task_css_set(tsk);
6761 	css_set_move_task(tsk, cset, NULL, false);
6762 	cset->nr_tasks--;
6763 	/* matches the signal->live check in css_task_iter_advance() */
6764 	if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live))
6765 		list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6766 
6767 	if (dl_task(tsk))
6768 		dec_dl_tasks_cs(tsk);
6769 
6770 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6771 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6772 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6773 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6774 
6775 	spin_unlock_irq(&css_set_lock);
6776 
6777 	/* see cgroup_post_fork() for details */
6778 	do_each_subsys_mask(ss, i, have_exit_callback) {
6779 		ss->exit(tsk);
6780 	} while_each_subsys_mask();
6781 }
6782 
6783 void cgroup_release(struct task_struct *task)
6784 {
6785 	struct cgroup_subsys *ss;
6786 	int ssid;
6787 
6788 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6789 		ss->release(task);
6790 	} while_each_subsys_mask();
6791 
6792 	if (!list_empty(&task->cg_list)) {
6793 		spin_lock_irq(&css_set_lock);
6794 		css_set_skip_task_iters(task_css_set(task), task);
6795 		list_del_init(&task->cg_list);
6796 		spin_unlock_irq(&css_set_lock);
6797 	}
6798 }
6799 
6800 void cgroup_free(struct task_struct *task)
6801 {
6802 	struct css_set *cset = task_css_set(task);
6803 	put_css_set(cset);
6804 }
6805 
6806 static int __init cgroup_disable(char *str)
6807 {
6808 	struct cgroup_subsys *ss;
6809 	char *token;
6810 	int i;
6811 
6812 	while ((token = strsep(&str, ",")) != NULL) {
6813 		if (!*token)
6814 			continue;
6815 
6816 		for_each_subsys(ss, i) {
6817 			if (strcmp(token, ss->name) &&
6818 			    strcmp(token, ss->legacy_name))
6819 				continue;
6820 
6821 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6822 			pr_info("Disabling %s control group subsystem\n",
6823 				ss->name);
6824 		}
6825 
6826 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6827 			if (strcmp(token, cgroup_opt_feature_names[i]))
6828 				continue;
6829 			cgroup_feature_disable_mask |= 1 << i;
6830 			pr_info("Disabling %s control group feature\n",
6831 				cgroup_opt_feature_names[i]);
6832 			break;
6833 		}
6834 	}
6835 	return 1;
6836 }
6837 __setup("cgroup_disable=", cgroup_disable);
6838 
6839 void __init __weak enable_debug_cgroup(void) { }
6840 
6841 static int __init enable_cgroup_debug(char *str)
6842 {
6843 	cgroup_debug = true;
6844 	enable_debug_cgroup();
6845 	return 1;
6846 }
6847 __setup("cgroup_debug", enable_cgroup_debug);
6848 
6849 static int __init cgroup_favordynmods_setup(char *str)
6850 {
6851 	return (kstrtobool(str, &have_favordynmods) == 0);
6852 }
6853 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
6854 
6855 /**
6856  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6857  * @dentry: directory dentry of interest
6858  * @ss: subsystem of interest
6859  *
6860  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6861  * to get the corresponding css and return it.  If such css doesn't exist
6862  * or can't be pinned, an ERR_PTR value is returned.
6863  */
6864 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6865 						       struct cgroup_subsys *ss)
6866 {
6867 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6868 	struct file_system_type *s_type = dentry->d_sb->s_type;
6869 	struct cgroup_subsys_state *css = NULL;
6870 	struct cgroup *cgrp;
6871 
6872 	/* is @dentry a cgroup dir? */
6873 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6874 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6875 		return ERR_PTR(-EBADF);
6876 
6877 	rcu_read_lock();
6878 
6879 	/*
6880 	 * This path doesn't originate from kernfs and @kn could already
6881 	 * have been or be removed at any point.  @kn->priv is RCU
6882 	 * protected for this access.  See css_release_work_fn() for details.
6883 	 */
6884 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6885 	if (cgrp)
6886 		css = cgroup_css(cgrp, ss);
6887 
6888 	if (!css || !css_tryget_online(css))
6889 		css = ERR_PTR(-ENOENT);
6890 
6891 	rcu_read_unlock();
6892 	return css;
6893 }
6894 
6895 /**
6896  * css_from_id - lookup css by id
6897  * @id: the cgroup id
6898  * @ss: cgroup subsys to be looked into
6899  *
6900  * Returns the css if there's valid one with @id, otherwise returns NULL.
6901  * Should be called under rcu_read_lock().
6902  */
6903 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6904 {
6905 	WARN_ON_ONCE(!rcu_read_lock_held());
6906 	return idr_find(&ss->css_idr, id);
6907 }
6908 
6909 /**
6910  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6911  * @path: path on the default hierarchy
6912  *
6913  * Find the cgroup at @path on the default hierarchy, increment its
6914  * reference count and return it.  Returns pointer to the found cgroup on
6915  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6916  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6917  */
6918 struct cgroup *cgroup_get_from_path(const char *path)
6919 {
6920 	struct kernfs_node *kn;
6921 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6922 	struct cgroup *root_cgrp;
6923 
6924 	root_cgrp = current_cgns_cgroup_dfl();
6925 	kn = kernfs_walk_and_get(root_cgrp->kn, path);
6926 	if (!kn)
6927 		goto out;
6928 
6929 	if (kernfs_type(kn) != KERNFS_DIR) {
6930 		cgrp = ERR_PTR(-ENOTDIR);
6931 		goto out_kernfs;
6932 	}
6933 
6934 	rcu_read_lock();
6935 
6936 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6937 	if (!cgrp || !cgroup_tryget(cgrp))
6938 		cgrp = ERR_PTR(-ENOENT);
6939 
6940 	rcu_read_unlock();
6941 
6942 out_kernfs:
6943 	kernfs_put(kn);
6944 out:
6945 	return cgrp;
6946 }
6947 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6948 
6949 /**
6950  * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
6951  * @fd: fd obtained by open(cgroup_dir)
6952  *
6953  * Find the cgroup from a fd which should be obtained
6954  * by opening a cgroup directory.  Returns a pointer to the
6955  * cgroup on success. ERR_PTR is returned if the cgroup
6956  * cannot be found.
6957  */
6958 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
6959 {
6960 	struct cgroup *cgrp;
6961 	struct fd f = fdget_raw(fd);
6962 	if (!f.file)
6963 		return ERR_PTR(-EBADF);
6964 
6965 	cgrp = cgroup_v1v2_get_from_file(f.file);
6966 	fdput(f);
6967 	return cgrp;
6968 }
6969 
6970 /**
6971  * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
6972  * cgroup2.
6973  * @fd: fd obtained by open(cgroup2_dir)
6974  */
6975 struct cgroup *cgroup_get_from_fd(int fd)
6976 {
6977 	struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
6978 
6979 	if (IS_ERR(cgrp))
6980 		return ERR_CAST(cgrp);
6981 
6982 	if (!cgroup_on_dfl(cgrp)) {
6983 		cgroup_put(cgrp);
6984 		return ERR_PTR(-EBADF);
6985 	}
6986 	return cgrp;
6987 }
6988 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6989 
6990 static u64 power_of_ten(int power)
6991 {
6992 	u64 v = 1;
6993 	while (power--)
6994 		v *= 10;
6995 	return v;
6996 }
6997 
6998 /**
6999  * cgroup_parse_float - parse a floating number
7000  * @input: input string
7001  * @dec_shift: number of decimal digits to shift
7002  * @v: output
7003  *
7004  * Parse a decimal floating point number in @input and store the result in
7005  * @v with decimal point right shifted @dec_shift times.  For example, if
7006  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
7007  * Returns 0 on success, -errno otherwise.
7008  *
7009  * There's nothing cgroup specific about this function except that it's
7010  * currently the only user.
7011  */
7012 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
7013 {
7014 	s64 whole, frac = 0;
7015 	int fstart = 0, fend = 0, flen;
7016 
7017 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
7018 		return -EINVAL;
7019 	if (frac < 0)
7020 		return -EINVAL;
7021 
7022 	flen = fend > fstart ? fend - fstart : 0;
7023 	if (flen < dec_shift)
7024 		frac *= power_of_ten(dec_shift - flen);
7025 	else
7026 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
7027 
7028 	*v = whole * power_of_ten(dec_shift) + frac;
7029 	return 0;
7030 }
7031 
7032 /*
7033  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
7034  * definition in cgroup-defs.h.
7035  */
7036 #ifdef CONFIG_SOCK_CGROUP_DATA
7037 
7038 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
7039 {
7040 	struct cgroup *cgroup;
7041 
7042 	rcu_read_lock();
7043 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
7044 	if (in_interrupt()) {
7045 		cgroup = &cgrp_dfl_root.cgrp;
7046 		cgroup_get(cgroup);
7047 		goto out;
7048 	}
7049 
7050 	while (true) {
7051 		struct css_set *cset;
7052 
7053 		cset = task_css_set(current);
7054 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
7055 			cgroup = cset->dfl_cgrp;
7056 			break;
7057 		}
7058 		cpu_relax();
7059 	}
7060 out:
7061 	skcd->cgroup = cgroup;
7062 	cgroup_bpf_get(cgroup);
7063 	rcu_read_unlock();
7064 }
7065 
7066 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
7067 {
7068 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7069 
7070 	/*
7071 	 * We might be cloning a socket which is left in an empty
7072 	 * cgroup and the cgroup might have already been rmdir'd.
7073 	 * Don't use cgroup_get_live().
7074 	 */
7075 	cgroup_get(cgrp);
7076 	cgroup_bpf_get(cgrp);
7077 }
7078 
7079 void cgroup_sk_free(struct sock_cgroup_data *skcd)
7080 {
7081 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7082 
7083 	cgroup_bpf_put(cgrp);
7084 	cgroup_put(cgrp);
7085 }
7086 
7087 #endif	/* CONFIG_SOCK_CGROUP_DATA */
7088 
7089 #ifdef CONFIG_SYSFS
7090 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7091 				      ssize_t size, const char *prefix)
7092 {
7093 	struct cftype *cft;
7094 	ssize_t ret = 0;
7095 
7096 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7097 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7098 			continue;
7099 
7100 		if (prefix)
7101 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7102 
7103 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7104 
7105 		if (WARN_ON(ret >= size))
7106 			break;
7107 	}
7108 
7109 	return ret;
7110 }
7111 
7112 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7113 			      char *buf)
7114 {
7115 	struct cgroup_subsys *ss;
7116 	int ssid;
7117 	ssize_t ret = 0;
7118 
7119 	ret = show_delegatable_files(cgroup_base_files, buf + ret,
7120 				     PAGE_SIZE - ret, NULL);
7121 	if (cgroup_psi_enabled())
7122 		ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7123 					      PAGE_SIZE - ret, NULL);
7124 
7125 	for_each_subsys(ss, ssid)
7126 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7127 					      PAGE_SIZE - ret,
7128 					      cgroup_subsys_name[ssid]);
7129 
7130 	return ret;
7131 }
7132 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7133 
7134 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7135 			     char *buf)
7136 {
7137 	return snprintf(buf, PAGE_SIZE,
7138 			"nsdelegate\n"
7139 			"favordynmods\n"
7140 			"memory_localevents\n"
7141 			"memory_recursiveprot\n"
7142 			"memory_hugetlb_accounting\n"
7143 			"pids_localevents\n");
7144 }
7145 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7146 
7147 static struct attribute *cgroup_sysfs_attrs[] = {
7148 	&cgroup_delegate_attr.attr,
7149 	&cgroup_features_attr.attr,
7150 	NULL,
7151 };
7152 
7153 static const struct attribute_group cgroup_sysfs_attr_group = {
7154 	.attrs = cgroup_sysfs_attrs,
7155 	.name = "cgroup",
7156 };
7157 
7158 static int __init cgroup_sysfs_init(void)
7159 {
7160 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7161 }
7162 subsys_initcall(cgroup_sysfs_init);
7163 
7164 #endif /* CONFIG_SYSFS */
7165